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The equations of motion for the dumbbell molecules of 

gallium are derived using the harmonic approximation.  The 

"6-exp" interaction potential energy function is used to 

derive analytic expressions for the interatomic coupling 

constants.  The intermolecular coupling constants are then 

determined numerically.  These are used to calculate the 

elements of the dynamical matrix.  The dynamical matrix is 

solved for the normal mode frequencies.  The "Least Squares" 

method is used with a computer program to select a set of 

"6-exp" parameters to best fit the frequencies measured by 

others.  Since some imaginary frequencies occurred for all 

sets of parameters found, the model does not agree with 

experimental results.  There are two possible reasons for 

this disagreement: (1) The "6-exp" interaction function may 

not be applicable to gallium or (2) it may be invalid to 

treat gallium as having a molecular structure. 
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INTRODUCTION 

A crystal is a regular array of points in space with 

atoms and/or molecules located at these points.  It is 

described using the concepts of the unit cell and transla- 

tion vectors.  The unit cell is a particular arrangement of 

atoms and/or molecules which, when translated regularly 

through space generates the crystal.  The translation 

vectors describe the location of a unit cell relative to 

some co-ordinate system.  For gallium, a set of three 

mutually orthogonal vectors is chosen along the crystal 

axes so that the unit cell is located at every combination 

of even-integer multiples of these vectors.  It should be 

noted that this is not the only set of translation vectors 

which describe the location of a unit cell for gallium. 

However, it is one of the simplest and most convenient, 

particularly, when considering programming techniques in 

locating specific molecules. 

The lattice structure for gallium is base-centered 

orthorhombic (Fig. 1).  Molecules are located at the 

corners of the structure and in the middle of the upper 

and lower faces. 

There are two distinct types of molecules which, for 

the purpose of this thesis, are labeled A and B.  Both 

types are treated as rigid dumbbells of length 2.442 A 
1 
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Fig. 1. The base-centered orthorhombic 

lattice.  (a t  b, a /  c, b ±  c) 



and individual atomic masses of 115.7 X 10   grams.  The 

type A molecule is oriented so that the dumbbell axis 

makes an angle of approximately 16.9° counterclockwise with 

the Y axis (Fig. 2).  The type 3 molecule is oriented so 

that the dumbbell axis makes an angle of approximately 

16.9° clockwise with the Y axis (Pig. 2).  The dumbbell 

axis of both types is always parallel to the Y-Z plane. 

This means that two orthorhombic lattices are combined to 

form the crystal structure of gallium.  A unit cell of gal- 

lium is shown in Fig. 3.  Note that in the figure a type A 

molecule is located at the origin of the co-ordinate 

system.  A unit cell may also be constructed with a type B 

molecule located at the origin by replacing all type A mol- 

ecules with type B molecules and vice versa.  The a, b, and 

c lengths in Fig. 3 are called the lattice constants and 

are independent of the origin molecule. 

As mentioned, a set of translation vectors is chosen 

so that a unit cell is located at every combination of 

even-integer multiples of these vectors.  Therefore, in 

order to generate the crystal, the unit cell must be trans- 

lated through space according to T = h|x + k^y + l^z where 

h, k, and 1 are even integers and x, y, and z are the unit 

vectors along the axes of the crystal. 

Exerting a force on a molecule in the crystal dis- 

turbs it from equilibrium.  If there is a coupling between 



Type A 

Fig. 2. The types of molecules. 

Y 

X 
Pig. 3. A unit cell of gallium. 



the molecules and those near them, then the disturbance is 

transmitted through the crystal.  Assuming the disturbance 

to be harmonic in nature, the system is best treated as a 

collection of oscillators which may be analyzed in terms 

of the normal modes of oscillation of the system. 

The coupling between molecules is taken to be of a 

Hooke's Law nature.  Therefore, by displacing a molecule an 

amount u, a force is exerted on a molecule near it according 

to F = -0u where 0 is the intermolecular coupling constant. 

For a particular molecule-molecule interaction, analytic 

expressions for the interatomic forces are developed using 

the "6-exp" potential model given by V = —g + Be"*1" where 
r 

A, B, and <* are parameters and r is the atomic separation. 

Using these analytic forms to find the interatomic coupling 

constants, the intermolecular coupling constant, for a 

specific interaction is found by summing over the atomic 

constants.  The equations of motion are found and the 

secular determinant is developed allowing one to find the 

normal mode frequencies, o>, for a given wave vector q. 

The parameters A, B, and « were selected to meet cer- 

tain conditions computed from equilibrium considerations by 

C. B. Clark.5 However, these values of A, B, and * do not 

produce a set of dispersion relations which agree with 

experimental results.  This was expected since D. E. Thomp- 

son got the same kind of results in 1970.4 To further test 

the model it is necessary to change A, B, and « so as to 



make  the  calculated   dispersion relations   converge   to  the 

experimental  relations.     The method  of  "Least   Squares"   is 

selected   for  this  purpose.     The   details  of this method   are 

discussed   in CHAPTER II. 



CHAPTER I 

The Dynamical Matrix 

As stated in the INTRODUCTION, gallium is being 

treated as if it were "built of rigid dumbbell molecules. 

Thus, there are only three degrees of translational and 

three degrees of librational freedom per molecule to be 

concerned with.  The translational motion will be 

considered first by treating the molecules as point masses 

located at the center of the dumbbell.  The resulting 

equations of motion will be completely general and easily 

extended to cover librational motion. 

Consider the motion of a molecule at r. due to the 
J 

displacement, u.,, of the molecule at r.,.  The vectors r. 
J J J 

and r.,   are  relative   to  the  origin  of a co-ordinate   system 
J 

appropriately located in the crystal and the vector u., is 
J 

relative to r.,.  The force equation which governs the 
J 

motion of the j molecule is 

J 
■i 

where the following definitions are made: 

(D 

M,   = 

m 0 °1 
0 m 0 

0 0 m_ 

where m  is   the mass  of the   gallium molecule. 
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0(JO') = 

011 ^12 013 

021 022 
023 

031 032 033 

where 0., represents the force constant for the i component 

of force on the j molecule due to the displacement of the 

j' molecule in the k direction. 

The general harmonic expressions for displacements of 

the j and j' molecules are assumed to be 

B1 -±<J>.1(«J "wt) (2) 

and 

u., = A(j')ei(2~rj- "'Jt), (3) 

respectively.  Substituting Eqs. (2) and (3) into Eq. (1) 

yields 

-M.A(J)U
2
 = -]Tj5<M,)A<J,>«1i '(*J' " £J}- (4) 

Now, let us choose a specific co-ordinate system lo- 

cated along the crystal axes so that the j molecule is 

positioned at the origin.  Equation (4) may then be written 

as 

-M.A(j)o2 - -JTgUj'MU'^S^' (5) 



Assuming that all A(j') are equal, Eq. (5) may be written 

in component form as 

-mu2Ai(j) =  -^Ak^0ik(jj')e
ia£j- (6) 

k   j' 
where i and k = 1-3.  Thus, Eq. (6) yields a set of three 

secular equations which produce a 3X3 secular determinant. 

Now, it is necessary to be more complete and consider 

the effects of the librational motion of the j' molecule. 

Torques are taken along the principal axes of the j mole- 

cule so that the moment of inertia tensor, M, is diagonal. 

Therefore, riq. (1) may be written to include both forces 

and torques as 

p, = M,U, = -r0(jj')u. (7) 

where the following new definitions are made: 

-F3 = 

F1 

F2 

P3 
F4 
F5 
F6 

where F., F?, and F, represent the component forces on 

the j molecule and F4, Pg, and Pg represent the component 

torques on the j molecule.  (The component torques are 

along the principal axes of the molecule.) 
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£j - 

m1 0 0 0 0 0 

0 m2  0  0 0 0 

0 0 nw 0 0 0 

0 0 0 m. 0 0 

0 0 0 0 m,- 0 

0 0 0 0 0m 

where m1, m„, and m, represent the mass of the gallium mol- 

ecule and m., nv, and mfi represent the moments of inertia 

about the ^, p,   and Y  principal axes, respectively (Pig. 4). 

u = 

u1 

u2 

U3 

u4 
u5 

_u6 

where u., u?, and u, represent translational displacements 

and u., u,, and ufi represent rotational displacements about 

the principal axes of the j or j' molecule. 

and 
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Y>u 

ui»v°< 

Pig. 4. The principal axes of the dumbbell molecule ((<*,/},*') 

or (u.,iL ,Ur)) relative to the crystal axes given 

by (u1,u2,u5). 
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0(jj') * 

011 012 013 0U 015 016 
021 022 023 024 025 026 

031 032 033 034 035 036 
041 042 043 044 045 046 

051 052 053 054 055 056 

L 061 062 063 064 065 066 

where 0iki for i and k = 1-3, represents the coupling 

constant between the i component of force on the j mol- 

ecule and translation of the j* molecule in the k direction. 

0.,  , for i = 1-3 and k = 4-6, represents the coupling IK 

constant between the i component of force on the j mole- 

cule and rotations of the j' molecule about the k princi- 

pal axis.  0,-,,., for i = 4-6 and k ■ 1-3, represents the 
IK 

coupling constant between the i component of torque on the 

j molecule and translation of the j' molecule in the k 

direction.  0.,, for i and k = 4-6, represents the cou- 

pling constant between the i component of torque on the j 

molecule and rotations of the j' molecule about the k 

principal axis. 

Since there are two distinct molecular types in a 

crystal of gallium, Eq. (5) must be written for both type A 

and type B origin (j) molecules as 

-MAfcf ■ = -YtiiyneH'Zy  -][0(;Jl')BeH'*l' (8) 

and 



13 

-MBu2 = -Y0(3i')BeH*y   -^0( jl< )AeicJ.'?l»      (9) 

where A and B are six element column matrices representing 

the displacement amplitudes of the general harmonic form of 

Eqs. (2) and (3) for type A and type B molecules, respec- 

tively.  The sum over j' is for source molecules of the 

same type as the j molecule and the sum over 1' is for 

source molecules of a different type than the j molecule. 

Equation (8) produces six component equations of the form 

I(l0ik(J3
,)eiS'F3« - m.cTikc

2)Ak 
k  •)' 

+ ^(^0ik(jl
,)e1^^l')Bk = 0 (10) 

k 1' 

and Eq. (9) produces six component equations of the form 

Z(l0ikUl')eH-l')Ak 

+I(Z0ik(jj,)eis'^' - m/ikw2)Bk ■ °        (11; 

k    j' 

where  i   and k =   1-6.     Equations   (10)   and   (11)   form a   12X12 

dynamical  matrix whose  secular determinant has  elements  of 

the   form 

^0ik(jj')eiq ry - N/ik"2. 
j' 

The  order of the matrix may be   reduced   to   10X10  by 

considering molecular  symmetry.     Motion about  the       or 

dumbbell  axis is  physically meaningless  because   the moment 
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of inertia about this axis is zero (Pig. 4).  Therefore, 

the sixth and twelfth rows which involve components of 

torque about the  axis and the sixth and twelfth columns 

which involve rotations about the p>  axis may be omitted. 

The 6X6 coupling constants matrix can be reduced to 

5X5 for the same reason.  Also, the number of independent 

elements of this matrix may be restricted by lattice sym- 

metry as described by G. 3. Pawley.  The type A symmetry 

reflects the molecules into themselves.  Therefore, the 

system is unchanged so that the coupling constant matrix 

between the molecules is invariant under this symmetry 

operation.  If the gallium lattice is reflected in a plane 

perpendicular to the a axis, the coupling constant matrices 

between molecules lying in the plane are of the form 

0( jj' )   = 

0U   0 0 0 0 15 
0        022   0„   024   0 

0        032   033  034   0 

0       <*42  043  044   ° 
051   0 . "5 

0       0 55 

The type B symmetry is an inversion through the origin. 

This type symmetry relates the interaction matrix between 

the molecule located at the origin, represented by 0, and 

one located at (x,y,z), represented by J', to the interaction 
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matrix between the origin molecule and the molecule at 

(-x,-y,-z), represented by -j'.  A study of this symmetry 

shows that the two interaction matrices are related 

according to 

011  012 013 -0U -015 

021  022  023 -024 -025 

031 032 033 -034 -055 

-^41 "042 "043 044  045 

L-051 "052 -053  054  055 

where the elements within the brackets represent the com- 

ponents of the coupling constant matrix for the interaction 

between the origin and j' molecules.  For interactions be- 

tween molecules lying in a plane perpendicular to the a 

axis, types A and B symmetry operations yield 

0^0   0   0 015 

0    022  023 "024 0 

0(O-j') -    0    032  033 "034 0 

0  "042 "043 044 ° 

-051  0   0   0 055 



16 

?or interactions between like molecules, type B symmetry 

reduces to nine the number of independent elements of the 

coupling constant matrix for the interaction between the 

origin molecule and a j' molecule.  The interaction matrix 

is given by 

*11  012 *13 014 015" 

021  022 023 ^4 025 

013 023 033 034 035 

"014 "024 -034 044 045 

"015 -025 "035 045 055 

Again type A symmetry is applied when considering inter- 

actions between like molecules lying in a plane perpendic- 

ular to the a axis.  The above matrix is reduced to 

0(0.3') - 

0^0   0   0   015 

0 022  023 024 0 

0 023 033 034 0 

0 "024 "034 044 ° 

-015 0    0 0 055 
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Type C symmetry is used to relate the interaction matrix 

for an A-B interaction to that for a B-A interaction.  For 

gallium it is best illustrated by the screw-diad operation 

which transforms the molecule pair j-j' into the pair j'-j". 

