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ABSTRACT 

QOAICI, JCSEFH J.     Applications of Ion-Selective Electrodesi   (1) 
Development of a Thiamine  Ion-Selective Electrode.     (2)  Automation 
of the  Ion-Selective Electrode Apparatus.     (1976) 
Directed byt     Dr.   Harvey E.  Herman.   Pp.  112. 

The development of a thiamine   (vitamin P.)  ion-selective 

electrode has been  investigated.    The particular type  of electrode 

employed was a liquid membrane electrode  composed of an ion-exchanger 

solution consisting of thiamine-bromothymol blue acid dye salt in a 

water immiscible  solvent one-half octanol-1,   one-half chloroform. 

Several  properties of the thiamine liquid membrane electrode were 

studied:     response,  reproducibility,  and pH dependence.     The primary 

purpose of the thiamine electrode was to determine the concent.ration 

of thiamine commonly found in commercially available multi-vitamin 

preparations.    The thiamine electrode was tested in the   presence  of 

diverse  substances normally found in these vitamin preparations. 

These  interference   substances were vitamin P,   (pyridoxine monohydro- 

chloride), vitamin ?.  (riboflavin), vitamin C  (ascorbic acid), 

vitamin EL   (nicotinamide), and  vitamin P.   (d-calcium pantothenate). 

Pecause of the large number of standard routine  samples needed 

to be analyzed when determining the potential response of ion-selective 

electrodes, a hard-wire automatic solution addition  instrument has 

been developed which handles addition of a  stock solution to desired 

volumes either by manual control or by an automatic control.     In 

conjunction with this unit, a data recording system was devised 

to store the electrical potential readings of the electrode cell for 

the different concentration ranges studied. 
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PART I 

DEVELOFKEOT OF A THIAMINE 

ION-SELECTIVE ELECTRODE 



CHAPTER ONE 

IOTRODUCTION 

During the past years, a considerable amount of    progress has 

been achieved in analytical potentiometry through the development and 

introduction of ion-selective electrodes.    These electrodes are not 

only employed in routine chemical analysis but, due to imaginative 

development, now have applicability to the analysis of biological and 

clinical samples. 

Seme advantages of ion-selective electrodes over alternate 

conventional analytical techniques are the selective rapidity of 

response towards the ion or constituent of interest,  its non-destructive 

character towards the sample being analyzed, the small quantity of 

sample needed for analysis, and,  in most cases, the analysis of a  sample 

without pretreatment.    This last factor eliminates time consuming 

separations and chemical preparations.    A very Important aspect of the 

employment of ion-selective electrodes is the low initial cost and the 

easy availability of the equipment required for electrode systems. 

Some disadvantages of ion-selective electrodes are the frequency 

of the calibrations of electrodes and the temperature dependence.     Also, 

in the Nernst equation there is the increasing uncertainty of the 

activity of an ion as the charge on the ion increases and the uncer- 

tainty of the activity term due to the presence of foreign complexes 

and ion-pairs. 

Ion-selective electrodes have proved recently that they can be 

useful as probes for clinical analysis, biomedical monitoring, and 



micro-biological processes. These electrodes,  in combination with 

biological materials,  can form new sensors that  selectively measure 

non-ionic, biological species in body fluids or living tissue.    Mini- 

aturized electrodes are highly useful for constant monitoring of 

biological fluids in vivo making them an important clinical tool, 

especially in emergency situations. 



CHAPTER TWO 

THEORY CF ION-SELECTIVE ELECTRODES 

Basic Equipment 

As previously stated, the equipment needed for ion-selective 

electrode analysis is relatively inexpensive, easily available in 

chemical laboratories, and simple to assemble.    The apparatus used for 

electrode measurement consists of a voltmeter, an external reference 

electrode, and the ion-selective electrode.    Figure 1 depicts such an 

apparatus.    The potential of the ion-selective electrode cell is measured 

by making electrical contact to the ion-selective elctrode and to the 

reference electrode which Is in contact with the sample solution via a 

salt bridge.    The voltmeter connected across the two electrodes measures 

the potential of the entire cell. 

A simple voltmeter cannot be used because it draws a small current 

from the cell which changes the cell potential being measured.    A 

potentiometer must be utilised to deteet the cell potential under zero 

current conditions.      Alternately, commercial high-input-impedance volt- 

meters using operational amplifiers which draw negligible current from 

the cell are capable of measuring cell potential accurately. 

The reference electrode is assumed to be of fixed potential with 

no change of liquid junction potential during the course of an analysis. 

The reference electrode is a very important part of the complete cell 

and requires special care. In most cases, the ion-selective electrode 

cells consist of two reference electrodest an internal one within the 

ion-selective electrode that is in contact with a solution containing 

the ion to be detected and a salt suitable for the particular reference 



IRE 
ERE 

Figure 1.     Schematic Diagram of an Ion-Selective Electrode Cell 

IRE, internal reference electrode» ERE, external reference electrodet 
RS, internal reference solutionj M, membrane sensor» SE, salt bridge) 
SS,  sample solution; V, voltmeter. 



being usedj   and one external reference electrode In contact with the 

sample solution through a  salt bridge.     If the ions in the external 

reference electrode salt bridge are not compatible with the test 

solutioni then a double  junction reference electrode should be used 

in which another salt bridge containing ions that are compatible is 

placed between the  sample solution and the external reference electrode 

salt bridge.    However, this added salt bridge contributes to the total 

value of the measured potential of the cell by the junction potential 

it produces.     The requirements for a good reference electrode are 

reversibility, reprcducibility, and stability. 

The  ion-selective electrode contains a membrane that  is  selective 

to a particular ion.    This membrane acts as a potentiometric sensor 

towards a particular ion and the potential developed across the membrane 

due to changes in the activity of the ion in the test solution contributes 

to the overall measured potential of the entire cell. 

The Kernst Equation 

Ion-selective electrodes can be conveniently classified into 

three basic groups by the nature of the active membrane material 

employed:  glass, crystal membrane, or liquid membrane.    For most cases, 

the membrane material separates two aqueous solutions, the internal ion- 

selective electrode solution containing a known amount of the ion of 

interest and the sample solution containing an unknown amount  of the 

ion to be detected.    The membrane is constructed to be as selective as 

possible to one particular ion.    All three types of membrane electrodes 

measure the activity of the desired ions in various sample solutions. 

When a membrane electrode is immersed in a sample solution, there is a 



momentary movement of ions across the membrane towards the  solution 

containing the lower activity of the mobile ion.     Because the ions 

have a charge,  there is a point across this membrane where the  ions 

cease to migrate due to an electrical potential which forms due to 

the transfer of the mobile  ions and,  eventually,  an equilibri-an 

results in which the potential across the membrane now contributes 

to the total potential of the entire cell. 

When operating properly,  the membrane electrodes obey the modified 

Nernst equation: 

SsCCKSTANT * 2.303 RT 
nF 

log1Q (a, £*£*    SA ) (equation. 1) 

where 1 

E= measured potential ir millivolts 

?.= gas  constant 

T= absolute temperature 

F= Faraday 

n= ionic charge of the  ion to be measured 

8,,= activity of the  ion to be measured   in the sample  solution 

a_  = activity of the  interfering ions in the sample  solution 
'i 

ly and I     = ionic charges of the  ion V and interfering ions ?±,  respectively 

k?° = selectivity constant 

CONSTANT* potential of the reference electrodes and all junctions  in 
the cell 

Eefore the  second term of the right   side of the  Nernst equation the 

plus  sign is used when considerine the detection of cations and the 

minus sign is used when considering the detection of anions.    Assuming 



there is an internal reference electrode in the membrane electrode, 

the total measured potential can also be represented byi 

measured membrane J (equation 2) 

where AE     v. is the potential across the membrane due to the membrane 

migration of the specific ion towards the solution of lower activity. 

AE      , is related to the last term on the right hand side  of 
membrane 

equation 1.        IE,, E(int.   ref.), and S(ext.  ref.)  refer to the potential 

due to all the Junctions in the cell,  the internal reference electrode 

within the membrane electrode, and the external reference electrode 

immersed in the  sample solution, respectively.    All three  of these 

terms are assumed to remain constant during the analysis of samples 

and, therefore, are represented as the  "CONSTANT" in equation 1. 

h222 B is the Nemst factor and depends on the temperature.     The 

concentration of the ions is in terms  of activity, which contains 

corrections for the interionic forces of all the ions in the  sample 

solution. 

The activity is determined by the equationi 

^     y(CM) (equation 3) 

where: 

&y=   activity of the ion M being detected in the sample 

Jf =   activity coefficient of the ion M in the sample 

C-JS   concentration of the ion M 

The activity and concentrations are in terms of moles per liter. 

To determine the activity coefficient, the best and the simplest 
2 

equation derived was from C. W.   Davies   i 



-loginJf =AZM    ( JVT 510 y 0.3 I) (eqtiatior. k) 

where: 

A= constant depending on temperature and  solvent  (A= 0.5115 for 
water at 25°C) 

z= ionic charge  of the  ion K in the sample 

1= ionic  strength of the solution represented by the term: 

i. *F c4 (equation 5) 

where« 

C = concentration of every ion in the  solution 

Z.= ionic charge of every ion in the solution 

There  is another more simple approach to determine I using a table 

derived from equation 5.    The method uses factors multiplied to the  salt 

concentration of the  solution for each ionized  salt  ir. 'he  solution to 

obtain the ionic strength value.     For example, use salt    A(«< )     B( P ) 

where A and E are the  ionic parts of the   salt with their ionic charge 

represented by <   and   fi    .    The results are quite simple as shown in 

Table  1. 

Table 1 

Determining "actors to Calculate  Tonic 
Strength for Salt A(* )   ?( ^ ) 

p Factor 
1 1 
2 3 
1 3 
2 to 

etc. etc. 

1 
1 
2 
2 

etc. 

Cnce the factor is determined  for each soluble   salt  in the   sample 

solution, the ionic strength for the particular salt   is then determined 

by multiplying its factor by the concentration   (in molarity)   of the   salt 

The total  ionic strength of a  sample  solution  is then calculated by 



summing all of the individual ionic strengths of the constituent salts. 

The selectivity term in the Nernst equation,  k^, is a weighting 

factor related to the selectivity of the membrane electrode towards 

the ion of interest and an interfering ion.      k"      is a combination of 

parametersi     the  ion-exhange equilibrium constant between the aqueous 

solutions and membrane, the mobilities of the ions, and the activity 

coefficients within the membrane phase.    The selectivity constant 

indicates the extent to which an interfering ion will alter the response 

of the membrane electrode.     The lower the value of V?°^, the better the 

response of the electrode towards the ien of interest.    The selectivity 

constant is only an approximate value, but it allows some prediction of 

the kind and the amount of Interference that can be tolerated.    The 

mathematical method for determining k1*5^ will be discussed  later. 

Methods of Analysis 

When using an ion-selective electrode cell,  it is necessary to 

calibrate the electrode  system with standard solutions of known ion 

activity.    A plot of measured potential versus log^Q of th« activity 

of the specific ion for a range of different activities can then be 

used as a working curve to determine the unknown  ion activity in sample 

solutions.    If the membrane electrode is operating in an ideal Nernstian 

manner, then the working curve should have an array of data points 

forming a straight line with    a slope value equal to 2.303 °-T and an 
nF 

intercept value equal to the "CONSTANT" of equation 1.     The slope and 

intercept values are calculated using a linear regression approach 

where it is assumed that all error is in the Y values, in this case the 
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potential readings.     Each Y value error is weighted  the sane and  it 

is assumed there is no error in the X values, in this case log,- 

activity of the   specific ion.     Depending upon the charge of the  ion 

being detected by the membrane electrode, the  slope  of the curve will 

be positive if the ion is a cation or negative If the ion is an anlon. 

There are two basic approaches to determine the  selectivity 

constant used  in the Nernst equation, the separate solution method 

and the mixed solution method.       For the  separate  solution method, 

the potential  (millivolts)   is plotted versus the  log,Q of the activity 

of the   ion  of Interest M,   sometimes called the primary ion, and then 

the potential is   separately plotted versus the log-,- of the activity 

of the interfering ion E.    A plot for divalent cations is given in 
(i 

Figure 2.      There are two ways to use this method.    The first is to 

+2 +2 choose the  same activity values for both the M      and E       ions and 

determine the selectivity constant k£?    by the equation 

h'h 
^10 # 

(equation 6) 
2.303   RT/2F 

where E,  and E2 are the potentials due to the primary divalent  ion 

M+2 and the   interfering ion B+  , respectively, at the log activity 

value chosen  for both.    The  second way is to choose the  same  potential 

for both M+2 and  B      ions,   locate their lo? activities at this 

potential, and determine the selectivity constant by the equation 

■ "ST (equation 7) 

If the  interfering  ion has a charge n+, then equation 7 becomes 
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MEAS. - 

-5.0 -4.0 -3.0 -2.0 -1.0 

LOG     ACTIVITY 
10 

Figure 2.     Illustration of Electrode Response ""owards Primary Ton 
M*2 and Interferent Ion P*2 Usin? Separate Solution 
Method 

h*EAS., Measured  potential in millivolts:  M,  primary ion M+2 response 
curve}  F,   interferent  ion E+2 response curve. 
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(*Bn+) 

*M _    kPot 
(equation P.) 

For the mixed   solution method,  a range of potentials  (millivolts) 

is plotted versus logiQ activity of the primary ion M      for a number 

of solutions containing a fixed amount of interfering ion B    . 

Figure 3  shows how the graph will appear.       Interference will influence 

the curves more at the low primary ion activity as indicated by the 

horizontal plateaus.    As the activity of the primary ion increases, 

the interfering ion has   less effect and the membrane electrode takes 

on its normal  Mernstian response towards the  primary ion.     The  inter- 

cept of the Nernstian response  lire with the horizontal interference 

line gives the intercept activity,  the highest  primary ion activity at 

which interference begins.    The   intercept activity now can be used  in 

equation 7 with a., being this   intercept activity and a_ being the 

constant background activity of the interference.    There are two other 

mixed  solution methods to determine  selectivity.    One method varies 
7 

the  interfering ion E against a constant level of primary ion M. 
p 

Another method, developed by Srinivasan and Rechnite    for their treat- 

ment of mixed  solution potential data using an anion liquid membrane 

electrode,  included two equations derived for high and low selectivities. 

When comparing the separate solution method to the mixed solution 

method for determining selectivity of a   membrane electrode toward a 

primary ion over an interfering   one, the latter is preferred  since it 

represents a more realistic approach in which the primary ion is  in the 

same solution as the  interfering  ion. 
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"MEAS. 

20 mV 

- -E 

-5.0 -4.0 -3.0 -2.0 -1.0 

LOG    ACTIVITY   of   M 
10 

Fi?ure 3.     Illustration of Primary Ion M+2 Electrode "espor.se *Jsir,» 
Fixed Amounts of Interferent Ion P+2 

%EAS., measured  potential in millivolts»  V,  response of  primary icn 
M+2 at fixed  concentrations of interferent ion ~+z where the 
concentrations are E^B^Bjl   IA, intercept activity of M+^. 
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XH  ION-SELECTIVE ELECTRODES 
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Glass .Membrane Electrodes 

Glass membrane electrodes, as shown In Figure 4,  employ a thin 

but durable membrane consisting of silicate glass as the active sensor 

material.     Glass electrodes are constructed by implanting anionie  sites 

of appropriate charge and  geometry on the outer layers of the  glass 

surface by changes in the chemical composition of the glass.     The choice 

of the particular chemical composition of the glass allows the glass 

membrane to become  selective towards certain univalent cations  such as 

H+, Na+, K+,  Li+,   NH^+, ?.b+, Cs+, Ag+, ?1+, and Cu+ but the glass 

membranes are generally unresponsive to anions.     For example,   glass 

consisting of 72.2* S102, 6.4* CaO, and 21.4* Na20 is a typical glass 

for hydrogen ion determination.    Glass composed of 71* SiOg,  11'   NagC, 

and 18* Al-O- shows    sensitivity to sodium ion that is 2500 times 

greater than to potassium ion.     Glass composed of 6F< SiOg,  27*  NagO, 

and 5'( Al?0~ results in potassium ion to sodium ion selectivity of twenty 

to one.    The explanation for the glass electrode response and selectivity 

is complicated but it Involves  surface ion exchange and  ion diffusion 

principles.     It should be noted that the ions do not migrate  completely 

across the membrane  in glass electrodes.    Pather, the ions In the internal 

reference solution of the glass membrane electrode and the sample 

solution approache the center of the membrane,  but do not migrate 

through a central dry glass layer. 
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Figure **.     Diagram of a Glass Membrane electrode 

IRE,   internal reference electrode  Mg/AfCl)j   IS,  internal reference 
solution» M, glass membrane. 



