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It has been shown that mitochondria extracted from a cyto- 

plasmic mutant, [mi-l], of Neurospora crassa produce a phenotypic 

change when micro-injected into a wild type strain, even if the 

mitochondrial donor and recipient differ in heterocaryon genotype. 

The change manifests itself as a conversion of the cytochrome pattern 

from wild type to [mi-l], and a reduction in growth rate.  The change 

is not immediate but appears after several serial transfers of the 

injected strain. 

Experimental results show that this change is not a gradual 

one but happens with an abrupt disappearance of cytochrome a-a. 

and b_, accompanied by an increase in cytochrome _c.  The transition 

stage has an amount of cytochrome c intermediate between that of the 

wild type cell and that of the [mi-l] cell. 

The wild type strain, the control strain, and the micro- 

injected strain have, initially, the same amount of cytochrome c_  per 

unit weight protein.  The micro-injected strain shows a wild type 

cytochrome pattern and rate of growth through successive transfers 

until an intermediate stage of development is reached.  At this stage, 

it shows an [mi-l] growth rate, but has less cytochrome c_  than the 

final stage.  The final change, which comes on rapidly, produces a 

strain with [mi-l] cytochrome pattern, slow rate growth, and 

approximately twice the concentration of cytochrome £ of the wild type 

strain.  The final concentration of cytochrome c  in the micro-injected 
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strain does  not ever reach the amount present in the  [mi-l]  strain from 

which   the mitochondria were  originally obtained.     Heterocaryon 

incompatibility may be a factor  in this failure to reach [mi-l] 

cytochrome   c   concentration. 
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CHAPTER I 

INTRODUCTION 

Much insight into the structure and function of genes has been 

obtained through the comparison of the wild type gene with its 

mutant allele.  The only mutations that could be studied were those 

that resulted in identifiable phenotypic changes (markers).  Nuclear 

chromosomes have been well characterized through those genetic 

markers which occurred as either the primary or secondary effects 

of mutation. 

Cytoplasmic inheritance has not been characterized as clearly 

as nuclear inheritance due to a shortage of available mutants and a 

lack of suitable genetic markers.  Various cytoplasmic mutants of the 

filamentous fungus Neurospora crassa have provided some insight into 

cytoplasmic inheritance.  The phenotypic expression of these 

mutations was typically a changed pattern of growth and a change in 

cytochrome concentration and distribution due to alterations in the 

mitochondria.  By the use of these characteristic markers, successive 

stages may be observed in the phenotypic change produced in wild type 

cells by the micro-injection of [mi-l] mitochondria. 

This present work can be placed in better perspective by a 

survey of the earlier work with cytochromes and cytochrome-deficient 

strains of fungi. 



Discovery  and  Characterization of   the Cytochrome  System 

Cytochromes were first observed with a  spectroscope by MacMunn 

(1886).     In  tissues  ranging  from human to  those of sponges,   he found a 

characteristic  absorption spectrum belonging  to  a pigment which he 

described under  the  names  of myohaematin   (pigment  found   in muscles) 

and histohaematin   (identical  pigment  found  in other  tissues).     On   the 

properties  of  histohaematin,  MacMunn stated   that  absorption bands were 

observed when the  pigment was   in a reduced  state and not  observed   in 

the oxidized   state.     This pigment  in the reduced  state showed  four 

absorption bands. 

Keilin   (1925)   found MacMunn's names myochaematin and histohaematin 

misleading when applied   to  the respiratory pigment.     He proposed   the 

term cytochrome for   the pigment  signifying  cellular pigment.     Keilin 

found   that  cytochrome was not a  single substance,   as believed by 

MacMunn,   but  a  system composed  of  three haemochromogen compounds: 

cytochrome a_,   cytochrome t>,   and  cytochrome  c,   which were very 

different   in their  structures  and  properties. 

Through his work with cytochromes  in yeast  and bacteria,   Keilin: 

(a)   established  their   intracellular  localization;   (b)  observed   their 

oxidation and  reduction within living,   intact   cells,   thus marshalling 

evidence to  prove without  a doubt   the respiratory function of  cyto- 

chromes;    (c)   determined   the  effect  of  different  factors   such as 

cyanide and  narcotics on their biological activity;   (d)   determined   the 

properties  and  respiratory activities of  cytochromes a,   b,   and  c_ with 



a  absorbing at the longest wave length and £ at the shortest. 

Studying the wing muscles of bees with the Hartridge reversion 

microspectroscope, Keilin found che positions of maximum intensity 

for such reduced cytochrome bands.  They were as follows: £, 604.4 

mi; b_, 566.5 mjj; £, 550.2 mu; and the^J band of the three components, 

521.0 njM.  Keilin concluded that all the cytochromes have a 

characteristic absorption spectrum and a strong Soret or Y band in 

the near ultraviolet. 

Amounts of cytochromes present were first measured by Keilin 

(1925).  He gave a relative value for the concentration of cytochrome 

£ among various tissues by noting the depth of the tissue necessary 

for the microspectroscope to reveal a clear absorption spectrum with 

four characteristic bands.  He stated that a more precise way to 

determine the relative concentrations of cytochrome £ is to compare 

the thicknesses of compressed tissues at which the £ band is 

extinguished.  Through these experiments, it was shown that the 

concentration of cytochrome £ varied not only with the species 

examined but also, and to a much greater extent, in different tissues 

of the same animal. 

Keilin (1930) obtained evidence that cytochrome b  was closest 

to the substrate side of the chain.  He also gave the name "cytochrome 

oxidase" to a CO-, KCN-, and ^S- sensitive entity containing Cu which 

linked the cytochromes to O2. 

Bensley and Hoerr (1934) attempted to isolate mitochondria 

from liver tissue by means of differential centrifugation.  They 



failed in their efforts to produce intact mitochondria due to their 

failure to use appropriate suspending media and correct centrifugation 

procedures. 

Millikan (1937) worked out instruments and techniques for the 

recording of small optical density changes in living cells suspensions 

and tissues.  Chance (1954) describing Millikan's research wrote:  "He 

used in very simple form two essential features; (1) a differential 

colorimeter (following Tyndall's principle) that was responsive only to 

a change in absorption band of the pigment to be studied; (2) a 

biological system that could exist in two clearly defined states, and 

in which the transition from one to the other could be made rapidly 

and at will.  Thus the relative intensities of the two light beams 

are adjusted initially to give zero response in one state, the 

biological system is shifted to the other state, and the magnitude 

of the absorption of the cell pigment is recorded directly." 

Keilin and Hartree (1939) showed that cytochrome oxidase was 

identical with cytochrome £^.  They further stated that the cytochromes, 

a linear chain of carriers, have a terminal portion consisting of 

cytochrome c_  in close association with the oxidase.  Therefore, the 

cytochrome chain is grouped as follows: 

Substrate —> b_ —^ c  —> a —> a —> 02 



Keilin and Hartree (1939) also included a table with positions of the 

absorption bands for reduced cytochromes. 

Notation Position (mil) 

a^c^ 

If 
£3^ 

^3 

■i3Y 

605 
? 

452 
600 

? 

