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The main purpose of this research is to develop the 

numerical techniques for calculating the absorption and 

dispersion of sound propagation in a simple monatomic gas. 

We approach the problem by using the Linearized B.G.K. 

model proposed by Bhatnagar, Gross, and Krook.  To avoid 

mathematical complexity we consider only three terms in the 

model equation.  After lengthy mathematical formulation we 

obtain a set of linear equations in the general eigenvalue- 

eigenvector form.  Solution of this yields the absorption 

and dispersion in terms of the rarefaction parameter.  Numer- 

ical methods are discussed for solving the eigenvalue equa- 

tion and for developing a PL/1 computer program for calculat- 

ing the absorption and dispersion of sound.  We discuss 

some possible difficulties which may be encountered in 

numerical analysis. 
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CHAPTER I 

INTRODUCTION 

The kinetic theory of plane sound wave propagation in 

simple monatomic gaaeous mixture has received increasing 

attention in recent years.  Our research is a study of the 

numerical methods for calculating the absorption and dis- 

persion of a sound wave propagating in a simple monatomic 

gas.  The experimental procedure for measuring the absorp- 

tion and dispersion of the sound wave through a gas is 

discussed below. 

A cylindrical tube containing the gas is fitted at one 

end with a small, fixed speaker and with a microphone probe 

which can be moved along the axis of the tube.  An oscillator 

provides the energy for the speaker, and an oscilloscope is 

used to display the disturbance detected by the microphone. 

A scale along the tube and a pointer on the microphone 

probe serve to indicate the position of the microphone. 

Absorbent material in the end of the tube opposite the 

speaker is used to minimize reflection.  The speed, c, of 

sound propagation is obtained by measuring the frequency,W. 

of the oscillator and the wave length,A . of the wave. The 

latter can be obtained by measuring the distance between the 

microphone positions which give in-phase and out-of-phase 



Lissajous's figures. The absorption coefficient, •< , is 

obtained by measuring the attenuation rate per unit length. 

Physically the dispersion refers to the degree to which 

the speed of the wave deviates from the adiabatic value. cQ 

(low frequency sound speed), and the absorption refers to 

the amount by which the amplitude of the wave is changed. 

The dispersion and absorption are commonly written as dimen- 

sionless quantities and expressed as c /c, and «fc,/« respec- 

tively.  Therefore, once c, I), H , and c are measured the 

dispersion and absorption of sound can easily be obtained. 

Here, we introduce a new independent variable, K: lift* **/«•», 

called the rarefaction parameter, where p is the pressure 

inside the tube. >x is the coefficient of viscosity (which 

is a constant), and V is the collision frequency.  The press- 

ure inside the tube is varied in order to get the dispersion 

and absorption at different values of n . 

The kinetic theory of plane sound wave propagation has 

been described by the classical theory of Stokes and Kirch- 

off.   Sound propagation by its very nature is a molecular 

effect.  But until the work of Wang Chang and Uhlenbeck all 

attempts were essentially hydrodynamic. Wang Chang and 

Uhlenbeck worked with Boltzmann's equation but applied some 

approximations (such as a low sound frequency in comparison 

with the collision frequency) which are valid only for the 

macroscopic region.  Thus, their work was also limited to 

the hydrodynamical region. 



From the results of Sirovich's report it is clear that 

a complete dispersion theory of sound propagation using the 

Boltzmann equation is unfeasible.  The reason is that solu- 

tions to the Boltzmann equation are very hard to obtain with- 

out making some approximations which are only valid for 

macroscopic cases.  In other words, these approximations are 

good for the low frequency region only.  For the higher fre- 

quency region the solutions are not valid.  It is our goal to 

obtain a description valid throughout the entire frequency 

range. 

To accomplish this the Boltzmann's equation is discarded 

in favour of certain kinetic models suggested by Gross and 
4 

Jackson   These model equations are capable of reproducing 

the Euler, Navier-Stokes, Burnett and thirteen moment equa- 
3 

tions.  These moment equations can yield solutions without 

any approximation in the hydrodynamical region.  The more 

terms that are taken in the model equation, the more accu- 

rately it describes the physical situation.  The complete 

collision integral describes the physical situation accu- 

rately, whereas the model equation approximates it. 

