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It was  the purpose of this  study to  Investigate 

various  pure strategies   for the  dice  game  Pig.     Two basic 

approaches were  considered  for formulating an optimal 

strategy:     the maximum number of rolls per turn that  a 

player should take and the maximum number of points per 

turn that a player should attempt   to accumulate.     Basically, 

an optimal strategy  for Pig will  be one which allows a 

player to accumulate a maximum number of points  In a minimum 

number of turns  in order to achieve a  goal of 100  or more 

points.     Computer simulation of the game was  used  to verify 

the results  and  to attempt to distinguish  subtle differences 

among the competing strategies which could not  be determined 

through a purely  theoretical  formulation of the game. 

It  was   found that  an optimal roll-per-turn strategy 

will  be  for a player to toss no less than two times per turn 

and no more than  three times per turn.     The optimal 

point-per-turn strategy  from initial position of zero points 

is  to attempt  to accumulate at least 25 points.    Through 

the computer simulation of the game,  it was  found that 

optimally a player should  attempt  to accumulate  from 22  to 

26 points on any turn  if he is  to  attempt  to accumulate 

the same number on each turn. 

Although  an optimal  strategy from a roll-per-turn 

approach and  for a point-per-turn  approach  can be  stated, 



these  strategies will  In no way  guarantee that a player will 

win every  game by assuming one of these strategies;     however, 

a player will  be guaranteed of winning more games by assum- 

ing one of these strategies than any other roll-per-turn 

or point-per-turn strategy. 
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CHAPTER I 

INTRODUCTION 

There is very little available information concern- 

ing the dice game Pig.  An extensive search through game 

theory texts, encyclopedias on games, and mathematical 

and statistical Journals led to only two sources which 

contained any information about Pig.  Richard A. Epstein's 

book entitled The Theory of Gambling and Statistical Logic 

[1], and John Scarne's book entitled Scarne on Dice [3] 

contain very brief sketches concerning the rules and actual 

play of the game.  Communication with Martin Gardner of 

Scientific American revealed no additional sources.  No 

information concerning the history or origin of the game 

was found.  Pig may appear to be a most unusual name for 

a dice game, however, the name proves to be very descrip- 

tive since a player tends to become very greedy as play 

progresses. 

Essential to the makeup of any game are the rules 

by which the game is played. The set of rules greatly 

determines the actions and decisions of the participants. 

It is important that the rules be so complete and so 

precisely defined that any disagreements among the players 

concerning the consequence of any specific event which 

occurs during play are eliminated. 



The  game  Pip: is  played with  a pair of dice  and with 

any number of players.     Each player tries to accumulate a 

total of 100 or more points before his opponents.     The 

play of the game  is divided into turns.     A player's  turn 

consists of one or more rolls of a pair of dice,   where his 

score  is  determined by summing the figures which appear on 

the dice after each roll.     When a player terminates his 

turn,   the dice  are passed to the next player who begins 

his turn.     A player's turn may be terminated in three 

distinct ways,   each having a different effect on the player's 

score.     The  first way that a player's turn may be terminated 

results  from the occurrence of a single one on the toss 

of the two dice.     That  is, a player's turn is terminated 

whenever a one appears on one of the dice but not both. 

The player's score  is then zero for that particular turn, 

but the score accumulated on the previous turns is retained. 

Secondly,  a player's turn is terminated whenever the roll 

of the dice results in an outcome of double ones   ("snake 

eyes"),   that  is, whenever a one appears on both dice.     The 

player's  total score is then zero for the turn and,  in 

addition,  the player loses all of his points   for the game. 

The   final way that a player may terminate his turn is by 

choice.     A player may stop rolling at any time he chooses 

prior to the appearance of a one.     The player's score   for 

that particular turn is then added to his previous score. 

The  final  turn is determined when one of the players 



accumulates 100 or more points and stops rolling.  Each 

of his opponents then has a chance to roll and attempt to 

surpass his score.  The winner will be the player who has 

accumulated at least 100 points and more points than any 

of the opposing players. 

Now that the rules of the game have been established, 

a solution to the game will be Investigated.  A solution 

is sought by means of a pure strategy.  A pure strategy 

is a prescribed plan of action so complete and so 

well-defined that it will specify what the player will do 

in any position with which he may be confronted during the 

play of the game. 

In relation to forming a strategy the simplicity 

of the rules of this game is very misleading.  Various 

components contribute to the complexity of this game. 

For instance, any number of players can play.  A player's 

chances for winning a game are altered by the number of 

people competing.  Generally, with m players, where the 

dice are being passed from player 1 to 2 to ... to m-1 

to m and so on, until one player wins, the probability 

that the kth player wins the game approaches the limit of 

1/m which makes the game equitable for all players, 

[l,p.l59]. Therefore, a player's chances of winning the 

game are decreased as the number of people playing the game 

is increased.  Also, there is no restriction to the possible 

number of turns that can be required by any one player in 



this   game,  therefore,   theoretically this game can continue 

indefinitely.     The distinct number of positions with which 

a player may be confronted grows enormously large as   the 

number of players   increases.     Considering only two players, 

it  is  possible that  each player may be confronted with at 

least  as many as (?  ]{   ?   ) or 10,573 different positions. 

A pure strategy will require a prespecified choice of 

action for each and every one of these positions. 

As  games   grow more complex,   it becomes almost 

impossible to define a specific action for each and every 

event  that may  occur during play.     This research will be 

limited to investigating various strategies  for the 

accumulation of 100 or more points   (within the  framework 

of the  game Pig)  by a single player.     For a particular 

strategy to be of value in the actual  play of the game, 

it  should be one that allows the player to accumulate the 

maximum number of points in a minimum number of turns.     It 

is realized that an optimal single-player strategy  for 

the accumulation of 100 or more points may not necessarily 

be an optimal  strategy  in a multiplayer game of Pig. 

This  is due to the fact that the actual  game  situation 

would necessitate many   "point-position" decisions.     That 

is,  the specific  strategy used by a player under multi- 

player game conditions would depend somewhat on the relative 

scores of the various players and make it unwise  for a 

player to always maintain a specified pre-game strategy 



oriented toward the optimal accumulation of 100 points. 

Obviously, if an opponent has 98 points and a player with 

30 points is beginning his turn, it would be unwise for 

the player to stay with his original strategy since more 

than likely this will be his next to last turn.  It will 

be wise for the rolling player to attempt to accumulate 

as many points as possible, obtaining a score very close 

to 100 points. 

No attempt will be made to investigate "point-position" 

strategies due to the enormous number of distinct point 

positions with which a player may be confronted, even for a 

two-player game.  Instead, strategies will be investigated 

which specify what decisions a player should make, per turn, 

relative to his own goal of obtaining 100 points rather 

than the comparative scores of other players.  It is felt 

that such strategies will be advantageous in that they 

may be easily specified and yet will be applicable, to a 

large extent, in multiplayer games—particularly in early 

stages of the game and in games in which the player's 

score is close to the higher scores of his opponents. Two 

basic approaches will be used in investigating single-player 

strategies. The first approach will be to consider the 

maximum number of tosses per turn that a player should 

take, and the second approach is to consider the maximum 

number of points that a player should attempt to accumulate 



per turn.  Before discussing a specific strategy to Pig 

certain mathematical preliminaries need to be established. 



CHAPTER II 

MATHEMATICAL PRELIMINARIES 

Before considering specific strategies to the game 

Pig, a probabilistic formulation of the game will be 

presented.  The number of tosses that a player can expect 

to take before the occurrence of an outcome which contains 

a one, the number of points that a player can expect to 

have accumulated after i tosses of the dice, and the effect 

of the increasing probability of an outcome which contains 

a one will be investigated.  The number of tosses that a 

player can expect to take before the occurrence of an 

outcome which contains a one is important because a player 

would like a strategy which minimizes the probability of 

the appearance of a one.  The number of points that a 

player can expect to have accumulated after i tosses of 

the dice will be an essential factor to consider when 

establishing a strategy.  Naturally, a player is interested 

in accumulating as many points as possible in as few turns 

as possible.  Thus a player will be interested in knowing 

the number of points he can anticipate accumulating after i 

consecutive tosses of the dice.  This information will be 

helpful in establishing the number of rolls to be taken 

on any particular turn and in weighing the risk involved 

. 
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with this number of rolls versus the gain In points the 

player can expect to achieve. 

There are 36 distinct possible outcomes for any 

single toss of two dice.  Note that out of the 36 possible 

outcomes there is only one possible outcome of double 

ones, there are ten possible outcomes of a single one, and 

there are 25 possible outcomes which contain no occurrence 

of a one.  Therefore, the probability that double ones 

occur is 1/36, the probability that a single one occurs 

is IO/36, the probability that either a single one or 

double ones occur is 11/36, and the probability that no 

one occurs is 25/36.  Again, the effect of these outcomes 

on a player's score needs to be stressed.  The occurrence 

of double ones sends the total score back to zero and 

terminates the turn.  The occurrence of a single one sends 

the score for that single turn to zero and terminates the 

turn.  If there is no occurrence of a one then the points 

for that particular toss are added to the total number of 

points for that particular turn, and the player may roll 

again if desired. 

