The University of Nort at Greensboro	h Carolina
JACKSON LIBRAR	Y
Gift of Wallace Larry COLLEGE COLLE	.911 Freeman. CCTION

FREEMAN, WALLACE LARRY. Lattice Dynamics in Gallium Using the "6-exp" Potential with Parameters Determined by the "Least Squares" Method. (1971) Directed by: Dr. Clifton Bob Clark. Pp. 91

The equations of motion for the dumbbell molecules of gallium are derived using the harmonic approximation. The "6-exp" interaction potential energy function is used to derive analytic expressions for the interatomic coupling constants. The intermolecular coupling constants are then determined numerically. These are used to calculate the elements of the dynamical matrix. The dynamical matrix is solved for the normal mode frequencies. The "Least Squares" method is used with a computer program to select a set of "6-exp" parameters to best fit the frequencies measured by others. Since some imaginary frequencies occurred for all sets of parameters found, the model does not agree with experimental results. There are two possible reasons for this disagreement: (1) The "6-exp" interaction function may not be applicable to gallium or (2) it may be invalid to treat gallium as having a molecular structure.

LATTICE DYNAMICS IN GALLIUM USING THE "6-exp" " POTENTIAL WITH PARAMETERS DETERMINED BY THE "LEAST SQUARES" METHOD

by

Wallace Larry Freeman

A Thesis Submitted to the Faculty of the Graduate School at The University of North Carolina at Greensboro in Partial Fulfillment of the Requirements for the Degree Master of Science

> Greensboro 1971

> > Approved by

Sol- Clar

Thesis Advisor

APPROVAL PAGE

This thesis has been approved by the following committee of the Faculty of the Graduate School at The University of North Carolina at Greensboro.

Thesis Advisor <u>Clifton Bob Clark</u> Oral Examination <u>Francis M. Cormack</u> <u>Andrew Z. Ing J</u>

July 1, 1971 Date of Examination

I wish to thank A. F. Long Jr., F. J. McCormack, and especially C. B. Clark, all of the University of North Carolina at Greensboro, for their patience and assistance in the satisfactory completion of this thesis. Special thanks also goes to G. M. Freeman for her patience and diligence in typing the completed thesis, and to the University of North Carolina at Greensboro for furnishing the computer programming facilities without which it would have been impossible to complete this thesis within a reasonable period of time.

TABLE OF CONTENTS

	Page
INTRODUCTION	1
CHAPTER I	
The Dynamical Matrix	7
CHAPTER II	
The Method of Least Squares	26
SUMMARY AND CONCLUSIONS	30
FOOTNOTES AND BIBLIOGRAPHY	40
APPENDIX I	
Analytical Calculations of Interatomic Force Constants	42
APPENDIX II	
Determination of Self Force Constants	49
APPENDIX III	
Symmetry of the Gallium Lattice	55
APPENDIX IV	
Programming Considerations	66
APPENDIX V	
The First Brillouin Zone Boundaries	85

LIST OF TABLES

TABLE I

Calculated and Experimental Values of ω for Plane Waves Propagating Along the Crystal Axes 33

Page

LIST OF FIGURES

	Page
Figure 1	
The base-centered orthorhombic lattice	2
Figure 2	
The types of molecules	4
Figure 3	
A unit cell of gallium	4
Figure 4	
The principal axes of the dumbbell molecule relative to the crystal axes	11
Figure 5	
A diagram for considering screw-diad symmetry	18
Figure 6 .	
A diagram for defining the co-ordinate systems of the origin and source molecules	45
Figure 7	
A diagram for converting crystal axes to principal axes	57
Figure 8	
A primitive cell of gallium	87
Figure 9	
The first Brillouin zone as viewed down the z axis	89
Figure 10	
The first Brillouin zone as viewed in three dimensions	89
Figure 11	
An enlargement of the first quadrant of Fig. 9	90

INTRODUCTION

A crystal is a regular array of points in space with atoms and/or molecules located at these points. It is described using the concepts of the unit cell and translation vectors. The unit cell is a particular arrangement of atoms and/or molecules which, when translated regularly through space generates the crystal. The translation vectors describe the location of a unit cell relative to some co-ordinate system. For gallium, a set of three mutually orthogonal vectors is chosen along the crystal axes so that the unit cell is located at every combination of even-integer multiples of these vectors. It should be noted that this is not the only set of translation vectors which describe the location of a unit cell for gallium. However, it is one of the simplest and most convenient, particularly, when considering programming techniques in locating specific molecules.

The lattice structure for gallium is base-centered orthorhombic (Fig. 1). Molecules are located at the corners of the structure and in the middle of the upper and lower faces.

There are two distinct types of molecules which, for the purpose of this thesis, are labeled A and B. Both types are treated as rigid dumbbells of length 2.442 Å 1

and individual atomic masses of 115.7 X 10⁻²⁴ grams.² The type A molecule is oriented so that the dumbbell axis makes an angle of approximately 16.9° counterclockwise with the Y axis (Fig. 2). The type B molecule is oriented so that the dumbbell axis makes an angle of approximately 16.9° clockwise with the Y axis (Fig. 2). The dumbbell axis of both types is always parallel to the Y-Z plane. This means that two orthorhombic lattices are combined to form the crystal structure of gallium. A unit cell of gallium is shown in Fig. 3. Note that in the figure a type A molecule is located at the origin of the co-ordinate system. A unit cell may also be constructed with a type B molecule located at the origin by replacing all type A molecules with type B molecules and vice versa. The a, b, and c lengths in Fig. 3 are called the lattice constants and are independent of the origin molecule.

As mentioned, a set of translation vectors is chosen so that a unit cell is located at every combination of even-integer multiples of these vectors. Therefore, in order to generate the crystal, the unit cell must be translated through space according to $\underline{T} = h_{\underline{2}}^{\underline{a}} \hat{x} + k_{\underline{2}}^{\underline{b}} \hat{y} + 1_{\underline{2}}^{\underline{c}} \hat{z}$ where h, k, and l are even integers and \hat{x} , \hat{y} , and \hat{z} are the unit vectors along the axes of the crystal.

Exerting a force on a molecule in the crystal disturbs it from equilibrium. If there is a coupling between

Fig. 3. A unit cell of gallium.

Х

the molecules and those near them, then the disturbance is transmitted through the crystal. Assuming the disturbance to be harmonic in nature, the system is best treated as a collection of oscillators which may be analyzed in terms of the normal modes of oscillation of the system.

The coupling between molecules is taken to be of a Hooke's Law nature. Therefore, by displacing a molecule an amount \underline{u} , a force is exerted on a molecule near it according to $\underline{F} = -\underbrace{g}\underline{u}$ where \underbrace{g} is the intermolecular coupling constant. For a particular molecule-molecule interaction, analytic expressions for the interatomic forces are developed using the "6-exp" potential model given by $V = -\underbrace{A}_{\underline{r}}6 + Be^{-\alpha r}$ where A, B, and α are parameters and r is the atomic separation. Using these analytic forms to find the interatomic coupling constants, the intermolecular coupling constant, for a specific interaction is found by summing over the atomic constants. The equations of motion are found and the secular determinant is developed allowing one to find the normal mode frequencies, ω , for a given wave vector \underline{q} .

The parameters A, B, and \propto were selected to meet certain conditions computed from equilibrium considerations by C. B. Clark.³ However, these values of A, B, and \propto do not produce a set of dispersion relations which agree with experimental results. This was expected since D. E. Thompson got the same kind of results in 1970.⁴ To further test the model it is necessary to change A, B, and \propto so as to

make the calculated dispersion relations converge to the experimental relations. The method of "Least Squares" is selected for this purpose. The details of this method are discussed in CHAPTER II.

CHAPTER I The Dynamical Matrix

As stated in the INTRODUCTION, gallium is being treated as if it were built of rigid dumbbell molecules. Thus, there are only three degrees of translational and three degrees of librational freedom per molecule to be concerned with. The translational motion will be considered first by treating the molecules as point masses located at the center of the dumbbell. The resulting equations of motion will be completely general and easily extended to cover librational motion.

Consider the motion of a molecule at r_j due to the displacement, u_j , of the molecule at r_j . The vectors r_j and r_j , are relative to the origin of a co-ordinate system appropriately located in the crystal and the vector u_j , is relative to r_j . The force equation which governs the motion of the j molecule is

$$\mathbb{E}_{j} = \mathbb{M}_{j} \mathbb{U}_{j} = -\sum_{j'} \mathscr{Q}_{j'} (jj') \mathbb{U}_{j'}, \qquad (1)$$

where the following definitions are made:

$$\mathbb{M}_{ij} = \begin{bmatrix} m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & m \end{bmatrix}$$

where m is the mass of the gallium molecule.

where ϕ_{ik} represents the force constant for the i component of force on the j molecule due to the displacement of the j' molecule in the k direction.

The general harmonic expressions for displacements of the j and j' molecules are assumed to be

$$u_{j} = A(j)e^{i(q \cdot r_{j} - \omega t)}$$
(2)

and

$$u_{j'} = A(j')e^{i(q \cdot r_{j'} - \omega t)}, \qquad (3)$$

respectively. Substituting Eqs. (2) and (3) into Eq. (1) yields

$$-\mathbb{M}_{j,\underline{A}}(j)\omega^{2} = -\sum_{j'} \overset{\emptyset}{\approx} (jj') \overset{A}{\approx} (j') e^{j\underline{a}\cdot(\underline{r}_{j'} - \underline{r}_{j})}.$$
(4)

Now, let us choose a specific co-ordinate system located along the crystal axes so that the j molecule is positioned at the origin. Equation (4) may then be written as

$$-\underset{\approx}{\mathbb{M}}_{j}\overset{\mathbb{A}}{\approx}(j)\omega^{2} = -\underset{j'}{\sum}\overset{\emptyset}{\approx}(jj')\overset{\mathbb{A}}{\approx}(j')e^{j}\overset{\mathbb{C}}{\approx}\overset{\mathbb{C}}{\approx}j'.$$
(5)

Assuming that all A(j') are equal, Eq. (5) may be written in component form as

$$-m\omega^{2}A_{i}(j) = -\sum_{k} A_{k}\sum_{j'} \phi_{ik}(jj')e^{i\underline{q}\cdot\underline{r}}j'$$
(6)

where i and k = 1-3. Thus, Eq. (6) yields a set of three secular equations which produce a 3X3 secular determinant.

Now, it is necessary to be more complete and consider the effects of the librational motion of the j' molecule. Torques are taken along the principal axes of the j molecule so that the moment of inertia tensor, \mathbb{M} , is diagonal. Therefore, Eq. (1) may be written to include both forces and torques as

$$\mathbb{E}_{j} = \mathbb{M}_{j} \mathbb{U}_{j} = -\sum_{j'} \bigotimes_{\widetilde{\mathfrak{S}}} (jj') \mathbb{U}_{j'}$$
(7)

where the following new definitions are made:

$$\mathcal{E}_{j} = \begin{bmatrix} F_{1} \\ F_{2} \\ F_{3} \\ F_{4} \\ F_{5} \\ F_{6} \end{bmatrix}$$

where F_1 , F_2 , and F_3 represent the component forces on the j molecule and F_4 , F_5 , and F_6 represent the component torques on the j molecule. (The component torques are along the principal axes of the molecule.)

$$\mathbb{M}_{j} = \begin{bmatrix} m_{1} & 0 & 0 & 0 & 0 \\ 0 & m_{2} & 0 & 0 & 0 \\ 0 & 0 & m_{3} & 0 & 0 & 0 \\ 0 & 0 & 0 & m_{4} & 0 & 0 \\ 0 & 0 & 0 & 0 & m_{5} & 0 \\ 0 & 0 & 0 & 0 & 0 & m_{6} \end{bmatrix}$$

where m_1 , m_2 , and m_3 represent the mass of the gallium molecule and m_4 , m_5 , and m_6 represent the moments of inertia about the α , β , and Υ principal axes, respectively (Fig. 4).

$$= \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \end{bmatrix}$$

where u_1 , u_2 , and u_3 represent translational displacements and u_4 , u_5 , and u_6 represent rotational displacements about the principal axes of the j or j' molecule.

and

Fig. 4. The principal axes of the dumbbell molecule $((\propto, \beta, \forall)$ or $(\hat{u}_4, \hat{u}_6, \hat{u}_5))$ relative to the crystal axes given by $(\hat{u}_1, \hat{u}_2, \hat{u}_3)$.

