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The author has defined the concept of a bi-open set in 

a bi-topological  space.    With this concept many properties of 

bi-topological spaces which closely parallel the usual properties 

of topological  spaces are defined,  and some theorems which  resemble 

theorems of topological  spaces are proved. 
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INTRODUCTION 

Kelly initiated the study of bi-topological spaces in  [3]» 

In this paper the concepts of pairwise-T.., paind.se regular, 

pair-wise Hausdorff,  quasi-pseudo-metrizable,  and quasi-metrizable 

are introduced, and the following theorem is proved.    Theorem.    If 

(X,  P, Q)    is a pairwise regular bi-topological space satisfying 

the second axiom of countability,  then    (X, P,  Q)    is 

quasi-pseudo-metrizable.     If in addition    (X,  P,  Q)    is pairwise 

Hausdorff,  it is quasi-metrizable. 

The concepts underlying the above definitions do not easily 

rarry over to concepts such as pairwise compact, pairwise connected, 

and pairwise continuous,  as is partially demonstrated in 12].    This 

author was therefore led to investigate other possible ways for 

defining properties in bi-topological spaces.    One idea investigated 

was that of bi-open sets.     A similar idea has recently been studied 

in  [1].    It is the purpose of this paper to introduce the concept 

of bi-open sets in bi-topological spaces and to demonstrate how 

properties of topological  spaces can easily be expressed for 

bi-topological spaces. 

In Chapter I,  bi-open is defined,  and the bi-separation axioms 

are studied. 

In Chapter II,  bi-closure is defined, and basic  theorems of 

bi-closed sets are studied. 



In Chapter III,  bi-interior is defined,  and basic theorems for 

bi-open sets are proved. 

In Chapter IV and Chapter V,  bi-continuity and bi-convergence 

are investigated. 

vi 



CHAPTER I 

BASIC  PROPERTIES OF BI-TOPOLOGICAL SPACES 

Definition 1:    Let    X    be a set.    Let    P    and    Q    be  topologies 

for    X.    Then the ordered triple    (X,  P,  Q)    is said to be a 

bi-topological  space. 

Definition 2:    Let    (X,  P,  Q)    be a bi-topological space.    A 

subset    U    of    X    is  said to be bi-open provided   U    is  the empty- 

set,  or there is an open set    V    in    P    and an open set    W    in    Q 

such that    V    is not the empty set,    W   is not the empty set,    V c U, 

and    W c U. 

Definition 3: Let (X, P, Q) be a bi-topological space. A 

subset C of X is said to be bi-closed provided its complement 

X - C is bi-open. 

Theorem 1: The union of any collection of bi-open sets is a 

bi-open set. 

Proof:    Let    (X,  P,  Q)    be a bi-topological space.    Let    G 

be a collection of bi-open subsets of    X.     Then    G = {pa   |  a e A      for 

some index set    A,  and    G      is bi-open} .    Let    0 =  U {G    |  a c  A J . 

Suppose that for all    a e  A,     Ga   is the empty set.    Then    G    is the 

empty set,  and thus    G    is bi-open.    So suppose there is a    b    in    A 

such that    Gb    is not the empty set.    Qj,    is bi-open.    Thus there 

is a s et V in P and a set W in Q such that V is not the 



empty set,     W    is not the empty set,    V c G,  and    W c G, .     Thus 

V c G.   c 0,   and    W c G.c 0.    Therefore, by Definition 1,    0    is 

bi-open.     Hence the union of any collection of bi-open sets is 

bi-open. 

Example 1:    Let    X  = (l,   2,  3^,    P = {_*, X, {l3, {l,  2^, 

{2,   3}},  and    Q = {*,  X,  I2},  £3],   {2,  3"$.    Let    A - {l,   2]  and 

B = {l,   i}.    Then    A    and    B    are bi-open sets whose intersection 

is not bi-open. 

Proof:    Let    R    denote the set of bi-open subsets of    X.    Then 

R =  {*, X, {2l,  (l,   2],  {2,   3^, {l,   3\\.    Thus    A OB - 

f.1,  2} Afl,   3}  = £l}> which is not bi-open. 

Definition U;    A bi-topological space    (X, P, Q)    is said to be 

bi-discrete provided,  if    A c X,  then    A    is bi-open. 

Theorem 2:    A bi-topological  space    (X,  P, Q)    is bi-discrete 

if and only if each of    (X,  P)    and    (X, Q)    is discrete. 

Proof:    Let    (X,  P, Q)    be a bi-topological space.    Supppse 

that     (X,   P, Q)    is bi-discrete.    Let    x e X.    Since    (X,  P, Q)    is 

bi-discrete,    {x}    is bi-open.    There is thus a set    V   in    P    and 

a set    W    in    Q    such that    V    is not the empty set,    W    is not the 

empty set,     V  c {x},   and    W c (x\.     Therefore    V = lx] ,  and   W = 

fx].     Then  {x} e P    and fx}   € Q.     So by definition of discrete, 

(X,  P)    and    (X, Q)    are discrete. 

Suppose that    (X,  P)    and    (X,  Q)    are discrete.    Let    A    be a 

subset of    X.     Since    (X,   P)    and     (X,  Q)    are discrete,    A £   P    and 
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A  i   Q.    A    is a subset of    A.    So    A    is bi-open.    Therefore 

(X,  P, Q)    is a bi-discrete bi-topological space by Definition U. 

Definition $:    A bi-T -space is a bi-topological space    (X, P,  Q) 

such that, if    p e X    and    q £ X,  then there is a bi-open set    U 

which contains one point and does not contain the other. 

Definition 6;    A bi-T -space is a bi-topological space    (X,  P,  Q) 

such that,  if    p  e X,    q c X,  and    p f q,  then there exists a 

bi-open  set    U    with    p £ U and    q / U. 

Definition 7;    A bi-T?-space is a bi-topological space    (X,  P,  Q) 

such that,  if    p £ X,    q  E X,  and    p / q,  then there exist disjoint 

bi-open sets    U    and    V    with    p £ U    and    q £ V. 

Definition 8;    A bi-T -space is a bi-topological  space    (X,  P,  Q) 

such that    (X,  P,  Q)    is a bi-^-space and such that,  if   p £ X, 

and    C    is a bi-closed subset of    X    with    p    not in    C,  then there 

exist disjoint bi-open subsets,    U    and    V,  of    X    with   p £ U 

and    C  t   V. 