By solving the model equation we can obtain the dis- 

persion relation in eigenvalue-eigenvector form.  The solu- 

tion of the dispersion relation yields the physical proper- 

ties of the propagating sound wave.  The order of the matrix 

in the eigenvalue equation increases as the number of terms 

in model equation increases. 



We approach the problem by using the Linearized B.G.K. 
5 

model proposed by Bhatnagar, Gross, and Krook.   To avoid 

mathematical complexity we considered only three terms (for 

the particle density, the flow velocity and the temperature) 

in the model equation. Thus, we make the numerical calcula- 

tions much simpler. Once the computer program is developed 

for this simple case, then the number of terms in the model 

equation can be increased to obtain better results from the 

same computer program. 

In Chapter II starting with the Linearized Krook model 

we develop an eigenvalue equation, which in turn gives us 

the dispersion relation.  In Chapter III we discuss the 

numerical methods for solving the eigenvalue equation and 

calculating the absorption and dispersion of sound with the 

obtained solution.  Finally, in Chapter IV we present con- 

clusions and a brief summary of the entire research. 

i 



CHAPTER II 

MATHEMATICAL FORMULATIONS 

A.  The Krook Model 

We begin with the Boltzmann equation for a gas of 

Maxwell molecules.  In this model the collision term in the 

Boltzmann equation is approximated by a much simpler expres- 

sion which predicts behaviour a lot like full collision 

integral.  The approximation is 

"3 *-+?.n.(*V *--#), (1) 

where "j> is the collision frequency of the gas, assumed to be 

a constant: f is the distribution function; and fm is the 

Maxwellian distribution function.  Both f and fm are func- 

tions of Tt ,V.   and t.  The Maxwellian distribution function 

can be expressed as 

where ft&t) is the Particle densitv of the gas' and is 

defined by 

(2) 

and where the peculiar velocity,/?, is given by 

(3) 

(4) 



where   the average velocity,   u ,   is  defined by 

"u (h.O -<v> = ^("v-f (*.?.t) d\T . 

Also, in Eq. (2), A is given by 

(5) 

X' 

where k is the Boltzmann's constant, and T(>C,\:) is the tem- 

perature of the gas and is defined by 

%«T(V,t)«t(t ***(*,?,*)*? ' (6) 

If Eq. (1) were used to develop a system of moment 

equation, the hydrodynamic, or conservation equations, i.e., 

the equations for 1\ ,   U. , and T , the results would be the 

same as obtained using the exact expression for collision 

integral.  The left hand side of the moment equations would 

obviously be the same since the relaxation time approximation 

does not change the left hand side of the Boltzmann equation. 

Now let us consider a new arbitrary function, Q, which 

is a function of n , V , and t , and let AQ. be the average 

rate of change of Q per unit volume due to collisions.  Then 

A^ is given by 

Therefore, for the Krook model we can write 



By setting Q equal to l.Wt*,, and ±m*   respectively into 

Eq. (6.5) we arrive at the following relations: 

(since (,A-^ Is zero); 

s V 

The collision terms for the stress and heat flux using 

the Krook model differ considerably from that obtained for 

13-moment theory. Using the Krook model (Eq. (6.5)) we get 

the following relations: 

4(*iV»**)*-*t|  . 

(7) 

(8) 

Whereas, using the exact expression for the collision inte- 
6 

gral, and the 13-moment approximation, one would obtain : 
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(9) 

(10) 
V ' *    '     30 ^     i»nA ™, 

where P^. are the elements of the stress tensor; q. is 

the i  component of the heat flux; p is the pressure; and 

JX is viscosity of the gas.  Comparing Eqs. (7)-(10) we see 

that the Krook model cannot correctly represent both the 

stress and heat flux terms.  In other words, V in the Krook 

model can only be chosen to represent either the stress or 

heat flux terms correctly, but not both.  For example we 

could set: 

(ID 

and in this case, Eq. (7) would agree with Eq. (9); but 

Eqs. (8) and (10) would be off by a factor of 3/2.  The fact 

that both the stress and heat flux cannot correctly be rep- 

resented at the same time is the biggest shortcoming of the 

model.  We can correct this deficiency by going to a more 

elaborate model to be discussed below. 

