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ABSTRACT. We compute commutativity degrees of wreath products A o B of finite
abelian groups A and B . When B is fixed of order n the asymptotic commutativity
degree of such wreath products is 1/n2. This answers a generalized version of a
question posed by P. Lescot. As byproducts of our formula we compute the number
of conjugacy classes in such wreath products, and obtain an interesting elementary
number-theoretic result.

1. INTRODUCTION

For a finite group G let G denote the set of pairs of commuting elements of G:

G = {(g , h) ∈G×G | g h = h g}.

The quantity |G |/|G|2 measures the probability of two random elements of G com-
muting and is called the commutativity degree of G. In [1] Paul Lescot computes the
commutativity degree of dihedral groups and shows that it tends to 1/4 as the order of
the group tends to infinity. He then asks whether there are other natural families of
groups with the same property. In this paper we show that if B is an abelian group of
order n and A is a finite abelian group, then the commutativity degree of the wreath
product A oB tends to 1/n2 as the order of A tends to infinity.

Theorem 1.1 Let G = A o B where A is a finite abelian group and B = {b1, b2, . . . , bn}
is an abelian group of order n. Then

(1) |G |=
n
∑

s ,t=1
|A|n+α(s ,t )

where α(s , t ) denotes the index of the subgroup of B generated by bs and bt .

The exact value of the quantity α(s , t ), of course, depends on the structure of B
as an abelian group. We show how to obtain it in §3. Here we just note that when
B = Zn = {1,2, . . . , n} is a cyclic group of order n, α(s , t ) = (n, s , t ) (where (n, s , t )
denotes the greatest common divisor of n, s , and t ). More generally, for a fixed value
of n the farther B is away from a cyclic group, the larger the commutativity degree
of the wreath product A o B is. For example, the commutativity degree of A oZ4 is
1/16+3|A|−2+12|A|−3, while that of Ao(Z2×Z2) is 1/16+9|A|−2+6|A|−3. However,
the asymptotic behavior of the commutativity degree of the wreath product A o B as
|A| →∞ does not depend on the structure of B as an abelian group.
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Corollary 1.2 Let A be a finite abelian group and B be an abelian group of order n.
Then the commutativity degree of the wreath product A oB tends to 1/n2 as |A| →∞.

A straightforward computation with indices of centralizers shows that the number
of conjugacy classes in a finite group G is equal to |G |/|G|, hence (1) yields the for-
mula for the number of conjugacy classes in wreath products of finite abelian groups.

Corollary 1.3 Let A and B be as in Theorem 1.1. Then the number of conjugacy classes
in the wreath product A oB is 1

n

∑n
s ,t=1 |A|

α(s ,t ).

By taking B =Zn in Corollary 1.3, we obtain the following interesting elementary
number-theoretic result. We had not been able to find an elementary proof of this
fact.

Corollary 1.4 For any natural number a, the sum
∑n

s ,t=1 a(n,s ,t ) is divisible by n. If n
is prime, this gives Fermat’s little theorem.

2. NOTATION AND TERMINOLOGY FOR WREATH PRODUCTS

We will use some of the notation from [2]. Let A and B be groups and let A∗

be the direct sum of copies of A indexed by elements of B . We will write this as
A∗ =
∑

b∈B Ab , where each group Ab is a copy of A. Elements of A∗ can be thought
of as functions from B to A with finite support. An element f ∈A∗ such that

f (b ) =

(

a if b = b0 ∈ B ,
eA otherwise

will be denoted by σa(b0). In this notation, every element of A∗ can be uniquely
written in the form

σa1
(b1) · · ·σas

(bs ),

where b1, . . . , bs are distinct elements of B , and a1, . . . ,as are any elements of A. Such
a presentation will be called a canonical word. Define an action of B on A∗ by

(2) f c (b ) = f (b c−1), c ∈ B , b ∈ B .

