


ABSTRACT 

DEATON,  FRAN KIRKSEY.   Phase of Alpha Rhythm and Visually Evoked 
Potentials.    (1971) 
Directed by:   Dr. M. Russell Harter.    Pp.  67 

The cortical excitability model proposed by Harter (1967) has,  in 

part,  been supported by findings in this experiment.   The effects of alpha 

phase, flash intensity,  and response task on visually evoked response 

amplitude,  alpha blocking, and reaction time were investigated.   The 

autostimulation technique was used to trigger light flashes, and the 

"resulting" evoked responses were averaged with a digital computer. 

Analyses of variance were performed to test for statistical significance 

on all data from one S.   The amplitude of the visually evoked response 

was functionally related to alpha phase, flash intensity, and the inter- 

action between these two variables (p <C .01).   Intensity significantly 

influenced early alpha blocking and reaction-time latency (p <   .01). 

Two methods of data analysis were used.   One method did not take an 

underlying averaged alpha into account, assuming alpha becomes de- 

synchronized once blocked; the other took averaged alpha into account, 

assuming that alpha is ever-present but blanketed during photic stimu- 

lation.   The appropriate model depended upon intensity in this study. 

High intensity stimulation supported the alpha-desynchronization 

model; low intensity stimulation supported the ever-present alpha 

model. 
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Introduction 

Numerous investigators have proposed the existence of a cortical 

excitability cycle (Bergamini & Bergamasco,   1967; Bishop,   1933; 

Ciganek,   1964; Donchin & Lindsley,   1965; Harter,   1967; Lansing,   1956; 

Lindsley.   1956) and that the cortical alpha rhythm,  recorded from the 

surface of the scalp,  reflects this cycle (Bechtereva & Zontov,   1962; 

Callaway,   1962; Callaway & Layne,   1964; Callaway & Yeager,   1960; 

Dustman & Beck,   1964; Lansing,   1956; and Re'mond & Lesevre,   1967). 

The present study is an investigation of this proposal.   If the alpha 

rhythm reflects the fluctuating excitability of the cortex, it is predicted 

that there should be a functional relationship between alpha phase at 

the time of photic stimulation and the visually evoked response (VER), 

early and late alpha blocking, and reaction-time latency and variabil- 

ity.   Prior to discussing procedures and results of this study,  research 

will be reviewed in which the effects of alpha activity and the cortical 

excitability cycle have been investigated with particular emphasis on 

the function of the alpha rhythm phase. 

The challenge of relating electrical activity of the brain to psy- 

chological phenomena has been of interest to many investigators ever 

since Hans Berger first recorded electrical brain activity in the 1930's. 

Berger's initial attempts at correlation of neurophysiological and psy- 

chological events were not very successful (Andersen & Andersson, 



1968; Lindsley,   1952).   Nevertheless, the early studies of Berger and 

others brought forth the clearly observable human alpha and its modifi- 

cation by sensory stimulation. 

Alpha Rhythm 

Lindsley (1952) considers the alpha rhythm as an abstraction both 

electroencephalographically and psychologically because it represents an 

unusual and limited state of affairs in the life of the organism—namely, 

that of relaxed wakefulness where little sensory information is being 

processed and attention is wandering. 

Lindsley (1952) proposes that alpha activity is a basic metabolic 

rhythm of the individual brain cell, and its electrical variation alone 

or in small groups of cells is normally too small to be recorded from 

the surface of the scalp.   He thinks of the alpha rhythm as representing 

thousands of cells responding in synchrony,   which results in sufficient 

neural summation to produce a recordable alpha rhythm (eight to ten 

cycles per second,  roughly sinusoidal wave) over the posterior head 

regions in most people (Gaarder,   1966; Kooi & Bagchi,   1964; Lindsley, 

1952). 

Cortical Excitability Cycle 

The idea of a cortical excitability cycle is the synthesis of find- 

ings of experiments first started by Bishop (1933) and elaborated by 

Lindsley (1952).   It has remained over the past several decades as a 

working hypothesis for others (Bergamini & Bergamasco,  1967; Ciganek, 



1964; Donchin & Lindsley,   1965; Dustman & Beck,   1964; Harter,   1967; 

Lansing,   1956; and Remond & Lesevre,   1967).   It infers that electrical 

activity of the cortex is able to summate temporally in such a way that 

there is a period of maximal responsiveness followed by a minimally 

responsive period.   The technique of recording evoked potentials 

directly from the scalp has made it possible to study this inference 

directly. 

Visual Reaction Time 

After the 1930's when Bishop reported stimulation of the optic 

nerves elicited evoked potentials only in certain phases of the alpha 

wave in rabbits and cats, Lansing (1957),  with the encouragement of 

Lindsley,   continued the investigation of the human alpha rhythm. 

Following from Lindsley's (1952) definition of the alpha rhythm and 

the suggestion that it was a good model to represent the waxing and 

waning of a cortical excitability cycle, Lansing predicted that one or 

more sequential phases of the alpha wave would correlate with 

shorter visual reaction times than other phases.   It had been noted 

that simple visual reaction time ranged from 125 to 2 50 msec. 

Approximately 50 msec, of this time was thought to be utilized in the 

transmission of impulses to and from the cortex.   The rest of the time 

was thought to be due to central effects.   Lansing surmised that if it 

could be shown that the alpha rhythm had an excitability cycle in which 

there were maximal and minimal response periods,  it would contribute to 



understanding the known variability of reaction time.   Lansing studied 

variations in reaction time in relation to the phase of occipital and 

motor alpha rhythms in which stimulus and response fell, and he found a 

functional relationship between alpha phase and reaction time even 

though, as he pointed out,   Walsh and O'Hare (Lansing,   1957) had not 

found a consistent relationship.   Lansing credited his success to using 

different methods of recording and analysis. 

First of all,  he pointed out that optimal conditions are necessary 

for maintaining a uniform state of attention throughout the experiment. 

His subjects fixated on a red light.   Dim visual stimuli were presented 

10 to 20 sec. apart in groups of 10 with a rest period between groups. 

A total of 100 - 200 reactions was obtained for each subject.   The alpha 

phases were designated prior to the experiment,  but the flashes were 

not synchronized to phase.   Reaction time to each stimulus was deter- 

mined for all subjects and later related to phase of the occipital and 

motor alpha rhythm (measured from brain and tremor rhythms recorded by 

a Westingtouse Oscillograph) at the time of stimulation and response. 

Analysis of the data involved the selection and screening of alpha phase 

with stimuli presentation so that all data used fit the criterion.   Fi- 

nally, only the shortest and longest mean reaction times as they were 

correlated with phase were statistically analyzed, and they were sig- 

nificantly different (p < .01).   The computational procedure used was 

unclear. 



Callaway and Yeager (1960) continued the study of visual reaction 

time and alpha phase but used a different method of triggering the 

stimuli.   Alpha activity recorded from scalp electrodes was amplified 

and fed into a circuit designed to generate an electrical signal only 

when phase and amplitude of the alpha rhythm corresponded to a pre- 

determined setting.   The electroencephalographic (EEG) activity at the 

instant of each stimulation was visually monitored and data discarded 

that failed to coincide with specified requirements.    Reaction times were 

automatically printed out.   Callaway and Yeager presented blocks of 

stimuli at intervals of 10 msec, along 10 phases of the alpha cycle.   A 

comparison was made between the alpha phase at which stimuli 

elicited the slowest responses and the phase associated with the fast- 

est responses.   Their data indicated a more than chance relationship 

between visual reaction time and alpha phase at stimulation. 

Callaway (1962) continued his investigation of factors that in- 

fluenced the relationship between alpha activity and visual reaction 

time.   Specifically he was interested in the day-to-day variability with- 

in the same subject and the effects of stimulus Intensity on the rela- 

tionship between alpha phase and reaction time.   His method of 

triggering stimuli was similar to Callaway and Yeager's (1960).   A pencil 

photocell on the face of an oscilloscope was positioned in such a way 

that the photocell pulse was generated only when the EEG activity over 

the range passed by the filter had a specified phase and amplitude. 

m 



Reaction times were measured as before.   This time subjects,  with their 

eyes closed,  were presented three stimulus intensities:   (1) strobe for 

less than 0.1 msec, duration,   (2) bright for a 3 msec, square pulse, 

and (3) dim with a 3 msec, pulse.   Intensities were chosen on the basis 

that they would on the average produce a 50 msec, shift in reaction 

times.   Using vector analysis and 10 phases,   Callaway presented 

evidence to indicate that the alpha phase at which stimulation evokes 

the slowest reaction time was not significantly or consistently shifted 

by altering the stimulus intensity.   Callaway also concluded that for a 

given individual there is an enduring tendency for particular phases of 

the alpha cycle to be associated with fastest or slowest reaction times. 