This symmetry allows one to show that the relationship be- 

tween the interaction matrices of the j'-j" pair and a 

different pair designated by j-11 (Pig. 5) is given by 

011  021  031 "041 -051 

012  022  032 -042 -052 

0(3*3") =   015 023 <*33 "043 "053 

"014 "024 "034  044 054 

-015 -025 -035 045 055 

where the elements within the brackets represent the 

components of 0(jl').  Type A symmetry is again applicable 

to interactions between molecules lying in a plane perpen- 

dicular to the a axis.  The above matrix is reduced to 
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-Y, 

Pig. 5. A diagram for considering screw-diad symmetry. 

(• and o  represent the two types of molecules.) 



19 

0(j'j") = 

0n  0   0   0  -051 

0   022 052 -042 0 

0    023  033 -043  0 

0  -024 "034 044 ° 

'15 0    0    0 '55 

The above symmetries are discussed in greater detail 

in APPENDIX III. 

Due to the low order of symmetry, there are at least 

nine independent parameters (force constants) for each 

molecule-molecule interaction.  Since interest lies in a 

collection of these interactions, it is unlikely that this 

number of parameters can be satisfactorily determined from 

experimental data. 

Assuming the interaction forces to be derivable from 

a potential energy enables one to reduce the number of 

independent parameters of the problem.  For the purpose of 

this thesis, the "6-exp" potential model, V = —g + Be 
r 

is taken to give the interaction potential energy.  Now 

there are only three independent parameters upon which the 

intermodular force constants depend.  It is, therefore, 

possible to determine the best set of parameters by com- 

paring the calculated dispersion curves to the experimental 

dispersion curves using the method of "Least Squares". 
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The "6-exp" potential is used in APPENDIX I to derive 

the analytic expressions for the interatomic force constants 

for a particular molecule-molecule interaction.  It is shown 

that the elements of the interatomic coupling constant ma- 

trix are of the following forms: 

a. i = 1-3 and j = 1-3 

b. 

0ij = _cJiif(r) " xix-jS(r) ■3 iJ 

i = 1-3 

0i4 " 0i3Y - 0i2Z 

0  = -(Y cos 9s + Z sin Os)0i1 

c. 3  =   1-5 

where 

0A3   =  03dYo " 02jZ° 
0r .  =  -(Yo cos 9o + Zo sin 9o)01* 

f(r) = 1 21 = 6A  _ B- -« v '   r ar   r8   r 

and 

;(r) , 1 |i(D . -48i10 ♦ B, ."» + B? e-« 

The x. and x. are the position components of the source 

atom relative to the origin atom in a co-ordinate system 

along the crystal axes.  (Yo,Zo) and (Y,Z) represent the 
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positions of the origin and source atoms, respectively, 

relative to their respective molecules.  Oo and 9s are the 

angles that the dumbbell axes of the origin and source mol- 

ecules, respectively, make with the b crystal axis. 

The case for the displacement of the origin molecule 

while all other molecules are undisturbed must also be con- 

sidered.  The forces exerted on the origin molecule are 

called the "self" forces and must be calculated differently. 

They are written as F(jj) = -0(jj)u..  The components of 
n 

0(j J) in terms of 0(j J *) are of the following forms: 

a. 

1. 

type A  origin  molecules   (9o  =  9) 

i  =   1-5   and  k =   1-3 

2. 

0ik(jj) = -l0ik 
J' 

i =  1-5 

(Both sums are over types A and B source molecules.) 

3. i = 1-5 

0±5<Jd)   ■   ~L Wi5   "  0±1 (K|eos  9  +  L^sin  9) 

+   0i2H|cos   9   +   0i3H|sin   9) 

"X (^i5C0S 2e " 0i1(
K5cos e 

V - 
+ L^sin 9) + 0i2H|cos 9 + 0i5Hfsin 9) 

(The first and second sums are over types A and B source 

molecules, respectively.) 
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b. 

1. 

type B origin molecules (Oo = -9) 

1=1-5 and k = 1-3 

*lk<«> =  -lh 
i' 

2. i = 1-5 

0i4(^)  - .7(014  -0i24 + ^i3K!) 
(Both  sums  are  over types   A and  :s  source molecules.) 

3. i   =   1-5 

J 

-  l|sin  9)   + 0i2H|cos  9 - 0i3H|sin 9) 

-T (0i5   - 0i1(K^cos  9 - L^sin 9) 
7 

+  0i2H|cos 9 - 0i5H|sin 9) 

(The first and second sums are over types A and B 

source molecules, respectively.) 

where 0 is written on the right hand side of the above 

equations to represent 0(jj*).  H, K, and L are integers 

and 9o is the angle that the dumbbell axis of the origin 

molecule makes with the b crystal axis.  The above equa- 

tions are derived in more detail in APPENDIX II. 

It is useful to write Eqs. (10) and (11) in a more 

general and compact matrix notation as (D' -|« )A = 0 

where D» represents a 10X10 matrix with elements involving 
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the intermolecular and "self" force constants.  M is the 

10X10 mass matrix given by 

m.O 00000000 
o'nuO 0 0 0 0 0 0 0 
0 0 in,0 0 0 0 0 0 0 
0 0 O^ra.O 0 0 0 0 0 
0 0 0 O^m.O 0 0 0 0 
0 0 0 0 O^m.O 0 0 0 
0 0 0 0 0 oVo 0 0 
0 0 0 0 0 0 0^m,0 0 
ooooooo o-Vo 
00000000 oV 

and A is a 10 element column matrix representing the dis- 

placement amplitudes of both types A and B molecules and is 

given by 

i:. 

A, 
A: 

A; 

::: 

ho 

A. 

Letting an = An^ for n = 1-3 and n = 6-8 and an = iAn/m 

for n = 4,5 and n = 9,10 enables one to write 

(D - I"2)a = 0 

which in component form is (Dmn - *mn»  )afi = 0 where Dmn 

are elements of D and have the following forms: 
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a. for type A origin and source molecules 

m = 1-5 and n = 1-5 

Dmn =   (JABUJOOJ'   
+  ^n^'^^Vn 

(summed  over type A source molecules) 

b. 

Cj1   =  cos(^-r,,)   and   Cj =  1 m = 1-3;   n  =   1-3 

m = 4,5;   n  =   4,5 

cy   =   sin(q.r,,)   and  Cj   = 0 m = 1-3;   n  =   4,5 

cy   =  -sin(q.r.,)   and Cj   =  0 m = 4,5;   n  =   1-3 

for   type  A origin  and  type B source molecules 

m =   1-5 and n  =   6-10 

D      =   (V0 (jl' )C1')/Jiiim    c mn       vZ_^m n-5 "     m n-p 
1' 

(summed over type B source molecules) 

Cl'   =   cos(q-r\ 

Cl* 

Cl' 

sin(q.rlt) 

-sin(q-rlt) 

m =   1-3; n = 6-8 

m = 4,5; n = 9,10 

m =   1-3; n = 9,10 

m = 4,5; n = 6-8 

c# for type B origin and   source molecules 

m =   6-10 and  n = 6-10 

Dmn ■   (lA-5  n-5{iy)Cy   +  °J0™-5 n-5{jj))/^mm-5mn-5 

(   summed  over type B source molecules) 
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Cj1 = cosCq-r^,) and Cj = 1    m = 6-8; n = 6-8 

m = 9,10; n - 9,10 

Cy   =  sinCq-r..,) and Cj = 0    m = 6-8; n = 9,10 

Cy   = -sin(q.r^) and Cj = 0   m = 9,10; n = 6-8 

for type B origin and type A source molecules 

m = 6-10 and n = 1-5 

Dmn = <I*m-5 n^^^^^K- 5mn 

(summed over type A source molecules) 

Cl' -   cos(q-r,,) 

Cl« = sin(q-r, , ) 

Clf = -sin(q-i\,) 

m = 6-8; n = 1-3 

m = 9,10; n = 4,5 

m = 6-8; n = 4,5 

m = 9,10; n = 1-3 
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CHAPTER II 

The Method of Least Squares 

Considering the results of CHAPTER I it is possible to 

calculate the dispersion relations for gallium and compare 

them to the experimentally determined dispersion relations. 

By changing the values of the parameters A, B, and <* in the 

"6-exp" potential model, it may be possible to calculate a 

set of dispersion curves which correspond favorably with 

the experimentally determined curves.  The method of 

"Least Squares" is used for determing the necessary changes 

in A, B, and °< which produce the best set of calculated 

dispersion curves as compared to the experimental curves. 

In general, the calculated frequencies are dependent 

upon the parameters of the model being used and the partic- 

ular wave vector being considered.  However, since the wave 

vectors are known specifically it is appropriate to con- 

sider the calculated frequencies as a function of the model 

parameters only.  The accepted mathematical notation is 

fl = fi(Pi»P2'p3",,pi^ 

where p. represent the model parameters and f1  represents 

a particular frequency. 
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If fQl and fcl represent the experimentally observed 

and the calculated frequencies, respectively, the "least 

Jquares" criteria takes as the best set of parameters that 

which minimizes the quantity 

S=IWl(fol " fcl>2' 
1 

W,   is  a weighting factor associated with the 1   observa- 

tion.     It  has  been  shown,   by  statistical methods,   to be 
o 

1/cr i   ,   where (T -,   is  the   standard error of the  observation 

°8 
rol* 

■jince S must be a minimum in order to get the best set 

of parameters, the following must be true: 

**    =   0. 

Performing  the  derivative and   setting it  equal   to   zero 

yields 

Vfcl 
9fcl 

-  f -,) —      = o. oi' aPi 
(13) 

Recalling that the calculated frequencies are func- 

tions of the model parameters, the frequencies may be 

written as a Taylor series expansion about the values cal- 

culated using an initial set of parameters designated by 

p ..  The resulting equation may be written as 
02 

df 

*ol<Pj> = fd (p„i) +Zr5° 
c] 

03 -aPi 
4PJ 
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where APj = Pj - VQy     (Note that all second order and higher 

terms are neglected.  It is assumed that p . ^   p..) 

If the potential model being used is applicable then 

an initial set of parameters can be chosen such that 

fol   fcl^poj^'  ™s leads t0 the result that 

fcl<Pj) - fol •In*  4PJ' 
j 3 

(H) 

Substituting Eq. (14) into j^q. (13) yields 

af 

I **.i - '0l) h? ■ 11^ h? hT"y   (,5) 
1 1 J 

Therefore, for N model parameters there exists a set of NXN 

equations whose solutions are the changes in the parameters 

which  tend  to  minimize   the quantity 

s =IWl<fol "  fcl)2' 
1 

Equation (15) may be written in matrix notation as 

ax = v (16) 

where a is the NXN matrix with elements 

r-       3fcl 9fcl 
aij =Z_"i ipd  aPi • 
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x and v are N-fold column matrices with elements 

xi " APi 

and 

v cl 
i =IWl<fcl -fol) -" 

respectively.  From 2q. (16) it is obvious that x = a y 

where a~  is the inverse of a. 

Using numerical techniques it is possible to determine 

a, a-1 , and y.  Upon carrying out the above matrix multi- 

plication the necessary changes in the model parameters 

are determined. 



30 

SUMMARY AND C0NCLUJI0NS 

-<*r 
The "6-exp" potential energy function, V = —g+ Be   , 

r 
was used to develop analytic expressions for the interatom- 

ic coupling constants.  The interatomic coupling constants 

were calculated for each molecule-molecule interaction. 

The intermolecular coupling constants were determined nu- 

merically by summing the interatomic constants for each 

molecule-molecule interaction.  The resulting constants 

were used to numerically determine the elements of the dy- 

namical matrix for a specific wave vector q. 

The initial calculation of the dispersion relations 

for gallium was done using the program in APPENDIX IV.  The 

initial values of the parameters A, B, and * were chosen 

such that <x = 2.562 A*1 and A/B = fr.  These conditions were 
9 

determined from equilibrium considerations by C. B. Clark. 

The values of A and B are 5 X 1cT14erg-A6 and 10_13ergs, 

respectively.* The normal mode frequencies were calculated 

for plane waves along the a, b, and c crystal axes.  The 

maximum value of the traveling wave vector for each direc- 

tion was taken to be the distance from the origin of the 

co-ordinate system of Figs. 9 and 10 in APPENDIX V, to the 

first Brillouin zone boundary in the desired direction. 