16 

One example of the use  of glass electrodes In testing biological 

fluids is the modified glass electrode, a  capillary electrode, made 

by H. D.  Portnoy and coworkers    ' in order to determine  sodium and 

potassium ions in blood,  plasma, and cerebrospinal fluid.    Their 

electrode analysis correlated well with the conventional flame  photometry 

determination commonly used in clinical labs. 

Crystal Membrane  Electrodes 

Crystal membrane electrodes are composed  of a  sensor made  of 

solid-state or crystalline materials as the membrane phase as  shown in 

Figure 5.     It is  important that these membranes be high ionic conductors 

and have low solubility in water.     Silver sulfide is a good crystal 

matrix because it  is an ionic conductor for Ag    and has been developed 

for the detection of ions such as S     ,  Cu     ,   Pb    , Cd     ,   I  ,   3r   , Cl   , 

CN~, and Ag+. One advantage  of such electrodes such as the silver 

sulfide electrode  is that no internal reference solution  is needed  if 

a metallic lead  is connected directly to the crystal membrane.     Ar. 

excellent example of a crystal membrane electrode is the lanthanum 

fluoride electrode whose   sensor is developed from a  single crystal 

of this  salt doped with rare earth material to increase  its electrical 

conductivity.12    Lanthanum fluoride conducts fluoride   ions and its 

high selectivity towards fluoride is due to the size of the crystal 

lattice into which other ions cannot enter. 

The lanthanum fluoride electrode has had considerable use in 

clinical analysis for determination of fluoride in blood serum in 

conjunction with a  standard fluoride chemical test using morin-thorium 
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IRE 

Fieure 5.     Diagram of a Crystal Membrane Electrode 

IRE,   internal reference electrode   (Ag/AgCl)j  PS,  internal reference 
solution;  M, crystal membrane. 



IP 

13 reagent. This analysis  indicated that two forms of fluoride, 

exchangeable and non-exchangeable, exist in human blood serum. 

Another application of this electrode has been the determination of 

fluoride  in bone      which gave results in fairly good agreement with 

a clinical  standard procedure.    The lanthanum fluoride electrode has 

been extensively used  in other clinical oriented  analyses  such as 

fluoride detection in beverages, milk, urine,   saliva, toothpaste, 

etc.. 

Liquid Membrane Electrode 

Since the  liquid membrane electrode has been chosen as the 

thiamine detector for this thesis project, a thorough description 

will be given of  its characteristics. 

A very popular liquid membrane electrode offered commercially 

is the OriOll 92-32 electrode assembly shown in Figure 6.    This electrode 

consists of a membrane composed of an ion-exchanging or carrying ma- 

terial dissolved ir. a water immiscible liquid phase that  is held in 

an inert porous  support membrane.    By choosing an appropriate ion- 

exchanging site and  liquid  phase, the liquid membrane can selectively 

respond to practically any desired  ion.    Because mobility of a desired 

ion is the essential principle of forming a membrane  potential,  the 

liquid membrane offers a fine medium for this ion mobility by providing 

a  phase for ion diffusion. 

As demonstrated in Figure 6, the membrane containing the active 

liquid phase  is placed between two aqueous  phasest the internal 

reference solution in which the Ag/AgCl reference electrode  is  immersed 
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IRE 

RS 

Figure 6.     Diagram of a  Liquid Membrane Electrode 

IRS,  internal reference electrode   (Ag/AgCl); M,  liquid membranei 
ISR,   ion-exchanger solution reservoirs  RS,   internal reference 
solution. 
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and the aqueous   sample  solution.    The  internal reference solution of 

the electrode contains the  ion being detected,  providing a  stable 

potential between this  solution and the  inside membrane  surface.     It 

is also Important  that the   internal reference solution has chloride 

ions so as to provide a  stable potential between the  solution and the 

internal reference electrode.    When the electrode  is immersed  in the 

sample  solution,   changes  in potential are due only to the changes  in 

the   specific ion activity in the sample solution.    The active liquid 

phase is held in a thin,  inert, porous, membrane  support that usually 

has hydrophobic qualities.     The active liquid phase wicks into the 

pores of this support from a reservoir within the electrode body.     The 

thinness of the membrane   support removes high resistance and  shortens 

response time towards the  specific  ion, two very important features. 

Choosing the active liquid  phase,   or ion-exchanger solution, 

requires certain care.    The solvent must be water immiscible  in order 

to  insure proper separation from the aqueous phases.     It must have a 

low vapor pressure to prevent  significant evaporation! have a high 

viscosity to hinder rapid loss by outward flow across the membrane, a 

design that  prevents contamination of the ion-exchanger solution by 

sample materials  and have good  stability for a reasonable period of 

time.     Usually, •  low dielectric constant,  organic  solvent provides 

a good active liquid phase medium.     In order for the desired  ion to 

move across the membrane, a charged  "site" of opposite charge  or a 

neutral "site" that can trap the ion must exist in the membrane 

solvent phase.    The ion and the site become neutral, undissociated 
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salt molecules in the   solvent.    This  ion-site must have a  relatively 

large  r.on-polar area to prevent  solubility in the adjacent aqueous 

layers and  to insure  solubility in the organic, low dielectric constant, 

solvent  phase.    When the active liquid phase  is in contact with the 

adjacent aqueous phases, an exchange equilibrium exists across the 

membrane interface between the  ions  of the aqueous phase and  the ions 

of the ion-site molecule in the organic phase.    This ion exchanging is 

depicted  in Figure 7.    The ions move  through the membrane towards the 

solution of lower activity by driving the equilibrium at the membrane 

interfaces to the  right.     Available sites keep "latching on" to other 

ions of  interest and   continue to drive the reaction to the  right until 

the potential across the membrane which opposes this reaction reaches 

a point where no further migration across the membrane  is possible. 

The  selectivity of the electrode depends upon choosing an appropriate 

site group that exchanges more readily with the desired ion   in the 

presence of possible  interfering  ions in the   sample.    Also,   choice 

of the  "site" depends upon how quickly ion-exchange equilibrium can 

occur with the ion of interest. 

In the course  of using a liquid membrane electrode,   it   is usually 

best to make the    desired ion concentration of the internal  reference 

solution approximately the same as that  to be analyzed in the sample 

solution.     This prevents a large  concentration gradient between sample 

and  internal ion solutions.    Also, because of the outward flow of the 

active liquid phase,  some slight drifting of potential is usually 

observed.     If drifting is  still excessive after proper conditioning of 

the electrode,  there could be a defect  in the electrode assembly or the 
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organic solvent used in the active liquid  phase nay not have the 

proper characteristics.     It   should be noted that the choice of solvent 

for the active liquid phase also determines selectivity of the liquid 

membrane electrode due to  properties such as mobility of the  ions in 

the solvent  phase,  the  partition coefficient between the  solvent and 

aqueous phase, and the association and dissociation tendencies of the 

ions within the solvent  phase. 

The advantage of the liquid membrane electrode  is the ease of 

which it can be assembled and the    versatility of the different 

electrodes that can be  constructed by using appropriate  Internal 

reference solutions and active liquid  phases even  if restricted to 

having only one electrode assembly. 

One  example  of the use of liquid membrane electrodes was the 

development of two  sodium  ion electrodes using an electrically neutral 

ligand as the  ion-exchanger site  in two different  solvents. Eoth 

electrodes had   sodium ion   selectivity over potassium, calcium, and 

magnesium Ions and practically no pH dependence,  making them sui*.able 

for measurements in blood   serum.     A potassium ion electrode was 

developed using valinomycin as the  ion-exchanger  site giving  an 

electrode with a high selectivity for potassium over sodium  ion and 

diavalent  cations.1       It was used  for the direct determination of 

potassium  ion in human serum and no significant eomplexing of potassium 
1*7      IP 

ion appeared to occur In the  serum.     =echnitz and  Herman     '   J"  developed 

a carbonate liquid membrane electrode with high selectivity towards 

carbonate ion activity for the direct determination of the carbon 

dioxide content  in human serum   samples. 
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A slight alteration of the liquid membrane electrode which 

employs an active liquid phase has been the development of a dry membrane 

composed   of the ion-exchanger material imbedded  in a polymeric film. 

This is sealed to an electrode body containing an internal reference 

solution similar to the liquid membrane electrode.    Sometimes the ion- 

exchanger solution functions as a plasticizer for the polymeric film 

or an additional plasticizer such as di(2-ethyl hexyl)-2-ethylhexylphosphonate 

(DOOP)  or di-n-decyl phthalate   (DDP)  is used.     As a result, a complete ion- 

exchanger membrane  is formed from a polymeric film containing the ion- 

exchanger and plasticizer in molecular dispersion with the advantages 

over the conventional liquid membrane electrode of having    no gradual 

loss of the  ion-exchanger solution, using only a  small amount of the  ion- 

exchanger solution for the membrane construction, and the easy replacement 

19 of an old membrane with a new one.     A short  review by Koryta       of this 

type of ion-exchanger membrane has recently appeared. 
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CHAPTER FCUH 

APPLICATIONS OF ION-SELECTIVE ELECTRODES 

Modified Membrane Electrodes 

Many types of electrodes for clinical and biological analysis 

have been developed using one of the three basic Ion-selective electrode 

sensors in combination with other analytical and clinical construction 

techniques.     Some examples of these modified electrodes are gas-sensing 

electrodes, bioprobes which use biological substrates in conjunction 

with membrane electrodes, and microelectrodes. 

The gas-sensing electrodes are comprised of a conventional membrane 

electrode,   contacted by a  solution containing ions the membrane electrode 

can selectively detect, which is then completely surrounded by a  gas 

permeable,  hydrophobic membrane.    When the entire gas electrode  is 

immersed in a sample solution, the gas permeable membrane allows only 

the free  passage   of the dissolved gas from the sample into the Inner 

solution layer surrounding the membrane electrode,  shifting the equi- 

librium of this  Inner solution which is detected by the membrane 

electrode.     One example described in the literature  is the determination 

of pCO? by direct measurement with a carbon dioxide gas-sensing electrode. 

A fairly new area that is under investigation is the bioprobe that 

uses a conventional membrane electrode surrounded by specific biological 

materials,   such as enzymes or proteins, to produce sensors that  selectively 

detect biological  species in body fluids and living tissue.     One bioprobe 

is the urea enzyme electrode in which the urease enzyme is lmmoblized 

I 

20 
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around an anaemia membrane  glass electrode.1    The urease hydrolyees 

the urea in a biological sample to form carbonate and ammonium ions. 

The ammonium  ions are detected by the membrane  electrode and thus the 

cell potential is related to the urea activity in the sample.    There 

are many other examples of these bioprobes using various combinations 

of biological materials and membrane electrodes.    A short review of 

these bioprobes has been organised by G. A. Fechnitt    discussing the 

construction and use of bioprobes. 

A relatively new development has occurred for ion-selective 

electrodes by the construction of mlcroeleotrodes.      These micro- 

electrodes should respond no differently from their larger models 

except very special care must be taken in the engineering design.    Two 

types of microelectrodes   developed so far are the open-tip micropipet 

electrode and the  closed-tip microelectrode.     The  open-tip micropipet 

electrode contains an active liquid ion-exchanger solution in which the 

membrane surface has been reduced to a single pore approximately 0.5 

to 1   ^m in diameter.    The   closed-tip microelectrode uses a glass 

sensor as the membrane surface and this electrode has a site range of 

100 to 500    j^m.     This  small size allows the closed-tip microelectrode 

to be installed in a hypodermic syringe needle along with an external 

reference electrode. 

Biological and  Clinical Dses  of Membrane  Electrodes 

Today instrumentation has become an integral part of biological, 

clinical, and bioraedical analysis.    Many different analytical techniques 

are used to determine constituents in biological and medical  samples. 
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A large portion of these analyses are carried out by automatic 

systems.    Two advantages of using automated analysis equipment are 

reliability of the analysis results and the ability to analyze a 

large number of  samples quickly.     For most instrumental analyses, 

pretreatment of samples is necessary.    The time used in this process 

can vary, depending upon the method chosen for analysis.    Using ion- 

selective electrodes has many benefits.    Being highly selective, they 

may need very little pretreatment of sample or none at all.    They offer 

a relatively inexpensive analytical method that can give reproducible 

results comparable  to conventional  clinical methods that may be slower 

or require more care and maintenance.    Also, membrane electrodes supply 

quick sample  results, making them ideal to be employed In automated 

systems where large number of samples have to be analyzed. 
21 

One automated electrode sampler system is  shown In Figure 0. 

The  sampler contains a number of samples to be analyzed.    A proportioning 

pump pulls the  sample and any other needed components simultaneously 

towards the electrodes.    The sample solution flows through a mixing 

coil, a drop chamber disconnector which debubbles the sample and reduces 

electrical noise,  and  finally enters the membrane electrode and reference 

electrode through flow caps which have a reservoir where the sample is 

in contact with the electrode sensors.    The  sample enters and leaves 

by means of inlet and outlet tubing and is discarded after analysis. 

The system can be automatically washed to be used again for the next 

sample.    Companies like Orion Research and Technieon have developed 

automatic electrode analyzers that can determine more than one type of 

constituent from one sample and can analyze many samples within a short time. 
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When constant monitoring of biological fluids is required  in 

vivo, the microelectrode can be employed.     By their insertion in a 

hypodermic  syringe needle,  these electrodes have the capability of 

being used directly in the body to continuously monitor biochemical 

changes in body fluids.     Also, microelectrodes can be used to directly 

study cell processes by penetration  of the cell walls providing a 

very important research tool for microbiologists. 

There are unlimited  sources for the development of electrodes 

for analysis of routine   chemical laboratory samples and  for clinical 

and biological applications using modifications of the conventional 

ion-selective electrode techniques.     Through imaginative application 

of ion-selective electrodes whole areas can be opened to a means of 

quick, reliable analysis,  especially where  study is limited to small 

sample amounts, where a large number of samples are to be  analyzed, 

or where  "on-the-spot" analysis is required. 
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CHAPTER  FIVE 

THIAMINE (VITAMIN B.)   22' Zi' ^ 

Physical Properties 

Thiamine can exist in the chloride hydrochloride form or the 

mononitrate form with the structure 

H2CH2OH 
Cl     •HCI 

(or N03~) 

Thiamine hydrocholoride has a molecular weight  of 337.28 er and 

is formed as white   crystals of monoclinic plates  in rosette-like 

clusters with a yeasty odor and bitter taste.    Practically all of the 

thiamine hydrochloride sold is synthetic.    Thiamine hydrochloride is 

highly soluable in water in which one gram dissolves in about  one milli- 

liter.     It absorbs up to one mole  of water in air of average humidity. 

The water can be removed by drying at 100° C or in a vacuum over sulfuric 

acid.    In the dry form, thiamine hydrochloride is very stable and heating 

at 100° C for twenty-four hours does not cause decomposition nor alter 

its potency.    However, in aqueous solution, thiamine hydrochloride is 

sensitive to reduction and oxidation.    In neutral or alkaline solutions 

it  is destroyed rapidly, but In acid solutions it  can be sterilised by 

heating.     Thiamine hydrochloride occurs in natural foods and   in animal 
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tissue in the free form or In combined form.    The acid dissociation 

constant of thiamine is 1.58 x 10    .    It exists in various amounts ir 

different  sources.     Yeast,  cereal,   grains, pork, and nuts are high in 

thiamine hydrochloride. 

Thiamine mononitrate has a molecular weight of 327.36 and is 

practically nonhygroscopic.    2.7 grams dissolve in about 100 ml of 

water at 25° C.    Aqueous  solutions at a pH of U.O show greater stability 

than neutral solutions.    Thiamine mononitrate  is much more stable than 

the hydrochloride, making this thiamine form preferred and recommended 

for use in flour mixes and in preparation of vitamin capsules. 