Now that the probabilities of the outcomes which 

contain a one have been established, the probabilities of 

specific outcomes which do not contain a one will be 

Investigated.  It will then be possible to determine the 

probability of accumulating a specific number of points 

after i, i-1,2,3,..., tosses of the dice on any turn.  Let 



A. denote the set of possible points which may be accumu- 

lated after i«l,2,3,... tosses of the dice.  If i ■ 1, 

then Aj^ - {0,1,5,6,7,8,9,10,11,12}, where the zero element 

of Aj^ represents a score of zero resulting from the appear- 

ance of a one on the dice and the non-zero elements of 

A1 represent scores which were obtained without the 

occurrence of a one. Likewise, if i ■ 2, then A- - 

{0,8,9,...,23,21), and if 1 * 3, then A3 - 

{0,12,13,...,35,36).  In general AR ■ {0,4n,4n+l,....,12n), 

where the zero element represents the occurrence of a one 

on or before the n  toss and the non-zero elements 

represent scores which were obtained without any previous 

occurrence of a one. Let X. denote the random variable 

which is defined on A^ and let PrU^m), meA1, denote 

the probability that m points have been accumulated after 

i tosses of the dice. After the first toss, this proba- 

bility will be conditional on what has occurred on the 

preceding tosses.  However, each toss of the dice is 

independent of the preceding tosses, and thus, the outcome 

appearing on the ith toss of the dice is independent of 

the outcomes which have appeared on the i-1 preceding 

tosses.  Let X. denote a random variable which is defined 

on A,, and let PrU^m), me\,  denote the probability that 

m points have been accumulated after one toss. Due to 

the independence of the tosses, Pr(X1-m) will also denote 

the probability that m points are accumulated on any 

a 
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specific toss of the dice. Thus if X. denotes the number 

of points obtained on the itn toss, then X* ■ X., and 
« 

XA takes values in A . The probabilities of having a 

certain score after i tosses are then defined as follows: 

For m ■ 0 : 

If i - 1, then PrUj-0) - 11/36. 

If i > 1, then Pr(X1-0) Pr(X1»0) + PrUg-OlX^O) 

+ ... + Pr(X1»0|  X1^0,X2yo,...,X1_1>'0) 

- Pr(X1-0) + Pr(X2-0)Pr(X1/0) + 

Pr(X3-0)Pr(X2j<0)Pr(X1>'0)+ ... + Pr(X1-0) • 

f*(X1-1l«0) ... Pr(X^O) 

- 11/36 + (ll/36)(25/36) + (ll/36)(25/36)(25/36) 

.1-1 + ... + (11/36M25/36) 

(ll/36)(25/36)J 

j-0 

For m > 0: 

If i - 1, then PrCXj-m) is: 

1/36 
2/36 
3/36 

(2.1) 

Pr(X1-1) 
PrUj-5) 
Pr(X1-6) 
PrU^)  -  V36 
Pr(Xj-8)  - 5/36 

If i >   1, then 

Pr^-9) - V36 
PrtXj-lO) - 3/36 
Pr(X1-ll) - 2/36 
Pr(X1-12)  - 1/36 

Pr^-m)  -J/ruJ-iOPrU^-t) (2.2) 

, 



where the sum is extended over all keA.. , leA, 1 , k + I 

and k,ft f  0. 

For example:  let 1 ■ 2, and m = 10. 

11 

m, 

Pr(X2«10) Pr(X1-'»)Pr(X*-6) + Pr(X1-6)Pr(X*-t) + 

Pr(X1-5)Pr(X1-5) (1/36X3/36) + (3/36X1/36) + 

(2/36X2/36) 10/362. 

The determination of the probabilities, Pr(Xj«m),meA^, 

for a large number of tosses is a laborious arithmetical 

task due to the recursive nature of equation (2.2), and 

the fact that the summation in this equation is extended 

over all possible pairs kcA,, and ft*Aj ,, with k f  0, 

% ¥ 0,  and k + I  ■ m.  The probabilities, PrCXj-m), for 

meA., i"l,2,3,1, were computed using the IBM 370/125 

computer and are given in Appendix A.  A listing and brief 

discription of the Fortran source program used in these 

computations appear in Appendix F. 

Although the recursive property of equation (2.2) 

enables computation of Pr(X1-m) for all TKK^  and for any 

desired number of tosses, i, it also prevents the equation 

from being an efficient means of doing such computation. 

Since PrUj-m) is defined in terms of X± and \_x>  the 

use of equation (2.2) necessitates the computation of the 

probabilities associated with all XR, k-1,2,... ,i-l, in 

order to determine PrU^m).  This also makes equation (2.2) 

unattractive for additional theoretical work, such as 
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calculation of expectations, and Indicates the desirability 

of an alternate expression for the probability density 

function of the random variable X.. 

Let f(xj) - Pr(X1»x1), x^eA^,  denote the probability 

density function of X*. Epstein, [l,p.l55], gives a 

general formula for finding the probability, P(s), of 

obtaining a given sum, s, of the outcomes of n throws of 

one die.  A modification of this result to the game of 

Pig will be used to determine f(x1), since X. represents 

the score (sum of certain "non-one" outcomes) after i 

throws of a pair of dice. 

In the game of Pig the number of points X. after i 

throws of a pair of dice will be zero if a one has occurred 

on any die thrown, and X. will be equal to the sum of the 

outcomes of the 1 throws of a pair of dice provided no one 

has occurred on any die. Since i throws of two dice is 

equivalent to 2i throws of a single die, L • 0 if • one 

has occurred on any of the 2i throws, and X. ■ s where 

s - b. + bp + ... + b21 with bk representing the outcome 

on the kth throw of the die, bRc(2,3,^,5,6), if no one 

has occurred on any of the 2i throws of the single die. 

The result of equation (2.1) is still applicable 

to specify  f(0) - Pr(Xi- 0).Hence, 

f(0) -   f  (ll/36)(25/36)J. 
J-0 

(2.3) 
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Attention will now be focused on determining f(x.),x. ¥  0. 
2i It is possible to obtain 6  different configura- 

tions on the 2i tosses of a single die.  The number of 

configurations summing to x, and containing no one divided 

by 621 will be r(x^)  ■ PriXfX*).     The problem of finding 

f(Xj) is now reduced to finding the number of configura- 

tions of the 21 tosses which sum to x,.     This is equivalent 

to determining the number of solutions of the equation 

bl + b2 + " " + b2i " xi 
(2.H) 

with bke(2,3,i»,5,6).     Equation (2.1) may be rewritten as 

(b1-l)  +   (b2-l)  +   ...   +  (b21-D   - x1 - 21 

where bRe(2 ,3,4,5,6) or 

a.  + a2 +  ... + a21 - s (2.5) 

with s - x1 - 2i, aR - bk - 1 and aRe(l,2,3,1,5)• 

A theorem from number theory,   [2,p. 121-5],   states 

that the number of solutions to equation (2.5)  corresponds 

to the coefficient  of y8 in the expansion of the poly- 

nomial  (y+y2+y3+y1,+y5)2i-    Factoring the 

polynomial yields 

.2_3A,A„5x2i 
6-.21 

(yy'W+y3)" " Lt^-J 

Letting a - y and b - -y6 in the binomial expansion of 
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m 
f   .w\k      \ 7k\wn k-n (a+b)     -^(Jba 

n-0 

yields 

(,„,«,« -{(^(-»6,V1- - f /^V-i)Vnt21 

n-0 

Also,   (1-y) 
-21. i pss*)/- 

k-0 

The •W] 21 - (y-y6)21d-y)-2i 

n^O k-0 

t iffll-'ft^fa-i^ 
n-0  k-0 

£ £ff)<-»"fS5V",,t 
n-0  k»0 

^[^a^csrtj 
where fc^i) represents the Integral part of ~g—. 

Thus the coefficient of y8 In the expansion of 



lrJ 

(y+y^yV+y5)21 is 

m 
^s — n ' 

(2.6) 

x. - 2i.  Thus the number 

and this represents the number of solutions of equation 

(2.5).  However, in equation (2.5) s - x, - 21.  Hence it 

may be concluded that the number of solutions of equation 

(2.4) is given by (2.6) with s 

of configurations which sum to x. is 

(2.7) 

The number of  "non-zero" configurations,  N(x1), which sum 

to xA   (specified by equation  (2.7)),   for i - X,2,3,1 tosses 

is given in Appendix B. 

It is now possible to write,   for x^ ¥ 0 

f(x4) - Pr(X1-x1) 

pi-**! 

feu        V      ' V f.     (2.8) 
— ' 751  

I 
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For example,   consider the  probability of having a sum of 11 

after 2 tosses. 

f(ll)«  Pr(X2«ll) 

ril-^(2f] 

,,(n 36' 

36' 

20^ 

36' 

Thus,  the probability density  function f(x1)  of the random 

variable X,   is  given by (2.3)  when x± ■  0 and (2.8) when 

x± ft 0. 