*These values were chosen because they produce the correct 
orders of magnitude for the frequencies. 
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These  distances were   found  in APPENDIX V  to be 

}a = JO   +  a2/b2), 

% = 2B> 

and 

% = 5- 

Note that these distances have units of inverse length he- 

cause they are measured in reciprocal space.  The normal 

mode frequencies (tj) were calculated for wave vectors (q) 

at intervals of ^Q ranging from £Q to Q in each direction. 

The force constant matrices were determined for inter- 

actions between origin and source molecules separated by 

distances ranging from ±a to ±(a2 + b2 + c2)*.  Due to the 

short range of the "6-exp" potential, distances greater 

than the latter produced neglible changes in the calculated 

frequencies.  All symmetry requirements for the above in- 

teractions were met for both type A and type B origin and 

source molecules.  (These symmetries are discussed in APPEN- 

DIX III.) However, the resulting dispersion relations were 

invalid because many of the calculated frequencies were 

imaginary and did not agree with experimental results10. 

The method of "Least Squares" was used to choose new 

values for A and B that would produce a better set of dis- 

persion curves. <* was not changed because the equilibrium 

considerations yielded the value quoted, but gave only the 
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ratio of A to b.     The new values of ^ and a  are 4.791 A 

10"  erg-A  and 9.987 1  10~14ergs, respectively,  although 

these new values reduced the number of imaginary frequen- 

cies from nineteen to nine (out of one hundred and fifty 

frequency values calculated), it was not possible to elim- 

inate all the imaginary frequencies by just changing «. and 

J3.  The next step is to change all three parameters, but 

due to the large amount of computer time involved, funds 

are not available at present to do this. 

The calculations already made seem to indicate that 

the model chosen for gallium is not correct.  Thus, it may 

be invalid to treat gallium as having a molecular structure 

or possibly the "6-exp" interatomic potential energy func- 

tion cannot be used to describe the molecular model for 

gallium. 

.e experimental data, the results of calculations 

made with the initial values of A, B, and c<, and the results 

of calculations made with new values of A and b  are shown 

in TABLE I 
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TABLE I 

Calculated and Experimental Values of <*-> for Plane Waves 
Propagating Along the Crystal Axes 

Units:  coin 101!i Hz; q in A"1 

u>    are the experimental frequencies. 

to.   are the calculated frequencies using initial A, B, and*, 

OJ~ are the calculated frequencies using new A and B. 

x, y,, and z are the unit vectors along the crystal axes. 

The letter i before a number indicates that it is imaginary, 

% coe X  10"'* w.   X  10 

0.1874  x 5.680 5.317 

5.580 4.897 

4.690 4.512 

3.250 3.467 

3.050 2.590 

2.880 2.568 

2.650 2.557 

1.280 1.359 

0.800 0.417 

0.650 i 0.435 

0.3748  x 5.650 5.309 

5.280 4.839 

5.150 4.757 

3.100 3.047 

3.020 2.965 

-12 <*>f X 10 
-12 

4.340 

3.878 

3.746 

2.887 

2.326 

2.263 

2.101 

1.185 

0.342 

i 0.134 

4.314 

3.968 

3.816 

2.619 

2.547 



% t^e  X   10~12 
w    X   10~12 u^, X   10 

0.3748 
A 

X 2.890 2.265 2.363 

2.690 2.617 2.168 

2.240 2.050 1.848 

1.400 0.762 0.654 

1.140 i  0.695 0.123 

0.5622 x 5.680 5.264 4.259 

5.560 5.055 4.126 

4.950 4.520 3.694 

3.550 3.903 3.302 

3.100 2.774 2.417 

2.910 2.714 2.386 

2.710 2.670 2.247 

2.460 1.828 1.710 

1.820 0.960 0.895 

1.500 i  0.647 0.514 

0.7496 X 5.600 5.154 4.186 

5.600 5.127 4.162 

4.650 4.627 3.848 

4.280 4.234 3.542 

3.130 2.893 2.445 

2.950 2.734 2.344 

2.630 2.546 2.230 

2.180 1.386 1.412 

1.920 0.943 1.010 
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q co     X 10 

0.7496 x 1.800 

0.9370  x 5.460 

5.400 

4.900 

4.450 

3.140 

3.080 

2.650 

2.110 

1.850 

1.770 

0.1640  y 5.790 

5.600 

4.500 

3.080 

2.900 

2.880 

1.900 

1.150 

0.710 

0.550 

0.3281   y 5.800 

5.500 

4.500 

-12 
W     Z   10 -12 "f  X   10 

35 

-12 

0.477 

5.069 

5.068 

4.959 

4.049 

2.873 

2.868 

2.561 

1.126 

0.745 

0.563 

5.272 

4.992 

4.267 

3.719 

2.667 

2.563 

2.510 

1.240 

i 0.362 

i 0.450 

5.151 

5.110 

4.311 

0.884 

4.156 

4.127 

4.012 

3.450 

2.486 

2.380 

2.157 

1.201 

1.049 

0.921 

4.316 

3.932 

3.603 

3.027 

2.315 

2.263 

2.082 

1.162 

i 0.126 

i 0.235 

4.231 

4.018 

3.610 

- I 



q c^e x ^o~,c 
<*>±  X 10 

0.3281   y 3.110 3.620 

3.010 3.008 

2.680 2.648 

2.190 2.327 

2.010 2.092 

1.100 i 0.668 

0.940 i 0.822 

C4921   y 5.800 5.238 

5.400 4.994 

4.530 4.362 

3.520 3.568 

2.850 3.517 

2.500 2.737 

2.500 2.419 

2.360 2.048 

1.120 i  0.883 

1.100 i   1.108 

0.6561   y 5.800 5.330 

5.200 4.861 

4.600 4.402 

4.050 3.958 

2.740 3.444 

2.600 2.801 

2.420 2.543 

-12 
<*»f X   10 
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-12 

2.982 

2.538 

2.112 

2.104 

1.965 

i 0.200 

i 0.429 

4.127 

4.114 

3.618 

3.046 

2.938 

2.161 

2.128 

1.879 

i 0.173 

i 0.563 

4.186 

4.048 

3.625 

3.383 

2.908 

2.190 

2.147 
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q (JJ     X 10   " e OJ± X   10"'^ <^_ X  10" 

0.6561   y 2.420 1.759 1.633 

1.200 i 0.996 0.164 

1 .100 i   1.238 i 0.639 

0.8202 y 5.800 5.363 4.212 

5.080 4.809 4.019 

4.670 4.418 3.628 

4.400 4.085 3.486 

2.760 3.418 2.898 

2.500 2.825 2.191 

2.400 2.579 2.155 

2.400 1.625 1.516 

1.200 i  1.026 0.265 

1.100 i   1.289 i 0.663 

0.1388 z 5.800 5.300 4.352 

5.570 4.919 3.879 

4.600 4.244 3.588 

3.200 3.808 3.080 

3.200 2.967 2.570 

2.650 2.466 2.024 

1.660 2.153 2.004 

0.850 1.084 0.955 

0.530 0.303 0.238 

0.530 i 2.573 0.089 

-12 



0.2776 z 

0.4165 z 

0.5553 z 

38 

u>.  X  10"12 -1 ? w.   X  10    t£ UJf X   10"12 

5.640 5.237 4.343 

5.370 4.851 3.829 

4.580 4.221 3.354 

3.500 3.928 3.165 

3.320 3.308 2.816 

2.250 2.307 1.892 

1.900 2.121 1.869 

1.900 1.685 1.689 

1.050 0.608 0.480 

1 .050 i   0.477 0.206 

5.450 5.091 4.275 

5.080 4.744 3.750 

4.540 4.178 3.504 

3.700 4.089 3.279 

3.600 3.594 3.029 

2.500 3.034 2.651 

2.080 2.083 1.704 

2.000 1.206 1.396 

1.390 0.916 0.729 

1.280 i 0.618 0.367 

5.120 4.823 4.101 

4.580 4.604 3.648 

4.400 4.265 3.434 

4.180 4.106 3.404 
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0.5553  z 

0.6941   z 

UJB  X   10 

3.950 

3.250 

2.050 

1.850 

1.650 

1.480 

4.750 

4.620 

4.200 

4.160 

3.950 

3.950 

1.890 

1.890 

1.650 

1.600 

-12 
to*   X   10 

3.822 

3.801 

1.818 

1.224 

0.671 

i 0.632 

4.441 

4.441 

4.399 

4.399 

3.990 

3.990 

1.528 

1.528 

i 0.390 

i  0.390 

-12 
f K.   10 

3 .299 

3 .202 

1 .480 

1 .101 

0 .983 

0 .575 

3 .782 

3 782 

3 530 

3 530 

3. 336 

3. 336 

1. 236 

1 . 236 

0. 824 

0. 824 

-12 
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APPENDIX I 

Analytical Calculations of Interatomic Force Constants 

The force between a particular atom-atom pair may be 

derived from the "6-exp" interaction potential energy form 

V = A + Be""37 
r6 

using 

F -  r — = -(x1u1 + x2u2 + x,uJ(o-7 - £<< 
-<*r 

) (D 

where F  is the force on the origin atom due to the source 

atom and u., u?, and u, are the unit vectors along the 

crystal axes (CA).  The quantity (x^x^x^) represents the 

X, Y, and Z co-ordinates, respectively, of the source atom 

relative to the origin atom in the co-ordinate system de- 

fined by the CA.  Equation (1) may be written in component 

form as 

F±  =  x±f(r) (2; 

where i = 1-3 and f(r) = 6-g - B|e_0(r. 
r 

Displacing the source atom by an amount dx = U 

produces a net unbalanced force on the origin atom.  The 

components of the force may be written as 

dP r- 3Fi 
i  Z_ 3x. j 

(3) 
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where i and j = 1-3.  Inserting JSq. (2) into Eq. (3) yields 

]   J J 

This may be written in a more compact form as 

dFi  =  Z(c5ijf(r)Uj + xixjg(r)V 
J 

where <£. , is the Kronecker delta and g(r) = - —fr . 

The Hooke's Law coupling requires that the component 

forces on the origin atom be 

(4) 

d? '. = - y 0. .u. (5) 

where 0. . represent the elements of the force constant ma- 

trix and U. is the displacement of the source atom.  Com- 
J 

paring Eqs. (4) and (5) one obtains 

<*ij ' -*ijf(r) - XiXdg(r) 
(6) 

where i and j = 1-3. 

Equation (6) is derived on the basis of atomic dis- 

placements, which now must be related to generalized 

displacements of the source molecule.  Translating the 

source molecule by an amount u produces a net translation 

of i for each of the component atoms.  However, translating 

and rotating the source molecule produces a net translation 

of the component atoms which is different from that of the 

source molecule.  The translation and rotation of the source 

molecule may be written as 



and 

U = U.U. + UpUp + u,u.. 

t=  u4^4 + ^5u5 + u6u6, 
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(7) 

(8) 

respectively, where u. , iL, and u, represent the unit vec- 

tors along the CA and u. , u,-, and u,- represent the unit 

vectors along the principal axes (PA) of the source mole- 

cule as defined in Pig. 6.  The net translation of an atom 

is given by 

U = u + if X R (9) 

where  R  is  defined  in   Pig.   6 and  f X R is   the   translation 

of  the  atom due   to   the   rotation   of the molecule.     It  is 

most appropriate   to write   U in  terms   of the CA and   there- 

fore necessary  to   convert  the PA unit  vectors   into   compo- 

nents  involving  the CA unit vectors.     One  obtains  from 

analysis  of  Pig.   6 the   following: 

u.   =   u 1 
{L = -UpSin 9s + u,cos 9s 

ur  =  u0cos 9s + u,sin 9s 6   2 J 

where 9s is the equilibrium inclination of the source mole- 

cule relative to the u? crystal axis.  Therefore, in terms 

of the CA, if is given by 

^ =  u.u1 + (u6cos 9s - u5sin 9s)u2 + (ugsin 9s + u^os 9s)u5 
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# Y 

Pig. 6. A diagram defining the co-ordinate systems of the 

origin and source molecules. 
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and 

«£ X & = -u5(Z sin Os + Y cos 9s)u1 - u.Zu2 + u.Yu, (10) 

where Y and Z are the co-ordinates of the source atom rela- 

tive to the center of the source molecule in terms of the 

CA co-ordinate system.  Equations (7), (9), and (10) give 

the net translational components of the source atom rela- 

tive to the CA in terms of molecular displacement as 

t; 1 = u1 - Uc(Z sin 6B + Y cos 9s) 

U„ = u„ - u.Z I 

U3 = u3 + u4Y. 

equations (4) and (11) give the component forces on the 

origin atom due to the translation of the source atom 

resulting from the displacement of the source molecule. 

