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The Effect of Iron on Hematocrit Levels in Tropical Fish 

INTRODUCTION 

Although the amount of iron present in the body is small (in 

humans about 45 milligrams/kilogram of body weight), it is an essential 

constituent of hemoglobin and of the cytochrome respiratory enzyme 

system, and thus an element of fundamental importance.   The absorp- 

tion of iron is different from that of other elements; most minerals are 

absorbed freely and the excess excreted.   Once iron is absorbed, 

however, most of it is retained within the body.   Only minute amounts 

are excreted, and that present in the body is almost completely 

reutilized after metabolic breakdown of the iron containing compounds, 

e.g., hemoglobin.   Thus if the excess iron is not excreted, there 

appears to be a mechanism for absorption control.   (Granick,  1946). 

Normally, iron is absorbed in inverse proportion to the body's 

reserves.   Thus iron is absorbed only in trace amounts by a non-anemic 

animal, but is absorbed in abundance by an anemic animal depleted of 

its iron (Rabscheit-Robbins and Whipple, 1927; and Hahn, Bale, 

Lawrence, and Whipple,  19 37). 

The tissue directly responsible for acceptance or rejection of 

iron is the gastrointestinal mucosa, which, in general, preferentially 



2 

absorbs ferrous iron rather than ferric iron (Granick,  1946).   It is 

thought that most of the absorption of iron in fish takes place 

through the mucous membranes lining the gills rather than in the 

gastrointestinal tract, but that a similar mechanism of absorption is 

involved.   Whether or not the mucosal tissue will absorb iron is in 

turn regulated by the amount of ferritin (an iron storage compound) 

present in the epithelial cells, as shown by experiments with dogs 

and guinea pigs.   (Hahn, Bale, and Ross, 1943; Granick, 1946). 

The feeding of iron results in a rapid increase of ferritin in 

the mucosa, which parallels the rapid development of a mucosal 

block to the absorption of iron.   Ferritin remains in the mucosa 

several days and slowly disappears, again paralleling the slow 

disappearance of the mucosal block to absorption.   Thus, the term 

"physiological saturation" with iron may be applied to the gastro- 

intestinal mucosa to explain its acceptance or refusal of the ingested 

salt.   This mucosal block theory, however, is not always the complete 

control mechanism.   When large amounts of iron are ingested in one 

group and small amounts of iron ingested in a second group, the 

former will absorb a greater quantity of iron if the body's stores and 

erythropoietic functions are approximately the same in both groups. 

The body's stored supply of iron is still the paramount regulation 



factor.   (Hahn, Bale, and Ross, 1943; Granick,  1946; and Miale, 

1962). 

Ferritin is an iron-protein complex containing iron in the form 

of aggregates of ferric hydroxide bound to the protein, apoferritin. 

Most of the ferrous iron on entering the mucosal cell is oxidized to 

ferric hydroxide which then combines with apoferritin to form ferritin. 

(Figure 1.).   Small amounts of ferrous iron are located at the surface 

of the ferritin protein, apoferritin, but most of the iron in ferritin is 

in the ferric state and is internally situated.   Thus only the ferrous 

iron at the surface is available for ready use.   In the ferritin molecule 

there are free sulfhydryl groups associated with the ferrous iron to 

prevent the auto-oxidation of ferrous iron.   Ferritin, however, gives 

up the iron bound to the sulfhydryl groups in the presence of a 

stronger ferrous acceptor, such as the iron  binding plasma proteins. 

(Mazur, Baez, and Shorr, 1955.) 



Figure 1.    Mechanism of Absorption, Transport, and Storage of Iron. 
(Cantarow and Schepartz, 1962). 
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The reactions taking place in the mucosal cells in the formation 

of ferritin are also reversible depending on the body needs.   Thus a 

slight decrease in circulating hemoglobin with a fall in oxygen content 

may favor the reduction of the bound ferric iron to ferrous iron which is 

then easily absorbed into the blood system (Figure 1).   This conversion 

results also in the breakdown of ferritin to apoferritin.   It is this 

decrease in ferritin concentration and increase in apoferritin concen- 

tration which permits the absorption of additional iron into the mucosal 

cells.   The ferrous iron which is absorbed into the blood stream again 

undergoes oxidation to the ferric state, and it then combines with one 

of the plasma beta-globulins.   This compound is siderophilin and is the 

transport form of iron in the body.   (Granick, 1946 and Mazur, Baez 



and Shorr,  1955). 

