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It was   the purpose of this paper to present an introductory 

discussion of   two areas of automata  theory,   computation and computing 

machines.     The notions of machine design, equivalent machines,   function 

tables,   state graphs,  and state minimization were discussed   in Chapter 

II.     The  concept of algorithm was introduced in Chapter III  and an 

algorithm to minimize the number of states of a computing machine was 

constructed.     A more general form of state equivalence was defined in 

Chapter  IV,   resulting in an open question as  to the existence of an 

algorithm for determining state equivalence for this more general 

form. 
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CHAPTER I 

INTRODUCTION 

At   the  turn of  the  century,   David Hilbert,  a famous mathematician 

and  leader of   the  formalist school, was  convinced of the existence of 

an algorithm for establishing  the consistency or inconsistency of any 

mathematical  system.     Kurt Godel   [2]   showed in 1931 that  the consistency 

of any system which  included the natural numbers could not be 

established.     This   result was a corollary to his more startling 

"incompleteness  theorem" which states  that if any formal system which 

contains   the natural numbers is consistent,   then  that system  is 

necessarily  incomplete.     More directly,   there  is a statement     P    in 

the system such  that neither    P    nor    not-P    is a theorem of   the 

system.     Since either    P    or    not-P    must be true,   then there  is a 

true statement in  the  theory which is not provable.    Thus   the 

algorithm which Hilbert believed existed,   in fact did not exist. 

The formal notion of algorithm - or "effective" procedure as 

it is often called - had concerned mathematicians before  the  result 

of  Godel.     How  was  an  algorithm  to be  defined?     When  an  algorithm 

was constructed,   could  it be determined whether or not   it was 

meaningful?    These and other questions now appeared more ominous than 

ever.     Logicians  turned  their efforts  toward establishing some   type 

of approach which would enable  them to categorize  those procedures 

which were meaningful as opposed to  those which were not.     Most 



notably, the work of Alonzo Church and Alan M. Turing led to the 

creation of a new area of mathematics now known as automata theory. 

There are many areas of automata theory of which only two will 

be discussed here.  These two areas are computation and machine theory. 

Computation deals with the concept of performing a procedure or process 

dictated by a given set of instructions.  Admittedly the very statement 

as to what constitutes a computation is quite nebulous.  Therefore 

formalizing the notion of computation is a major concern of automata 

theorists.  We shall consider as adequate the following:  a computation 

consists of the process of following a given set of instructions.  In 

order to enable us to perform a computation, we require some type of 

mechanism.  This mechanism will be called a computing machine.  (We 

will use the terms machine and computing machine interchangeably.)  It 

should be understood that the term machine as used here refers to a 

mathematical notion rather than an actual physical object.  A computing 

machine will be a mathematically defined object, capable of mechanical 

realization, whose task is to perform a given algorithm in an 

unthinking, non-creative way. 

When speaking of machines and computation, many questions arise- 

quite naturally.  What computations can be realized by a machine? Are 

there computations which no machine can perform? Do there exist 

computations for which the question of whether or not any machine can 

perform them is undecidable? The proposition that "any process for 

which an algorithm can be constructed can be realized by a computing 

machine" is known as Church's thesis [1].  It would be erroneous to 



assume  that we could  construct a proof of Church's  thesis since it 

obviously deals not only with very simple,  concrete procedures, but 

also with the  thought  processes of the human mind.     It  is  remarkable, 

however,   that several   independent and  fundamentally different  approaches 

to defining an "effective" algorithm have all yielded   the same  class of 

algorithms   [4].     These   include  the work of Turing  [7],   Kleene   [3], 

Post   [5],   and Smullyan   [6]. 

In this paper,it   is our objective  to present a  formal   definition 

of a computing machine  and computation.     Chapter  II deals with  these 

concepts as well as the process known as machine design.     We will also 

present  several examples which illustrate  the operational aspects of 

a machine.     The  idea of  designing a minimal state machine  is  considered 

in Chapter III.     The concept of minimization will be discussed   in 

terms of a special  type of equivalence  relation.     This  relation contains 

a restriction which will be lifted in Chapter  IV.     We will  then 

investigate  the difficulties which arise as a result of  lifting this 

restriction. 