Cortical Evoked Potentials 

Meanwhile,  the concept of the cortical excitability cycle was 

being explored by taking amplitude measures of cortical potentials 

evoked by sensory stimuli that were not time-locked to alpha phase. 

Research in this area, along with studies concerning the various phases 

of the alpha cycle,  was greatly refined when the technique for averaging 

evoked potentials was developed.   This process involves adding or 

averaging the values of each co-ordinate of the evoked response over a 

number of such responses to identical stimuli.   Background EEG noise 

cancels out,  and the evoked response,  which is time-locked to the 

stimulus,   emerges clearly. 

Using these techniques of averaging and recording,  many 



researchers have studied the evoked cortical potential as it is related to 

visual and auditory perception (Ciganek,   1961; Donchin & Llndsley, 

1966; Gaarder,   1964; Gastaut, Regis,  Lijagoubi, & Simon,   1967; 

Harter & White,   1967,   1968; Katzman,   1964; Kooi & Bagchi,   1964b; 

Rodin, Gresell,  Gudoba,   & Zachary,   1965; White & Eason,   1966; 

Wilkinson,   1967; and Wilkinson & Morlock,   1966).   The amplitude of 

evoked cortical potentials in general not only varies as a function of 

physical properties of stimuli but also with changes in arousal and 

attention (Eason, Aiken,  White,   & Lichtenstein,   1964; Eason,  Harter,  & 

White,   1968; Gilden, Vaughan,   & Costa,   1965; and Spong,   Haider,   & 

Lindsley,   1965). 

Others have investigated temporal numerosity and have suggested 

that the evoked cortical wave form may reflect the periodicity of an 

excitability cycle with a duration of 100 msec. (Harter & White,   1966; 

White,   1963). 

In any review of the alpha phase research in which the technique 

of measuring the amplitude of VERs was used, credit must be given to 

Bechtereva and Zontov (1962),  who used a measure of the mean ampli- 

tude of the EEG during phase-locked repetitive photic stimulation.   They 

did not have the aid of a signal-averaging computer; even so, they 

demonstrated that the amplitude of the VER depended upon the phase of 

the EEG alpha cycle at stimulus presentation. 

It was Callaway and Layne (1964) who first used a Computer of 



8 

Average Transients (CAT) to study the function of alpha rhythm phase. 

Visually evoked responses (VER) were obtained from stimulation at four 

different alpha phases.   The effect of alpha phase on the VER was 

smail but seemed to parallel behavioral effects of alpha phase as they 

were reflected in reaction time. 

Dustman and Beck (1964) were impressed with the fact that a cor- 

tical excitability cycle was indicated by the relationship between alpha 

phase and reaction time,  but they reported findings had been inconsis- 

tent and at times controversial as to the point in the alpha phase which 

reflected minimal and maximal excitability.   They therefore investigated 

this phenomenon.   They used autostimulation for stimulus presentation 

at various phases, and they used a CAT to record the VERs.   In addition 

to using the CAT,  they tape-recorded individual responses so that 10% 

of all the responses were discarded because they occurred during non- 

alpha activity.   Their RTs were measured from single recordings of 

muscle (abductor polllcis brevis) activity and converted to time.   The 

slowest 20% of the responses occurring during each phase were dis- 

carded to reduce variance caused by inattentiveness.   They found 

savings in RT due to phase to be small but significant (p«<  .05).   The 

largest difference was 6.3 msec, with the slowest and fastest RT and 

phase correlations being compared. 

In addition to reaction-time measurements, a measure of neural 

activity at the visual cortex coincident with the stimulus-response 



sequence was provided by concomitant recordings of the VERs.   When 

they assumed the conduction time from eye to cortex was 57 msec, and 

corrected for this latency, the fastest mean reaction times were found to 

fall on the surface negative phase of the wave while the slowest fell on 

the positive phase. 

Remond and Lesevre (1967) pointed out that relatively little work 

had been done in respect to the effects of alpha phase as compared to 

stimulus and attention parameters in variations in the averaged VER 

amplitude.   Furthermore, the work that had been done showed contra- 

dictions .   They attributed the conflict not so much to contradictory 

results as to the fact that measurement procedures were not comparable. 

In the rare cases in which the amplitude of VER was studied in relation 

to alpha phase, different components were measured.    Dustman and Beck 

(1965) chose an early wave with a latency of 57 msec; Callaway and 

Layne (1964) chose a latency of 136 msec; and Donchin and Lindsley 

(1966) chose a later component,   160-200 msec in latency.   Comparable 

parameters of VER,   such as latency, amplitude, or morphology,  have 

not been studied. 

Remond and Lesevre compared the autostimulation technique (trig- 

gering stimuli from alpha phase) to the usual technique of triggering 

stimuli for the VER.   They measured amplitude at component IV 

(Ciganek,   1961), which has a mean latency of 94 msec, and the 

earlier negative component III,  which has a mean latency of 73 msec. 
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Subjects,   with eyes closed, were stimulated by a stroboscopic lamp for 

a period of 1 msec.   For most subjects, the VER response to autostimu- 

lation at the time of maximum alpha source differed from the response 

to stimulation at a fixed frequency (p=768 msec.) by a slightly 

increased amplitude and a slightly shorter latency of components III and 

IV.    However,  the latency of the components was not significantly 

affected by alpha phase.   Specifically,  Redmond and Lesevre were inter- 

ested in the effects on VER of four different phases of the alpha rhythm: 

the time of the maximum of a source and of a sink of the alpha rhythm, 

and of crossing the baseline before a source and before a sink.   The 

greatest differences were seen when autostimulation was synchronized 

with the maximum source or sink as measured by presence or absence 

of rhythmic after-discharge.   The after-discharge was not discernible 

when flashes were given at the time of maximum alpha source and pre- 

sumably perceived 50 msec, later (due to conduction time lag) at the 

time of maximum alpha sink; whereas,   rhythmic after-discharge 

appeared greatly enhanced when flashes were given at alpha-sink 

maximum and presumably perceived at source maximum. 

In comparing the averaged alpha rhythm to the early or late 

rhythmic activity obtained in response to sensory stimulation, Remond 
» 

and Lesevre recognized that these two activities had the same topo- 

graphy and the same frequency but had a considerably greater amplitude. 

They did not think that early or late rhythmic activity involved the same 
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neuronal activity as that of spontaneous resting alpha.   They concluded 

that their results suggested that the phase of the alpha rhythm affects 

the response indirectly by means of a non-specific mechanism of 

synchronization or recruitment whose release or inhibition transforms 

the appearance of the VER. 

Rhythmic After-discharge 

Rhythmic after-discharge,   similar to the spontaneous alpha 

rhythm,  has been observed in response to photic stimulation (Cohn, 

1964).   It was noted that rhythmic 10 Hz waves could be induced by, 

and were time-locked to,  a slowly repeated flash.   Study of this 

phenomenon was greatly facilitated by the advent of averaging tech- 

niques and has been the subject of work in the investigation of the 

physiological basis of alpha activity (Andersen & Andersson,   1968; 

Barlow & Estrin,   1970).   A number of parallels were observed between 

intrinsic alpha and induced alpha activity.   The presence of intrinsic 

alpha activity appears almost invariably to be a necessary condition 

for the appearance of the induced rhythmic after-discharge; the fre- 

quencies of the two are quite similar, and they both tend to disappear 

when the eyes are open (Barlow & Estrin,   1970; Cohn,   1964; and 

Re'mond & LeseVre,   1967). 

Remond and Lesevre (1967) were able to observe after-activity 

within a 600 msec, period after stimulation.   Goldstein (1970) recorded 

activity over a 5 sec. interval and,  for his screened data, used photic 
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blocking that was no shorter or longer than 0.5 sec. in duration. 