The component forces are of the form 

J 

11) 

12) 

where i = 1-3, j = 1-5, and u. represent the displacement 

components of the source molecule.  The elements of the 

interatomic force constant matrix are given by 

a. i = 1-3 and j = 1-3 

hi   =  ~  <V(r) " xix^(r) 
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. i = 1-3 

0i4 = 0i3Y " 0i2Z 

0i5 = -(Y cos 9s + Z sin 9s)0i1. 

The contribution to the net unbalanced torque on the 

origin molecule made by the force on a single atom in the 

origin molecule is obtained from 

dT = Ro X dF 

where   Ro   is   the  position   of the  origin atom relative   to   the 

center  of the origin molecule   (Pig.   6)   and  dF is   the net 

unbalanced   force   on   the  origin atom  due  to   the   displacement 

of the   source atom.     The   resulting   torque   in  terms  of the 

CA is 

dT   =   (Yo  dF,   -   Zo dF2)u1   +  Zo   dF.,u2  -   Yo   dF^j (13) 

where Yo and Zo are the co-ordinates of the origin atom 

relative to the center of the origin milecule (Fig. 6). 

It is more useful to know the torque contribution in terms 

of the PA of the origin molecule.  Therefore, the CA must 

be written in terms of the PA of the origin molecule.  One 

obtains from analysis of Fig. 6, the following: 

u1   = 

U0    = 

* 0 
u4 
u?cos 9o   - u^sin  9o 

u,   = UrCos 9o  + UgSin  9o 

14) 
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where u^,   Uc, and Ug represent the PA of the origin molecule 

and 9o is the equilibrium angle of inclination of the origin 

molecule relative to the utcrystal axis (Fig.   6).  Equations 

(13) and (14) enable one to write the torque in terms of 

the PA of the origin molecule as 

dT = (Yo dPj - Zo dF2)u4 - (Yo cos 9o + Zo sin 6o)dF1u5 

which in component form may be written 

dF^ = Yo dJ?, - Zo dP2 

dP 'V = -(Yo cos Go + Zo sin ©o)d?1 

Equation (12) enables one to rewrite the component equations 

as 

dF, = £(Zo 02. - Yo 03.)u. '3j"M 

and 

dF,- = V" (Yo cos 9o + Zo sin 9o)0.. ,u . 

J 
where j = 1-5.  Comparing the two preceding equations to 

the form of Eq. (12), it is clear that for j = 1-5 

04 . = Yo 03.   - Zo 02j 

and 

0c-   =  -(Yo cos 9o + Zo sin 9o)0.... 
0 J ' J 



49 

APPENDIX II 

Determination of oelf Force Constants 

The Hooke's Law approximation requires that the net 

unbalanced force on the origin molecule be of the form 

h = - Z 0(M')BII 
r 3 

where the sum includes j'=j.  Therefore the equation may be 

rewritten as 

F, = -Y 0(jj')u,, - 0(jj)u 

where j' ^ j.  The second term in the preceding equation is 

called the "self" force term and results from the displace- 

ment of the origin molecule while the source molecules are 

undisturbed.  The "self" force expression is best treated 

in terms of displacements of the source molecules.  Clearly, 

translation of the origin molecule while the source mole- 

cules are undisturbed has the same effect as holding the 

origin molecule fixed and translating all source molecules 

in the opposite direction.  If, however, the origin mole- 

cule is rotated by an amount Lp.  then the corresponding dis- 

placement of the source molecules is given by a rotation, 

-(£., plus a translation, -<£, X r., where r., is the vector 

connecting a source molecule to the origin molecule.  If V.. 



bo 

represents  the   translation of  the origin molecule  then  the 

"self"   force may be  written  in   terms   of the   source molecule 

displacements  as 

-0(jj)ui 
J ■-I 

J' 
0(jj') (-Vj -<P-  X r.,   -¥.) (D 

where 

„      0 *      O *      O A V. = u^. + u2Up + u,u, 

0*0     0-0     0 ■>0 if .   = u4u4 + u5u5 + u6u6 

r., = Hwu, + K^u^ + L^u* 

(2) 

and where u1, u?, and u., are the unit vectors along the 

crystal axes (CA) and u?, u2, and u5 are the unit vectors 

along the principal axes (PA) of the origin molecule.  H, 

K, and L are integers and a, b, and c are the lattice con- 

stants,  oince -^.  X r., represents a translation, it is 
^ J   - j 

convenient to evaluate it in terms of the CA.  Prom analy- 

sis of Fig. 6 in APPENDIX I it is clear that 

*0 
u4 
»o 
u5 

=  u. 

-UpSin Go   + u,cos  9o 

and 

u?  =   u2cos  9o   +  u,sin So. 

This  enables  one   to  write -if.   X r,,   in  terms of  the   CA as 
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(3) 

" ^D X -3'   = (u5(KJC0S e° + L§sin Oo))u1 

+ (l|u° - H|U°COS 9O)U2 

- (K^u° + H§u°sin 9o)u3 

where terms involving Ug have been neglected because rota- 

tions about the dumbbell axis have no effect on the system. 

Go is the equilibrium inclination of the origin molecule 

relative to the b crystal axis and is positive for type A 

origin molecules and negative for type B origin molecules. 

The "self" force is written in terms of displacements of 

the source molecules and therefore the rotational dis- 

placements must be expressed in terms of the PA of the 

source molecules while the translational displacements are 

expressed in terms of the CA.  For origin and source mole- 

cules that are alike, the two sets of PA are always parallel, 

Thus, angular displacements are the same relative to either 

set of PA.  Therefore, \£. = u°u, + u?iL where angular dis- 

placements about the Ug or dumbbell axis are neglected. 

?or unlike origin and source molecules, however, the PA of 

the origin molecule must be converted to the PA of the 

source molecule.  This is done by expressing the PA of the 

origin molecule in terms of the CA and then converting the 

CA to PA of the source molecule.  The results are 

u4 " u4 

and 
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Ur      =      COS      26     Ur 

where  0  is   the magnitude   of the   equilibrium inclination  of 

the  origin  and  source molecules.     Components involving ro- 

tations about  the   dumbbell  axis have   been   omitted.     Thus, 

for unlike   interactions 

if) 0A o * % A  = u^u4  + UrCos 26  Ur. 

By substituting Eqs.   (2)   and   (3)   into   Eq.    (1)   and   perform- 

ing the  indicated matrix multiplication,   it is   possible   to 

determine   the   "self"  force  constants   by  comparing   the   co- 

efficients  of u?.     The  results  for the various   interactions 

are  given  below. 

a. 

1. 

type A  origin molecules (6o = 6] 

1=1-5 and k = 1-3 

2. 

0ik(jj) = ~l0, 
y 

ik 

i = 1-5 

J 
(Both sums are over types A and B source molecules.) 
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3. i  =  1-5 

0i5(n)   =   -  X((Z!i5   " 0i1(K|cos  9 +  Ii|sin 9) 

+  0i2H|cos 9 + 0i5Ii|sin 9) 

-  X^i5C0S   2Q   "  0i1(KJ5Cos  9 
J 

+ Ljjsin  9) + 0i2H|coa  9  +  0i3H|sin  9) 

(The  first and   second   sums  are over   types A and  B source 

molecules,   respectively.) 

b. 

1. 

type B origin molecules (9o = -9) 

i - 1-5 and k - 1-3 

0ikU;j)  - -l0i 
j' 

k 

2. i = 1-5 

(.ioth sums are over types A and B source molecules.) 

3.      i = 1-5 

0i5c j j) = - X(0i5
cos 2e - 0i1(4

cos 9 

J 

-  Ljsin  9)   +  0i2Ii|cos  9  -   0i5Il|sin 9) 

" X^i5   "  0i1(K|cos  9   "  I2Bla 9) 

J 

+   0i2H|cos  9  -  0i5H|sin 9) 

G  first and   second   sums are   over   types  A and  B source 

molecules,   respectively.) 
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0 is written on the right hand side of the above equations 

to represent 0(jj').  H, K, and L are integers and 9o is 

the angle that the dumbbell axis of the origin molecule 

makes with the b crystal axis. 

I 
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APPENDIX III 

Symmetry of the Gallium Lattice 

oymmetry requires that the force constant matrices for 

a particular pair of interactions be related by 

0' = T0T (D 

where 01 is the force constant matrix for one interaction 

and 0 is the force constant matrix for the other.  T is a 

six dimensional transformation matrix formed from S, the 

three dimensional rotation matrix for polar vectors.  If 

det J = 1 (o performs a proper rotation), S is appropriate 

for transforming both polar and axial vectors.  However, if 

det S = -1 (J performs an improper rotation), -S is needed 

in transforming the axial vectors.  Therefore, § det § may 

always be used for transforming axial vectors if they are 

expressed relative to the same orthogonal co-ordinate sys- 

tem as the polar vectors.  For this study of gallium, the 

polar vectors (translations) are measured relative to the 

crystal axes (CA) and the axial vectors (rotations) are 

measured relative to the principal axes (PA) of the source 

molecule.  Therefore, if S is expressed relative to the CA, 

must be transformed to the PA system before using 

it with axial vectors whose components are taken along the 

PA.  Consider the axial vector r with respect to the CA. 
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56 

where 

?PA ~ ^rGA 

a = 

1      0      0 

0    cos 9   sin 9 

0   -sin 9  cos 9 

(2) 

(Pig. 7) 

i is the rotation matrix which transforms the polar vec- 

tor v into the polar vector y' then r is transformed into 

r1 according to 

r£A = J det | rCA. 

The general form of Eq. (2) requires that 

?PA " FCA' 

Equations (2), (3), and (4) then yield 

r'A = a § det S rQA 

and 

-1 
?PA 

= £ ^ det i I   ? PA* 

(3) 

(4) 

Therefore, the correct form of the symmetry transformation is 
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u1'u4 

* ug 

Fig. 7. A diagram for converting crystal axes to principal 

axes.  ((u..,Up,u,) represent the crystal axes and 

(u. ,Ug,Uc-) represent the principal axes.) 
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0 

T = 

0 

(5) 

a S det S a-1 

For the gallium lattice there are three lattice symme- 

try operations which yield all the information needed to 

reduce to a minimum the number of independent elements in 

the intermolecular force constant matrix.  Two are discussed 

by Cochran and Pawley11and the third by Pawley12.  The class 

symmetry operation designates that which brings the j and 

j ' molecules into self-coincidence as in the case of mole- 

cules located in a mirror plane perpendicular to the a 

crystal axis.  Clearly the operation leaves the interaction 

between the j and j1 molecules unchanged.  Thus, Eq. (1) 

may be applied to give 

0( j J ' ) = T0Uj')2 (6) 

^Specifically, consider a mirror plane through the origin 

perpendicular to the a crystal axis.  The reflection opera- 

tion reverses the x co-ordinate so that 

S = 

-1 0 0 ' 

0 1 0 

0 0 1 

and 
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a S det   S i -1 
1 0 ol 

0 -1 0 

0 0 -1 

Therefore,   the   symmetry  transformation matrix  is   given  by 

T  = 

■ 1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 

0 0 0 1 0 0 

0 0 0 0 -1 0 

0 0 0 0 0 -1 

For a j molecule and a j• molecule located in the b-c plane 

(the mirror plane) the interaction is unchanged by the 

operation.  Thus, Eq. (6) yields 

011 012 *13 0U 015 016 

021 022 
023 024 025 026 

031 032 033 034 035 036 
041 042 043 044 045 046 
051 0 52 053 054 055 056 
061 062 063 064 065 066 

011 "012 

-021  022 

!13 -014 015 016 

23 ^24 0o, -09C -0 26 

-031  052  033  034 -035 -036 

-0 41 042 043 044 "045 "046 

051 "052 "053 "054 055 056 

I 061 "062 "063 -064  065 066 

Comparing elements, it is obvious that the above is true 

if and only if 

I 
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0Ur) = 

»11 o  o  o  015 016 
0 022 023 024 0 0 

0 032 033 0M 0 0 

0 042 <*43 044 ° 0 

*51 
0  0  0  055 056 

061 o  o  o  065 066 

(7: 

vition (7) is the general form of the force constant ma- 

trix for intermolecular interactions between molecules 

located in the b-c plane.  Class B symmetry designates an 

inversion through a center (such as the origin) so that 

the interaction between a j molecule located at the origin 

and a j' molecule located at (x,y,z) is transformed into 

the interaction between the origin molecule and the -j' 

molecule located at (-x,-y,-z).  Equation (1) may be writ- 

ten for class B symmetry as 

0(O-j') = T0(Oj')T. (8) 

The  inversion  operation  reverses   the  co-ordinates  of any 

polar vector so   that 

S  = 

-10 0 

0-10 

0        0-1 

and 

- 
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a S det 3 -1 
1 0 o] 
0 1 0 

0 0 1 

The symmetry transformation matrix is given by 

T = 

• 1 0 0 0 0 0 1 

0 -1 0 0 0 0 

0 0 -1 0 0 0 

0 0 0 1 0 0 
=   T 

0 0 0 0 1 0 

0 0 0 0 0 1 

applying Eq. (8) yields the result that 

0(O-j») = 

011  012  013 -0U "015 -016 

021  022  023 -024 -025 -026 

031  032  033 "034 "035 -036 

-041 "042 "043 '44 045 
;46 

"051 "052 -053  054  055  056 

"061 "062 "063 064 065  066 

(9) 

where the 0.,    within the brackets represent 0ik.(Oj'). 