It  is not  the purpose nor intent  of  this paper to  furnish the 

reader with a  thorough background  in the  theory of machines and 

computation but rather to serve as an introduction  to these notions. 

For this reason,  we will motivate and discuss  the various  topics in 

an  intuitive yet sound manner as opposed to the more classical 

mathematical methods so often found in treatises on automata theory. 



CHAPTER II 

COMPUTING MACHINES 

In this section we will formalize mathematically the notions of 

computing machines and computation discussed in the introduction. 

Intuitively a computing machine is a functional relationship 

between input and output mediums which is further dependent upon the 

changing internal condition of the machine.  For our purposes, a 

computing machine M = (A, S, B, f)  shall consist of 

(1) a finite set A called the alphabet which contains a 

special symbol b called a blank, 

(2) a finite set S of elements called states with a 

special state H called the halting state, 

(3) a non-empty finite subset B of integers, 

(4) a function f:A*S->A*SxB called the 

computing function. 

If all the integers in B are of the same sign, then M is 

called a finite state machine.  The elements of A will be used as 

the input/output symbols.  The set B is part of the output as will 

be explained below.  The elements of S will be used to indicate the 

"internal" condition of M at any instant. The function f determines 

the relationship between input, internal condition, and output. 

To relate this definition of a computing machine to some 

meaningful notion of computation, we need a mechanism for recording 

the input/output stream.  To this end, we define 



T - (t = (•••, a,, aQ, ax,   •••)   | a±  e. A, only a finite 

number of the a, 4 *>)• 

The elements of T are called tapes.  For each T e  T, the machine 

M alters  T  in the following sequential way: 

(1)  An internal state Sg e   S is selected and our attention 

is initially focused on the element a«.  We indicate 

this by using a pointer, called a read/write head, 

containing the symbol s„  (see Figure 2.1).  This 

initial configuration will also be denoted by M/(sn> 
T)- 

Figure 2.1:  Initial Configuration of a Machine 

( . . ., a_2, a_1, aQ, a1? a2> . . .) 

read/write head 

(2) Assume  that    f(aQ,  sQ)  =   (a,   s,   n).    Then    f    determines 

the following sequence of events: 

(a) the symbol    aQ    is changed to    a 

(b) our attention   (the  read/write head)  is shifted 

|   n   |     positions to the right   if    n>   0,   to the 

left if    n < 0 

(c) the internal state is changed to    s. 

This sequence will constitute one unit of  time. 

(3) Step   (2)  is  then  repeated from this new position.     These 

alterations and shifts continue recursively until  the 

machine enters the halting state    H,  at which time  it 



terminates operation.  If H is never encountered as an 

internal state, then the machine never halts.  We denote 

by T.  the altered tape created from x after i  time 

units.  Therefore x-. ■ x.  If M halts after producing 

XJJ, then we set x - x^ for all k > N.  This sequential 

alteration of  x will be called a computation with initial 

input  x. 

If we are given the function table for a particular machine, 

then computation on input tapes is well defined even though the 

sequence of alterations may not have any intuitive and/or algebraic 

interpretation.  Our study of machines however will be from the point 

of view that machines are mechanisms which can be used to implement 

a number of verbally defined and meaningful algorithms.  We are thus 

generally required to design a machine to perform computations 

described to us in non-mechanical terras.  This design process consists 

of selecting an appropriate alphabet, determining what aspects of Che 

algorithm correspond to different internal states when the algorithm 

is viewed mechanically, and finally, identifying the computing 

function.  The following examples should clarify this process. 

Example 2.1:  In this example, we will not be concerned with 

machine design nor the computation to be performed, but rather with the 

description and operation of a computing machine. 

Let A = lb, 0, 1}, S = {H, 81, s2, s^},  and B = {-2, -1, 0, 1, 2, 3). 

Then M - (A, S, B, f)  is the computing machine described by Table 

2.1, called the computing function table for M.  Notice we have 

selected s.  as our starting state. 



Table 2.1:  Computing Function Table for Example 2.1. 

Next Head 
State Input Output State Movement 

rsi 
0 1 S3 3 

tart    < si 1 0 s2 2 

^si b b H 0 

s2 0 0 sl 1 

s2 1 0 s3 1 

s2 b b s2 1 

s3 
0 0 sl 

-1 

s3 1 1 s2 -2 

s3 b b H 0 

Now let T =(..., b, 0, 0, 0, 0, 0, 0, b, . . .) be an input tape. 