12

where ϕ_{ik} , for i and k = 1-3, represents the coupling constant between the i component of force on the j molecule and translation of the j' molecule in the k direction. ϕ_{ik} , for i = 1-3 and k = 4-6, represents the coupling constant between the i component of force on the j molecule and rotations of the j' molecule about the k principal axis. ϕ_{ik} , for i = 4-6 and k = 1-3, represents the coupling constant between the i component of torque on the j molecule and translation of the j' molecule in the k direction. ϕ_{ik} , for i and k = 4-6, represents the coupling constant between the i component of torque on the j molecule and rotations of the j' molecule about the k

Since there are two distinct molecular types in a crystal of gallium, Eq. (5) must be written for both type A and type B origin (j) molecules as

$$-\underset{\mathbf{j'}}{\mathbb{M}} \omega^2 = -\sum_{\mathbf{j'}} \underset{\widetilde{\mathbf{j'}}}{\mathbb{M}} (jj') \underset{\widetilde{\mathbf{A}}}{\mathbb{H}} e^{i \frac{\pi}{2} \cdot \widetilde{\mathbf{r}}} j' - \sum_{\mathbf{l'}} \underset{\widetilde{\mathbf{j'}}}{\mathbb{M}} (jl') \underset{\widetilde{\mathbf{B}}}{\mathbb{H}} e^{i \frac{\pi}{2} \cdot \widetilde{\mathbf{r}}} l'$$
(8)

and

$$-\underbrace{\mathbb{M}}_{j} \mathbb{E} \omega^{2} = -\underbrace{\sum}_{j'} \underbrace{\emptyset}_{j'} (jj') \underbrace{\mathbb{B}}_{j'} \mathbb{E}_{j'} \frac{\mathbb{E}}{2} j' - \underbrace{\sum}_{l} \underbrace{\emptyset}_{j'} (jl') \underbrace{\mathbb{A}}_{l} \mathbb{E}^{lq'} \mathbb{E}_{l'} (g)$$
(9)

where A and B are six element column matrices representing the displacement amplitudes of the general harmonic form of Eqs. (2) and (3) for type A and type B molecules, respectively. The sum over j' is for source molecules of the same type as the j molecule and the sum over l' is for source molecules of a different type than the j molecule. Equation (8) produces six component equations of the form

$$\sum_{k} \left(\sum_{j'} \phi_{ik}(jj') e^{i \frac{q}{2} \cdot \frac{r}{2}} j' - m_{i} \delta_{ik} \omega^{2} \right) A_{k}$$
$$+ \sum_{k} \left(\sum_{l'} \phi_{ik}(jl') e^{i \frac{q}{2} \cdot \frac{r}{2}} l' \right) B_{k} = 0$$
(10)

and Eq. (9) produces six component equations of the form

$$\sum_{\mathbf{k}} (\sum_{\mathbf{j}'} \varphi_{\mathbf{j}\mathbf{k}}(\mathbf{j}\mathbf{j}') e^{\mathbf{i}\mathbf{q}\cdot\mathbf{r}} \mathbf{\mathbf{j}}') A_{\mathbf{k}} + \sum_{\mathbf{k}} (\sum_{\mathbf{j}'} \varphi_{\mathbf{j}\mathbf{k}}(\mathbf{j}\mathbf{j}') e^{\mathbf{i}\mathbf{q}\cdot\mathbf{r}} \mathbf{\mathbf{j}}' - m_{\mathbf{j}} \delta_{\mathbf{j}\mathbf{k}} \omega^2) B_{\mathbf{k}} = 0$$
(11)

where i and k = 1-6. Equations (10) and (11) form a 12X12 dynamical matrix whose secular determinant has elements of the form

$$\sum_{j'} \phi_{ik}(jj') e^{iq r} j' - m_i \delta_{ik} \omega^2.$$

The order of the matrix may be reduced to 10X10 by considering molecular symmetry. Motion about the or dumbbell axis is physically meaningless because the moment

of inertia about this axis is zero (Fig. 4). Therefore, the sixth and twelfth rows which involve components of torque about the axis and the sixth and twelfth columns which involve rotations about the β axis may be omitted.

The 6X6 coupling constants matrix can be reduced to 5X5 for the same reason. Also, the number of independent elements of this matrix may be restricted by lattice symmetry as described by G. S. Pawley.⁵ The type A symmetry reflects the molecules into themselves. Therefore, the system is unchanged so that the coupling constant matrix between the molecules is invariant under this symmetry operation. If the gallium lattice is reflected in a plane perpendicular to the a axis, the coupling constant matrices between molecules lying in the plane are of the form

The type B symmetry is an inversion through the origin. This type symmetry relates the interaction matrix between the molecule located at the origin, represented by 0, and one located at (x,y,z), represented by j', to the interaction

14

matrix between the origin molecule and the molecule at (-x, -y, -z), represented by -j'. A study of this symmetry shows that the two interaction matrices are related according to

where the elements within the brackets represent the components of the coupling constant matrix for the interaction between the origin and j' molecules. For interactions between molecules lying in a plane perpendicular to the a axis, types A and B symmetry operations yield

For interactions between like molecules, type B symmetry reduces to nine the number of independent elements of the coupling constant matrix for the interaction between the origin molecule and a j' molecule. The interaction matrix is given by

Again type A symmetry is applied when considering interactions between like molecules lying in a plane perpendicular to the a axis. The above matrix is reduced to

Type C symmetry is used to relate the interaction matrix for an A-B interaction to that for a B-A interaction. For gallium it is best illustrated by the screw-diad operation which transforms the molecule pair j-j' into the pair j'-j''. This symmetry allows one to show that the relationship between the interaction matrices of the j'-j'' pair and a different pair designated by j-l' (Fig. 5) is given by

where the elements within the brackets represent the components of $\oint_{\infty}(jl')$. Type A symmetry is again applicable to interactions between molecules lying in a plane perpendicular to the a axis. The above matrix is reduced to

Fig. 5. A diagram for considering screw-diad symmetry. (• and • represent the two types of molecules.)

18

×

The above symmetries are discussed in greater detail in APPENDIX III.

Due to the low order of symmetry, there are at least nine independent parameters (force constants) for each molecule-molecule interaction. Since interest lies in a collection of these interactions, it is unlikely that this number of parameters can be satisfactorily determined from experimental data.

Assuming the interaction forces to be derivable from a Potential energy enables one to reduce the number of independent parameters of the problem. For the purpose of this thesis, the "6-exp" potential model, $V = -\frac{A}{r}_{6} + Be^{-\propto r}$, is taken to give the interaction potential energy. Now there are only three independent parameters upon which the intermolecular force constants depend. It is, therefore, possible to determine the best set of parameters by comparing the calculated dispersion curves to the experimental dispersion curves using the method of "Least Squares".

The "6-exp" potential is used in APPENDIX I to derive the analytic expressions for the interatomic force constants for a particular molecule-molecule interaction. It is shown that the elements of the interatomic coupling constant matrix are of the following forms:⁶

a. i = 1-3 and j = 1-3 $\emptyset_{ij} = -\delta_{ij}f(r) - x_i x_j g(r)$

b.

i = 1-3

с.

where

$$f(\mathbf{r}) = \frac{1}{\mathbf{r}} \frac{\partial V}{\partial \mathbf{r}} = 6\frac{A}{r^8} - B\frac{\alpha}{r}e^{-\alpha \mathbf{r}}$$

and

$$g(\mathbf{r}) = \frac{1}{\mathbf{r}} \frac{\partial f(\mathbf{r})}{\partial \mathbf{r}} = -48\frac{A}{r}10 + \frac{B}{r}3 e^{-\alpha \mathbf{r}} + B\frac{\alpha}{r}^2 e^{-\alpha \mathbf{r}}$$

The x_i and x_j are the position components of the source atom relative to the origin atom in a co-ordinate system along the crystal axes. (Yo,Zo) and (Y,Z) represent the positions of the origin and source atoms, respectively, relative to their respective molecules. Oo and Os are the angles that the dumbbell axes of the origin and source molecules, respectively, make with the b crystal axis.

The case for the displacement of the origin molecule while all other molecules are undisturbed must also be considered. The forces exerted on the origin molecule are called the "self" forces and must be calculated differently. They are written as $\underline{F}(jj) = -\underbrace{\emptyset}(jj)\underline{u}_j$. The components of $\emptyset(jj)$ in terms of $\underbrace{\emptyset}(jj')$ are of the following forms:⁷

> type A origin molecules ($\Theta o = \Theta$) i = 1-5 and k = 1-3

 $\emptyset_{ik}(jj) = -\sum_{j'} \emptyset_{ik}$

2. i = 1-5

1.

a.

 $\emptyset_{i4}(jj) = -\sum_{j'} (\emptyset_{i4} - \emptyset_{i2}L_2^c + \emptyset_{i3}K_2^b)$ (Both sums are over types A and B source molecules.)

3. i = 1-5

$$\begin{split} \varphi_{15}(jj) &= -\sum_{j'} (\varphi_{15} - \varphi_{11}(\mathbf{K}_{2}^{b}\cos\theta + \mathbf{L}_{2}^{c}\sin\theta) \\ &+ \varphi_{12}\mathbf{H}_{2}^{a}\cos\theta + \varphi_{13}\mathbf{H}_{2}^{b}\sin\theta) \\ &- \sum_{j'} (\varphi_{15}\cos2\theta - \varphi_{11}(\mathbf{K}_{2}^{b}\cos\theta \\ &+ \mathbf{L}_{2}^{c}\sin\theta) + \varphi_{12}\mathbf{H}_{2}^{a}\cos\theta + \varphi_{13}\mathbf{H}_{2}^{b}\sin\theta) \end{split}$$

(The first and second sums are over types A and B source molecules, respectively.)

Ъ.

1.

type B origin molecules ($\Theta o = -\Theta$)

i = 1-5 and k = 1-3

2. i = 1-5

$$\emptyset_{i4}(jj) = -\sum_{j'} (\emptyset_{i4} - \emptyset_{i2}L_2^c + \emptyset_{i3}K_2^b)$$

Both sums are over types A and B source molecules.)

$$\begin{split} \varphi_{i5}(jj) &= -\sum_{j'} (\varphi_{i5} \cos 2\theta - \varphi_{i1}(K_{2}^{b} \cos \theta - L_{2}^{c} \sin \theta) + \varphi_{i2}H_{2}^{a} \cos \theta - \varphi_{i3}H_{2}^{a} \sin \theta) \\ &- \sum_{j'} (\varphi_{i5} - \varphi_{i1}(K_{2}^{b} \cos \theta - L_{2}^{c} \sin \theta) + \varphi_{i2}H_{2}^{a} \cos \theta - L_{2}^{c} \sin \theta) \\ &+ \varphi_{i2}H_{2}^{a} \cos \theta - \varphi_{i3}H_{2}^{a} \sin \theta) \end{split}$$

(The first and second sums are over types A and B source molecules, respectively.)

where \emptyset is written on the right hand side of the above equations to represent $\emptyset(jj')$. H, K, and L are integers and Θ o is the angle that the dumbbell axis of the origin molecule makes with the b crystal axis. The above equations are derived in more detail in APPENDIX II.

It is useful to write Eqs. (10) and (11) in a more general and compact matrix notation as $(\underline{p}' - \underline{\mathbb{M}}\omega^2)\underline{\mathbb{A}} = 0$ where \underline{p}' represents a 10X10 matrix with elements involving

the intermolecular and "self" force constants. M is the \approx 10X10 mass matrix given by

and A is a 10 element column matrix representing the displacement amplitudes of both types A and B molecules and is given by

Letting $a_n = A_n \sqrt{m_n}$ for n = 1-3 and n = 6-8 and $a_n = iA_n \sqrt{m_n}$ for n = 4,5 and n = 9,10 enables one to write

$$(\mathbb{D} - \mathbb{I} \omega^2) = 0$$

which in component form is $(D_{mn} - \delta_{mn}\omega^2)a_n = 0$ where D_{mn} are elements of D and have the following forms:

for type A origin and source molecules

m = 1-5 and n = 1-5

$$D_{mn} = \left(\sum_{j'} \phi_{mn}(jj')Cj' + Cj\phi_{mn}(jj)\right) / \sqrt{m_m m_n}$$
(summed over type A source molecules)

Cj' = $\cos(q \cdot r_{j})$ and Cj = 1 m = 1-3; n = 1-3 m = 4,5; n = 4,5 Cj' = $\sin(q \cdot r_{j})$ and Cj = 0 m = 1-3; n = 4,5 Cj' = $-\sin(q \cdot r_{j})$ and Cj = 0 m = 4,5; n = 1-3

for type A origin and type B source molecules m = 1-5 and n = 6-10

$$D_{mn} = \left(\sum_{i} \phi_{m n-5}(ji')ci'\right) / \sqrt{m_m m_{n-5}}$$
(summed over type B source molecules)

Cl'	=	cos(g·r1,)	m	=	1-3;	n	=	6-8
			m	=	4,5;	n	=	9,10
cı'	=	sin(g·rl,)	m	=	1-3;	n	=	9,10
cı'	=	$-\sin(q \cdot r_1,)$	m	=	4,5;	n	=	6-8

for type B origin and source molecules m = 6-10 and n = 6-10

 $D_{mn} = \left(\sum_{j'} \phi_{m-5 n-5}(jj')Cj' + Cj\phi_{m-5 n-5}(jj)\right) / \sqrt{m_{m-5}m_{n-5}}$ (summed over type B source molecules)

b.

c.

a.

*

Cj' =
$$\cos(q \cdot r_j)$$
 and Cj = 1 m = 6-8; n = 6-8
m = 9,10; n = 9,10
Cj' = $\sin(q \cdot r_j)$ and Cj = 0 m = 6-8; n = 9,10
Cj' = $-\sin(q \cdot r_j)$ and Cj = 0 m = 9,10; n = 6-8

for type B origin and type A source molecules m = 6-10 and n = 1-5

$$D_{mn} = \left(\sum_{1'} \phi_{m-5 n}(jl')cl'\right) / \sqrt{m_{m-5}m_n}$$
(summed over type A source molecules)

d.

Cl' =
$$\cos(q \cdot r_1)$$

m = 6-8; n = 1-3
m = 9,10; n = 4,5
Cl' = $\sin(q \cdot r_1)$
m = 6-8; n = 4,5
Cl' = $-\sin(q \cdot r_1)$
m = 9,10; n = 1-3

25

~

CHAPTER II

The Method of Least Squares

Considering the results of CHAPTER I it is possible to calculate the dispersion relations for gallium and compare them to the experimentally determined dispersion relations. By changing the values of the parameters A, B, and \ll in the "6-exp" potential model, it may be possible to calculate a set of dispersion curves which correspond favorably with the experimentally determined curves. The method of "Least Squares" is used for determing the necessary changes in A, B, and \ll which produce the best set of calculated dispersion curves as compared to the experimental curves.

In general, the calculated frequencies are dependent upon the parameters of the model being used and the particular wave vector being considered. However, since the wave vectors are known specifically it is appropriate to consider the calculated frequencies as a function of the model parameters only. The accepted mathematical notation is

 $f_1 = f_1(p_1, p_2, p_3, \dots, p_i)$

where p_i represent the model parameters and f_l represents a particular frequency.

If f_{ol} and f_{cl} represent the experimentally observed and the calculated frequencies, respectively, the "Least Squares" criteria takes as the best set of parameters that which minimizes the quantity

$$S = \sum_{l} W_{l} (f_{ol} - f_{cl})^{2}.$$

 W_1 is a weighting factor associated with the l observation. It has been shown, by statistical methods, to be $1/\sigma_{ol}^2$, where σ_{ol} is the standard error of the observation f_{ol}^8 .