B. Relaxation properties of the Krook model 

If we consider a spatially homogeneous system, so that 

f is not a function of A . then Eq. (1) can be written in the 

form 

at 
(12) 



Also, spatial homogeneity means t\ , "5 , and T are constants. 

Therefore, t    is no longer a function of time.  This fact 

makes the integration of Eq. (12) a simple task.  Upon carry- 

ing out the integration, we obtain 

♦<*.o - •*(*) +fc w -K^4f"v-a3 

This shows that any initial non-equilibrium distribution, 

$(>/,o) . will relax to the Maxwellian distribution, f^fi) , 

in a time of the order of magnitude of V .  This fact, along 

with Eq. (11). indicates that V is a quantity of the order 

of magnitude of the collision frequency. 

C.  Linearized form of the Krook model 

For the case of sound propagation, all the gas proper- 

ties deviate only slightly from their constant and uniform 

equilibrium (or ambient) values.  We will denote these 

ambient values by a subscript, zero, and consider small 

perturbations, or deviations, of all the gas quantities from 

these ambient values.  Thus, we take 

T. T.(.*V)  , 

(14) 

(15) 

(16) 

(17) 
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where fQ, nQ, and TQ are all constants; the quantities 

<f>  , n' , and T" are all dimensionless and assumed to be 

much smaller than unity; u' is very small in comparison 

with the average molecular speed; the primed quantities are 

the departures from the equilibrium value; the quantities 4, 

n'. u', and T' are all functions of IT , and t; whereas 

f is a function of v only and is defined by 
o 

where A. * 

> -A.V* 
(18) 

1"T. 

Upon substitution of Eqs. (14)-(17) into Eqs. (1). (3). (5). 

and (6) we arrive at the following set of equations: 

T' -. .i ( ( *«**. i KT."\ A <j> a- 
3n,icT.JV*     *   / * 

(19) 

(20) 

(21) 

where the perturbation <j>   is our new unknown.  Starting with 

Eqs. (15) and (17), expanding (1 + T)"1 and neglecting higher 

order terms, we arrive at the following equation: 

+ a.A."u'7] .     (22) 

Also, upon substitution of Eq. (15) into Eq. (1) we obtain 

,.[£♦"?.*] -[*„-<.- «.*] (23) 
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And by substituting Eq. (22) into Eq. (23) we get 

+ *V 
(24) 

We can write Eqs. (19), (20), (21), and (24) in semi- 

dimensionless form by introducing the dimensionless velocity. 

c =  v 
^/. -   f*>   y   • (25) 

where I 5_Lf)  has the dimension of velocity.  Upon substi- 

tution of Eq. (25) into Eqs. (24). (18), (19). (20), and (21) 

we arrive at the following semi-dimenaionless equations: 

where 

at , 

-Yv       -*>L •* • *r 

(26) 

(26.5) 

(27) 

(28) 

(29) 
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For a one dimensional problem such as sound propagation 

in the x-direction, Eq. (26) can be written as 

]. + -"xC >** (30) 

This equation is known as Linearized Krook model.  In order 

to study the problem of sound propagation in a simple gas, 

we assume plane wave solutions to Eqs. (27)-(29) of the form 

(31) 

where w is the frequency of the wave, and k is the complex 

wave number and is defined by 

h » £ - n Ola) 

where c is the speed of the wave and *.   is the absorption 

coefficient.  Upon substituting Eq. (31a) into Eq. (31) we 

which shows that the amplitude decreases exponentially with x, 

and also that there will not be any absorption unless k is a 

complex number.  Usually «< and c are not plotted as a function 
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of W , but the dimensionless quantities **■•/<*>  and c»/c 

are plotted as a function of * .  Therefore, Eq. (31a) is 

rewritten in dimensionless form 

HC. 

or 

where 

K = c-/c - ^W<o 

K.^K 

(32) 

(33) 

t\(x,t) =: -n e 

T' C *. 0 » T e      , 

Upon substitution of Eq. (31) into Eqs. (27)-(29). we obtain 

(34) 

(35) 

(36) 

(37) 

(38) 

T ■ C»«5*J(t*-9 l"   f   **"•        (39) 
And by substituting Eq. (31), and Eq. (34)-(36) into Eq. (30) 

where 

-V* r 

we get 

-Vi 

By introducing the quantity, 

v*. 