448 

564 
530 
432 
550 
521 
415 

The spectroscopy of cell pigments in the visible spectrum as 

done by MacMunn and Keilin is useful for a rapid identification of the 

types of cytochrome in various microorganisms.  As long as one is 

studying theo< and/> bands of cytochromes (650 - 500 mp), this is 

the best method.  But when attempting to study the 5- to 10- fold 

stronger \" or reduced pyridine nucleotide bands in the region 440 - 

400 mu, larger light-scattering effects at these shorter wavelengths 

are superimposed upon the light absorption to give a considerably 

distorted record. 

Stotz (1939) devised a method for quantitative measurement of 

cytochrome c_  based on the catalytic function of the cytochrome.  The 

determination was made by comparing the rate of oxygen uptake obtained 

with an unknown solution to that obtained with a standard cytochrome 

c solution. 



Potter and Dubois (1942) stated that extraneous factors present 

a constant danger in analyses based on rate measurements.  They 

devised an absolute measurement of the cytochrome £ concentration. 

This measurement involved the use of a spectrophotometer to measure 

the absorption coefficients for reduced and oxidized cytochrome £. 

Previously, Potter (1941) had suggested that it should be possible to 

determine the amount of cytochrome £ present.  This could be done 

spectrophotometrically by means of the enzymatic oxidation and 

subsequent reduction of the compound.  He based his conclusion on an 

experiment in which he obtained 100 percent recovery of added cyto- 

chrome £ when the reduction was carried out in the presence of 0.001 

per cent cyanide added after succinate. 

Claude (1946) was able to separate the cytoplasmic material 

of liver cells into three main fractions:  (a) a large granule 

fraction composed of elements approximately 0.5 to 2.0 microns in 

diameter, corresponding to the mitochondria and the liver secretory 

granules; (b) a microsome fraction composed of submicroscopic elements 

80 to 150 mu in diameter corresponding to the chromophilic ground 

substance of the liver cell; and (c) a supernatant fraction containing 

the soluble components of the cells. 

Schneider (1946) showed through biochemical studies that 

cytochrome oxidase and succinoxidase were concentrated in the large 

granule fraction.  Hogeboom e£ al. (1948) isolated mitochondria from 

the large granule fraction by the use of a hypertonic sucrose solution 

and differential centrifugation.  These isolated mitochondria were 



predominately rod shaped and stained with Janus green B (two criteria 

for mitochondria which had not been met in earlier work, possibly due 

to the procedure which used water and isotonic saline in place of the 

sucrose solution). 

Kennedy and Lehninger (1948) proved that cytochromes are 

located in mitochondria. 

Schneider and Hogeboom (1950) and Beinert (1951) put forth the 

theory that small amounts of the cytochromes and cytochrome oxidase 

found in subcellular fractions other than the mitochondrial fraction 

probably originated in secondary translocations and absorptions during 

the preparative cell fractionation. 

In finding that Millikan's apparatus was suitable only for 

measuring hemoglobin and myoglobin in the aerobic and anaerobic muscle 

states, Chance (1951) used two monochromators and a vibrating mirror 

to pass light of two selected wavelengths through the sample and then 

upon a photocell.  This method was found to be suitable for measure- 

ments of both the sharp bands of the cytochromes in the visible region 

and the reduced pyridine nucleotides in the ultraviolet region.  With 

the development of this double beam equipment, Chance and his 

colleagues were able to give a more precise picture of the composition, 

sequence, and dynamics of the respiratory chain using intact mito- 

chondria. 

Chance (1952) reported that the difference spectra obtained on 

reduction of cytochrome and pyridine nucleotide enzymes were useful 

for the identification of the various cytochrome components, for the 



comparison of the cytochromes of different cellular material, and for 

the quantitative estimation of the relative and absolute cytochrome 

content of various systems.  Chance made some comparisons based on the 

height of the cytochrome £ peak at approximately 551 mu to its low 

point at 541 mil. 

The difference spectra of the respiratory carriers in rat 

liver mitochondria were recorded by Chance and Williams (1956) at 25°C: 

Band Absorption Maxima mu 

a. y 444-5 

604-5 
450 
600 

b or 
I * 
S Y 

562-4 
530 
430 
550 
521 
416 

These figures for intact mitochondria agreed with those of Keilin 

and Hartree (1939) showing that the cytochromes as measured earlier 

by absorption maxima were the same in the intact mitochondria. 

Chance £t al. (1959) developed a sensitive microspectropho- 

tometric apparatus capable of recording the absorption spectra of an 

area 1.5 microns in diameter from intact living cells.  With this 

instrument it was possible to record the spectra of mitochondrial 

aggregates in the cytoplasm of the living cell.  Then the cytochromes 

could be identified and measured. 



Luck   (1965)   collected mitochondria  from  the filamentous  fungus, 

Neurospora  crassa,   in bands  after  centrifugation in a sucrose gradient. 

These mitochondria were broken down  for  cytochrome analysis with  a 

sonifier  after  addition of  sodium deoxycholate.     A Cary model 14  MR 

recording  spectrophotometer was used   to analyze  the cytochromes.     The 

tracings   showed  anO<    peak for  cytochrome a to a    at   609 mu and    &\ 

peaks   for  cytochromes b_ and £ at  560 and  550 mp,  respectively.     In 

addition,   there were  ^   peaks   at  528 mp for cytochrome b_,   and at   520 

mu for   cytochrome c_. 

Instead  of   collecting _N.   crassa mitochondria on a  sucrose 

gradient,   Bertrand   and  Pittenger   (1969)   sedimented   them  into a pellet 

by centrifuging  at   12,000 x g   for   20 minutes.     This  pellet was 

resuspended   in sucrose plus   EDTA solution and   sonified.     The 

characteristic  absorption maxima noted  for   the cytochromes of  N.   crassa 

were: 

£ " £3 JL 609 mp 

a_ - aj Y* 443 mp 

be* 560 mp 
530 mp 
428 mp 
550 mp 
520 mp 
418 mji 

Studies on Cytochrome-Deficient  Strains of Fungi 

The petite  characters   in the yeast,   Saccharomyces   cerevisiae 

were studied  by Ephrussi and   Hottinguer   (1951).     The petite yeasts were 
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slow in growth,   formed   small  colonies,   and had  abnormalities  in 

mitochondrial  cytochrome systems.     The phenotype resulted   either  from 

nuclear gene mutation or   from alterations   in cytoplasmic  inheritance. 

There were  two  types  of  petites  resulting   from  alterations  in cyto- 

plasmic   inheritance.     One  type yielded only normal yeast  among   the 

progeny  from a  cross   to normal,  while the  other yielded  only petites 

in crosses   to normal.     Petite yeast  lacked   the cytochrome a_,   a_ ,   and 

b_ of wild  type yeast but had a greater amount  of  cytochrome £ than wild 

type   (Wagner  and Mitchell,   1964). 

Mithcell and Mitchell   (1952)   reported   that  the slow growth 

characteristic  of a  strain of   the   filamentous  fungus,   Neurospora 

crassa,   was maternally  inherited.     They  showed   that  in order  for   this 

characteristic   to appear   in all  of   the progeny,   it must be carried by 

the protoperithecial parent,   which  furnished   the greater part  of   the 

cytoplasm  for  the ascospores.     Mitchell  and Mitchell  called   this 

strain "poky"   (now identified  as maternally-inherited -1  or  [mi-l]). 