Definition 9:    A bi-T,-space is a bi-topological space    (X,  P, Q) 

such that    (X,  P,  Q)    is a bi-T^space and such that,  if    C    and 

D    are disjoint bi-closed subsets of    X,  then there exist disjoint 

bi-open subsets,    U    and    V,  of    X    such that   C c U    and    D c V. 

Theorem y.    If    (X,  P, Q)    is a bi-^-space and    x £ X,  then 

{x }   is bi-closed. 



'* 

Proof:    Let    (X, P,  Q)    be a bi-^-space.    Let    x e X.    Let 

pel- {xj.    Then    p    is not    x.    Since    (X,  P, Q)    is a bi-T - 

space,  there is a bi-open set    G      such that    p  e G      and    x    is 

not in    G .    Thus    p e G    c X - {x}.    Thus for each element    p 

of   X,     there exists a bi-open set    G      which contains    p    and is 

contained in the complement of    {xj. 

It remains to show that    X - {x$  = U {G    |  p e X - {x}j .    Let 

y e X - {x}.    Then there is a bi-open set    G      such that    y e G , 

which is contained in   X - {xj.    Thus    y e  U \G     |  p e X - {x}j . 

Therefore    X - (x)  c U (G     | p e X - fx}}.    Let    y e  U {G    | 

p  e X - Ixjj.     Thus there is a    G      such that    y e G    c X -  {x]. 

So    y e X - {x}.    Therefore    U (G     |  p e X - {x}] c X - {x}.     Hence 

X  - (x)   ■  U {Gp   |  p € X - {x]}. 

Since each    G      is bi-open,    U {G    | p e X - (x}j    is bi-open. 

But this implies that    X - {x}    is bi-open.    Then by Definition 3 

fx} - X -  (X - {x})    is bi-closed. 

Theorem h:    If    (X,  P, Q)    is a bi-T,-space,  then    (X,  P,  Q) 

is a bi-T--space. 

Proof:    Let    (X,  P, Q)    be a bi-T,   bi-topological space.    Let 

p  e X.    Let    Q    be a bi-closed subset of    X    which does not contain 

p.    Since    (X,  P,  Q)    is a bi-T^space,     (X,  P,  Q)    is a bi-^-space, 

and    fp}    is bi-closed by Theorem 3.    Also there are disjoint bi-open 

sets,    U    and    V,  such that    Up) c U    and    Q c V.    But   {p}  c U    implies 

that    p e U.    Thus    pell,    Q c V,  and    U P V = *.    Therefore,  by 

Definition 8,     (X,  P, Q)    is a bi-T^space. 
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Theorem g;    If     (X,  P,  Q)    is a bi-T -space,  then    (X,  P,  Q) 

is a bi-T_-space. 

Proof:    Let    (X,  P,  Q)    be a bi-T, bi-topological  space.    Let 

p e X    and    q e X    such that    p    is not    q.     Since    (X,  P,  Q)    is a 

bi-T -space,     (X,  P, Q)    is a bi-T.. -space.    Then,  by Theorem 3>  {pj 

is bi-closed.    Thus there are disjoint bi-open sets    U    and    V 

such that    q e U    and   {p} c V.    Since    (p)   c V,    p e  V.    So    q  e U, 

p e  V,  and    U P V = 4,.    Therefore    (X,  P, Q)    is a bi-T2-space. 

Theorem 6:    If    (X,  P,  Q)    is a bi-T -space,     (X,  P, Q)    is a 

bi-T.. -space. 

Proof:    Let     (X,   P, Q)    be a bi-T -space.    Let   p  c X    and    q  £ X 

such that    p    is not    q.    Since    (X,  P, Q)    is a bi-T2-space,  there 

are disjoint bi-open sets    U    and    V    such that    p e U    and    q e V. 

But    U P V = 4,    implies that    q    is not in    U.    Thus there is a 

bi-open set    U    such that    p e U    and    q / U.    Thus    (X,  P,  Q)    is a 

bi-T -space. 

Theorem 2-'    If     (X,  P,  Q)    is a bi-T -space,  then    (X, P, Q)    is 

a bi-T_-space. 

Proof:    Let    (X,  P, Q)    be a bi-^-space.    Let    p f X    and 

q e X    such that    p f q.    Since    (X, P,  Q)    is a bi-^-space,  there 

is a bi-open set    U    such that    p c U    and    q f. U.    Thus    (X,  P, Q) 

is a bi-T_-space. 

Example 2:    Let    I - fc,  2, H ,    P =  U* X,   «,   fy,   {l,  ?J, 

U,   3)},  and    Q = {♦,  X,   (2J,   [2,  ij] .     Then    (X,  P, Q)    is not 

bi-discrete. 



Proof:    Let    R    denote the set of bi-open subsets of   X.    Then 

R  = {*, X, {2i, {l,  2J, (l,   33 , {2,  S\],  and thus   {l}   is not 

bi-open.     Hence     (X,  P, Q)    is not a bi-discrete space. 

Example 3:    Let    X - fr,  2,  j ,    P = {<*, X,  (l) ,   fjj,  {l,  2)}, 

and    Q = fo, X,  fl)j .    Then    (X,  P,  Q)    is a bi-T -space and is not 

a bi-T -space. 

Proof:    Let    R    denote the set of bi-open subsets of    X.    Then 

R = {*, X,   (l],  {l,  2], {l,   3ft.    Thus    (X,  P,  Q)    is a bi-T0-space. 

However there is no bi-open set containing    2    and not containing    1. 

Hence    (X,  P, Q)    is not a bi-T^space. 

Example U:    Let    X ■ &, 2,  j) 1    P ■  U>  X,   {l}, (l,  2]  , 

{2,   3)},   and    Q  = [«, X, {2l,   f3),  {2,   3)} .    Then    (X,  P,  Q)    is a 

bi-T.. -space and is not a bi-T2-space. 

Proof:    Let    R    denote the set of bi-open sets.    Then    R = 

£, X, {2},   (l,  2},   (2,  33   , {l,   3}} •    Although    (X,  P, Q)    is a 

bi-T -space,     (X,  P,  Q)    is not a bi-T2-space since there are no two 

disjoint bi-open sets    U    and    V    such that    1  e U    and    3  e V. ^ 

Example g:    Let    X = |l,  2,  3,  k) ,    P ■  {*>  X,  {l}, ll,  2}J, 

and    Q = U,  X, {ll} .    Then    (X,  P,  Q)    is a bi-T^space, and neither 

topological space is a TQ-space. 