One of the reasons  for determining this probability 

density   function was to provide a more attractive method 

for representing expectations.     As was  stated previously, 

a player will be interested in knowing the number of points 

that he may anticipate accumulating after i tosses of the 

dice.     Define ECX^ to be the expected number of points 

accumulated at the end of the ith toss where,as before, 

X± denotes  the random variable  defined on A±.     Then 

ECX,] -   ^iffxj.)  where the 8ura ls °ver a11  XieAi and 

f(xj)   represents the probability that a player has a total 

of x-   points after i tosses.    Hence 
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1-1 
E[Xt] - 0. £jll/36)(25/36)J 

J-0 

121 

-vrMKiT1) (2.9) 

Needless to say, calculating these expectations Is a tedious 

arithmetical task.  The values of 1[XJ], for 1-1,2,...,8, 

were calculated on the computer by using the program given 

in Appendix P.  A table of these computations may be found 

In Appendix C. 

The next factor to be investigated is the expected 

number of tosses of the dice that it will take to achieve 

a particular event which has constant probability, p.  Prom 

this result, the expected number of tosses that it will take 

for a player to receive an outcome which contains double ones, 

a single one, and double ones or a single one can be 

determined.  A generalized theorem concerning the expected 

number of trials that it will take to achieve a specific 

event is stated by Epstein, [l,p.l58].  A generalized theorem 

which conforms to the needs of this investigation is stated 

in the following way. 

Theorem 2.1.  Por any series of tosses of the dice for 

which the probability of the occurrence of a particular 

i 



event,   A,   is   constantly  p,  the  expected  number of tosses, 

E[Y],   to  achieve  the  event  A  is  the  reciprocal   of the  prob- 

ability    of   its occurrence. 

Proof:     It will be shown that E[Y] = >   py(l-p)y_1 - 
  y*i 

=-.     Let p be the constant probability of the occurrence of 
P 
event A.  Let l-p«q.  Consider the number of tosses, Y, 

required for the first occurrence of A. Note that Y is a 

discrete random variable, taking values l,2,3>«*-> and nas 

a geometric distribution. Hence, if the first occurrence 

of Y appears on the yth toss of the dice, then the preceding 

y-1 tosses demonstrate nonoccurrences of event Y. Therefore 
th 

the probability that A occurs for the first time on the y 

toss is p(y) -  pqy_1, y-1,2,3,..- •  It follows that 

E[Y] P* ,y-i 
- fypd-p)7"1 

y-i 

P + Typd-p) y-i 

- P + t. (y+DU-P>y 
y-i 

- P + (I-P) Z (y+DU-p> 
yi 

y-i 

P + (1-P)[E[Y]+1] 

Then, 
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E[Y] - p + E[Y] + 1 - pE[Y] - p. 

Solving this equation for E[Y] yields: 

E[Y] - 1/p. 

Corollary 2.1.  The expected number of tosses required 

to achieve an occurrence of double ones, an occurrence of 

a single one, and an occurrence of double ones or a single 

one is 36, 3.6, 3.2727..., respectively. 

Proof:  The probability that double ones occur on any 

toss is 1/36, the probability that a single one occurs on 

any toss is IO/36, and the probability that double ones or 

a single one occurs on any toss is 11/36.  Therefore, from 

Theorem 2.1, E[Y] - 37^- - 36, E[Y] - ^^ - 36/10 - 3-6, 

and E[Y] - 33735- - 36/11 - 3-2727... . 

It may now be concluded that, on the average, a 

double one will occur once in 36 tosses, a single one will 

occur once in 3-6 tosses, and a double one or a single one 

will occur once in 3-2727... tosses. 

Another important question to consider is the 

increasing probabilities of the occurrences of double ones, 

of a single one, and of double ones or a single one. 

Theorem 2.2.  If a specific outcome has constant 

probability 9 of occurrence, then the probability that this 



20 

outcome appears on or before the nth toss of the dice is 

1 - qn where q ■ 1 - p. 

Proof:  The probability that an outcome which has con- 

stant .probability, p, appears on or before the n  toss is 

n-1     *       n-1 . n-1  , 
T"p(l-p)  ■ £ pq .  However, £ pq represents the 
1-0 1-0 1-0 

n-1  partial sum of a geometric series.  Thus 

t* ■ 'M ■ »M -i -n- 
Corollary 2.2:  If a specific outcome has constant 

probability p of occurrence, then the probability that this 

outcome has not occurred by the n  toss of the dice is q 

where q - 1 - p. 

Proof:  In Theorem 2.2 it was found that the 

probability that the event occurred by the n  toss is 

1 - qn.  Therefore, the probability that the event has not 

occurred is 1 - (1-q ) ■ Q • 

Corollary 2.3;  The probability that double ones occur 

on or before the nth toss is 1 - (35/36)n.  The probability 

that a single one occurs on or before the n  toss is 

1 - (26/36)n.  The probability that either double ones or a 

single one occurs on or before the nth toss is 1 - (25/36)n. 

Proof:  The probability that double ones do not occur 

on any toss is 35/36, the probability that a single one does 
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not occur on any toss is 26/36, and the probability that 

double ones or a single one does not occur on any toss is 

25/36.  Hence, by Theorem 2.2, the probability that double 

ones occur on or before the nth toss is 1 - (35/36)n, 

the probability that a single one occurs on or before the 

nth toss is 1 - (26/36)n, and the probability that double 

ones or a single one occurs on or before the n  toss is 

1 - (25/36)n. 

A table of these probabilities for n ■ 1,2,...,36 

can be found in Appendix D. Note that the probability of 

the occurrence of double ones on or before n tosses 

increases very slowly, while the probability of the occur- 

rence of a single one on or before n tosses Increases very 

rapidly. 

These basic facts will now be used to determine a 

specific approach to the game Pig.  In Chapter III, the 

approach concerning the maximum number of tosses per turn 

that a player should take will be investigated, and in 

Chapter IV, the approach concerning the maximum number of 

points per turn that a player should accumulate will be 

investigated. 

. 
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CHAPTER III 

ROLL PER TURN STRATEGIES 

The first approach considered in finding an optimal 

strategy to the game Pig is that of determining the maximum 

number of tosses per turn that a player should take with 

the understanding that he will maintain this strategy 

throughout the game.  The basic factors concerning the 

increasing probability of the occurrence of an outcome 

which contains a one and the number of points that a player 

can expect to accumulate in a fixed number of rolls are 

essential in establishing a roll per turn strategy. 

The increasing probability of the occurrence of an 

outcome which contains a one will affect a player's deci- 

sion concerning the number of times that he should roll 

per turn.  The more a player decides to toss on any turn, 

the more he increases his chances of losing points which . 

have already been accumulated.  Obviously, the number of 

rolls per turn which minimizes this point loss will be an 

important fact to consider in the determination of a strategy. 

Theorem 3.1.  After the first toss of any single 

turn, the probability of the occurrence of an outcome which 

contains either double ones or a single one is greater 
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than the probability of the nonoocurrence of such an 

outcome. 

Proof:  The probability that either double ones or a 

single one has occurred on or before the i  toss of the 

i-1 , 
dice is T (11/36)(25/36)J, and the probability that double 

th ones  or a single one has not occurred on or before the i 
i-1 , 

toss   is 1 -   T (11/36)(25/36)*'.     It  will be  shown  that 

]  - X(11/36)(25/36)J  >   r(ll/36)(25/36)J   for 1-1.     In 

i-1 1 
Corollary 2.3,  It was  shown that   T (11/36)(25/36)«•  - 

1 -  (25/36)1.     Hence,   it will be shown that  1 -   (l-(25/36)   ) 

>  1  -   (25/36)4  for i -  1.    This problem can be reduced to 

finding the values of i which satisfy the Inequality 

(25/36)1 >   1  -  (25/36)1. 

(25/36)1 >  1 -  (25/36)1 

2(25/36)i >  1 

(25/36)1 >  1/2 

i-log  (25/36)  >  log (1/2) 

i <  log (l/2)/log(25/36) 

i <  1.900892008462 

Obviously, the only value of i which satisfies this 

inequality  is  1.     Hence,  it  can be concluded that  after 

the  first toss of any  single turn the probability  of the 
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occurrence of an outcome which contains either double ones 

or a single one is greater than the probability of the 

nonoccurrence of such an outcome. 

Theorem 3.2.  After the second toss of any single 

turn, the probability of the occurrence of an outcome which 

contains a single one is greater than the probability of 

the nonoccurrence of such an outcome. 

Proof;  The probability that a single one has 

occurred on or before the ith toss of the dice is 

1£1(10/36)(26/36)J, and the probability that a single one 

his not occurred on or before the 1th toss of the dice is 

1 - T1(10/36)(26/36)J.  In Corollary 2.3, it was shown that 

J-0 

iZ(10/36)(26/36)J - 1 - (26/36)1-  Hence, it will be shown 

j-0 

that  1  - i£1(10/36)(26/36)J >   *£\l0/36><26/36>'   for 

i - 1 or 2*° This problem can be reduced to finding the^ 

values of i which satisfy the inequality 1 - (l-<26/36>  ) > 

1 - (26/36)1. . 
1  - (l-(26/36)i)  >   1  "  (26/36) 

(26/36)1 >  1  " (26/36)1 

2(26/36)1 >  1 

(26/36)1 >  1/2 

i-log(26/36)   > log(l/2) 
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i   < log(l/2)/log(26/36) 

1   < 2.129992218219 

Clearly,  the only  values of 1 which  satisfy this  Inequality 

are 1  and 2.     Hence,   it  can be concluded that  after the 

second toss of any single turn,  the  probability of the 

occurrence  of an outcome which contains a single one  is 

greater than the probability of the nonoccurrence of such 

an outcome. 