Peacock (19 70) observed photic blocking and after-discharge for a dura- 

tion of approximately 2 sec.   Neither Goldstein nor Peacock specifi- 

cally mentioned whether eyes were open during stimulation.   Although 

tracings were recorded for a period of 1036 msec, in the present study, 

after-discharge was not consistently displayed.   This line of research 

appears particularly related to whether photic stimulation produces a 

general increase of nonperiodic electrical activity within the occipital 

region,  which might have the effect of overriding an underlying pace- 

maker,   or whether it causes a disruption of cyclical electrical activity 

(Andersen & Anders son,   1968; Goldstein,   1970). 

Two Hypotheses Concerning Alpha Rhythm 

Two hypotheses have developed,  as a result of empirical evidence, 

concerning the alpha rhythm.   One proposes that the alpha rhythm 

reflects a cortical scanning mechanism that allows temporal groupings 

of sensory data into psychological moments (Harter,   1967; Harter & 

White,   1967; White,   1963).   An absolute time base is assumed in which 

the entire cortex is scanned with all sensory information sampled,   coded, 

and grouped into discrete temporal units.    The scanning frequency is 

assumed to remain fairly constant at the frequency of the alpha rhythm, 

and the variations in the magnitude and latency of a response to a 

given stimulus would not be expected within scans (Harter,   1967). 

The other hypothesis proposes that the alpha rhythm represents 
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a cortical excitability cycle which modulates incoming sensory informa- 

tion on a continuous time base.   From this hypothesis one would predict 

that the amplitude of the VER would vary as a function of the temporal 

relationship between the stimulus and the threshold of the cortical 

cells.   Research specifically designed to study the alpha rhythm as it is 

related to evoked brain activity indicates that evoked and spontaneous 

potentials may share a common central neural element (Callaway,   1962; 

Callaway & Alexander,   1960; Callaway & Layne,   1964; Callaway & 

Yeager,   1960; Goldstein.   1970; Magnus & Ponsen,   1965; Peacock,   1970; 

and Rodin et al.,   1965). 

Harter (1967) proposed a model whereby in the resting or stable 

state,  the alpha rhythm reflects the fluctuating excitability of the 

system.   Whether or not afferent impulses affect the alpha excitability 

cycle depends on the initiating stimulus intensity and the relative 

excitation of the cortex.   An excitability cycle depends upon the 

assumption that aggregated neurons are in synchrony,  exhibit temporal 

summation,   and have a period of maximal responsiveness followed by a 

minimally responsive period (Bergamini & Bergamasco,   1967; Ciganek, 

1964; Dustman & Beck,   1965; Harter,   1967; Lansing,   1957; Lindsley, 

1952; and Remond & Lesevre,   1967). 

Purpose of the Study 

This study extends the work that has been done by others who 

have investigated the functional relationship of alpha phase at the time 
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of stimulation and amplitude of the VER and reaction time (Bechtereva & 

Zontov,   1962; Callaway & Layne,   1964; Dustman & Beck,   1965; and 

Remond & Lesevre,   1967).   In addition to studying the effects of alpha 

phase, three intensities ranging from near absolute threshold to a bright 

light were used to investigate possible interaction of phase with 

intensity. 

Methodologically, the present study builds on techniques that 

have been used before in alpha phase research,  specifically the use of 

a triggering mechanism pulsed by the subject's alpha rhythm (auto- 

stimulation) and a computer to average and record activity during 

stimulus presentation and alpha activity in the absence of stimulus 

presentation.   Equipment was set up in such a way that the experimenter 

had only to monitor the polygraph and oscilloscopes during the trial 

runs,  leaving the active participation of the experimenter to the 

resetting of equipment before sessions and between blocks of trials. 

Few quantitative measures have been used in alpha phase research. 

Dustman and Beck (1965) correlated components of the VER with reaction 

time.   Callaway and Layne (1964) and Remond and Lesevre (1967) looked at 

VER amplitude as it was related to alpha phase, but their measurements 

were not clearly expressed.   In this study, quantitative measures were 

taken of the VERs from 100-800 msec, after photic stimulation.   These 

measures express changes that can be observed in the VER tracings, 

specifically the amplitude of the VER component with a mean latency of 
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212 msec, early photic blocking of alpha, and the possible after- 

discharge or alpha-like activity after blocking.   Assuming that the 

measures are appropriate, analyses of variance (repeated measures) 

were used to test for significant differences functionally related to 

alpha phase and intensity. 

Method 

Experimental Design 

The independent variables in this experiment were alpha phase 

(with a sixth non-synchronous condition), flash intensity,  and the 

presence or absence of a reaction-time task.   The dependent measures 

were VER amplitude, early and late alpha blocking, and reaction-time 

latency and variability. 

To investigate alpha phase, five equally spaced points in time 

were selected in the alpha cycle representing Phase 1 at 0 msec; 

Phase 2 at 25 msec; Phase 3 at 50 msec; Phase 4 at 75 msec; and 

Phase 5 at 100 msec. (Figure 1).   Phases 1 and 5 were both expected to 

fall at the trough of the cycle, given the perfectly sinusoidal alpha 

wave with a frequency of 10 cycles per sec.   Over the 180 blocks of 

trial runs that occurred in this experiment using three subjects (Ss), 

there were only two Phase 5 block-runs that came questionably close 

to failing to meet the criterion of + 10 msec in respect to a given 

phase.   Alpha rhythm was averaged to be 10 Hz.   In a sixth condition, 

stimulus presentation was determined by a clock,  and the VER was 
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Fig.  1.   Phase points expressed in terms of msec, within the 0.1 

sec. (100 msec.) alpha cycle at which equipment was set to trigger light 

flashes. 
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time-locked to the stimulus presentation only and not to alpha phase. 

Three flash intensities were used as photic stimuli.   The lowest 

intensity (0 log units) was near absolute threshold (as discussed below). 

The other two i.-.tensities were two and four log units above this value. 

There were two behavioral response conditions.   The reaction- 

time condition (RT) required Ss to respond to a perceived light flash by 

releasing a microswitch key which the S held down until a flash was 

perceived.   The no-reaction-time condition (NRT) did not require a re- 

sponse at the time of perception. 

Each of the three Ss participated in 12 experimental sessions. 

Six sessions were required to complete one administration of all 

experimental conditions (all combinations of three flash intensities and 

two RT conditions).    Each session used one flash intensity,  and one 

behavioral response.   A session lasted for an hour and consisted of six 

blocks of trial runs,  one for each of the five alpha phases and for the 

No Synch condition.   Each block of trials consisted of 32 presentations 

of an experimental condition.   Ss were permitted to rest between 

blocks while data were recorded on the X-Y plotter.   During the course 

of the experiment each experimental condition (session) was replicated 

with the sequence of phase settings reversed.   The order in which Ss 

were subjected to the experimental conditions was counter-balanced 

within and between sessions and Ss by a Latin square (Appendix B). 

Preliminaries 
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The three Ss chosen for the experiment had been working in the 

laboratory as graduate assistants and were thoroughly trained.   Their 

ages ranged from 22 to 25 years.   Subject LS was adept at producing a 

good alpha over all sessions.   The one female,  S GW,  was able to train 

herself to produce an alpha of good amplitude to trigger the experiment; 

however, in analyzing her data later, it was noted that her alpha 

activity was quite variable.   Subject DH's alpha activity fell somewhere 

between the other two.   His biggest problem was staying alert in a very 

dark room with little sensory stimulation and no feedback if a flash was 

missed. 

A Ganzfeld mask was made out of a sheet of half-inch pliable foam 

material.    Holes were cut in the eye-socket areas,  and a half of a table- 

tennis ball was glued into each of the holes.   The mask was held on the 

S's head by an elastic which was adjustable to different head sizes.   Al- 

though it has been a common thought that alpha is blocked when eyes are 

open,  Chapman, Shelburne,  and Bragdon (1970), Mulholland and Evans 

(1965 and 1966), and White and Eason (1966) are of the opinion that alpha 

is blocked because of contours that come into the field of vision.   The 

Ganzfeld was used to reduce marked contours and to diffuse the light; 

with it,  Ss did in fact show alpha rhythms with their eyes open. 

Ss were able to practice producing their alpha rhythm.    Whether 

or not a light was flashed depended upon alpha activity of a certain 

amplitude,  which pulsed a Lehigh Valley electronic (LVE) adjustable 
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Schmitt Trigger that started a trial run.   Subjects were told that trials 

could be as close as four seconds apart (the minimal between-stimulus 

interval) and that if they were less often, it was because sufficient 

alpha activity was not present.   Actually the delay in feedback (100-200 

msec.) by a flashing light was not ideal for alpha conditioning,  but even 

so,  it proved helpful. 