Biological  Importance 

In the human body free thiamine exists in the blood plasma and 

cerebrospinal fluid  in a concentration of about one microgram in one 

hundred milliliters.    In the blood cells, the thiamine exists as the 

pyrophosphates in protein combination in a  concentration of about  six 

to twelve raicrograms in one hundred milliliters.    The body stores the 

thiamine it needs and excretes the excess.    The stored thiamine  is 

depleted  in a  short time and must be replaced by daily intake.     Any 

excess thiamine  is usually excreted in the urine, which contains only 

the free form.    Normal urinal excretion of thiamine from an individual 

with adequate intake  is at least fifty ndcrograms daily.    Thiamine 

deficiency is characterized by loss of appetite and weight causing, 

in its advanced   stages, the disease known as beriberi in which there 

is an increase of pyruvate and lactate levels in the blood and possible 

degenerate changes of several peripheral nerves. 
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Numerals methods have been developed to test for thlaraine 

Incorporating animal assays and microbiological,   chemical and  physical 

methods.     Of the chemical methods, the preferred way at present to 

test  for thiamine  in body fluids and tissue  is the  oxidation of thiamine 

to thiochrome, which is a highly fluorescent  species that can be easily 

measured using      fluororaetry. 

A complete review of this thiochrome method and other thiamine 

26 
analysis methods has been organized by K. A. Valsalan. 
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CHAPTEP SIX 

DEVELOPMENT OF A THIAMINE 
LIQUID MEMBRANE ELECTRODE 

Background 

The development  of a thiamine liquid membrane electrode has 

been claimed by Ishibashi, Kina, and Maekawa.27'28    Their thiamine 

electrode consists of an exchange site, tetraphenyl borate,  in a 

1,2-dichloroethane solvent.    The response of the thiamine electrode 

is Mernstian for a bivalent species.     Selectivity is high for thiamine 

over sodium,   potassium, and ammonium ions but is inadequate for the 

detection of mixtures containing pyridoxine monohydrochloride   (vitamin 

3,).    Also,  the description cf the  sample solution preparation is totally 

inadequate.     The authors noted that  thiamine is stable only at a low pH 

range but do not specify how the sample solution was pH controlled or 

if it was pH controlled at all. 

A photometric method for the analysis of thiamine based on an 
29 

extraction technique has been developed by Das Gupta and Cadwallader. 

The method employs the formation of the thiamine-bromothymol blue salt 

and its extraction from an aqueous into an organic phase,  the best 

solvent being chloroform.    The reaction between the broraothyraol blue 

dye and the  thiamine is considered to be a simple acid-base reaction 

where the dye  is a strong acid and the thiamine is a base.    The  site 

of reaction in thiamine may be either the amino group or the quaternary 
29 30 

nitrogen with the sulfonic acid group of the dye.     '      The concentration 
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of the thiamine in the aqueous solution is then determined photometrically 

by measuring the absorbance of the organic solution.    The thiamine- 

bromothymol blue salt is more soluble in the organic solvent than the 

aqueous  solution.    This extraction process has been determined to be 

pH dependent with a pH of 6.6 giving the optimum condition for extraction. 

Two mathematical approaches with supporting experimental data have been 

performed on the effect of pH and bromothymol blue dye concentration 

on the extraction of the thiamine-bramothymol blue salt by an organic 

solvent.     ' An important feature of this method is the lack of 

interference from other vitamins, hormones, and other biological 

substances. 

In the course of the development of a thiamine liquid membrane 

electrode, the thiamine electrode produced by Ishibashi, Kina, and 

?7    ?fi 29 Maekawa    '        and the extraction method of Das Gupta and Cadwallader 

need to be considered.    The liquid membrane electrode of Ishibashi et al. 

has low selectivity for thiaunine over pyridoxine hydrochloride due 

possibly to the  solvent used for the ion-exchanger solution.    The lack 

of information concerning the pH dependence of the electrode's response 

towards thiamine concentration is a very Important factor if the electrode 

is to be used effectively in practical analysis procedures. 

For the thi*mine extraction method, pH dependence was noted for 

the extraction process of thi*mine-bromothymol blue salt with an organic 

solvent and lack of Interference from other conmon clinical substances 

was observed.    This extraction method offers an approach to a thl*mine 

liquid membrane electrode by its use of an organic solvent  (a plausible 

active liquid phase), by the availability of a possible ion exchange site 
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in the organic  solvent   (the thiamine-bromothymol blue salt), and, 

finally,  by its high selectivity over the  interfering substances commonly 

found in commercially prepared vitamin capsules. 

Experimental 

Apparatus. 

The apparatus used for study of the thiamlne liquid membrane electrode 

consists  of a  high impedance voltmeter, a commercially available liquid 

membrane electrode assembly, a double Junction external reference electrode, 

a pH meter,  a pH microelectrode, a constant  temperature circulator,  a 

jacketed beaker with a magnetic stirrer motor and stirring bar,  a micro- 

pipet, and a ten milliliter full capacity buret. 

The sample  solution is contained  in a Jacketed beaker allowing a 

heat controlled transfer liquid to pass over the walls of the ion- 

selective electrode cell and condition the sample solution to a desired 

temperature.    The heat transfer liquid used is water and it   is controlled 

and  circulated usir.g a Haake Constant    emperature Circulator  (Model FK) . 

The  sample  is   stirred by means of a magnetic stirrer motor and  stirring 

bar. 

The liquid membrane electrode  is the Ionalyzer divalent cation 

electrode body,  Model 92-32, developed by Crion Research Incorporated 

which uses thin  porous membrane  supports to hold the active liquid 

membrane phase.    The external reference electrode is the ^57-H10 

Double Junction Reference Electrode by Arthur H.  Thomas Company.    This 

contains a calomel element  in an inner section filled with  saturated 

aqueous potassium chloride which is connected throueh a  porous ceramic 
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plug to the outer section containing a 1.0 M aqueous sodium chloride 

solution.    The Junction with the sample is made through a porous ceramic 

plug in the tip of the electrode.    The liquid membrane electrode and 

external  reference  electrode are both positioned at an angle of 20° 

with respect to the vertical by an Orion electrode holder in order to 

diminish the chance of air bubbles getting trapped under the electrodes. 

Both electrodes are easily connected to the appropriate terminals in 

the voltmeter. 

The voltmeter is an Orion Research Model 801 all-electronic, high- 

input-impedance digital pH/mv meter that supplies a pH range from 0.000 

to 13.999 in 0.001 pH unit increments with a repeatibility of - 0.001 

pH unit.    Also, when adjusted to the millivolt mode, the voltmeter supplies 

a range of +999.9 to -999.9 in 0.1 millivolt increments with a *b.l 

millivolt    repeatibility.    The data output  is available as binary- 

coded decimals and the recorder output is adjustable from 0 to 100 milli- 

volts for   *1000 millivolts or ±7 pH units. 

The pH electrode is a Fisher Scientific Microprobe Combination 

Electrode,  one fourth-inch diameter version (Cat.  No.  13-639-92) with 

the reference element solution being a U M potassium chloride-saturated 

silver chloride aqueous solution.    The pH meter used is a pH/pIon electro- 

mater with digitaliier/indicator (Models EU-200-30 and EU-200-62, 

respectively)  produced by Heath Company.    Some of its features are ability 

to select cation, anion, or millivolt modes, automatic pH slope control, 

manual temperature control, or an optional automatic temperature 

compensation control. 
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Minute volumes of   solution are measured and dispensed using a 

Manostat Digi-Fet ultra-micro pipet  (Manostat Corp., Cat.  No. 71-632-00) 

equipped with a 1.0 ml full-capacity reservoir.    This microplpet is 

able to dispense volumes of  solutions down to ±0.0001 ml when using 

the 1.0 ml reservoir.     Dispensing of solutions by this mieropipet 

should be done by immersing the capillary tip of the re-servoir into 

the sample.    The  larger volumes of solution are measured using a 10.0 ml 

capacity buret with a 0.02 milllliter gradient scale. 

The entire  sample  solution is covered with a layer of parafilm 

(American Can Company, Marathon Products,  Neenah, Wis.), a maleable 

plastic wrapping film, after the liquid membrane electrode, the external 

reference electrode, and the pH electrode are immersed in the  sample 

solution.    A  small hole is bored through this parafilm layer to allow 

entry of  the microplpet and buret tips  into the sample  solution. 

P.eagents. 

The water used for all aqueous  solution     preparations was distilled 

in a Barnstead   still  (Model SM-10, Barnstead Still and Steriliser 

Company,   Inc.,   Forest Hills, Foston, Mass.).    This water was passed 

through a mixed bed  of ion-exchange colunn  (Barnstead Hose Type Cartridee, 

Fisher Scientific Company)   for removal of remaining inorganic  impurities 

and later purified by a  second distillation in a vented all-glass 

distillation apparatus for removal of organic impurities.    The water 

was collected and  stored in a closed Nalgene Container  (Nalge Sybron 

Corporation) to prevent contamination from carbon dioxide. 

The water soluble bromothymol blue dye  (Matheson Coleman and 

Bell), the polyvinyl chloride   (Aldrich Chemical Company), and  the 
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dl-n-decyl phthalate   (Eastman Corporation) were used without  further 

purification.     Sigma Chemical Corporation  supplied the d-pantothenic 

acid  (d-calclum  pantothenate or vitamin E,)   stored desiccated at 0 to 

0.5°Ct  thiamine  hydrochlortde  (aneurlne or vitamin E, )  stored in the 

dark,  nicotinamlde  (niacinamide  or nicotinic acid amide),  riboflavin 

(vitamin E?)   protected from light, and pyridoxine monohydrochloride 

(vitamin B^)   stored in the dark and also desiccated.     All Sigma Chemical 

Corporation products, unless specifically Indicated, were not necessarily 

the anhydrous form.    The ascorbic acid   (vitamin C) was purchased from 

a local pharmacy  (Rite-Aid Corp.) as commercial capsules.     No list  of 

other possible chemicals,   such as binders or additives came with the 

capsules.    The   structures for the dye and the chemicals obtained  from 

Sigma Corporation are given in figure  9.    All other solid chemicals 

employed were either certified analytical reagents or certified A.   C.  S. 

chemicals of proper analytical grade. 

The  standard  sodium hydroxide solutions and the  standard hydrogen 

chloride  solutions were prepared using certified concentrated  standard 

10.000 t  .005  normal solution by Fisher Scientific Company.    The   solutions 

for the internal  reference element of the pH electrode and double 

junction reference electrode were a >* M potassium chloride  solution 

saturated with  silver chloride   (Corning Instruments, Inc.) and a 

saturated  potassium chloride solution   (Sectarian Instruments,   Inc.), 

respectively.     Nitrobenzene  (Fisher Certified =eagent. Fisher Scientific 

Company) and the tetrahydrofuran  (Katheson Coleman and  Bell,  classified 

as suitable for histological use) were used directly without further 

purification.    Trifluoroaeetyl-p-butylbenzene was prepared by Harvey E. 
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17 Herman."       Chloroform (Fisher Certified,  Spectroanalyzed,   Fisher 

Scientific Company), and 1,2-dichloroethane   (Katheson,  Coleman, and 

Bell),  purity unknown, were fractionally distilled before use. 

Preparation of Solutions. 

Ion-exchanger solutions.    A number of liquid membrane  ion- 

exchanger solutions were    prepared from different  solvents using the 

thiamine-bromothymol blue extraction method   (see below).    The thiamine 

was always in exceaa as compared to the bromothymol blue dye and all 

ion-exchanger  solutions were stored in a freeeer when not  in use. 

A 1,2-diehloroethane ion-exchanger solution was prepared by adding 

0.16864 g of thiamine hydrochloride hydrate to 0.031220 g of bromothymol 

blue dye and diluting to 100 ml with pH 6.6 phosphate buffer to make 

an ion-exchanger solution of 1 x 10"3 M thiamine-dye salt.    100 ml of 

purified 1,2-dichloroethane were added and stirred rigorously for one 

hour.     Using a separatory funnel, the organic phase   (bottom layer) was 

removed and the aqueous layer was extracted with an additional volume 

of 100 ml of 1,2-dichloroethane with vigorous stirring for forty-five 

minutes and then separated.     The organic solvent extracts were collected, 

passed through a dry filter paper to remove any emulsified aqueous  phase, 

and evaporated in a fractional distillation apparatus to less than 50 ml. 

This solution was then allowed to cool and was passed through another 

dry filter paper into a 50 ml volumetric flask where it was diluted to 

the mark with purified organic solvent.    A precipitate indicated a 

saturated solution of the acid-dye    salt.    This ion-exchanger solution 

was eentrifuged to remove the orange-red precipitate which was dried 

for infrared analysis.    The ion-exchanger solution was yellow.     An 
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infrared spectrum of the  orange precipitate was determined and compared 

to the infrared spectra of the pure thlamine hydrochloride hydrate and 

the bromothymol blue dye used for the ion-exchaneer preparation. 

The potassium bromide pellet technique was used for all three 

samples.    By comparing the three spectra,  it was noted that the major 

infrared peaks characterizing the thlamine hydrochloride hydrate and 

the bromothymol blue dye were also found in the orange precipitate 

spectrum indicating that it was the thiamine-bromothymol blue salt. 

The major peaks for the thlamine hydrochloride hydrate sample were at 

1655,  1610, 1530 and 10^5 cm"  .     The major peaks for the bromothymol 

blue dye were at 3**90, 2960, 1610, 1090, 1020 and 620 cm"1. 

The nitrobenzene ion-exchanger solution was prepared by adding 

0.17764 g of thlamine hydrochloride hydrate to 0.03122 g of bromothymol 

blue dye and diluting with 50 ml of pH 6.6 phosphate buffer to make 

an ion-exohanger solution of 1 x 10"3 M   thiamine-dye salt.    50 ml 

of nitrobenzene were added to the aqueous solution and  stirred vigorously 

for one and one-half hours.    Using a separatory funnel, the organic 

phase (bottom layer) was removed and passed through a dry filter paper 

to remove any emulsified aqueous phase. The ion-exchanger solution 

was yellow. 

The trifluoroacetyl-p-butylbenzene ion-exchanger solution was 

prepared from 0.03553 g of thlamine hydrochloride hydrate to 0.006U6 g 

of bromothymol blue dye and diluting these compounds in 10 ml of pH 6.6 

phosphate buffer and 5 ml of trifluoroacetyl-p-butylbenzene solution 

to make an ion-exchanger solution of 2 x 10"3 M thiamine-dye salt. 

This mixture was stirred vigorously for five hours and allowed to stand 
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overnight.    Separation was not very complete.    The solvent phase was 

emulsified with the aqueous phase and  showed precipitate formation. 

The solvent phase was centrifuged and the organic  phase was removed 

»nd passed through dry filter paper.    The pale yellow color of the ion- 

exchanger solution indicated that extraction was incomplete. 

The chloroform ion-exchanger solution was prepared by adding 

0.16864 g of thlamine hydrochloride hydrate to 0.03122 g of bromothymol 

blue dye and diluting to 100 ml with pH 6.6 phosphate buffer to make 

an ion-exehanger solution of 1 x 10      M thlamine-dye salt.    100 ml 

of purified chloroform were added to the aqueous solution and the 

mixture was stirred vigorously for forty-five minutes.    Using a  separatory 

funnel, the aqueous phase   (top layer) was removed,  extracted with 

another 100 ml of chloroform, and the mixture was stirred vigorously 

for another forty-five minutes.    The aqueous phase was again removed 

and extracted with an additional 100 ml of chloroform with one hour 

of stirring.     All three chloroform extracts were collected,  passed 

through a dry filter paper, and evaporated using a  fractional distillation 

apparatus until less than 50 ml of solution remained in the  reaction 

pot.    This was allowed  to cool and was placed  in a 50 ml volumetric 

flask which was diluted to the mark with purified chloroform.    This 

ion-exchanger solution was yellow. 