After absorption into the tissues, iron is released from 

siderophilin, passes out of the capillaries and into the cells where 

it may be utilized or stored.   The main areas of storage are in the 

liver, spleen, and intestinal mucosa.   In the tissues iron is stored 

in the form of ferritin and hemosiderin.   At physiological levels more 

ferritin than hemosiderin is present, but with increasing concentrations 

of injected iron, more hemosiderin than ferritin is present.   Both types 

appear to be functionally the same, and probably they are different 

only in physical form.    (Shoden,  1953). 

The chief use of iron is in the synthesis of hemoglobin, 

myoglobin or muscle hemoglobin, and certain respiratory enzymes, such 

as the cytochromes, peroxidases, and catalase.   The oxidative enzymes 

are probably formed in all cells, the myoglobin only in muscle cells, 

and hemoglobin in the developing red blood cells of the erythropoietic 

tissue.   The circulating hemoglobin contains 70 per cent of the body 

iron; myoglobin, 5 per cent; storage iron, 20 per cent; functional 

tissue iron (respiratory enzymes), 5 per cent.   Thus about 75 per 

cent of the body iron is in the form of hemoglobin.   (Figure 2.) 



Figure 2.   Approximate Distribution of Iron in the Body. 
(Cantarow and Schepartz,  1962). 
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Due to the efficiency of iron return into the available plasma 

iron pool and the reutilization of this iron, only small quantities 

are lost under normal conditions.   Thus, the exogenous requirement 

is correspondingly low.   However, the increased requirement during 

periods of more rapid growth is reflected in increased absorption of 

iron at this time.   (Darby, Hahn, Kaser,  Steinkamp, Densen, and 

Cook, 1947). 

The compound heme is formed by the addition of an atom of 

iron in the central position of the compound protoporphyrin K.   Heme 

may then be coupled with different proteins to form the conjugated 

hemoproteins, such as hemoglobin, myoglobin, cytochromes, 

catalase and peroxidase (Figure 3 and Figure 4).   Synthesis of 

hemoglobin appears to proceed concurrently with the development 

of the erythrocytes.   The early red blood cells contain free poryphrins 

rather than hemoglobin, but as the red blood cell matures, the 



porphyrin content decreases, and that of hemoglobin increases.   The 

average "life" of the erythrocyte is 120 days, and as the cells are 

degraded, the iron and globin portions are returned to the meta- 

bolic pools for re-use.   The poryphrin portion is utilized in the 

formation of the bile pigments, most of which are excreted.   (Shemin 

and Rittenberg, 1946; Shemin, London, and Rittenberg,   1948; and 

Walsh, Thomas, and Chow,  1949.) 

Figure 3.   Requirements for Hemoglobin Synthesis. 
(Miale, 1962.) 
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Figure 4.   Structure of Protoporphyrin IX, Heme, and a Hemoprotein. 
(Cantarow and Schepartz,  1962.) 
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Preliminary experimental results with the swordtail 

(Xiphophorus helleri) and the platyfish (Xiphophorus maculatus) 

indicated a doubling of the growth rate of inbred strains in the 

presence of small amounts of ferrous sulfate.   The growth increment 

was roughly proportional to the amount of iron salt supplement 

(Figure 5).   It was also found that at the end of seventeen weeks 

the swordtail fry receiving the added ferrous sulfate showed signs 

of sexual differentiation.   This change was most prominent in the 

groups receiving the highest concentration of ferrous sulfate, but 



differentiation was also evident in the groups receiving less iron.   No 

sexual change had appeared in the controls (Roeder and Roeder,  1963). 

Subsequently, an investigation was planned to determine the effect 

of this iron on the number of erythrocytes present and thus on the 

amount of hemoglobin formed.   These values would indicate the 

relative absorption of the supplementary iron.   The microhematocrit 

was chosen as the experimental measurement to obtain these results, 

since it is related to both the number of erythrocytes and the amount 

of hemoglobin formed, although it does not directly measure either. 

The hematocrit may be defined as the volume occupied by 

erythrocytes in a given volume of blood, and is usually expressed 

as a per cent volume of erythrocytes per 100 milliliters of blood. 

