

CARPENTER, CECIL SEIGLER, JR. Theory of Computation and Computing
Machines. (1974) Directed by: Dr. Michael Willett. Pp. 37

It was the purpose of this paper to present an introductory

discussion of two areas of automata theory, computation and computing

machines. The notions of machine design, equivalent machines, function

tables, state graphs, and state minimization were discussed in Chapter

II. The concept of algorithm was introduced in Chapter III and an

algorithm to minimize the number of states of a computing machine was

constructed. A more general form of state equivalence was defined in

Chapter IV, resulting in an open question as to the existence of an

algorithm for determining state equivalence for this more general

form.

THEORY OF COMPUTATION AND

COMPUTING MACHINES

by

Cecil Seigler Carpenter, Jr.

A Thesis Submitted to
the Faculty of the graduate School at

The University of North Carolina at Greensboro
in Partial Fulfillment

of the Requirements for the Degree
Master of Arts

Greensboro
August, 1974

Approved by

Thesis Advisor

APPROVAL SHEET

This thesis has been approved by the following committee of

the Faculty of the Graduate School at The University of North

Carolina at Greensboro.

Thesis
Adviser Mtdsd

Oral Examination
Committee Members &££#*&

Us'oLLuu*- n - (ui

££* p6^

Datel of Examina ation

ii

ACKNOWLEDGMENT

I would like to thank Dr. Michael Willett for his assistance

in the preparation of this paper and for teaching me that the ability

to write effectively is as important as the knowledge of one's subject.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENT ' "

LIST OF TABLES v

LIST OF FIGURES vi

CHAPTER

I. INTRODUCTION x

II. COMPUTING MACHINES 4

III. STATE MINIMIZATION 20

IV. A GENERALIZATION OF STATE EQUIVALENCE 30

V. SUMMARY 36

BIBLIOGRAPHY 37

iv 461350

LIST OF TABLES

Table Pa«5e

2.1 Computing Function Table for Example 2.1 7

2.2 A "Copy" Machine 10

3.1 A Computing Function Table for a Non-minimized
Computing Machine 27

3.2 The Minimized Computing Machine 28

LIST OF FIGURES

Figure Pa8e

2.1 Initial Configuration of a Machine 5

2.2 A State Graph 12

2.3 Added States at s2 16

2.4 The Turing Machine for Example 2.1 17

3.1 Equivalence Class Refinements 24

3.2 Sample Calculation of P2 28

4.1 State Graph of a Computing Machine 31

4.2 A Non-minimized Machine 3*

4.3 Minimized Machine 34

vi

CHAPTER I

INTRODUCTION

At the turn of the century, David Hilbert, a famous mathematician

and leader of the formalist school, was convinced of the existence of

an algorithm for establishing the consistency or inconsistency of any

mathematical system. Kurt Godel [2] showed in 1931 that the consistency

of any system which included the natural numbers could not be

established. This result was a corollary to his more startling

"incompleteness theorem" which states that if any formal system which

contains the natural numbers is consistent, then that system is

necessarily incomplete. More directly, there is a statement P in

the system such that neither P nor not-P is a theorem of the

system. Since either P or not-P must be true, then there is a

true statement in the theory which is not provable. Thus the

algorithm which Hilbert believed existed, in fact did not exist.

The formal notion of algorithm - or "effective" procedure as

it is often called - had concerned mathematicians before the result

of Godel. How was an algorithm to be defined? When an algorithm

was constructed, could it be determined whether or not it was

meaningful? These and other questions now appeared more ominous than

ever. Logicians turned their efforts toward establishing some type

of approach which would enable them to categorize those procedures

which were meaningful as opposed to those which were not. Most

notably, the work of Alonzo Church and Alan M. Turing led to the

creation of a new area of mathematics now known as automata theory.

There are many areas of automata theory of which only two will

be discussed here. These two areas are computation and machine theory.

Computation deals with the concept of performing a procedure or process

dictated by a given set of instructions. Admittedly the very statement

as to what constitutes a computation is quite nebulous. Therefore

formalizing the notion of computation is a major concern of automata

theorists. We shall consider as adequate the following: a computation

consists of the process of following a given set of instructions. In

order to enable us to perform a computation, we require some type of

mechanism. This mechanism will be called a computing machine. (We

will use the terms machine and computing machine interchangeably.) It

should be understood that the term machine as used here refers to a

mathematical notion rather than an actual physical object. A computing

machine will be a mathematically defined object, capable of mechanical

realization, whose task is to perform a given algorithm in an

unthinking, non-creative way.

When speaking of machines and computation, many questions arise-

quite naturally. What computations can be realized by a machine? Are

there computations which no machine can perform? Do there exist

computations for which the question of whether or not any machine can

perform them is undecidable? The proposition that "any process for

which an algorithm can be constructed can be realized by a computing

machine" is known as Church's thesis [1]. It would be erroneous to

assume that we could construct a proof of Church's thesis since it

obviously deals not only with very simple, concrete procedures, but

also with the thought processes of the human mind. It is remarkable,

however, that several independent and fundamentally different approaches

to defining an "effective" algorithm have all yielded the same class of

algorithms [4]. These include the work of Turing [7], Kleene [3],

Post [5], and Smullyan [6].