The ootanol-1 ion-exchanger solution was prepared from 0.17764 g 

of thiamine hydrochloride hydrate, 0.03122 g of bromothymol blue dye, 

and 50 ml of pH 6.6 phosphate buffer to make an ion-exehanger solution 

of 1 x 10"3 M thiamine-dye salt.    50 ml of octanol-1 was added to this 

aqueous solution, the mixture was stirred vigorously for one hour, and 
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the solution was placed in a separatory funnel where extraction 

looked nearly complete since the aqueous phase  (bottom layer) was 

very pale yellow while the organic phase had a clear, dark orange 

appearance.     The organic phase was removed and passed through a 

dry filter paper. 

The following mixed ion-exchanger solutions were prepared by 

combining the chloroform and octanol-1 ion-exchanger solutions«  lil, 

2il, and Utl chloroform/octanol-1 by volume.    For all three preparations, 

cloudiness appeared for a brief time upon initial mixing but disappeared 

after further mixing.    When the  ion-exchanger solutions were placed  ir. 

a freezer, aqueous balls of blue color appeared in the organic ion- 

exchanger solutions.     The blue color was probably due to the dye in 

the solutions.    In the chloroforra-octanol-1 and in the octanol-1 ion- 

exchanger solutions,  the blue aqueous balls would periodically form 

while the solutions were stored in the freeter and had to be  removed. 

All three chloroform-octanol-1 ion-exchange  solutions should have 

been 1 x 10      M thiamine-bromothymol blue salt  if both the pure chloroform 

and octanol-1 ion-exchanger solutions were 1 x 10"    M. 

The development   of polymeric films as the membrane  sensor for the 

liquid membrane electrode body was attempted.     The goal of this 

construction was to produce a polymeric membrane that cculd be easily 

sealed  in the Orion Research 92-32 liquid membrane electrode body just 

as the conventional porous membrane supports were  sealed.     This 

polymeric film would need the characteristics of thinness, durability, 

and plasticity for forming good seals.    A general procedure for forming 
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polyvinyl chloride   (FVC) membranes was developed with some  small 

32    33    yt changes from reference methods.     '       ' 35 mm  (i.d.)  glass ring 

(10 ml volume capacity) and a 30 mm   (l.d.) glass ring (k ml volume 

capacity) were cut from glass test tubes.    Two glass rings allowed 

the formation of PVC membranes of different thickness.    The edge of 

one  side of the ring was smoothed with sandpaper and then  sealed 

on a glass plate using a minimum amount  of Non-Aq stopcock grease 

(Fisher Scientific Company), an organic insoluble    grease.    The 

entire edge of the glass ring in contact with the glass plate was 

coated with hot  paraffin wax and allowed to cool in order to keep 

the glass ring in position on the glass plate.    The stopcock grease 

was used to prevent the paraffin from dissolving in the oreanic 

solvent used for the  FVC membrane construction.    The PVC membrane 

solution prior to hardening contained various proportions of 

1,2-dichloroethane ion-exchanger solution,  FVC, and any needed 

plasticizer.    All were dissolved in tetrahydrofuran   (mHF). THF was 

added to bring the entire membrane preparation into the liquid form. 

This final solution was then poured  into the glass rings.     Each glass 

ring was covered with a layer of filter    papers (five to ten sheets) 

and weighted down with a heavy object  «o as to enable very slow 

evaporation of the THF.    This solution was then allowed to sit 

undisturbed for at least forty-eight hours.    The resulting solid PVC 

membrane was peeled from the glass and the underside of the membrane 

was allowed to dry thoroughly.    The PVC membrane foils were made by 

cutting the large membrane with a cork borer to fit the diameter of a 

conventional Orion porous membrane electrode body. 
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PVC membranes  using the 1,2-dichloroethane  ion-exchanger 

solution as the   plasticizer were  prepared using the following amounts 

12 11 1^ of materials.     »-'-'•-'      The first attempt used 0.66 g of the 

1,2-diohloroethane  ion-exchanger solution and 0.28 g of PVC dissolved 

in 10.0 ml of THF.     6.1* ml of this mixture was poured  into the 35 mm 

glass ring and the remaining 3.6 ml into the  30 mm glass ring.    The 

second attempt used 0.33 g of 1,2-diehloroethane ion-exchanger  solution 

and 0.13 g of PVC dissolved in 8.3 ml of THF.    5-3 ml of this mixture 

was poured into the 35 mm elass ring and the remaining 3 ml was  poured 

into the 30 mm glass ring.    After testing the resulting PVC membrane, 

it appeared that using 1,2-dichloroethane ion-exchanger solution as 

the plasticlzer was not effective.     The membrane produced had toughness 

and durability but lacked the plasticity needed to form a good  seal 

in Crion 92-32 liquid membrane electrode body. 

PVC membranes using plasticizers,   such as di(2-ethylhexyl)-2- 

ethylhexylphosphonate or didecyl phthalate, have been developed. 

A FVC membrane containing di-n-decyl phthalate   (^DP) was prepared 

using the   following materials.    The first attempt used 0.33 g of 

1,2-dichloroethane ion-exchanger solution, 0.0<* g of FVC and 0.33 g of 

DDF,  all dissolved in 8.3 ml of THF.     5.3 ml of this mixture was poured 

into the 35  mm glass ring and the remaining 3 ml was poured into the 

30 mm glass ring.     These PVC membranes had a soft highly rubbery 

surface that was easily breakable due to no supportive properties. 

The  second attempt used 0.33 ? of 1,2-dichloroethane  ion-exchanger 

solution,  0.20 g of PVC,  and 0.16 g of DDP all dissolved  in 8.3 ml 

of THF.    5.3 ml of this mixture was poured into the 35 mm glass 

ring and the  remaining 3 ml was poured  into the 30 mm 
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glass ring. These PVC membranes had slight flexibility with *ood 

supportive characteristics and the necessary plasticity to make a 

good  seal  in the Orion liquid membrane electrode body. 

Buffer Solutions.     Standard aqueous pH buffers were  prepared 

according to R. G.  Bates      to calibrate the pH electrode and pH 

meter.    A pH **.008 buffer was prepared by making a 0.05 M potassium 

hydrogen phthalate solution.    The potassium hydrogen phthalate was 

dried at a temperature of 100 C for three hours prior to use.    This 

buffer solution was kept from accidental contamination with strong 

acid or alkali.    A pH 6.865 buffer solution was prepared by making a 

0.025 M potassium dihydrogen phosphate and a 0.025 M disodium hydrogen 

phosphate   solution.     Both compounds were dried for at  least three 

hours at 110°C and cooled in a desiccator.    A pH 9.180 buffer solution 

was prepared by making a 0.01 M borax (sodium borate)   solution.    This 

buffer solution was stoppered tightly as the absorption of only 0.2* 

carbon dioxide by the solution causes the pH to be altered by 0.001 unit. 

The aqueous buffer solutions employed for experimental analysis 

of the different liquid membrane electrode  systems were prepared in a 

manner similar to the directions in the "United States Pharmacopeia" 

(USP).-37    The buffer solutions studied had pH values of k.0, 6.0,  6.6, 

and 8.0.    According to the USF method, 50 ml of 0.2 M potassium 

dihydrogen phosphate solutions or 50 ml of a 0.2 M potassium hydrogen 

phthalate  solution with appropriate amounts of 0.2 M sodium hydroxide 

solution were used in the buffer preparations to make 0.05 M potassium 

dihydrogen phosphate solutions or 0.05 K potassium hydrogen phthalate 

solutions with various concentrations of sodium hydroxide.    These salt 
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concentrations ware proportionally increased in order to obtain 

stronger buffer solutions containing 0.1 M potassium dlhydrogen 

phosphate or 0.1 M potassium hydrogen phthalate with the proportionally 

increased concentrations of sodium hydroxide.    A pH 4.0 buffer solution 

was prepared by making a  0.1 M potassium hydrogen phthalate and a 

0.0008 M »odium hydroxide solution.      A pH 6.0 buffer solution was 

prepared by making a 0.1 M potassium dlhydrogen phosphate and a 0.01128 H 

sodium hydroxide  solution.    A pH 6.6 buffer solution was prepared by 

making a 0.1 M potassium dlhydrogen phosphate and a 0.O35W K sodium 

hydroxide  solution.     A pH 8.0 buffer solution was prepared by making 

a 0.1 M potassium dlhydrogen phosphate and a 0.0937 M sodium hydroxide 

solution using water that had been boiled and cooled prior to use in 

order to eliminate any dissolved carbon dioxide that could  interfer with 

this buffer preparation.    The potassium dlhydrogen phosphate and potassium 

hydrogen phthalate were dried in an oven at 100°C for at least three 

hours and cooled in a desiccator before use in all these buffer pre- 

parations. 

Thiamlne Hydrochlorlde Solutions.    In the preparation of solutions 

containing thiamlne hydrochlorlde, a  problem arose  concerning the high 

hygroscopic quality of this compound.    Two methods were utilised to 

determine the amount   of water absorbed by the thiamlne hydrochlorlde 

in the    reagent bottle.     In one method a known amount of thiamlne 

hydrochlorlde from the reagent bottle was heated at 100°C for twenty- 

four hours.    It was cooled In a desiccator and reweighed    to determine 

the loss of water upon heating of the  sample.     It was calculated that 
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for 1 mole of thiamine hydrochloride, there was 0.8 mole of water. 

However, this value may not be correct sines upon weighing of the thiainire 

hydrochloride after heating the weight of the  sample sradually Increased, 

Indicating absorption of water from the atmosphere by the sample.    The 

other method to analyze the hydrated thlamlne hydrochloride was to use   a 

thermobalance  (Perkln Elmer, TGS-1) with a differential scanning 

calorimeter  (Perkln Elmer DSC-1B).    The sample was heated to a maximum 

temperature  of 120 C.     The amount of water detected by this method 

was approximately 0.6 mole of water for each mole of thiamine hydrochloride. 

However, in this instrumentational method, helium is passed through the 

system, and the thiamine hydrochloride sample showed a weight loss at 

room temperature even before heating occurred.    This indicated that the 

thiamine hydrochloride forms a weak complex with water since the water 

was easily evaporated by the constant helium flow over the  sample.    After 

careful evaluation of both methods employed,  it was concluded that rearent 

thiamine hydrochloride  is definitely a menohydrate.     Therefore, the 

thiamine hydrochloride was always kept in a desiccator and stored In the 

dark until needed. 

Because of the hydrogen chloride  complexed to the thiamine, all 

aqueous solutions prepared   from thiamine hydrochloride had to be monitored 

with a pn electrode and meter due to the formation of an acidic solution 

upon addition of the salt  to water.    Appropriate  steps had to be taken 

to adjust the pH value of the thiamine hydrochloride solutions to the 

desired value. 
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The Liquid Membrane Electrode's Internal Peference Solution. 

The Internal reference solution of the liquid membrane electrode consisted 

of a 0.001 M thlamine and a 0.1 M sodium chloride solution.    The pH of 

this solution was adjusted to the same pH value as that of the sample 

solution to be analyzed.    The following method was used to prepare the 

internal reference  solution.    The appropriate amount of thlamine 

hydrochloride, taken directly from the reagent bottle, was weighed to 

make 100 ml of a 0.001 M solution.    Likewise, the appropriate amount of 

sodium chloride, dried at 100°C for at least three hours and cooled in 

a desiccator, was weighed to give 100 ml of a 0.1 M solution.    These 

were quantitatively mixed and diluted to about 50 ml with water.    The 

pH electrode was carefully Immersed in this solution and the solution 

was  stirred.     A 0.01 M sodium hydroxide  solution was added until the 

desired pH of the solution was attained,    "he amount of sodium hydroxide 

solution added was recorded, and the thlamine-sodium chloride solution 

was diluted to 100 ml in a volumetric flask. 

Sample Solutions.    Preparation of Initial sample  solutions for 

analysis by the liquid membrane electrode system was accomplished by 

having an initial volume of sample containing 100 ml of a suitable 

buffer solution by itself or with previously added interfering substances. 

For blank sample solutions containing no interfering substances, 

100 ml of a buffer solution was added to the Jacketed heat controlled 

beaker and logarithmic amounts of a thlamine stock solution of about 

0.1 M    concentration or other types of stock solutions were added in 

milliliter Increments using the micropipet or the 10 ml capacity buret. 



50 

These millillter additions of stock solution were 0.01, 0.01,  0.03, 

0.05,   0.1,  0.3.  0.5,   1.0, 3.0,   5.0,  10.0, etc.   in which the total 

logarithmic volumes of stock solution in milliliters present  in the 

sample solution were 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0,  5.0, 

10.0,   20.0, etc.    This method of adding a  stock solution to an initial 

volume of sample gave a practical range of concentrations of the ion 

of interest that the liquid membrane electrode could analyze. 

A 0.1 M sodium chloride  stock solution was prepared by dissolving 

2.9221U g of oven dried sodium chloride in 500 ml of water and was 

added to a pH 6.0 buffer solution in the volume increments as given 

above to make a  range  of sample solutions with different sodium chloride 

concentrations. 

Sample  solutions containing possible interfering substances were 

made using the type of substances  commonly found   in commercially available 

vitamin preparations.    For regular vitamin capsules, each capsule usually 

contained 15 mg of thiamine mononitrate,  10 mg of riboflavin,   5 mg of 

pyridoxine monohydrochloride, 50 mg of nicotinamide, 10 mg of d-calcium 

pantothenate, and 300 mg of ascorbic acid.    These amounts were found  in 

two commercially popular vitamin preparations named Allbee with C 

(A-H Robins Company) and B-Complex with Vitamin C    (Rite-Aid Company). 

In all cases, four times the amount  specified in each commercial vitamin 

capsule preparation were added to 100 ml of sample  solution. 

An interference sample solution of riboflavin, pyridoxine 

monohydrochloride, and d-ealcium pantothenate was prepared by combining 

these substances and diluting to one 100 ml with pH 6.0 buffer solution. 



Because it was believed that nicotinamide may interfer with the 

thiamine response of the liquid membrane electrode as noted by Das 

29 
Gupta and Cadwallader,       the nicotinamide and ascorbic acid  interference 

sample solution was made   separately in a pH 6.0 buffer solution.    Due 

to the ascorbic acid,  the buffer capacity of the   solution was exceeded 

and neutralisation of the interference  substances was required before 

final dilution with the buffer solution.    The Interference substances 

were added and diluted to about 25 ml with pH 6.0 buffer solution and 

neutralized  to pH 6.0 with additions of 1.0 M sodium hydroxide  solution 

recording the amount of sodium hydroxide used.    The mixture was then 

diluted to 100 ml with the pH 6.0 buffer solution. 

A separate interference sample solution was prepared for both the 

nicotinamide  and the ascorbic acid.     The nicotinamide sample  solution 

required no neutralization and was mixed directly with 100 ml of pH 

6.0 buffer solution.    The ascorbic acid sample solution was neutralized 

with 1.0 M sodium hydroxide in the manner as  stated above.     The amount 

of sodium hydroxide added was recorded.    This Interference  solution was 

then diluted to 100 ml with the pH 6.0 buffer solution. 

A O.CC*20 M sodium chloride interference sample solution was 

prepared by adding 0.2**7B0 g of oven dried sodium chloride to 100 ml 

of pH 6.0 buffer solution. 

All the above interference sample  solutions were used Just for the 

initial sample solution to which a thiamine stock solution of about 0.1 M 

concentration was added in the volume increments stated previously to 

make a range of sample solutions with different thUmine concentrations 

that could be analyzed by a liquid membrane electrode. 
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The Thiamine Stock Solution.    The preparation of a 0.1 M 

thiamine stock solution was performed by two methods. 

Method 1 assumed the thiamine hydrochloride to be the hydrated 

form when taken directly from the reagent bottle and the appropriate 

amount of thiamine hydrochloride hydrate was weighed to make a 0.1 M 

thiamine solution in a total volume of either 100 ml or 200 ml depending 

upon the amount of stock solution needed for an analysis.    This method 

did not give precise concentrations of thiamine stock solution but In 

the preliminary task of finding a liquid membrane electrode that would 

show good thlamlne response this was not critical. 