The  [mi-l]   character   resembled   the petite character  in yeast described 

by  Ephrussi and   Hottinguer   (1951).     There was  a difficulty  in making 

a  simple comparison of   the two,   since  the yeast  ascospores  arose 

from a mixture of   the  cytoplasm  of   the  two  parents,   whereas  in [mi-l] 

it  appeared  probable   that   such mixing did  not  occur.     The growth rate 

of   [mi-l]strains was  greatly reduced from  that   of  the wild  type and 

similar  to that  of  biochemical mutants  on minimal medium.     The strain 

[mi-l]   did  not assume  a normal  growth rate on any type of   enriched 

medium. 
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Haskins  et. al_.      (1953)   reported mycelial  pads  from [mi-l] were 

characterized  by  a  red  color   similar  to   that of   the  heme pigments. 

Examination of   these mycelial   pads with  a  spectroscope showed   that 

[mi-l]  mycelia contained large quantities   of  a substance having   the 

absorption spectrum characteristics  of   cytochrome  c_,  whereas   cytochrome 

a. and   b  bands  could not be detected.     In contrast,   all  three  cytochromes 

were detected   in wild   type. 

Mitchell  et al.   (1953)   reported   that   [mi-l]   contained   15  times 

as much  cytochrome £ as wild   type,   based   on the width of   the 

absorption band  of  cytochrome _c  in  [mi-l]as compared  to  that   in wild 

type  Neurospora   crassa. 

Woodward  and Munkres   (1966)   found   that   the mitochondrial 

structural  protein from [mi-l]  had  one  less   tryptophan residue per mole 

ot mitochondrial  structural  protein and   one more  cysteine residue  than 

did wild   type mitochondrial   structural  protein.     Thus,   the mutation 

appeared   to result  from a  single  amino  acid  replacement resulting 

from an alteration in  the mitochondrial  DNA.     A pleiotropic   effect 

based   on nucleocytoplasmic   interactions   seemed  to  be the cause of   the 

slow growth accompanied by  a  large amount of   cytochrome £ and   absence 

of   cytochromes  a_,   a_ ,   and JD,   with cytochrome oxidase and succinic  acid 

oxidase having  lower   activities   than  in  the wild   type. 

Heller   and   Smith   (1966)  reported   that  cytochrome £ of   Neurospora 

crassa wild   type  and   [mi-l]   were  structurally  identical.     The 

experimental   proof   consisted of   identical  spectral  properties, 
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electrophoretic mobility at different pH values, amino acid composition 

and peptide maps from the chymotryptic and tryptic digests. 

The [mi-l] type strain used in this study was produced by 

the micro-injection of mitochondria from an [mi-l] strain of Neurospora 

crassa into a wild type strain.  After several serial transfers, this 

wild type strain developed the [mi-l] phenotype (Wilson, unpublished). 

Wilson (1961) developed surgical techniques specifically for 

use with Neurospora crassa.  With these techniques, he could perform 

60-80 injections in one or two hours. 

Diacumakos e_t al. (1965) described the drastic changes in the 

rate of growth, morphology, reproductive characteristics and cytochrome 

spectra of a normal inositol-less strain of Neurospora crassa (FGSC 

#948) after micro-injection with mitochondrial preparations from an 

abnormal inositol-less strain (FGSC //1448).  Abnormal 1 ([Abn-,1]) was 

originally described by Garnjobst e£ al_. (1965).  No change was noted 

in a wild type strain micro-injected with wild type mitochondria. 

Diacumakos reported that there was a considerable and variable time 

lapse between injection and appearance of the characteristic changes 

in morphology and growth rate. 

Griffiths et  al,  (1968) repeated the work of Mitchell et al. 

(1953) and Tissieres and Mitchell (1954), but derived the cytochrome 

spectra from disrupted mitochondrial preparations instead of from the 

mycelial pads and crude mitochondrial suspensions used by the two 

earlier research groups.  Mitochondria were prepared by a method 

similar to that used by Luck (1965).  Mitochondria were sedimented in 
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a 30 minute centrifugation at 20,000 x g.     The crude mitochondrial 

pellets were disrupted by sonification and   the solutions  cleared by 

addition of   2 per  cent  sodium deoxycholate.     Spectra were read   in a 

Cary 16  spectrophotometer,  with  sodium dithionite added   to the sample 

cuvette   to   reduce  the cytochromes.     The solutions   for  spectra analysis 

contained   10-20 mg/ml of  protein estimated  by Folin test.     The 

cytoplasmic mutants   they  scanned  fell into   two  groups based  on  their 

spectra.     The first  group had  [mi-l]   spectra with  the notable features 

being an absence of  cytochromes  a_   (610 mu)   and b   (560 mu),   and  a 

marked^ cytochrome £ peak   (550 mu).     The second group  consisting  of 

[mi-2]   to   [mi-8]   was missing  cytochrome a_,   while  cytochrome b_ was 

present   in wild   type amounts and   cytochrome c_ was   in excess. 

Wilson   (unpublished)  has  shown that   the   [mi-l]   phenotype  can 

be   transmitted   to wild   type Neurosppra crassa by micro-injection   (or 

transplantation  of   [ml-l] mitochondria).     The  author of   this study 

followed   this   change  in phenotype by changes   in  the cytochrome 

spectra  and  quantitated   these changes.     These changes were followed 

using a   Backman DB Spectrophotometer   to measure  the amount  of 

cytochrome £ per unit weight  of  protein and   to record   the distribution 

of   cytochromes  at  each stage. 
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CHAPTER  II 

METHODS AND MATERIALS 

The strains used   In  these   studies are  listed   In Table  I.     All 

strains were   obtained  from Dr.   J.   F.   Wilson,   Biology Department, 

University of  North Carolina at   Greensboro. 

Dr.   Wilson obtained  NC-37401-NS-10   (2-6)   a inos   (abbreviated 

NS-10)   from  crossing  37401-  F    -1   (4-5)   a  inos   (abbreviated   37401), 

the conidial  parent,   with NS//8  a   inos   [mi-l]   i_     (abbreviated  NS  //8), 

the protoperithecial  parent.     He micro-injected   [mi-l] mitochondria 

from  SL-3   (1-6)  a.  nic-2  [mi-l]   (abbreviated   SL-3)  into HC   (23-8)   a 

(abbreviated   HC),   creating strain P-35-6.     Strain P-35-1C   is  a 

control produced by micro-injection of wild   type HC mitochondria  into 

HC  cells. 