Proof:    The set of bi-open subsets of    X    is    {i>,  X, ilj,  (l,  2J, 

(l,   3} ,  (l,  Q,  fl,  2,  3},  (l,  2,  h) , {l,  3,  ll}}.    Since there is no 

open set containing    3    and not containing    h    or containing    h    and 

not containing    3,     (X, P)    is not a T^space.    Similarly,     (X, Q) 

is not a T0-space since there does not exist an open set which 



contains 2 and does not contain 3 or which contains  3 and 

does not contain 2. However (X, P, Q) is a bi-T -space. 

Example 6; Let X = fl, 2, 3, U) , P = {*, X, (lj, fej, {l, 2}), 

and Q = {<*, X, {2}, (3), (2, j], {2, 3, 1*)}. Then (X, P, Q) is a 

bi-T..-space, and neither topological space is a T -space. 

Proof: Let R denote the set of bi-open subsets of X. Then 

R = U,  X, {2},  fl, 2],  {l, 33, (2, 33, {l, 3, 1*1, (2,  3, 1*3>  fr> 2' M » 

{l, 2, 3Jj-  Then (X, P, Q) is a bi-T^-space. But (X, P) is not a 

Tn-space since there is no open set containing 3 and not containing 

U. Also  (X, Q) is not a T -space since there is no open set 

containing U and not containing 3. 

Example 7: Let X - fl, 2, 3, 1*],  P ={<t>,  X, (l), U, 2}, 

(3, 1*1, (2>, {2, 3, l3}, and Q -f*, X, £tf, (2), fl, 2], {2, 3, hi) . 

Then  (X, P, Q) is a bi-T -space, and neither topological space is 

a T.-space. 

Proof:    Let    R    denote the set of bi-open subsets of    X.    Then 

R «f«, x, ll), {23, (l, 2), d, 37, fl, h), {2, 1*1, {2, 3>, {2, 3, U}, 

{l,  3,  1*1,   fl,  2,  1*1, [l,  2,  3}] •    Then    (X,  P)    is not a T^space 

since there are not disjoint open sets    U    and    V    such that    3 e U 

and    l* e V.     Also    (X,  Q)    is not a T^space since there are not 

disjoint open sets    S    and    T    such that    3 t   S and    U e T. 

However    (X,  P,  Q)    is a bi-T2-space. 

Example  8:    In Example 7,     (X,  P,  Q)    is a bi-T^-space,  and 

neither topological space is a T^-space. 



Proof:    Since neither topological space is a T -space,  neither 

topological space is a T. -space.    However    (X,  P, Q)    is a bi-T. , 

bi-topological  space. 

Example 9:    Let    X = {l,  2,   3I ,    P = U>  x>   &h &>  2?l >  ^ 

Q =  l<t>,  X,   {3],  (2,   3}\.    Then    (X,  P, Q)    is not a bi-TQ-space, 

but each  topological  space is a T -space. 

Proof:    The set of bi-open subsets of    X    is    {4, X,   f3J,   {2,  3]j- 

Although     (X,   P)    and    (X,  Q)    are TQ-spaces,     (X,  P, Q)    is not 

a bi-Tn-space  since there is no bi-open set containing    2    and not 

3    or containing    3    and not    2. 

Tneorem 8:    If    (X,  P) and    (X, Q)    are '^-spaces,  then 

(X,  P, Q)    is a bi-T^space. 

Proof:    Let    (X,  P)     and    (X,  Q)    be ^-spaces.    Let    p •   X    and 

q e  X    such that    p f q.     Since    (X,  P)    is a Tj-npace,  there is an 

open set    V    in    Q    such that    p e  V    and    q / V.    Also,   there xs an 

open set    U    in    P    such that    p e U    and    q / U.    Since    U c U U V, 

and    VcUUV,    UUV    is bi-open.     Clearly   p e U U V,  and 

q / 0 II V,     Thus    (X,  P,  Q)    is a bi-^-space. 

Theorem 9:    If    X    is a finite set,  and if each of    (X,  P) 

and    (X,  Q)    is a T,-space,  then    (X,  P, Q)    is a bi-T^-space. 

Proof:    Let    X    be a finite set.    Let    P    and    Q    be topologies 

for    X    such that    (X, P)    and    (X, Q)    are ^-spaces.    Since 

(X,  P)    and    (X, Q)    are finite ^-spaces,     (X,  P)    and    (X, Q)    are 

discrete  spaces.    Then by Theorem 2,     (X,  P, Q)    is a bi-discrete, 

bi-topological  space.    Let    C    and    D    be disjoint bi-closed 



subsets of   X.     Since    (X,  P, Q)    is a bi-discrete bitopological 

space,    C    and    D    are also bi-open subsets of   X.    But    C c C 

and    D c D    and    C f) D = <•    Hence    (X,   P, Q)    is a bi-T, -space. 

Corollary 1:    If    X    is a finite set,  and if each of    (X, P) 

and    (X,  Q)    is a T.   topological  space,  then    (X, P, Q)    is a bi-T., 

bi-topological space for    i = 1,   2,  3> h- 
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CHAPTER II 

BI-LIMIT POINTS AND BI-CLOSED SETS 

Definition 10;    Let    (X,  P, Q)    be a bi-topological space.    A 

point    p      in    X    is a bi-limit point    of a subset    A    of    X    provided 

every bi-open set which contains    p    contains a point    q    of    A    such 

that    q    is not    p. 

Example 10;    Let    X= {l,   2,  3} ,    P ■ {*, X, £l}, fl,  2*1,  [2,  3], 

[2}},  and    Q  = {$,  X, f 3],   {.2,   3}/-    Then the set of bi-open subsets 

of    X    is    U,  X,   fl,   3), 12,   33] •    If    B = &,  2],  then    {3]    is 

the set of bi-limit points of    B. 

Proof;    Since    fl,   3)    is a bi-open set which contains    1    and 

contains no point of    B    different from    1,  then    1    is not a bi-limit 

point of    B.     Since    12,  3}    is a bi-open set which contains    2    and 

no point of    B    different from    2,    2    is not a bi-limit point of    B. 

Every bi-open set which contains    3    contains a point of    B    different 

from    3.     Thus    (3]    is the set of bi-limit points of    B. 