While Ss were practicing in the experimental setting, the lowest 

flash intensity was adjusted to the point where S DH was able to per- 

ceive it only around 50% of the time.   The other two Ss perceived it on 

the average of 90% of the time.   This intensity was used as basic for 

each of the three Ss.   The intensity of the flash was varied by remov- 

ing neutral density (ND) filters situated between Ss' eyes and the light 

source (a 10 usec. flash produced by a Grass S-2 Photo-Stimulator set 

on the intensity level 2).   A 2.0 log ND filter was removed for the 

medium intensity,   and a 4.0 log ND filter for the highest intensity.    The 

duration of the flash remained constant for all sessions. 

The microswitch used to measure reaction time was familiar to Ss, 

and they had no trouble releasing it with a minimum of muscle involve- 

ment.   In order to have a record of the number of flashes perceived dur- 

ing the NRT condition, Ss were asked to push a button (which activated 

an event mark on the polygraph record) with their left index finger,  after 

they heard a click which was programmed to be sounded over the white- 

noise system 1036 msec, after the beginning of the trial run.   They were 
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to push the button in response to the click if they had not seen a flash. 

This same click was used to give feedback to Ss as to RT latency in the 

RT conditions.   The click was presented when Ss responded too slowly 

and indicated the end of a trial run. 

Procedure 

The S,   stimulus display,  and two devices for signaling responses were 

located in a light- and sound-shielded room.   The remainder of the 

equipment was located in an adjoining experimental area.   An inter- 

communications system was on at all times.   White noise, generated 

by a Model 901B Grason Stadler noise generator, was used to mask 

extraneous noises during the trial runs. 

Before each session,  the S put on dark-adaption goggles, and he 

was prepared for the experiment.   Electrode jelly was rubbed into the 

scalp 2 .5 mm. above the inion on the midline and on the right ear lobe. 

A gold-plated 8 mm. electrode was secured at the scalp area, and the 

reference electrode was clipped on the ear.   Skin resistance was re- 

duced below 10, 000 ohms.   The electrode leads were connected to an 

EEG input terminal located beside the chair, and this in turn was 

connected to the polygraph in the adjoining room. 

The S was placed in a comfortable chair with head and arm rests 

that helped him maintain a relaxed upright position.   He was advised to 

keep his chin tucked in order to minimize muscle tension in the dorsal 

neck muscles.   The RT key was on the right arm rest.   The report button 
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was on the left arm rest. 

The stimulus display was 80 cm. in front of the S at face level. 

A 17x17 cm. translucent screen was mounted on the end of a 

47.5x57.5x100 cm. cardboard box.   The stroboscopic lamp (strobe) was 

mounted on the other end of the box and was easily removed for place- 

ment of the ND filters.   Actually then, the S was seated 180 cm. from 

the source of light which flashed through the translucent screen and was 

to be perceived as a Ganzfeld. 

Instructions were given to the S concerning stimulus intensity 

and the response required.   He was reminded that his alpha rhythm trig- 

gered the trial run which was programmed for a minimum interval of 

four sec.   He was told that approximately 32 light flashes would be 

presented randomly in the run of 64 trials,   so that 50% of the time there 

would not be a flash.   The room was darkened; the dark-adapting glasses 

were removed; the Ganzfeld mask was placed in position; and the E left 

the room.   The S was asked to relax but to try to see the flash while 

the equipment was being adjusted. 

Apparatus 

Electroencephalographic activity was preamplified by two Grass 

Model 7P5A Wide Band AC EEG filters and amplified by two Grass Model 

7DAC DC Driver Amplifiers.   Activity connected to the LVE Adjustable 

Schmitt Trigger (for autostimulation) was highly filtered with half- 

amplitude high- and low-frequency filters set on 15 and 3 Hz,   so that 
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10 Hz activity would be the primary activity passed.   The other poly- 

graph channel was used to filter EEG activity feeding into the computer 

for averaging.   The half-amplitude settings were 35 and 1 Hz. 

As was mentioned earlier, this experiment depended upon the 

presence of alpha activity of a certain voltage to pulse a LVE Adjustable 

Schmitt Trigger (ST).   The setting for the ST was adjusted for each S. 

During the first six sessions the criterion for amplitude was lower than 

that for the last six sessions.   The first six sessions for S_ LS and 

S DH required a voltage of 8 uV to pulse the trigger.   The last six 

sessions for Ss LS and DH required a voltage of 36 uV and 18 uV re- 

spectively.   A 36 uV wave was required to activate the ST throughout 

the experiment for S_ GW. 

Once the trigger had been activated, the trial run was in control 

of and programmed by the solid-state equipment,   most of which was 

Lehigh Valley electronic modules.   The ST activated a recycling time 

set at 4 sec. so that only one trial run was possible during that interval. 

The ST simultaneously started another recycling timer set at 25 msec, 

which,  in conjunction with a binary predetermining counter,  determined 

the five phases (0-100 msec).   The appropriate phase was set before 

each trial-block.   The digital computer and the monitoring oscillo- 

scope were set to record a 1036 msec, epoch.   A probability gate was 

also activated which was set at 50%.   During the course of a trial- 

block,   32 + 2 photic stimuli were flashed randomly throughout a total of 
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64 activations of the Schmitt Trigger.   The flash came from a Grass 

Model PS-2 Photo Stimulator set at intensity #2 after a 100 msec, delay. 

This 100 msec, delay enabled a complete alpha cycle to be recorded in 

the computer before stimulus presentation.   The amplitude of this cycle 

was later used to determine the baseline for measurement of the VER 

amplitude.   During the RT conditions the Hewlett Packard electronic 

counter was turned on to print out reaction times. 

Mention must be made of the fact that there were not always 32 

light flashes presented in each block of 64. Due to limitations of the 

programming equipment, 32 + 2 light flashes were actually presented. 

Thus, both stimulus and non-stimulus presentation trials amounted to 

32 + 2. 

During the trial runs the Hewlett Packard 141A Oscilloscope per- 

mitted the experimenter to monitor the on-going EEG activity and time 

of stimulus presentation.    This arrangement provided moments of both 

joy and frustration.   Perfect alpha activity (as was the case 90% of 

the time) drew applause; muscle or other artifacts drew groans.   The 

bad sweeps or samples just had to be tolerated with hopes that they 

would not influence VERs too adversely. 

In addition to starting and programming the equipment used in 

presenting the random light flashes and recording the reaction times, 

the solid-state system relayed all data to a Fabri-Tek Model 1062 In- 

strument Computer with Model SD-2/4 Four Channel Signal Digitizer and 
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SW-2 Sweep Control Plug-Ins.   The EEGs were recorded monopolarly 

from the S,  filtered by the polygraph   as mentioned earlier,  and averaged 

by the computer over the trial-block of 64 trial runs,  32 + 2 randomly 

presented stimulus (SN) and no-stimulus (N) trials.   In the autostimula- 

tion conditions,  it was assumed that both the alpha rhythm (noise or N) 

and evoked response (signal or SN) were present to some degree.    Thus 

these are termed "SN" conditions.   Trials when the stimulus was with- 

held and only the alpha rhythm averaged were accordingly termed "N" 

conditions.   The No Synch trials were activated by a clock instead of 

the ST,  the resultant being a typical VER. 

Averaged records (Figure 2) obtained during the SN condition were 

stored in the first computer register and the N conditions in the third 

register.   The second register recorded the time of stimulus presenta- 

tion and the reaction-time histogram (RT condition).   The fourth register 

was used to subtract N from SN conditions.   Data from this register 

were not used for quantification and analysis because of the unequal 

summations. 

The summated VERs were made visible by a Tektronix Type RM 504 

Oscilloscope.   A Hewlett Packard 7035 X-Y Recorder plotted out the data 

that were later used for amplitude measures.   The X-Y Recorder was 

calibrated to display 5 uV per half-inch with a summation of 64.   Except 

for the No Synch condition, Figure 2 is an example of a typical record 

of averaged activity obtained under one condition (Phase 5,   high inten- 
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Fig. 2.   Typical trial run from which all amplitude measures of VER, 

early and late alpha blocking, and average alpha were taken. 
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sity,   RT):   SN contains averaged activity when signal was presented; N 

is the alpha activity during the trial runs when a stimulus was not pre- 

sented; and SN-N is the subtracted data.   The No Synch is a summation 

of two No Synch blocks of trial runs and was included to demonstrate 

how it was used to determine the latency of the VER.   In terms of all the 

data for all Ss,  the VER component at this latency proved to have the 

greatest amplitude and,  thus,  was selected for statistical analysis. 