(40) 

(41) 
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we can write Eq. (40) in the form 

V* 

3. + *»*«« (42) 

Upon substitution of Eq. (33) into Eq. (42), and assuming 

that (c»- w^O we arrive at the following equation for <£   : 

1   -      *•***» ^ = r^ j.i£J—\ « + 

43) 

By substituting Eq. (43) into Eqs. (37)-(39) we will 

get three homogeneous equations in terms of three unknowns, 

i.e. Y\ , to , and T .  Then, by setting the determinant of 

the coefficients to zero we will obtain the dispersion 

relation.  In order to calculate the absorption and dispers- 

ion of the sound wave we need the dispersion relation, which 

in turn will provide us an expression of K as a function of 

the rarefaction parameter H.i — .  In doing this, for conven- 
to 

ience, we invoke a new function of f which is written as 

t{K«>}. ct^JlgLS-TA     (44) 
! 

Now by substituting Eq.   (43)   into Eqs.   (37)-(39)  we arrive 

at the  following  set of  equations: 
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Mfjf *Sr[*&w + ***<**) 
+ TCi U*-%)] 

w, = 

+ T 

These equations can be put in the form of a matrix equation 

7= Cy (45) 

where t% 

and 

7 '   M 

Ccir-frS* 

(46) 

(47) 

where D is a complex matrix and is given by 

6(0 

,(**-•) c[c,(i-ol      «[(K-Xt* fij 
Eq. (45) can be rewritten as 

(i-c)y =o 
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Therefore,   the required dispersion relation will be 

dUfc(l-fc) * )l- ft|   * 0      . 

For computational convenience, the matrix equation, 

Eq. (45) is written in an eigenvalue-eigenvector form.  To 

accomplish this following steps are taken.  Eq. (47) can be 

put into the form 

Sh. 
c*ffl *'*». 

(48) 

and by substituting  Eq.   (48)   into Eq.   (45)  we get 

(*.\ JL. mp* = y . (49) 

But upon  substitution of Eq.   (41)   into Eq.   (40)   we obtain 

|.Clf-kO-l«0 , (50) 

or  equivalent ly, 

'/* 

*•(*) -^ 
(51) 

Therefore Eq. (49) can be written as 

also, introducing a new matrix A such as A = !D the above 

equation can be rewritten as 

A7= -0**)»   • (52> 
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Eq. (52) is of the form of the general eigenvalue-eigenvector 

equation, viz., 

AY: Ay  , (53) 

where y is the eigenvector, and A is the eigenvalue given by 

* = -0 + V). <54) 

The matrix elements of D are given by 

T>„- K« , 

■■ 7 

where F ( %  ) is a new function of %   and is given by 

*(t) = i«»> 
•«-1 

d'; 

-«c 
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As can easily be seen, it would be a hard task to solve 

the equations analytically, so we therefore rely upon the 

computer and numerical methods.  What is sought is the solu- 

tion of the equations for the  X's •  We start with a fixed 

value of Im ( t ) and vary the value of Re ( % ).  Each time 

the computer finds the elements of matrix A and solves for A • 

The value of Re (?) is continuously varied until we get a 

purely imaginary value of the quantity, -(A + i) •  If Ea.» (54) 

is written as 

-(A + 0 « n. 
(55) 

then the reciprocal of the above obtained value is equal 

to n. .  Therefore, by substituting the value of K   and f 

into Eq. (51) we can get the value of K of which the real 

and imaginary parts, as seen from Eq. (32), are the disper- 

sion and absorption respectively.  Therefore, we can calcu- 

late the absorption and dispersion of the sound wave by 

solving the Eq. (53). 
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CHAPTER III 

NUMERICAL METHODS 

Our motivation ia to duplicate the results obtained bv 
3 

Sirovich and Thurber for a sound wave propagating through 

a simple monatomic gas.  Once we duplicate the results for 

a simple gas then by changing the order of the matrix we 

can use the same program for a mixture of gases.  We wish 

to calculate the absorption and dispersion of the sound wave 

using the Krook model and compare the results with the val- 

ues obtained by Sirovich and Thurber. 