Theorem 10;    If    (X,  P,  Q)    is a bi-topological space,  then 

(i)    X    and    4>    are bi-closed;     (ii)    the intersection of any 

collection of bi-closed subsets of    X    is bi-closed. 

Proof:    Let    (X,  P, Q)    be a bi-topological space. 

(i)    Clearly    (X  - X)   » *,  which is bi-open.    Thus, by 

Definition 3,     X    is bi-closed.     Since    (X -  <t)  = X, which is bi-open, 

*    is bi-closed. 
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(ii)    Let    A = \A    [  a e I for some index set    I,  and each 

A      is bi-closedj    be a collection of bi-closed subsets of X.    Then 
a 

by definition of bi-closed.  if    a e I,  then    A    = X - U , where    U a a a 

is a bi-open subset of    X.    Thus    n (A     |ael}  = nfx-U|aeIj   = 
a 3- 

X -  U {u     I   a E  i).    But    {u     |  a e i]    is a collection of bi-open 

subsets of    X.    Thus by Theorem 1,    u{u     |  a e i]    is bi-open.    By 

Definition 3,    X - {u     |   a e i]    is bi-closed.    Thus    0 {Aa   |  a e Ij 

is bi-closed. 

Theorem 11:    A subset    B    of a bi-topological space    (X,  P, Q) 

is bi-closed if and only if    B    contains all of its bi-limit points. 

Proof:    Let    (X,  P, Q)    be a bi-topological space.    Let    B c X. 

Suppose that    B    is bi-closed.    Let    M    denote the set of 

bi-limit points of    B.    Suppose that    M / B.    Then there is an   m e M 

such that    m / B.    Since    m /t B,    m e X - B.     But    B    is bi-closed im- 

plies that    X - B    is bi-open.    Furthermore,    X - B    contains no 

point of    B.    But this contradicts the definition of bi-limit point. 

Thus    M c B, and    B    contains each of its bi-limt points. 

Suppose that    B    contains each of its bi-limit points.    So 

M c B.    Let    x e X - B.    Then    x / B,  and since   M c B,    x/M. 

Because    x    is not a bi-limit point of    B,  there is a bi-open subset 

of    X    which contains    x    and no point of    B.    Such a set exists    for 

eacn element of    X.     Denote the set containing   x    by   Ux> 

It remains  to show that    X - B = U {Ux  | x c X - B].    Let 

y c X - B.     Then    y f  U    c U (u     | x e X - B}.    Thus    X-BcufuJ 

x e X - B}.    Let    y e   U (Ux   | x c  X - B}.    Then there is a    w 
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in    X  -  B    such that    y e U    c X - B.    Therefore    y e  X - B, and 
w 

u{u     |  x e X - BJc X - B,    Thus    X-B=u{u     | x e X - B~}. 

Since each U is bi-open, U^U | x e X - B j is bi-open 

by Theorem 1. Hence (X - B) is bi-open. But by Definition 3, 

B = X -  (X - B)    is bi-open. 

Definition 11:    Let    (X,  P,  Q)    be a bi-topological space. 

Let    B    be a subset of    X.    The bi-closure of    B,  denoted by   B, 

is the intersection of all bi-closed subsets of   X    which contain    B. 

Example 11: Let X = {l, 2, 3, U~} > P ■ {*> X, (2, j}, {2}], 

and Q - -0, X, {i}, {2], {l, i, {2, 3], "Cl, 2, 3}}. If B • fc], 

then   1 ■ {l,   2}. 

Proof:    Let    C    denote the set of bi-closed subsets of   X. 

Let    R    denote the set of bi-open subsets of    X.    Then    R = 

{♦» X, {2}, {2, 3}, fl, 2, 3*1, (2, 3, h\ fl, 2], {2, ft, fl, 2, h\). 

so c = («, x,[i, 3, h], fi, u\, {h}, W, b, h\, fi, 23, {l, 3}, 

&}}.    So   B=   x r   {1, 2l-(l, 2). 

Theorem 12: If (X, P, Q) is a bi-topological space, and 

A and B are subsets of X such that A c B, then the set of 

bi-limit points of A is a subset of the set of bi-limit points 

of B. 

Proof:    Let    (X,  P,  Q)    be a bi-topological space.    Let 

A c X    and    B c X,  with    Ac B.    Let    MA    be the set of bi-limit 

points of    A,  and    Mg    be the set of bi-limit points of    B.    Let 

p e M  .     Let    U    be a bi-open set containing    p.    Since    p c MA, 

U    contains a point    q    of    A    such that    q / p.    But    A c B,  and so 
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q < B.    Hence every bi-open set containing    p    contains a point 

q    of    B    such that    q / p.    Therefore    p e M..    Thus    M.  c JL. 

Theorem 13: If (X, P, Q) is a bi-topological space, and 

B c X, then (i) B is bi-closedj (ii) if F is a bi-closed 

subset of X containing B, then B c B c Fj and (iii) B is 

bi-closed if and only if    B = B. 

Proof:    Let    (X,  P, Q)    be a bi-topological space.    Let 

B c X. 

(i)    By definition of bi-closure,    If =  r {F   |  F    is a bi-closed 

subset of    X,  and    B c Fj.    Thus    B    is the intersection of bi-closed 

sets,  and by    Theorem 10,    B    is bi-closed . 

(ii)    Let    F    be a bi-closed subset of    X    containing    B.    Now 

BeB~=rCc|Cisa bi-closed subset of    X,  and    B c XJ.    Since 

B c F,   clearly    F E{C |C is a bi-closed subset of    X    and    B c Cj. 

Thus    B c *B c F. 

(iii)     Suppose that    B    is bi-closed.    Since    B c  B,    B    is a 

bi-closed set containing    B.    Thus by    (ii),    Be B.    Therefore 

B =!f.     Suppose    B -IT.    Since    B    is bi-closed,    B    is bi-closed. 

Theorem lij:    If    (X,  P,  Q)    is a bi-topological space and 

B c X,  then    B = BUM,  where    M    is the set of bi-limit points 

of B. 

Proof: Let (X, P, Q) be a bi-topological space. Let B 

be a subset of X. Let M be the set of bi-limit points of B. 