Since S must be a minimum in order to get the best set of parameters, the following must be true:

$$\frac{\partial S}{\partial p_i} = 0.$$

Performing the derivative and setting it equal to zero yields

$$W_{l}(f_{cl} - f_{ol}) \frac{\partial f}{\partial P_{i}} = 0.$$
 (13)

Recalling that the calculated frequencies are functions of the model parameters, the frequencies may be written as a Taylor series expansion about the values calculated using an initial set of parameters designated by P_{oj} . The resulting equation may be written as

$$f_{cl}(p_j) = f_{cl}(p_{oj}) + \sum_j \frac{\partial f_{cl}}{\partial p_j} p_j$$

where $\Delta p_j = p_j - p_{oj}$. (Note that all second order and higher terms are neglected. It is assumed that $p_{oj} \approx p_j$.)

If the potential model being used is applicable then an initial set of parameters can be chosen such that $f_{ol} = f_{cl}(p_{oj})$. This leads to the result that

$$f_{cl}(p_j) - f_{ol} \approx \sum_j \frac{\partial f_{cl}}{\partial p_j} \Delta p_j.$$
 (14)

Substituting Eq. (14) into Eq. (13) yields

$$\sum_{l} W_{l}(f_{cl} - f_{ol}) \frac{\partial f_{cl}}{\partial P_{i}} = \sum_{l} \sum_{j} W_{l} \frac{\partial f_{cl}}{\partial P_{j}} \frac{\partial f_{cl}}{\partial P_{i}} \Delta P_{j}.$$
(15)

Therefore, for N model parameters there exists a set of NXN equations whose solutions are the changes in the parameters which tend to minimize the quantity

 $S = \sum_{l} W_{l}(f_{ol} - f_{cl})^{2}$.

Equation (15) may be written in matrix notation as

ax = y (16)

where a is the NXN matrix with elements

$$a_{ij} = \sum_{l} W_{l} \frac{\partial^{f} cl}{\partial P_{j}} \frac{\partial^{f} cl}{\partial P_{i}}.$$
x and y are N-fold column matrices with elements

$$x_i = \Delta p_i$$

and

$$v_{i} = \sum_{l} W_{l}(f_{cl} - f_{ol}) \frac{f_{cl}}{p_{i}},$$

respectively. From Eq. (16) it is obvious that $x = a_{\pm}^{-1} y$ where a_{\pm}^{-1} is the inverse of a_{\pm} .

Using numerical techniques it is possible to determine a, a^{-1} , and y. Upon carrying out the above matrix multiplication the necessary changes in the model parameters are determined.

SUMMARY AND CONCLUSIONS

The "6-exp" potential energy function, $V = -\frac{A}{r} + Be^{-\alpha r}$, was used to develop analytic expressions for the interatomic coupling constants. The interatomic coupling constants were calculated for each molecule-molecule interaction. The intermolecular coupling constants were determined numerically by summing the interatomic constants for each molecule-molecule interaction. The resulting constants were used to numerically determine the elements of the dynamical matrix for a specific wave vector q.

The initial calculation of the dispersion relations for gallium was done using the program in APPENDIX IV. The initial values of the parameters A, B, and \propto were chosen such that $\ll = 2.562 \ A^{-1}$ and $A/B = \frac{1}{2}$. These conditions were determined from equilibrium considerations by C. B. Clark.⁹ The values of A and B are 5 X 10⁻¹⁴ erg-A⁶ and 10⁻¹³ ergs, respectively.^{*} The normal mode frequencies were calculated for plane waves along the a, b, and c crystal axes. The maximum value of the traveling wave vector for each direction was taken to be the distance from the origin of the co-ordinate system of Figs. 9 and 10 in APPENDIX V, to the first Brillouin zone boundary in the desired direction.

^{*} These values were chosen because they produce the correct orders of magnitude for the frequencies.

These distances were found in APPENDIX V to be

$$Q_a = \frac{\pi}{a}(1 + a^2/b^2),$$

 $Q_b = 2\frac{\pi}{b},$

and

 $Q_c = \frac{\pi}{c}$.

Note that these distances have units of inverse length because they are measured in reciprocal space. The normal mode frequencies (ω) were calculated for wave vectors (q) at intervals of $\frac{1}{5}$ Q ranging from $\frac{1}{5}$ Q to Q in each direction.

The force constant matrices were determined for interactions between origin and source molecules separated by distances ranging from $\pm a$ to $\pm (a^2 + b^2 + c^2)^{\frac{1}{2}}$. Due to the short range of the "6-exp" potential, distances greater than the latter produced neglible changes in the calculated frequencies. All symmetry requirements for the above interactions were met for both type A and type B origin and source molecules. (These symmetries are discussed in APPEN-DIX III.) However, the resulting dispersion relations were invalid because many of the calculated frequencies were imaginary and did not agree with experimental results¹⁰.

The method of "Least Squares" was used to choose new values for A and B that would produce a better set of dispersion curves. < was not changed because the equilibrium considerations yielded the value quoted, but gave only the ratio of A to B. The new values of A and B are 4.791 X 10^{-14} erg-A⁶ and 9.987 X 10^{-14} ergs, respectively. Although these new values reduced the number of imaginary frequencies from nineteen to nine (out of one hundred and fifty frequency values calculated), it was not possible to eliminate all the imaginary frequencies by just changing A and B. The next step is to change all three parameters, but due to the large amount of computer time involved, funds are not available at present to do this.

The calculations already made seem to indicate that the model chosen for gallium is not correct. Thus, it may be invalid to treat gallium as having a molecular structure or possibly the "6-exp" interatomic potential energy function cannot be used to describe the molecular model for gallium.

The experimental data, the results of calculations made with the initial values of A, B, and α , and the results of calculations made with new values of A and B are shown in TABLE I

TABLE I

Calculated and Experimental Values of ω for Plane Waves Propagating Along the Crystal Axes

Units: ω in 10¹² Hz; g in A⁻¹ ω_e are the experimental frequencies. ω_i are the calculated frequencies using initial A, B, and \propto . ω_f are the calculated frequencies using new A and B. \hat{x} , \hat{y} , and \hat{z} are the unit vectors along the crystal axes. The letter i before a number indicates that it is imaginary.

+

q ~	ω _e X 10 ⁻¹²	$\omega_i \times 10^{-12}$	ω _f X 10 ⁻¹²
0.1874 x	5.680	5.317	4.340
	5.580	4.897	3.878
	4.690	4.512	3.746
	3.250	3.467	2.887
	3.050	2.590	2.326
	2.880	2.568	2.263
	2.650	2.557	2.101
	1.280	1.359	1.185
	0.800	0.417	0.342
	0.650	i 0.435	i 0.134
0.3748 x	5.650	5.309	4.314
	5.280	4.839	3.968
	5.150	4.757	3.816
	3.100	3.047	2.619
	3.020	2.965	2.547

q ~	ω _e X 10 ⁻¹²	$\omega_{i} \times 10^{-12}$	ω _f X 10 ⁻¹²
0.3748 x	2.890	2.265	2.363
	2.690	2.617	2.168
	2.240	2.050	1.848
	1.400	0.762	0.654
	1.140	i 0.695	0.123
0.5622 £	5.680	5.264	4.259
	5.560	5.055	4.126
	4.950	4.520	3.694
	3.550	3.903	3.302
	3.100	2.774	2.417
	2.910	2.714	2.386
	2.710	2.670	2.247
	2.460	1.828	1.710
	1.820	0.960	0.895
	1.500	i 0.647	0.514
0.7496 x	5.600	5.154	4.186
	5.600	5.127	4.162
	4.650	4.627	3.848
	4.280	4.234	3.542
	3.130	2.893	2.445
	2.950	2.734	2.344
	2.630	2.546	2.230
	2.180	1.386	1.412
	1.920	0.943	1.010

.

34

4

-

-

3

4

×

×

đ	$\omega_{e} \times 10^{-12}$	$\omega_{i} \ge 10^{-12}$	$ω_{f} $ X 10 ⁻¹²
0.7496 x	1.800	0.477	0.884
0.9370 x	5.460	5.069	4.156
	5.400	5.068	4.127
	4.900	4.959	4.012
	4.450	4.049	3.450
	3.140	2.873	2.486
	3.080	2.868	2.380
	2.650	2.561	2.157
	2.110	1.126	1.201
	1.850	0.745	1.049
	1.770	0.563	0.921
0.1640 ŷ	5.790	5.272	4.316
	5.600	4.992	3.932
	4.500	4.267	3.603
	3.080	3.719	3.027
	2.900	2.667	2.315
	2.880	2.563	2.263
	1.900	2.510	2.082
	1.150	1.240	1.162
	0.710	i 0.362	i 0.126
	0.550	i 0.450	i 0.235
0.3281 ŷ	5.800	5.151	4.231
	5.500	5.110	4.018
	4.500	4.311	3.610

35

*

.

-

*

q ~	ω _e X 10 ⁻¹²	$\omega_{i} \ge 10^{-12}$	$ω_{f} x 10^{-12}$
0.3281 ŷ	3.110	3.620	2.982
	3.010	3.008	2.538
	2.680	2.648	2.112
	2.190	2.327	2.104
	2.010	2.092	1.965
	1.100	i 0.668	i 0.200
	0.940	i 0.822	i 0.429
0.4921 ŷ	5.800	5.238	4.127
	5.400	4.994	4.114
	4.530	4.362	3.618
	3.520	3.568	3.046
	2.850	3.517	2.938
	2.500	2.737	2.161
	2.500	2.419	2.128
	2.360	2.048	1.879
	1.120	i 0.883	i 0.173
	1.100	i 1.108	i 0.563
0.6561 ŷ	5.800	5.330	4.186
	5.200	4.861	4.048
	4.600	4.402	3.625
	4.050	3.958	3.383
	2.740	3.444	2.908
	2.600	2.801	2.190
	2.420	2.543	2.147

36

4

*

×

Y

Y

*

đ	$\omega_{e} \ge 10^{-12}$	$\omega_{i} \ge 10^{-12}$	$\omega_{f} \ge 10^{-12}$
0.6561 ŷ	2.420	1.759	1.633
	1.200	i 0.996	0.164
	1.100	i 1.238	i 0.639
0.8202 ŷ	5.800	5.363	4.212
	5.080	4.809	4.019
	4.670	4.418	3.628
	4.400	4.085	3.486
	2.760	3.418	2.898
	2.500	2.825	2.191
	2.400	2.579	2.155
	2.400	1.625	1.516
	1.200	i 1.026	0.265
	1.100	i 1.289	i 0.663
0.1388 ź	5.800	5.300	4.352
	5.570	4.919	3.879
	4.600	4.244	3.588
	3.200	3.808	3.080
	3.200	2.967	2.570
	2.650	2.466	2.024
	1.660	2.153	2.004
	0.850	1.084	0.955
	0.530	0.303	0,238
	0.530	i 2.573	0.089

. 1

37

*

-

*

*

X

Y

q ~	$\omega_e \times 10^{-12}$	$\omega_{i} \ge 10^{-12}$	$ω_{f} \ge 10^{-12}$
0.2776 ż	5.640	5.237	4.343
	5.370	4.851	3.829
	4.580	4.221	3.354
	3.500	3.928	3.165
	3.320	3.308	2.816
	2.250	2.307	1.892
	1.900	2.121	1.869
	1.900	1.685	1.689
	1.050	0.608	0.480
	1.050	i 0.477	0.206
0.4165 ź	5.450	5.091	4.275
	5.080	4.744	3.750
	4.540	4.178	3.504
	3.700	4.089	3.279
	3.600	3.594	3.029
	2.500	3.034	2.651
	2.080	2.083	1.704
	2.000	1.206	1.396
	1.390	0.916	0.729
	1.280	.i 0.618	0.367
0.5553 â	5.120	4.823	4.101
	4.580	4.604	3.648
	4.400	4.265	3.434
	4.180	4.106	3.404

38

~

*

×

YYY

q	$\omega_{e} \ge 10^{-12}$	$\omega_{i} \times 10^{-12}$	$\omega_{f} \ge 10^{-12}$
0.5553 ź	3.950	3.822	3.299
	3.250	3.801	3.202
	2.050	1.818	1.480
	1.850	1.224	1.101
	1.650	0.671	0.983
	1.480	i 0.632	0.575
0.6941 ź	4.750	4.441	3.782
	4.620	4.441	3.782
	4.200	4.399	3.530
	4.160	4.399	3.530
	3.950	3.990	3.336
	3.950	3.990	3.336
	1.890	1.528	1.236
	1.890	1.528	1.236
	1.650	i 0.390	0.824
	1.600	i 0.390	0.824

39

×

×

*

FOOTNOTES AND BIBLIOGRAPHY

- R. C. Weast, ed., <u>Handbook of Chemistry and Physics</u> (The Chemical Rubber Co., Cleveland, Ohio, 1966), 47th ed..
 Thid
- 2. Ibid.
- 3. C. B. Clark, private communication.
- 4. D. E. Thompson, "Lattice Dynamics in a Gallium Crystal Using the "6-exp" Potential" (Masters thesis, University of North Carolina at Greensboro, 1970), p. 21.
- 5. G. S. Pawley, Phys. Stat. Sol. 20, 347 (1967).
- 6. D. E. Thompson, p. 15.
- 7. Ibid., p. 36.
- 8. W. R. Busing, "Summary of Method of Least Squares" (unpublished article), p. 1.
- 9. C. B. Clark, private communication.
- 10. W. Reichardt, unpublished results obtained at Oak Ridge National Laboratories.
- W. Cochran and G. S. Pawley, Proc. Roy. Soc. <u>A280</u>, 6 (1964).
- 12. Pawley, p. 350.
- 13. Cochran and Pawley, p. 7.