In this paper,it is our objective to present a formal definition

of a computing machine and computation. Chapter II deals with these

concepts as well as the process known as machine design. We will also

present several examples which illustrate the operational aspects of

a machine. The idea of designing a minimal state machine is considered

in Chapter III. The concept of minimization will be discussed in

terms of a special type of equivalence relation. This relation contains

a restriction which will be lifted in Chapter IV. We will then

investigate the difficulties which arise as a result of lifting this

restriction.

It is not the purpose nor intent of this paper to furnish the

reader with a thorough background in the theory of machines and

computation but rather to serve as an introduction to these notions.

For this reason, we will motivate and discuss the various topics in

an intuitive yet sound manner as opposed to the more classical

mathematical methods so often found in treatises on automata theory.

CHAPTER II

COMPUTING MACHINES

In this section we will formalize mathematically the notions of

computing machines and computation discussed in the introduction.

Intuitively a computing machine is a functional relationship

between input and output mediums which is further dependent upon the

changing internal condition of the machine. For our purposes, a

computing machine M = (A, S, B, f) shall consist of

(1) a finite set A called the alphabet which contains a

special symbol b called a blank,

(2) a finite set S of elements called states with a

special state H called the halting state,

(3) a non-empty finite subset B of integers,

(4) a function f:A*S->A*SxB called the

computing function.

If all the integers in B are of the same sign, then M is

called a finite state machine. The elements of A will be used as

the input/output symbols. The set B is part of the output as will

be explained below. The elements of S will be used to indicate the

"internal" condition of M at any instant. The function f determines

the relationship between input, internal condition, and output.

To relate this definition of a computing machine to some

meaningful notion of computation, we need a mechanism for recording

the input/output stream. To this end, we define

T - (t = (•••, a,, aQ, ax, •••) | a± e. A, only a finite

number of the a, 4 *>)•

The elements of T are called tapes. For each T e T, the machine

M alters T in the following sequential way:

(1) An internal state Sg e S is selected and our attention

is initially focused on the element a«. We indicate

this by using a pointer, called a read/write head,

containing the symbol s„ (see Figure 2.1). This

initial configuration will also be denoted by M/(sn>
T)-

Figure 2.1: Initial Configuration of a Machine

(. . ., a_2, a_1, aQ, a1? a2> . . .)

read/write head

(2) Assume that f(aQ, sQ) = (a, s, n). Then f determines

the following sequence of events:

(a) the symbol aQ is changed to a

(b) our attention (the read/write head) is shifted

| n | positions to the right if n> 0, to the

left if n < 0

(c) the internal state is changed to s.

This sequence will constitute one unit of time.

(3) Step (2) is then repeated from this new position. These

alterations and shifts continue recursively until the

machine enters the halting state H, at which time it

terminates operation. If H is never encountered as an

internal state, then the machine never halts. We denote

by T. the altered tape created from x after i time

units. Therefore x-. ■ x. If M halts after producing

XJJ, then we set x - x^ for all k > N. This sequential

alteration of x will be called a computation with initial

input x.

If we are given the function table for a particular machine,

then computation on input tapes is well defined even though the

sequence of alterations may not have any intuitive and/or algebraic

interpretation. Our study of machines however will be from the point

of view that machines are mechanisms which can be used to implement

a number of verbally defined and meaningful algorithms. We are thus

generally required to design a machine to perform computations

described to us in non-mechanical terras. This design process consists

of selecting an appropriate alphabet, determining what aspects of Che

algorithm correspond to different internal states when the algorithm

is viewed mechanically, and finally, identifying the computing

function. The following examples should clarify this process.

Example 2.1: In this example, we will not be concerned with

machine design nor the computation to be performed, but rather with the

description and operation of a computing machine.

Let A = lb, 0, 1}, S = {H, 81, s2, s^}, and B = {-2, -1, 0, 1, 2, 3).

Then M - (A, S, B, f) is the computing machine described by Table

2.1, called the computing function table for M. Notice we have

selected s. as our starting state.

Table 2.1: Computing Function Table for Example 2.1.

Next Head
State Input Output State Movement

rsi
0 1 S3 3

tart < si 1 0 s2 2

^si b b H 0

s2 0 0 sl 1

s2 1 0 s3 1

s2 b b s2 1

s3
0 0 sl

-1

s3 1 1 s2 -2

s3 b b H 0

Now let T =(..., b, 0, 0, 0, 0, 0, 0, b, . . .) be an input tape.

The "computation" governed by M proceeds in the following manner.