3y considering interactions in the b-c plane Eq. (7) may 

be applied to give 
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'n 0 0   o 
-«15 "0,6 

0 022 023 "024 0 0 

0(0-3') = 
0 032 033 ~034 0 0 

•is 

0 
"042 "043  044 0 0 

-051 0 0    0 
055 056 

,"061 0 0   o 065 066 

(10) 

Inversion symmetry for interactions between like molecules 

exhibits the property of translational invariance as defined 

by Cochran and Pawley.13It is expressed simply as 

0(O-j«) = 0(j'O). 

It can be shown that 

0U'j) = 0(jj'). 14 

Therefore, for interactions between like molecules Eq. (9) 

may be equated to 0(Oj') to yield 

0(Oj») = 

11 

12 

512 013 

522 023 

013  023 033 

-0U -024 "034 

-015 -025 -035 

"016 -026 "036 

0 14 • 15 

0OA 0 24  >"25 

034 035 

044 0 

045 0 

046 056 

016 

0 26 

45 ^46 

0 

0, 
36 

55  ^56 

.' 66 

11) 

* 15 
It should be noted that D. E. Thompson assumed this 
property to be valid for all interactions.  This resulted 
in the misinterpretation of the symmetry properties. 
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By again  considering interactions   in the  b-c  plane  Eq.   (11) 

is   reduced   to 

0(oy) 

»11 
0 0 0 015 0 

0 022 % «24 0 0 

0 032 *33 *34 0 0 

0 
"^24 -034 044 

0 0 

»1S 
0 0 0 

*55 0 

»16 
0 0 0 056 0 

16 

56 
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Class C symmetry, as defined by Pawley  , relates the in- 

teraction matrix for an A-B interaction to that for a B-A 

interaction.  It is best illustrated by the screw-diad op- 

eration which transforms the molecule pair j-j' into the 

molecule pair j'-j" (These are represented in Pig. 5 of 

PTER I.)  .^ince j represents the molecule located at 

the origin and j' and j" represent the molecules located 

at r., and r.„, respectively, Eq. (1) may be written as 

0(r ,r „) = Tg(Or.,)T (12) 

where T is the screw-diad symmetry transformation.  If S 

represents the operation that transforms r,, into r.„ - r., 

then r.„ = r., + Jr.,.  Therefore Eq. (12) may be written 
~ J    ~ J    ~ ~ J 

as 

0(r  ,   r , + ST.,) = r|(Orjt)f. (13) 
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Since r., + or., is a lattice translation vector, -(r., + 

3r.,) may be added to the expressions in parenthesis on the 

left hand side of Eq. (13) to give 

g(-§r,,0) = T0(Or,,)T = 0(O-3r ,). (U) 

Using the property of class B symmetry given by Eq. (8), 

it is clear that 

0(O-Jr ,) = 10(0Jr ,)I (15) 

where 

I = 

1 0 0 0 0 0 

0 -1 0 0 0 0 

0 0 -1 0 0 0 

0 0 0 1 0 0 

0 0 0 0 1 0 

0 0 0 0 0 1 

as developed for an inversion through the origin.  There- 

fore, Eqs. (12), (14), and (15) give 

0(r,,r.ll) = I0(OJr ,)I. 

The symmetry of Pig. 5 in CHAPTER I requires that gj., = 

r.„ - r., = r,,, therefore, it is more convenient to write 

where 0(j'jM) represents the interaction matrix for any 
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A-B or B-A interaction and 0(jl') represents the interac- 

tion matrix for any corresponding B-A or A-B interaction. 

The result of this relationship is given by 

0(j*r) - 

0 11 021  031 "041 
012 022 032 ~042 "0 

013 023 033 "043 "0 

-014 "024 !34 044  0 

-015 -025 -035  045  0 

"016 ~026 "036 046 0 

51 "061 

52 "062 

53 "063 

54 064 

55 065 

56 066 

If interactions in a plane perpendicular to the a crystal 

axis are considered, class A symmetry requires that 

0(j*j") = 

0n  0   0   0 

0   022 032 "042 

0   023 033 -043 

"024 "034 044 

15 

"016 ° 

0 

0 

0 

0 

"*S1 -*6l] 
0 0 

0 0 

0 0 

^55 *65 

Si V 
The terms within the brackets of the above two equations 

represent elements of 0(jl').  Note that all through this 

appendix the matrices are 6X6.  They are reduced to 5X5 

when used because there is no coupling about the dumbbell 

axis of gallium. 
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APPENDIX   IV 

Programming Considerations 

All   computations were made   by   the  IBM 360/75   com- 

puter located  at  Triangle  Universities  Computation Center 

in Jurham,   North Carolina.     Entrance   into   the  computer was 

gained   through  the   IBM  2780   terminal   system located  on   the 

campus of  the   University of North   Carolina at   Greensboro, 

le   computer  program  is  divided   into   five  main   sections: 

a. Calculation and   storage  of the  intermolecular and 

"self"   force   constants   for like  interactions. 

b. Calculation and  storage  of the   intermolecular and 

"self"   force   constants   for unlike  interactions. 

c. Calculation of  the  dynamical   matrix  elements. 

d. Jolving  the  dynamical matrix   for its   frequency eigen- 

values. 

e. Comparing the   calculated dispersion  curves   to   the 

experimental   dispersion   curves,   using  the   "Least 

Squares''   criteria   for determining the   best   set of 

model   parameters. 

The   intermolecular force  constants are calculated 

using  three nested   do-loops  in  each  section a.   and  b.   to 

select values   of h,   k,   and  1   representing a specific  mol- 

ecule-molecule   interaction.     The   interatomic   force 
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constants for the four possible combinations of the origin 

and source atoms are calculated  and summed to give a 

specific intermolecular force constant which is then stored, 

This is done for all specified values of h, k, and 1.  The 

intermolecular force constants are then used to calculate 

the "self" force constants, which are then stored.  The 

intermolecular and "self" force constants are then used in 

calculating the elements of the dynamical matrix for a 

specific wave vector, q, which enters through e1^'~,   where 

r is the location of the source molecule relative to the 

origin molecule. 

The eigenvalues of the dynamical matrix are then found 

for each q value using a subroutine, JACOBI, obtained from 

1 7 Oak Ridge National Laboratories. 

After all eigenvalues are calculated they are compared 

to the experimental eigenvalues using another program 

obtained from Oak Ridge National Laboratories.  The program 

uses the method of "Least Squares" as outlined in Chap. II 

to determine a set of model parameters which produce dis- 

persion curves similar to the experimental curves. 

A listing of the completed program follows. 

1 

The expressions used in calculating the interatomic force 
constants were not the same as given in APPENDIX I.  They 
differ in sign, however, this does not affect the final 
dynamical matrix eigenvalues. 
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- 

~ 

$J08 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c  
c 
c 
c 
c 
c 
c 

ECS.UNCG.PY620069/FREEMAN,KP=29,TIME=960,PAGES=100 
AL IS THE LENGTH OF THE UNIT CELL IN THE X DIRECTION. 
3L IS THE LENGTH OF THE UNIT CELL IN THE Y DIRECTION. 
CL IS THE LENGTH OF THE UNIT CELL IN THE Z DIRECTION. 
PX(1), PX<2), AND PX(3) ARE 
THE    PARAMETERS   A,    B,    AND   ALPHA. 
BM(1),BM(2>,    AND   BM(3)   ARE   MASS   OF   GALLIUM   Mf)L. 
BM(4)    AND   BM(5)    ARE   MOMENTS   OF    INERTIA   ABOUT 
THE    PRINCIPAL   AXES    OF   THE   GALLIUM   MOLECULE. 

OF   THE   SOUR.    ATOM   RELTV. TO 

OF THE SOUR. ATOM RELTV. TO 

THE SOUR. ATOM AND 

ATM. RELTV. TO CENT. OF 

ATM. RELTV. TO CENT. OF 

ATM. RELTV. TO CENT. OF 

ATM. RELTV. TO CENT. OF 

AXIS OF 
AXIS. 
AXIS OF 
AXIS. 

X(1) IS THE X CO-ORD. 
THE ORIGIN ATOM. 
X(2) IS THE Y CO-ORD. 
THE ORIGIN ATOM. 
X(3) IS THE Z CO-ORD. OF THE SOUR. ATOM RELTV. TO 
THE ORIGIN ATOM. 
X(4) IS THE DISTANCE BETWEEN 
THE ORIGIN ATOM 
YO IS Y CO-ORD. OF ORIG. 
ORIGIN MOLECULE. 
ZO IS Z CO-ORD. OF ORIG. 
THE ORIGIN MOLECULE. 
YS IS Y CO-ORD. OF SOUR. 
THE SOURCE MOLECULE. 
ZS IS Z CO-ORD. OF SOUR. 
THE SOURCE MOLECULE. 
THETAO IS ANGL BTWEEN DUMBBELL 
THE ORIGIN MOLECULE AND THE BL 
THETAS IS ANGL BTWEEN DUMBBELL 
THE SOURCE MOLECULE AND THE BL 
QW(I) REPRESENT THE INCIDENT WAVE VECTORS. 
RJ(1) IS THE X COMPONENT OF SEPARATION OF 

SOURCE MOLECULES. 
COMPONENT OF SEPARATION OF 
SOURCE MOLECULES. 
COMPONENT OF SEPARATION OF 
SOURCE MOLECULES. 

APHIII.J) REPRESENT THE ELEMNTS OF THE 
INTERATOMIC FORCE CONSTANT MATRIX. 
PHIII.J) REPRESENT THE ELEMENTS OF THE 
INTERMOLECULAR FORCE CONSTANT 
PSAA(I,J) ARE ELEMNTS OF THE 
SELF FORCE CONSTANT MATRIX FOR 
PSAB(I,J) ARE ELEMNTS OF THE 
SELF FORCE CONSTANT MATRIX FOR 
PSBB(ItJ) ARE ELEMNTS OF THE 
SELF FORCE CONSTANT MATRIX FOR 
PSBA(ItJ) ARE ELEMNTS OF THE 
SFLF FORCE CONSTANT MATRIX FOR 
PSA(I,J) = PSAA(ItJ) + PSABU,J) 
PSB(I,J) = PSBBUtJ) + PSBA(I,J) 
AAPHIC(I,JtH,K,L) IS ARRAY FOR 

THE ORIGIN AND 
RJ(2) IS THE Y 
THE ORIGIN AND 
RJ(3) IS THE Z 
THE ORIGIN AND 

MATRIX, 

A-A INTERACTIONS. 

A-B INTERACTIONS. 

B-8 INTERACTIONS. 

B-A INTERACTIONS. 
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: 

- 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

105 
1004 
1005 
1006 
1007 

A-A 
FOR 
A-B 
FOR 
B-B 
FOR 
B-A 

INTERACTIONS. 

INTERACTIONS. 

INTERACTIONS. 