14. Ibid., p. 5.

15. D. E. Thompson, p. 24.

16. Pawley, p. 350.

- 17. The Jacobi method for finding the eigen values of a real, symmetric matrix is discussed in A. Ralston, <u>A First</u> <u>Course in Numerical Analysis</u> (McGraw-Hill Book Co., New York, 1965), Chap. 10, pp. 487-492.
- 18. The program used for the computations is an adaptation of a program obtained from R. M. Nicklow of Oak Ridge National Laboratories.
- 19. C. Kittel, <u>Introduction to Solid State Physics</u> (John Wiley & Sons, Inc., New York, 1966), 3rd ed., Chap. 2, p. 53.

20. Ibid.

APPENDIX I

Analytical Calculations of Interatomic Force Constants

The force between a particular atom-atom pair may be derived from the "6-exp" interaction potential energy form

$$V = -\frac{A}{r}_{6} + Be^{-\alpha r}$$

using

$$\mathbf{F} = \hat{\mathbf{r}} \frac{\mathbf{V}}{\mathbf{r}} = -(\mathbf{x}_1 \hat{\mathbf{u}}_1 + \mathbf{x}_2 \hat{\mathbf{u}}_2 + \mathbf{x}_3 \hat{\mathbf{u}}_3)(6\frac{\mathbf{A}}{\mathbf{r}} - \mathbf{B} \mathbf{\alpha} e^{-\mathbf{\alpha} \mathbf{r}})$$
(1)

where \underline{F} is the force on the origin atom due to the source atom and \hat{u}_1 , \hat{u}_2 , and \hat{u}_3 are the unit vectors along the crystal axes (CA). The quantity (x_1, x_2, x_3) represents the X, Y, and Z co-ordinates, respectively, of the source atom relative to the origin atom in the co-ordinate system defined by the CA. Equation (1) may be written in component form as

$$\mathbf{F}_{i} = \mathbf{x}_{i} \mathbf{f}(\mathbf{r}) \tag{2}$$

where i = 1-3 and $f(r) = 6\frac{A}{r^8} - B\frac{\alpha}{r}e^{-\alpha r}$.

Displacing the source atom by an amount $d\underline{x} = \underline{y}$ produces a net unbalanced force on the origin atom. The components of the force may be written as

$$dF_{i} = \sum_{j} \frac{\partial F_{i}}{\partial x_{j}} U_{j}$$
(3)

where i and j = 1-3. Inserting Eq. (2) into Eq. (3) yields

$$dF_{i} = \sum_{j} \left(\frac{\partial x_{i}}{\partial x_{j}} f(r) U_{j} + x_{i} \frac{\partial f(r)}{\partial r} \frac{\partial r}{\partial x_{j}} U_{j} \right).$$

This may be written in a more compact form as

$$dF_{i} = \sum_{j} (\delta_{ij}f(r)U_{j} + x_{i}x_{j}g(r)U_{j})$$
(4)

where δ_{ij} is the Kronecker delta and $g(r) = \frac{1}{r} \frac{\partial f(r)}{\partial r}$.

The Hooke's Law coupling requires that the component forces on the origin atom be

$$dF_{i} = -\sum_{j} \phi_{ij} U_{j}$$
(5)

where ϕ_{ij} represent the elements of the force constant matrix and U_j is the displacement of the source atom. Comparing Eqs. (4) and (5) one obtains

$$\phi_{ij} = -\delta_{ij}f(r) - x_i x_j g(r)$$
(6)

where i and j = 1-3.

Equation (6) is derived on the basis of atomic displacements, which now must be related to generalized displacements of the source molecule. Translating the source molecule by an amount u produces a net translation of u for each of the component atoms. However, translating and rotating the source molecule produces a net translation of the component atoms which is different from that of the source molecule. The translation and rotation of the source molecule may be written as

$$u = u_1 \hat{u}_1 + u_2 \hat{u}_2 + u_3 \hat{u}_3$$
 (7)

and

$$\Psi_{2} = u_{4}\hat{u}_{4} + u_{5}\hat{u}_{5} + u_{6}\hat{u}_{6}, \qquad (8)$$

respectively, where \hat{u}_1 , \hat{u}_2 , and \hat{u}_3 represent the unit vectors along the CA and \hat{u}_4 , \hat{u}_5 , and \hat{u}_6 represent the unit vectors along the principal axes (PA) of the source molecule as defined in Fig. 6. The net translation of an atom is given by

$$U = u + \mathcal{Y} X R \tag{9}$$

where \mathbb{R} is defined in Fig. 6 and $\mathcal{Q} \times \mathbb{R}$ is the translation of the atom due to the rotation of the molecule. It is most appropriate to write \mathbb{U} in terms of the CA and therefore necessary to convert the PA unit vectors into components involving the CA unit vectors. One obtains from analysis of Fig. 6 the following:

> $\hat{u}_4 = \hat{u}_1$ $\hat{u}_5 = -\hat{u}_2 \sin \Theta s + \hat{u}_3 \cos \Theta s$ $\hat{u}_6 = \hat{u}_2 \cos \Theta s + \hat{u}_3 \sin \Theta s$

where Θ s is the equilibrium inclination of the source molecule relative to the \hat{u}_2 crystal axis. Therefore, in terms of the CA, φ is given by

 $\varphi = u_4 \hat{u}_1 + (u_6 \cos \Theta s - u_5 \sin \Theta s) \hat{u}_2 + (u_6 \sin \Theta s + u_5 \cos \Theta s) \hat{u}_3$

Fig. 6. A diagram defining the co-ordinate systems of the origin and source molecules.

and

$$\varphi \mathbb{X} \mathbb{R} = -u_5 (\mathbb{Z} \sin \Theta s + \mathbb{Y} \cos \Theta s) \hat{u}_1 - u_4 \mathbb{Z} \hat{u}_2 + u_4 \mathbb{Y} \hat{u}_3 \qquad (10)$$

where Y and Z are the co-ordinates of the source atom relative to the center of the source molecule in terms of the CA co-ordinate system. Equations (7), (9), and (10) give the net translational components of the source atom relative to the CA in terms of molecular displacement as

$$U_{1} = u_{1} - u_{5}(Z \sin \Theta s + Y \cos \Theta s)$$

$$U_{2} = u_{2} - u_{4}Z$$
 (11)

$$U_{3} = u_{3} + u_{4}Y.$$

Equations (4) and (11) give the component forces on the origin atom due to the translation of the source atom resulting from the displacement of the source molecule. The component forces are of the form

$$dF_{i} = -\sum_{j} \phi_{ij} u_{j}$$
(12)

where i = 1-3, j = 1-5, and u_j represent the displacement components of the source molecule. The elements of the interatomic force constant matrix are given by

a. i = 1-3 and j = 1-3

$$\phi_{ij} = -\delta_{ij}f(r) - x_i x_j g(r)$$

i = 1 - 3

Ъ.

$$\phi_{i4} = \phi_{i3}Y - \phi_{i2}Z$$

$$\phi_{i5} = -(Y \cos \Theta s + Z \sin \Theta s)\phi_{i1}.$$

The contribution to the net unbalanced torque on the origin molecule made by the force on a single atom in the origin molecule is obtained from

$$dT = Ro X dF$$

where Ro is the position of the origin atom relative to the center of the origin molecule (Fig. 6) and dF is the net unbalanced force on the origin atom due to the displacement of the source atom. The resulting torque in terms of the CA is

$$dT = (Yo \ dF_3 - Zo \ dF_2)\hat{u}_1 + Zo \ dF_1\hat{u}_2 - Yo \ dF_1\hat{u}_3$$
 (13)

where Yo and Zo are the co-ordinates of the origin atom relative to the center of the origin milecule (Fig. 6). It is more useful to know the torque contribution in terms of the PA of the origin molecule. Therefore, the CA must be written in terms of the PA of the origin molecule. One obtains from analysis of Fig. 6, the following:

$$\hat{u}_{1} = \hat{u}_{4}^{0}$$

$$\hat{u}_{2} = \hat{u}_{6}^{0}\cos \theta \circ - \hat{u}_{5}^{0}\sin \theta \circ$$

$$\hat{u}_{3} = \hat{u}_{5}^{0}\cos \theta \circ + \hat{u}_{6}^{0}\sin \theta \circ$$
(14)

where \hat{u}_4^0 , \hat{u}_5^0 , and \hat{u}_6^0 represent the PA of the origin molecule and Θo is the equilibrium angle of inclination of the origin molecule relative to the \hat{u}_i crystal axis (Fig. 6). Equations (13) and (14) enable one to write the torque in terms of the PA of the origin molecule as

 $dT = (Yo dF_3 - Zo dF_2)\hat{u}_4 - (Yo \cos \Theta + Zo \sin \Theta)dF_1\hat{u}_5$ which in component form may be written

$$dF_4 = Yo \ dF_3 - Zo \ dF_2$$
$$dF_5 = -(Yo \ \cos \Theta o + Zo \ \sin \Theta o)dF_1.$$

Equation (12) enables one to rewrite the component equations as

$$dF_4 = \sum_j (Zo \phi_{2j} - Yo \phi_{3j})u_j$$

and

$$dF_5 = \sum_{j} (Y_0 \cos \theta_0 + Z_0 \sin \theta_0) \emptyset_{1j} u_{j}$$

where j = 1-5. Comparing the two preceding equations to the form of Eq. (12), it is clear that for j = 1-5

$$\phi_{4,i} = Yo \phi_{3,i} - Zo \phi_{2,i}$$

and

$$\emptyset_{5j} = -(Y_0 \cos \Theta_0 + Z_0 \sin \Theta_0) \emptyset_{1j}$$
.

APPENDIX II

Determination of Self Force Constants

The Hooke's Law approximation requires that the net unbalanced force on the origin molecule be of the form

$$\mathbb{E}_{j} = -\sum_{j'} \bigotimes_{=}^{\infty} (jj') u_{j'},$$

where the sum includes j'=j. Therefore the equation may be rewritten as

$$\mathbb{E}_{j} = -\sum_{j'} \bigotimes_{=}^{\infty} (jj') u_{j'} - \bigotimes_{=}^{\infty} (jj) u_{j}$$

where j' \neq j. The second term in the preceding equation is called the "self" force term and results from the displacement of the origin molecule while the source molecules are undisturbed. The "self" force expression is best treated in terms of displacements of the source molecules. Clearly, translation of the origin molecule while the source molecules are undisturbed has the same effect as holding the origin molecule fixed and translating all source molecules in the opposite direction. If, however, the origin molecule is rotated by an amount \mathscr{G}_j then the corresponding displacement of the source molecules is given by a rotation, $-\mathscr{G}_j$, plus a translation, $-\mathscr{G}_j \times \mathfrak{T}_j$, where \mathfrak{T}_j , is the vector connecting a source molecule to the origin molecule. If \mathbb{Y}_j represents the translation of the origin molecule then the "self" force may be written in terms of the source molecule displacements as

$$- \bigotimes_{\approx} (jj) \underset{j}{u}_{j} = - \sum_{j'} \bigotimes_{\approx} (jj') (- \underbrace{v}_{j} - \underbrace{\varphi}_{j} \times \underbrace{r}_{j'} - \underbrace{\varphi}_{j})$$
(1)

where

and where \hat{u}_1 , \hat{u}_2 , and \hat{u}_3 are the unit vectors along the crystal axes (CA) and \hat{u}_4^0 , \hat{u}_5^0 , and \hat{u}_6^0 are the unit vectors along the principal axes (PA) of the origin molecule. H, K, and L are integers and a, b, and c are the lattice constants. Since $-\varphi_j X r_j$, represents a translation, it is convenient to evaluate it in terms of the CA. From analysis of Fig. 6 in APPENDIX I it is clear that

$$\hat{\mathbf{u}}_{4}^{0} = \hat{\mathbf{u}}_{1}$$
$$\hat{\mathbf{u}}_{5}^{0} = -\hat{\mathbf{u}}_{2}\sin \Theta + \hat{\mathbf{u}}_{3}\cos \Theta$$

and

$$\hat{u}_6^0 = \hat{u}_2 \cos \Theta + \hat{u}_3 \sin \Theta o$$
.

This enables one to write $-\varphi_j X r_j$, in terms of the CA as

$$- \varphi_{j} X r_{j} = (u_{5}^{0}(K_{2}^{b}\cos\theta_{0} + L_{2}^{c}\sin\theta_{0}))\hat{u}_{1} + (L_{2}^{c}u_{4}^{0} - H_{2}^{a}u_{5}^{0}\cos\theta_{0})\hat{u}_{2}$$
(3)
$$- (K_{2}^{b}u_{4}^{0} + H_{2}^{a}u_{5}^{0}\sin\theta_{0})\hat{u}_{3}$$

where terms involving u_6^0 have been neglected because rotations about the dumbbell axis have no effect on the system. Go is the equilibrium inclination of the origin molecule relative to the b crystal axis and is positive for type A origin molecules and negative for type B origin molecules. The "self" force is written in terms of displacements of the source molecules and therefore the rotational displacements must be expressed in terms of the PA of the source molecules while the translational displacements are expressed in terms of the CA. For origin and source molecules that are alike, the two sets of PA are always parallel. Thus, angular displacements are the same relative to either set of PA. Therefore, $\mathcal{Y}_j = u_4^{\circ}\hat{u}_4 + u_5^{\circ}\hat{u}_5$ where angular displacements about the \hat{u}_6 or dumbbell axis are neglected. For unlike origin and source molecules, however, the PA of the origin molecule must be converted to the PA of the source molecule. This is done by expressing the PA of the origin molecule in terms of the CA and then converting the CA to PA of the source molecule. The results are

 $\hat{u}_{4}^{0} = \hat{u}_{4}$

and

$$\hat{u}_5^0 = \cos 2\theta \ \hat{u}_5$$

where Θ is the magnitude of the equilibrium inclination of the origin and source molecules. Components involving rotations about the dumbbell axis have been omitted. Thus, for unlike interactions

$$\mathcal{L}_{j} = u_{4}^{0}\hat{u}_{4} + u_{5}^{0}\cos 2\theta \hat{u}_{5}.$$

By substituting Eqs. (2) and (3) into Eq. (1) and performing the indicated matrix multiplication, it is possible to determine the "self" force constants by comparing the coefficients of u_i^0 . The results for the various interactions are given below.