Results 

Hits 

Hits (flashes perceived),  misses (flash not perceived when 

flashed),  correct rejections (flash not seen when not flashed), and 

false alarms (flash seen when not flashed) were recorded on the poly- 

graph.   A preliminary study was made for the percentage of flashes per- 

ceived when presented (hits).    Flashes were perceived 92% of the time 

for the medium and high intensities.    Drastic changes within a block of 

trials were thought to be due to drowziness of the subject.   This was an 

ever-present problem because activation was kept to a minimum in an 

attempt to keep alpha activity at a maximum.    The low intensity was 

perceived 47% of the time by S DH and 94% and 84% by Ss LS and GW 

respectively.   Since there was no apparent relationship between alpha 

phase and percentage detection, no further analysis of these data was 

made. 

Visually Evoked Responses 
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Superimposed tracings were made for all Ss over all sessions. 

Figure 3 shows the effects of alpha phase on data from three Ss (LS, GW, 

and DH),  under the RT condition,  when the 2 log unit stimulus was pre- 

sented at the various alpha phases (SN),   when the stimulus was with- 

held and the alpha rhythm averaged (alpha or N condition),  and when the 

stimulus was presented randomly in respect to alpha phase (No Synch or 

VER condition).   Figure 4 shows similar data except the effects of three 

flash intensities are shown for one S (LS) under the NRT condition.    Each 

tracing represents the summation of 32 + 2 responses.   It should be 

remembered that the SN and N conditions were presented randomly while 

viewing these figures. 

Visual inspection of the superimposed tracings from all j3s revealed 

that the first evoked potential component that changed appreciably from 

that of averaged alpha activity was surface positive, occurring at a mean 

latency of 212 msec.    Latency of this VER component was determined for 

each subject by averaging the latency of all 12 of the No Synch tracings. 

Latencies for Ss LS, GW, and DH were 217 msec,  208 msec, and 210 

msec, respectively.    Subject LS's VER(N) amplitude in response to the 

2 log unit (medium) intensity shows a sudden decrease at Phase 2 in com- 

parison to Phase 1.   Then the amplitude of the VER(SN) can be seen to 

gradually increase until reaching Phases 4 and 5.   In looking at his 

tracings alone (Figure 4) it can be seen that VER(SN) amplitude also 

varies as a function of intensity.   The tracings in Figure 3 of the 
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Fig. 3.   Effects of alpha phase at   2 log units above threshold   on 

averaged activity with autostimulation obtained from Ss LS, GW,  and 

DH.   RT conditions only.   Each tracing represents the summation of 

32 + 2 responses. 
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from S LS.    NRT conditions only.   Each tracing represents the summa- 

tion of 32 + 2 responses. 



30 

VER(SN) for Ss GW and DH also display changes.   Subject GW has the 

same sudden change in amplitude at Phase 2 as does S LS: whereas 

S DH's greatest change in amplitude is at Phase 4. 

All data were plotted (as described below) for each S as a function 

of alpha phase,  intensity, RT and NRT, and replications.   By and large 

it was observed that the reaction response did not affect the nature of 

averaged activity.   There appeared to be slightly more alpha blocking 

when reaction time was taken,  and differences between phase were 

accentuated in the NRT condition for low and medium intensities.   How- 

ever,  changes did not appear significant from visual inspection (compare 

Figures 3 & 4).   For this reason summations for first and second replica- 

tions were made over the RT and NRT sessions.   Repeated measure 

analyses were made on these data for only S LS.   His averaged alpha 

was consistently present during all sessions,  which provided a good 

working base from which to work (as described below). 

The amplitude of the VER(SN) for all Ss was measured in the 

following manner (Figure 2).   First a baseline was determined for each 

tracing by averaging the difference between a_ and b and b and c and 

dividing by 2, giving the theoretical 0 point from which deflections are 

surface negative (up) or surface positive (down).   Response amplitude 

was measured vertically in reference to this baseline.   As has been 

mentioned previously,  an individual latency was determined for each S. 

The results of the VER(SN) measurements were plotted as a function of 
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Fig.   5.    Dependent measures for Ss LS,  GW,   and DH under auto- 

stimulation. 
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alpha phase and intensity (Figure 5).   Each plotted point is the mean of 

four averaged responses (two RT and two NRT conditions). 

The VER(SN) amplitude in Figure 5 is expressed in microvolts 

(uV).   Here it can be seen that the quantitative measures taken are ex- 

pressive of changes observed in the superimposed tracings.   The 

VER(SN) amplitude for S LS shows a U-shaped curve with Phase 2 

having a negative amplitude compared to Phase 1, 4, and 5.   The 

U-shaped curve holds over the three intensities,  but the low intensity 

reveals a greater difference between phases.   In Figure 6, VER(SN) for 

S LS is the same data expressed as a proportion by dividing the uV 

amplitude by the number of SN presentations.   This calculation was done 

for the purpose of comparing the VER(SN) to the VER(N),  a comparison 

which will be discussed later.   A variance analysis summary for the 

VER(SN) for S LS revealed that alpha phase, intensity,  and Phase X 

Intensity interaction were significant (p < .01).   The estimate of the 

proportion of variance accounted for (w2)  (Hays,   1963) indicated that 

these three significant factors accounted for 61% of the variance. 

Visual inspection of the plotted data (Figure 5) shows that the VER(SN) 

amplitudes change more over phase for the low intensity.   This inter- 

action was anticipated and is the reason why an intensity close to 

threshold was chosen. 

Plotted data of the VER(SN) amplitude (Figure 5) for Ss GW and DH 

also show changes,  but to a lesser degree between phases.    The 
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skewed U-shaped curve is present in the plotted data for S GW over 

the medium and low intensities, with the lowest amplitude being at 

Phase 2; however,   Phase 4 shows the lowest amplitude at the high 

intensity.    Subject DH's lowest VER(SN) amplitude occurs at Phase 4, 

with Phase 2 consistently having the highest amplitude; thus the 

U-shaped configuration is still present, but the break occurs later. 

Intensity appears to affect the amplitude of the (VER(SN).   Note, 

however,  that it is the medium intensity that has the greatest over-all 

amplitude for Ss GW and DH.   It is possible that VER(SN) amplitude is 

confounded with attentional factors.   Subject DH missed 53% of his 

flashes at the low intensity.   This fact indicates that 53% of his SN 

data would look a lot like averaged alpha (N).   The same thing can be 

said for S GW who missed 16% of the low intensity flashes.    Subject 

DH became drowsy on several occasions, and he missed 15% of the 

brightest flashes.   The medium intensity brought forth the largest VER 

amplitudes from Ss GW and DH. 

Early and Late Alpha Blocking 

Individual differences are evident when viewing the superimposed 

tracings for early and late blocking (see Figure 3).   As an aid in ana- 

lyzing these data,  alpha blocking for all subjects was quantified over 

two intervals of time:   early (100-400 msec, after stimulus presentation) 

and late (400-800 msec, after stimulation).    Referring to Figure 2 data 

from early alpha blocking (AB(SN) ) included measures f_-g_,  g_-h,   h-i^ 
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i.-i, i_-k. and Jc-_1.   These measures were summed, divided by six, and 

divided by the average of c-d and d-e.   The measure expresses alpha 

blocking in proportion to the amplitude of averaged activity at the time 

of stimulus presentation and can be compared to any other SN or N data 

obtained in the same manner,  regardless of an unequal number of 

summations.   Late alpha blocking was analyzed in the same manner, 

with the peak to trough measurements going from l_toi.-   The results 

were plotted as a function of alpha phase and intensity (Figure 5).   Each 

plotted point is the mean of four measures (two RT and two NRT condi- 

tions). 

Visual inspection of Figure 5 and the early AB(SN) and late AB(SN) 

data reveals phase to be of questionable significance for £3s LS and DH; 

however,   phase does appear to be significantly different in plotted data 

for S GW,  with Phases 1 and 2 having less alpha-like activity than 

Phase 5.    Phases 1 and 5 are supposed to be essentially identical with- 

in the 100 msec, alpha cycle.   These data, therefore,  reflect the rapid 

attenuation of the averaged alpna that was observed in the raw data, 

and not the effects of phase.   Intensity appears to be functionally 

related to the extent of alpha blocking for all Ss; however,  there is 

inter-subject variability.   Plotted data for S LS indicates that less 

alpha blocking occurs at the low intensity and the most at the high 

intensity; whereas plotted data for S GW reveal that the most alpha 

blocking occurs at the low intensity.   Intensity appears to have little 
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effect on alpha blocking for S DH. 