Let x e X - (B U M) = (X - B) P (X - M). Then x / B and 

x / M. Since x / M, there is a bi-open set U which contains 
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no point of B different from x. Thus, B fl (U - {x}) = *.  But 

x / B. So B li U = <t>.    There exists such a set U for all ele- 

ments of X - (BUM). Denote the set related to x by U .  So 

U fl B = «.  Suppose U I'M/*. Let p e U P M. Therefore 
X x X 

p e U  and p e M. Now, p is a bi-limit point of B implies 

that B n (U - p ) = 6,    Since p e B, B D U = <t>.    Therefore 
X x 

U    0 M = 4,.    Let    ycX-(BUM).    Then    y e U    c  U {u     | x e X - 
X J 

(B U M)}.     Thus    y e U    c U [u     | x e   (B U M)}.     So    X -  (B U M) c 

U{U     | x e X -  (B UN)).    Let    y e  U {Ux   | x e X -  (B U M)J .    Then 

there exists an    x    in    X    such that    y e 0 .    D^ P B = *    and 

U    n M =  <t>.    Thus    y / B    and    y / M.    Therefore    y e X  -  (B U M). 
X 

Thus U {U  | x e X - (B U M)] c X - (B U M). Hence X - (B U M) = 

U {U  | x e X - (B U M)}. Each Ux is bi-open, and by Theorem 1, 

j. (BUM) ={0  | x E X - (B U H)] is bi-open. So by Definition 3, 

B U M = X - (X - (B U M)) is bi-closed. 

Clearly BcB, which is bi-closed. Let N denote the set of 

bi-Ufflit points of %    By Theorem 12, M c N c B. Thus M c B. 

But BUM is bi-closed. Thus by Theorem 13,  BcB U M. There- 

fore B = BUM. 

Theorem lg: If (X, P, Q) is a bi-topological space, and 

A c X, and B c X, then A U B = A U B. 

Proof: Let (X, P, Q) be a bi-topological space. Let A c X 

and B c X.  Then by Theorem 13, A c A and B c B. So A U B C 

A U%    Thus A U B is a bi-closed subset of X containing A U B. 

So by Theorem 13, fuB c I uT Since A c A U B and B c A U B, 
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it follows from Theorem 12 that    A c A U B    and    B c A U B.    There- 

fore   1 U B c A U B.     Thus    A U B = A U B. 

Theorem 16;    If    (X,  P,  Q)    is a bi-topological space and    B c X, 

then    B = B. 

Proof:    Let     (X,   P, Q)    be a bi-topological space.    Let    B c X. 

Then    B    is a bi-closed subset of    X,  and by Theorem 13,    B = B. 

Theorem 17:    If    (X, P, Q)    is a bi-topological space,  and    A c X, 

and    B c X,  then    APBcAOB. 

Proof:    Let    (X,  P, Q)    be a bi-topological space.    Let    A c X 

and    B c X.    Then    A P B c  A.    By Theorem 12,     A P B c A.    Like- 

wise,     A PI B c B.     Thus    A P B c A 0 B. 
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CHAPTER III 

BI-OPEN SETS AND BI-INTERIOR 

Definition 12:    Let    (X,  P, Q)    be a bi-topological space. 

Let    B    be a subset of    X.    A point    x e  B    is said to be a 

bi-interior point of    B    provided there is a bi-open set    U    such 

that    x e U    and    U c  B.    The set of all bi-interior points of    B 

is the bi-interior of    B    and is denoted by    B 

Example 12;    In Example 11, if    B =  {2,   3,  U],  then    B    = 

<2,  3,  h}. 

Proof:    Since    2 c (2,   3J c B,     2 c B1.    Also,     3 £ {2,   3JcB, 

and    3 t   B1.    Finally,    h e  (2,  h\  c B,  and    U e  B1.    Since there is 

no bi-open set which contains    1,  and which is contained in    B,    1 

is not a bi-interior point of    B. 

Theorem 17:    If    (X,  P,  Q)    is a bi-topological space,  and 

B c X,   then the bi-interior of    B    is bi-open. 

Proof:    Let    (X,  P, Q)    be a bi-topological  space.    Let 

B c X.    Let    x e B1.     From Definition 12,  there is a bi-open set 

U      such that    x  £ U    c B.    Such a set can be found for all    x    in    B. 
xx II 

It remains to show that    B1 =  U {u"x   | x  e B ,  and    Ux c Bj. 

Let    ye  B1.    Then there exists a bi-open set    Uy    such that 

y c U    c B.    Thus    ycufojxt   B1],  and    B1 c  U {Ux  | x e  B1 

and    Ux c B].    Let    y e  U {u,   I x e  B1,  and    u"x c B}.    Then there 

e  B1    such that    y e U    c B.     But    y e B1.    Therefore 
x 

is an x 
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U {U I x e  B1, and U c B] c B1. Thus B = U (u | x e B , and 
X x X 

U c By.  Since each U  is bi-open,  B  is bi-open. 

Theorem 18: If (X, P, Q) is a bi-topological space, B c X, 

and U is a bi-open subset of X such that U c B, then U c B . 

Proof: Let (X, P, Q) be a bi-topological space. Let B c X. 

Let U be a bi-open subset of X such that U c B. Let x e U. 

Then by Definition 12, x e B . Thus U c B . 

Theorem 19: If (X, P, Q) is a bi-topological space, and 

B c X, then B is bi-open if and only if B = B . 

Proof: Let (X, P, Q) be a bi-topological space. Let B c X. 

Suppose B is bi-open. From the definition of interior, it 

follows that B1 c B. But B is a bi-open subset of X. So, by 

Theorem 18, B c B1. Therefore B = B . 

Suppose that B = B1. From Theorem 17, B1 is bi-open. Thus 

B is bi-open. 

Theorem 20: If (X, P, Q) is a bi-topological space, A c X 

and B c X, and A c B, then A c B\ 

Proof:    Let    (X,   P, Q)    be a bi-topological space.    Let    A c X 

and    B r X    such that    A c B.    Let    x 6  A1.    Then there is a bi-open 

set    U    such that    x  e U c A c B.    Thus    x c U c B,  and    x c B  . 

Therefore    A    c Br. 

Theorem 21:    If    (X,  P,  Q)    is a bi-topological space,  and 

B c X,  then    (B1)1 = B1. 

Proof:    Let    (X,  P,  Q)    be a bi-topological space.    Let    B c X. 

Then    B1    is bi-open,  and by Theorem 19,     (B )     ■ B*. 
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Example 13:    In Example 5, if    A = fl,   j\    and    B = [l,  2J, 

then    A1  P B1 / (A P B)1. 