Obviously, the probability that  a single one has 

occurred on  or before the  i      toss  increases much more 

rapidly than the probability that double ones have occurred 

on or before the  1      toss.     For small  values of i,  the 

probability  that  double ones will occur is  very  small. 

Hence,   if i  is  small,  the chance that the total score will 

be  zero after i  tosses on any turn is  small.     However, 

comparatively,   the probability that the score is  zero for 

any particular turn after i tosses of the dice increases 

quite  rapidly as the values of 1  increase.    That  is,  the 

probability that  an event which contains a single one occurs 

Is  increasing rapidly  even  for small  values of i.     It has 

been shown that after two  tosses,  the  probability that  a 

single one has occurred is  greater than the probability 

that a single one has  not occurred 

The results of Theorem 3.1 and Theorem 3-2 demonstrate 

that a player's  chances of losing points which have been 
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• 

accumulated are greater than his chances of retaining and 

increasing his score for the game after the first toss, 

and a player's chances of losing points which have been 

accumulated on any single turn are greater than his chances 

of retaining and increasing his score for any single turn 

after the second roll.  However, it should not be concluded 

from the above discussion that a player should never roll 

more than once or twice per turn.  Other factors will enter 

into this decision, one of which is the fact that the number 

of points which can be accumulated on additional rolls is 

large enough to partially offset the risk involved in 

continuing to toss. 

Consider now the number of points which a player can 

expect to have accumulated after i tosses of the dice. 

Recall that X. represents the random variable defined on 

A., and E[X±] denotes the number of points which a player 

can expect to have accumulated after the i  toss of the 

dice.  The values of E[X1] for i ■ 1,2,3,4,5 (to three 

decimal places) were found to be the following:  E[XX] - 

5.555, E[X2] - 7.716, E^] - 8.037, id£,3 - 7-^2, and 

E[X5] - 6.160. 

The greatest values for E[X1] occur when i - 2 

or 3.  Therefore a player can expect to have accumulated 

the greatest number of points after the second or third toss. 

It is interesting to note that E[X1] increases for i - 

1, 2, and 3 and decreases for i > 3-  So, the more a 
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player rolls after the third roll the fewer points he can 

expect to accumulate.  This fact is due to the increasing 

probability of the occurrence of an outcome which contains 

a one.  The values of E[X1] are extremely close when i ■ 

2, 3, or t.  Consider now the minimum number of points 

that a player can accumulate after 2, 3 or 1 tosses.  These 

values are 8, 12, and 16 respectively.  A comparison of 

ECXj,] with the minimum number of points that can be accumu- 

lated after i tosses leads to the fact that E[Xj] is 

considerably less than this respective minimum value except 

when i - 2.  When i - 2, ECXj] is close to the minimum 

number of points that can be accumulated after two tosses, 

but is still less than this minimum value.  Actually, 

E[X.] is greater than the minimum number of points after i 

tosses only when i ■ 1.  This fact is also a consequence 

of the increasing probability of an occurrence of an outcome 

which contains a one. 

It has been brought out that a player can expect to 

accumulate the greatest number of points on any turn after 

the third toss.  A decision with which a player may be 

confronted is whether or not he should roll a second time  if 

after the first toss he has accumulated more than the 

number of points which he can expect to accumulate at the 

completion of the third toss.  That is, should a player 

continue rolling if he receives more than 8 points on the 

first toss.  It has been stated that E[X1] increases for 

A 
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i - 1, 2, and 3, and decreases for 1 > 3.  Also, it has been 

brought out that each toss of the dice is independent of 

every other toss of the dice.  Hence, on the second roll, 

the probability that a one will appear is 11/36, and the 

probability that a one will not appear is 25/36.  Clearly, 

it will be to the player's advantage to roll again.  However, 

this will not be the case if a player has already rolled 

three or more times on a particular turn and is trying to 

decide whether or not he should roll again.  Obviously, 

if a player has successfully rolled three times then the 

number of points which have been accumulated at the comple- 

tion of the third roll is greater than the number of points 

which he can expect to accumulate on any succeeding roll. 

This is due to the fact that after the third roll of any 

single turn, the number of points that a player can expect 

to accumulate begins to decrease.  Thus, if a player decides 

to toss again in this situation, it is likely that his score 

will decrease rather than increase. 

As was stated previously, the objective in a strategy 

for the game Pig is to accumulate a maximum number of points 

in a minimum number of turns.  It was also pointed out that 

the more a player chooses to roll per turn, the more he 

chances losing points which have thus far been accumulated. 

A comparison of the probabilities of an event which contains 

a one on or before the ith toss with the expectations of 

the number of points that can be accumulated on the i 
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toss,   for  i   > 3,   demonstrates  that  as 1  Increases,  the 

probabilities  are  Increasing whereas the  expectations 

are decreasing.     Obviously,  rolling only one time per turn 

will be  the safest approach.    However,  on the average  It 

will take 18 turns  to achieve a score of 100  points provided 

double ones  do not  occur,  whereas  if a player rolls either 

two or three times  per turn it will  take,  on the average, 

13 turns  to achieve a score of 100 points  provided double 

ones  do not occur.     Also a player can expect  to accumulate 

a greater number of points  if he chooses  to roll  two or 

three times  per turn than if he chooses to roll only once 

per turn.     Hence  it  can be  concluded that  a player should 

roll more than one  time per turn.     Rolling more  than 

three  times per turn will not be a good approach due to 

the large probability of the occurrence of an outcome which 

contains  a one.     Also,  E[X.]  Is decreasing for 1   > 3- 

Hence a player can expect  to accumulate more points rolling 

two or three times  per turn than rolling more  than three 

times per turn.     Thus,  a player should roll at least two 

times per turn,   but not more  than three times  per turn. 

It was not  determined in this  investigation whether 

or not a three-roll  strategy  is better than a two-roll 

strategy.     It  is  true that  E[X3]  > BCXgl,  however,   the 

probability that  an event which contains  a one has occurred 

after two tosses  is less than the probability that an event 

which contains  a one has occurred after three tosses.     These 
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facts  cause  the two-roll-per-turn and the  three-roll- 

per-turn strategies to be practically Indistinguishable. 

The  following Is a  list of outcomes  of games 

concerning per turn strategies which were simulated on the 

computer by  using the program which appears  In Appendix Q. 

Due to the theoretical  closeness of several of the roll- 

per-turn strategies,  computer simulation was  Implemented 

to  attempt  to distinguish subtle differences  in the 

strategies.     This  program simulated the play of the game 

Pig by  two persons,  each assuming some  specified roll-per-turn 

strategy.     In order to restrict  this  game  from continuing 

indefinitely,  play was  stopped if a player had completed 

more  than 100  turns.     It  is  interesting to note that  some 

outcome  for the  game was  always determined before a player 

completed 100 turns.     The configurations which would occur 

on the toss  of two dice  were    randomly  generated.     The 

computer played blocks of 1,000  games  at a time.     The 

results  obtained  from the computer simulation correspond 

to the theoretical  results which have been established. 

It was  determined that a two-roll-per-turn strategy and a 

three-roll-per-turn strategy are virtually  indistinguishable. 

The  computer results  show that a two-roll-per-turn strategy 

won  82  (or 1.64*)  games more than a three-roll-per-turn 

strategy after the play of 5,000  games.     It  is possible 

that  this  82-game difference will  deteriorate or reverse 

itself if more  games  are  simulated.     Por several of the 
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1,000 block games,  a three-roll-per-turn strategy won more 

games than a  two-roll-per-turn strategy.     In the table 

below,  Player 1 Strategy and Player 2  Strategy  represent 

the respective number of times per turn that each player 

chose to roll.     Player 1 Wins and Player 2 Wins  represent 

the  respective number of games won by each player. 

Player 1 
Strategy 

Player 2 
Strategy 

Player 1 
Wins 

Player 2 
Wins 

1 2 378 622 

1 3 331 699 

1 1 386 614 

1 5 403 597 

2 3 2541 2459 

2 4 2688 2312 

2 5 563 437 

3 4 2692 2308 

3 5 573 427 

4 5 584 446 

In the following table of results,  Player 1 had 

the added option to stop rolling if his  score exceeded 8 

points.    That  is,  Player 1 would roll either two or three 

times per turn or until he had accumulated 8 points.     As 

was  discussed previously and as the table demonstrated,  a 

player should definitely attempt to accumulate more than 

8 points per turn. 



1 

Player 1 
Strategy 
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Player 2    Player 1    Player 2 
Strategy        Wins wins 

2 155 515 

2 122 578 

3 116 551 

3 111 556 

Rolls 2 times or until  score>8 

Rolls 3 times or until  score*8 

Rolls 2 times  or until  score*8 

Rolls 3 times or until  score£8 

In conclusion,   the best  roll-per-turn strategy 

will  be to roll no less  than two times per turn and no more 

than three times per turn.    These  two  strategies  are 

virtually  indistinguishable.     An approach  to the  game by 

using one  of these  strategies will  in no way guarantee 

that  a player will win  every time,  but  will  guarantee that 

a player will  win more  games by  using one of these approaches 

than any  other roll-per-turn strategy. 
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CHAPTER IV 

POINT PER TURN STRATEGIES 

The  final  approach to an optimal  strategy  for Pig 

Is the consideration of a point-per-turn strategy.     In 

this  consideration the number of points  that  a player should 

attempt  to accumulate on any single turn will be specified. 