In the previous chapter, Eq. (32) tells us that the 

absorption, «tC„/u , is the negative imaginary part of K 

and the dispersion, c /c, is the real part of K.  From 

Eq. (51), we had 

«.C|) if 
therefore, we want to find out some way which would give us 

the corresponding values of n and * , which in turn will 

give us one value of K.  That is one value of K could be 

obtained from a pair of n. and \  . 

Our first step is to draw a root trajectory in the 

complex % -plane.  We find the values of real K and the 

negative of imaginary K corresponding to different values 

of n  from the graphs drawn by Sirovich and Thurber.  On 

I 
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substitution of  these values,   i.e.,   K and   n.   into Eq.   (51) 

the real and imaginary part of   %  can be obtained,     in other 

words  for  a  given   n.   and for the given values of  real  and 

imaginary K,   obtained from the graphs,  we could get a cor- 

responding    %   .     So  the root trajectory in %-plane,   which 

is  a graph of  Im   ( t )  versus Re   ( t ),   can be plotted.     The 

trajectory gives us an approximate value of real t    for a 

fixed value of imaginary t   . 

Referring to  Eq.   (53),   we observe that  A is a complex 

matrix:   and  all  elements can be expressed as a function of 

F  ( ? ).     For different values of   %, F  ( J )   can be obtained 

by the subroutine  FCAL8.     Using the value of F  ( % )  we can 

get  the  elements  of matrix A.     We wish to  solve Eq.   (53)   to 

obtain  the  eigenvalues and eigenvectors.     We use the  subrou- 

tine called DCOMEIG   ,   which  solves eigenvalue equation for 

any complex  square matrix of any order  and gives  the corres- 

ponding eigenvalues and eigenvectors. 

Finally,   we develop a  PL/1 computer program which 

solves  the eigenvalue equation and calculates   n.   and   % 

simultaneously,   which in turn can give us different values 

of K.     This program has two subroutines,   one called MAT     , 

and the other called DECOMEIG.     The former calculates  the 

matrix elements  of A with the help of the function subprogram 

FCAL;   whereas,   the  latter solves  the eigenvalue equation as 

explained earlier.     To obtain a pair of   n   and  f ,  we fix 
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the  imaginary  %    and vary real  %    in a range which can be 

guessed  from the root  trajectory in complex    ^.plane.     For 

each value of real   ?     the subroutines MAT and DECOMEIG are 

called.     DECOMEIG gives us the complex eigenvalues  ( A )  and 

the corresponding eigenvectors.    For a simple gas.  A is a 

square matrix of order three.    Thus,  we get three eigenvalues 

and three eigenvectors.     In order to check which of these 

eigenvalues are of interest we compute the value of the 

quantity,   ( A +   l)=x,   for different values of real   f    in the 

range chosen,   for the fixed imaginary   | .    If the sign of the 

real part of X changes,   then the corresponding eigenvalues 

are of interest.     Observing Eq.   (55)  we can say that for 

these  (above mentioned)  eigenvalues the real part of X must 

vanish  for  a value of  real   |   as we move along a straight 

line parallel   to the  axis of  real t   .     In other words we 

wish to find the value of real %    for which X is purely 

imaginary.    We do this by following the method of bisection. 

If the real part of X gets very,  very small compared to its 

imaginary part,   then  the imaginary part of X is approximately 

equal  to   •/*.     Therefore,   the  inverse of the imaginary part 

is approximately equal   to K . 