(1) The leftmost 0 is read with M in state S-. The 0

is replaced with a 1, the read/write head is moved 3

positions to the right, and M transitions to state By

(2) A 0 is read with H in state s.j. It Is left unaltered,

the read/write head is moved 1 position to the left, and

M transitions to state By

This sequence of events is continued until M enters the halting

state H, which occurs after the sixth unit of time.

The sequentially altered tape appears as follows:

TQ = (. . ., b, 0, 0, 0, 0, 0, 0, b, . . .)

Tj = (. . ., b, 1, 0, 0, 0, 0, 0, b, . .)

T2 = (. . ., b, 1, 0, 0, 0, 0, 0, b, . .)

T3 - (. . ., b, 1, 0, 1, 0, 0, 0, b. . .)

T4 = (. . ., b, 1, 0, 1, 0, 0, 0, b, . .)

T5 = (. . ., b, 1, 0, 1, 0, 1, 0, b, b, . . .)

T& = (. . ., b, 1, 0, 1, 0, 1, 0, b, b, . . .)

Example 2.2= Let us now consider the more common situation of

designing a machine to perform a meaningful computation. In this

t a machine which will operate on any Cape i - T of "•• example we wan

form
I ■(..., O, «Q» *J» • • •» •„»

where each a is either 0 or 1, and M will halt with altered

tape

T. ■ (. . ., b, aQ, a^ an, x, aQ, a., . . ., a , b, . . .)

for some k. That is, we require a machine which will copy a non-blank

sequence of zeros and/or ones immediately to the right of the symbol

x. One such algorithm is as follows:

(1) "remember" whether a„ is 0 or 1

(2) shift to the right to the first blank square and copy u„

(3) shift to the left to find a1

(4) shift to the right and record a. in the first blank

square

(5) continue this process until we encounter the x which

tells us the sequence has been copied.

Table 2.2 defines a machine which will perform the required

computation.

To see how the machine design was accomplished, consider the

operation of M. If aQ = 0, then aQ is replaced by A and M

enters state B„. The head shifts to the right, staying In s2

without altering the tape, until it encounters a blank. A 0 is then

printed and M enters state s4- The operation of M is the same if

aQ = 1, except aQ is replaced by B, M enters s., and prints a 1

in the first blank square. The fact that aQ = 0 is "remembered" by

use of s2. Similarly if aQ - 1, M "remembers" by entering S3.

After entering state s4, the head moves to the left until an A or

B is encountered, leaving the intermediate squares unaltered. Thus

10

le A or B is A and/or B "tells" M the last symbol copied. Now th

changed to a 0 or 1 respectively and M enters state s and reads

the next symbol in the sequence. This continues until the x is read,

at which time M halts. Thus we have A = {b, 0, 1, x, A, B},

S = (H, s,, s,, s„, s,}, and B ■ {-1, 0, 1}.

Table 2.2: A "Copy" Machine

Next Head
State Input Output State Movement

h 0 A S2

irt / sj 1 B s3 u X X H

s2
0 0 s2

S2
1 1 S2

s2
X X s2

s2
b 0 s4

-1

s3 0 0 S3

s3
1 1 S3

S3 X X s3

s3
b 1 s4

-1

s4
0 0 s4

-1

s4 1 1 s4
-1

s4
X X s4

-1

s4 A 0 sl

s4
B 1 sl

11

To illustrate the machine acting on some tape T < T, suppose

t = (. . . , b, 1, 0, 1, 1, x, b, . . .) is our input tape. Then we

have the following initial configuration:

'0 (. . ., b, 1, 0, 1, 1, x, b, . . .).

After 47 time units we have entered the halting state H and our

final tape appears as

'47
(. . ., b, 1, 0, 1, 1, x, 1, 0, 1, 1, b, . . .).

H

In the above examples, we have displayed the computing function

in tabular form. As long as the machine is fairly simple, a table will

suffice as an adequate representation of the operations. However, as

a machine becomes more complex in design, the table description

necessarily loses much of its simplicity, and the nature of the

computation becomes harder to visualize. For this reason, we shall

adopt a graphic notation.

Suppose we are given a machine M in tabular form. We could

represent one line of the computing function table in the following

way:

©—30 ^ 3*0
The above symbol will stand for f(aQ, sQ) - (a, s, n). We convert the

table to graphical form by drawing a circle (node) for each state in

S and then connecting various nodes in the above fashion, one arrow

for each line of the computing function table.

12

We will adopt several conventions in constructing these state

graphs. No input symbol at the base of an arrow will mean that that

arrow is for every input symbol. No output symbol will mean that the

input symbol is left unaltered. The following state graph represents

the machine of Example 2.1.

Figure 2.2: A State Graph

As we have stated in the introduction, automata theorists are

concerned with formalizing the concept of computation. Machine-like

structures similar to Figure 2.2 have become the standard approach

to this study. There are several standard machine models widely

discussed in the literature. Our particular computing machine

encompasses attributes of a number of these models. A natural

question arises in such a case: are there algorithms which can be

performed by a machine in one class and not by any machine of another

class? Does one class of machines, by virtue of some design feat-re,

possess more computing power than another class? Recall that a finite

13

state machine is a computing machine with the set B restricted to

integers of the same sign. Then it is clear that a finite state

machine is not allowed to return to a previously scanned input position.