The strains  used   in  this   experiment were first  grown on slants 

of Vogel's   (1956)  minimal medium   supplemented  with 1.5 per  cent  agar, 

(General  Biochemical)   and   1.5 per  cent  sucrose   (Fisher).     In the  case 

of   inositol-less     or  nicotinamide-less  strains   50 mg/ml  inositol 

(Sigma)   or   1 mg/ml  nicotinamide   (Niacinamide  Hydrochloride, 

Nutritional   Biochemicals)   was added.     The  slants were  Incubated at 

30°C  for   three days.     Within two   to five days  after  removal  from the 

incubator,   conidia which  formed   on the slants  were  transferred   to six 

or eight   flasks of   the same  composition.     After the same  incubation 
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TABLE 1 

SOME STRAINS USED   IN THESE STUDIES 

Culture 

37401-F -1   (4-5)   inos 

NC-OR-66   (2-7) 

NS//8   inos  [mi-l]   f 

NC-37401-NS-10   (2-6)   inos 

P-35-6 

P-35-1C 

HC   (23-8) 

SL-3   (1-6)   nic-2   [mi-l] 

Mating Type Heterocaryon 
Compatibility 
Genotype 

A CDE 

a Cde 

a CdE 

a CDE 

a CDe 

a CDe 

a CDe 

a Cde 
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and  conidial formation period  as   the slants,   the conidia were 

harvested   from   the   flasks by washing with  sterile water.     The 

mycelia were strained   out by a  triple layer of  sterile gauze,   allowing 

the  conidia  to drop   through  into  a   flask.     Conidial   counts were done 

on a hemacytometer.     A conidial count of   1 x  10    conidia/ml for  wild 

type and   5 x  10    conidia/ml  for [mi-l] was  applied   to a liquid 

medium of   150 ml of  Vogel's minimal media  supplemented with 2 per- 

cent   sucrose.     Twelve  inoculated   flasks  for wild  type and  either 

18  or  20  inoculated   flasks  for  [mi-l] were  incubated  on a rotary 

shaker   (Brunswick Psycotherm Environmental  Incubator   Shaker)  for 

16 hours  at  150 rpm and 25°C. 

The mycelia were harvested on filter paper in a Buchner 

funnel.     They were  prepared  for  cytochrome analysis  by a slightly 

modified  method of   Luck's   (1965).     The method  of preparation is: 

1. Rinse mycelia mat with   solution of   15 percent   sucrose 
+   1 mM  EDTA. 

2. Grind  1:1 with  acid-washed sand   (Omaha sand,   Fisher), 
about 1:1 with  15 percent sucrose + 1 mM EDTA.     A cell 
disruption bomb   (Parr  #4635) was  tried  in an attempt 
to find  a more  successful way   to  disrupt   the cells, 
but the effort  proved unsuccessful. 

3. Centrifuge 15 minutes   in Sorvall   Superspeed RC  2-B at 
500 rpm   (30 x  g). 

4. Centrifuge supernate  15 minutes   in Sorvall at  1000 rpm 
(121 x g). 

5. Centrifuge supernate  20 minutes   in Sorvall at   11,500 rpm 
(15,900 x g). 

6. Resuspend  pellet  in 7 ml of 0.15 M P0^  buffer pH -  7.4. 
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7. Centrifuge solution 15 minutes in Sorvall at 1000 rpm 
(121 x g). 

8. Sonify supernate on Bronson Sonifier according to the 
following procedure: 5 seconds at //5 reading, 30 seconds 
shaking in ice solution, 5 seconds at #6 reading, 30 seconds 
shaking in ice solution, 6 seconds at //6 reading, 30 seconds 
shaking in ice solution, 6 seconds at //6 reading, followed 
by placing mitochondrial solution on ice.  Extreme care 
should be taken to keep the solution cold throughout the 
procedure. 

After the above procedure, the mitochondria were ready for 

cytochrome analysis.  The instrument used for this analysis was a 

Beckman Model DB Spectrophotometer used with a Beckman Scale Expander, 

with the results recorded on a Beckman Linear-Log Recorder.  The 

quantitative analysis was based on the fact that the absorbances of 

cytochromes were dependent on their concentrations (Beer's Law). 

Beer's Law states: A » abc where A is the absorbance; a is the 

absorbtivity (unit area per unit mass), b is the length of the 

light path, and c is the concentration (mass per unit volume). 

Since a matched set of cuvettes with a light path of 1 cm 

and material with the same absorption (Neurospora crassa mitochondria 

brought up to volume of 1.5 ml by the addition of 0.15M PO, buffer 

pH - 7.4) were used, the variable of Beer's Law on which the 

absorbance depended was the concentration of cytochrome present. 

A solution of mitochondria prepared from mycelia by Luck's 

method previously described was placed in cuvette and brought to 1.50 

ml of volume. Then 0.15 ml of a 2 percent solution of sodium 

deoxycholate (Difco) was added to dissolve the mitochondrial 

membrane and clear some of the remaining lipids in the cytochrome 
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solution.     A second   cuvette was prepared  in the  same manner. 

These  cuvettes were  placed  in the Beckman DB   (double beam) 

Spectrophotometer,   one  in  the reference beam and one in  the sample 

beam.     The  slit adjustment was   turned   to a programmed narrow slit 

with  the manual slit  adjustment   in as far as possible.     The spectropho- 

tometer was   set   to  scan the   sample  from 700 mu moving at   the rate of 

40 mu per minute and  to record  the difference between the reference 

cuvette  and   the sample cuvette.     The  ten-inch recorder was  set   for 

10 millivolts for  full scale deflection, with  the chart driven at one 

inch  per minute with logarithmic  presentation. 

Quantitative analysis   of   cytochromes   in sonified mitochondrial 

preparations  required detection of   small absorbancies  in  the presence 

of highly   turbid,   and   therefore highly  absorbing,   samples.     An 

instrument  with the required  sensitivity at  high absorbancies was not 

available  for  these studies;   so  a method developed by Dr.   William K. 

Bates   for   the Beckman Model   DB  Spectrophotometer was used.     This 

method   took advantage of   the relatively high signal   to noise 

characteristic of   the DB spectrophotometer by using relatively dilute 

preparations,   which contributed proportionally  small  amounts  of 

turbidity,   and  then amplified  the corresponding  low cytochrome 

absorbance.     This  was accomplished by  interposing a Beckman  Scale 

expander  between  the spectrophotometer  and   the  recorder  and using 

the  expander  to  attenuate   the output  signal.     The usual mv 

spectrophotometer  output was  reduced   through  the "expander"  so  that 

a  10 mv  recorder   sensitivity  could be used.     With the recorder  used 
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in  the   logarithmic mode,   the  resulting  trace was   then expanded 

according  to   the setting of   the  scale expander,  but with  the dis- 

advantage that  the resulting  trace was  linear in neither percent 

transmittance  nor absorbance.     Quantitation,   therefore,  was possible 

only  through  direct   comparison at many calibration points with a 

cytochrome  standard.     Operationally,  with the scale expander set   to 

"5"  and with   the recorder operated  on the  10 mv  scale,   a  suitably 

amplified   trace resulted.     The  "bucking"   circuit  of   the  expander was 

used  to set  the base line of  the  trace at a suitable starting point 

on the  tracing paper.     It  should  be noted   that   the setting of  "5" 

would  yield   a  full-scale deflection for   20 percent  transmittance if 

the  recorder were operated  in  the  linear mode with 100 mv  full-scale 

sensitivity. 

The mitochondrial  preparations were  first scanned   in  the 

oxidized state by scanning   the  cuvettes   containing   the mitochondrial 

solutions,   0.15M PO    buffer  pH ■ 7.4,   and sodium deoxycholate and 

adjusting   the  starting absorbancy so  the oxidized  state  line was 

recorded  at   the height  of   the number  10  line on the recording paper. 

This   line  formed by  the absorption of  light by the oxidized  cytochromes 

was  used by   the author   to find any peaks  present not used  by reduction 

in order  to   subtract   their  height  from   the peak height  of   the reduced 

cytochromes  and also   to show the presence of  any  turbidity which 

would  cause   the line   to rise as  the scan proceeded  from  700 to 400 imp. 