The variance analysis summary for AB(SN) for S LS (Tables 3 & 4) 

revealed that the effects of phase on early or late alpha blocking did 

not approach statistical significance (p j>- .05).   Phase X Intensity 

interactions did not approach significance (p ^-.05),   but accounted for 

13% of the variance in the early date.   Phase X Replication interactions 

were also non-significant (p ^ .05) even though they accounted for 9% 

and 13% of the variance for the early and late AB(SN) data,  respectively. 

Intensity had a significant effect on early AB(SN) (p < .01) and 

accounted for 28% of the variance.   The effect of intensity was not 

significant for late AB(SN) (p > .05), accounting for only 12% of the 

variance. 

Reaction-Time Latency and Variability 

Reaction-time latency and variability were calculated for all Ss by 

using the print-out data from the electronic counter and printer.   The 

results were plotted as a function of alpha phase and intensity (Figure 

5).   Each plotted point is the average of two replications. 

Visual inspection of reaction-time latency suggests that RT 

latency is functionally related to intensity,   with fastest RTs occurring 

at the high intensity.   Phase is not significant (p ^ .05) in the analysis 

of variance for S LS.   Intensity is significant (p <  .01).   See Table 4. 

Since the analyzed RT findings do not go along with what has been 

found previously in other research,   mention will be made of this in the 
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discussion section of this paper. 

Reaction-time variability for S LS was variable,   showing no 

functional relationship with phase or intensity.   This was demonstrated 

by the analysis of variance on these data from S LS   (see Table 5). 

In addition to the above mentioned measurements for the three 

Ss, additional measurements were made on all the data from S LS.   His 

data were selected in particular because his averaged alpha was so 

consistent during the no-signal trials (N) (Figures 3 & 4).   The original 

VER(SN) uV amplitude measure was divided by the number of summations. 

A corresponding measurement was made on the averaged alpha or VER(N). 

Corresponding early and late alpha blocking measures were made on the 

averaged alpha activity (early AB(N) and late AB(N),   respectively) as 

were made for SN.   Specifically,   referring to Figure 2,  measurements 

were made from V-V and from V-V.   Since all amplitudes were expressed 

as proportions,  it was then appropriate to subtract VER(N) from VER(SN). 

The results were plotted as a function of alpha phase and intensity 

(Figure 6).    Each plotted point is the mean of four measures. 

Research specifically designed to study the alpha rhythm as it is 

related to evoked brain activity indicates that evoked and spontaneous 

potentials may share a common central neural element.   For this reason, 

analyses of variance (repeated measures) were made for VER (SN-N) and 

early AB(SN-N) and late AB(SN-N)   (see Tables 6,  7,   & 8). 

Visually Evoked Responses Minus Averaged Alpha 
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Variance analysis summary for VER(SN-N) revealed phase to be 

significant (p   ^ .05),  as was intensity (p < .01).   The Phase X In- 

tensity interaction did not approach statistical significance (p ^ .05). 

A total of 84% of the variance was accounted for,   72% being due to 

intensity. 

Early and Late Alpha Blocking Minus Averaged Alpha 

Phase did not prove to have a significant effect on early or late 

alpha blocking (SN-N).   Intensity for early alpha blocking (SN-N) was 

significant (p <T.05) with a w2 of 19%.   Intensity was not significant 

for late alpha blocking (SN-N) but accounted for 16% of the variance 

(Tables 7 & 6). 

Summary of Analyses of Variance 

Intensity significantly influenced all dependent measures except 

RT variability,  and late AB(SN) and AB(SN-N) and accounted for most of 

the variance.    Changes as a function of alpha phase were significant for 

both VER(SN) and VER(SN-N) amplitude measures; however,  variance 

accounted for was minimal compared to that of intensity.   More variance 

was accounted for with Phase X Intensity and Phase X Replication inter- 

actions.    Examination of Figure 6 indicates that Phase 1,  4,  and 5, as 

drawn in Figure 1,  are the most excitable.   Actually these three phases 

are within 2 5 msec, of each other, with Phase 1 and 5 being ideally 

the same point in time within the alpha cycle (100 msec).    Phases 2 

and 3, in comparison,  are the less excitable and occur from 25-50 msec. 
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later in time from Phase 1,  4,  and 5. 

Although effects due to replications are not great, they do appear 

to approach significance as interactions in all the data analyses except 

for early and late alpha blocking (SN-N) and RT latency.   This obser- 

vation indicates that there is some day-to-day variability, which 

agrees with findings of Callaway (1962),  Magnus and Ponsen (1965), 

and Bechtereva and Zontov (1962).   In the case of early and late alpha 

blocking (SN),  replications accounted for 11% and 23% of the variance 

as interactions. 

Discussion 

Reaction time was one of the first psychological phenomena found 

to be related to alpha phase.   It was anticipated that this experiment 

would also find a significant relationship,  but this did not turn out to 

be the case.   What are the reasons? 

First of all,   all the data were recorded and averaged.   Averaged 

alpha was used instead of the individual alpha and stimulus presenta- 

tion tracings; so that more random non-alpha activity was involved than 

in the other experiments mentioned.   There was considerable vari- 

ability in the RTs.   As Lansing (1957) mentioned,  variations in set and 

attention critically affect RT.   He used short trial runs with rest per- 

iods between runs.    He also used a fixation light.   Subjects in the 

present experiment,   sitting in a totally dark room and responding to a 

Ganzfeld,  had difficulty even knowing whether or not their eyes were 
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open (they were supposed to be) or rolled up into their head.   Also,  all 

RTs were used (in one S) and all phases analyzed in one repeated 

measures design.   In that analysis,  phase did not prove to be signifi- 

cant.   After going back over the data and comparing mean RTs between 

Phases 1 and 3,  however, there was a 46 msec, difference with the low 

intensity,  37 msec, with the medium,  and 11 msec, difference with the 

high intensity.   Phase 3 correlated with the shortest mean RT.   In look- 

ing at Figure 5 a trend of this kind can be seen with S LS: there is a 

reverse in trend for Ss GW and DH,   showing Phase 3 to be correlated 

with the longest RTs.   Phase 3 in this experiment is the peak of the 

negative deflection in the 100 msec, alpha cycle; no corrections have 

been made for transmission time to the cortex. 

The alpha average was chosen to work with because of its rela- 

tively simple characteristics and the ease by which it is derived.   Pre- 

cisely,  alpha average is averaged activity correlated with the alpha 

rhythm through the period explored.   Within the same subject, averaged 

alpha frequency is extremely stable (Remond,  LeseVre, Joseph,   Rieger 

& Lairy,   1969).   In the case of S LS, the fact that his averaged alpha 

attenuated slowly indicates his spontaneous alpha rhythm has a partic- 

ularly restricted frequency band; whereas S GW whose averaged 

alpha attenuated rapidly indicates that her alpha rhythm has a more 

widely dispersed frequency.   It is evident that the more stable and free 

from noise the spontaneous alpha rhythm is, the more the alpha average 
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obtained will be reproducible and representative of the spontaneous 

alpha rhythm.   In the present study,  as has been mentioned earlier, 

the criterion for stimulus presentation at a particular phase + 10 msec, 

was met in the 180 trial runs performed (Figures 3 & 4).   Even though 

using averaged alpha is a less precise procedure than using true 

correlations,  it has the advantage of being faster to perform.    (See 

Remond,  Lesevre, Joseph, Rieger,   & Lairy,   1969; and Joseph,  Remond, 

Rieger,  & Lesevre,   1969 for a thorough description of the alpha 

average.) 

The use of the averaged signal activity (SN) proved to be detri- 

mental to the study of the alpha-phase relationship to reaction time; 

however, it proved to be very helpful in obtaining the measurements 

for the VERs and early and late blocking.   In addition, it was possible 

to average concurrent alpha activity during the no-stimulus condition so 

that there would be some idea of what type of brain activity occurred 

when a stimulus was not presented.   That is to say,  this information 

gives some notion of how long averaged alpha lasts,  whether or not it 

attenuates,  and if so, in what way. 