It can be shown that no machine in this class can perform the

computation of Example 2.2. Now consider a similar restriction on the

set of computing machines. Call a machine M_ a Turing machine If

M= (A, S, B, f) is a computing machine with B = {-1, 0, 1). Arc-

there computations which can be performed by a computing machine but

which cannot be performed by any Turing machine? For the remainder

of this chapter, we will turn our attention to this question.

Physically, a Turing machine Hj, differs from a general

computing machine in that the head movement of Rj. is of length at

most 1. This restriction would seem to restrict the computational

capability otherwise available to a computing machine. To examine this

question, consider one line of a function table for some machine

M= (A, S, B, f), say f(a, s) = (a', s', n) where | n | * 1. Then

by adding states between s and s1 which leave an input tape i

unaltered, we could accomplish the head movement by moving one square

per unit time. Obviously the set S must be altered, which in turn

will force us to define a new computing function f, but the alphabet

A would remain the same. The implication is that for any computation

which can be performed by a computing machine, there is a Turing

machine which can perform the same computation. More formally we have

Theorem 2.1: Given a computing machine M = (A, S, B, f),

there exists a Turing machine M'= (A, S', B1, f) such that for

14

each x e T : if M produces t in i time units and M' produces

I* in i time units, then there exists a sequence of positive

integers {n(i))iit, (depending on T) such that

(1) n(i) < n(i+l)

(2) Ti " T'n(i)

(3) T*j - T'n(i) f°r all "CD s J < n(i+l).

Proof: Consider any node s in the graph of the given machine

M. Since M contains only a finite number of states and a finite

alphabet A, there are only a finite number m of arrows into node s.

Assume that the arrows are labeled so that n,, n^i • • • > nir are *U

positive and n,+.> • • • •» nm are flH negative, where the n, are

the respective head movements. The no-head-moveroent transitions will

remain unaltered so that they need not be considered. Let

n = max {n., n2 , n. }. Now modify M in the following way.

First add n - 1 new states labeled tj , tn_1 such that

Q^Q^ /+i /+i< s.'

If n, > 1, then remove the arrow

and replace it with the arrow

b./+l 0^^G
The one time unit operation of printing b1 and then jumping nJ

squares to the right is replaced by the printing of bx and a move

n: squares to the right one square per time unit without altering the

intermediate squares. The Cape alterations are the same except that

15

this new machine takes longer to move its read/write head to a new

position. This alteration and its affect on the original computation

performed by M on a particular input tape will lead quite naturally

to the sequence of positive integers required in the statement of the

theorem. Now make this type of substitution for each arrow into node

s. That is, replace

©" h^l
with

•0 lsl5

Similarly, let N = max {|n.| : k + 1 < i £ n} and add N - 1 new

states to M labeled T,, . . ., T„ . so that we have

0-^*0- 1-1 ^>±U0
We now use the same construction as above to handle these left moving

states. Finally, make these alterations at every node s in the

configuration of M. Let M' «= (A, S', B', f) be the new machine

created from M by the above process. Then B' - {-1, 0, 1} and

M' is a Turing machine.

Consider now the machines M and M' above with input tape

T. Let M produce the sequence of output tapes tj« T2> T-J, . • •

and M' produce the sequence s = (t'ji T'2» ■ • •)• In tne

construction of M', one notices that Tfc appears in the sequence

sT for each k, i.e. xfc - T*n(k) e sx for some n(k).

We now have the following:

16

and T ' ,, ,,.
n(k) n(k+l)

T l ' n(l)" n(2)

It is also seen that the tapes intermediate to t1

are identical to T'n(k) since M' is only concerned with head

movement in these added states. Thus we have displayed the required

sequence. Q.IC.D.

We now apply the technique of Theorem 2.1 to Figure 2.2. The

only nodes that require modification are s~ and s, since Si has

no arrows entering it which have a move such that 1. At s„

we find n = 2 and N - 2. Thus for the right moving states we add

one state and for the left moving states we also add one state. This

is shown in Figure 2.3.

Figure 2.3: Added States at s2<

0/+1 / \ /+1

17

Apply the same technique to So. We have the new machine as shown by

Figure 2.4.

Figure 2.4: The Turing Machine for Example 2.1.

\ 1+1 mtd
t.

)/+l

Let i =(..., b, 0, 0, 0, 0, 0, 0, b, . . .) and consider the

sequence of output tapes.

TQ = T'Q =(..., b, 0, 0, 0, 0, 0, 0, b, . . .)

. •) I1,- (. . ., b, 1, 0, 0, 0, 0, 0, b,

A

T« -(..., b, 1, 0, 0, 0, 0, 0, b, . .)

t',

ri = T*3 =(•••' b, 1, 0, 0, 0, 0, 0, b, . . .)