The (standard restricted) wreath product of A and B , denoted by AoB , is the semidirect
product of A∗ and B with the action of B on A∗ given by (2). If we denote the elements
of the canonical copy of B in A oB by τc , c ∈ B , then (2) becomes

τcσa(b ) = σa(b c)τc ,

whence every element of A oB can be uniquely written in the canonical form

σa1
(b1) · · ·σas

(bs )τb ,

where σa1
(b1) · · ·σas

(bs ) is a canonical word in A∗. We will work with wreath prod-
ucts where the group B is finite, in which case the restricted wreath product and the
complete wreath product are the same.
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3. PROOF OF THEOREM 1.1

Since both groups A and B are abelian we will use additive notation for their group
operations. To make the proof transparent we first work out in detail the case when
B = Zn is the cyclic group of order n. We may represent elements of B by arbitrary
integers assuming that one takes the residue modulo n to obtain an actual element of
Zn .

We will count the number of commuting pairs of elements of G =AoZn as follows.
Fix s and t in {1, . . . , n− 1, n} and let

g = σa0
(0)σa1

(1) · · ·σan−1
(n− 1)τ−s

and

h = σx0
(0)σx1

(1) · · ·σxn−1
(n− 1)τ−t .

We then count the number of commuting pairs (g , h) with prescribed values of s and
t but allowing ai ’s and xi ’s to be arbitrary elements of A. To do so we think of an
element g as being “fixed” and count the number of elements h that commute with
every such given g . As we will see shortly, there might be some conditions on ai ’s
for g to commute with at least one such h.

We will make a convention that au and av represent the same element of the group
A if u and v are equal modulo n; same for xu and xv . With this notation, the elements
g and h as above commute if and only if

x0− xs = a0− at

x1− xs+1 = a1− at+1

...
xn−1− xs+(n−1) = an−1− at+(n−1)

which can be thought of as a “linear system” in unknowns x0, x1, . . . , xn−1. Let d + 1
be the order of s in Zn , then d + 1 = n/(n, s) and there are (n, s) cosets of the cyclic
subgroup 〈s〉 generated by s in Zn .

The above linear system will split into (n, s) independent subsystems in unknowns
{xi , xi+s , xi+2s , . . . , xi+d s} where i varies over the representatives of the cosets of 〈s〉
in Zn , say 0 ¶ i ¶ (n, s)− 1. The matrix of each such subsystem has rank d , hence
for the subsystem to be consistent the “constant” column consisting of differences of
ai ’s must add up to zero. This gives the following condition for consistency of the
i th subsystem:

(3) ai + ai+s + · · ·+ ai+d s = ai+t + ai+s+t + · · ·+ ai+d s+t , 0¶ i ¶ (n, s)− 1.

If t ∈ 〈s〉 then the conditions (3) are automatically satisfied for all i , hence for any
choice of the elements a0,a1, . . . ,an−1 the number of elements h commuting with
given g is |A|(n,s) since each subsystem has one free variable.

Suppose now that t ∈ j + 〈s〉 for some j ∈ {1, . . . , (n, s)− 1}. Let u denote the
order of t (= order of j ) in the quotient group Zn/ 〈s〉. Then u = (n, s)/(n, s , t )
and the index of the subgroup 〈t 〉 in Zn/ 〈s〉 is (n, s)/u = (n, s , t ); in the notation of
Theorem 1.1 this is nothing but α(s , t ).
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The conditions (3) split into α(s , t ) blocks corresponding to the cosets of 〈t 〉 in
Zn/ 〈s〉. The kth block (0¶ k ¶ α(s , t )− 1) looks as follows:

ak + ak+s + · · ·+ ak+d s = ak+t + ak+t+s + · · ·+ ak+t+d s

ak+t + ak+t+s + · · ·+ ak+t+d s = ak+2t + ak+2t+s + · · ·+ ak+2t+d s

...
ak+(u−1)t + ak+(u−1)t+s + · · ·+ ak+(u−1)t+d s = ak+u t + ak+u t+s + · · ·+ ak+u t+d s

But u t is a multiple of s , hence the right hand side of the last equation is equal to the
left hand side of the first equation. It follows that exactly one of these u equations
is a consequence of the others and each block produces u − 1 independent “linear”
conditions on ai ’s.