INTERACTIONS. 
SLF FRCE CNSTS OF 

SLF FRCE CNSTS FOR 

STORING FORCE CONSTANTS OF 
ABPHIC(I,J,H,K,L) IS ARRAY 
STORING FORCE CONSTANTS OF 
BBPHIC(I,J,H,K,L) IS ARRAY 
STORING   FORCE   CONSTANTS   OF 
BAPHIC(I,J,H,K,L)    IS   ARRAY 
STORING   FORCE   CONSTANTS   OF 
APSA(ItJ)    IS   ARRAY   FOR   STRNG 
TYPE   A   ORIGIN   MOLECULES. 
BPSB(ItJ)    IS   ARRAY   FOR   STRNG 
TYPE   B   ORIGIN   MOLECULES. 
D(I,J)    REPRESENT   ELEMNTS    OF    THE    DYNAMICAL    MTRX. 
EVSQ(ItJ)    REPRESENT   EIGEN   VALUES   OF    DYNMICAL    MTRX. 
EV(I,J)    REPRESENT    THE    CALCULATED   FREQUENCIES. 
IMPLICIT   REAL*8    (A-G,0-Z)   
INTEGER   HMAX 
DIMENSION    VV(3,3),APX(3),DX< 10, 15 ,3 ) ,X ( 10, 1 5 ) , AV( 10, 15 ) 
DIMENSION   Y(10 ,15),RM(3,3),W( 10,15),WW( 10,15),RMI( 3,3) 
DIMENSION   V(10,15),EV(10,15),PX(3),DEPX(3,3),A(3,6) 
DIMENSION    BM(5),0W(3),EVS0(10,15),2(15) 
C0MM0N/BLK1/AL,BL,CL,0,P,FR,GR,0W,JI        
COMMON/BLK6/YF,ZF,AM,BM,HMAX,KMAX,LMAX 
COMMON/BLK7/PX,NN,NTRL(3),NCODE(15) 
COMMON/BLK8/JCOUN,KCOUN,LCOUN 
DATA   BRl/»(100)'/,BR2/'(010)»/,BR3/'(001)'/ 
READ(1,1004)AL,BL,CL 
READ(1,1005)YF,ZF 
READ(1,1007)HMAX,KMAX,LMAX 
READ(1,1006)PX(1),PX(2),PX(3) 
READ(1,1004)AM 
READ(1,1007)M,NN,KK 
READ(1,1007)NTRL(1),NTRL(2),NTRL(3) 
READ(1,105)((V(I,J),W(I,J),Z<J),NCODE<J),J=1,M),I=1,10) 
FORMAT(D20.12,F5.3,D20.12,I3) 
FORMAT(3D20.12) 
FORMAT(2F10.6) 
FORMAT(2D20.12,F10.6) 
FORMAT(3I3) 
WRITE(3,1000)AL,BL,CL 
WRITE(3,1010)YF,ZF 
WRITE(3,1004)AM  
WRITE(3,1020)HMAX,KMAX,LMAX 
WRITE(3,1008)PX 

1008   FORMATM    PX(1)=•,D20.12,2X,•PX(2)=•,D20.12,2X,'PX( 3) 
1=» ,D20.12) 

FORMAT(•    AL=«,F8.5,2X,'BL=',F8.5,2X,'CL=',F8.5,2X) 
FORMAT(•    YF=»,F8.5,2X,'ZF=',F8.5,2X) 
FORMAT(•    HMAX=',I4,'KMAX=',I4,«LMAX=' 

1000 
1010 
1020 
1003 

14) 
FORMAT(»0«) 
WRITE(3,1003) 
DO   50   J=1,M 
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DO    50    1=1,10   
X(I,J)=V(I,J)**2 
W( I ,J)=WU ,J)*V< I ,J)   
WW(I ,J) = 1.0/(W(I,J)*2*V(I,J|)**2 

50   AV( I,J)=V(I,J)**2 
K = NN 
KK=0 
DO   5    1=1,K 
IF(NTRL(I).EQ.1)KK=KK+1     

5   CONTINOE 
KN=0   
YY=1.0D4 
LCOUN=0 

61    XX=O.ODO 
JCOUN=0        
DO   1    JI=1,3 
IF(JI.E0.1)MN=1 
IF(JI.EO.l)NM=5 
IF(JI ,E0.2)MN=6 
IF(JI.EQ.2)NM=10 
IF(JI.E0.3)MN=11   
IF(JI.EQ.3)NM=15 
DO    1    J=MN,NM 
JC0UN=JC0UN+1 
QW<JI)=Z(J) 
CALL    HFIT(J,X,DX) 
DO    1    1=1,10 
Y(I,J)=X(I ,J)-AV(I,J) 
XX=XX + WW(I ,J)*Y(I,J)**2 

1   CONTINUE 
WRITE(3,27)XX,KN   
IF(XX.GT.YY)GO   TO   131 
IF!XX-YY)66,66,109          
WRITE(3,27)XX,KN 
FORMAT(•    XX=',D20.12,4X,«KN = ' ,13) 

66 
27 

110 

97 

98 
113 

WRITE(3,110)(I,PX(I),I=1,NN) 
F0RMAT(3( •    PX( • , I 2,•) = •,D20.12 , 2X) ) 
DO    113   J=1,M 
DO    113   1=1,10    
IF(X(I,J) >97,97,98 
EV(I,J)=-DSQRT(-X(I,J)) 
GO   TO   113 
EV( I,J)=DSQRT(X(I 
CONTINUE 
DO    130   J=1,M          
NC=NCUDE(J) 
IFJNC.EQ.l )BR=BR1 
IF(NC.EQ.2)BR=BR2 
IF(NC.EQ.3)BR=BR3 

,J>> 

124 
WRITE(3,124)BR,Z(J) 
FORMAT(1H0, 5X,A5,IX,•0=',020.12) 
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130 

60 

45 

29 
30 

109 

74 
77 
54 
76 

84 

85 

78 
37 

131 

78 

71 

WRITE(3,125MI,J,VU,J),I,J,W(I,J),I,J,EV(I,J),I«1,10) 
FORMAT!• V( ' , 12 , • , ' , I 2, • > = •,D20.12,2X,'W( • 
2,')=',F5.3,5X,«EV( • , 12, • , •» 12,•)=«,D20.12> 
CONTINUE 
IF(DABS(1.D0-XX/YY)-1.D-5)131,131,60 
DO 45 1 = 1,K 
DO 45 J=1,K           
RM(I ,J)=0.0 
VV(I,J)=0.0  
DO 30 J=1,M 
DO 30 1=1,10   
DO 30 11=1,KK 
DO 29 JJ=1,KK 
RM(II,JJ)=RM(II,JJ)+DX< I , J,II)*DX(I,J,JJ)*WW(I,J) 
VV< II,1)=VV( II,1)-DX(I,J,II )*Y(I,J)*WW(I,J) 
KKK=2*KK 
CALL UELPX(RM,VV,DEPX,KK,KKK,RMI,A) 
YY = XX 
KN=-1 
KN=KN+1 
IF(KN-1)77,74,74       
IF(KN-5)76,76,78 
DO 54 I=1,K 
APX( I)=PX(I ) 
NK=0 
DO 85 1 = 1, K 
IF(NTRL(I))85,85,84   
NK=NK+1 
PX(I)=APX<I)+DEPX(NK,l) 
CONTINUE 
LC0UN=LC0UN+1 
GO TO 61 
WRITE(3,37) 
FORMAT(«ODID NOT CONVERGE') 
WRITE(3,27)XX,KN 
WRITF(3,110)( I ,PX(I),I=1,NN) 
STOP 
END 
SUBROUTINE HFIT(J,X,DX) 
IMPLICIT REAL*8 (A-G,0-ZJ 
INTEGER HMAX 
DIMENSION DX(10,15,3),X(10,15),X1(10,15),BM(5) 
DIMENSION DPX(3),PX1(3),0W(3),EVSQ( 10,15),PX(3) 
COMMON/BLK1/AL,BL,CL,0,P,FR,GR,QW,JI 
C0MM0N/BLK6/YF,ZF,AM,BM,HMAX,KMAX,LMAX 
C0MM0N/BLK7/PX,K,NTRL(3),NCC)DE( 15) 
COMMON/BLK8/JCOUN,KCOUN,LCOUN 
KCOUN=0 
CALL    FREOC(PX,J,X) 
DO   78   1=1,10 
X1(I,J)=X(I,J)  
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77 

70 

71 
72 

75 

76 

E=-1.0D-3 
DO 77 N=1,K 
PX1(N)=PX(N) __________  
NNK=0 
DO 76 N=1,K 
IF(NTRL(N) )76,76,70 
NNK=NNK+1 
DPX(N)=PX(N)*E 
IF(DABS(DPX(N) )-l.D-7)71,71 ,72 
DPX(N)=1.0D-7 
PX1(N)=PX(N)+DPX(N)      
KC0UN=1 
CALL FREQC(PX1,J,X1) 
DO 75 1=1,10 
DX( I,J,NNK)=(X1(I ,J)-X( I,J) )/DPX(N) 
PX1(N)=PX(N) 
CONTINUE   
RETURN 
END 
SUBROUTINE DELPX(RM,VV,DEPX,KK,KKK,RMI,A) 
IMPLICIT REAL*8 (A-H,0-Z) 
DIMENSION RM(KK,KK),RMI(KK,KK),VV(KK,KK) 
DIMENSION DEPX(KK,KK),A(KK,KKK) 
CALL MINV(A,RM,RMI,KK,KKK,IJ) 
CALL MPRD(RMI,VV,DEPX,KK)   
RETURN 
END   
SUBROUTINE MPRD(A,B,C,N) 
THIS PROGRAM PERFORMS THE FOLLOWING OPERATION: 
■N' IS THE ORDER OF THF MATRICES 
IMPLICIT REAL*8 (A-H,0-Z)   
DIMENSION A(N,N),B(N,N),C(N,N) 
DO 1 I=1,N       
DO 1 J=1,N 
C(ItJ)=O.DO 
DO 1 K=1,N 
C(I,J)=A( I ,K)*B(K,J)+C( I,J) 
IF(DABS(C(I,J)).LT.1.D-11)C(I,J)=0.DO 
CONTINUE 
RETURN 
END 
SUBROUTINE MINV(A , AI,A INV,N,NN,IJ) 
IMPLICIT REAL*8 (A-H,0-Z) 
REAL*8 DABS 
DIMENSION A(N,NN),AINV(N,N),AI(N,N) 
NI=N+1 
N2=2*N 
DO 6 I=1,N 
DO 6 J=1,N   
A(I,J)=AI(I,J) 
DO 1 I = 1,N .  

A*B = C 
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92 

93 

13 
12 

200 

10 
94 

DO 1 J=NI,N2   
A( I tJ)=O.DO 
IF(I.EQ.(J-N))A(I,J)=1.D0 
CONTINUE 
DO 200 M=1,N 
B=DABS(A(M,M)) 
DO 2 I=M,N 
IF(OABS(A(I»M)).LT.B)Gn TO 2 
B=DABS(A(I,M) ) 
L=I 
CONTINUE 
IF(B.EQ.DABS(A(M,M)))GO TO 3 
DO 4 J=1,N2 
B=A(M,J) 
A(M,J)=A(LtJ)     
A(L»J)=B 
B=A(M,M) 
IF(DABS(B).LT.1.D-11)G0 TO 92 
GO TO 93 
I J = 0 
GO TO 94 
IJ = 1 
DO 5 J=M,N2 
A(M,J)=A(M,J)/B 
DO 12 1=1,N 
IF(I.EQ.M)GO TO 12 
B=A(I,M) 
DO 13 J=M,N2 
A(I,J)=A(I,J)-B*AJM,J) 
CONTINUE 
CONTINUE 
DO 10 1=1,N 
DO 10 J=1,N 
AINV(I,J)=A(I,J+N) 
RETURN   
END 
SUBROUTINE FREQC(PX,JJ,EVSQ)   
IMPLICIT REAL*8 (A-G,0-Z) 
INTEGER H,HMAX,HH  
REAL*8 DS0RT,DCOS,DSIN,DEXP,DATAN,DABS 
DIMENSION PHI(5,5),X(4) 
DIMENSION AAPHI(5,5,7,7,7),BBPHI(5,5,7,7,7) 
DIMENSION ABPHI(5,5,7,7,7),BAPHI(5,5,7,7,7) 
DIMENSION FV(10,10),FREQ(10),EVSQ(10,15) 
DIMENSION APSA(5,5),BPSB(5,5) 
DIMENSION PSAA(5,5),PSAB(5,5),PSA(5,5) 
DIMENSION PSBB(5,5),PSBA(5,5),PSB(5,5) 
DIMENSION D(10,10),E(10 , 10),QW(3>,RJ(3) 
DIMENSION BM(5),PX(3) 
COMMON/BLK1/AL,BL,CL,0,P,FR,GR,QW,II 
C0MM0N/BLK2/NC0UN    
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108 
23 

COMMON/BLK3/THETA0,Y0,Z0 
C0MM0N/BLK4/THETAS,YS,ZS 
C0MM0N/BLK5/H,K,L   
C0MM0N/BLK6/YF,ZF,AMfBM,HMAX,KMAX,LMAX 
COMMON/BLK8/JC0UN,KC0UN,LC0UN 
IF(KCOUN.EQ.1)GO   TO    108 
IF( JCOUN.GT.DGO   TO   108 
IF(LCOUN.GT.O)GO   TO    108 
U=YF*BL   
V=ZF*CL 
8M( 1)=2*AM 
BM(2)=BM<1) 
BM(3)=BM(1) 
BM(4)=2*AM*(U**2+V**2) 
BM(5)=BM(4)   
A=AL/2 
B=BL/2       
C=CL/2 
THETA=DATAN(ZF*CL/(YF*BL)) 
HMAX=HMAX+1 
KMAX=KMAX+1      
LMAX=LMAX+1 
ICOUN=0   
DO    100    LL=1,LMAX 
L=LL-1 
LTEST=L/2 
RTEST=L/2. 