'2 - ' 4 T' =(..., b, 1, 0, 0, 0, 0, 0, b, . . .)

T» =(..., b, 1, 0, 1, 0, 0, 0, b, . . .)

t1.

t1, = (. . ., b, 1, 0, 1, 0, 0, 0, b, . . .)

t'.

18

T3 = T'? = (. . ., b, 1, 0, 1, 0, 0, 0, b, • •)

T4 = T'8 ■(•••• b« l« °» l» °* °» °i b' • •)

T'9 =(..., b, 1, 0, 1, 0, 1, 0, b,

t',

. ■)

T'10 -(..., b, 1, 0, 1, 0, 1, 0, b, . . .)

V

19

T5 = T'n =(•••» b, 1, 0, 1, 0, 1, 0, b, b, . . .)

T6 * T 12 (. . ., b, 1, 0, 1, 0, 1, 0, b, b, . . .)

Thus from Example 2.1 and the above, we see that each t of
k

Example 2.1 is in the above sequence and the tape remains unaltered

while cycling through the added states.

There are several other ways in which our computing machine may

be modified without altering computing power. All of the following

classes of machines can perform exactly those computations which can

be performed by our particular machine.

(1) We may restrict the alphabet A to contain only two

symbols.

(2) The set S may be restricted to contain only two states

(the alphabet is necessarily enlarged).

(3) We need only have a set of tapes which are infinite in

one direction.

(4) We can require that any input symbol on a tape be altered

at most once.

The equivalences of the above classes is shown in the literature and

we mention them only as a sampling of how machines can be modified.

These are by no means the only alterations we could make. They serve

to indicate that our computing machine is certainly not one of a kind.

20

CHAPTER III

STATE MINIMIZATION

It is quite probable that if several persons were asked to

design a computing machine to perform a given computation, that each

machine would be different in design. If we are only concerned with

the "answers" that machines produce from an input tape, then any of

the machines would serve our purpose as long as they had a logical

structure which conformed with the algorithm. However, this is seldom

the sole criteria in determining whether one machine is somehow

preferable to any others which perform the same computation. The

features to be considered in the selection of one machine from several

should be emphasized in the machine design process. One such feature

is utility of design, i.e. minimizing the number of states Introduced.

We ask the question, "If a computing machine M is given, Is there

any way to determine whether M has the least number of states

necessary for the computation and if not, can we somehow reduce the

number of states without changing the action of M?" In this chapter,

we will answer the above question by presenting an algorithm which

merges redundant states. This algorithm for minimizing the number

of states is motivated by the following observation. If M/(q, T)

and M/(r, T) produce the same output tape sequence for each initial

tape T, then it is somehow redundant to list q and r as separate

states.

21

Suppose for T e T that T. is the tape produced by M/(s, x)

in i time units with the sequence of head movements given by

m nu,, m-, . . . and t'. is the tape produced by M/(s', T) in i

time units with the sequence of head movements m',, m' , m' , . . .

Consider the following

Definition 3.1: State s is E - equivalent to state s',

denoted sE s', if t » t' and m. - m' for 1 & 1 < n, and
n i i i l

for all t e T.

It should be noted that Definition 3.1 treats the head movements

as an integral part of the output. This treatment is crucial to the

development of the algorithm for state minimization. As we shall

show in Chapter IV, disregarding the sequence of head movements

introduces a significant obstacle to further generalization of the

notion of state equivalence.

We observe that the relation En on the set S is reflexive,

symmetric, and transitive. Thus we have the following lemma.

Lemma 3.1: E is an equivalence relation on the set S.

Since E is an equivalence relation, we have a partitioning

of the set of states S into equivalence classes. States s and s'

belonging to the same equivalence class for En cannot be distinguished

by observing the output for n time units or less. Thus we could

consider s and s' as approximately equal if sEns* for large n.

To be indistinguishable regardless of the machine run time, we define

Definition 3.2: s is said to be equivalent to s', denoted

sEs\ if sEns' for n - 1, 2, 3, . . .

22

Note that E is an equivalence relation on S. Also, if sEs',

then s and s' could be merged into a single state. Let P. be

the set of equivalence classes for E, and let P denote the

equivalence classes for E. We then have

Lemma 3.2: States which belong to different sets in P. belong

to different sets in Pj.+1'

Proof: Pick s, s' in S such that sE\s'. Then there is

some T £ T such that either T. T T* or ■.fa*, for some i,

1 < i < k. Since l<i<k<k+l, by Definition 3.1 we have

sE k+r Q.E.D.

By the contrapositive of Lemma 3.2, we know that if aE^jS1,

then sE.s'. We then make the following observations.

(1) Two states that belong to different equivalence classes

in P. will belong to different equivalence classes in
K

P^ for 8. > k.

(2) To check two states for (n + 1) - equivalence, we need

only consider those states which are already n-equivalent.