After   the oxidized  cytochromes  were  scanned,   the paper was 

returned   to   the starting point   of   the oxidized  scan.     A small  amount 
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of sodium dithionite (Fisher) was added to the solution in the sample 

cuvette to reduce the cytochromes.  Then the cytochromes were 

rescanned with the starting absorption line adjusted to a position 

between line 15 and line 24.  A trial was run measuring the peak, 

height of the cytochrome £ peak for 0.7 mg sample of strain P-35-6 

transfer 10 as a function of various base lines.  The peak height 

remained 12 millimeters over base lines ranging from 14.5 to 24. 

Table 2 lists the positions where cytochrome absorbancy peaks 

were detected. 

The mitochondrial suspension was kept in an ice bath until 

it was placed in the cuvettes.  As the cytochrome solution was used 

in the cuvettes it gradually became turbid, but by working rapidly 

the scans could be made before the turbidity affected the results. 

The presence of the buffer kept a change in pH from occurring, which 

would have thrown off the relationship between the light absorption 

and the cytochrome concentration. 

The peaks produced by the absorption of light were measured 

in a method modified from that of Chance (1952).  Chance measured 

the height of the cytochrome £ peak from its high point at approximately 

551 mu to its low point at 541 mi. The author of this present study 

modified Chance's method by drawing a line horizontally between the 

low points for wild type 588 nyi or [mi-l] 550 nyi and 532 mu.  Then 

the peak height was measured from the almost horizontal line between 

the low points and the peak height.  This method had a built-in 
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TABLE 2 

POSITIONS OF CYTOCHROME ABSORBANCY PEAKS 

Cytochromes 

a-a3 o< 

3Z±3 V 

b   <* 

b r 
CO<v 

£-^ 

£   Y 

609 

445 

560 

528 

428 

550 

520 

418 
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compensation for   the rise due  to  turbidity which was  forming in  the 

solution and causing  the base line to rise.    The measurement of  the 

peak height  formed   a better  correlation with the amount  of  cytochrome 

£ present  than the measurement of   the area beneath   the curve.     For 

example,   when the   protein concentration doubled,   the peak height 

doubled. 

The protein concentration of  each  sample was  determined by Biuret 

method   (Gornall et  al.   1949).     With this  information,   the  amount of 

protein required   to produce a certain size cytochrome c  peak could 

be determined for   each  strain. 

In order   to correlate  the  height  of  the peaks with  a given 

amount   of  cytochrome £,   samples of  cytochrome £ of  known weight and 

purity were  scanned  and measured.     A source of  90 percent pure 

cytochrome £ was   available in the  form  of  horse heart  cytochrome £ 

(Nutritional  Biochemicals Corporation,   Lot #9478).     Literature from 

Nutritional   Biochemicals Corporation listed  reduced horse heart 

cytochrome £ as  demonstrating absorption bands at   550.7  mu,   522.3 mp, 

and  415.0 mu.     Cytochrome £ from Neurospora  crassa  can be compared   to 

that of  horse heart cytochrome £ due   to   the fact   that   the  cytochrome 

£ is very  similar  in all organisms.     Those differences which have 

arisen have been  slight   (Dickerson and  Geis,   1969). 

A cytochrome £ solution was prepared by dissolving  0.0042 g 

of   the horse heart cytochrome £ in 100 ml of  0.15  M PO,   buffer pH -  7.4. 

Then 0.1 ml  increments of  cytochrome £ solution were placed   in cuvettes 
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and   raised   to a volume of   1.5 ml  by the addition of 0.15 PO-   buffer 

pH buffer  -   7.4.     The sample was   ready  to  scan after   it was   cleared 

with 0.15 ml  of 2  percent  sodium  deoxycholate.     The mixture was 

scanned  in  the oxidized state,   a  few  crystals  of sodium dithionite 

were added,   and  it  was  scanned   again  to record   the reduced   cytochrome 

£ peaks. 

By determining   the  amount  of   cytochrome £ which produced a 

certain size £ peak,   strains were compared   to   each other  and   the 

amount of   cytochrome £ per mg of   protein determined   for each. 

Comparative  studies   involving   [mi-l]and wild   type mitochondria 

were well  suited  for  quantitative analysis  based on the  absorption 

spectra of   the cytochromes. 

The  first  organism   to which  the quantitative analysis was 

applied was   NS//10.     This  strain had  a wild   type amount of   cytochrome 

£;   it lacked  cytochrome £, £•,,   and  b_;   and it  possessed  a  [mi-l]   type 

growth rate.     Logically,   the cross  of  NS//8   (protoperithecial parent) 

with 37401   (conidial parent) would  produce  the cytochrome  pattern 

and  quantity of  cytochrome £ present  to match   that  of  NS//8,   for 

mitochondria are maternally inherited.    The  first approach  to a study 

of   this problem was   to grow and   scan  the NS-10,  NS//8,   and   37401 and   to 

obtain  the  cytochrome £ peak height   as a  function of   the  protein 

concentration for   each.     Then,   mitochondria  could be micro-injected 

into wild   type  strains  in different   amounts.     Next,   the micro-injected 

strains  could be  scanned and plotted.    The data would be  compared   to 

those of   the scans  of NS-10,   NS//8 and 37401. 
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Another problem which appeared   to lend   itself   to analysis by 

the  quantitation method was  the   study of  the P-35-6  series   ([mi-l] 

mitochondria injected into wild  type cells). 

P-35-6 and  a control  P-35-1C were obtained  in sets of   the 

original up   to  transfer  15  from Dr.   J.   F.   Wilson.     He had   transferred 

the original  conidia  to a new slant.     When the   new transplant 

produced conidia,   he transferred   it  again.     This process  continued 

until  he had  a  set  of   slants  for  P-35-6 and  P-35-1C which contained 

the  original   through transfer  15.     The author   of  this  study   then 

transferred   these sets   to  slants,   to agar flasks and  to liquid media 

flasks.     Therefore,   the  sets   that  contained   the original   to   transfer 

15   (by   the   time   they were ready  for   scanning)   were actually   transfers 

3   to 18.     The steps  by which micro-injected mitochondria changed  the 

phenotype of   the wild   type cell were studied  by observing  the 

cytochrome  pattern and measuring  the cytochrome £ per unit weight of 

protein present. 
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CHAPTER III 

RESULTS 

Sodium Dithionite Addition 

An attempt was made  to  place sodium dithionite  in solution 

so   that   a certain number  of ml  of  the solution could  be added   to  the 

sample  cell   to cause reduction.     Methylene blue dye   (Bactomethylene 

Blue,   Difco)  which changes  color  from a blue oxidized   to a colorless 

reduced   form was   added   to  the sodium dithionite.     Figure 1 shows 

that   0.1 ml of  a  0.0234  g/ml  solution of   sodium dithionite 

(approximately   the  same  amount   applied  in dry form  to   the cuvette) 

added   to  1.5 ml of  0.002 percent methylene blue  caused   the absorption 

at   668 mu  to be 0.064   as  compared  to 0.220 for unreduced methylene 

blue.     When the  same  amount  of   sodium dithionite  solution  (after 

standing one hour)  was added   to  a new cuvette of methylene blue,   the 

absorption increased   to 0.156.     After   two hours   the absorption was 

0.184 and  after   three hours,   0.189.     Therefore,   sodium dithionite at 

the  approximate  concentration   to reduce   the cytochromes  proved  too 

unstable to keep  in solution form. 