The hematocrit obtained by using a sample of venous blood is called 

venous hematocrit and represents the per cent of erythrocytes in the 

peripheral blood.   Although this value is the one most commonly 

used, it may not indicate accurately the proportion of red blood 

cells to plasma in the entire circulation, a value known as the body 

hematocrit.   (Davidson and Wells, 1962; Miale, 1962.)   In order to 

accelerate the sedimentation rate of the cells, the blood sample, 

with an anticoagulant added, is centrifuged.   After centrifugation 

the erythrocytes are packed in the bottom of the tubes with a thin 
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layer of leukocytes and platelets, the "buffy coat," on top.   Above 

the cell layers is the clear plasma.   Thus hematocrit is more 

correctly defined as the volume of packed erythrocytes in a given 

volume of blood.   The red blood cells are packed to a constant 

volume when the same centrifugal speeds are maintained for an equal 

duration of time using the same radius centrifuge.   For each set of 

conditions, the erythrocytes will be packed to a different constant 

volume.   At lower speeds hematocrits are slightly higher, probably 

due to a greater volume of trapped plasma in the erythrocyte layer. 

(Davidson and Wells,  19 62; Miale, 1962.) 

Determinations of the hematocrit reading, erythrocyte 
count, and hemoglobin concentration are all used in 
evaluating the erythrocyte content of the blood.   The 
hematocrit determination is the most accurate inas- 
much as it is not subject to the rather large errors 
inherent in pipetting and diluting blood according to 
other methods.   (Strumia, Sample, and Hart,  1954.) 

This fact along with the ease of the perfected microhematocrit 

technique have contributed to the rapid replacement of the red cell 

count by the hematocrit in clinical hematology. 

In the micro method centrifugation is carried out directly in 

the capillary tubes in which the sample is collected.   Only a few 

drops of blood, 20 to 40 microliters, are required.   In the ultra 

microhematocrit only 5 to 10 microliters of blood are used, or less 
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than one drop.   The hematocrit is read as the length of the cell 

column to the length of the whole blood column x 100.   Using the 

high speed capillary technique, the results are precise, and the 

packing of erythrocytes is so complete that any plasma trapped in 

the erythrocyte partion is negligible.   (Stramia, Sample, and Hart, 

1954; Natelson,  1951; and Snieszko,  19 60.) 
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EXPERIMENTAL PROCEDURE 

The fish used in the experiment were the green swordtail and 

the spotted swordtail, two inbred strains of Xiphophorus helleri. and 

the hybrid offspring of the swordfish and the platyfish, Xiphophorus 

maculatus. 

Aquaria holding thirteen liters of water were used to maintain 

the fish.   Each aquarium contained small granite gravel which 

covered one-third to one-half of the tank floor, a block of calcium 

carbonate, sprigs of Elodea which were implanted in the gravel, and 

ten to twenty snails.   These aquaria would remain balanced for 

about a year if the fish were not overfed.   However, if fouling did 

occur, as indicated by a cloudy appearance, the fish were placed 

in a fresh aquarium. 

Soon after birth the brood of fry was separated into groups of 

equal number, depending on the number of fish and the variations in 

procedure.   No more than ten fry were placed in one aquarium, and 

generally only two to three adult fish were retained in a single 

tank.   At the beginning of the experiment, each group of fish was 

placed in a separate aquarium, and the ferrous sulfate supplement, 

if any, was added daily.   The iron salt was introduced in the form 

of a solution containing one milligram ferrous sulfate per milliliter 
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of distilled water.   To different test groups was added 25, 50, or 

100 milligrams daily.   The controls were maintained with no 

additions of salt nearby the experimental colony. 

The young fry were fed an average of 90 milligrams of dry 

food daily per tank and 300 milligrams of a liquid supplement 

containing 50 milligrams of dry material.   Older fish were fed 

150 milligrams of dry food each day and were given weekly 

supplements of live Enchytraeus, a worm.   The amount of iron 

present in the tap water, less than 0.2 milligrams in a new 

aquarium, and the available iron in the food, less than 0.07 

milligrams daily, is considered negligible in comparison to the 

amounts used as growth supplements.   The determination of 

exogenous iron content was made using the alpha-alpha' 

dipyridyl method.   Using this procedure good correlations are 

obtained between the iron which reacts with the reagent and that 

which is available for utilization by the animal.   (Sherman, 

Elvehjem, and Hart,  1934.) 