Let qE r. Assume that for a particular initial input symbol,

that q and r transition to q' and r' respectively. If q

and r are to be (n + 1) - equivalent, then q' and r* must be

n-equivalent. This is true because one iteration with initial states

q and r moves the read/write head to the same new position. This

new position was previously considered as a starting position in

checking the n-equivalence of q1 and r\ If the transition states

after one iteration (for each input symbol) are n-equivalent, then

23

To determine the equivalence classes for E, we must find the

equivalence classes for E , n ■ 1, 2, 3, The following len

shows that this process must eventually terminate.

Lemma 3.3: There exists N > 0 such that P. = P„ for all
 k N

k > N.

Proof: Assume the statement is not true, i.e. assume for all

n> 0 there exists s(n) > n such that P + P / N- Then we have n s(n)

Pl + Ps(l) * Ps(s(l)) + ' • • and' by assumption,

1 < s(l) * s(s(l)) < But since P^ is a refinement of Pn

for any k * n, this implies that we have an infinite number of states.

This is a contradiction to | S | < ». Q.K.I).

Perhaps we should examine just what has been established.

Suppose we are given a machine M containing the states q and r,

and we wish to determine whether qEr or qjtr. We proceed as

follows (see Figure 3.1):

(1) check q and r for Ej^ - equivalence

(2) if qE,r, then qgr; otherwise check q and r for

E- ~ equivalence

(3) if qjt2r> then qEr; otherwise check q and r for

E~ - equivalence

(4) continue this process until qEkr for some k.

24

Figure 3.1: Equivalence Class Refinements

^rz? cz>

CS) o

By Lemma 3.2, we know that q£r if q and r ever fail to belong

to the same equivalence class in P, for some k. We also know by

Lemma 3.3 that if qE,.r, then qEr. However, we have no way of

knowing the value of N. Let up suppose N > 1000. Further, let us

assume that qE,0f)0r. We might then conclude that qEr. But what is

to prevent q and r from belonging to different equivalence

classes at some time k > 1000? Fortunately, we are not only assured

of being able to determine whether q and r are equivalent, but we

can also determine the maximum number of iterations required to

determine their equivalence or non-equivalence. The following

development provides the necessary stepping stones toward our ultimate

aim; establishing a bound for the number of iterations required to

determine the equivalence or non-equivalence of states In any machine

M.

Lemma 3.4: If a machine M contains two states s and 8

such that s|ts' but sE.s* for some k, then M contains two

states t and t' such that tEkt' but t(k+]t'.

25

Proof: Let i be the first time unit for which M/(s, T)

and M/(s', T) disagree. Since sE^', then £ > k. If l = k + 1,

let t ^ s and t1 H S'. Assume I - k > 1. Let t and t' be the

present states of M/(s, T) and M/(s', T) respectively after

J. - k - 1 time units. Then M/(t, T) and M/(t\ T) must disagree

for I - k £ i < 8. since either x^ =f T'J or me 4 m\ by

assumption (M/(s, T) and M/(s', T) disagree at time l). But from

time i. - k to time II there are k + 1 time units. Hence tf,, ,,t'. k+1

We now claim tE, t'. If not, then there exists T < T such

that T, + T'. or m, 4 m'i f°r SOIne i, 1 £ i £ k. But this

implies that M/(s, T) and M/(s', T) disagree at least by time

I - 1, a contradiction to our assumption. Q.E.D.

Theorem 3.1: PR - Pk+1 if and only if Pfc = P.

Proof: The if part is clear since P, = P obviously implies

P. = Pk+i- For the only if, we take the contrapositlve of Lemma 3.4

which states: if for any states t and t' for which *-\t' we

have tE.+.t', then there are no states s and s' for which sEks

and sts\ Q'B'D-

Lemma 3.5: If Pk-1 + Pk> then | Pfe | i k + 1.

Proof: Assume Pk-1 + Pfe. Then Pr-1 f Pr for

r = 1, 2, . . ., k. Now by the contrapositlve of Lemma 3.2, the

classes of P are further refinements of the classes of Pr_r
Then

P _ |. Suppose 1. Then P. = P which

contradicts our assumption that Pk_j t P^- So ?l | 2 2. By

iteration we have 2 k + 1.
Q.E.D.

26

We now have the capability whereby we can make a definitive

statement as to the maximum number of iterations required to determine

the equivalent states for any machine M. The crucial question as to

when our minimization procedure will terminate is answered by the

following theorem.

Theorem 3.2: In an N-state machine, P . = P = P.

Proof: PN-1 + PN implies by Lemma 3.5 that | P„ | • N + 1

which is impossible since there can be at most N subsets in a

partition of the N states. Q.E.I).

The algorithm we have constructed is meaningful for any

computing machine M. We will first give the procedure for determining

the equivalence classes for E and then apply this process to a

specific machine.

(1) Determine P ; i.e., s and s' belong to the same

equivalence class if the output and head movement rows

of the computing function table for M/(s, T) and

M/(s', T) are identical.