Proof:    Since    A    and    B    are bi-open,    A    = A,  and    B^  = B. 

But    A P B ■ fl,  3} r (l,   2]   = flj, which is not bi-open.    Thus 

(A P B)1  = {l}1 =  4.     So    A1  P B1  = U) ,  and    (ll /  *•    Thus 

A1 P B1/  (A P B)1. 
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CHAPTER IV 

SEQUENCES AND BI-CONVERGENCE 

Definition 13 s    Let    (X,  P, Q)    be a bi-topological space. 

Let    S    be  a sequence in   X.     Then    S    is said to bi-converge to 

x  e X    provided,  if   U    is a bi-open subset of    X    such that    x e U, 

then there  exists a positive integer    N    such that, if    n 5 N,  then 

S     €  U. n 

Example ll;:    Let    X =fl,  2,   3,  U>,    P = {<*, X, fl,  2,   3J, 

{2,  3,  lli,   (2,  iVj,    and   Q =  {*,  X, {l,  3},   [2,   3},   (l,  2,   3],  £2}]. 

Define    S    by   S    = 2    if   n    is odd and    S    = 3    is    n    is even. 

Then    S    bi-converges  to    li. 

Proof:    The set of bi-open sets is    {*,  X, [l,  2,   33> {2,   3,  Uj, 

{2,   3lj.    There are only two bi-open sets which contain    k>  and 

each of these also contains    2    and    3.    Let    N = 0.    For   n Sf 0, 

S     e £2,  3,  U}.    Thus    S    bi-converges  to    k- 

Example 15:    In Example 10,  define a sequence    T    by    T^ ■ 1 
n 

if n is even and T ■ ti If n is odd.  Then T does not 
n 

bi-converge. 

Proof:    The sequence    T    does not bi-converge to    1    because 

{l,   2,  3}   is a bi-open set which contains    1    and does not contain 

U.    Similarly,    T    does not bi-converge to either    2    or    3    because 

{2,  3}    is  a bi-open set which contains both    2    and    3    but neither 

1    nor    ti.     Finally,    T    does not bi-converge to    ii    because    {2,  3,  Uj 
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is a bi-open set which contains U and which does not contain 1. 

Thus T is a sequence which does not bi-converge. 

Theorem 22: In a bi-T -space no sequence can bi-converge to 

more than one point. 

Proof: Let (X, P, Q) be a bi-T -space. Let S be a sequence 

in X. Suppose that S bi-converges to x and to y and x / y. 

Since (X, P, Q) is a bi-T -space, there are disjoint bi-open 

sets, U and V, such that x e U and y e V. Because S 

bi-converges to x, there is a positive integer N such that for 

all positive integers n with n 5 N, S e U. Since S 

bi-converges to y, there is a positive integer M such that for all 

integers m with m ? M, S e V. Let D be an integer such that 

D ? N + M. Let d be an integer such that d ? D 3 N. Since d ? N, 

S e U. Likewise d J D 5 M. Thus Sd e V.  So Sd e U 0 V = tf. 

But S_, / <*. Therefore x = y, and S bi-converges to only one point. 
d r 

Theorem ?3: In a bi-discrete, bi-topological space, if S is 

a sequence with the property that there does not exist a positive 

integer N such that, if n 5 N, then Sn = SN, then S does not 

bi-converge. 

Proof: Let (X, P, Q) be a bi-discrete, bi-topological space. 

Let S be a sequence in X with the property that there does not 

exist a positive integer N such that, if n 5 N, then Sn = S^. 

Suppose S bi-converges to x £ X.  Since (X, P, Q) is bi-discrete, 

fx} is bi-open. There is a positive integer M such that for all 
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integers    m   with    m > M,    S    e-f x\.    Since    S    efx},    S    = x. 
m J m J '      m 

For some    m > M,    S^ jf S».    Since    S    e {.xj, and    ^ £  {x},   this 

is impossible.    Thus    S    does not bi-converge. 

Corollary 2:    In a bi-discrete,  bi-topological  space    (X,  P,  Q) 

a sequence    S    bi-converges  to    x e X    if and only if there exists 

a positive integer    N    such that,  if    n 5 N,  then    S    = SL.. 

Proof:    One-half of the proof follows from the previous 

theorem,  and the other half is obvious. 

Theorem 2U:    If    (X,  P,  Q)    is a bi-topological space,     B c X, 

x E X,   and if there is a sequence    S    in    B    such that    S 

bi-converges to    x,   then    x e B. 

Proof:    Let    (X,  P, Q)    be a bi-topological space.    Let    B c X, 

and let    x e X.    Let    S    be a sequence in    B    such that    S 

bi-converges to    x.    Let    U    be a bi-open set such that    x e  U. 

Either    x  e  B    or    x / B.    Suppose    x e  B.     Then    x e  B c B. 

Therefore    x e  B!,       Suppose      x / B.    Since    S    bi-converges  to    x, 

there is a positive integer    N    such that if    n    is an integer,  and 

n 5 N,   then    S    c U.    Let    n    be an integer such that    n ? N.     Since 

S    e B    and   x e B,     S    / x.     Thus    x    is a bi-limit point of    B, 
n '      n ' 

and by Theorem 1U,    x e  B. 

Theorem 2$:    If    (X,  P,  Q)    is a bi-topological  space,    B c X, 

and    x e  X,  and if there exists a sequence    S    of distinct points 

in    B    that bi-converges to    x,   then    x is a bi-limit point of    B. 

Proof:    Let    (X,  P,  Q)    be a bi-topological space, with    B c X 

and    x e  B.    Suppose    S    is a sequence of distinct points in    B 
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such that S bi-converges to x. Let U be a bi-open set 

containing x. Since S bi-converges to x, there is a positive 

integer N such that, if n is an integer and n 3 N, then S e U. 

Either S = x or S / x. Suppose S / x. Then U contains a 
n n '      ^r     n ' 

point of B which is not x, and so x is a bi-limit point of B. 

Suppose S = x. Since S is a sequence of distinct points, 

S    / S    ,,.     But    n + 1 > n s= N.     Thus    S    . .   e U,  and    S^      -  / x. 
n'n+1 n+1 n+i 

Therefore U contains a point of B which is not x. Thus x is 

a bi-limit point of B. 
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CHAPTER V 

BI-CONTINUOUS FUNCTIONS 

Definition Ik:    Let    (X, P, Q)    and    (Y,  C,  D)    be bi-topological 

spaces.    Let    f    be a function whose domain is    X    and whose range 

is a subset of    Y.    Then    f   is said to be bi-continuous provided, 

if    U    is a bi-open subset of    Y,  then    f"  (U)    is a bi-open 

subset of    X. 