After a growth period of seven to nine months, the fish are 

large enough for hematocrit determinations to be made.   The fish 

which were removed from the aquaria for the blood studies were 

kept in a small container filled with water from the same aquaria. 

The blood sample was taken immediately after the fish was removed 

from the container to minimize the effects of asphyxia.   It has been 
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shown that the blood of fish may undergo marked and rapid change 

when the fish have been exposed to partial asphyxia.   Most 

blood constituents appear to have a higher concentration in fishes 

during asphyxiation because of a release of water from the blood 

which may result in a 50 per cent decrease in blood volume.   It is 

thought that increased tissue acidity during asphyxiation brings 

about transfer of water from blood to tissue.   (Hall, Gray, and 

Lepkovsky,  1926.) 

The technique used for collecting the blood sample is a 

modification of the orbital bleeding technique described by Riley 

(1960) with certain adaptations for use with the fish.   To prevent 

drying out and to minimize movement, the fish was completely 

wrapped in a moist Kimwipe except for the head region, and placed 

under a dissecting microscope.   (In order to clearly see the eye 

structure and the capillary bed, it was necessary to use magnifi- 

cation.)   A folded Kimwipe placed under the head region enabled 

the posterior of the optic cup to be reached more easily. 

Using a semi-micro glass probe and a slightly curved semi- 

micro glass needle, the eye was gently pushed just out of the eye 

socket in a dorsal anterior position.   The tip of the probe and the 

needle were fire polished to avoid unnecessary damage to the eye. 
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Holding the eyeball in this position, and using the glass needle, a 

portion of the conjunctiva membrane was ruptured.   This operation 

revealed the posterior portion of the optic socket containing the 

rectus and oblique muscles; the optic nerve; the cranial nerves,V, 

III, TV, VI, and VII; and the optic capillaries. 

Due to the rapid clotting time of the fish blood, it was 

necessary to introduce approximately 0.5 microliters of heparin 

(heparin sodium,  1000 U.S.P. units/cc.) into the capillary area 

of the optic cup.   This procedure was not found to affect the 

constancy of the hematocrit levels as all the fish were treated in 

the same manner. 

The pipettes used to collect blood were heparinized capillary 

tubes with an outside diameter of 1.0 millimeter and a length of 

32 millimeters.     The tips of the capillary tubes were drawn out 

in a microburner so as to have an outside diameter of approximately 

0.6 millimeter. 

The drawn out tip of the pipette was placed in the lower 

posterior corner of the eye where the blood vessels could be 

clearly seen.   The rough tip of the tube was slid gently but firmly 

1Heparinized capillary tubes.   Clay-Adams, Inc., New York. 
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over the vessels.   The fragile venous capillaries ruptured upon 

contact with the tip of the pipette, and the orbital cavity, serving 

as a reservior, was allowed to quickly fill with blood.   The 

pipette was filled by slightly withdrawing the tube to free the 

tip and holding it in a horizontal position just touching the drop 

of blood.   As the orbital cup filled, the blood was drawn into the 

tube by capillary action.   To prevent blood from clotting in the 

flamed pipette tip, the point was washed with heparin solution. 

The capillary tube was filled one-half to two-thirds full, an 

estimated volume of 10 to 20 microliters.   The blood clotted in 

the eye cup rapidly as the anticoagulant was removed; therefore, 

bleeding had stopped by the time the pipette was removed. 

The capillary tube was sealed by pushing the blunt end 

through a small disc of light-colored modeling clay about 2 

millimeters in thickness.     The sealed blood capillaries were 

2 
centrifuged for three minutes,    and the hematocrit was then 

determined in a microhematocrit reader. 

^eal Ease.   Clay-Adams, Inc., Ntew York. 
2Adams Microhematocrit Centrifuge.   Clay Adams, New York. 
3Adams Microhematocrit Reader.   Clay Adams, New York. 
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Figure 6.   Sequence in Determining Hematocrit Values. 
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RESULTS 

The data presented in this paper are based on hematocrit 

determinations in thirty-five of the experimental fish.   Figure 7 

shows the values obtained in the experimental group of 8 green 

swordtails, all of which were 13 months of age at the time of 

testing.   These fish represent the same group used for the growth 

rate study, which indicated an increase in growth proportional 

to the addition of ferrous supplement (Figure 5).   At the 

time of hematocrit determinations only one sword was still living 

from the control group and one from the 25 milligram group.   The 

hematocrit value for the control swordtail was 35.5 per cent. 