(2) Determine PR+1 from Pk- Two states, s and s', in

the same class in Pfc stay together in Pk+1 if and

only if for each input symbol, their respective next

states are together in Pk> after identical head movements.

(3) Stop when for some k, Pfc = Pk+r We then have P = PR.

This must occur for some It S | 8 | - 1.

Consider the following computing function table for a machine

27

Table 3.1: A Computing Function Table for a
Non-minimized Computing Machine

State Input Output
Next
State

Head
Movement

0 0 sl +1

1 0 s6 +1

0 0 sl +1

1 0 H +1

0 1 s2 +1

1 0 s5 +1

0 s5 +1

1 s8 +1

0 sl
+1

1 S3 +1

0 s8
+1

1 s5
+1

0 s6 -1

1 S3 -1

0 s2 +1

1 0 85
+1

From the table we observe that

Pl * {(sl' s2)' (s3' S5' S8)' °V s6)' (s7)K

To determine P„, we observe that SjE^. Thus we test s: and s2

for E2 - equivalence. The next states for Sj are sx and s6

28

respectively; for s2 they are Sj^ and s^. Clearly s E s . Since

sj^.s^, we determine that s.E.s..

Figure 3.2: Sample Calculation of P,.

Applying this technique to all E. - equivalent states, we have

P2 = {(Sl, s2), (s3, s5, s8), (s4, s6), (s7)}. Now P1 = p so

P. - P. Hence we merge states s^ and s-, s., and s, and Sg, and

finally s, and s,-. Since s-, is not E,-equivalent to any other

state, it is retained as a separate state. The minimized machine is

denoted by Table 3.2.

Table 3.2: The Minimized Computing Machine

Next Head
State Input Output State Movement

s'l 0 0 s'l +1

s'l 1 0 s*3 + 1

s'2 0 1 s'l +1

s'2 1 0 s'2 +1

S>3
0 1 s*2 +1

s'3 1 1 8'2 +1

s\ 0 1 s'3 -1

s\ 1 1 s'2 -1

29

Notice that the new state s'^ now represents the merged state created

from s1 and s„. The merging of redundant states under the equivalence

discussed above has physical significance for the person required to

build such machines. But beyond that, the esthetic beauty contained

in the derivation and implementation of the minimization procedure is

typical of many of the deeper and more subtle questions about the

structure of computing machines asked by modern theorists.

30

CHAPTER IV

A GENERALIZATION OF STATE EQUIVALENCE

The connotation probably most often associated with the term

equivalence is one of "sameness". We classify objects as equivalent

if they have the same worth, possess the same features, or perform the

same function. Even though two procedures were entirely different in

structure yet both produced the same results, we would consider them

equivalent if results were our only concern. Recall that the function

of a machine is to mechanize a computation, the results of which appear

as an output tape. Thus it is natural to consider two states, s and

s', of a machine M equivalent if for every T c T, M/(s, T) and

M/(s', T) produce the same output tape in any amount of time. In

Chapter III, we defined an equivalence relation on the set of states

S in which the sequence of head movements was considered to be an

essential part of the output. But in actual practice, our only

concern would be the output tape and not the particular motions of

the read/write head. In the following discussion, we will explore

the ramifications of altering the definition of state equivalence as

given in Chapter III to the more natural concept we have introduced

here.

For T i T, let i, be the output tape produced by M/(s, i)

in i time units and let T'J be the tape produced by M/(s*. i) In

i time units.

31

Definition 4.1: State s is Rn - equivalent to state s\

denoted sR^s', if T± = i'± for 1 < i < n, and for all T t T.

State s is equivalent to s', denoted sRs', if sR s' for

n = 1, 2, 3

In considering Definition 4.1, we think of head movement as

invisible to the machine observer. All he can see is the sequence of

output tapes for each input tape.

We observe that Rfl and R are equivalence relations on S.

Let P. and P be the equivalence classes for R, and R

respectively. The reader can easily verify that Lemma 3.2 and Lemma

3.3 are still true; that is, states which belong to different sets in

P. belong to different sets in ?•_»«, and there exists N > 0 such

that P. = P. ,= P for all k > N. k N

Consider the machine of Figure 4.1.

Figure 4.1: State Graph of a Computing Machine

0/1

/l

/l

0/-1

32

We determine the equivalence classes for IL to be

Px = {(1, 2), (3, 4), (5, 6)}

P2 = {(1, 2), (3, 4), (5, 6)}

P3 = {(1), (2), (3, 4), (5, 6)}

P4 = {(1), (2), (3, 4), (5), (6)}

P5 = {(1), (2), (3), (4), (5), (6)}

and we observe that ?1 = ?2 j ?3 f P4 j ?5 = p. Theorem 3.1 fails

since we have P± = ?2 but Pj^ j P. This means the algorithm for

determining P, as constructed in Chapter III, is meaningless. A

replacement for this algorithm would necessarily calculate

P., P~> • • • until P was encountered. A bound on the first

occurrence of P in the sequence P]» ^9' ' ' * would be needed to

indicate the point at which the algorithm could be terminated. We

pose the following question: is the number of iterations N required

to determine P still bounded by some function of the number of

states only?