Cytochrome £ Standardization 

The  scan for horse heart  cytochrome c solution mentioned   in a 

previous  section  is  shown in Figure  2.     This  scan showed  that   the 
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STABILITY OF  SODIUM DITHIONITE IN SOLUTION 
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Figure  2 

CYTOCHROME ABSORPTION' PATTERN HORSEHEART CYTOCHROME C 
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cytochrome c_ solution yielded   three  peaks with   their maximum height 

at 550 mu,   520 mp,   and   416 rap.     These three peaks corresponded   to the 

o^ , $ ,   and "Y    peaks  of   cytochrome £    respectively.     The peak height 

of   the  cytochrome c_ peak as a function of   the  amount of  cytochrome 

present   is shown  in Figure  3.     (This  information was derived   from 

Biuret protein analysis by comparing peak heights in the successive 

scans.)    The range of  the concentrations of cytochrome £ measured 

was 3.80 x  10~6  g  to 3.80 x   10"5 g,   which resulted  ino( cytochrome 

c_ peak heights   of  5  to  65 millimeters   (mm).     This range proved 

sufficient  to  contain all  the peaks  obtained  in this study.     The least 

squares method  of fitting a  line for   the given points in  Figure 3 

formed  a good  linear interpolation. 

Scanning Test 

To test  the scanning techniques,  a wild  type strain NC-OR-66 

was scanned.     Figure 4  shows  that scan with peaks for cytochromes 

a-a3,   b and c apparent.     Figure 5 shows  the<* c peak height of 

NC-0R-66 that corresponds with each concentration of protein.    The 

peak height 9.50 mm was  obtained with a preparation containing  1.25 

mg of  protein.     Using  this data,  the peak height of  theokc peak of 

NC-0R-66  is   7.60 mm/mg   of   protein,   which means   that NC-OR-66 contains 

6.78 x  10" 3 mg  of cytochrome c/mg of protein present.     (Refer  to 

Figure   3) 
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Figure  3 

c<     PEAK  HEIGHT  AS  A  FUNCTION  OF  CYTOCHROME  C_ CONCENTRATION 
HORSEHEART  CYTOCHROME  C 

o 
-o 

o 
in 

(mm) IH«!»H   1' 



32 

(UIUI) )HB|>H   1»»d     0   »»">WI*0   » 



33 



Figure A 

CYTOCHROME ABSORPTION PATTERN  NC-OR-66 
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Figure   5 

o(    PEAK HEIGHT AS A FUNCTION OF CYTOCHROME C CONCENTRATION 
NS-10,   NS//8,   37401  and NC-OR-66 
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Effect  of   Sample Freezing  and Thawing 

Since mitochondrial  samples  containing the cytochromes were 

frozen until  several were collected  for protein analysis,  a test was 

run to determine whether  freezing and  thawing had affected  the 

protein concentration of  the sample  (as determined by Biuret analysis). 

The protein concentration of a sample of  strain HC was determined 

as soon as  it was prepared  for scanning.    Then,  this sample was frozen 

and thawed  on four consecutive days with a protein determination on 

each day. 

The original determination showed  the protein concentration 

to be 3.98 mg of protein per ml of  solution.    On the next four 

consecutive days  the concentrations were A. 14,  4.06,  4.11,   and 

4.00 mg/ml.     The mean for  the five concentrations was 4.07 _ 0.02 

mg/ml.    This data showed  that freezing and  thawing a sample for 

protein analysis did not appreciably affect  the determination. 

Experiments  with an Unusual Cytoplasmic Mutant 

NS-10,  NS//8,  and  37401 were scanned.    Examples of these scans 

are shown in Figures  6,   7,  and 8  respectively.    NS-10 and NS//8 had  the 

[mi-1]  cytochrome pattern while 37401 had  the wild type cytochrome 

pattern.    The data comparing the-* cytochrome c peak height of NS-10, 

NS#8,  and 37401 with that  of NC-OR-66 is shown in Figure 5.    NS-10 

had an<* c peak height of 31 mm at a concentration of 1.0 mg of protein 

corresponding   to a  concentration of   1.94  x 10'2 mg of  cytochrome c per 

mg of protein.    NS#8 had ano< £ peak height of 19 mm at 1 mg 
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Figure  6 

CYTOCHROME ABSORPTION PATTERN NS-10 
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Figure  7 

CYT0CI1R0ME ABSORPTION PATTERN NS#8 

o 
■6 

o 
in 



41 

o o 

o 
■o 

a 
E 

T e 
I 

e 
5 

o 
■e 

o 
CO 
it o o o 

3 
« UJ      uo||djoiqy 



42 



Figure 8 

CYTOCHROME ABSORPTION PATTERN 37401 
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corresponding   to a  concentration of  1.23  x  10~2 mg of  cytochrome c 

per mg of   protein.     Strain  37401 had  ano^c peak height of  9 mm at 

1.0 mg corresponding   to a concentration of   6.48 x   10"3 mg of 

cytochrome £ per mg of  protein.     Therefore,  NS-10 appeared to contain 

approximately   one and  one-half   times  as much cytochrome £ as  NS//8 

and   three   times  as much cytochrome £ as  37401 per unit weight of 

protein. 

Experiments with   Successive Transfers  of  a Micro-Injected  Strain 

After   two days of  growth  for   the transfers,   the results of  the 

P-35-6 studies   showed   that  P-35-6 T-l  to T-7 were  orange with T-8 to 

T-16 decreasing   in conidiatlon.     Thus,   as   the  transfer numbers 

became larger,   growth of mycelium was  less   evident.     In contrast,   all 

of   the P-35-1C   transfers which  served  as  controls were orange with 

good  growth apparent   at  two days       (typical pattern  in studies  by 

Dr.   Wilson).    Figure  9  shows  photographs  of   a set  of  P-35-6 and  P-35-1C 

taken at  48 hours.     One  can observe  the decrease  in growth from T-8 

to T-16 in P-35-6;  while there was no such  trend in the P-35-1C series. 

Table  3   gives  a mean value and  standard  error in grams  for  the 

wet weight  of   the mycelia harvested  from each flask  in each category 

of  strains   [SL-3]   HC,   P-35-6   (T-3  to T-7),   P-35-6   (T-8),   P-35-6   (T-9 

to T-12 plus T-18),   P-35-1C   (T-3   to T-12  plus T-18).     They were divided 

into   categories   because  it was   expected   that HC,   P-35-6   (T-3   to T-7) 

and   P-35-1C   (T-3   to T-12  and T-18) had  a wild  type  cytochrome pattern, 

while P-35-6   (T-8   to T-12 and T-18)  and  SL-3 had   a  [mi-l]  type 
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Figure 9 

COMPARISON OF GROWTH OF P-35-6   (MICRO-INJECTED) 
AND  P-35-1C   (CONTROL) 

These strains were  grown at  30°C for 48 hours,   then 
refrigerated.—(a)   P-35-6  transfers  2 to  17.—(b)   P-35-1C 
transfers  2  to 17. 
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TABLE 3 

WET WEIGHT AS A FUNCTION OF  INOCULATION SIZE AND NUMBER OF FLASKS 

47 

Transfer  § WW in g // Flasks g/Flask I no 

P-35-6 3 20.50 12 1.72 IX 
4 9.23 10 0.92 IX 
5 13.80 12 1.12 IX 
6 16.13 12 1.34 IX 
7 16.42 18 0.91 IX 
8 18.32 18 1.02 5X 
9 22.40 18 1.24 5X 