> type A origin molecules ($\Theta o = \Theta$) i = 1-5 and k = 1-3

$$\emptyset_{ik}(jj) = -\sum_{j'} \emptyset_{ik}$$

 $i = 1-5$

a.

1.

2.

$$\emptyset_{i4}(jj) = -\sum_{i'} (\emptyset_{i4} - \emptyset_{i2}L_2^c + \emptyset_{i3}K_2^b)$$

(Both sums are over types A and B source molecules.)

52

3. i = 1-5

$$\begin{split} \phi_{i5}(jj) &= -\sum_{j'} (\phi_{i5} - \phi_{i1}(K_2^b \cos \theta + L_2^c \sin \theta) \\ &+ \phi_{i2}H_2^a \cos \theta + \phi_{i3}H_2^a \sin \theta) \\ &- \sum_{j'} (\phi_{i5} \cos 2\theta - \phi_{i1}(K_2^b \cos \theta + L_2^c \sin \theta) + L_2^c \sin \theta) + \phi_{i2}H_2^a \cos \theta + \phi_{i3}H_2^a \sin \theta \end{split}$$

(The first and second sums are over types A and B source molecules, respectively.)

b. type B origin molecules ($\Theta o = -\Theta$)

1. i = 1-5 and k = 1-3

 $\emptyset_{ik}(jj) = -\sum_{j'} \emptyset_{ik}$ 2. i = 1-5

$$\phi_{i4}(jj) = - \sum_{j'} (\phi_{i4} - \phi_{i2}L_2^c + \phi_{i3}K_2^b)$$

(Both sums are over types A and B source molecules.)

$$\begin{split} \emptyset_{15}(jj) &= -\sum_{j'} (\emptyset_{15} \cos 2\theta - \emptyset_{11}(K_2^b \cos \theta - L_2^c \sin \theta) + \emptyset_{12}H_2^a \cos \theta - \emptyset_{13}H_2^a \sin \theta) \\ &- \sum_{j'} (\emptyset_{15} - \emptyset_{11}(K_2^b \cos \theta - L_2^c \sin \theta) + \emptyset_{12}H_2^a \cos \theta - \emptyset_{13}H_2^a \sin \theta) \end{split}$$

(The first and second sums are over types A and B source molecules, respectively.)

-

-

 \emptyset is written on the right hand side of the above equations to represent $\emptyset(jj')$. H, K, and L are integers and Θ o is the angle that the dumbbell axis of the origin molecule makes with the b crystal axis.

~

*

-

-

~

Y

APPENDIX III

Symmetry of the Gallium Lattice

Symmetry requires that the force constant matrices for a particular pair of interactions be related by

$$\overset{\circ}{\underset{\approx}{\Sigma}} ^{\prime} = \overset{\circ}{\underset{\approx}{\Sigma}} \overset{\circ}{\underset{\approx}{\Sigma}} \overset{\circ}{\underset{\approx}{\Sigma}}$$
 (1)

where \emptyset' is the force constant matrix for one interaction and ϕ is the force constant matrix for the other. I is a six dimensional transformation matrix formed from S, the three dimensional rotation matrix for polar vectors. If det S = 1 (S performs a proper rotation), S is appropriate for transforming both polar and axial vectors. However, if det S = -1 (S performs an improper rotation), -S is needed in transforming the axial vectors. Therefore, 5 det 5 may always be used for transforming axial vectors if they are expressed relative to the same orthogonal co-ordinate system as the polar vectors. For this study of gallium, the polar vectors (translations) are measured relative to the crystal axes (CA) and the axial vectors (rotations) are measured relative to the principal axes (PA) of the source molecule. Therefore, if S is expressed relative to the CA, \mathbb{S}_{2} det \mathbb{S} must be transformed to the PA system before using it with axial vectors whose components are taken along the PA. Consider the axial vector r with respect to the CA.

55

It transforms to PA according to

$$r_{PA} = ar_{CA}$$
(2)

where

$$a = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix}.$$
 (Fig. 7)

If § is the rotation matrix which transforms the polar vector y into the polar vector y' then r is transformed into r' according to

$$\mathbf{r}_{CA}^{\prime} = S \det S \mathbf{r}_{CA}. \tag{3}$$

The general form of Eq. (2) requires that

$$\mathbf{\tilde{r}}_{\mathrm{PA}}^{\prime} = \mathbf{a}\mathbf{\tilde{r}}_{\mathrm{CA}}^{\prime}.$$
 (4)

Equations (2), (3), and (4) then yield

$$r_{PA}^{i} = a S det S r_{CA}$$

and

$$r'_{PA} = a s det s a^{-1} r_{PA}$$
.

Therefore, the correct form of the symmetry transformation is

56

-

~

mer,

 $(\hat{u}_4, \hat{u}_6, \hat{u}_5)$ represent the principal axes.)

×

XXX

58

-

-

-

For the gallium lattice there are three lattice symmetry operations which yield all the information needed to reduce to a minimum the number of independent elements in the intermolecular force constant matrix. Two are discussed by Cochran and Pawley¹¹ and the third by Pawley¹². The class A symmetry operation designates that which brings the j and j' molecules into self-coincidence as in the case of molecules located in a mirror plane perpendicular to the a crystal axis. Clearly the operation leaves the interaction between the j and j' molecules unchanged. Thus, Eq. (1) may be applied to give

$$\emptyset(jj') = \underline{T}\emptyset(jj')\underline{T}$$
(6)

Specifically, consider a mirror plane through the origin perpendicular to the a crystal axis. The reflection operation reverses the x co-ordinate so that

$$S_{\widetilde{\omega}} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

and

$$a_{\infty} \sum_{n=1}^{\infty} \det \sum_{n=1}^{\infty} a_{n}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

Therefore, the symmetry transformation matrix is given by

	[-1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0				
	0	1	0	0	$\begin{array}{cccccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{array}$		
Ψ -	0	0	1	0	0	0	
ź –	0	0	0	1	0	0	
	0	0	0	0	-1	0	
	6	0	0	0	0	-1]	

For a j molecule and a j' molecule located in the b-c plane (the mirror plane) the interaction is unchanged by the operation. Thus, Eq. (6) yields

Ø11	Ø ₁₂	Ø ₁₃	Ø ₁₄	Ø ₁₅	Ø16		Ø ₁₁	-ø ₁₂	-ø ₁₃	-ø ₁₄	Ø ₁₅	Ø16]
Ø21	Ø ₂₂	Ø ₂₃	Ø ₂₄	Ø ₂₅	Ø ₂₆		-Ø21	Ø22	Ø23	Ø ₂₄	-ø ₂₅	-ø ₂₆
Ø31	Ø ₃₂	Ø ₃₃	Ø ₃₄	Ø ₃₅	Ø36	-	-Ø31	Ø32	Ø33	Ø ₃₄	-ø ₃₅	-ø ₃₆
Ø ₄₁	ϕ_{42}	Ø ₄₃	Ø ₄₄	Ø ₄₅	Ø ₄₆		-Ø ₄₁	Ø ₄₂	Ø ₄₃	Ø ₄₄	-ø ₄₅	-ø ₄₆
Ø ₅₁	Ø ₅₂	Ø ₅₃	Ø ₅₄	Ø ₅₅	ø ₅₆		Ø ₅₁	-ø ₅₂	-ø ₅₃	-ø ₅₄	Ø ₅₅	Ø ₅₆
Ø61	ø ₆₂	ø ₆₃	Ø ₆₄	Ø ₆₅	ø ₆₆		Ø ₆₁	-ø ₆₂	-ø ₆₃	-ø ₆₄	ø ₆₅	ø ₆₆]

Comparing elements, it is obvious that the above is true if and only if

59

~

-

-

-

-

-

Equation (7) is the general form of the force constant matrix for intermolecular interactions between molecules located in the b-c plane. Class B symmetry designates an inversion through a center (such as the origin) so that the interaction between a j molecule located at the origin and a j' molecule located at (x,y,z) is transformed into the interaction between the origin molecule and the -j' molecule located at (-x,-y,-z). Equation (1) may be written for class B symmetry as

The inversion operation reverses the co-ordinates of any polar vector so that

$$\mathbf{S}_{\approx} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

and

60

-

÷.

-

$$a_{\#} \underset{\approx}{S} \det \underset{\approx}{S} a^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

The symmetry transformation matrix is given by

	-1	0	0	0	0	0]	
-	0	-1	0	0	0	0	
n	0	0	-1	0	0	0	č
	0	0	0	1	0	0	= 🖓 .
	0	0	0	0	1	0	
	0	0	0	0	0	1	

Applying Eq. (8) yields the result that

where the ϕ_{ik} within the brackets represent $\phi_{ik}(Oj')$. By considering interactions in the b-c plane Eq. (7) may be applied to give 61

4

Y Y Y Y

×

1 A A A

Y Y

XXY

Inversion symmetry for interactions between like molecules exhibits the property of translational invariance as defined by Cochran and Pawley.¹³It is expressed simply as

$$\overset{\emptyset}{\approx} (0-j') = \overset{\emptyset}{\approx} (j'0).^*$$

It can be shown that

$$\underset{\approx}{\emptyset}(j'j) = \underset{\approx}{\widetilde{\emptyset}}(jj').^{14}$$

Therefore, for interactions between like molecules Eq. (9) may be equated to $\tilde{\varrho}(0j')$ to yield

It should be noted that D. E. Thompson¹⁵assumed this property to be valid for all interactions. This resulted in the misinterpretation of the symmetry properties.

62

4

-

-

-

By again considering interactions in the b-c plane Eq. (11) is reduced to

Class C symmetry, as defined by Pawley¹⁶, relates the interaction matrix for an A-B interaction to that for a B-A interaction. It is best illustrated by the screw-diad operation which transforms the molecule pair j-j' into the molecule pair j'-j" (These are represented in Fig. 5 of CHAPTER I.) Since j represents the molecule located at the origin and j' and j" represent the molecules located at r_{j} , and r_{j} ", respectively, Eq. (1) may be written as

where $\underline{\mathbf{T}}_{z}$ is the screw-diad symmetry transformation. If $\underline{\mathbf{S}}_{z}$ represents the operation that transforms $\underline{\mathbf{r}}_{j}$, into $\underline{\mathbf{r}}_{j}$, $-\underline{\mathbf{r}}_{j}$, then $\underline{\mathbf{r}}_{j}$, $= \underline{\mathbf{r}}_{j}$, $+ \underbrace{\mathbf{S}}_{z} \underline{\mathbf{r}}_{j}$. Therefore Eq. (12) may be written as

$$\bigotimes_{\approx}^{\emptyset}(\underline{r}_{j}, \underline{r}_{j}, + \bigotimes_{\approx}^{\Sigma} \underline{r}_{j}) = \underbrace{\mathrm{T}}_{\approx}^{\emptyset}(\mathrm{O}\underline{r}_{j},)\underbrace{\mathbb{T}}_{\approx}^{\Sigma}.$$
 (13)

63

Since r_j , + sr_j , is a lattice translation vector, - $(r_j$, + sr_j ,) may be added to the expressions in parenthesis on the left hand side of Eq. (13) to give

$$\underbrace{ \emptyset}_{\mathbb{Z}} (- \underbrace{ \mathbb{S}}_{\mathbb{Z}} \mathbf{r}_{j}, \mathbf{0}) = \underbrace{ \mathbb{T}}_{\mathbb{Z}} \underbrace{ \emptyset}_{\mathbb{Z}} (\mathbf{0} \mathbf{r}_{j}, \mathbf{)}_{\mathbb{Z}} = \underbrace{ \emptyset}_{\mathbb{Z}} (\mathbf{0} - \underbrace{ \mathbb{S}}_{\mathbb{Z}} \mathbf{r}_{j}, \mathbf{)}.$$
 (14)

Using the property of class B symmetry given by Eq. (8), it is clear that

$$\widetilde{\widetilde{g}}(\mathbf{O}-\widetilde{\mathbf{S}}\mathfrak{r}_{j},) = \widetilde{\mathfrak{I}}\widetilde{\widetilde{g}}(\mathbf{O}\widetilde{\mathbf{S}}\mathfrak{r}_{j},)\widetilde{\widetilde{\mathfrak{I}}}$$
(15)

where

	-1	0	0	0	0	0
_	0	-1	0	0	0	0
-	0	0	-1	0	0	0
= 1 =	0	0	0	1	0	0
	0	0	0	0	1	0
	0	0	0	0	0	1

as developed for an inversion through the origin. Therefore, Eqs. (12), (14), and (15) give

where $\emptyset(j'j'')$ represents the interaction matrix for any

64

-

1 Y Y
A-B or B-A interaction and $\oint_{z}^{o}(jl')$ represents the interaction matrix for any corresponding B-A or A-B interaction. The result of this relationship is given by

If interactions in a plane perpendicular to the a crystal axis are considered, class A symmetry requires that

The terms within the brackets of the above two equations represent elements of $\oint_{i=1}^{\infty} (jl')$. Note that all through this appendix the matrices are 6X6. They are reduced to 5X5 when used because there is no coupling about the dumbbell axis of gallium.

65

-

-

APPENDIX IV

Programming Considerations

All computations were made by the IBM 360/75 computer located at Triangle Universities Computation Center in Durham, North Carolina. Entrance into the computer was gained through the IBM 2780 terminal system located on the campus of the University of North Carolina at Greensboro. The computer program is divided into five main sections:

- a. Calculation and storage of the intermolecular and "self" force constants for like interactions.
- b. Calculation and storage of the intermolecular and "self" force constants for unlike interactions.
- c. Calculation of the dynamical matrix elements.
- d. Solving the dynamical matrix for its frequency eigenvalues.
- e. Comparing the calculated dispersion curves to the experimental dispersion curves, using the "Least Squares" criteria for determining the best set of model parameters.