To summarize, among the |A|n sequences (a0,a1, . . . ,an−1) of elements of A, there
are exactly |A|n−α(s ,t )(u−1) = |A|n−(n,s)+α(s ,t ) sequences for which the original linear
system in x0, x1, . . . , xn−1 is consistent. For each such fixed sequence, the number of
sequences (x0, x1, . . . , xn−1) satisfying the corresponding system is |A|(n,s) since each of
the (n, s) (= index of the subgroup of B generated by s ) subsystems contributes one
free variable. Thus, for fixed s and t the total number of commuting pairs (g , h) of
elements of G where the canonical form of g ends in τ−s and the canonical form of
h ends in τ−t is |A|n+α(s ,t ). The formula (1) now follows.

In the general case, when B = {b1, b2, . . . , bn} is an arbitrary abelian group, fix bs ,
bt ∈ B and consider two elements of G =A oB

g = σa1
(b1)σa2

(b2) · · ·σan
(bn)τ−bs

and
h = σx1

(b1)σx2
(b2) · · ·σxn

(bn)τ−bt
.

Note that the above proof essentially did not use the fact that B was a cyclic group (it
was only used to have a convenient way to label the indices of ai ’s and xi ’s). Rather,
the computation involves the following quantities:

• the index of the cyclic subgroup of B generated by bs , say β(s);
• the index of the cyclic subgroup of the quotient group B/ 〈bs 〉 generated by

the image of bt , this is precisely α(s , t ) in our notation.

The “linear system” which gives conditions for elements g and h to commute then
splits intoβ(s) subsystems each of which corresponds to a coset of the cyclic subgroup
〈bs 〉 of B , hence the same reasoning carries over verbatim to the general case. Further,
the conditions on ai ’s will split into α(s , t ) blocks each of which corresponds to a
coset of the cyclic subgroup generated by the image of bt in B/ 〈bs 〉.

It follows that among the |A|n sequences (a1,a2, . . . ,an) of elements of A, there
are exactly |A|n−β(s)+α(s ,t ) sequences for which the linear system is consistent. For
each such fixed sequence, the number of sequences (x1, x2, . . . , xn) satisfying the cor-
responding system is |A|β(s). Thus, for fixed s and t the total number of commuting
pairs (g , h) of elements of G where the canonical form of g ends in τ−bs

and the
canonical form of h ends in τ−bt

is |A|n+α(s ,t ). This completes the proof of Theo-
rem 1.1.
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Finally, we give a formula for α(s , t ) which depends on the structure of B as an
abelian group. Let B = Zn1

× · · · ×Znk
and let s = (s1, . . . , sk ), t = (t1, . . . , tk ) be two

elements of B . Let α(s , t ) = [B : 〈s , t 〉].
Consider the surjective homomorphism π : Zk → B with kerπ= n1Z×· · ·×nkZ.

Let a, b ∈ Zk be such that π(a) = s and π(b ) = t . Then Zk/H ∼= B/ 〈s , t 〉 where
H = kerπ+〈a, b 〉. We determine the order ofZk/H as follows. Write a = (a1, . . . ,ak )
and b = (b1, . . . , bk ) (thinking of si ’s and t j ’s as integers one may take ai = si and
b j = t j for all i , j ∈ {1, . . . , k}), then

H = {(n1m1+ ua1+ v b1, . . . , nk mk + uak + v bk ) | mi , u, v ∈Z}.

If R : Zk+2→Zk is a homomorphism given by the k × (k + 2)matrix












n1 0 · · · 0 a1 b1
0 n2 · · · 0 a2 b2
...

...
. . .

...
...

...
0 0 · · · nk ak bk













then H = Im R. Let P ∈GLk (Z) and Q ∈GLk+2(Z) be such that

P RQ =













d1 0 · · · 0 0 0
0 d2 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · dk 0 0













where d1 | d2 | · · · | dk are the elementary divisors of R. We have

Zk/Im R∼= P (Zk )/P R(Zk+2) =Zk/P RQ(Zk+2)

so that
α(s , t ) = |Zk/Im R|= |d1d2 · · ·dk |.

For reader’s convenience we recall a well-known method for finding elementary divi-
sors. For i = 1, . . . , k, let hi denote the greatest common divisor of all i × i minors
of R; then hi = d1d2 · · ·di . This is because the numbers hi do not change when
multiplied on the left and on the right by elementary matrices and these generate all
invertible integer matrices. In particular, note that if k = 1 then α(s , t ) = (n, s , t ).
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