Method 2 used a more precise manner in obtaining a thiamine stock 

solution.    A beaker equipped with a cap was employed.    The beaker was 

heated in an oven to remove all moisture present    on its walls, and 

then cooled in a desiccator for one hour.    The beaker was touched only 

with a pair of tongs or for a short time with tissue paper.    After the 

cap was placed on the empty beaker, both were weighed accurately.    The 

approximate amount of thiamine hydrochloride hydrate needed to make 

a 0.1 M solution in a total volume of 100 ml or 200 ml was taken from 

the reagent bottle, added carefully to the beaker, and then oven heated 

at 100°C for three hours.    The beaker and sample were cooled  in a 

desiccator for about one hour, after which the same cap was positioned 

tightly on the beaker, and the entire assembly accurately weighed.    The 

actual weight of the unhydrated thiamine hydrochloride was then 

calculated. 

After a thiamine hydrochloride sample had been weighed by either 

methods 1 or 2, the thiamine hydrochloride was then neutralised to the 
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pH value of the initial sample solution to be tested.    This sample 

solution always contained a buffer and, therefore, the thiamine stock 

solution had to be neutralized to the appropriate pH in order not to 

extend the  capacity of the buffer once it was added.    The neutralization 

of the thiamine stock solution was similar to that method used for the 

thiamlne-sodium chloride internal reference solution.    The thiamine 

hydrochloride was quantitatively diluted to about 50 ml with water. 

The pH electrode was Immersed in this solution.    The solution was stirred. 

1.0 M sodium hydroxide was added until the desired pH of the  solution 

was attained.     The amount of sodium hydroxide was recorded.     This thiamine 

solution was quantitatively transferred into an appropriate volumetric 

flask and diluted to the mark with water. 

Methods of Analysis. 

The liquid membrane electrode systems used In this project consisted 

of initial data of volume of a stock solution added to an initial volume 

of sample  solution and the corresponding measured potentials in millivolts. 

To use these data effectively, a working curve must be developed in order 

to determine the kind of response the liquid membrane electrode has 

towards the concentration of the ion of Interest, which can be thiamine 

or any other  substance.    Also, a working curve Indicates how reproducibly 

the electrode responds to the different concentrations of the ion of 

interest.     If the liquid membrane electrode is responding In the desired 

manner, calibration working curves have to be Implemented for a wide 

range of concentrations of the ion of Interest.    Working curves have to 
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be constructed to determine the effect of interference substances 

in the sample  solution on the response of the liquid membrane electrode 

towards the ion of interest. 

To form these working curves, the measured potential in millivolts 

versus the corresponding log1Q activities of the ion of interest have 

to be evaluated.     The activity of an ionic substance  is related to all 

the ionic species present in the sample solution.    For example, in 

the addition of a thiamine  stock solution to a sample solution, the 

activity of the thiamine is a function not orly of the added thiarine 

and sodiun chloride from the stock solution, but also of the salts of 

the buffer  solution and any other ionic Interference substances that 

are present. 

Two Fortran IV programs have been developed to easily convert 

the amounts of  stock  solution of the ion of interest added to a  sample 

solution into the log activities of the ion of interest.     Each log 

activity value and its corresponding measured potential are used in 

a linear regression method to determine the   slope, the  intercept, the 

standard deviation of these values, and the correlation coefficient 

for the plot of the measured potential versus log activity of the ion 

of interest.    These programs are called SALTEI and SALTIV. 

Program SALT3I  (Appendix A)   is used for sample  solutions containing 

only a buffer, one ion of interest, and only one additional ionic salt. 

Program SALTIV (Appendix 3)   is used for sample  solutions containing 

a buffer and  interference substances numbering no more than five. 

Similar to program SALTS I, one ion of interest and one additional ionic 

salt can be accomodated in this program. 
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Both programs utilize Dtvis equation    for determining the activity 

coefficient, and the  ionic strength contributed by each ionised  salt 

in the  sample solution is obtained by the factor method described on 

page 8.     Two subroutines, FREE and UNFIT, «re used.     Program FREE 

(Appendix C)  allows free input format of data values for the SEL 72 

computer system from any control unit and assigns the input value to a 

variable in the main program.    Program UNFIT (Appendix D) is the 

subroutine employing the linear regression method using the calculated 

log activity of the ion of interest and its corresponding measured 

potential. 

From these Fortran IV programs, the working curve can be drawn 

by plotting the measured potential versus the corresponding log activity 

of the ion of Interest.     It is these curves that  show whether a liquid 

membrane  electrode  is responding in a   suitable manner with or without 

interference  substances present and whether the electrode response 

depends upon certain conditions such as pH. 

The General Procedure for an Experiment Employing a Liquid Membrane 
Electrode Cell. 

The general format of performing an experiment with a liquid 

membrane electrode was as followsi 

1. Assemble the Orion liquid membrane electrode according to 

the Orion Research 92-32 manual and choose the appropriate porous 

membrane support to contain the lon-exohan ger solution. 

2. Position the electrode upright without the top cap and add 

the desired ion-exchanger solution through the larger outside hole on 

top of the electrode leading to the liquid membrane  solution reservoir 
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in the outside chamber of the electrode.    Be sure of proper wieking of 

the membrane  support by the ion-exchanger solution by holding electrode 

overhead and observing the membrane.    As the membrane wicks the ion- 

exchanger solution from the reservoir it should become partially 

translucent or wet-looking.    Plaoe the washer over the ion-exchanger 

solution filling hole and, using a syringe with the special nozzle for 

this electrode, add the Internal reference solution in the center filling 

hole  on top of the  electrode.     Since this  solution will be emitted  out 

of the electrode from the vent hole, it is necessary to catch this 

solution with a tissue.    This internal reference solution should be 

sufficiently flushed through the inner electrode chamber to remove any 

trapped air bubbles.    Replace the top cap containing the lead for the 

electrical connection between the internal reference electrode in the 

inner chamber of the liquid membrane electrode and the voltmeter, and 

connect the lead to the appropriate voltmeter terminal. 

3.     Once assembled,  the  liquid membrane electrode  can be used  for 

long periods of time with the same ion-exchanger solutions.    However, 

before each experiment using the electrode, a fresh internal reference 

solution is prepared because of the possible decomposition of the 

thlamine in the old internal reference solution.    This fresh reference 

solution replaces the old solution in the inner chamber of the electrode 

by flushing the chamber five to six times. 

4. The liquid membrane electrode is conditioned before  use. 

5. Prepare the external double Junction reference electrode for 

use by adding the appropriate solutions of saturated potassium chloride 
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and 1.0 M sodium chloride and connect the electrode to the proper 

terminal on the voltmeter.    Since the sodium chloride solution contacts 

the sample solution through a  porous ceramic plug,  it  is replaced with 

new sodium chloride solution by suitable flushing of the chamber Just 

before the reference electrode is used.    Store the double Junction 

reference electrode in water.    Also prepare the pH electrode for use 

by conditioning it in a buffer solution. 

6. Start the constant temperature circulator and maintain a 

temperature of 25 C. 

7. Place the magnetic stirring bar and 100 ml of sample solution 

into the Jacketed beaker.    Rinse the liquid membrane electrode with 

water and blot dry with paper tissue.    Place the electrode in the sample 

solution and stir this solution at constant speed throughout the 

experiment.    Check for air bubbles trapped under the bottom electrode 

cap where the membrane  sensor is located.    If air bubbles form, tap 

the electrode to  remove them. 

8. Rinse with water and blot dry the external double Junction 

reference electrode.    Place this electrode into the sample solution 

and turn on the voltmeter to the millivolt mode.    If the measured 

potential is stable,  showing little drift, then continue.    If the 

measured potential is not stable but fluctuates widely, then check 

for air bubbles under the electrode cap or in the internal reference 

solution chamber  of the liquid membrane electrode. 

9. Rinse with water and carefully blot dry the pH electrode. 

Place this electrode into the sample solution and turn on the pH 

meter. 
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10. Cover the jacketed beaker and its sample solution with 

a layer of para film. 

11. Wait  for the voltmeter and the pH meter to give stable readings. 

12. Bore a hole in the parafilm and begin to add the desired 

volumes of stock solution. 

13. Record the amount of stock solution dispensed into the sample 

solution upon each addition, the total amount of stock solution added 

to the sample solution, the measured potential (in millivolts) and the 

pH of the sample solution after each stock solution addition, and the 

description of the liquid membrane electrode response. 

1U.    After the range of concentrations of the Ion of interest has 

been analyzed by the liquid membrane electrode, shut off the instrument, 

clean all glassware and equipment, and properly store all the electrodes. 

The Progressive  Procedure for Determining the Most Suitable Liquid 
Membrane Electrode  for Thlamlne Analysis. 

The first ion-exchanger solution extensively studied in this 

investigation was the 1,2-dlchloroethane ion-exchanger solution.    The 

liquid membrane electrode employed an Orion Research divalent cation 

membrane (Model 92-32-OU) as the support for the ion-exchanger solution. 

To determine the pH dependence of the liquid membrane electrode's 

response towards thlamlne concentration, the initial sample solutions 

contained no interference substances and three different pH buffer solutions 

were employed for analysis.     The liquid membrane electrode was tested 

for its response In a range of thlamlne concentrations in sample solutions 

of pH U.0, 6.0, and 8.0 to determine which pH gave the optimum response. 

The thlamlne-sodium chloride  Internal reference  solution and the thiamine 
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stock  solution  (prepared according to Method 1, page 52) were adjusted 

to the pH value of the buffer solution in the Initial sample solution. 

The liquid membrane electrode was conditioned in the appropriate buffer 

solution containing seme thiamine stock solution.    Two consecutive 

trials using thiamine stock solution additions were performed for each 

pH analysis to study electrode reprodueibility.    The working curves 

of potential  (millivolts) versus the log,0 activity of thiamine were 

constricted using program SALTEI and the  slope,  intercept,  standard 

deviations, and correlation coefficient were calculated.    In using this 

program, it was assumed that thiamine is a divalent ion, which may or 

may not be true, at the pH values studied. 

All the working curves for each pH studied had gradually increasing 

slopes,  the degree  of slope depending on the pH used.    The pH 6.0  sample 

solutions had a higher slope value than the sample  solutions of pH U.O 

and pH 8.0.    A table of the results are given below. 

Table 2 

pH Dependence of the 
1,2-dichloroethane Liquid Membrane Electrode 

pH Studied      Reprodueibility 

Jf.O 
6.0 
8.0 

2 mv 
3 mv 
2 rav 

Slope for 
5 x 10-3 to 3 x 10-2 K Measured 
Thiamine   (mv/decade)~ Potential 

13 stable 
17 stable 
Vi stable 

In Table 2, slope values were determined for the thiamine concentration 

range of 5 x 10"-3 to 3 x 10"2 M because, in this range, the largest potentl 

change per logarithmic addition of stock solution was observed.    However, 
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snail potential change response was observed between the lower thiamine 

concentrations which gradually increased as the thiamine concentration 

increased.    Highest sensitivity of the liquid membrane electrode towards 

thiamine was obtained at a pH of 6.0.    This pH appeared to be the best 

condition to study subsequent liquid membrane electrodes. 

Because thiamine sensitivity was not sufficient for the 

1,2-dichloroethane liquid membrane electrode to make it practical, a 

number of other liquid membrane electrodes were studied using the 

following ion-exchanger solutionsi    pure chloroform, pure octanol-1, 

111, 2il, and 4il chloroform-octanol-1, nitrobenzene, trifluoroacetyl- 

p-butylbenzene,  and two PVC polymeric membrane films using di-n-decyl 

phthalate as plasticizer.    All the liquid membrane electrodes employed 

the Orion Research divalent cation porous membrane support (Model 92- 

32-040 except, naturally, for the FVC membrane films that are self- 

contained ion-sensitive matrices requiring no additional membrane 

supports.    The initial sample solution was the pH 6.0 buffer solution. 

The thiamine stock solutions were prepared according to method 1 on 

page 52.    The thiamine-sodium chloride internal reference solutions 

and thiamine stock solutions were neutralized to pH 6.0.    The liquid 

membrane electrodes were conditioned in fresh pH 6.0 buffer solutions 

containing some thiamine stock solution for at least two hours before 

use.    During storage, the electrodes were either placed in thiamine 

buffer solutions as described above or allowed to remain in the 

atmosphere.    Two consecutive trials using thiamine stock solution 

additions to the  sample solution were performed for each electrode to 
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study thiamine response and reproducibility.    The working curves of 

the potential (millivolts) versus the log,., activity of thiamine were 

constructed using program    SALTEI.    The thiamine was assumed to be a 

divalent cation at this pH. 

A summary of the results obtained using these different liquid 

membrane electrodes is given in Table 3,  on page 62. 

The pure chloroform,  pure octanol-1, and chloroform-octanol-1 

electrodes showed an increasing potential change between each thiamine 

stock solution addition.    No electrode gave a linear Nemstian 

response for any thiamine concentration range.    As a result, * he working 

curves of potential (millivolts) versus Loffio *<rt^vi*'y °f thiamine 

were indeed curves and not straight lines.    The pure chloroform electrode 

gave good response with different thiamine concentratios but reproduc- 

ibility was extremely poor.    The pure octanol-1 electrode responded 

slightly better towards thiamine if stored in air but the response 

was still only fair.    The advantage of this electrode was its great 

stability with no potential drift.    The chloroform-octanol-1 combination 

electrodes were devised to capture the best characteristics of the two 

solvents and to find the combination that would possess the best 

response towards thiamine concentration, potential stability, and 

acceptable reproducibility.    The 111 chloroform-octanol-1 liquid 

membrane electrode proved to best suit these requirements. 

The nitrobenzene liquid membrane electrode had poor thiamine 

sensitivity.    Incompatibility with the Orion divalent cation membrane 

support was the probable reason for this.    The divalent cation membrane 



Liquid 
Membrane 

Electrode Reprodueibility 

pure chloroform poor 

pure octanol-1 excellent 

111 chloroform- 
octanol-1 

excellent 

Uil chloroform- 
octanol-1 

fair 

2il chloroform- 
octanol-1 

fair 

nitrobenzene not determined 

trifluoroacetyl- 
p-butylbensene 

not determined 

Table 3 

Results for Various Liquid 
Membrane Electrodes Studied at pH 6. 0 

Thiamine 
Cone.  Range 

and Slope  (mv/decade) 

5 x 10"3 - 2 x 10"2     ft3U 

polymeric films with DDPi 

thick PVC membrane      not determined 

thin PVC membrane       not determined 

(excellent* *lmV, fair= i3mV, poor>  *3mV) 

5 x 10"3 - 3 x 10"2     »20-27 

5 x 10"3 - 3 x 10"2    ZkO 

5 x 10"3 - 3 x 10"2    *«0 

5 x 10"3 - 3 x 10"2    *k2 

not determined 

not determined 

not determined 

not determined 

Remarks 

substantial potential 
drift 

no potential drift 

no potential drift 

slight potential drift 
at low thiamine cone. 

slight potential drift 
at low thiamine cone. 

possible membrane incompatibility 

no response to thiamine 

symptoms of high resistance 
across membrane 

symptoms of high resistance 
across membrane 

ON 
to 
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support used appeared to deteriorate from contact with nitrobenzene. 

Another membrane support was prepared from Duralon, a nylon based 

support with a pore size of 1.0 -ft, made by Mllllpore Corporation. 

A nylon membrane, according to Orion Research reports, Is suitable 

with nitrobenzene but problems developed with this liquid membrane 

due to leakage of Ion-exchanger solution from the electrode body, 

probably as a result of the poor seeling characteristics of the 

nylon membrane support.    A teflon membrane support with the product 

name Mitex,made by Millipore Corporation, was also tried with the 

nitrobenzene ion-exchanger solution, but wicking of this solution 

into the pores of the teflon support was unsuccessful.    Finally, a 

Uni-pore membrane support  (Bio-Pad Laboratories, 0.03 x^j pore size) 

was prepared, but was completely decomposed by the nitrobenzene 

solvent. 

The trlfluoroacetyl-p-butylbenzene ion-exchanger solution was 

simply not suitable as an ion-exchanger solution and response was 

poor towards thlamine detection. 