There is no way that this experiment can settle the question of 

whether or not a photic block calls forth participation of additional 

neurons, but it can be said that measurement of the VER across inten- 

sities shows that the VER(SN) at the low intensity does not look to be 

appreciably different from the averaged alpha VER(N) at the same point 
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in time in spite of the fact that 94% of the time a flash was perceived 

(see Figure 4 & 6); whereas VER(SN) amplitude at high intensity no 

longer resembles that of the averaged alpha.   This observation could 

mean either that alpha has become completely desynchronized or that a 

general increase in nonperiodic electrical activity within the occipital 

region might have the effect of overriding an underlying pacemaker 

(Goldstein 1970).   Goldstein held that,  if there were an underlying pace- 

maker, the temporal phase relationship between pre- and post-blocked 

sections of a given alpha wave train would be unaffected by the onset 

or sessation of a photic stimulus.    His research supported the paced 

generator model.   As was the case in the successful reaction-time 

experiments, Goldstein was in the position to screen out muscle 

potential artifacts or violent spontaneous phase discontinuities.   In 

addition,  onset of the light pulse was not synchronized with the alpha 

wave.   The correlation data were selected later.   Here again, using the 

averaged VER and alpha technique may have been a too insensitive pro- 

cedure to be sure about temporal phase continuity.   With the data that 

were secured in this experiment,  however, and with what little after- 

discharge that occurred that looked as if it could be called such, it 

appeared as if there had been a phase shift between the pre- and post- 

blocked averaged alpha wave. 

Supposing,  however,  that there is an underlying pacemaker that 

continues to perform during photic blocking, then perhaps, it would be 
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fitting to take the averaged alpha that was randomly secured during each 

block of trials and subtract it from the stimulus trials.   This was done 

in the SN-N analysis of variance.   Phase significance dropped from 

p <^ .01 to p <   .05 and Phase X Intensity interaction dropped in sig- 

nificance from p<   .Oltop c  .10; however intensity did not change 

from the p ^ .01 level.   As a matter of interest,   62% of the variance 

was accounted for in the SN data; whereas 84% of the variance was ac- 

counted for in the SN-N data,   72% being due to intensity (Tables 1 & 6). 

Alpha phase at the time of stimulation did not appear to be func- 

tionally related to early and late blocking (SN-N) at least to the extent 

that there were no significant differences in the amount of blocking from 

one phase to another.   The difference observed (Figures 4 & 6) in alpha 

blocking was due to the intensity of light flash.   Subtraction of the 

averaged alpha left intensity to still be significant at the p <* .01 level; 

however,   the amount of variance accounted for by intensity dropped from 

28% to 19% (Tables 4 & 7). 

Late alpha blocking was even less sensitive to alpha phase and 

intensities, and the after-discharge that others have gotten under com- 

parable experimental conditions (Redmond & Lesevre 1967); Horstfehr 

1967; Goldstein 1970) was not consistently present.   It has been men- 

tioned that after-discharge does not occur with opened eyes.   No 

information was given concerning the visual field when eyes were 

opened.    For the interval of time between 400 and 800 msec, after 
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stimulus presentation,  none of the independent variables used had any 

significant functional relationships (Tables 3 & 8). 

Summary 

The cortical excitability model proposed by Harter (1967) has, in 

part,  been   supported by findings in this experiment.   The effects of 

alpha phase, flash intensity, and response task on VER amplitude, alpha 

blocking, and RT were investigated. 

The autostimulation technique was used to trigger light flashes, 

and the "resulting" evoked responses were averaged with a digital com- 

puter.   Data which were recorded by an X-Y plotter were analyzed by 

averaging over four measures (2 RT and 2 NRT conditions) and plotting 

for all Ss.   Analyses of variance were performed to test for statistical 

significance on all data from one S_. 

The amplitude of the VER was functionally related to alpha phase 

and intensity; there was also an interaction between the two,  there 

being a greater difference due to phase at the low intensity.   Intensity 

significantly influenced all dependent measures except for RT variability 

and late alpha blocking and accounted for most of the variance. 

Discrepancies from previous research in the RT data are thought 

to be due to differences in methodology, technically and statistically. 

No attempt was made to determine the physiological basis of 

alpha nor the point of hyper- or hypo-excitability of the alpha cycle at 

the cortex.   Two methods of data analysis were used.   One method used 
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only the SN data and did not take an underlying averaged alpha into 

account which assumes that once alpha is blocked, it becomes 

desynchronized and is reset once it reappears; the other took averaged 

alpha into account, used SN-N data,  and assumes that alpha is ever- 

present but blanketed during photic stimulation and does not appear to 

be reset when it reappears. 

Whether one or the other model is appropriate depended upon 

intensity in this study.   The VER(SN) activity looked to be much the 

same as averaged alpha taken over the same interval of time when a low 

intensity flash was used; however, when a high intensity flash was 

used,  the alpha activity was desynchronized,  and phase appeared to 

be reset whenever alpha-like activity reoccurred. 
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APPENDIX A 



TABLE 1 

VARIANCE ANALYSIS SUMMARY FOR VER (SN) 

52 

Source of Variation df MS Error Term F W2 

A. Phase 4 1.5028 E+G 20.0107** .02 

B. Intensity 2 4.9040 F+G 95.2200** .45 

C. Replications 1 .2167 G 4.5621 .01 

D. Phase X Intensity 8 .3813 G 8.0274** .14 

E. Phase X Replications 4 .1301 G 2.7389 .02 

F. Intensity X Replications 2 .0675 G 1.4211 .02 

G. Phase X Intensity X 
Replications 

8 .0475 

Total 29 

* p«C .05 
** p<r  .01 
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TABLE 2 

VARIANCE ANALYSIS SUMMARY FOR EARLY ALPHA BLOCKING (SN) 

Source of Variation df    MS Error Term    F W' T~ 

A. Phase 4 .0397 E+G 1.3233 .05 

B. Intensity 2 .1936 F+G 10.8764** .28 

C. Replications 1 .0403 G 1.9659 .02 

D. Phase X Intensity 8 .0421 G 2.05 .13 

E. Phase X Replications 4 .0489 G 2.3854 .09 

F. Intensity X Replications 2 .0068 G 

G. Phase X Intensity X 
Replications 

3 .0205 

Total 29 

* p <  .05 
** p<    .01 
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TABLE 3 

VARIANCE ANALYSIS SUMMARY FOR LATE ALPHA BLOCKING (SN) 

Source of Variation df. MS Error Term F W2 

A. Phase 4 .0270 E+G 1.0112 .03 

B. Intensity 2 .0580 F+G 3.0688 .12 

C. Replications 1 .0864 G 4.0000 .08 

D. Phase X Intensity 8 .0222 G 1.0278 .03 

E. Phase X Replications 4 .0370 G 1.7130 .15 

F. 

G. 

Intensity X Replications 

Phase X Intensity X 

2 

8 

.0082 

.0216 

G 

Replications 

Total 29 

*p-Z   .05 
**P<    .01 
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TABLE 4 

VARIANCE ANALYSIS SUMMARY FOR REACTION-TIME LATENCY 

Source of Variation df     MS Error Term   F W± 

A. Phase 

B. Intensity 

C. Replications 

D. Phase X Intensity 

E. Phase X Replications 

F. Intensity X Replications 

G. Phase X Intensity X 
Replications 

Total 

4 1011.6167 E+G 

2 13851.5333 F+G 

1 2502.5333 G 

8 232.2667 G 

4 1231.1167 G 

2 189.6334 G 

8 1088.7167 

.8904 .01 

30.4788**    .53 

2.2986        .03 

29 

*p <   .05 
**p<    .01 
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TABLE 5 

VARIANCE ANALYSIS SUMMARY FOR REACTION-TIME VARIABILITY 

Source of Variation df     MS Error Term    F W^ 

A. Phase 

B. Intensity 

C. Replications 

D. Phase X Intensity 

E. Phase X Replications 

4 278.9667 E 

2 152.2334 F 

1 529.2000 G 

8 182.9417 G 

4 859.7000 G 

F.   Intensity X Replications        2     395.1000    G 

G.   Phase X Intensity X 
Replications 

Total 

8     244.9750 

2.1602     .05 

3.5093     .27 

29 

*p  <.   .05 
**p<    .01 



TABLE 6 

VARIANCE ANALYSIS SUMMARY FOR VER (SN-N) 
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Source of Variation & MS Error Term F W2 