This value was accepted as accurate for normal swordtails since 

other hematocrit determinations with non-experimental swordtails 

had indicated an average per cent of 35.1 (13.51).   The per cent 

of red blood cells for the fish receiving 25 milligrams was 35 per 

cent, a value accepted as being within the normal range, and 

indicating no effect on the erythrocyte content from the addition of 

iron.    The average for the two swords receiving 50 milligrams of 

ferrous sulfate was found to be 37.2 (1.2.1), a 5 per cent increase 

^The figure-13.5 indicates the average mean deviation.   Other 
variances given also represent the average mean deviation 
unless otherwise indicated. 



20 

in the per cent of packed red blood cells over the fish receiving 

no iron.   The 4 swordtails receiving the 100 milligram supplements 

were found to have an average hematocrit value of 38.5 (±1.0), a 

9 per cent increase in the hematocrit of the control group.   These 

values indicate a correlation with the growth in these fish; both 

the growth rate and the hematocrit levels increased in relation to 

the increased amount of ferrous sulfate addition. 

Eight fish were present in the spotted sword experimental 

group, having an age of eight months at the time of testing.   The 

average for three control swords was found to be 35.5 (—6.3), the 

same average as that for the controls in the green swordtail 

experimental group (Figure 8).   An average hematocrit of 38.2 (±0.9) 

was obtained for the three fish in the 25 milligram test group, an 

increase of 8 per cent over the control group.   The two swordtails 

in the 100 milligram group were found to have an average hematocrit 

of 40.2 (-0.75) per cent.   This indicated an increase of 12 per cent 

over the control group. 

Thirteen fish, age 10 months were present in the hybrid fish 

colony (Figure 9).   The average hematocrit for the five control fish 

was determined to be 31.7 (±0.4).   It is of interest that the average 

for the hybrid control fish is less than the hematocrit for the 

swordtail controls.   The iron test group in the hybrid colony 



21 

received 50 milligrams of ferrous sulfate daily.   This group of 8 

fish was found to have an average packed red cell volume of 

40.2 (—1.4) per cent.   This value showed an increase of 27 per 

cent over the controls.   This increase is almost three times that 

found in the two swordtail groups, and may be correlated with the 

faster growth rate of the hybrid fish over the swordtails. 
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FIGURE 7 
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FIGURE 8 
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FIGURE 9 
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CONCLUSION AND DISCUSSION 

The increased erythrocyte volumes found in the iron treated 

fish indicated an increase in hemoglobin content in these groups, 

showing that the ferrous iron was actually being absorbed and 

utilized by the fish.    This fact indicated that the iron was directly 

affecting the growth rate rather than the change being brought 

about indirectly by altering the flora and fauna content of the 

aquaria. 

Since the amount of iron absorbed is predominantly regulated 

by the body requirement and the amount of ferritin storage iron 

present, the increased absorption in the iron test group seemed to 

indicate a basic deficit of storage iron in the fish not receiving 

supplementary ferrous sulfate.    It is thought that the amount of 

available absorption iron usually present in the aquaria is less than 

the amount necessary to physiologically saturate the iron-storage 

regulation mechanism.    It is thought then, that since fish grown 

under normal laboratory conditions may not receive enough iron to 

completely meet their requirements, and the growth rate is thus 

increased by the iron supplements.   This factor may be especially 

pertinent in the hybrid fish which have a faster growth rate, and 
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thus a greater requirement for iron during development, than do 

the swordtails. 
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SUMMARY 

Inbred strains of Xiphophorin fish were given daily 

supplements of ferrous sulfate.    Initial results indicating an 

increase of growth rate in the group receiving the ferrous sulfate 

led to hematocrit studies in the fish.   An increase in the packed 

cell volume of erythrocytes was found for the fish receiving the 

ferrous sulfate,  indicating an increased absorption and use of 

iron.    This increment was roughly proportional to the amount of 

salt added and to the growth rate in these fish.   Since 

absorption of iron is related to the body's need,  it is thought that 

fish raised under normal laboratory conditions may be partially 

anemic, and that small amounts of iron may be used as dietary 

supplements to increase the growth rate.   This  appears to be 

especially true in the hybrid fish which have a faster growth rate 

and greater requirement for iron. 
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