In order to mathematically formulate the problem of finding 

a point-per-turn  strategy,  it will be advantageous  to 

introduce some basic  terminology of game theory. 

During the course of any game,  a player is  required 

to make various  decisions by selecting a strategy  from a 

group of alternative strategies.    This  selection should be 

made on the basis of the  comparative effectiveness  of the 

strategies  in achieving the player's goal.    A utility 

function will  define a measure of efficiency  for a  strategy, 

thereby allowing for an objective appraisal of its  effective- 

ness.     A  function of utility will be defined  for the game 

Pig by requiring a player to pay one unit at  the termination 

of each turn before the  achievement of his stated pre-game 

goal.    The expected cost of achieving the pre-game goal by 

playing according to a given strategy will specify the 

utility for that  strategy.     Comparatively,  strategies with 

lower expected cost will  be assigned higher utilities  since 
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these  strategies  will require,  on the average,   fewer turns 

to achieve the stated pre-game  goal  and therefore be most 

efficient. 

It  will now be beneficial to introduce  a means by 

which a  compact  description of the player's position in 

the game may be  represented.     A plateau will designate the 

total score that a player has accumulated at  the termina- 

tion of any turn.     A player may voluntarily declare a 

plateau by  choosing to terminate his  turn before the 

occurrence of a one.     In this  instance,  the player's 

plateau will  be equal  to the  sum of the previous plateau 

and the number of points accumulated during this  turn. 

If a single one occurs before a player declares a plateau, 

his  turn is  automatically terminated and his plateau will 

be the same  as  the plateau for the previous turn.     If a 

double one occurs before a player declares  a plateau,  then 

his plateau will  be zero. 

A  player's  position at the end of any toss during 

the game may  now be represented by means  of an ordered 

pair  (a,b) where the  first  coordinate,  a,  represents the 

total  cumulative  score at the end of that  toss,   and the 

second coordinate,  b,   represents the player's plateau.     Por 

example,  the  position   (52,40)  indicates  that the player 

had 40 points  at the  completion of his  last turn and has 

thus  far successfully accumulated 12 points during the 

current turn. 
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Before investigating a point-per-turn strategy for 

the game Pig as defined in this investigation, a less 

complicated but similar problem examined by Epstein, 

[1,p.161-6], will be considered.  The version of the game 

considered by Epstein is such that the appearance of a 

double one does not automatically revert the score to zero, 

but rather has the same consequence as the appearance of a 

single one.  Hence, a player's turn may be terminated in 

one of two ways.  First, a player will be required to 

terminate his turn upon the occurrence of any outcome which 

contains a one and the player's score is then equal to his 

previous plateau.  Secondly, a player may voluntarily 

terminate his turn and increase his previous plateau by 

the total number of points accumulated during that turn. 

The specific problem which will now be investigated is 

that of accumulating a total of 24 or more points. 

According to the utility function which has been 

defined, a player will be required to pay one unit at the 

completion of each turn before achieving 24 points.  It is 

now possible to compare two competing strategies for the 

accumulation of 24 points by means of a comparison of the 

respective expected costs to achieve the goal of 24 points. 

Specifically, the two competing strategies will be that of 

attempting to accumulate 24 points without voluntarily 

declaring a plateau and that of declaring a plateau at some 

position (a,0) where a < 24.  In order to show that the 
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strategy of never declaring a plateau Is the optimal 

strategy in this game, it will suffice to show that a 

plateau should not be declared at (23,0). 

If a player has position (23,0) and decides to 

declare a plateau, then his position will become (23,23), 

and he must pay one unit for declaring the plateau. On 

his next turn, two events are possible.  First, the player 

could, with probability 11/36, obtain an outcome which 

contains a one and remain at (23,23) with a cost of one 

additional unit, or secondly, the player could, with pro- 

bability 25/36, obtain an outcome which does not contain 

a one and achieve his goal with no additional cost.  In 

the former case, the player must continue tossing until he 

obtains a nonoccurrence of a one, paying one unit for each 

turn required before the achievement of 24 points.  Since 

the probability of a nonoccurrence of a one is 25/36, 

Theorem 2.1 implies that the expected number of tosses 

before the nonoccurrence of a one is G57W) - 36/25. 

Thus,  the expected cost,   C,   under the strategy of declaring 

a plateau at   (23,0)   is 

C - 1 +   (11/36X36/25), (4.1) 

where "1" represents the cost of declaring the plateau at 

(23,0) and reaching the position (23,23), and (11/36)06/25) 

represents the expected additional cost of getting from 

(23,23) to the goal of 21 points.  Now, the expected cost 
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If a plateau is not  declared at   (23,0)  will be considered. 

Let W represent the expected coat of reaching the goal of 

24  points   from the  (0,0)  position under a strategy of never 

declaring a plateau.     Hence,   W represents  the  expected 

number of times  that  a one will  appear before achieving a 

score of 24  points  or more by continuously  rolling the dice. 

The probability of accumulating 24 points  or more assumes 

some constant  value,  p.     Thus,  by  Theorem 2.1, W -  1/p. 

Let  C* represent  the expected cost at  position  (23,0) 

if the player decides not to declare a plateau at this 

point.     The  player then risks  getting a one on the next 

toss,  costing him one unit  and reverting back to position 

(0,0).     Hence 

C« -  (11/36)(1+W) (4.2) 

It will be shown that a player should not declare a plateau 

at (23,0) by showing the expected cost C*, under the 

strategy of not declaring a plateau at (23,0) is less than 

the expected cost, C, under the stragegy of declaring a 

plateau at this point.  The inequality C» < C is equivalent 

to (11/36)(1+W) < 36/25.  Simplifying this inequality yields 

11/36 + (11/36)W < 36/25 

(11/36)W < 36/25 - 11/36 

W < (362/ll-25) - 1 

W < 3.71. 

Thus, C« < C if and only if W < 3.71 where W is the 
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;s or reciprocal of the probability of accumulating 24 point* 

more.     A numerical value  for W can be  found by calculating 

the probability of achieving 24 or more points, and taking 

its reciprocal.     The computer was implemented to find the 

probability   for accumulating x points or more on any single 

turn by using the source program which appears In Appendix P. 

The value of these probabilities for x - 24,25,...,30 can 

be  found in Appendix E.     Thus,   it was   found that the value 

of W is  3.465.     Since  3.465   < 3-71 it can be concluded that 

a player does not want  to declare a plateau at  (23,0)  if 

his initial goal is 24 points.     In the single-player game 

under the modification of double ones having the same 

consequence as  single ones where the goal  is 100 points, 

it may now be concluded that a plateau should not be declared 

at any position before the accumulation of 24 points.     This 

agrees with the result  in Epstein  [l,p.l65]; however, 

Epstein does not  indicate the exact position at which the 

plateau should be declared if the goal is 100 points.     The 

problem Just  considered, with initial goal of 24 points and 

current position (23,0), may be generalized to the problem 

with initial  goal of d+1    points and current position 

(d,0).     For this more general problem the  functions  C and 

C remain Identical to those previously derived in equations 

(4.1)  and (4.2).     However, W will now represent the expected 

cost of accumulating a total of d+1 or more points under a 

strategy of never declaring a plateau.     The problem of 

1 
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deciding the position for declaring the first plateau is 

now that of finding the smallest number of points,  d,  for 

which C» exceeds C since this will indicate that the 

expected cost of not declaring a plateau at   (d,0)  exceeds 

the expected cost of declaring a plateau at   (d,0)    when the 

goal  is d+1 points.     This  is equivalent to finding d such 

that W exceeds   3-71 where W is the reciprocal of the 

probability,   p, of the accumulation of d+1 or more points 

under a strategy of never declaring a plateau.     Reference 

to Appendix E indicates that if d - 25,  then the probability, 

p, of accumulating d + 1 - 26 or more points is   .26324. 

This  gives a value of W -  3-799  > 3-71.     It may then be 

concluded that   if a player's goal is 26 points,  a plateau 

should be declared at  25 points. 

Extending this to a game in which the player's goal 

is 100 points,   it may be stated that the optimal  strategy 

is to declare a plateau at   (25,0) which indicates that a 

player should try to accumulate at  least 25 points on his 

first turn before declaring a plateau.     Thus  the optimal 

point-per-turn strategy for the first toss is to declare a 

plateau only after 25 points have been accumulated. 

Attention will now be focused on investigating an 

optimal point-per-turn strategy   for the  game of Pig with 

the rules as originally stated in this research.     The 

previously discussed problem was   for the particular game 

in which the appearance of double ones on a toss had the 
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same consequence as  the appearance of single ones.     However, 

in the originally stated rules for Pig the appearance of 

double ones on any toss reverted the total score to zero 

and gave the player a position of (0,0).    With this con- 

sequence for double ones, the problem of finding the 

optimal points-per-tum strategy for the position (0,0) 

will now be considered.    Obviously,  this change in the 

consequence of double ones will affect the declaration of 

a plateau,  since the occurrence of double ones will now 

revert a player's plateau to zero regardless of his plateau 

on the previous turn.     That is,  a player is no longer 

assured that the declaration of a plateau at d points will 

permanently assure him of having a score of at least d 

points. 