The intermolecular force constants are calculated using three nested do-loops in each section a. and b. to select values of h, k, and l representing a specific molecule-molecule interaction. The interatomic force -

-

constants for the four possible combinations of the origin and source atoms are calculated * and summed to give a specific intermolecular force constant which is then stored. This is done for all specified values of h, k, and l. The intermolecular force constants are then used to calculate the "self" force constants, which are then stored. The intermolecular and "self" force constants are then used in calculating the elements of the dynamical matrix for a specific wave vector, \underline{q} , which enters through $e^{i\underline{q}\cdot\underline{r}}$, where \underline{r} is the location of the source molecule relative to the origin molecule.

The eigenvalues of the dynamical matrix are then found for each q value using a subroutine, JACOBI, obtained from Oak Ridge National Laboratories.¹⁷

After all eigenvalues are calculated they are compared to the experimental eigenvalues using another program obtained from Oak Ridge National Laboratories. The program uses the method of "Least Squares" as outlined in Chap. II to determine a set of model parameters which produce dispersion curves similar to the experimental curves.¹⁸

A listing of the completed program follows.

The expressions used in calculating the interatomic force constants were not the same as given in APPENDIX I. They differ in sign, however, this does not affect the final dynamical matrix eigenvalues.

\$ JOB	ECS.UNCG.PY620069/FREEMAN.KP=29.TIME=960.PAGES=100
C	AL IS THE LENGTH OF THE UNIT CELL IN THE X DIRECTION
C	BL IS THE LENGTH OF THE UNIT CELL IN THE Y DIRECTION
C	CL IS THE LENGTH OF THE UNIT CELL IN THE 7 DIRECTION.
C	PX(1), PX(2), AND PX(3) ARE
C.	THE PARAMETERS A. B. AND ALPHA
č	BM(1) . BM(2) . AND BM(3) ARE MASS OF CALLTUM MOL
C.	BM(4) AND BM(5) ARE MOMENTS OF INEPTIA APOUL
C	THE PRINCIPAL AXES OF THE CALLTUM MOLECULE
C	X(1) IS THE X CO-ORD, OF THE SOUR ATOM RELTY TO
ć	THE DRIGIN ATOM.
C	X(2) IS THE V CO-OPD OF THE COUP ATOM OF TY TO
c	THE ORIGIN ATOM.
C	X(3) IS THE 7 CO-OPD, OF THE SOUR ATOM DELTH TO
C	THE ORIGIN ATOM
C	Y(4) IS THE DISTANCE BETHEEN THE SOUR ATOM AND
C	THE ORIGIN ATOM
C	YO IS Y CO-ORD, OF ORIC ATM RELTY TO CENT OF
C	ORIGIN MOLECHIE
C	TO IS 7 CO-ORD, OF ORIG, ATM, RELTY TO CENT OF
C	THE OPICIN MOLECULE
C	VS IS V CO-OPD OF SOUR ATM DELTV TO CENT OF
C	THE SOURCE MOLECULE
C	75 IS 7 CO-ORD, OF SOUR, ATM RELTY TO CENT OF
c	THE SOURCE MOLECULE.
č	THETAD IS ANGL BIWEEN DUMBBELL AXIS DE
C	THE OPIGIN MOLECULE AND THE BLAYIS
C	THETAS IS ANGL BIWEEN DUMBBELL AVIS DE
C	THE COUPE MOLECHIEL BUILDE BUI
C	OWILL PEDDECENT THE INCIDENT WAVE VECTORS
ć	RI(1) IS THE X COMPONENT OF SEPARATION OF
C	THE OPICIN AND SOURCE MOI ECULES.
č	RI(2) IS THE Y COMPONENT OF SEPARATION OF
C	THE ORIGIN AND SOURCE MOLECULES.
c	PIZAL IS THE 7 COMPONENT OF SEPARATION OF
C	THE OPICIN AND SOUDCE MOLECILLES.
C	ADHI(I.I) REDRESENT THE ELEMNTS OF THE
C	INTERATORIC EORCE CONSTANT MATRIX
C	DHILL IN REDRESENT THE ELEMENTS OF THE
C	INTERMOLECIILAR EORCE CONSTANT MATRIX.
C	PSAA(1.1) ARE FLEMNTS OF THE
C	SELE EORCE CONSTANT MATRIX FOR A-A INTERACTIONS.
C	PSAB(I.I) ARE FLEMNTS OF THE
C	SELE EORCE CONSTANT MATRIX FOR A-B INTERACTIONS.
C	PSBB(I.I) ARE FLEMNTS OF THE
c	SELE EORCE CONSTANT MATRIX FOR B-B INTERACTIONS.
C	PSBA(1.1) ARE ELEMNTS OF THE
C	SELE EDRCE CONSTANT MATRIX FOR B-A INTERACTIONS.
C	PSA(I,I) = PSAA(I,I) + PSAB(I,I)
č	$PSB(I_{\bullet}I) = PSBB(I_{\bullet}J) + PSBA(I_{\bullet}J)$
c	AAPHIC(I. I.H.K.I.) IS ARRAY FOR
v	ANTITUTION INTEL TO ANTAL TON

с	STORING FORCE CONSTANTS OF A-A INTERACTIONS.
С	ABPHIC(1, J, H, K, L) IS ARRAY FOR
С	STORING FORCE CONSTANTS OF A-B INTERACTIONS
C.	BBPHIC(I.J.H.K.I) IS ARRAY FOR
Č.	STORING FORCE CONSTANTS OF B-B INTERACTIONS
C	BAPHIC (I. I.H.K.I.) IS APPAY FOR
	STOPING EORCE CONSTANTS OF DA INTEDACTIONS
6	ADSALL IN IS ADDAY FOR STONE OF B-A INTERACTIONS.
	APSALI, JI IS ARRAY FUR STRNG SLF FRCE CNSTS OF
-	TYPE A URIGIN MULECULES.
	BPSB(1,J) IS ARRAY FUR STRNG SLF FRCE CNSTS FOR
-	TYPE B URIGIN MULECULES.
	D(I, J) REPRESENT ELEMNTS OF THE DYNAMICAL MTRX.
	EVSQ(1, J) REPRESENT EIGEN VALUES OF DYNMICAL MTRX.
	EV(I, J) REPRESENT THE CALCULATED FREQUENCIES.
	IMPLICIT REAL*8 (A-G,O-Z)
	INTEGER HMAX
	DIMENSION VV(3,3), APX(3), DX(10,15,3), X(10,15), AV(10,15)
	DIMENSION Y(10,15), RM(3,3), W(10,15), WW(10,15), RMI(3,3)
	DIMENSION V(10,15), EV(10,15), PX(3), DEPX(3,3), A(3,6)
	DIMENSION BM(5),QW(3),EVSQ(10,15),Z(15)
	COMMON/BLK1/AL,BL,CL,Q,P,FR,GR,QW,JI
	COMMON/BLK6/YF.ZF.AM.BM.HMAX.KMAX.LMAX
	COMMON/BLK7/PX .NN .NTRL(3) .NCODE(15)
	DATA BR1/1/10011/-BR2/1/01011/-BR3/1/00111/
	READ(1.1004)AL.BL.CL
	READ(1,1005)VE-7E
	DEAD(1 1006)DV(1) DV(2) DV(2)
	READ(1,1000/PA(1),PA(2),PA(3)
	READ(1,1004)AM
	READ(1,1007)M,NN,KK
	READ(1,1007)NTRL(1),NTRL(2),NTRL(3)
	READ(1,105)((V(I,J),W(I,J),Z(J),NCODE(J),J=1,M),I=1,10)
105	FORMAT(D20.12,F5.3,D20.12,I3)
1004	FORMAT(3D20.12)
1005	FORMAT(2F10.6)
1006	FORMAT(2D20.12,F10.6)
1007	FORMAT(313)
	WRITE(3,1000)AL,BL,CL
	WRITE(3,1010)YF,ZF
	WRITE(3,1004)AM
	WRITE(3.1020)HMAX.KMAX.LMAX
	WRITE(3,1008)PX
1008	FORMAT(! PX(1)='.D20.12.2X. 'PX(2)='.D20.12.2X. 'PX(3)
1000	EOPMAT(1 A) = 1. E8. 5. 2X. 181 = 1. E8. 5. 2X. 1(1 = 1. E8. 5. 2X)
010	EODMAT(1 VE=1.58.5.2% 17E=1.58.5.2%)
010	EODMAT(1 11- 1100) 2/4 2/4 1/000 2/2/7
1020	FORMAT(10 MMAX=',14, 'KMAX-',14, 'LMAX-',14)
1003	
	WRITE(3,1003)

	DO 50 I=1.10
121	X(I,J) = V(I,J) * * 2
	$W(I \cdot J) = W(I \cdot J) * V(I \cdot J)$
	WW(I,J)=1.0/(W(I,J)*2*V(I,J))**2
50	AV(I,J)=V(I,J)**2
	K=NN
	KK=0
	DO 5 I=1,K
	IF(NTRL(I).EQ.1)KK=KK+1
5	CONTINUE
	KN=0
	YY=1.004
41	
01	
	00 1 11=1-3
	$IF(JI_{0}FO_{0})MN=1$
	IF(JI-FQ-1)NM=5
	IF(JI.EQ.2)MN=6
	IF(JI.EQ.2)NM=10
	IF(JI.EQ.3)MN=11
	IF(JI.EQ.3)NM=15
	DO 1 J=MN,NM
	JCOUN=JCOUN+1
	QW(JI)=Z(J)
	CALL HFIT(J,X,DX)
	DO 1 I=1,10
	Y(I,J) = X(I,J) - AV(I,J)
	XX=XX+WW(1,J)*Y(1,J)**2
1	
	IF(XX-YY)66.66.109
66	WRITE(3.27)XX.KN
27	FORMAT(' XX=',D20.12,4X, 'KN=',I3)
	WRITE(3,110)(I,PX(I),I=1,NN)
110	FORMAT(3(' PX(', 12, ')=', D20.12, 2X))
	DO 113 J=1,M
	DO 113 I=1,10
	IF(X(I,J))97,97,98
97	EV(I,J) = -DSQRT(-X(I,J))
~ ~	
98	
115	
	IEINC EC 1)BR=BR1
	IF(NC_FO_2)BR=BR2
	TE(NC-EQ-3)BR=BR3
	WRITE($3 \cdot 124$)BR $\cdot Z(J)$
124	FORMAT(1H0.5X.A5.1X. 'Q=',D20.12)

	WRITE(3,125)(I,J,V(I,J),I,J,W(I,J),I,J,EV(I,J),I=1,10)
125	FORMAT(' V(', I2, ', I2, ')=', D20.12, 2X, 'W(', I2, ', ', I2
	2, ')=', F5.3, 5X, 'EV(', I2, ', ', I2, ')=', D20.12)
130	CONTINUE
	IF(DABS(1.DO-XX/YY)-1.D-5)131,131,60
60	DO 45 I=1,K
	DO 45 J=1,K
	RM(I,J)=0.0
45	VV(I,J)=0.0
	DO 30 J=1,M
	DO 30 I=1,10
	DO 30 II=1.KK
	DD 29 JJ=1.KK
29	RM(II,JJ) = RM(II,JJ) + DX(I,J,I) + DX(I
30	$VV(II \cdot 1) = VV(II \cdot 1) = DX(I \cdot 1 \cdot II) * V(I \cdot 1) * WW(I \cdot 1)$
	KKK=2*KK
	CALL DELPX(RM.VV.DEPX.KK.KKK.RMI.A)
	YY=XX
	KN=-1
109	KN=KN+1
	IF(KN-1)77.74.74
74	IF(KN-5)76-76-78
77	D0 54 I=1.K
54	APX(I) = PX(I)
76	NK=0
	DO 85 I=1.K
	1E(NTRI(1))85,85,84
84	NK=NK+1
01	$PX(I) = \Delta PX(I) + DEPX(NK - 1)$
85	
05	
70	
27	EODMAT(IODID NOT CONVERCE!)
51	WRITE(3.27)XX.KN
121	STOD
151	END
	INTEGER HMAX
	DIMENSION DY(10,15,3),Y(10,15),X1(10,15),RM(5)
	DIMENSION DRY(3), DY1(3), OW(3), EVSO(10, 15), PX(3)
	COMMON/DLKO/TF (2) ANTOL (3) NCODE(15)
	COMMON/BLK8/ICOUN-KCOUN-ICOUN
	00 78 I=1.10
70	Y1(1, 1)=Y(1, 1)
10	ATT 1907-ATT 907

		F=-1.0D-3
		DO 77 N=1-K
	77	PX1(N) = PX(N)
		NNK=0
		DO 76 N=1.K
		IE(NTRL(N))76.76.70
	70	NNK=NNK+1
		DPX(N) = PX(N) * E
		IF(DABS(DPX(N))-1.D-7)71.71.72
	71	DPX(N)=1.0D-7
	72	PX1(N) = PX(N) + DPX(N)
		KCOUN=1
		CALL FREQC(PX1,J,X1)
		DO 75 I=1,10
	75	DX(I, J, NNK) = (X1(I, J) - X(I, J)) / DPX(N)
		PX1(N) = PX(N)
	76	CONTINUE
		RETURN
		END
		SUBROUTINE DELPX(RM,VV,DEPX,KK,KKK,RMI,A)
		IMPLICIT REAL*8 (A-H,O-Z)
		DIMENSION RM(KK,KK),RMI(KK,KK),VV(KK,KK)
		DIMENSION DEPX(KK,KK),A(KK,KKK)
		CALL MINV(A,RM,RMI,KK,KKK,IJ)
		CALL MPRD(RMI,VV,DEPX,KK)
		RETURN
c		THIS DECEMENT DEPENDENCE THE ENLIGHTING OPERATION: A*B=C
C		INTIC THE ODDED OF THE MATRICES
C		INDITCT DEAL #9 (A-H-0-7)
		DIMENSION $A(N,N) = B(N,N) = C(N,N)$
	-	DO 1 J=1+N
		C(1, 1) = 0.00
		DO 1 K=1-N
		$C(I_{\bullet}J) = A(I_{\bullet}K) * B(K_{\bullet}J) + C(I_{\bullet}J)$
		IE(DABS(C(I,J)),IT,I,D-11)C(I,J)=0.D0
	1	
	-	RETURN
		END
		SUBROUTINE MINV(A,AI,AINV,N,NN,IJ)
		IMPLICIT REAL*8 (A-H,O-Z)
		REAL*8 DABS
		DIMENSION A(N,NN),AINV(N,N),AI(N,N)
		NI=N+1
		N2=2*N
		DO 6 I=1,N
		DO 6 J=1,N
	6	A(1,J) = AI(1,J)
		DU 1 1=1+N