A. Phase 4 .1686 E 6.4106* .03 

B. Intensity 2 4.6591 F, G 48.6844** .72 

C. Replications 1 .0010 G 

D. Phase X Intensity 8 .2066 G 2.6453 .09 

E. Phase X Replications 4 .0263 G 

F. Intensity X Replications 2 .1661 G 2.1268 .02 

G. Phase X Intensity X 
Replications 

8 .0781 

Total 29 

*p<    .05 
**PC    .01 
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TABLE 7 

VARIANCE ANALYSIS SUMMARY FOR EARLY ALPHA BLOCKING (SN-N) 

Source of Variation df. MS Error Term F W2 

A. Phase 4 .0072 E+G .8571 .01 

B. Intensity 2 .0357 F+G 4.3537* .19 

C. Replications 1 .0128 G 1.6623 .04 

D. Phase X Intensity 8 .0103 G 1.3377 .09 

E. Phase X Replications 4 .0097 G 

F. Intensity X Replications 2 .0026 G 

G. Phase X Intensity X 
Replications 

8 .0077 

Total 29 

*p   <  .05 
**p <   .01 
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TABLE 8 

VARIANCE ANALYSIS SUMMARY FOR LATE ALPHA BLOCKING (SN-N) 

Source of Variation df     MS Error Term    F wz 

A. Phase 4 .0050 E .4587 .03 

B. Intensity 2 .0304 F 7.6000 .14 

C. Replications 1 .0124 G .7470 .03 

D. Phase X Intensity 8 .0157 G .9458 .02 

E. Phase X Replications 4 .0109 G 

F. Intensity X Replications 2 .0040 G 

G. Phase X Intensity X 
Replications 

8 .0166 

Total 29 

*p<  .05 
**p<    .01 
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Latin Square for Experimental Conditions 

General 

Subjects    Repl. Reaction Time     No Reaction Time 

L M H L M H 
1 1 

2 

2 > 
2 

3 « 
2 

1 2 a 4 s fi 

6 5 4 3 2 1 

2 3 6 1 4 5 

5 4 1 6 3 2 

2 6 2 5 1 4 

4 _L_ .5 2 6 3 

Alpha Phase Order                              Subjects 

Oms    25ms 50ms  75ms   100ms N/S        1       2_ 

1 2 3 4 5 N/S RT L RT M RT H 

2 3 N/S 1 4 5 RT M RT H NRT L 

3 N/S 2 s 1 4 RT H NRT L NRT M 

4 5 1 2 N/S 3 NRTL NRT N* NRT H 

5 1 4 N/S 3 2 NRT M NRT H RTL 

N/S 4 5 3 2 JL NRTH KU- RTM 
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INSTRUCTIONS TO EXPERIMENTER 

I.     CHECK inkwells, RT paper and Polygraph paper. 

II.     TURN ON EQUIPMENT 

1. Master switch 
2. Reaction time   Power - On 
3. Pull out 28v supply on Solid State 
4. Turn on two Power Supplies 
5. Turn on Grass PS-2 photostimulator — 2 switches. 
6. Turn on White noise   POWER 
7. Turn on Polygraph 
8. Check oscilloscope and CAT to make sure they are on. 

III. PREPARE SUBJECT 

IV. ADJUST SCHMITT TRIGGER and record value for each S. 

V. ADJUST DELAY on photostimulator so that in the Phase 1 position 
the stimulus will be presented at the trough between the 1st and 
2nd alpha. 

VI. POST SUBJECT'S SESSION SCHEDULE 

VII.      BEFORE STARTING EACH BLOCK 
1. Advance RT tape and reset. 
2. Reset mechanical and electrical timers. 
3. Set Phase    .' 
4. Erase and start CAT. 
5. Warn the S that starting is imminent. 
6. Turn on white noise. 
7. Plug in trigger if in Alpha Phase or Clock if No Synch. 

VIII.     DURING EACH BLOCK 
1. Always monitor scope — observing phase and stimulus presen- 

tation. 
2. Monitor CAT for stimulus presentation. 
3. Monitor polygraph.   Observe EEG and check to see if the S is 

responding properly. 
4. Label Polygraph and RT with name, date, block, intensity, 

response. 
5. Label graph paper and place into position. 
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IX.     AT END OF EACH BLOCK 
1. Unplug trigger or turn off clock. 
2. Turn off polygraph. 
3. Turn off white noise and talk to the S. 
4. Print Out 

1.   Invert RT in Channel 2 . 
2 .   Put Channel 1 into 4 . 
3 .    Subtract Channel 3 from 4. 
4.    Print out. 
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PROCEDURE WITH SUBJECT 

1. Put on glasses for dark adaptation for 30 minutes. 

2. Place electrode in midline one inch above inion.   Reference elec- 
trode will be clipped to the right ear lobe.   Be sure to put paste on 
electrode. 

3. Check resistance   -DC   RX10. 000. 

4. Be sure that the electrodes are not entangled in the glasses so that 
glasses can be removed. 

5. Place the S in chair.   Ask the S to close eyes while Ganzfeld is 
being placed into position and to keep them closed until instructed 
otherwise which will be when E darkens the sound-and light- 
shielded room. 

6. Adjust head rest so that the S is as comfortable as possible in an 
upright position and is approximately 80 cm. from visual stimulus 
display. 

7. Plug in electrodes — notched edge toward control room. 

8. Instruct the S to stay as relaxed as possible and yet alert enough to 
make responses when appropriate. 

9.   Stress to the S that movement must be kept to a minimum during the 
actual recording period.   If it is necessary to blink,  or move head, 
suggest they try to do so right after a click has been heard which at 
times indicates when a trial has ended. 

10. Explain to the S that his alpha activity will trigger the stimulus 
situation and that there will be no set time when stimulus will be 
presented.   Stimuli will be a light flash which will be randomly 
presented 50% of the time; during the other 50% of the time a flash 
will not be presented. 

11. There are two possible ways to respond to the stimulus condition. 
During any one session (day) the S will be asked to use only one 
method of responding and will be told at the beginning of the 
session what is expected. 
The S will make the same response with the left hand during every 
session.   That is — when he hears a click, it will indicate the end 
of a trial and will symbolize the question,  "Did you see a light 
flash?" .   If the answer is "No, " he will gently push the button. 
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The response is necessary to keep tabs on whether or not a stimulus 
was perceived. 
The other response situation involves the use of a reaction-time key 
which the S is asked to release if he sees a light flash.   If the key 
is released, the click will not be presented.   If the key is held 
down, the click will sound and ask the usual question.   In the RT 
condition,  the answer will probably be "No"; otherwise a key 
release would have prevented the "questioning" click. 

12.   A Session will involve six blocks with 64 trials within each block. 
Each block will take approximately 5 mins.   There will be a rest 
period between each session while E is printing out. 

13.   Tell the S at beginning of session of brief delay for adjusting 
equipment. 
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INSTRUCTIONS TO SUBJECT 

This study is looking into the relationship between alpha-type 

brain activity and perceived visual light flashes.   For this reason, we 

would like you to remain as relaxed as possible and yet alert enough to 

perceive the light flash if presented.   Please keep your eyes open during 

trial runs. 

During this session there will be six trial runs.   Each trial run 

will take about 4-1/2 mins.   During each run,   32 light flashes will be 

presented randomly over 64 trial periods about 4 sees. long.   Actually 

your alpha activity will determine the time when stimulus will be pre- 

sented. 

There will be a rest period between each trial run for about 2 

mins.   You may move,   stretch,  talk to me over the intercom, etc.   I 

will warn you at the beginning of each run, and the white noise will 

indicate the actual beginning. 

1. Today I want you to keep this reaction-time key down at all times 

unless you see a light flash.   When you see a light flash,   release the 

key as soon as possible.   If you do not release the key, you will hear 

a click at the end of the trial which is asking the question,  "Did you 

see a light?"   If you did not,   please gently push the button in your left 

hand.   Be sure that you do not move your head when you do this.   Any 

extra movement will show up on the record. 

2. Today I want you to listen for the click which will come at the end 
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of each stimulus period. It is asking you the question, "Did you see a 

light flash?" If you did not, please gently push the button in your left 

hand.   Remember that any extra movement will show up on the records. 

Do you have any questions ?   If anything comes up during the 

Session, I will be able to hear you between the trial runs over the 

intercom. 