Example 16;    Let    X ={l,  2,   Pj ,    P = {*, X, £l}, {l,   2},  (2,   3], 

{2}},  and    Q = f*, X, [l], {3}, [l,  3}}.    Let    Y = {>,  5,  6J, 

C  ={0,  Y, {U}, {h,  5%  and    D = {*,  Y, [h],   {6],  {h,  6}}.     Define 

f, mapping    X    into    Y,  by   f(l)  = k)    f(2>" 5,*    f(3)  = 6.    Then 

f    is bi-continuous. 

Proofs    The set of bi-open subsets of    X    is    {<*, X, (.If, £l,  2J, 

(l,   3^,   {2,  3}}.    The set of bi-open subsets of    Y   is   {<t,   Y, [h] , 

[h,  $\,   [h,  6]}.    Then    f_1(*)  = *,'    f'V)  = Xj    t'Hlk})  =[l}; 

f_1((U,  5})  = [l,  Hi    f'1^,  6))  ={l,  3}.    Thus if    U    is a bi-open 

subset of    Y,  then    f_1(U)    is a bi-open subset of    X.    Therefore 

f    is bi-continuous. 
Example 17s    Let    (X,  P, Q)    and    (Y,  C,  D)    be defined as in 

Example 15-    Define g, mapping    Y    into    X,  by    g(U)  = 2,    g(5)  = 1, 

g(6)  = 3.    Then    g    is not bi-continuous. 

Proofs    By definition of inverse,    g"  ({'l})  = [$}',    g    ({l>   2J)  = 

[h,  5};    g'Hll,  3»  = {5,  6);    g"1({2,  3})  = [U, 6}.    Although 
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{l}    is a bi-open subset of    X,    g-1(£0)  = f $}    is not a bi-open 

subset of    Y.     Thus    g    is not bi-continuous. 

Definition lg;    Let    (X,  P, Q)    and    (Y,  C,  D)    be bi-topological 

spaces.    Let    f   map    X    into    Y.    Let    x e X.    Then    f   is said to 

be bi-continuous at    x    provided, if given any set    V   which is a 

bi-open subset of    Y    and such that    f(x)  e V,  then there exists a 

set    U    which is a bi-open subset of    X,  and such that   x e U    and 

f(U)   c  V. 

Example 18:    Let    (X, P, Q)    and    (Y,  C,  D)    be defined as in 

Example 1$.    If    g    is defined as in Example 17,  then    g    is 

bi-continuous at a point and is not bi-continuous. 

Proof:    Since    (h)    is bi-open,  and each bi-open subset of    Y 

which contains    g(l*)  = 2    also contains    g((l*})  = {.2j ,    g    is 

bi-continuous at    k  e  Y.    It was shown, however,  that    g    is not 

bi-continuous. 

Theorem 26:    If    (X,  P,  Q)    and    (Y,  C,  D)    are bi-topological 

spaces,  then    f, mapping    X    into    Y,  is bi-continuous if and only 

if    f    is bi-continuous at each point of    X. 

Proof:    Suppose     (X,  P,  Q)    and    (Y, C,  D)    are bi-topological 

spaces.    Let    f    map    X    into    Y. 

Suppose that    f    is bi-continuous.    Let    x e  X.    Let   V    be a 

bi-open  set such that    f(x)  e  V.    Since    f(x)  e  V,    x 6  f"  (V).    But 

f    is bi-continuous.     Therefore    f"  (V)    is bi-open.    Thus    x c f    (V) 

and    f(f_1(V))  c V.     Therefore    f    is bi-continuous at    x. 

.* 
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Suppose f is bi-continuous at every point x e X. Let U 

be a bi-open subset of Y. Let x e f" (U). Then f(x) e U. By- 

Definition 1$,  there is a bi-open set G c X such that x e G , 
x x 

and    G    c f"   (U).    Such a bi-open set can be found for each    x 

in   X. 

It remains to show that    f_1(U)  = U {G    | X e  f_1(U)}.    Let 

y € f_1(U).    Then    f(y)  e U.    So    y e  G    c U {Gx   |  x e f-1(U)]. 

Thus    f_1(U)  c u{Gx   I x e f_1(U)).    Let    yfU{cJxe f (¥)j. 

Then there is an    x    in   X    such that    y e  Gx c f_1(U).    Therefore 

y e f-1(U).    Hence    U(GJXE f'1^)] c f_1(U).     So    f_1(U)   = 

u{G     I  x  € f_1(U)}. 

Since each    G      is bi-open,    f"   (U), which is a union of 

bi-open sets,  is bi-open.    Thus    f    is bi-continuous. 

Theorem 27:    If    (X,  P,  Q)    and    (I, P, Q)    are    bi-topological 

spaces and    f, mapping    X    into    Y, is bi-continuous,  and    F    is a 

bi-closed subset of    Y,  then    f_1(F)    is a bi-closed subset of    X. 

Proof:    Let    (X,  P,  Q)    and    (Y,  C,  D)    be bi-topological 

spaces.    Let    f,  mapping    X    into    Y,  be bi-continuous.    Let    F    be 

a bi-closed subset of   X.    Since    F    is bi-closed,    X  - F   is 

bi-open.     So    f_1(X - F)    is bi-open,  and    f"   (X - F)  = 

f-1(X)  -  f_1(F)  = Y - f_1(F).    Since    Y - f_1(F)  = f_1(X - F), 

Y - f_1(F)    is bi-open.    But then    f_1(F)  =  Y -  (I - f_1(F))    is a 

bi-closed subset of    X. 

Theorem 28:    If    (X,  P,  Q)    and    (Y,  C,  D)    are bi-topological 

spaces,  and    f, mapping    X    into    Y,  is such that,  if    F    is a 

i 
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bi-closed subset of    Y,   then    f" (F)    is a bi-closed subset of    X, 

then    f    is a bi-continuous function. 

Proof:    Let    (X,  P, Q)    and    (Y, C,   D)    be bi-topological 

spaces.     Let    f, mapping    X    into    Y, be such that,  if    F    is a 

bi-closed subset of    Y,   then    f"  (F)    is a bi-closed subset of   X. 