If the answer to the above question were no, then there would

exist a sequence of machines H^, M2, Mj, . . ., each with the same

number of states, so that for Mk, the first occurrence of PN = P

is such that N > k. This could not happen if we could show that

there is a bound on the number r for which

P=P = =p ip ..We have been unable to display
k rk+l - - k+r T rk+r+l

such a bound as a function of the number of states only. Even though

the machine of Figure 4.1 suggests no such bound (Px = P2 T
p3^'

the author conjectures that such a bound does in fact exist.

33

This conjecture is based upon experimentation and the following

intuitive argument. Assume C is the set of L-state computing

machines. If there are pairs of non-equivalent states of machines In

C which are output indistinguishable unless observed for arbitrarily

long periods of time, then the "memory" of the initial states is some-

how contained in the state designations. But this would attribute

an unlimited capacity for differentiation to the finite number of

states. This is contrary to intuition.

An affirmative answer to the question of bounding N would

enable us to more naturally define a notion of state equivalence

and devise an effective algorithm for calculating P. In either

case, it should be noted that P is no real help in finding P|vf|-

This is because we are no longer concerned with head movement. It

is possible for the relative positions of the read/write head to be

different after one unit of time for M/(s, T) and M/(s', T).

At this point, the two copies of machine M would be considering two

different tapes. This is no obstacle however, since we can calculate

P ., directly (by use of brute force).

We will now consider the minimization problem with our new

type of equivalence. Though we have no effective algorithm for

calculating P for every computing machine, we can find P for the

machine of Figure 4.2. The equivalence classes for R are

l-2 = i(l, 2), (3), (4), (5, 6)1-1'

34

Figure 4.2: A Non-minimized Machine

0/-1 /l

/-l 0/1

Since | P | ■ 4, we construct a machine with only four states which

produces identically the same output as the machine of Figure 4.2.

(See Figure 4.3.)

Figure 4.3: Minimized Machine

In this minimized machine, states 3 and 4 transition to state

5/6 and state 5/6 transitions to state 1/2. But how do we

transition out of state 1/2? More generally, suppose we merge states

s., . . ., s. of some machine M. Then for each Input symbol, we

have an arrow in the original machine, with the input synbol at the

base, emanating from each state »,. With our old definition of

equivalence, equivalent states always transitioned to equivalent

35

states, so we had no choice for the associated transition In the

minimized machine. In Figure 4.2, state 1 transitions to state 3

and state 2 to state 4. Now 1R2, but 3Jt4; hence which of the

dotted arrows of Figure 4.3 should we choose? Fortunately, the

essence of equivalence is that it makes no difference; we can choose

either arrow. The reader can verify that the machine of Figure 4.3

will perform exactly those calculations which can be performed by

the machine of Figure 4.2.

We also make the following observation. If we minimize the

machine of Figure 4.2 using the equivalence of Chapter III, we find

that it is already minimal, i.e, six states are required. However,

only four states are required with the equivalence of Definition 4.1.

This "coarser" refinement is a result of the fact that if sEs',

then sRs' for any s,s' e S. Because of this implication, we can

obtain a smaller minimized machine - one with fewer states - with this

new concept of equivalence.

36

CHAPTER V

SUMMARY

In this paper, we have discussed the theory of computation and

computing machines. It was intended that this discussion remain as

intuitive as possible, for the author subscribes to the opinion of

Minsky [4] that classical mathematical analysis cannot play a

significant role in this area.

The concepts of computation and computing machine were

formalized in Chapter II. We also investigated the question of what

restrictions could be placed on computing machines without altering

their computing power. In Chapter III, the notion of equivalent states

was discussed, and we constructed an algorithm to accomplish a

minimization of any machine. In Chapter IV, the read/write head

movement was ignored as part of the machine output, and the problem

of recognizing equivalent states was discussed.

37

BIBLIOGRAPHY

1. Church, Alonzo (1936), "An unsolvable problem of elementary number
theory," Amer. J. Math. 58, 345-363.

2. Godel, Kurt (1931), "Uber formal unentscheidbare SStze der
Principla Mathematica und verwandter Systeme I," Monatshefte fur
Mathematik und Physik 38, 173-198.

3. Kleene, Stephen C. (1952), Introduction to Metamathematics, Van
Nostrand, Princeton.

4. Minsky, Marvin L. (1967), Computation: Finite and Infinite
Machines, Prentice-Hall.

5. Post, Emil L. (1943), "Formal reductions of the general
combinatorial decision problem," Amer. J. Math. 65, 197-268.

6. Smullyan, Raymond (1962), Theory of Formal Systems, Princeton.

7. Turing, Alan M. (1936), "On computable numbers, with an application
to the Entscheidungsproblem," Proc. London Math. Soc, Ser 2-42,
230-265.