10 18.83 18 1.04 5X 
11 15.25 16 0.95 5X 
12 23.50 20 1.17 5X 
18 10.33 19 — 5X 

gm/Flask WT 3 
1.20 g + 0.13 g 4 Mean ■ 

5 
6 
7 

gm/Flask  [mi-l] 8 Mean ■ 1.02 g 

gm/Flask [mi-1] 9 
10 
11 
12 

Mean » 1.10 g * 0.06 g 

HC   (23-8) 18.90 12 1.58 IX 

SL-3 6.50 19 0.34 2X 

P-35-1C 3 18.26 10 1.83 IX 

4 11.48 10 1.15 IX 

5 10.65 10 1.07 IX 

6 14.64 10 1.46 IX 

7 16.52 12 1.38 IX 

8 19.70 12 1.64 IX 

9 14.90 12 1.24 IX 

10 17.60 12 1.47 IX 

11 18.00 11 1.64 IX 

12 10.74 12 0.90 IX 

18 18.23 12 1.51 IX 

Mean =  1.39  g + 0.08 g 
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cytochrome  pattern.     It  should be noted   that  1 x  10    conidla per ml 

were applied   to  the  liquid media  for  the strains with a wild   type 

cytochrome  pattern and  5 x   10    conidia per ml were applied   to liquid 

media for   strains with  the   [mi-l]   cytochrome pattern.     This was a 

standard   practice   to use a  IX  inoculum  for wild   type shaker  flasks 

and a 5X  inoculum for   [mi-l].       The wet weight was for P-35-6   (T-3 

to T-7)   1.20 t 0.13  g/flask,   for  HC 1.58 g/flask,   and   for P-35-1C 

1.39 -  0.08 g/flask.     These weights  showed  that P-35-6,   HC,   and 

P-35-1C were very similar  based  on the wet weight per  flask with a 

IX inoculation.     SL-3  had  a wet weight  of 0.34 g/flask based on a 

2X inoculation. 

The scans for strains SL-3,  HC,  P-35-6  (T-3 to T-7),  P-35-6 

(T-8),  P-35-6   (T-9   to T-12  and T-18)  and P-35-1C are illustrated  in 

Figures   10,   11,   12,   13,   14,   and   15 respectively. 

From Figures   10 through 15,   it  can be seen that HC,   P-35-6 

(T-3   to T-7),   and  P-35-1C  have  the wild  type cytochrome distribution; 

while SL-3,   P-35-6   (T-8),   and P-35-6   (T-9  to T-12 and  T-18),   have   the 

[mi-l]  cytochrome distribution. 

Figure   16  and Figure 17 graphically illustrate*, cytochrome 

c  peak height   as a  function of   the amount  of  protein present  for 

all  of   the  transfers  of  P-35-6  and P-35-1C scanned. 

Figure   18  shows  a plot of-<, cytochrome c peak height  as a 

function  of   the protein present   for P-35-6   (T-3   to T-7),   P-35-6 

(T-8),   and  P-35-6   (T-9  to T-12 and T-18).     Figure 19  shows   the same 

plot for  P-35-1C.     From comparison of  Figures  18 and   19,   it may be 
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Figure 10 

CYTOCHROME  ABSORPTION  PATTERN   SL-3 
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Figure 11 

CYTOCHROME ABSORPTION PATTERN HC 
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Figure 12 

CYTOCHROME ABSORPTION PATTERN P-35-6   (T-3   to T-7) 
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Figure  13 

CYTOCHROME ABSORPTION PATTERN P-35-6   (T-8) 
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Figure 14 

CYTOCHROME ABSORPTION PATTERN 
P-35-6   (T-9  to T-12 AND T-18) 
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Figure 15 

CYTOCHROME ABSORPTION PATTERN P-35-1C 
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Figure 16 

C\    CYTOCHROME C PEAK HEIGHT AS A FUNCTION OF PROTEIN CONCENTRATION 
P-35-6 

I     number  represents  serial  transfer  number. 
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Figure 17 

at     CYTOCHROME C PEAK HEIGHT AS A FUNCTION OF PROTEIN CONCENTRATION 
P-35-1C 

T number  represents  serial  transfer  number. 
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Figure 18 

^    CYTOCHROME C PEAK HEIGHT AS A FUNCTION OF PROTEIN CONCENTRATION 
P-35-6 MEAN VALUES 
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Figure  19 

c<     CYTOCHROME C PEAK HEIGHT AS A FUNCTION OF PROTEIN CONCENTRATION 
P-35-1C MEAN VALUE 
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noted that  the*    cytochrome c peak height as compared  to  the con- 

centration of  protein  is very similar  for  P-35-1C and  P-35-6   (T-3  to 

T-7)   in  the   range  of  protein concentrations  0.75 to  2.75 mg.     Figure 

18   should  not  be used  to  read  heights based   on protein concentrations 

of  greater   than 2.50 mg because   the increased  protein concentration 

causes  a  turbidity which results  in deviation from linearity. 

By using Figures  3,   18,   19,   and  20,   the amount  of  cytochrome 

_c  in each strain can be determined.    The values obtained for the 

cytochrome  c_ concentration per   1.0 mg of protein were  5.90 x 10~3mg 

for  strain HC,   1.35 x  10    mg  for   strain SL-3,   8.24 x  10~3   for strain 

P-35-6   (T-8X   1.10  ± 0.02    x  10~2mg for strain P-35-6   (T-9   to T-12 and 

T-18),   6.29   -  0.20  x  10"3 mg  for  strain P-35-6   (T-3   to T-7)   and   6.13 t 

0.42 x  10"3 mg for   strain P-35-1C. 
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Figure 20 

0<    CYTOCHROME C PEAK HEIGHT AS A FUNCTION OF 
PROTEIN CONCENTRATION  SL-3 AND HC 
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CHAPTER IV 

DISCUSSION 

NS-10 Experiment 

The NS-10 strain was  obtained by Dr.   J.   F.   Wilson when he 

crossed   37401   (conidial parent) with NS//8   (protoperithecial parent). 

The cytochromes present in NS-10 were,   as  expected,   similar  to  those 

of   the maternal or  protoperithecial parent   (Mitchell  and Mitchell, 

1952).     The maternal  parent  and  the progeny had   the  [mi-l]  cytochrome 

pattern.     When observed by Dr.  Wilson,   NS-10 appeared   to lack 

cytochromes a_,   a^>   and J> as did   the maternal parent NS//8.     However, 

the cytochrome c_ concentration appeared   to be no more   than that   of 

wild  type.     Dr.   Wilson  first noted  the unusual  amount of cytochrome 

c when he scanned  a strain which had been micro-injected with mito- 

chondria   from NS-10 and found   that  it,   too,   contained  only wild   type 

amounts   instead  of   excess  cytochrome ±.     Dr.   Wilson believed  that 

NS-10 contained either  a mixture of  two  types of mitochondria or  was 

a new mitochondrial mutant. 

It   is   evident,   in Figure 5,   that NS-10,   on cytochrome £ 

quantitation,   no  longer  contained wild   type amounts of   cytochrome 

c.     The   concentration,   on this later   test,  appeared approximately 

equal  to   the  sum of   the  cytochrome c concentrations  of   the parents. 