Let    U    be a bi-open subset of    Y.    Then    U = Y-   (Y-U),  and 

(Y - U)    is bi-closed.     So    f-1(U)  = f_1(Y -  (Y - U))  = 

f_1(Y)   - f_1(Y - U)  = X - f_1(Y - U).    Since    (Y - U)    is bi-closed, 

f-1(Y - U)     is a bi-closed subset of   X.    Then    f"   (U)  = 

X  - f    (Y - U),  which is a bi-open subset of    X.    Therefore    f    is 

bi-continuous. 

Definition 16;    Let    (X,  P,  Q)    and    (Y,  C,  D)    be bi-topological 

spaces.    Let    f    map    X    into    Y.    Then    f   is said to be a bi-open 

function provided,  if    U    is a bi-open subset of    X,   then    f(U)  is 

a bi-open subset of    Y. 

Example 191    Let    (X,  P,  Q)    and    (Y,  C,  D)    be defined as in 

Example 1^.     Define    h, mapping    Y    into    X,    by    h(U)  = 1,    h(£)  = 2, 

h(6)  =  3.     Then    h    is bi-open and not bi-continuous. 

Proof:    Clearly    h(*)  =  *\    h(Y)  = «    h((U})  = W>    h<(U,  ?})  = 

{l,  2);    h((U, 6])  = fl,  33.    Thus if   U    is a bi-open subset of    Y, 

then    h(U)     is a bi-open subset of    X, and    h    is a bi-open function. 

However    h_1({2,  3])  =  {$,  6], which is not a bi-open subset of    Y. 

Therefore    h    is not bi-continuous. 

b 
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Example 20;    Let    (X,  P,  Q),     (Y,  C,  D),    and    f    be defined 

as in Example 16.    Then    f    is bi-continuous and not bi-open. 

Proof:    It was shown that    f    is bi-continuous.    However    {2,  3) 

is a bi-open subset of    X,  but    f({2,  3})  =  ($, 6]    is not a bi-open 

subset of    Y.    Thus    f    is not bi-open. 

Definition 17:    Let    (X,  P, Q)    and    (Y,  C,   D)    be bi-topological 

spaces.    Let    f    map    X    into    Y.    Then    f    is said to be a bi-closed 

function provided,  if    F    is a bi-closed subset of    X,  then    f (F) 

is a bi-closed subset of    Y. 

Example  21:    Let     (X,  P, Q)    and    (Y, C,  D)    be defined as in 

Example 16.    Let    h    be defined as in Example 19.    Then    h    is a 

bi-closed function which is not bi-continuous. 

Proof:    The set of bi-closed subsets of   X    is    {<*>,  X,  [2,  3\, 

[3),   fe),  CO},  and the set of bi-closed subsets of    Y    is    f^,  Y, 

{$,  6],  (6?, ($]] .    It was shown that    h    is not bi-continuous. 

However    hU)  = *;    h(Y)  = X',    h{{$,  6})  = {2,  3~]',    h{{$)  = (2}; 

h({6])  = {3}.    Thus if    F    is a bi-closed subset of    Y,  then    h(F) 

is a bi-closed subset of    X.    So    h    is bi-closed. 

Example 22: Let (X, P, Q) and (Y, C, D) and f be 

defined as in Example 16. Then f is bi-continuous and not 

bi-closed. 

Proof: It was shown that f is bi-continuous. However 

{l} is a bi-closed subset of X, and f((l}) = [h] is not a 

bi-closed subset of    Y.    Thus    f    is not a bi-closed function. 



28 

Example 23;    Let    (X,  P, Q)    and    (Y,  C,  D)    be defined as in 

Example 16.     Define    f, mapping    X    into    Y, by if    x e X,  then 

f(x)  = 6.     Then    f is bi-closed and is not bi-open. 

Proof:    Since {6} is bi-closed,  if    F    is a bi-closed subset 

of    X,  then    f(F)  = Co}     is a bi-closed subset of    Y.    However 

{.6}    is not bi-open.    So if    0    is a bi-open subset of    X,  then    f(0) = 

\6j-    is not a bi-open subset of    Y.    Thus    f   is a bi-closed function 

which is not bi-open. 

Example 2U :    Let    (X,  P,  Q)    and    (Y,  C,  D)    be defined as in 

Example 16 .     Define g, mapping    X    into    Y, by if   x e X,  then 

g(x)  =    h   •    Then    g    is a function which is bi-open and not 

bi-closed. 

Proof:    Since    {h}     is a bi-open subset of    Y,  if    0    is a 

bi-open subset of    X,  then    g(0)  = fit},  is a bi-open subset of    Y. 

Thus    g    is a bi-open function.    However if    F    is a bi-closed 

subset of    X,   then    g(F)  =  (hj, which is not a bi-closed subset 

of    Y.    Thus    g    is not a bi-closed function.    Hence    g    is a 

function which is bi-open and not bi-closed. 

Theorem 29:    If    (X,  P, Q)    and    (Y,  C,  D)    are bi-topological 

spaces,    S    is a sequence in    X    which bi-converges to    x c X,  and 

f, mapping    X    into    Y,  is bi-continuous,  then    f(S)    bi-converges 

to    f(x)   £ Y. 

Proof:    Let     (X,  P,  Q)    and    (Y, C,  D)    be bi-topological 

spaces.    Suppose    f, mapping    X    into    Y,  is bi-continuous.    Suppose 

S    is a sequence in    X    which bi-converges to    x t X.    Let    0    be a 
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bi-open subset of    Y    such that    f(x)  c  0.    Then   x i   f"  (0). 

Since    S    bi-converges to    x,  there is a positive integer    N 

such that for all integers    n, with    n & N,    S    e f"  (0).    But 

S    e f ~    (0)    implies  that    f(S )  e 0.    Therefore    f(S) 

bi-converges to    f(x). 
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SUMMARY 

The author has introduced a definition of a bi-open set in a 

bi-topological  space.    It has been shown that with this definition 

it is possible to develop properties of bi-topological spaces which 

closely resemble properties of topological  spaces.    Some of these 

properties are bi-closure,  bi-interior,  bi-convergence, and 

bi-continuity.    A remaining problem is how well the definition of 

bi-open adapts to concepts such as bi-compactness and bl-connectedness. 

1 
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