TO   100 IF(LTbST.NE.RTEST)GO 
40   DO   90   KK=1,KMAX 

K=KK-1 
30   DO   80   HH=1,HMAX   

IF(HH.NE.1)G0   TO   10 
IF(K.NE.0)GO   TO   10 
IF(L.E0.0)GO   TO   80 

10 H=HH-1   
MTEST=(H+K)/2 
0TEST=(H+K)/2.   
IF(MTEST.NE.OTEST)GO   TO   80 

C THIS   PART   COMPUTES   FUR   TYPE   A   MOLECULES 
C THIS   PART   COMPUTES   DISTANCES    BETWEEN      ATOMS    1   AND    3 
C DISTANCES   1    TO   3   EQUAL   2    TO   4   WHEN   L    IS    EVEN 
C THE   PRECEDING  MEANS   ORIGIN   AND   SOURCE   ARE   SAME   TYPE 
C X,Y,AND   Z   ARE   DISTANCE   COORDINATES   RELATIVE   TO   AN   ATOM 

11 CONTINUE 
IH=H+4  
IK=K+4 
IL=L+4   
THETAU=THETA 
THETAS=THETA 
IF(KC0UN.EQ.1)G0 
IF( JCOUN.GT.DGO 

TO 
TO 

138 
116 



7K 

138   CONTINUE 

X(2)=K*B 
X(3)=L*C 
X(4)=DSQRT(X(1)**2+X(2)**2+X(3)**2) 
NCOUN=0 
YO=U 
ZO=V 
YS=U 
ZS = V 
GO   TO   26 

21 CONTINUE 
YO=-U 
ZO=-V 
YS=-U 

26 
ZS=-V 
CONTINUE 
CALL    PHIC(X,PHI,PX) 
NC0UN=NC0UN+1 

C 
IF(NCOUN.EQ.l)GO   TO   21 
THIS    PART   COMPUTES   DISTANCE    BETWEEN   ATUMS    1   AND   4 
X(1)=H*A 
X(2)=K*B-2*YF*BL 
ZS=-V 
X(3)=L*C+2*ZS 
X(4)=DS0RT(X(1)**2+X(2)**2+X<3)**2) 
YO=U 
ZO=V 
YS = -U 
CALL   PHIC(X,PHI,PX) 
CONTINUE 

C 
7 

THIS   PART   COMPUTES   DISTANCE    BETWEEN   ATOMS   2   AND   3 
X(1)=H*A 
X(2)=K*B+2*YF*BL 
ZS=V 
X(3)=L*C+2*ZS 
X(4)=DS0RT(X(1)**2+X(2)**2+X(3)**2) 
YO=-U 
ZO=-V 
YS=U 
CALL   PHIC(X,PHI,PX) 

17 CONTINUE 
DO   18    1=1,5 
DO   22   J=l,3 
IF(THETAO.LT.O)GO   TO   47 

47 
IF(ICUUN)18,27,28 
IF(IC0UN)18,48,49 

48 
49 

27 

PSBB(I,J)=O.DO 
PSBB(I,J)=-PHI(I,J)+PSBB(I,J) 
GO   TO   22 
PSAA(I,J)=O.DO   ^- 



- 

- 

28 
22 

50 
51 
52 

29 
31 

53 
54 
55 

76 

PSAA(I,J)=-PHI(I,J)+PSAA(I,J) 
CONTINUE 
IF(THETAO.LT.O)GO   TO   50 
IF(IC0UN)18,29,31 
IF(ICOUN>18,51,52 
PSBB(I,4)=0.D0 
PSBB(I,4)=-PHI(I,4)+PHI(I,2)*L*C-PHI(I,3)*K*B+PSBB( I , 4) 
GO   TO   53 
PSAA(I,4)=O.D0  
PSAA(I,4>=-PHI(I,4)+PHI(I,2>*L*C-PHI(I,3)*K*B+PSAA<1,4) 
IF(ICOUN)18,32,33 
IF(IC0UN)18,54,55 
PSBB(I,5)=0.D0 
PSBB(I,5)=-PHI(I,5)+PHI(I ,1 )*< K*B*DCOS(TH6TA0)+L*C* 

6DSIN(THETA0))-PHI(I ,2)*H*A*DCOS(THETAO)- 
CPHIU,3)*H*A*DSIN(THETAU)+PSBB(1,5) 

GO   TO   18 
32 PSAA(I,5)=0.D0 
33 PSAA(I,5)=-PHI(I,5)+PHI(I,1)*(K*B*DCOS(THETAO)+L*C* 

3DSIN(THETAOJ)-PH1(1,2)*H*A*DCOS(THETAO)- 
DPHK I ,3)*H*A*DSIN(THETA0)+PSAA( I ,5)   

18   CONTINUE 
IF(KC0UN.EQ.1)G0   TO   116 
IF(THETA0)121,116,122 

121   DO   123   1*1,5 
DO  123   J=l,5 

123 

122 

124 
116 

BBPHI(I,J,IH,IK,IL)=PHI( I ,J) 
GO TO 116 
DO 124 1=1 
DO 124 J=l 

♦ 5 
»5 

74 

73 

76 

AAPHI(I,J,IH,IK,IL)=PHI(I,J) 
CONTINUE 
RJ<1)=H*A   
RJ(2)=K*B 
RJ(3)=L*C 
QR=QW(II)*RJ(II) 
DO  93   1=1,5 
DO   72   J=l,5 
M=I + 5 
N=J+5 
IF( I.GT.3)G0   TO  74 
IF(J.GT.3)CJP=DSIN(QR) 
IF(J.LE.3)CJP=DCOS(0R) 
GO   TO   73 
IF(J.LE.3)CJP=-DSIN(QR) 
IF<J.GT.3)CJP=DC0S(QR) 
IF(ICOUN.GT.OJGO   TO   75 
IF(THETAO.LT.0)GO   TO   76 
E(I,J)=O.DO   
GO   TO   77 
E(M,N)=O.DO  



—  

1 l 

GO   TO   78 

IF(THfcTAO.LT.O)GO   TO  78 
77    IFIKC00N.EQ.1)G0   TO   139 

E(I,J)=AAPHI( I,J,IH,IK,IL)*CJP+E(I,J) 
GO   TO   79 

139    E(I,J)=PHI(I ,J)*CJP + E( I,J) 
/-l~X          -T/-1          -».-,                                                                                                                                                                                                          

78    IF(KCOUN.EQ.l)GO   TO   141 
tlHfNJ-BBKHllItJtIH,IK,IL)*CJP+E(M,N) 
GO   TO   79 

141    E(M,N)=PHI(I,J)*CJP+E(M,N) 
79   CONTINUE 
1 £.     UUIN r   IIMUC 

93   CONTINUE 
1CUUN=ICUUN+1 
IF(H)80,80,12 

12   H=-H 
GO   TO   11 

80   CONTINUE 
IF(K)90,90,13 

13   K=-K 
GO   TO   30 

90   CONTINUE 
IF(L)100,100,20 

20   L=-L 
GO   TO   40 

100   CONTINUE 
IF(THETA)101,101,102 

102   THETA=-THETA 
V«-V 
ICOUN=0 
GO   TO   23 

101   CONTINUE 
THETA=-THETA 

C               THIS    SECTION   COMPUTES   DISTANCES    BETWEEN   UNLIKE   MOLS 
109    ICOUN=0 
104   DO   200   LL=1,LMAX 

• 

L=LL-1 
LTEST=L/2 
RTEST=L/2. 
IF(RTEST.E0.LTEST)GO   TO   200 

140   DO   190   KK=1,KMAX 
K=KK-1 

130   DO   180   HH=1,HMAX 
IF(HH.NE.l)G0   TO   110 
IF(K.NE.O)GO   TO   110 
IF(L.EQ.O)GO   TO   180 

110   H=HH-1 
MTEST=(H+K)/2 
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111 

0TEST=(H+K)/2. 
IF(MTEST.E0.OTEST)GO   TO   180 
THIS   PART   COMPUTES   DISTANCE 
CONTINUE 
JH=H+4 
JK=K+4 
JL=L+4 
THETAO=THETA 
THETAS=-THETA 
IF(KC0UN.EQ.1)G0 

BETWEEN   ATOMS   1    AND   3 

142 
IF(JCOUN.GT.l)G0 
CONTINUE 
ZO=V 
X(1)=H*A 
X(2)=K*B 

TO 
TO 

142 
118 

114 

H 

X(3)=L*C-2*Z0 
X(4)=DS0RT(X(1)**2+X(2)**2+X(3)**2) 
YO=U 
YS=U 
ZS=-V 
NCOUN=0  
CALL    PHIC(X,PHI,PX) 
NCOUN=NCOUN+1 
THIS    PART   COMPUTES   DISTANCE   BETWEEN   ATOMS    1   AND   4 
X(1)=H*A 
X(2)=K*B-2*YF*BL 

X(3)=L*C  
X(4)=DS0RT(X( 1)**2 + X(2)**2 + X( 3)**2) 
YO=U 
ZO=V 
YS=-U 
ZS*V 
CALL    PHIC(X,PHI,PX)   
THIS   PART   COMPUTES   DISTANCE   BETWEEN   ATOMS   2   AND   3 

115   X(1)=H*A 
X(2)=K*B+2*YF*BL 
X(3)=L*C 
X(4)=DS0RT(X(1)**2+X(2)**2+X(3)**2) 
YO=-U      
ZO=-V 
YS=U   
ZS=-V 
CALL    PHIC(X,PHI,PX) 
THIS   PART   COMPUTES   DISTANCE   BETWEEN 
CONTINUE   
ZO=-V 
X(1)=H*A   
X(2)=K*B 
X(3)=L*C-2*ZO 
X(4)=DS0RT(X(1)**2+X(2)**2+X(3)**2) 
YO=-U 

ATOMS      2   AND   4 
117 
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56 

56 
57 
58 

34 
35 
25 

59 
60 
61 

36 
37 

62 
63 
64 

YS=-U 
ZS=V 
CALL   PHIC(X,PHI,PX) 
DO   24   1=1,5 
DO   25   J=l,3 
IF(THETAO.LT.O)GO   TO 
IF(IC0UN)24,34,35 
IF( ICOUN)24,57,58 
PSBA(I,J)=0.DO   
PSBA(I,J)=-PHI<I,J)+PSBA(I,J) 
GO   TO   25   
PSAB(I,J)=0.DO 
PSAB(I,J)=-PHI(I,J)+PSAB(I,J) 
CONTINUE 
IF(THETAO.LT.O)GO   TO   59        
IF( IC0UN)24,36,37 
IF(IC0UN)24,60,61 
PSBA(I,4)=0.D0 
PSBA(I,4)=-PHI(I,4)+PHI(I,2)*L*C-PHI(I,3)*K*B+PSBA( 1,4 ) 
GO   TO   62 
PSAB(I,4)=0.DO 
PSAB(I,4)=-PHI(I,4)+PHI<I 
IF(ICUUN)24,38,39 
IF(IC0UN)24,63,64 
PSBA(I,5)=0.DO 

2)*L*C-PHI(I,3)*K*B+PSAB(I,4) 

PSBA(I,5)=-PHI(I,5)*DC0S(2*THETA0)+PHI( I ,1)*(K*B*DCOS 
7(THETAO)+L*C*DSIN(THETAO)>-PHI(I, 2 ) *H*A*DC0S (THETAO)- 
8PHI(I,3)*H*A*DSIN(THETAO)+PSBA(1,5) 

GO   TO   24 
38 PSAB(I,5)=0.D0 
39 PSAB(I,5)=-PHI(I,5)*DCOS(2*THETAO)+PHI( I , 1)*(K*B*DCOS 

4(THETA0)+L*C*DSIN(THETA0))-PHI(I,2)*H*A*DCOS(THETAO)- 
5PHK I,3)*H*A*DSIN{THETAO)+PSAB< 1,5) 

CONTINUE 
IF(KCOUN.EQ.l)GO   TO   118 
IF(THETAO)125,118,126 
DO   128    1=1,5 

J=l,5 

24 

125 

128 

126 

129 
118 

DO    128 
BAPHK I ,J,JH,JK,JL)=PHI ( I, J) 
GO   TO   118 
DO   129   1=1,5 
DO   129   J=l,5 
ABPHI(I,J,JH,JK,JL)=PHI(I,J) 
CONTINUE 
RJ(1)=H*A 
RJ(2)=K*B 
RJ(3)=L*C 
QR=0W(II)*RJ(II) 
DO   81   1=1,5 
DO   82   J=l,5 
M=I + 5    



  