The polymeric films were taken from the preparations using 

di-n-decyl phthalate as the plasticizer as stated on page 45.    The 

PVC membranes used were obtained from the products of the second 

attempt.    These PVC membranes sealed well into the Orion Research 

liquid membrane electrode.    The PVC membrane from the 35 mm glass 

ring appeared to have a higher resistance across the membrane than 

the PVC membrane from the 30 mm glass ring.    This was expected since 

the former membrane was thicker than the latter. 
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Considering all the liquid   membrane electrodes studied, the 

best electrode developed appeared to be the 1«1 chloroform-octanol-1 

liquid membrane electrode.    It was this electrode that was extensively 

studied for pH dependence, response towards thiamine, reproducibility, 

and interference from the substances commonly found in commercial 

preparation of vitamin capsules. 

The 111 Chloroform-Octanol-1 Liquid Membrane Electrode. 

For all experiments dealing with the 111 chloroform-octanol-1 

liquid membrane electrode, the electrode was exposed to the atmosphere 

until just prior to use when the electrode was conditioned in a pH 

6.0 buffer solution with a small amount of thiamine stock solution 

that has been neutralized to pH 6.0.    All thiamine stock solutions 

were prepared according to method 2 on page 52    in order to have precise 

thiamine concentrations for the study of this chosen liquid membrane 

electrode. 

The pH dependence of the 1«1 chloroform-octanol-1 liquid membrane 

electrode towards thiamine response was determined by varying the pH 

of a 0.01 M thiamine sample solution and observing the measured potential. 

This initial sample solution gives a pH value of approximately three 

because of the acidic nature of the thiamine hydrochlorlde, therefore, 

supplying an initial sample solution that can be directly analyzed 

without further preparation.    The PH of the sampla solution was varied 

by adding various amounts of 1.0 M sodium hydroxide.    The measured 

pet.ntj.1, the PH, and the amount of sodium hydroxide solution added 

to the sample solution were recorded. 

I 
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Because of the high concentration of the sodium hydroxide, only 

small amounts had to be used to vary the pH of the sample solutions. 

This was beneficial in that, by the end of the pH analysis, a total 

of approximately one milliliter of sodium hydroxide solution was 

needed to adjust the entire pH range of the sample  solution studied. 

This meant that the thianine concentration was not changed drastically 

by volume change  indicating that the measured potential change was 

directly due to pH variation.    Due to the small amounts of sodium 

hydroxide solution used, the Manostat micropipet could be used to 

dispense the sodium hydroxide solution into the sample.    A working 

curve of potential (millivolts) versus pH was constructed and is 

shown in Figure 10.    P.eproducibility is not good for the two consecutive 

trials made, but for both trials a minimum in the curve is noted 

that correlates with the pH value of approximately 6.5i the value 

Das Gupta and Cadwallader29 obtained as the pH range for best extraction 

of thiaraine  into the organic solvent as thiamine-bromothymol blue salt. 

This minimum of measured potential would be expected at the best 

solution pH due to the consideration of the partition coefficient 

of thiamine between the aqueous  sample phase and the active liquid 

organic phase of the liquid membrane electrode39.    The best pH range 

for detection of thiamine by the 111 chloroform-octanol-1 liquid 

membrane electrode was between 5-5 to 7.5 where there is only about 

a one millivolt difference.    This is in partial agreement with the 

optimum pH value of 5-2 to 6.6 calculated by Das Gupta, Cadwallader, 

Herman, and Honigberg30 for the extraction method.    The 1.1 chloro- 

form-octanol-1 liquid membrane electrode was therefore studied at a 

pH of 6.0. 
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Figure 10.    pH dependence of the ltl ehlorofora-octanol-1 liquid 
membrane electrode  (two separate trials). 
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To study the thiamine response and reproducibility of the liquid 

membrane electrode, blank sample solutions containing only pH 6.0 

phosphate buffer solution were used as the initial media. Thiamine 

stock solution was added to supply a wide thiamine concentration range 

for electrode detection.    The measured potential was stable for each 

thiamine concentration studied.    Program SALTBI was used to calculate 

the log,n actiTities of the thiamine in the sample and to evaluate 

the slope,  intercept,  standard deviations, and correlation coefficient 

for the plot of the potential (millivolts) versus the log1Q activity 

of thiamine.     A typical curve of this liquid membrane electrode 

response towards different thiamine concentrations in just a pH 6.0 

buffer solution is given in Figure 11.    From this graph,  response is 

good at thiamine concentrations above 1 x 10-3 M, and reproducibility 

Is shown to be excellent for two consecutive trials. 

The study of the interference found in commercial vitamin capsules 

was performed using the mixed   solution method.     Incremental thiamine 

stock solution additions were made to the interference sample solutions 

to give the same thiamine concentration range as that studied for the 

blank buffer sample solutions.    The initial Interference sample 

solutions were prepared just prior to use in order to avoid possible 

decomposition of the interference substances.    Thiamine solutions in 

a pH 6.0 phosphate buffer were analyzed before the solutions with the 

interference substances in order to construct working curves to 

calibrate the liquid membrane electrode.    These calibration curves 

were compared to the curves developed from the interference sample 

solutions in order to    evaluate the extent of interference from the 

different substances studied.    Program SALTIV was used to calculate 
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Figure 11.    A working curve illustrating the response and reproduc- 
lbility of the lil chloroform-octanol-1 liquid membrane 
electrode towards different thiaminB concentrations  (two 
separate trials). 
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the log10 activities of the thiamine in the interference samples 

and to evaluate the slope, intercept,  standard deviation and correlation 

coefficient for the plot of the potential (millivolts) versus the log 

activity of thianine. 

For the riboflavin, pyridoxine monohydrochloride, and d-calcium 

pantothenate interference substances, the response of the liquid 

membrane electrode towards thiamine was not noticably impaired. 

For the solution containing ascorbic acid and nicotinamide, the 

liquid membrane electrode response towards thiamine showed interference. 

These two  substances were incorporated into two different sample 

solutions to determine which caused the interference.    It was found 

that only the ascorbic acid altered the liquid membrane electrode 

response towards thianine.    The amount of interference from the mixed 

sample of nicotinamide and ascorbic acid was approximately the same 

as for the interference from the ascorbic acid sample solution alone. 

Eecause the ascorbic acid had to be neutralised with 1.0 M 

sodium hydroxide, the final interference  sample solution contained 

O.OU2W3 M sodium chloride.    It was not known whether the interference 

of response to thiamine by the liquid membrane electrode was actually 

due to the ascorbic acid or to the sodium chloride produced from the 

neutralisation of the ascorbic acid.    Another trial was made to 

determine if Interference was due to the sodium chloride by preparing 

a sample solution of 0.0^240 M sodium chloride solution in the pH 

6.0 buffer solution.    Dsing program SALTIV, the working curve for 

this trial is shown in Figure U along with a calibration working 
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Figure 12.    A working curve illustrating the response of the 111 
chloroform-octanol-1 liquid membrane electrode towards 
thiamine with and without sodium ion interference and 
towards sodium ion without thiamine. 
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curve of the blank buffer sample solution for a range of thlamine 

concentrations.    The amount of interference from the sodium chloride 

is close to that of the ascorbic acid-nicotinamide and ascorbic acid 

interference sample solutions evaluated previously.    In reality, inter- 

ference is probably being caused by the sodium ions in the  sample 

solutions. 

Since interference from sodium ion was indicated for the 1:1 

chloroform-octanol-1 liquid membrane electrode, a problem was implied 

for thlamine stock solutions used previously to formulate working 

curves as these had an approximately 0.1 M sodium chloride content. 

The extent of sodium ion interference was not known for these experiments 

and, as a result, an experiment simulating the addition of thlamine 

stock solution to a blank pH 6.0 buffer sample solution was performed 

without the thlamine, using just a 0.1 M sodium chloride stock solution. 

This method would provide some information as to how much sodium ion 

Interference was present in the thlamine working curve.    The results 

of adding a 0.1 M sodium chloride stock solution to a blank pH 6.0 

phosphate buffer solution   are shown in Figure 12 using the calculations 

from program SALTS I.    This indicated that sodium ion in the amounts 

found in the thlamine stock solutions did not substantially interfere 

with this liquid membrane electrode response towards thlamine, and 

proved that the electrode is actually responding towards thlamine for 

the concentration range studied.    It was established that the liquid 

membrane electrode started to be affected by sodium ions at a high 

concentration level beginning approximately at 0.* M.    This explained 

why the measured potential shifted when a 0.0*2* M sodium chloride 
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in the pH 6.0 buffer sample solution was used.    The initial sodium 

ion level from the added interference and from the buffer solution 

itself exceeded the sodium ion concentration where interfering response 

by the liquid membrane electrode starts.    Before addition of any 

thiaraine stock solution, the sodium ion interfering sample solution 

already has a sodium ion concentration of 0.05 ?<• 
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CHAPTER SEVEN 

DISCUSSION AND CONCLUSIONS 

The Ion-exchanger solution using pure chloroform as the solvent 

produces a liquid membrane electrode that gives large measured potential 

drifting even though in combinations with octanol-1 the measured potential 

was more stabilized for the different thiamine concentrations analyzed. 

The probable reason for this potential drift is the partial solubility 

of chloroform in water.    It is known that for liquid membrane electrodes 

slight potential drifting is caused by leakage of the ion-exchanger 

solution into the sample solution.    Usually these ion-exchanger solvents 

are highly viscous and leaking Is therefore slow.    Bit the chloroform 

has a very low viscosity and this, in conjunction with its solubility 

in water,   Bakes a poor solvent for the active liquid phase of a liquid 

membrane electrode.    Once the chloroform is combined with the octanol-1 

In any of the amounts indicated, potential drifting is substantially 

decreased.    Apparently, the octanol-1, a highly viscous solvent, is 

able to combine with the chloroform to form a solvent with octanol-1 's 

potential stability and chloroform's high thiamine extraction capability 

29 
as described by Das Gupta and Cadwallader. 

When employing the 111 chloroform-octanol-1 liquid membrane 

electrode, the pH of the sample solutions must be controlled by a 

buffer solution, a common treatment for clinical analysis.    The best 

PH is 5.5 - 7.5.    The graph showing the pH dependence of the electrode 
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was not symmetrical, probably due to the probable decomposition of 

thiamine in alkaline solutions.    Alkalinity could also explain the 

irreproducibility found for two consecutive trials.    Immersion of 

the electrode in an alkaline solution could be destructive to the 

liquid membrane making the electrode response for the second trial 

different than the first.    The lil chloroform-oetanol-1 liquid membrane 

electrode has the capability of being utilized for at least five hours 

without recalibration.    Within this time, the electrode showed a 

relative precision of about 2.0#.    Also, the response time is relatively 

fast, taking up to one minute for low thiamine concentrations and about 

thirty seconds for high thiamine concentrations.    The quick response 

indicates that the thiamine-bromothymol blue ion-exchanger site in 

the active liquid phase has the necessary mobility in the solvent used 

in this electrode.    A feature of the electrode that should be noted 

is its non-ideal Nernstian response towards thiamine.    The thiamine 

seems to behave neither as a univalent or a divalent species.    According 

to Ishibashi, Kina, and Maekawa,    their liquid membrane electrode 

responded to thiamine as a bivalent species.    This does not necessarily 

prove thiamine to be a bivalent species at the pH range studied. 

Nevertheless, in practical usage it is more important for the liquid 

membrane electrode to respond reproducibly and selectively than to 

respond in a Nernstian manner even though it is advantageous to possess 

both in an electrode system. 

For practical application in determining thiamine concentration 

in commercially available vitamin capsules, one capsule per 20-25 ml 
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of pH 6.0 buffer solution would be necessary for analysis by the 1:1 

chloroform-octanol-1   liquid membrane electrode.    For convenience in 

these experiments,  the amount of interference  substances analyzed in 

the sample solutions  in the project have been increased proportionally 

to equal the amount found  in four capsules dissolved in 100 ml of 

pH 6.0 buffer solution which would contain a thiamine coneentraion 

of approximately 1 x  10      M.    The sodium ion concentration in the sample 

solutions must be known if the thiamine is to be analyzed properly due 

to sodium ion interference above 0.C+ M.    To assure no substantial 

interference from sodium ion in the  sample solutions,  sodium ion should 

be less than O.0U M if possible.     Potassium ion interference is expected 

to be similar to sodium ion interference based on the  same degree of 

sodium and potassium interference  found in the  liquid membrane electrode 

27 developed by Ishibashi, Kina, and Kaekawa. The selectivity constant 

for thiamine in the  presence of sodium and potassium ions    was calculated 

to be about 1 x 10_1.     The  great advantage of this 111 chloroform-octanol-1 

liquid membrane electrode compared to the one developed by Ishibashi, 

Kina, and Maekawa is the high selectivity for thiamine over pyridoxine 

monohydrochloride  (vitamin Bg), making it a more practical electrode for 

realistic clinical analysis.     No interference   is expected from any 

substances found in commercial vitamin capsules with the possible exception 

of chemical binders which were not tested. 

For further studies with the ltl chloroform-octanol-1 liquid membrane 

electrode, thiamine mononitrate stock solutions could be used to calibrate the 

electrode.    Three important features of using thiamine mononitrate are 
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that it would not require as much preparation for weighing because of 

its low hygroscopicity, the thiamine mononitrate stock solution would 

not have the initial acidity of its thiamine hydrochloride counterpart! 

possibly eliminating the neutralization step with sodium hydroxide, 

and, finally, this species is used more extensively in pharmaceutical 

preparations than thiamine hydrochloride because of its better time 

stability so that calibration of the liquid membrane electrode would 

be attained using the same thiamine form as used in these pharmaceutical 

preparations.    Further analyses of different pharmaceutical preparations 

containing thiamine may be examined with the corresponding interference 

study of other substances found In these preparations.    Also, in the 

future, it may be possible to analyze blood samples after proper study 

of the liquid membrane electrode for this type of analysis. 

A new area that requires investigation is the finding of a better 

solvent for the ion-exchanger solution that will increase electrode 

response at an even lower thiamine concentration while at the same time 

maintain response and reproducibility, making it a more practical 

electrode to use for further clinical analysis. 
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PART n 

AUTOMATION OF THE ION-SELECTIVE 
ELECTRODE APPARATUS 
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CHAPTER ONE 

INTRODUCTION 

In the development and utilization of ion-selective electrodes for 

analytical studies, it  is necessary that a laree number of routine 

samples be analyzed.     There are usually two methods used for determining 

the potential response  of ion-selective electrodes for the various 

concentration ranges of the ion of interest.    Cne is to prepare the 

solutions of the ion before analysis and the other is to systematically 

add a stock solution of the ion to an initial volume of  solvent to 

obtain th« range of concentrations desired.    This latter method is 

probably the better of the two,  since the electrode is continously 

immersed in the solution for all the concentration ranges and any 

error due to the removal and cleaning of the electrode as performed  in 

the first method is eliminated.    For this reason, the second method 

has been choosen for our current research in the analysis of ion-selective 

electrodes.    In this procedure, the manual addition of a  stock solution 

into a reaction cell and manual recording of the potential would be 

tedious and time consuming.    To solve this difficulty, a hard-wiro 

automatic pump unit for solution addition has been developed which 

handles addition of a  stock solution of desired volumes either by a 

manual control or by an automatic control.    In conjunction with this 

unit, a data recording system was developed to store the potential 

reading of the electrode cell for the different concentrations studied. 

Some of the advantages of this particular system are the easy 
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control of the volimes of solution being delivered to the reaction 

cell and the reproducibility of these volumes for each different 

test trial.    The system gives accurate data which are stored for later 

evaluation and, when in automatic control, stops when all desired 

solution concentrations have been analyzed.    This automatic control 

allows the analyst to perform other duties while the pump is operating 

in this mode because no supervision is required. 
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CHAPTER TWO 

CIRCUIT DESIGN AND OPERATION 

Figure 13  shows the block diagram of the automatic pump system. 

Each unit's function and Implementation are as follows.    The pump 

delivery system was tested with two types of pumpj syringe and peristaltic. 

During a solution addition, the pump delivery system emits a certain 

volume of stock solution each time a pulse is sent to It from the auto 

pump unit.    The amount of solution displaced into the reaction cell depends 

on the length of this pulse.    The voltmeter is used to measure the potential 

difference between a reference electrode and the appropriate ion-selective 

electrode for the different solution concentration ranges being determined. 