It will be assumed that the player has a goal of 

d+1 points and has reached the position of (d,0)  and is 

now faced with the decision of either declaring a plateau 

at (d,0)  or continuing to toss in an attempt to reach his 

goal.     The respective expected costs of the two alternate 

strategies will now be considered.     If the player declares 

a plateau at  (d,0),   pays one unit, and accepts the position 

of (d,d),  then on his next turn there are three distinct 

possibilities: 

(1)   a double one can occur costing the player one 

unit and reverting his position to (0,0); 
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(2) a single one can occur coating the player one 

unit and retaining his position (d,d); 

(3) a "non-one" outcome occurs and the player adds 

the points received to his score of d with no cost to 

the player. 

Let W(d+1) represent the expected cost of getting 

from (0,0) to the goal of d+1 points under the strategy of 

declaring a plateau at d points. Then the expected cost, 

C(d+1), of getting from d points to d+1 points under the 

strategy of declaring a plateau at (d,0) is 

C(d+1) - 1 + (10/36)[1+C(d+1)] + (1/36)[1+W(d+1)].  (i».3) 

In equation  (4.3)  the  "1"  represents  the cost of declaring 

a plateau at   (d,0)  and accepting the position  (d,d).    On 

his next  turn,  the probability of a single one occurring 

is 10/36  and the expected cost resulting from this  is 

1 + C(d+1);   the probability of double ones occurring is 

1/36,   costing one unit  and reverting the player's position 

to (0,0)  where the expected cost  of reaching d+1 is W(d+1). 

In the case of a  "non-one" outcome,  with probability 25/36 

of occurring,   the player automatically achieves his  goal 

of d+1 points  and has  no further additional  cost. 

Under the strategy of not declaring a plateau at 

(d,0),  with a  goal of d+1 points,  a player either achieves 

his goal on the next  toss with the occurrence of a  "non-one" 

outcome, or the player's score is reverted to the (0,0) 
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position upon the occurrence of either a single or a double 

one with a cost of one unit.     Let W»(d+1)  denote the expected 

cost of getting from (0,0) to the goal of d+1 under the 

strategy of never declaring a plateau.    Then the expected 

cost,  C«(d+1)  of getting from (d,0)  to the goal of d+1 

under the strategy of not declaring a plateau 

C«(d+1)  -  (11/36)[1+W«(d+1)]. (4.4) 

If C»(d+1)   < C(d+1)   then the optimal strategy will be that 

of not declaring a plateau at   (d,0);  otherwise, the optimal 

strategy is that of declaring a plateau at   (d,0).     The 

determination of the numerical values of C(d+1)  and C«(d+1), 

while theoretically possible,  requires extensive computa- 

tions including the enumeration of all possible branchings 

from (0,0)  to d+1 points.    However,   further conclusions 

may be drawn from a comparison of equations   (4.3)  and 

(1.4)  with equations   (4.1) and  (4.2)  without an actual 

numerical  evaluation of C(d+1)  and C»(d+1). 

If a player's  goal is 24 points,  then d - 23 and equa- 

tion (4.4)   is equivalent to equation (4.2)  since W*(24) 

in each of the equations represents the expected cost of 

getting from (0,0)  to the goal of 24 without the declaration 

of a plateau.     It  should be noted that under such a strategy 

with a player's initial position of (0,0) the occurrence 

of double ones and a single one have the same consequence 

regardless of the rules of the game.     Also,  it is obvious 



*3 

that when d - 23,   C(d+1)   in equation  («.«)  will be less than 

C in equation  (4.1)   since  the expected cost of getting from 

(23,23)  to the goal of 24  points under a strategy of declar- 

ing a plateau at  23 points will be  greater in the  game in 

which double ones  revert  the score to  zero rather than 

maintain the  previous plateau of (23,23).     In the previous 

problem it  was  found that  if the goal  is 21  points then 

C» <  C.     This  establishes  the  following inequality 

C«(21)  -  C« < C < C(2t). 

Prom this  it may be  concluded that the optimal strategy 

in the  game with goal of 24 points  and with double ones 

reverting the total  score to zero is to never declare a 

plateau.     Arguing in a similar manner for the case when 

d ■ 25 leads  to  the  conclusion that  the optimal point-per- 

turn strategy  for a player whose initial  position is  (0,0) 

is to attempt  to  accumulate at least  25 points before 

declaring a plateau.     The exact number of points that should 

be accumulated before declaring a plateau may  exceed 25 

since  it  is at  25  that  C* exceeds C.    However,  this does 

not  imply that  C»(25)  exceeds  C(25).     The determination 

of the exact  value of d  for which C»(d+1)   >  C(d+1)  would 

require  computation of C»(d+1)  and C(d+1)  for various values 

of d. 

Due to the complexity  involved in  calculating the 

above-mentioned cost  functions,  an optimal point-per-turn 

strategy was  considered only  for a player whose initial 
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position was   (0,0).     A determination of an optimal point- 

per-turn strategy  for other positions  in the game would be 

exceedingly difficult due to  the  fact that  such a strategy 

would now depend on previous plateaus,  the scores of other 

players,  and the number of players  competing.    However 

a generalized point-per-turn  strategy was  investigated by 

a simulation of the  game    for two players on the  computer 

by using the program which appears  in Appendix G.     Each 

player assumed a pure  strategy of accumulating x points or 

more on each  turn with the  understanding that  x points 

would be the  goal  for every turn. 

In  the   following table of outcomes of the game Pig 

played by two people,  Player 1 Strategy  and Player 2 

Strategy represent the respective per game specified 

number of points that  each would attempt  to accumulate. 

Player 1 Wins  and Player 2 Wins  designate the number of 

games won by  using these specific strategies. 

Player 1 Player 2 Player 1 Player 2 
Strategy Strategy 

18 

Wins Wins 

24 519 481 
24 20 536 464 
24 22 496 504 
24 26 500 500 
24 28 519 481 
24 30 560 440 
25 18 515 485 
25 20 505 495 
25 22 509 491 
25 24 499 501 
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Player 1 
Strategy 

25 
25 
25 
26 
26 
26 
26 
26 

Player 2 
Strategy 

26 
28 
30 
18 
20 
22 
28 
30 

Player 1 
Wins 

1015 
530 
539 
511 
511 
522 
519 
528 

Player 2 
Wins 

855 
170 
161 
159 
186 
178 
181 
172 

The  results of this  simulation show that the pure 

strategy of accumulating at  least 22,  23,  24,  25 or 26 

points Is  relatively  Indistinguishable.    Thus,   if a player 

Is required to  designate a number of points that he will 

attempt  to accumulate per turn,  then this number should 

not be less  than 22 nor greater than 26. 

In  summary,  It  can be concluded that a player should 

attempt  to accumulate no  less than 25 points  from the 

initial position of (0,0).    Also,   if a player is required 

to designate a number of points which he will attempt to 

accumulate on any turn regardless of his initial position, 

then it  appears  that  the player should set  a goal at no 

less than  22 points per turn  and no more than 26 points 

per turn. 
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CHAPTER V 

CONCLUSION 

In this  Investigation an optimal strategy  for the 

game Pig was  sought through the means of two basic approaches. 

The first approach considered the maximum number of rolls 

per turn that a player should take and the second approach 

considered the maximum number of points per turn that a 

player should take. 

It was   found that an optimal roll-per-turn strategy 

is for a player to toss no less than two times per turn 

and no more than three times per turn.     It was not deter- 

mined in this  investigation whether or not a two-roll-per- 

turn strategy   is better than a three-roll-per-turn strategy. 

These two strategies have very similar characteristics 

causing the results obtained by using either one of these 

strategies to be essentially the same. 

The computations involved in investigating an 

optimal point-per-turn strategy are tedious arithmetical 

tasks.     It is  for this reason that the optimal number of 

points to be accumulated only when a player's initial 

position is  (0,0)  was  considered.    It was  found that a 

Player should attempt to reach a plateau of at least 25 

points  from this  position.    It was implied previously that a 

player will want to set as few plateaus as possible in this 
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game since he  Is not guaranteed of being able to retain 

the plateaus  declared throughout the game.     Several pure 

point-per-turn strategies were investigated by a simulation 

of the game  on the  computer.     It was  found that a player 

setting a plateau at   from 22 points to 26 points won more 

games  than a player who chose to set a plateau at some 

number less   than 22 or greater than 26.    Thus,   it appears 

an optimal point-per-turn strategy will be for a player to 

attempt to accumulate around  22-26 points per turn. 

In the  previous  chapters,   each simulation of the game 

involved testing strategies which were of the same type. 

That Is,   roll-per-turn strategies were played against 

roll-per-turn strategies and point-per-turn strategies were 

played against point-per-turn strategies.    The source 

program found  in Appendix G was  used to test several 

roll-per-turn strategies against  several point-per-turn 

strategies.     Player 1 Strategy and Player 2 Strategy 

represent  the  strategies chosen by the respective players, 

and Player 1 Wins  and Player 2 Wins relate the number of 

games won by each player under the respective strategy chosen. 