The value of real !   ,   for which X is purely imaginary, 

together with the value of fixed imaginary  %   gives us a 

point on complex   f   plane corresponding to the   n   just 

obtained above.     By fixing a new value of imaginary  J   and 

11 
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then  following the same procedure we could get a second pair 

of    ?   .   and    H   ,   and so on.    Each pair of   %   and   n  gives 

us a new value of K.     As mentioned earlier,   the real part of 

K is the dispersion,   and the negative imaginary part of K is 

the absorption,  of the sound wave.     Both the absorption and 

dispersion are expressed as a function of   n .    This is be- 

cause we want to compare the theoretical results with the 

experimental  data;   and in  experiments it   is customary to 

measure the absorption and dispersion of the sound wave as 

a function of the rarefaction parameter, A .    The output of 

the final program contains values of Im ( % ),  Re  ( \ ),   X-  , 

the eigenvalues,   the eigenvectors,   Re  (K),  and Im  (K).     Hence, 

we can draw the graphs of the real part of K versus K ,   and 

the negative imaginary part of K versus A  .    These graphs 

can be compared with those obtained by Sirovich and Thurber. 

The agreement of the former graphs with the latter one veri- 

fies the computer program.     Some possible difficulties which 

may be encountered in drawing graphs of the absorption and 

dispersion versus   n  are discussed below. 

The first problem is to decide which one of the three 

eigenvalues gives the true values of the absorption and dis- 

persion.     In other words,  which eigenvalue yields the right 

value of h .     In roost cases when the value of real  t    is 

varied in the known range,  the sign changes for X only for 

one of the three eigenvalues.    No complications arise in 

i 
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this case;   but  if  the  sign of X changes  for more than one 

eigenvalue then it will be a hard task to decide which eigen- 

value would give the right value of  A . 

The dispersion  relation has  three  solutions.     Out of 

these three  solutions only one corresponds to the absorption 

and dispersion  of  sound.     All points obtained from the three 

solutions should be plotted in absorption and dispersion 

graphs.     We know the values of  absorption and dispersion  at 

H=o,   and  100  from the  graph* drawn by Sirovich.     This  infor- 

mation helps us  in  drawing  the graph.     If  the  set of points 

obtained  from one solution  are  far away from other points 

obtained  from other  solution then by observing the points 

we can draw the  right curve.     But.   if two sets of points 

obtained  from two solutions overlap then the following two 

cases may  arise. 

a) Figure   (1)   shows  two  sets of points crossing at one 

point   (B).     Different  curves could be drawn through these 

points.     But we know that the absorption  and dispersion 

curves are smooth curve.     Therefore,   either AC or DE would 

be the  right  curve.     But.   we know the value of cQ/c at H -o, 

and 100.    Hence,   we would be able to draw the dispersion 

curve without  any ambiguity. 

b) in  this case   (Fig.   (2))   two  sets of points  are tangent 

to each other.     To avoid this  difficulty we can check the 

value of   K   more precisely.     We can change the interval of 

I 
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Re (?) to a very small value and we might get two differ- 

ent values of \   for the same X . Therefore, the two sets 

of points will not be tangent to each other. But if we still 

find the sets of points as tangent to each other, then we 

can check the behaviour of the eigenvectors along each curve. 

The curve along which the values of the eigenvectors change 

smoothly is the true one. 

At first we worked with each subroutine separately. 

After much arrangements we found that each subroutine was 

functioning properly. That is, each of them gave the correct 

results. Therefore, we wanted to write a driving program for 

calculating the absorption and dispersion of sound which 

would include all subroutines, i.e., MAT. PCAL, and DECOMEIG. 

We developed the final program but, the sign did not change 

for the eigenvalues. Much efforts were put to duplicate 

Sirovich's results.  Several programs were written but due 

to some minor error in the driving program we could not get 

the change of sign for the eigenvalues as was expected. 

Therefore, we conclude that some more work has to be done in 

order to get the final results. 

, 
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Figure  1:     The plot of the dispersion versus 
the rarefaction factor.     The curves 
are crossing at one point but not 
tangent  to  each other. 
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Figure 2:  Plot of the dispersion versus the 
rarefaction factor. The curves 
are tangent to each other. 
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CONCLUSIONS AND SUMMARY 

We  developed numerical  techniques  for the study of the 

absorption  and dispersion of  a  sound wave propagating in a 

simple monatomic gas.     We  approached the problem by using 

the Linearized  B.G.K.   model proposed by Bhatnagar,   Gross, 

and Krook.     Mathematical  complications were decreased by 

considering only three terms  in the model equation.     After 

lengthy mathematical   formulation we obtained a set  of linear 

equations   in  the general  eigenvalue-eigenvector form.     The 

solution of  this yields  the absorption  and dispersion in 

terms of  the rarefaction parameter.     Numerical methods were 

discussed  for  solving  the eigenvalue equation and  for devel- 

oping a PL/1 computer program for calculating the absorption 

and dispersion of  sound. 