DO 1 J=NI,N2 A(I,J)=0.D0 IF(I.EQ.(J-N))A(I,J)=1.DO 1 CONTINUE DO 200 M=1.N B=DABS(A(M,M)) DO 2 I=M,N IF(DABS(A(I,M)).LT.B)GO TO 2 B=DABS(A(I,M)) L=I 2 CONTINUE IF(B.EQ.DABS(A(M,M)))GO TO 3 DO 4 J=1,N2 B=A(M,J)A(M,J) = A(L,J)4 A(L,J)=B 3 B=A(M,M) IF(DABS(B).LT.1.D-11)GO TO 92 GO TO 93 92 IJ=0 GO TO 94 93 IJ=1 DO 5 J=M,N2 5 A(M,J) = A(M,J)/BDO 12 I=1,N IF(I.EQ.M)GO TO 12 B=A(I,M) DO 13 J=M,N2 13 A(I,J)=A(I,J)-B*A(M,J)12 CONTINUE 200 CONTINUE DO 10 I=1,N DO 10 J=1,N 10 AINV(I,J)=A(I,J+N) 94 RETURN END SUBROUTINE FREQC(PX, JJ, EVSQ) IMPLICIT REAL*8 (A-G, 0-Z) INTEGER H, HMAX, HH REAL*8 DSQRT, DCOS, DSIN, DEXP, DATAN, DABS DIMENSION PHI(5,5),X(4) DIMENSION AAPHI(5,5,7,7,7), BBPHI(5,5,7,7,7) DIMENSION ABPHI(5,5,7,7,7), BAPHI(5,5,7,7,7) DIMENSION FV(10,10), FREQ(10), EVSQ(10,15) DIMENSION APSA(5,5), BPSB(5,5) DIMENSION PSAA(5,5), PSAB(5,5), PSA(5,5) DIMENSION PSBB(5,5), PSBA(5,5), PSB(5,5) DIMENSION D(10,10), E(10,10), QW(3), RJ(3) DIMENSION BM(5), PX(3) COMMON/BLK1/AL, BL, CL, Q, P, FR, GR, QW, II COMMON/BLK2/NCOUN

_	
	COMMON/BLK3/THETAO,YO,ZO
	COMMON/BLK4/THETAS, YS, ZS
	COMMON/BLK5/H,K,L
	COMMON/BLK6/YF,ZF,AM,BM,HMAX,KMAX,LMAX
_	COMMON/BLK8/JCOUN,KCOUN,LCOUN
	IF(KCOUN.EQ.1)GO TO 108
	IF(JCOUN.GT.1)GO TO 108
	IF(LCUUN.GT.O)GO TO 108
	DM(1)=2*AM
	BM(3)=BM(1)
	$BM(4) = 2 \times AM \times (U \times 2 + V \times 2)$
	BM(5) = BM(4)
	A=AL/2
	B=BL/2
	C=CL/2
	THETA=DATAN(ZF*CL/(YF*BL))
	HMAX=HMAX+1
	KMAX=KMAX+1
	LMAX=LMAX+1
108	ICOUN=0
23	DO 100 LL=1,LMAX
	L=LL-1
	LTEST=L/2
	RIESI=L/2.
4.0	IF(LIESI-NE-RIESI)GU TU 100
40	
30	
50	IF(HH.NE.1)GO TO 10
	IE(K.NE.0)60 TO 10
	IF(L = EQ = 0)GO TO 80
10	H=HH-1
	MTEST=(H+K)/2
	DTEST=(H+K)/2.
	IF(MTEST.NE.OTEST)GO TO 80
	THIS PART COMPUTES FOR TYPE A MOLECULES
	THIS PART COMPUTES DISTANCES BETWEEN ATOMS 1 AND 3
	DISTANCES 1 TO 3 EQUAL 2 TO 4 WHEN L IS EVEN
	THE PRECEDING MEANS ORIGIN AND SOURCE ARE SAME TYPE
11	CONTINUE
11	
	$F(KCOUN_FQ_1)GO_TO_138$

	138	CONTINUE
		X(1)=H*A
		X(2)=K*B
		X(3)=L*C
		X(4) = DSQRT(X(1) * 2 + X(2) * 2 + X(3) * 2)
		NC DUN=0
		YO=U
		ZO=V
		YS=U
		ZS=V
		GO TO 26
	21	CONTINUE
		Y0=-U
		Z0=-V
		YS=-U
		ZS=-V
	26	CONTINUE
		CALL PHIC(X,PHI,PX)
~		IFINCUUN-EQ-IIGU IU 21
C		THIS PART CUMPUTES DISTANCE BETWEEN ATOMS 1 AND 4
		75V
		23=-V V(2)-1*C+2*7C
		$X(4) = 0 SOPT(X(1) \times 2 + X(2) \times$
		VD=11
		70=V
		YS=-U
		CALL PHIC(X.PHI.PX)
		CONTINUE
С		THIS PART COMPUTES DISTANCE BETWEEN ATOMS 2 AND 3
	7	X(1)=H*A
		X(2)=K*B+2*YF*BL
		ZS=V
		X(3)=L*C+2*ZS
		X(4)=DSQRT(X(1)**2+X(2)**2+X(3)**2)
		Y0=-U
		20=-V
		YS=U
	17	CALL PHIC(X,PHI,PX)
	17	
		DU 18 I=1,5
		$\frac{1}{22} J = 1 + 3$
		IF(ICOUNLL9, 27, 28
	47	TE(ICOUN)18,48,49
	48	PSR(1,1)=0.00
	49	PSBB(1,1)=-PHI(1,1)+PSBB(1,1)
	.,	GO TO 22
	27	PSAA(1.1)=0.00

28	PSAA(I,J) = -PHI(I,J) + PSAA(I,J)
22	CONTINUE
	IF(THETAD.LT.0)GD TO 50
61	IF(ICOUN)18,29,31
50	IF(ICOUN)18,51,52
51	PSBB(1,4)=0.D0
52	PSBB(1,4)=-PHI(1,4)+PHI(1,2)*L*C-PHI(1.3)*K*B+PSBB(1.4)
	GO TO 53
29	PSAA(1,4)=0.D0
31	PSAA(1,4)=-PHI(1,4)+PHI(1,2)*L*C-PHI(1.3)*K*B+PSAA(1.4)
	IF(ICOUN)18,32,33
53	IF(ICOUN)18,54,55
54	PSBB(1,5)=0.D0
55	PSBB(1,5)=-PHI(1,5)+PHI(1,1)*(K*B*DCOS(THETAO)+L*C*
	6DSIN(THETAD))-PHI(I,2)*H*A*DCDS(THETAD)-
	CPHI(I,3)*H*A*DSIN(THETAD)+PSBB(I,5)
	GO TO 18
32	PSAA(1,5)=0.D0
33	PSAA(1,5)=-PHI(1,5)+PHI(1,1)*(K*B*DCOS(THETAO)+L*C*
	3DSIN(THETAD))-PHI(I,2)*H*A*DCOS(THETAD)-
	DPHI(I,3)*H*A*DSIN(THETAD)+PSAA(I,5)
18	CONTINUE
	IF(KCOUN.EQ.1)GO TO 116
	IF(THETAD)121,116,122
121	00 123 I=1,5
	DO 123 J=1,5
123	BBPHI(I,J,IH,IK,IL)=PHI(I,J)
	GO TO 116
122	DO 124 I=1,5
101	DU 124 J=1,5
124	AAPHI(1, J, 1H, 1K, 1L)=PHI(1, J)
116	CONTINUE
	RJ(1)=H*A
	RJ(2)=K*B
	RJ(3)=L*C
	QR=QW(II)*RJ(II)
	DO 93 1=1,5
	DO 72 J=1,5
	M=I+5
	N=J+5
	IF(1.G1.3)G0 T0 74
	IF(J.GT.3)CJP=DSIN(QR)
	IF(J.LE.3)CJP=DCUS(QR)
14	IF(J.LE.3)CJP=-DSIN(QK)
70	IF(J.GT.3)CJP=DCUS(QR)
13	
	IF (IHE IAU.LI.O)GU IU 76
	E(1,J)=0.00
71	
16	E(M,N)=0.00

GO TO 78 **75 CONTINUE** IF(THETAD.LT.O)GO TO 78 77 IF(KCOUN.EQ.1)GO TO 139 E(I,J)=AAPHI(I,J,IH,IK,IL)*CJP+E(I,J) GO TO 79 139 E(I,J)=PHI(I,J)*CJP+E(I,J) GO TO 79 78 IF(KCOUN.EQ.1)GO TO 141 E(M,N)=BBPHI(I,J,IH,IK,IL)*CJP+E(M,N) GO TO 79 141 $E(M,N) = PHI(I,J) \approx CJP + E(M,N)$ 79 CONTINUE 72 CONTINUE 93 CONTINUE ICOUN=ICOUN+1 IF(H)80,80,12 12 H=-H GO TO 11 80 CONTINUE IF(K)90,90,13 13 K=-K GO TO 30 90 CONTINUE IF(L)100,100,20 20 L=-L GO TO 40 100 CONTINUE IF(THETA)101,101,102 102 THETA=-THETA V=-V ICOUN=0 GO TO 23 101 CONTINUE THETA=-THETA V=-V C THIS SECTION COMPUTES DISTANCES BETWEEN UNLIKE MOLS. 109 ICOUN=0 104 DO 200 LL=1,LMAX L=LL-1 LTEST=L/2 RTEST=L/2. IF(RTEST.EQ.LTEST)GD TO 200 140 DO 190 KK=1,KMAX K=KK-1 130 DO 180 HH=1,HMAX IF(HH.NE.1)GO TO 110 IF(K.NE.0)GO TO 110 IF(L.EQ.0)GO TO 180 110 H=HH-1 MTEST=(H+K)/2

1.2

1.2

1.2

1.2

11

	78
	OTEST=(H+K)/2.
	IF(MTEST.EQ.OTEST)GO TO 180
С	THIS PART COMPUTES DISTANCE BETWEEN ATOMS 1 AND 3
11	L CONTINUE
	JH=H+4
	JK=K+4
	JL=L+4
	THE TAO=THE TA
	THETAS=-THETA
	IF(KCOUN.EQ.1)GO TO 142
	IF(JCOUN.GT.1)GO TO 118
142	CONTINUE
	20=V
	X(1)=H*A
	X(2)=K*B
	X(3)=L*C-2*ZO
	X(4) = DSQRT(X(1) * 2 + X(2) * 2 + X(3) * 2)
	YO=U
	YS=U
	ZS=-V
	NC OUN=0
	CALL PHIC(X,PHI,PX)
~	
6 114	THIS PART COMPUTES DISTANCE BETWEEN ATOMS 1 AND 4
114	
	$X(3) = L \neq 0$
	X(4)=DSQKI(X(1)**2+X(2)**2+X(3)**2)
	70-V
	75-0
C	THIS DART COMPUTES DISTANCE DETHECH ATOMS 2 AND 2
115	VII-UMA
115	X(1)-H+A
	$X(2) = L^{+}U$
	X(+)-DSQRT(X(1)+*2+X(2)**2+X(3)**2)
	70V
	YS=II
	7S=-V
	CALL PHIC (X.PHI.PX)
C	THIS PART COMPUTES DISTANCE BETWEEN ATOMS 2 AND 4
117	CONTINUE
	70=-V
	X(1)=H*A
	X(2)=K*B
	X(3) = L + C - 2 + ZO
	X(4)=DSQRT(X(1)**2+X(2)**2+X(3)**2)

C

	79
	YS=-U
	ZS=V
	CALL PHIC(X.PHI.PX)
	DO 24 I=1.5
	DO 25 J=1.3
	IE(THETADALT-0)GO TO 56
	IF(ICOUN)24-34-35
56	IF(ICOUN)24.57.58
57	PSBA(I,J)=0.D0
58	PSBA(1,J) = -PHI(1,J) + PSBA(1,J)
20	GO TO 25
34	PSAB(1+1)=0-D0
35	PSAB(I,I) = -PHI(I,I) + PSAB(I,I)
25	CONTINUE
20	IE(THETAD, IT, 0)60 TO 59
-	IE(ICOUN)24.36.37
50	IE/ICOUN124,50,51
40	
60	
01	PSDA(1,4/==PHI(1,4/+PHI(1,2/*L*C=PHI(1,5/*K*D+PSDA(1,4)
~	
50	
31	PSAB(1,4)==PHI(1,4)+PHI(1,2)*L*C=PHI(1,5)*K*B+PSAB(1,4)
10	IF(ICUUN)24+30+39
62	1F(1CUUN)24,03,04
63	
04	
-	(IHE(AU)+L+U+D(IN(IHE(AU)))-PHI(I+Z)+H+A+D(U)(IHE(AU))-D(I+U+U+D(U))
1	PHI(1,3) + H + A + USIN(THETAU) + PSBA(1,3)
58	
39	/ THETAO) +1 *C *DCIN/ THETAO)) - DHI(1, 2) *H*A*DCOS(THETAO) -
-	
24	CONTINUE
24	
	IF(TUETAD)12E 110 124
25	DO 129 1-1 5
25	
20	
28	BAPHI(1, J,
~	
26	00 129 1=1,5
	DO 129 J=1,5
29	ABPHI(1,J,JH,JK,JL)=PHI(1,J)
18	CONTINUE
	RJ(1)=H*A
	RJ(2)=K*B
	RJ(3)=L*C
	QR=QW(II)*RJ(II)
	DO 81 I=1,5
	DO 82 J=1,5
	M=1+5