Thus,   it   became apparent  that NS-10 had   changed while  in storage  on 

silica gel. 
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P-35-6   Experiment 

The P-35-6 strain was obtained  by Dr.   J.   F. Wilson when he 

micro-injected   [mi-l] mitochondria  from  SL-3   into HC.     SL-3  and HC 

were  of   the  same mating   type,  a,   but different  in their heterocaryon 

genotype,  with  SL-3 being  Cde,   and  HC being CDe. Garnjobst  and Wilson 

(1956)   stated   that heterocaryosis could occur   only if  the strains were 

of   the same heterocaryon genotype and of  like mating type.     Wilson 

et al.   (1961)   stated   that   in most strains  transfer of protoplasm 

between incompatible  strains resulted   in the death of the  recipient 

cell.     However,   a one gene difference was not as  lethal as   a two gene 

difference,   and washed mitochondria from an incompatible strain were 

even  less likely to kill.    Most of  the micro-injected cells  survived. 

Wilson et al.   (ibid.)   suggested   that  incompatibility depended on 

soluble cytoplasmic  constituents  apparently not associated with sub- 

cellular particles.     Diacumakos  et al.   (1965)   stated  that  the incom- 

patibility reaction could  provide a biological  test for the relative 

purity of a mitochondria!  preparation.     In this case,   the mitochondria 

from strain SL-3   (nuclear  heterocaryon genotype Cde) did not kill the 

cell   HC   (nuclear  heterocaryon genotype CDe)  on micro-injection. 

Wilson  (unpublished)  noted  initially that P-35-6 had  a wild 

type growth  rate and  a wild   type  cytochrome distribution.     This could 

be compared   to  the control   series P-35-1C in which he micro-injected 

mitochondria   from wild  type strain HC into an HC recipient.     Wild 

type  hyphal growth started within a few hours  of  transfer  to the slant. 

The   [mi-l]  growth rate lagged about  two days behind  that of wild  type. 
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On the eleventh serial  transfer,   P-35-6  displayed  the slower  [mi-l] 

growth rate  and  possessed   [mi-l]  cytochrome distribution.     Diacumakos 

et al.   (1965)   stated   that   there was a considerable and variable time 

lapse between  the injection and appearance of  characteristic changes 

in morphology  and  growth rate when mitochondria from a maternally 

inherited mutant  [abn-l] were micro-injected  into a wild   type strain. 

She  suggested   that   this might be due to   the mitochondria or other 

agents  involved  having  to  reproduce and   reach a critical level before 

the  changes were observed. 

In the present work,   the point at which the  [mi-l]   phenotype 

was  detected   in P-35-6 was   transfer 8.     Thus,   this   change  in phenotype 

had   shifted down from transfer  11 noted  by Wilson   (unpublished).     The 

growth rate change was also  at   transfer   8;   this can be noted in 

Figure  10.     Wilson had noticed a shift downward of   a similar nature 

in  the appearance of   [abn-l],  which,  on silica gel   storage,   had a shift 

in  the  [abn-l]   from   transfer  8   to  the original.     Some process  in 

resting  conidia  caused   this downward shift.     Three  suggestions have 

been offered   to   explain how  [mi-l]   changed the phenotype of   the 

cytochromes   in a cell   (Diacumakos  et al.   (1965).     These were: 

1. A virus   introduced with  the  [mi^l] mitochondria destroyed 

the wild   type mitochondria or   converted   them to   [mi^l]. 

2. The   [mi-l]mitochondria replicated  faster  and  eventually 

became  the predominant  species. 

3. The  [mi-l] mitochondria  inhibited  reproduction of wild 

type mitochondria  either   through the production of  some 
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type of  toxic agent or  competition for  the food source. 

Of  the preceding possibilities,   the least  likely is  that a 

virus was introduced with the mitochondria.    Freezing and thawing of 

mitochondrial preparations  (which destroy mitochondrial activity 

but   should  not destroy viral activity)  destroyed   the ability of 

micro-injected   [mi-l]  mitochondria  to change  the wild   type phenotype 

of   the  cell   (Wilson,   unpublished).     It was possible,   though  improbable, 

that  the virus was  either present as an episome  or dependent  for 

transfer  of  whole mitochondria.     Also,   no viruses have been reported 

as   a  result  of   electronmicroscopic   studies of  [mi-l] mitochondria. 

The data in the RESULTS sections showed   that cytochrome c 

concentration  per unit weight of mitochondrial protein was approximately 

equal   for HC,   P-35-1C,   and P-35-6   (T-3  to T-7).     Each  of  these has  the 

typical wild   type cytochrome distribution.     The P-35-6   (T-8)   had an 

intermediate value of   cytochrome £ per mg  of  protein plus an  [mi-l] 

cytochrome distribution.     The P-35-6   (T-9   to T-12 and T-18)  had  a 

higher   concentration of   cytochrome £ per mg  of  protein with a   typical 

[mi-l]   cytochrome pattern,   but not  as high   in cytochrome c concentration 

as   SL-3,   the  strain from which  the  [mi-l] mitochondria  for micro- 

injection were  taken. 

Of   the  remaining  two possibilities  for  [mi-l]  action in changing 

the detectable phenotype,   it  is difficult   to determine which  is 

correct,   or whether   the  [mi-l]  dominance  is  a result of   a combination 

of   the   two. 
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Haskins   et  al.   (1952) mentioned  a cytochrome-destroying  enzyme, 

"cytochromase"  produced by  [mi-l]  mitochondria,  which destroyed 

wild  type mitochondria in vitro.     However,   this may not be the case 

in vivo. 

It would  appear that if either of the non-viral explanations 

were  correct,   the cytochrome £ concentration would  increase and 

cytochrome a-a-^   and  b_ concentrations would  decrease gradually  through 

the   transfers.     However,   this was  not   the case,   for  there was an 

abrupt  change  in  cytochrome c  concentration   (T-8)   accompanied by a 

complete disappearance of   cytochromes a_ - a,   and b_ and a reduction 

in growth rate.      If   the amount  of   cytochromes a_ - a    and b_ per mg  of 

protein decreased  from   transfer  1   to transfer  7,   this was  not detected 

as   the   instrumentation did not  allow enough  sensitivity  to quantitate 

cytochromes a_ - £3 and  b_.     But  cytochromes  a -  aj and b_ could have been 

detected  if   there had  not been a great  change  in their values between 

transfers   7   and   8. 

The pattern of   the   transition,   with  the sharp differences 

between P-35-6   (T-3   to T-7)   and  P-35-6   (T-9   to T-12  and T-18),   suggest 

some process other than increased growth rate or toxity of  the [mi-l] 

mitochondria.    These two processes would appear  to have caused a 

gradual shift  in phenotype.    This unknown process or processes appear 

to be active even in resting conidia,  as shown by the downward shift 

in the   transfer  at which the   [mi-l]  phenotype is visible. 

With this work it was  impossible to determine whether  the 

transition from wild  type to  [mi-l] was influenced by the fact that 
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[mi-l]mltochondria were micro-injected  into a heterocaryon-incompatible 

wild   type  strain.     The  complexity of   incompatibility would make other 

studies  necessary  to   clarify  the  problem. 
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