The automatic pump unit consists of two sections, the decision unit and 

the pulse generator.    The decision unit determines the moment to add 

stock solution, while the pulse generator responds to the information 

provided by the decision unit by sending pulses of the appropriate length 

and timing required by the pump delivery system.    The timer unit consists 

of a quarts oscillator and sealer.    The rate of the output time pulses 

are programable by a series of switches which select the scale to be 

utilized.    The amplifier and filter unit is designed to amplify the 

output signal of the voltmeter and to simultaneously filter out noise 

that could interfer with the decision section of the auto pump unit.    The 

amplifier and filter unit contains several amplification selections and 

a separate control for several filter selections.    The advantage of this 

unit is the compactness of its structure and convenience of signal 
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regulation in one package.    The data recording system incorporates 

a data logger, paper tape punch, and a strip-chart recorder.    The 

data logger puts out a record of voltage analog data to a paper tape 

punch.    Each reading is taken under control of an external pulse from 

the decision unit.    The paper tape punch is interfaced for the data 

logger's parallel output.    The tape can then be used as data storage 

for later evaluation.    In order to observe a continuous scan of the 

change of potential as the concentration of the solution is changed 

with each additional of stock solution, the strip-chart recorder is 

employed.    This recorder enables the operator to have a visual account 

of the performance of the entire system being studied. 

Two methods of operation are employed for this system.    In the 

manual operation, the role of decision unit is performed by a human 

operator.     The operator behaves as the control unit by viewing the 

voltmeter display and after the ion-selective electrode potential 

attains equilibrium, the operator activates the pulse generator for 

the next solution concentration study.    Thus, the equilibrium detection 

by this method is able to be compared to the automatic operation for 

accuracy.    In the automatic operation, the decision unit is hardware- 

controlled.    The output of the voltmeter, which is a voltage related 

to the concentration of the solution being studied, is sent to the 

decision unit which consists of a digital logic circuit.    This logic 

circuit automatically detects the equilibrium point of the reaction 

cell by means of a differentiation circuit and compares the differentiator 

output to a reference voltage.    When equilibrium is attained, the pulse 

generator is activated for the next solution addition. 
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A schematic diagram of the digital logic circuit comprising 

both the pulse generator and decision unit used in the auto pump unit 

is shown In Figure V* and Figure 15.    Table ^ gives the symbol 

designations for these figures. 

In the pulse generator, each Gl gate acts as a divide-by-two 

gate for the clock input pulse to each gate.    As a result, each gate 

Gl doubles the length of the pulse of the preceding gate Gl, thus, 

giving the different pulse lengths.    The reason for this pulse-doubling 

operation is related to the Mernst equation where the solution concen- 

tration factor is logarithmic.    The output of each of these seven  Gl 

gates is placed in a data selector/multiplexer integrated circuit 

controlled by a decade counting unit.    This binary ceded count selects 

which pulse length of a particular Gl gate output is to be sent to the 

pump delivery system.    The combination of the decade counting unit and 

data selector/multiplexer allows each different length pulse to be 

associated with a binary count number from the decade counting unit. 

This decade counting unit has a count range from sero to nine, and 

every time an output pulse from the multiplexer ends, a monostable 

multivibrator connected to the clock Input of the decade counting unit 

commands the decade counting unit to increase one count.    If one 

particular pulse length is desired for every solution addition, the 

count    associated with that pulse length can be selected, and a 

multiplexer pulse control switch can be thrown to "on" position to 

keep the decade counting unit at that desired count. 

Contained within the decision unit is a manual reset push button 
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Table 4 

Symbol Designations for Figures 13 and 14 

Symbol Function 

Gl dual J-K master-slave flip flops with preset 
and clear (SN 7476 N) 

DOT decade counting unit (SN 7490 N) 

LED light emitting diode 

MPX data  selector/multiplexer (SN 74153) 

DECODES one of ten decoders  (SN 7442) 

MON retriggerable monostable multivibrator with 
clear  (SN 74123) 

NAND GATES quadruple 2-input positive NAND gates   (M 74H00J) 

OR GATES quadruple 2-input positive OR gates (DM 7432) 

INVERTER hex inverters   (SN 7404 N) 

G2 dual J-K master-slave flip flops (SN 7473 N) 

NOR GATES quadruple 2-input positive NOR gates (SN 7402 N) 

Al high performance operational amplifier (SN 72307) 

A2 and A3 dual hi?h performance operational amplifier  (SN 72747) 

SI manual push-button switch 

32 automatic switch 

53 slope  switch 

54 multiplexer pulse control switch 

55 manual reset push-button switch 

56 termination selector switch 

57 relay switch 

Rl 2.2 k ohm resistor 

R2 Ik ohm resistor 
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Table U (con't.) 

Symbol Function 

R3 and Rfr 20 k ohm resistor 

R5 10 k ohm resistor 

R6 and R8 100 k ohm resistor 

R7 and R9 500 k ohm resistor 

PI 10 ^f capacitor 

P2 0.1 >(F capacitor 

T transistor (T-336-2 T-1811) 

R Teledyne relay (P/N 611-1) 

a hot line 

b ground 

e neutral 

C clear 

Cl clock 

J and K Inputs 

Q and Q outputs 

Cl to Cll connection leads 
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switch used to reset the decade counting unit beck to the zero count. 

This switch not only resets the decade counting unit, but it also 

prepares the latch 1 circuit used in conjunction with the termination 

selector for operation.    The selector allows the operator to set 

the count, representing a certain length pulse, that will automatically 

stop the operation of the auto pump unit after that count pulse is 

finished.    The selector originates from a "one of ten" decoder circuit 

which transfers the binary code of the decade counting unit, from 

tero to nine, into ten separate pulses.    When the reset switch is 

engaged, the Q of the latch 1 circuit is one (+5 V) as long as the 

termination selector is not in the shut-off state after the last 

count pulse.    When this shut-off state does occur, the Q of latch 1 

changes to 0 (ground), disabling with an AND gate any further count 

pulses from the multiplexer output to the pump delivery system gate. 

This enables the pump to respond to only the desired pulses.    The 

recycling of the pulse count can only be started again when the reset 

switch is engaged once more. 

The data logger takes a voltage reading only if its clock is 

triggered from 0 to 1.    This triggering is accomplished whenever the 

pump is switched on because it is understood that the pump will only 

add the stock solution when potential equilibrium in the cell is 

attained.    Unfortunately, this works well for all the pulse counts 

except when the last pul*» count is finished at which time the pump. 

as explained above, is shut-off permanently due to the latch 1 circuit. 

To compensate for this circuit limitation, the latch 2 circuit was 
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devised especially to trigger the data logger clock at the end of 

the last pulse count.    When the Q of the latch 1 circuit goes from 

0 to 1 with the completion of the last pulse count as decided by 

the termination selector) the Q of latch 2 remains 0 until the latch 

2 clock is triggered from 0 to 1 when the cell potential reaches 

equilibrium, Q goes to 1 and the last data point is recorded.    It 

should be noted that the latch 2 Q can only be triggered this one 

time because no matter how many times the latch 2 clock is triggered 

the Q still remains in the 1 state until the reset switch is engaged 

and the Q returns to 0. 

The starting •■witch to enable and disable the pulse generator 

is actually a dual system, with both manual and automatic control. 

Both are connected to latch 0 where the clear is initially in a 1 

state and the clock in a 0 state.    When the manual or auto control 

switch goes from 1 to 0, the clear of latch 0 goes from 1 to 0 and 

back to 1 again, but the Q of latch 0, which is initially at 0, is 

set to 1.    The NOR gate is connected not only to the Q of latch 0 

but also to the Q of latch 2 which is initially at 0 until the end 

of the last pulsa count when potential equilibrium is reached as 

described above.    When the Q of latch 0 goes from 0 to 1.    The reset 

of the timer unit, initially at 1, is grounded and the clock starts. 

Simultaneously, the clear of the Gl gates in the pulse generator 

goes to 1 which starts the divide-by-two timers.    The Q of latch 0 

goes back to its original state when the end of the pulse from the 

multiplexer is finished.    It is then necessary to have the automatic 

or manual switch turn on again in order to have the next pulse start 
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the pump delivery system.    When the last pulse count Is finished, the 

Q of latch 2 (as explained above) goes from 0 to 1 which starts the 

timer unit by bringing the reset to 0 through the NOR gate but it 

does not start the pulse generator Gl gates as these depend on the Q 

of latch 0.    Because the data logger clock is established around the 

same timer unit, the Q of latch 2 starts the timer unit only for 

the purpose of allowing the last potential to be recorded by the 

data logger, since this timer unit has to be off reset to be in the 

recording mode. 

The manual control is merely a push button switch, which the 

operator depresses when a pulse is needed to start the pump.    The 

automatic control, however,  is basically a differentiator circuit with 

two comparators and an interfacing transistor switch for conversion 

of voltage into proper logic voltage.    The output of the voltmeter is 

amplified and filtered and is connected to the differentiator circuit 

composed of two resistors and two capacitors and a 307 integrated 

circuit operational amplifier, Al.    The gain of this differential 

circuit is dependent on the 10 ^F capacitor and the 10 mA  resistor. 

The 0.1   A<T capacitor and the 100 kft    resistor are connected only 

for additional filter purposes necessary for an operational amplifier 

differentiator circuit.    When the output of the Al operational amplifier 

roaches the reference level of comparator A2, a T*7 operation amplifier 

like A3, the comparator output has been adjusted to go to -15 V from 

+15 V for reasons that will be explained later.    In the study of ion- 

selective electrode systems, it is known that the change of potential 

increases for cations or decreases for anions as solution concentration 
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Increases.    Because of this principle, two operational amplifiers, 

A2 and A3, are utilised for the comparator switch.    A2 is used for 

tn increasing potential signal with an increase of solution concentration 

and A3,  serving as an inverter, is used for a decreasing potential 

signal with an increase of solution concentration.    Either one can be 

enabled by employing the slope switch indicating + for the A2 and - for 

the A3-    When a certain volume of solution is added to the reaction 

vessel, the amplified and filtered output voltage of the voltmeter 

changes to a large positive  or negative voltage depending on the direction 

of the potential change, and the comparator changes to a +15 V since the 

reference voltage of the comparator has been adjusted to be approximately 

0 V.    The comparator is usually not set exactly on zero because the noise 

In the entire system has to be accounted for and, therefore, the compa- 

rator has to be adjusted to respond to a voltage just outside that level 

of noise.    When the voltmeter responds to the equilibrium potential of 

the reaction cell, the change of amplified voltage to the differentiator 

circuit is zero, making the output of the differentiator circuit like- 

wise zero, which is detected by the comparator with a reference voltage 

of approximately zero.    This zero differentiator circuit output triggers 

the comparator from +15 V, the state of the comparator at non-equilibrium 

potential, into a -15 V, the state of the comparator at equilibrium 

potential.    The comparators A2 and A3 are connected to the transistor 

switch, which allows the comparator signals to be converted into digital 

logic voltage of ground and +5 V.    The diode installed before the 

transistor allows only the positive voltage through to the transistor switch. 
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For either A2 or A3i when the output is +15 V,  indicating non-equilibrium 

potential, the +15 V is passed to the base of the transistor, giving it 

a low resistance which allows the current from the + 5 V power supply 

to flow through the transistor.    Therefore, the output at the collector 

going into the logic circuit is at ground.    This ground signal does 

not allow the pulse generator to be activated.    However, when the 

comparator output is -15 V, indicating equilibrium potential, the -15 V 

is not allowed through the diode, making the transistor posses a high 

resistance.    Thus, the output of the collector going into the logic 

circuit is +5 V, which activates the pulse generator under the following 

conditons.    The logic circuit of the automatic control is constructed 

so that the +5 V transistor trigger pulse cannot activate the pulse 

generator unless the automatic switch is thrown on and unless the Q 

of latch 1 is 1, which is its state before the end of the desired last 

pulse count.    When this last pulse finishes, the transistors trigger 

pulse is unable to pass into latch 0, which sets off the pulse generator, 

because the Q of latch 1 is switched to 0.    However, the transistor 

trigger pulse can clock into the latch 2 circuit which triggers the 

data logger to record the last amplified potential reading of the 

voltmeter when potential equilibrium is reached.    The advantage of the 

latch 2 circuit can be seen in that no matter how frequently the transistor 

trigger pulse attempts to reclock the latch after the last recording, 

its Q never changes state until the reset buttai  is engaged bringing 

the entire system back to its initial state. 

All the pulses that lead out to the pump delivery system pass 

through a relay switch which allows the operator to switch the pump 

manually to the opposite voltage signal being given off by the pulse 
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generator, or it allows the pump to receive the voltage signal 

exactly as it comes out of the pulse generator.    A relay unit is 

connected before the pump to convert the +5 V output pulse directed 

to the pump from the auto pump system into a 110 v AC power source 

to start the pump which operates only on this AC voltage. 



<* 

CHAPTER THREE 

RESULTS AND DISCUSSION 

As mentioned previously, two types of pump delivery systems were 

employed«    one a syringe pump and the other a peristaltic pump.    Both 

of these were calibrated by using the manual control mode of the automatic 

pump unit.    This calibration determined that the syringe pump used in 

this particular test is capable of 0.6* precision while the peristaltic 

pump used in the test is capable of 1.0* precision.    The advantage of 

the syringe pump is its greater precision and its ability to deliver the 

sample volumes of stock solution in a shorter time, which makes the 

differential circuit in the decision unit of the automatic pump system 

more sensitive due to the large change of potential being detected.    The 

disadvantage is the necessity of refilling the syringe manually for each 

set of different volumes and the problem of mounting the syringe pump 

properly.    On the other hand, the advantage of the peristaltic pump is 

that there is one stock solution reservoir which supplies the pump 

continously with stock solution without the need for frequent filling, 

and there is the convenience of having the pump ready instantaneously 

for actual testing purposes.    However, the disadvantage is that even at 

its maximum speed, the pump still delivers solution more    slowly than the 

syringe pump, making the change of potential detected by the differentiator 

circuit smaller and, thus, reducing the sensitivity of the automatic pump 

unit. 
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A typical strip-chart recorder plot of an actual test with the 

syringe pump delivery system is shown in Figure 16.    This plot displays 

the potential scan of the reaction cell containing a fluoride ion- 

selective electrode and an appropriate reference electrode for five 

different fluoride ion concentrations at a temperature of 25°C.    Table 5 

lists the concentrations of fluoride ion being analysed and the corre- 

sponding potential for each plateau indicated on the plot in Figure 15. 

The potential is the recorded voltage output from the voltmeter amplified 

through the amplifier-filter unit. 

Table 5 

Analysis of Strip-Chart Recorder Plot 
of Potential versus Fluoride Ion 

Concentration 

Potential (volts) 

+0.532 

-f0.<*8 

-0.315 

-0.6U1 

-0.9W 

It must be stated that these concentrations are not the limit that 

can be evaluated by this automatic pump system j they are merely used to 

illustrate the capability of this system.    When the ion-selective electrode 

responds completely to the concentration of the solution in the reaction 

cell, a plateau is recorded on the plot indicating the equilibrium response 

of the electrode.    As demonstrated in the plot, the equilibrium plateau 

is followed by another stock solution addition, indicated by a change 

Plateau F" Cone.    (M) 

1 9.80 x 10"4 

2 2.63 x 10"3 

3 5.61 x 10"3 

k 1.12 x 10"2 

5 2.16 x 10"2 
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TIME 
(M I N.) 

Plateau 5 

- Plateau 2 

"^- 

Plateau 1 

_l  1 _J   1 L- ' J  

V 
1        1 1 

-0.8     -0.6    -0.4      -0.2       0.0      +0.2      *0.4     *0.6    ♦0.8      *1.0 

POTENTIAL(VOLTS) 

Figure 16.    Illustration of a strip-chart recorder scan of gaerfd* 
^ electrode response towards five diff.r.nt fluorid. eonem- 

trations using the automatic pump unit working with a 
syringe pump delivery system. 
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In slope, until an equilibrium response is once again detected by the 

electrode.    This occurs for just the desired concentrations to be 

studied.    The amount of time elapsed for each plateau on the plot 

indicates the time required for the system to detect potential equil- 

ibrium.    After the last potential is recorded, the automatic pump 

system automatically shuts down until the operator initiates the auto- 

matic pump unit again.    It should be noted that all of these equilibrium 

potentials shown in the plot are recorded and stored by the data-logger 

and tape-punch system for later evaluation. 