C 11

14

C 11

C 11

C 11

	N=J+5
	IF(I.GT.3)GO TO 83
	IF(J.GT.3)CJP=DSIN(QR)
	IF(J.LE.3)CJP=DCOS(QR)
	GO TO 84
83	IF(J.LE.3)CJP=-DSIN(QR)
	IF(J.GT.3)CJP=DCOS(QR)
84	IF(ICOUN.GT.O)GO TO 85
	IF(THETAD.LT.0)GO TO 86
	E(I,N)=0.D0
	GO TO 87
86	E(M,J) = 0.00
	GO TO 88
85	CONTINUE
	IF(THETAD.LT.O)GO TO 88
87	IF(KCOUN.EQ.1)GO TO 143
	E(I,N) = ABPHI(I,J,JH,JK,JL) * CJP + E(I,N)
	GO TO 89
143	E(I,N) = PHI(I,J) * CJP + E(I,N)
	GO TO 89
88	IF(KCOUN.EQ.1)GO TO 144
	E(M,J) = BAPHI(I,J,JH,JK,JL) * CJP + E(M,J)
	GO TO 89
144	E(M,J)=PHI(I,J)*CJP+E(M,J)
89	CONTINUE
82	CONTINUE
81	CONTINUE
	ICOUN=ICOUN+1
	IF(H)180,180,112
112	H=-H
	GO TO 111
180	CONTINUE
	IF(K)190,190,113
113	K=-K
	GO TO 130
190	CONTINUE
	IF(L)200,200,120
120	L=-L
	GO TO 140
200	CONTINUE
	IF(THETA)65,65,103
103	THETA=-THETA
	V=-V
	ICOUN=0
	GO TO 104
65	CONTINUE
	THE TA=-THE TA
	V=-V
	DU 45 1=1,5
	IFIKCUUN+EQ+01GU IU 147

		PSA(I,J) = PSAA(I,J) + PSAB(I,J)
		GO TO 146
	147	IF(JCOUN.GT.1)GO TO 148
		APSA(I,J)=PSAA(I,J)+PSAB(I,J)
	148	PSA(I,J) = APSA(I,J)
	146	IF(DABS(PSA(I,J)).LT.1.D-11)PSA(I.J)=0.D0
	46	CONTINUE
	45	CONTINUE
		DO 70 I=1,5
-		DO 71 J=1,5
		IF(KCOUN.EQ.0)G0 TO 149
		PSB(I,J)=PSBB(I,J)+PSBA(I,J)
		G0 T0 171
	149	IF(JCOUN.GT.1)GO TO 150
		BPSB(I,J)=PSBB(I,J)+PSBA(I,J)
-	150	PSB(I,J)=BPSB(I,J)
	171	IF(DABS(PSB(I,J)).LT.1.D-11)PSB(I.J)=0.D0
	71	CONTINUE
	70	CONTINUE
	119	CONTINUE
		DO 91 I=1.10
		00.92 J=1.10
		IF(DABS(E(1,J)), LT, 1, D-11)E(1, J) = 0, D0
	92	CONTINUE
	91	CONTINUE
		D0 98 I=1.5
		D0 99 J=1.5
-		M=1+5
		N= J+5
		D(I,J) = (E(I,J) + PSA(I,J)) / DSQRT(BM(I) * BM(J))
		D(I,N) = E(I,N)/DSQRT(BM(I) * BM(J))
		D(M,N) = (E(M,N) + PSB(I,J))/DSQRT(BM(I) * BM(J))
		D(M,J) = E(M,J)/DSQRT(BM(I)*BM(J))
-	99	CONTINUE
	98	CONTINUE
		CALL JACOBI(D, FV, FREQ, 10)
		DO 135 J=1,9
		FMAX=FREQ(J)
		M=J+1
		DO 136 I=M,10
		IF(FMAX.GE.FREQ(I))GO TO 136
		FOLD=FMAX
		FMAX=FREQ(I)
		FREQ(I)=FOLD
	136	CONTINUE
	-	FREQ(J)=FMAX
	135	CONTINUE
		DO 127 I=1,10
	127	EVSQ(I,JJ)=FREQ(I)
	202	CONTINUE
		RETURN

ð

	END
	SUBROUTINE PHIC(X,PHI,PX)
_	IMPLICIT REAL*8 (A-G,O-Z)
	INTEGER H
	REAL*8 DSIN, DCOS, DEXP
	DIMENSION DELT(3,3), APHI(5,5), PHI(5,5), X(4)
	DIMENSION PX(3),QW(3)
	COMMON/BLK1/AL,BL,CL,Q,P,FR,GR,QW,II
	COMMON/BLK2/NCOUN
	COMMON/BLK3/THETAO,YO,ZO
	COMMON/BLK4/THETAS, YS, ZS
	COMMON/BLK5/H,K,L
	AP=PX(1)
	BP=PX(2)
	Q=6*AP/X(4)**8
	P=BP*ALP*DEXP(-ALP*X(4))/X(4)
	FR=Q-P
	GR=(-8*Q+P)/X(4)**2+ALP*P/X(4)
19	DU 2 1=1,3
	DO 3 J=1,3
	IF(NCOUN)201,4,8
4	PHI(I,J)=0.DO
5	IF(I.NE.J)GO TO 6
	DELT(I,J)=1
	GO TO 8
6	DELT(I,J)=0
8	APHI(I, J)=DELT(I, J)*FR+X(I)*X(J)*GR
	PHI(I,J)=APHI(I,J)+PHI(I,J)
3	CONTINUE
	IF(NCOUN)201,9,14
9	PHI(1,4)=0.D0
	PHI(1,5)=0.D0
14	APHI(1,4)=+APHI(1,3)*YS-APHI(1,2)*ZS
	APHI(1,5)=-(YS*DCDS(THETAS)+ZS*DSIN(THETAS))*APHI(1,1)
	PHI(1,4)=APHI(1,4)+PHI(1,4)
	PH1(1,5)=APHI(1,5)+PHI(1,5)
2	CONTINUE
	DU 1 N=1,5
-	IF(NCUUN)201,15,16
.5	PH1(4,N)=0.D0
	PHI(5,N)=0.D0
16	APHI(4,N)=YO*APHI(3,N)-ZO*APHI(2,N)
	APHI(5,N) = -(YO*DCOS(THETAO) + ZO*DSIN(THETAO)) * APHI(1,N)
	PHI(4,N) = APHI(4,N) + PHI(4,N)
	PHI(5,N)=APHI(5,N)+PHI(5,N)
1	CONTINUE
1	CONTINUE
	RETURN
	END
	CURROUTINE IACORTIA O E MI

С	
	IMPLICIT REAL*8 (A-H,O-Z)
	DIMENSION A(N,N), B(N,N), E(N)
	EQUIVALENCE (Y,YA)
	S=0.0
	D010I=1,N
10	S = S + DABS(A(I,I))
	TEST=S/N
	D012I=1,N
	D011J=1+N
11	B(I,J)=0.0
12	B(I,I)=1.0
	GOTO15
25	D013I=2,N
	II=I-1
	D013J=1,II
	P=A(I,J)
	IF (DABS(P)-AMAX) 13,16,16
16	Y = (A(J,J) - A(I,I))/2.0
	D=Y**2+P*A(J,I)
	IF(D) 18,18,77
77	YSQ= Y+DSQRT(D)
	IF(YSQ)31,31,17
31	DD = YA * 2 + P * A(J, I)
	YY=DSQRT(DD)
	DENOM=Y+YY
	YSQ=DABS(DENOM)
	SSIGN= P*A(I,J)
	IF (SSIGN) 32,17,17
32	YSQ=-YSQ
17	X=P/YSQ
	G0T019
18	X=P/Y
19	U = DSQRT(1D0 + X * X)
	5=X*C
	$A(K, 1) = S \times Y + C \times 7$
	V=B(K,1)
	7=B(K - 1)
	$B(K \cdot I) = C * Y - S * Z$
20	$B(K \cdot J) = S * Y + C * Z$
	DO 1 K=1.N
	Y=A(I,K)
	Z=A(J+K)
	A(I,K)=C*Y-S*Z
1	A(J,K) = S * Y + C * Z
13	CONTINUE

15 S=0.0 D021I=2,N II=I-1 D021J=1,II IF (DABS(A(I,J))-S) 21,21,22 22 S= DABS(A(I,J)) 21 CONTINUE 23 R=S/TEST AMAX=S/5.0 IF(R-1.0D-6)24,24,25 24 D026I=1,N 26 E(I)=A(I,I) RETURN

END

APPENDIX V

The First Brillouin Zone Boundaries

Every crystal structure has two important lattices. The real lattice described by the fundamental vectors \underline{a} , \underline{b} , and \underline{c} and the reciprocal lattice described by the fundamental reciprocal lattice vectors \underline{A} , \underline{B} , and \underline{C} . The reciprocal lattice vectors are related to the real lattice vectors by the following equations:

$$A = 2\pi \frac{b}{a} \frac{X}{b} \frac{c}{X} \frac{c}{c}$$

$$B = 2\pi \frac{c}{a} \frac{X}{b} \frac{a}{X} \frac{b}{c}$$

$$Q = 2\pi \frac{a}{a} \frac{X}{b} \frac{b}{X} \frac{b}{c}$$
(1)

Reciprocal lattice points are generated using the reciprocal translation vectors given by

$$G = hA + kB + 1C^{20}$$
(2)

where h, k, and 1 are positive or negative integers.

The primitive cell of the real lattice is defined as the cell of smallest volume containing one lattice point which, when translated parallel to its edges regularly through space, generates the complete lattice structure.

The unit cell of the base-centered orthorhombic lattice contains two lattice points. If the fundamental lattice vectors are a, b, and c then the volume of the unit cell is $a \cdot b X c = a b c$. Since the primitive cell contains only one lattice point, its volume is a b c/2. A set of primitive lattice vectors, which describe a primitive cell of the base-centered orthorhombic lattice, is

$$\mathfrak{g}' = \frac{a}{2}\hat{x} + \frac{b}{2}\hat{y}$$
$$\mathfrak{g}' = b\hat{y} \tag{3}$$

and

$$c' = c\hat{y}$$
.

 \hat{x} , \hat{y} , and \hat{z} are the unit vectors along the a, b, and c crystal axes, respectively (Fig. 8). A set of primitive reciprocal lattice vectors which describe a primitive cell in reciprocal space may be obtained using Eqs. (1) and (3) where a, b, and c are replaced by a', b', and c', respectively. The results are given by the following:

$$A = 4\frac{\pi}{a}\hat{x}$$

$$B = 2\pi\left(\hat{y} - \hat{x}\right) \qquad (4)$$

$$Q = 2\frac{\pi}{c}\hat{z}.$$

Therefore, from Eq. (2) the reciprocal translation vectors are given by

$$G = 2\frac{\pi}{a}(2h - k)\hat{x} + 2\frac{\pi}{b}k\hat{y} + 2\frac{\pi}{c}l\hat{z}.$$
 (5)

Fig. 8. A primitive cell of gallium. (The shaded area represents the primitive cell.)

The parallelepiped described by A, B, and G is the primitive cell of the reciprocal lattice. It is more conventional to take the primitive cell of the reciprocal lattice as the smallest volume bounded by the planes normal to each of the shorter non-zero G vectors at its midpoint. The primitive cell of the reciprocal lattice formed in this way is called the first Brillouin zone. A scaled plot of the shortest non-zero reciprocal lattice vectors located in the X-Y plane, along with the first Brillouin zone, as viewed down the Z axis, is shown in Fig. 9. A three dimensional view of the first Brillouin zone is shown in Fig. 10.

It is now appropriate to determine the distance from the origin of Fig. 9 to the zone boundaries. Figure 11 represents an enlargement of the upper right quadrant of Fig. 9. Point S represents the lattice point located by the reciprocal lattice vector designated G_1 . In the reciprocal lattice of Fig. 11 the first Brillouin zone boundary in the x direction is located at the point designated Q. The cosine of the angle theta (Θ) is written as

$$\cos \theta = \frac{OT}{OS} = \frac{OP}{OR}.$$
 (6)

Equation (6) then yields

$$OP = \frac{OT}{OS} OR.$$
(7)

The tangent of the angle is given by

$$\tan \Theta = \frac{TS}{OT} = \frac{PQ}{PR}.$$
 (8)

Fig. 9. The first Brillouin zone (shaded region) as viewed down the z axis.

Fig. 10. The first Brillouin zone as viewed in three dimensions.

From Eq. (8) it is observed that

$$PQ = \frac{TS}{OT} PR.$$
 (9)

Since the zone boundary in the x direction occurs at OQ = OP + PQ, Eqs. (7) and (9) may be used to get

$$OQ = \frac{OT}{OS} OR + \frac{TS}{OT} PR.$$
 (10)

Analysis of Fig. 11 yields the following:

$$OS = |\mathcal{G}_{1}| = 2\frac{\pi}{ab}(a^{2} + b^{2})^{\frac{1}{2}}$$

$$OR = \frac{1}{2}|\mathcal{G}_{1}| = \frac{\pi}{ab}(a^{2} + b^{2})^{\frac{1}{2}}$$

$$OT = 2\frac{\pi}{a}$$

$$TS = 2\frac{\pi}{b}$$

$$PR = \frac{\pi}{b}.$$
(11)

Equations (10) and (11) yield

$$OQ = \frac{\pi}{a} (1 + \frac{a^2}{b^2}).$$
 (12)

Thus, the first Brillouin zone boundaries in the x direction are located at $\pm \frac{\pi}{a}(1 + a^2/b^2)$. Since Fig. 9 is a scale drawing, one sees that the zone boundaries in the y direction are located at $\pm 2\frac{\pi}{b}$. The zone boundaries in the z direction are shown in Fig. 10 to be located at $\pm \frac{\pi}{c}$.