 SO  

N=J+5 
INI.bl   .3/1)11      1 u     Oi 

IF(J.GT.3)CJP=DSIN(QR) 
IP(J.Lt.3)CJP=DC0S(QR) 
GO   TO   84 

83    IF(J.LE.3)CJP=-DSIN(QR) 
IF(J.GT.3)CJP=DCOS(0R) 

84   IF(ICOUN.GT.O)GO   TO   85 
IF(THETA0.LT.0)GO   TO   86 
E(I,N)=O.D0 
GO   TO   87 

86   E(M,J)=O.DO 
GO   TO   88 

85   CONTINUE 
IF(THETAO.LT.OJGO   TO   88 

87   IF(KCOUN.EQ.l)GO   TO   143 
E(I ,N)=ABPHI(I,J,JH,JK,JL)*CJP+E(I ,N) 
GO   TO   89 

143   E(I,N)=PHI(I,J)*CJP+E(I,N) 
GO   TO   89 

88    IF(KCOUN.EQ.l)GO   TO    144 
E(M,J)=BAPHI<I,J,JH,JK,JL)*CJP+E(M,J) 
GO   TO   89 

144   E(M,J)=PHI(I,J)*CJP+E(M,J) 
89   CONTINUE 
82   CONTINUE 
81    CONTINUE 

ICOUN=ICOUN+l 
IF(H)180,180,112 

112   H=-H 
GO   TO   111 

180   CONTINUE 
IF(K)190,190,113 

113   K=-K 
GO   TO   130 

190   CONTINUE 
IF(L)200,200,120 

120   L=-L 
GO   TO   140 

200   CONTINUE 
IF(THETA)65,65,103 

103   THETA=-THETA 
V=-V 
ICOUN*0 
GO   TO   104 

65   CONTINUE 
THETA=-THETA 
v»-v 
DO   45    1=1,5 
DO   46   J*l,5 
IF<KCOUN.EQ.O)GO   TO   147 
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PSA(I,J)=PSAA(I,J )+PSAB(I,J) 
GO  TO   146 

147 IF( JCOUN.GT.DGO   TO   148   
APSA(I,J)=PSAA(I ,J)+PSAB(I,J) 

148 PSAU fJ)=APSA( I ,J ) 
146    IF(DABS(PSA(I,J)).LT.l.D-ll)PSA(I,J)=O.D0 
46   CONTINUE 
45   CONTINUE 

DO   70    1 = 1,5  
DO   71    J-1,5 
IF«KCOUN.E0.0)G0   TO   149 
PSB(I,J)=PSBB(I,J)+PSBA(I,J) 
GO   TO    171 

149 IF(JCOUN.GT.l )G0   TO   150 

150 
171 

71 
70 

119 

92 
91 

99 
98 

136 

135 

127 
202 

BPSB(I,J)=PSBB(I,J)+PSBA(I,J) 
PSB{I,J)=BPSB(I,J) 
IF(DABS(PSB(I,J)).LT.1.D-11)PSB(I,J)=O.DO 
CONTINUE 
CONTINUE 
CONTINUE 
DO   91    1=1,10 
DO  92   J=l,10 
IF(DABS(E<I,J)).LT.1.D-11)E(I,J)=O.DO 
CONTINUE 
CONTINUE 
DO  98    1=1,5 
DO  99    J=l,5 
M=I + 5 
N=J+5 
D(I,J)=(E(I,J)+PSA(I,J) )/DSQRT(BM(I )*BM(J)) 
D(I ,N)=E(I ,N)/DSORT(BM(I >*BM<J)) 
D(M,N) = (E(M,N)+PSB(I,J) )/DSQRT(BM(I)*BM( J) ) 
D(M,J)=E(M,J)/DSORT(BM{I)*BM(J)) 
CONTINUE 
CONTINUE 
CALL   JACOBI(D,FV,FRE0,10) 
DO   135   J=l,9   
FMAX=FREQ(J) 
M=J+1 
DO   136    I=M,10 
IF(FMAX.GE.FREQ(I))G0   TU   136 
FOLD=FMAX 
FMAX=FREQ(I) 
FREQ(I)=FOLD 
CONTINUE 
FREQ(J)=FMAX 
CONTINUE 
DO   127    1=1,10 
EVSO(I,JJ)=FREQ(I) 
CONTINUE 
RETURN  



82 

19 

END 
SUBROUTINE   PHIC(X,PHI ,PX) 
IMPLICIT   REAL*8   (A-G,0-Z) 
INTEGER   H 
REAL*8   DSIN,DCOS,DEXP 

DIMENSION   DELT(3,3),APHI<5,5),PHI<5,5),X<4) 
DIMENSION   PX(3),QW(3) 
COMMON/BLKl/AL,BL,Cl,Q,P,FR,GR,QW,II 
COMMON/BLK2/NCOUN  
C0MM0N/BLK3/THETA0,Y0,Z0 
C0MM0N/BLK4/THETAS,YS,ZS 
COMMON/BLK5/H,K,L 
AP=PX(1) 
BP=PX(2) 
ALP=PX(3) 
Q=6*AP/X(4)**8 
P=BP*ALP*DEXP(-ALP*X(4))/X(4) 
FR=0-P 
GR=(-8*Q+P)/X(4)**2+ALP*P/X<4) 
DO   2    1=1,3 
DO   3   J=l,3       _^___„  
IFINC0UN)201,4,8 
PHHI ,J)=O.DO 
IFU.NE.JJGO   TO   6 
DELT(I,J)=1 
GO  TO   8 
DELT(I,J)=0   
APHIII,J)=DELT(I ,J)*FR+X(I )*X(J)*GR 
PHI(I,J)=APHI(ItJ)+PHI(I,J) 
CONTINUE 
IFINCOUN)201,9,14 
PHK I,4)=0.D0 
PHIII,5)=0.D0 

14 APHIII,4)=+APHI(I,3)*YS-APHI(I,2)*ZS 
APHK I,5)=-lYS*DCOSITHETAS)+ZS*DSIN<THETAS))*APHII 1,1) 
PHK I,4)=APHII I,4)+PHI I 1,4) 
PHIII,5)=APHI(I,5)+PHI(I,5) 

2   CONTINUE 
DO   1   N=l,5       
IFINCOUN)201,15,16 

15 PHI(4,N)=0.D0 
PHII5,N)=O.DO 

16 APHI(4,N)=Y0*APHI(3,N)-Z0*APHI< 2,N) 
APHI(5,N)=-(YO*DCOSITHETAO)+ZO*DSINITHETAO))*APHI( 1,N) 
PHII4,N)=APHI(4,N)+PHI(4,N) 
PHI(5,N)=APHI(5,N>+PHI(5,N) 

1   CONTINUE   
201   CONTINUE 

RETURN            
END 
SUBROUTINE   JACOB I I A,B,E,N)     
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11 
12 

25 

16 

77 

31 

32 
17 

18 
19 

20 

1 
13 

IMPLICIT   REAL*8    <A-H,0-Z) 
DIMENSION   A(N,N),    B(N,N),    E(N) 
EQUIVALENCE    (Y,YA) 
S=0.0 
D010I=1,N 

10   S=    S+DABS(A(1,1)) 
TEST=S/N 
00121=1,N 
D011J=1,N 
B(I,J)=0.0 
B(I,I)=1.0 
G0T015 
D013I=2,N 
11=1-1 
D013J=1,II 
P=A(I,J) 
IF    {    OABS(P)-AMAX)    13,16,16 
Y=(A(J,J)-A(1,1))/2.0 
D=Y**2 + P*AU,I) 
IF(D)    18,18,77   
YSQ=   Y+DSQRT(D) 
IF(YSQ)31,31,17 
DO   =   YA**2   +   P*A(J,I) 
YY=DSURT(DD) 
DENOM=Y+YY 
YSQ=DABS(DENOM) 
SSIGN=    P*A(I,J) 
IF    (    SSIGN    )    32,17,17 
YSQ=-YSO 
X=P/YSQ 
G0T019 
X=P/Y 
U=   DSQRT(    1D0+X*X    ) 
C=l/U 
S = X*C 
D020K=1,N 
Y=A(K,I) 
Z = A(K,J)  
A(K,I)=C*Y-S*Z 
A(K,J)=S*Y+C*Z 
Y=B(K,I) 
Z=B(K,J) 
B(K,I)=C*Y-S*Z 
B(K,J)=S*Y+C*Z 
DO   1    K=1,N 
Y=A(I ,K) 
Z=A(J,K) 
A( I ,K)=C*Y-S*Z 
A(J,K)=S*Y+C*Z 
CONTINUE 
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15   S=0.0 
D021I=2,N 
11=1-1 
D021J=1,II 
IF   (   UABS(    A(I,J))-S 

22 S= DABS(A(I,J) ) 
21 CONTINUE 
23 R=S/TEST 

AMAX=S/5.0 
IF(R-1.00-6)24,24,25 

24 00261=1,N 
26 E(I)=A(I,I) 

RETURN 
END 

) 21,21,22 
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APPENDIX V 

The First Brillouin Zone Boundaries 

jJvery crystal structure has two important lattices. 

The real lattice described by the fundamental vectors a, b, 

and c and the reciprocal lattice described by the funda- 

mental reciprocal lattice vectors A, B, and C.  The recip- 

rocal lattice vectors are related to the real lattice vec- 

tors by the following equations: 

A - ?rr fe x ?■ 
~ ~ l  a-fe X c 

5 - 2Ta¥A 
C = 2ir *X-fe 19 
~    a ■ b A c 

(D 

Reciprocal lattice points are generated using the recipro- 

cal translation vectors given by 

G = hA + kB + 1C 20 (2) 

where h, k, and 1 are positive or negative integers. 

The primitive cell of the real lattice is defined as 

the cell of smallest volume containing one lattice point 

which, when translated parallel to its edges regularly 

through space, generates the complete lattice structure. 

The unit cell of the base-centered orthorhombic lat- 

tice contains two lattice points.  If the fundamental 
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lattice vectors are a, b, and c then the volume of the unit 

cell is a-b X c = a b c.  Jince the primitive cell contains 

only one lattice point, its volume is a b c/2.  A set of 

primitive lattice vectors, which describe a primitive cell 

of the base-centered orthorhombic lattice, is 

.  a*  b-> a" = 2X + jy 

b» = by (3) 

and 

c1 H cy. 

x,   y,   and   z  are   the   unit vectors along the  a,   b,   and   c 

crystal   axes,   respectively   (iPig.   8).     A set   of primitive 

reciprocal   lattice vectors  which describe a  primitive  cell 

in reciprocal   space  may be  obtained  using Eqs.   (1)   and   (3) 

where  a,   b,   and   c  are  replaced  by a',   b',   and c',   respec- 

tively.     The  results   are  given by the   following: 

A =   4|x 

5-  2F(|.|) (4) 

0  =   2£Z. 

Therefore,   from   Eq.   (2)   the  reciprocal   translation vectors 

are  given  by 

G  =   2^"(2h  -  k)x  +   2fky  +  2flz. (5) 
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Fig. 8. A primitive cell of gallium.  (The shaded area re- 

presents the primitive cell.) 



88 

The parallelepiped described by A, B, and C is the primi- 

tive cell of the reciprocal lattice.  It is more conven- 

tional to take the primitive cell of the reciprocal lattice 

as the smallest volume bounded by the planes normal to each 

of the shorter non-zero G vectors at its midpoint.  The 

primitive cell of the reciprocal lattice formed in this way 

is called the first Brillouin zone, A  scaled plot of the 

shortest non-zero reciprocal lattice vectors located in the 

X-Y plane, along with the first Brillouin zone, as viewed 

down the Z axis, is shown in Pig. 9.  A three dimensional 

view of the first Brillouin zone is shown in Fig, 10. 

It is now appropriate to determine the distance from 

the origin of Fig. 9 to the zone boundaries.  Figure 11 

represents an enlargement of the upper right quadrant of 

Pig. 9.  Point o represents the lattice point located by 

the reciprocal lattice vector designated &...  In the recip- 

rocal lattice of Fig. 11 the first Brillouin zone boundary 

in the x direction is located at the point designated 

The cosine of the angle theta (9) is written as 

o   OT _ OP 
cos y :: os ~ OR* (6) 

Equation (6) then yields 

OP = g| OR. (7) 

The tangent of the angle is given by 

TS _ PS Tan H (8) 
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^ 

Fig. 9. The first Brillouin zone (shaded region) as viewed 

down the z axis. 

|(1 + a2/b2) 

i -. 10. The first Brillouin zone as viewed in three dimen- 

sions. 
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x 

Fig. 1 1 . An enlargement of the first quadrant of Fig. 9. 
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From Eq. (8) it is observed that 

PQ = gf PR. (9) 

Since the zone boundary in the x direction occurs at OQ = 

OP + PQ, Eqs. (7) and (9) may be used to get 

°Q = §§ 0R + MPR- do) 

Analysis of Pig. 11 yields the following: 

OS = | G1 

OR = - A <h\   = ^(a2 ♦ b2)' 

OT = 2% a. 

TS = 2 T 

ab 

(11) 

PR = f 

Equations (10) and (11) yield 

OQ = 2(1 + S?). a    b^ 
(12) 

Thus, the first Brillouin zone boundaries in the x direction 

are located at t J(1 + a2/b2).  Since Fig. 9 is a scale 
EL 

drawing, one sees that the zone boundaries in the y direc- 

tion are located at ± 2^.  The zone boundaries in the z 

direction are shown in Fig. 10 to be located at*-. 