The dispersion relation has three solutions,   and one 

of them corresponds  to  the sound propagation.     Therefore,  we 

encountered  some difficulties  in numerical  analysis.     We 

discussed  some  special  cases such as:     a)  when two curves 

are tangent  to each other;   and b)  when  two curves are cross- 

ing but not tangent to each other. 

After we  found that  each subroutine was functioning 

properly,   a driving program was written.     Several attempts 

were made but  due  to  some minor error in the final program 
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the sign did not change for the eigenvalue as was expected. 

Hence, we conclude that some more effort is needed in order 

to obtain the final results. 
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APPENDIX I 

Program Listing 

*PR0CESS» 
MITl      PR0C(TST,C)| 
/*  THTS   A   SUBROUTINE    (NOT   A   FUNCTION)   WHICH   CALCULATES   THF   MATRIX 
/»  C   GIVEN   TST. 
DCL (F#TSI)   BIN   FLOATC531   CPLX, 

C(*.OBlN   FLOAT(53)COMPLEXl 
DCL   FCAL   FNTRY(BIN   FlOAT(S3)   CPLX1   RETURN8CRIN   FL^AT(S35   CPlxit 

FxFCAL(TSI)! 
»UT   DATA(F1| 
c(i»n»Fi 
CCI.2)»1*TSI*F» 
C(2.l)«C(l,2)j 
CU,3)«(TSI*(TSI**?-1)*F)/2i 
C(2,2)«TSI*C(l,2lt 
C(2.3)«T3I*C(l,3)i 
CC3,1)»2*C(l#31/3i 
C(3,2)sT8I*C(3,l)i 
C(3,3) = (TSI**3-T3I*(TST*M-2*TST**2*5)*F)/M 
CaTSI*C| 
RETURNf 
END   MATt 

*PftOCES8| 
FCAI |PR0C(TSI)   RETURNS(RIN   FLOAT(53)   CPLXJl 

OCL(OUMA,DUMB,OUMC.DMMO)    BIN   FLOATf53)i 
OCL(A(0ll00),B(0iin0))   BIN   FLOAT(S3)    CPLXi 
f5CL(3UHA,SUMB.l SUMA.LSUMR)   RIN   FLOAT(53)    TwTTCMt 
DCL(XZ»V7,LX7»lV2J   BIN   FLOAK53)    INIT(0)| 
0CL(SQTPI.AX,AY,RX,YB,S1,S?.S3.3U.'-)   BIN   FlpATC*l)f 
OCl (7NEG,TSI,TSIP.7.TNT,SA,SR1   RIN   FIO*T(53)   CPLXi 
OCL   F   BIN   FL0ATCS3)   CPLXf 

DCL(OELX,DEl Y.SOT.TWO)    PIN   FLOAT(535l 
SOTPlsl .772<»53R50i 
SQT_T|»0»1 .«1U213«56?I 
TSlsTSl/SGT.TtaOf 
IF   RFAL(TSI)*0   THFW   "Of 
7«SGTPI*FxP(YB**?)*ERFC(Y8)*tI» 
GO   TO   OVERi 
FNOf 

TSIP»TSI| 
IF   IM*R(TSI)=0   THEN   r>0t 
7«(lI.FRFfBxn»SOTPI/EXP(8X**2)l 
GO   TO   OVFRi 
ENDi 
/* 
/* 

*/ 
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/* NUMERICAL lNTE»GRATIPv */ 
/* */ 
/* */ 
IF ABSfIMAG(TSI))<2 THEN D0| 
AX,AY«0| 
BX"REAL(TSIP)I 