Player Player 
Player 1 St rat eRy Player 

2 rolls 

2 Strategy 

per turn 

1 Wins 

531 

2 Wins 

12 points per turn 169 
12 ii H 3 

2 
if i* II 171 526 

18 ii II ii ii II 539 161 
18      '• II II 3 

2 
ii II II 508 192 

182 21 II n H !' II 518 
2H       .. II II 3 

2 
H 11 II 521 176 

30 II II II It II 167 531 
30 H n 3 H II II 182 518 

L    I 
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It appears  that the  "best" atrategy is a point-per-turn 

strategy which sets as the goal 2U points per turn.     It 

was found in Chapter IV that 22 through 26 points achieved 

similar results and it might be concluded that any of 

these will perform as well as 2i|-points-per-turn strategy 

versus a roll-per-turn strategy. 

As was  stated previously the simplicity of the rules 

of this  game is very misleading in relation to the formula- 

tion of a strategy  for this  game.    This research was limited 

to investigating strategies   for a single-player game of Pig 

in which the player's goal is the optimal accumulation of 

100 points.     Only strategies which consisted of the same 

action on each and every turn of the game were considered. 

Of the competing strategies which were Investigated,  it 

may be concluded that the best strategy is to attempt to 

accumulate at least  25 points on the first turn and to 

attempt to accumulate from 22 to 26 points on each additional 

turn.     In multiplayer games of Pig, this may not be the 

optimal strategy  since such an optimal strategy will depend 

on the number of players  in the game,  the relation between 

the scores of the players, and the relation of the player 

to his goal.     An optimal strategy would then be one which 

Included all these  factors but such a strategy would be 

difficult to state and much more difficult to mathematically 

Justify.     It  Is  felt that the  "best" strategy derived in 

this investigation is easily stated yet, even in multiplayer 
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pames,  will  be  competitive with an optimal  strategy espe- 

cially in games where the player's  score is close to the 

highest  scores  of the opponents. 
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APPENDIX A 

The  following is  a list of the probabilities    Pr(X-m) 
of accumulating m points without the appearance of a one for 
the  first  time on the  ith toss of the dice on any  single turn 

Pr(X-m) 

i-2 i-3 

m_       Pr(X-m) m_      Pr(X-m) 

i-4 

m 

4 0.0277 8 0.0008 12 0.0000 16 0.0000 
5 0.0555 9 0.0031 13 0.0001 17 0.0000 
6 0.0833 10 0.0077 14 0.0005 18 0.0000 
7 0.1111 11 0.0151 15 0.0012 19 0.0001 
8 0.1361 12 0.0270 16 0.0027 20 0.0002 
9 0.1111 13 0.0101 17 0.0053 21 0.0005 

10 0.0833 il 0.0525 18 0.0091 22 0.0010 
11 0.0555 15 0.0617 19 0.0143 23 0.0019 
12 0.0277 16 0.0656 20 0.0204 24 0.0033 

17 0.0617 21 0.0267 25 0.0052 
18 0.0525 22 0.0323 26 0.0078 
19 0.0401 23 0.0361 27 0.0109 
20 0.0270 24 0.0375 28 0.0143 
21 0.0154 25 0.0361 29 0.0175 
22 0.0077 26 0.0323 30 0.0202 
23 0.0031 27 0.0267 31 0.0221 
24 0.0008 28 0.0204 32 0.0227 

29 0.0143 33 0.0221 
30 0.0091 34 0.0202 
31 0.0053 35 0.0175 
32 0.0027 36 0.0143 
33 0.0012 37 0.0109 
34 0.0005 38 0.0078 
35 0.0001 39 0.0052 
36 0.0000 40 

41 
42 
43 
44 
45 
46 
47 
48 

0.0033 
0.0019 
0.0010 
0.0005 
0.0002 
0.0001 
0.0000 
0.0000 
0.0000 
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APPENDIX B 

The following Is a list of the number of outcomes, 

K(X1), with a total of x±  points without the appearance of 

a one after i consecutive tosses of the dice on any single 

turn.  The probability of having x±  points after i tosses 

will be N(x1)/36
1. 

^1 i^i i-3 i-4 

!i N(x1) !i N(x2) h N(x3) fi N(x^) 

4 1 8 1 12 1 16 1 
5 2 9 4 13 6 17 8 
6 3 10 10 14 21 18 36 
7 4 11 20 15 56 19 120 
8 5 12 35 16 126 20 330 
9 4 13 52 17 246 21 784 

10 3 11 68 18 426 22 1652 
11 2 15 80 19 666 23 3144 
12 1 16 85 20 951 24 5475 

17 80 21 1246 25 8800 
18 68 22 1506 26 13140 
19 52 23 1686 27 18320 
20 35 24 1757 28 23940 
21 20 25 1686 29 29400 
22 10 26 1506 30 34000 
23 4 27 1246 31 37080 
24 1 28 951 32 38165 

29 666 33 37080 
30 426 34 34000 
31 246 35 29400 
32 126 36 23940 
33 56 37 18320 
3*» 21 39 13140 
35 6 39 8800 
36 1 40 

41 
42 
43 
44 
45 
46 
47 
48 

5475 
3144 
1652 
784 
330 
120 
36 
8 
1 
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APPENDIX C 

The  following is a list of the expected number of 
points, E[X.],   after 1  consecutive tosses of the dice. 

i «x1] 

1 5.555555 

2 7.716019 

3 8.037551 

4 7.142177 

5 6.460223 

6 5.383502 

7 4.361626 

8 3.461604 
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APPENDIX D 

The  following is a list of the probabilities that an 
outcome which contains a double one  (A), a single one (B), 
and a double one or a single one (C), has occurred after n 
tosses of the  dice. 

Pr(A) 

1 0.02778 
2 0.05478 
3 0.08104 
4 0.10657 
5 0.13138 
6 0.15551 
7 0.17897 
8 0.20178 
9 0.22395 

10 0.24551 
11 0.26646 
12 0.28684 
13 0.30665 
14 0.32591 
15 0.34464 
16 0.36284 
17 0.38054 
18 0.39775 
19 0.41448 
20 0.43074 
21 0.44655 
22 0.46193 
23 0.47687 
24 0.49140 
25 0.50553 
26 0.51927 
27 0.53262 
28 0.54560 
29 0.55823 
30 0.57050 
31 0.58243 
32 0.59403 
33 0.60530 
34 0.61627 
35 0.62693 
36 0.63729 

Pr(B) 

0.27778 
0.47840 
0.62329 
0.72793 
0.80350 
0.85809 
0.89751 
0.92598 
0.94654 
0.96139 
0.97211 
0.97986 
0.98545 
0.98950 
0.99241 
0.99452 
0.99604 
0.99714 
0.99794 
0.99851 
0.99892 
0.99922 
0.99944 
0.99959 
0.99971 
0.99979 
0.99985 
0.99989 
0.99992 
0.99994 
0.99996 
0.99997 
0.99998 
0.99998 
0.99999 
0.99999 

Pr(C) 

0.30556 
0.51775 
0.66510 
0.76743 
0.83849 
0.88784 
0.92211 
0.94591 
0.96244 
0.97392 
0.98189 
0.98742 
0.99126 
0.99393 
0.99579 
0.99707 
0.99797 
0.99859 
0.99902 
0.99932 
0.99953 
0.99967 
0.99977 
0.99984 
0.99989 
0.99992 
0.99995 
0.99996 
0.99997 
0.99998 
0.99999 
0.99999 
0.99999 
1.00000 
1.00000 
1.00000 
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points S'J£?%2%?A&t£ lll^Tl^HS*'  Pr(X^'' °f —»l«l„g , toss  of the dice. without the appearance of a one on the nth* 

Pr(X-2i*> Pr(X>25) Pr(X>26) Pr(X>27) 

1 
2 

3 

5 
6 

7 
8 

0 

0.00077 

0.18567 
O.09963 
0.00250 
0.00000 
0 
0 

0 

0 

0.14868 
0.12243 

0.00475 
0.00001 
0 

0 

0 

0 

0.11251 

0.14229 

0.00836 
0.00003 
0 

0 

0 

0 

0.08026 
0.15688 

O.OI371 

0.00009 
0 

0 

pr(X>28)   Pr(X>29)   Pr(X>30) 

0 

0 

0.05356 

0.16452 

0.02111 

0.00021 

0.00000 
0 

0 

0 

0.03317 
0.16442 

0.03064 

0.00046 

0.00000 
0 

0 

0 

0.01890 

0.15683 

0.04211 

0.00094 

0.00000 
0 

«Ksv^rsihtK,£iss2SiS arss-irsr -hiie °-°°°°° *«•««•.. 
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APPENDIX  P 

The   following  Is   the  source  program used  to  compute 

the number of points which a player can expect  to accumulate 

after  1   tosses,   the  probability  of accumulating x,   points 

for the  first  time on the  1       toss, and the probability of 

accumulating x.   points or more  for the  first time on the 

i       toss.     The   input,   LMAX,   represents  the   largest  number 

of tosses   for  which  these  values  were  to  be  calculated. 