In the evaluation of the data, the electrode under study follows 

a Nernstian potential-activity principle as given by equation 1 In 

Part I.    By plotting E versus the log,Q a., for different a's, the slope 

corresponding to 2.303 RT/nF for cations and -2.303 RT/nF for anions 

can be determined and compared to the Ideal Nernst value.    Ideally this 

plot should be a straight line.    To evaluate the potential readings of 

each solution concentration that is studied, a least squares method for 

the linear equation y=anx + b is utilised, where in this case, y=E, 

m=2.303 RT/nF,  x=log10 a^ and b= "CONSTANT".    The results for the 

fluoride electrode using both the syringe and peristaltic pump showed 

good reproducibility and the individual data points correlated well with 

the slope of the E versus log1Q ^ plot.    Also, when the results of 

the automatic control mode were compared to those of the manual control 

with the peristaltic pump delivery system, which has a higher relative 

standard deviation of 1.0* compared to the syringe pump with only a 

relative standard deviation of 0.6*. very good agreement was obtained. 
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In general, the entire automatic pump system has proven to be 

efficient and reliable for the study of electrode response in solution 

analysis. 

Summary 

In conclusiont the thiamine liquid membrane electrode employing 

the thiamine-bromothymol blue salt in the lil chlorofonn-octanol-1 ion- 

exchanger solution is suitable and convenient for limited clinical use 

of thiamine determination in certain commercially available vitamin 

preparations with no interference problems except for high concentrations 

of sodium ion (above O.Ofc M).    This electrode is pH dependent with fair 

response starting at 1 x 10-3 M thiamine concentration in a pH 6.0 

buffer sample solution and has a high degree of reproducibility. 

An automatic system for use with ion-selective electrode analysis 

has been successfully developed for controlling the addition of known 

incremental volumes of solutions and for recording the potential of 

the ion-selective electrode cell after solution addition. 
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APPENDIX A 

Fortran IV Program SALTBI 

C   PROGRAM   SALTBI 
DIMENSION   ALMLf50J.P(50),SALTCf50J.n50J.ACTCOF(50J.»CTIV(50J.LAC 

♦TIVC50) 
DIMENSION   0ATAf9) 
DIMENSION   CNC50);BUFFCPC50l.»ljFFCRf50>.'lH5oi.I2(5tn:i3CSoi 
REAL   I»Il.I2.I3.LACTIV.INV0L.'lNT 
INPUTs5 
J0UT«6 
JINPUT-7 
READ(INPUTi53Z,P,Fi.F2.F3 

5 F0RMAT(5E13.0) 
READfINPUT.5)CS.BCP.BCR,INV0L.STKC0N 

3   WRITECJ0UT.6) 
6 FORMATt/' ENTER « DATA VALUES'//) 

CALL FREE(DATA,1) 
NfDATAll) 
WRITE(JOUT.8JZ,"F#Fl.F2,'F3 

8 FORMAT(/' Z#F,Fl,F2 & F3 AREl'/5E13.4) 
WRITE(J0UT.9)CS.BCP.BCR,INV0L.'STKC0N 

9 FORMATt/' STK SALT CONC.INVOL BUFF PROD.INVOL BUFF REAGT^INVOL t 
♦STKCONC ARE|l/5E13Z«) 
WRITECJOUT.ION 

10 FORMATt' N ISi'/I5*l 
WRITECJ0UT.12) 

o 



12 

15 
13 

25 

26 

35 
20 
36 

904 

905 

50 

FORMAT C/BX. »TOTMl_' . 13X,ipi//t 
DO   IS   K«1,N 
READ(INPUT,15)ALMLCK),P(K) 
F0RMAT(2E15.«) 
WRITE(JOUT,15}ALML(K),P(K> 
WRITECJ0UT.25) 
F0RMATt/7X,«3ALTCI.16X,«Ii,18X,UCTC0FI) 
WRITE(J0UT,26> 

FORMATt7X.lACTXVl.l3X.»LACTlVl,2lx;ipi//i 
00   20   J»1,N 

SALTC(J)sALML(J)*STKCON/(INVOL*ALML(J)) 
CN(J)»fALHLCJ)*CSJ/(XNVOL*ALML(Jj) 
BUFFCP(J) = (INVOL*BCP)/tALML(JWlMVOL) 
BUFFCRCJ)s(INYOL*BCR)/(ALMLCJ)*INvni) 
Il(J)sPl*CN(J) 
I2(JJsF2iBUFFCP(JJ 
I3(J)sP3*BUFFCR(J) 
I(J)sF*SALTC(Jj*Il(JJ*i2(JJ*I5fJj 

^ACTCOFtJ)sl0.00**(».'51l5*Z**2*(S0RT(I(Jn/(1.0*SORT(IfJ)n,.3«i(j 

ACTIVtJJs3ALTC(J)*ACTCnF(J) 
LACTlV(J)»ALOCi0(ACTIV(J)j 
WRITE(JOUT,35)SALTCCJ),I(J).ACTCOF(JJ 
FORMAT(E15.0,Cl«.4.E25,4J 
WRITE(J0UT.S6)ACTIV(J),LACTIV(J),P(JJ 
FORMAT (CIS, a. El8.«.'e25,4//> 
CALL LINFIT(LACTIV.P,N,INT,SINT.SLOPE,SSLOPE.R) 
WRITEIJOUT.904) 

♦ CQE?FltCRi?//lSL0PE,"5X#,STD 3L0PE'»SX',1NT'.5X;iSTD INT • ,5X. I CORR. 

WRITE(JOUT.90S)SLOPE,SSLOPE.INT.SINT.R 
F0RMAT(F8.2,F11.2.F13.2,F7.2.F15.7J 
WRITE(JOUT.SO) 
FORMAT(• DONE? YES(1),NO(0)«/> 
CALL FREE(DATA,1) 
L=DATA(1) 

8 



IF(L,"E0.1)G0 TO 70 
GO TO 3 

70 CONTINUE 
STOP 
END 

■ * 

9 



APPENDIX B 

Fortran IV Program    SALTIV 

PROGRAM   SALTIV 
DIMENSION   AlML(50>.P(5(n,3ALTCC5<n.IC5Q).ACTCOFC50i.ACTIVC50),lAC 

♦T1VCS0) 
DIMENSION   DATA(9) 
DIMENSION   CN(50),BUFFCP(50i.BuFFCRf50).Il(50),J2(50).I3(S0) 
DIMENSION   CSa(50).CS5(5O5.CS&(5OJ.CS7(50 5.CS8C50) 
DIMENSION   ia(50),I5(50).I6(56i,I7(50).I8f50) 
REAL   I,I1.I2,I3.LAGTIV,INV0L,INT 
ReAL   I«. 15.16,17,18 
INP07=5 
J0UT=6 
JINPUT=7 
READ (INPUT. 5 JZ,F,P1.F2,'F3 

5 F0RMAT(5El3.a) 
READ(INPUT.S)Fa,F5,F6,F7,F8 
READ(INPUT»5)CS,8CP.BCR,INV0L,STKC0N 
READCINPUT.5)Sa.35,"36,37,38 

3   WRITECJ0UT,6) 
6 FORMAT*/'   ENTER   *   DATA   VALUES*//) 

CALL   FREE(DATA,'l> 
NsDAJAU) 
WRITE(J0UT.8JZ,F.F1.F2.F3 

8 FORMATt/' Z.F.F1.F2 t F3 ARE I I/5E13.4j 
WRITECJOUT.7JPa.P5.F6,F7,P8 o 



7   FORMATC/'    F4,F5.F6.F7    *   F8    ARE t • /5C I 3.'« ) 
WRlTEtJ0UT.9)CS.BCP.BCR,INV0L.STKC0N 

%3?Kc5NC/IRlH/5En-S?NC>INV°L   BUFF   PR0D'INV0L   BUFF   RE»GT.lNVnL. 
WRlTE(J0UT.ins«,S5.36.37,38 

11 FORMAT*/'    S«,S5,S6.37   *   S8   ARE t ' /5E 1 3.'o j 
WRITE(JOUT#10)N 

lf» FORMATC N ISti/15* 
WRITECJ0UT.12) 

12 FDRMAT(/ex#lT0TML«.13x;'P»//) 
DO 13 K=1,N 
READ(INPUT.15)ALML(K),P(K) 

13 F0RMAT(2E15.«) 
13 WRlTE(JOUT.15)ALMLfK5.P(K) 

WRITE(J0UT.25) 
25 FORMATt/7X. • SALTC .'l6X. • I • , 18X, • ACTCOF ij 

WRITE(J0UT»26) 
26 FORMATf7X.«ACTIV«.13X,'LACTIVI,2ix.'pl//j 

DO   20   J=1.N 
3ALTC(J)=ALML(J)*3TKC0N/(INV0L*ALML(J)j 
CN(J)s(ALML(J)*CS)/(INVOL*ALMLtJJ) 
BUFFCPtJ)=(INVOL»BCPJ/fALML(J)*INVOL) 
BUFFCR(J)=(lNVOL*BCRJ/(ALML(Ji*INvnLJ 
CSa(J)=(lNVOL*S4)/(ALML(J)+INvOL5 
CS5CJ)s(INVOL*S5)/(ALML(J)+INvOLi 
C36CJ)=(1NV0L"S6)/(ALHL(JJ*INV0LJ 
C37(J) = CINV0L*S7V(ALML(J)*INV0L) 
C38(J)a(lNVOL*SB)/(ALMLCJ)+INvOLi 
IlU)=Fl*CN(J) 
I2(J)aF2*BUFFCP(J) 
13CjJ=F3*BUFFCR(J) 
ia(J)=F«iC3a(Ji 
I5(jiaF5*CS5(Ji 
I6(J)=F6*CS6CJ) 
I7(ji=F7*CS7(J) 
I8C.n=F8*CS8(J) 

& 



ACTIV(J>eSALTC(JJMCTCOFm 
LACTlVfJ)=ALOGio(ACTIV(J)) 
WRlTE(J0UT.35)SAUTC(J),I(J).ACTCnF(Jj 

35 F0RMAT(E15;U,E18.Y;E25:4> 

36 F0RMAT(E15;a.El8.'4.E25;a//) ' 

SRUE^SuTi5Lo!riv;p'N'iNT'3i'gT-sLnpE's3LopE';Ri 

90
\cSE?F;f

CRM/;;SLOPE,'5X;'STO SL0PE.;5X,.INT..5X;.ST0 

!niI*iip^;92?^LDPE'S3LOP^INT'SINT,R 
F0RMATCF8.2,F11.2.F13.2.F7:2;F1S:7) 
WRITE(JOUT.SO) 
FORMAT(» DONE? YESfi),NOC0)•/) 
CALL FREE(DATA,1) 
L=OATA(l) 
IF(L,'EQ.l)GO Ttl 70 
GO TO 3 
CONTINUE 
STOP 
END 

lNT«;5X.«CnRR, 

905 

50 

70 

M 



APPENDIX c 

Fortran IV Subroutine Program FREE 

10 

20 

«0 

SUBROUTINE FREECX.NV) 
INTEGER 31 
DIMENSION XCNvi,NA(BO);PTC10) 
3I«T 
12 = 80 
NCPrl 
NVRs} 
PT(I)sl 
00 10 NC=2»10 
PT(NC)sPT(NC-ii*10 
NOPXai 

WRITE(SI,a03) 
READOI.32J   NA 
00 if ICNT=1,80 

11 ,KKSJJJj'LT:§*,*"W"»«»^ClfllT*«i»T 
IP(NANC»1718aj qo.so.ao 
1RITEC6.32) NA(2),NA 
PORMAT(8lAli 
GO TO 20 

DO 68 NC*1*2Z 
NANCsNAtNC) 
IF (NANC- 622a) 50.68,"56 
IF(NANC-lfl62aj 51.51,56 

SO 
S2 

50 



52.'68. 68 
53.68.53 
5fl,'68.5a 
55.68,55 
56.60.56 
61.57.61 

58.68.58 
59,68.59 
61.68.61 

5! IF(NANC*12320J 
52 IF(NANC>11552i 
53 1F(NANC«11808) 
5<t IF(NANC»110«0) 
55 IFCNANC™ 9760) 
56 IF(NANC«17696) 
57 IF(NA(NC*l)elIoaoJ 
58 IF(NA(NC*1)« 9760) 
59 IF(NA(NC*l)«li552) 
60 NA(NC)sllO«0 

CO 70 68 
61 NA(NC)=822fl 
68  C0N7INUE 
70  NC=0 
80  NCsNONCP 

IF(NOIZ) 90,90.20 
90  NANC = KJA(NC) 

IFtNANC. 6224) 100.80.100 
100  NO=0 

NDD = 1 
NOOF=0 
NVAUsO 
NVAL2=0 
NC2sl 
NOPXLsNOPX 
NOPXsl 
NSG=*1 
IF(NANC*11552) 130.120.130 

120  NSGsaNSC 
GO 70 200 

130  IF(NANC*UOaO) 
190  IF(NANC«i 9760) 
200  NC»MC*NCP 

IF(NOIZ) 202,'202*.'3flO 
202  NANC=NA(NC) 
220  IF (NANC.11808) 200,230,240 

190.200,190 
220.200.220 



■ 
230  NDOF=l 

CO TO 200 
200  IF(NANCf,17696) 260.320.260 
260  IFCNANC* 822«i 270.300.270 
270  I=(NAWCsl2320)/256 

IP (I) 399,271,271 
271 IF ClO^I) 399,272.272 
272 ND=NO*l 

NDD=NDD*NDDP 
IFCND*5> 275,285.285 

275  NVAL=NVAL*10*I 
GO TO 200 

285  NVAL2=NVAL2*10fI 
NC2«NC2*1 
CO TO 200 

320  NOPXs2 

300  X(NVR)=((NVAL*PTtNC2)*NVAL2)/PTtNDD));NSG 
GO TO (360,350),NOPXL 

350  X(NVRwn=X(NVR-l)ilO.O**XCNVR)   ' 
NVRsNVR-1 

360  GO TOC410.a80J.NOPX 
oio IF(NOOF) aao.oso.uao 
030      IFCNVAL«9999)   4«0.450 ,'aao 
000      IF(NVR-NV)   480.460,460 
050      X(NVR)=0 

NV=NVRil 
160      RETURN 
080      NVRsNVR+1 

GOTO   80 
399      WRlTE(6,floh   NA 
401      Ki?e(6'Jo5r^V*L*°   NUMB"(Si   0N   CARD   BELOW**.. /1X.80A1, 
002 FORMAT!/? SS5PR0GRAM STOPPEDJSSI) 
003 FORMATC/) 

STOP 
END g 



APPENDIX D 

Fortran IV Subroutine Program LINFTT 

C 
C 

50 

sari.BsjRcSRr' IN
 
Tm BV

 
BE
"

NS™ 
SUM=NPT3 
SUMX=oT 
SUMY=O; 
SUHX2»0J 
SUMXYsO. 
SUMY2=0. 
00   50   I»1,NPT3 
xuicxi 
vi«vcx) 
SUMX=SUMX*XX 
SUMY=SUMV*YI 
SUMX2sSUMX2*XI*xi 
SUMXYsSUMXY*XI»YI 
SUMY2=SUMY2*YI*YI 
CONTINUE 
DELTAsSUM*3UMX2-SUMXi8UMX 
B»(SUMX2*SUMY-SUMXWSUMXY)/DELTA 
As(SUMXY*SUM.3tJMX*SUMY)/0ELTA 
C=NPTS-2 

VARNCES(3UMY2*B*B.SUM+A.A*SUMx2-2:*(B.SUMY***SUMXY,B;i;SUMXn/C 

1 
2 
3 

5 
6 
7 
8 
9 

10 
11 
12 
13 
ia 
is 
16 
17 
18 
19 
20 
21 
22 
23 | 
2U  ' 



3IGMAB*S0RT(VARNCEiSUMX2/0ELTA) 
SIGMAA»S0RT(VARNCE*3UM/DELTA) 

R=(SUM»3UMXY-SUMX*SUMyV9QRTtOELTA*(SUM*sUMY2-SUMY.3.JMYn 
END 

25 
26 
27 

■ n 