YB^IMA^CTSIP)! 
N2*l*A«SfflX«.AXl/.P1 t 
N«2*N2f 
H«(BX-AX)/FL0AT(N.16)t 
31«FAC»X,AY)*^'*FA(CAX*H).AY)i 
32»FB(AX,AY)*<i.*FBf (AX*H),AY)i 

L1|  00 I«l TO N2-li 
!)U*A«AX»H*2*I| 
|)UMBSAX*M#(2*I*DI 
3l«31*?.*FAfOUMA,AY)*a.*FA(nilMR.AY>| 
32*S2*?.*FB(DUMA#AY)*«.*FB(0'JMR,AV)f 
FND 1.11 
31«H*(FA<BX.AY)+Sl)/3l 
92«H*(FBfBX,.AYUS2J/"5l 
N2«!+ABSCYB«AY)/.'0ti 
N«?*N2| 
H»(YB-AY)/FLOAT(N.16)t 
S3«FC(BX,AY)*4.'*FC(BX.(AY*H))i 
9«BFn(BX,AY)*a.*F0fBX,(AY*H))l 

L?l  00 X«l TO N2»lt 
0UMC*AY*H»(2*I)| 
0U"D*AYtH*(2*IM>t 
33«83*;>.*FCCP.X,DMMr)*«,*FC(BX.DUM0) t 
S4«S«*2.*FDC8X,DHMC)*a.*FD<8X.0liMD) t 

END 1.21 
33»H*(FC(BX,YB)*S3)/3.t 

Z«(80TPI*tI-a*INT)/EXP(TSIP**?)i 
ENOf 

D0| 

ASYMPTOTIC EXPANSION 

ELSE 
/* 
/* 
/* 
/* 
/* 
r»EI.X,DFLYs! I 
A(l)«1 I 
A(0)«Of 
B(0)sn 
R(l)»2*TSIPl .    ,_ 

FPACI   00   N«1    TO     99   wHIl E   (DELX>1 .OE-1S 
A(N*1)«(?#TSIP*A(N^-?*M*A(«J-1 )) t 
B(N*I)a(?*T3IP*BfNi-?*N*B(M-n)f 
7»«»2*A(N*1)/B(M*1>» 
XZ*RFAI (7)1 
YZ«I»«Ar,(7)| 

*/ 

*/ 
*/ 

*/ 
*/ 

I    DFLY>1.0|-IS)f 
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"ELXsARSf(IX7-X71/XZ1 » 
f>El V«AAS( (I Y7-Y7VY?> I 
i xz*xzi 
LY7sY7l 
FND FRACi 

IF TMAG (T8l)>0 THEN r\Q, 
7*Z-?!*80TPT*FXP(-TSI*«?)f 
FND I 

END| 
OVfcRl   FBZ/SOT.T^Ot 

PETI'PNfF>| 
FA»      PBncfX.Y)   RETl'RNS(«IN   F|_nAT(mi)t 

OCLCX.Y.CD   BIN   FI.OAT(SJ)» 
IF    X**?>171    THFN 

I A:      DOI 
PETURN(O) I 
FNP   LAI 
FLSF   OP I 
ristXP(X**?)*CnS(?*X*Y)l 
PETUPNfCI ).! 
FNDl 
END  FAI 

H*l      PttncfX.Y)   PETURNS(*IN   FlOATfSO ) I 
nCl.(XfY«C2)   BIN   FL"AT(S*)J 
IF   X**?>17fl   T*EN 

LP:      ^0| 
PETUPNf0) | 
END   LBl 
ELSE  nnt 
r?«Fxptx**?)*siNr?*x*Y)t 
PETI)PN(C?)I 
END* 
F.nri   FHl 

Ff|      PROCtX.Y)    RETOPNS(RIN   FLOATS))! 
0CL(X.Y.C3>   BIN   FLHAT(S3)I 
C3*Cl">Sf2*X*Y)/FXP{Y**21 t 

RE.TliRN(C5) I 
END   FCI 

FD|       PRnCfX#Y)    RETURNS(PIM   FLnATfSTDl 
nCL(X.Y,CU)    BIN   FLnAT(S3)l 
Ca»SlNf2*X*Y)/FXP(Y*»?lt 
RETl)RN(Cfl) I 
FND   Fnt 
FND   FCALI 