, 



OIMEM3ION   EXPX(lO),P1C1O,200),CUMPBnfin,?fto) 
PROB2A  ■   tttt9/*MaO)*((iI,0/3ft;oi*(tl.O/St.*o}i 
00 1   I««,24 

1   Pt(X>«0*0 
oo 2  Iitclt 
00  2   Js4,l2 
K-I + J 

?   P2(K)*P2(K)*(5-I*B9(«-T))*fS-IARS(P-J)) 
WRITE(3,3) 

3   POIMATtlHlitNO,   TOSSFS SCORF        PROBABILITY!} 
l«2 
LX«0 
<*RlTE<3,fl)   L,LX,PRnB?A 

U   FORMAT(lH0,UX,I2,8X,I?,6X,El?.«>) 
oo 5 i«e,2a 

5   PRnB2(I)«P?(I)/(36**?) 
on   7   I«8,2<» 

7  WRITF(3,«)   L#I»MOtI(li 
00 8   I=ft,2U 

«   P(2,I)«P?(I) 
<*   READM.10)   L*AX 

in   FORMATd?) 
00   100   L«3»LMAX 
LL«L-1 
PRPB0»11.0/36.0 
00   11   I«?,L 

11    PRHBOsPKHBO   ♦ (( 11 t/St,W((ll.'/S4*>**(I*1 ))> 
.IJ«(l-1 )*« 
jjj«a-n*i2 

III«l*12 
00   12   laTl.III 
P(L,I)«0,0 

1?   PROB(L#I)»0.0 
00   13   T«fl,12 
00   13   .T«JJ,J.'J 
Kal+J 

13   P(l,K)«P(L.K)*P(LL.J)*fS-IAB3(B-I)) 
00   lfl   T«TT.IT1 

IU   PRnBfL»I)«P(l.»T)/(36.**Ll 
EXPX(D«0,0 
MRITfCSrS) 
WRITE(3,«)   L.LX.PRnBO 
00   16   T«II.III 
FxPX(L1«FXPX(L1*T*PRnBfL#n 

16   WRITE(3,«)   l,I,PR0BO ,1) 
00   90   KK   =   24,30 
TF(JJ-KK)   59,90,90 

5«   M   i   MAX0(KK-12,JJ) 
MM   ■   MTN0(KK-1 , J.IJ) 
MMH   *    MIN0(KK*11,J.TJ*12) 
00   60    T    ■    KK.MMM 
PI a,n«o.o 

60 CUMPRO(L#I>   ■   0.0 
00   70   I   «   fl,12 
00   70   J   «   M,MM 
K   ■   I*J 
IF    (K-KK)    70,61,61 no/o    .,,;.,,,,   #<M 61 Pl(L.KK)-P1CL,t<Kl*fP(LL,.l)*fS-TA«S(«-n))/r36.*.l-l 

■ 



59 
7P 

81 

8' 

eONTXNUI 

IJQ   80    T    «   KK1,MMM 
euMPROtLiKiel   »  BUMWO(L»KKi   ♦  PKL.P 
HRITE(S»81)   L,KK,C'IMPRn(L,KK) 
FORM*T(1HO,»NUMBFR   OF   TOSSFS   * 

♦RFATFR   ■    I.E16.8) 
90   CONTINUE 

100  »iRlTF(S»m    EXPX(L) 
,7  FORMATCIHO.^EXPECTFD   SCORE   a   «,E16.8) 

STOP 
END 

»D»TA 

I?,"P9nR.    Of    SC"«P    OF     ',1?,'    n» 
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60 

The  following is the source program used for the 

simulation of the game Pig by two players.     In order to 

restrict this  game from continuing indefinitely,  each 

player was  restricted to accumulating no more than 100 

turns.     The  subroutine entitled  "TOSS" determined the 

outcomes which would appear on the toss of two dice.     The 

random number generator entitled "RANDU" was used to 

generate a real  number in the interval   (0,1].    This 

interval was divided into subintervals.    The lengths of 

these subintervals were calculated to correspond to 

the magnitude of the probabilities of specific point out- 

comes occurring in the game Pig.    The  input  consisted of 

the four variables NQAME, NPLAY1, NPLAY2, and NSTART. 

NGAME represents  the number of games that were played, 

NPLAY1   and NPLAY2    represent the specified strategies of 

player 1 and player 2 respectively,  and NSTART represents 

the random three-digit odd number used to initiate the 

generating of the  random numbers.     In the following program, 

roll-per-turn strategies were used by each of the players. 

A slight modification in this program will enable a player 

to choose a point-per-turn strategy. 
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READ(l.l)   NGAMF,   MPLAV1,   NPL»Y?,   NSTABT 
F0RMAT(I4,?I1) 
1RITE(1,850)    MPL*Y1,NPLAV2,SiJT*BT 
FORMAT(1HO.I5,T5,I5) 61 
M1WJM 
NfHIM 
MTIE8 
*IOWIN 

no 20 
ISCPRl 

B    0 
■ 0 
■ o 
■ 0 
M=1 , 

■ 0 
NGAME 

a 

110 
500 

TSCOR2«0 
«5   00   11    K«l,100 
25   MTEMP1    ■   0 

00   110   I   «    1.    NPI.AY1 
CALL   TPSS    (N3TART,N0UT»NP0lNT) 
MSTART   «   NOUT 
IF   (NPOINT)    2,1,a 

?   I3COR1B0 
GO   TO   5 

5   TSei)Rl«I8CORl 
•0   TO  5 
NTEMPl*NTEMPl*NPniNT 
LL ■ ISCPRl ♦ NTPMP1 
IF (LL.GE.100) GO TO 500 
CONTINUE 
TSCOR1 ■ ISCOR1 ♦ NTFMP1 
IF (LL.GE.100) GO TO 14 
MTFMP«0 
00 400 I * 1,NP|_AY? 
CALL TOSS (NSTART, NOUT, UPOTNT) 
NSTART » NOUT 
IF (NPOINT) 6,7,A 
ISCOR2B0 
GO TO 9 
ISCOR2«I8CPR2 
GP TP 9 
NTFMP«NTFMP*NPPINT 
LL * ISCPR? ♦ NTFMP 
IF (LL.GE.100) GH TO fl?0 
CONTINUE 
TSCOR2 « I8COR2 ♦ NTFMP 
TF(ISCnRl-lOO) 10,12,1? 
IF (ISCPR2 - 1001 11,17,17 
CONTINUE 
GO TP 90 

CISCOP1-I8COR?) 80,11,1? 
(NPOINT) 70,70,14 
■ ISCPR2 
16 I • 1,28 
(ISCOR1 - LL) 80,15,15 

CALL TOSS (NSTART,NOUT,NPOTMT) 
NSTART « NOUT 
IF (NPOINT) 70,100,16 

■ LL ♦ NPOINT 
* I8COR1 
19 J ■ 1,28 
(LL-ISCOR?) 18,18,70 

CALL TOSS (NSTART.NOUT.NPnTNT) 

NSTART ■ NOUT 
IF (NPOINT) 80,100,19 

uoo 

9 
in 
11 

1? 
1? 
14 

15 

16 
17 

1« 

IF 
IF 
LL 
00 
IF 

LL 
LL 
00 
IF 
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|9 
70 

80 

90 

LL « LI 

GO TO 

80 TO 
NOWIM 

♦ NPOINT 
• N1WIN ♦ 1 
?0 
a N2WIN ♦ 1 
20 
= MQMIN ♦  1 

62 

GO TP ?0 
10« IF CISC0R1-ISC0R2) 80,120,70 
120 fJTTfcS s NTIES ♦ 1 
20 CONTlNHf 

WRITF(3,30) NGAMF, NlwTN, *2WIW, NTIFS, MOUTH 

STOP 
FNO 
SUBROUTINE TOSS fNST*RT,Nn")T,MPOTNT) 
Al«l./36. 
A2«ll./36. 
A3«12./36. 
A««1«./J6. 
A5«17./36. 
A6«21./36. 
A7«26,/J6. 
A8«30./36. 
A9«33./36. 
Al0«35.'/36. 

1 CALL RANOU (WST*RT,NnuT,r>) 
TF (O-Al) 2,29,3 

2 MPOINT » -? 
GO TO 30 

3 IF (D-A2) fl,29,5 
a  NPOINT » o 

GO TO 30 
5 IF C0-A3) 6.29.7 
6 MPOINT s 4 

GO TO 30 
7 IF (0-A4) 8,29,9 
8 NJPOINT a 5 

GO TO 30 
9 IF (0-A5) 10,29,11 

10 NPOINT s 6 
GO TO 30 

11 TF (D-A6) 12,29,13 
12 NPPINT « 7 

GO TO 30 
M IF (O-AH 1*4,29,15 
\U   NPOINT » 8 

GO TO 30 
15 TF (0-A8) 16,29,17 
16 NPOINT ■ 9 

GO TO 30 
17 IF (0-A9) 18,29,19 
18 NPOU'T   ■    10 

GO   TO   30 
19 IF    (D-A10)    27,29,2" 
27 MPniK'T • U 

GO TO 30 
28 NPOINT « 12 

GO TO 30 
29 NSTART « NOUT 

GO TO 1 



30    RfcTURN 
FNH 
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