The "computation" governed by M proceeds in the following manner. 

(1) The leftmost 0 is read with M in state S-.  The 0 

is replaced with a 1, the read/write head is moved 3 

positions to the right, and M  transitions to state By 

(2) A 0 is read with H in state s.j.  It Is left unaltered, 

the read/write head is moved 1 position to the left, and 

M  transitions to state By 

This sequence of events is continued until M enters the halting 

state H, which occurs after the sixth unit of time. 

The sequentially altered tape appears as follows: 



TQ =   (.   .   .,  b,  0,   0,   0,   0,  0,  0,  b,   .   .   .) 

Tj =   (.   .   .,  b,   1,   0,   0,  0,  0, 0,  b, . .) 

T2 =   (.   .   .,   b,   1,  0,   0,  0,   0,   0, b, . .) 

T3 -   (.   .   .,  b,   1,   0,   1, 0,  0, 0, b. . .) 

T4 =   (.   .   .,  b,   1,  0,   1,  0,   0,  0,  b, . .) 

T5  =   (.   .   .,  b,   1,  0,   1,   0,   1,  0,   b,  b,   .   .   .) 

T& =  (.   .   ., b,  1, 0,  1,  0,  1, 0, b, b,  .   .   .) 

Example  2.2=     Let us now consider the more common situation of 

designing a machine  to perform a meaningful computation.     In this 

t  a machine which will  operate on any  Cape     i   -   T    of   "•• example  we  wan 

form 
I    ■(...,    O,    «Q»    *J»     •      •     •»    •„» 



where each  a  is either 0 or 1, and M will halt with altered 

tape 

T. ■ (. . ., b, aQ, a^ an, x, aQ, a., . . ., a , b, . . .) 

for some k.  That is, we require a machine which will copy a non-blank 

sequence of zeros and/or ones immediately to the right of the symbol 

x. One such algorithm is as follows: 

(1) "remember" whether a„ is 0 or 1 

(2) shift to the right to the first blank square and copy u„ 

(3) shift to the left to find a1 

(4) shift to the right and record a.  in the first blank 

square 

(5) continue this process until we encounter the x which 

tells us the sequence has been copied. 

Table 2.2 defines a machine which will perform the required 

computation. 

To see how the machine design was accomplished, consider the 

operation of M.  If aQ = 0, then aQ is replaced by A and M 

enters state B„.  The head shifts to the right, staying In s2 

without altering the tape, until it encounters a blank.  A 0 is then 

printed and M enters state s4-  The operation of M is the same if 

aQ = 1, except aQ is replaced by B, M enters s., and prints a 1 

in the first blank square.  The fact that aQ = 0 is "remembered" by 

use of s2.  Similarly if aQ - 1, M "remembers" by entering S3. 

After entering state s4, the head moves to the left until an A or 

B is encountered, leaving the intermediate squares unaltered.  Thus 
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le A or B is A and/or B "tells" M the last symbol copied.  Now th 

changed to a 0 or  1 respectively and M enters state s  and reads 

the next symbol in the sequence.  This continues until the x is read, 

at which time M halts.  Thus we have A = {b, 0, 1, x, A, B}, 

S = (H, s,, s,, s„, s,}, and B ■ {-1, 0, 1}. 

Table 2.2:  A "Copy" Machine 

Next Head 
State Input Output State Movement 

h 0 A S2 

irt  / sj 1 B s3 u X X H 

s2 
0 0 s2 

S2 
1 1 S2 

s2 
X X s2 

s2 
b 0 s4 

-1 

s3 0 0 S3 

s3 
1 1 S3 

S3 X X s3 

s3 
b 1 s4 

-1 

s4 
0 0 s4 

-1 

s4 1 1 s4 
-1 

s4 
X X s4 

-1 

s4 A 0 sl 

s4 
B 1 sl 
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To illustrate the machine acting on some tape T < T, suppose 

t = (. . . , b, 1, 0, 1, 1, x, b, . . .) is our input tape. Then we 

have the following initial configuration: 

'0 (. . ., b, 1, 0, 1, 1, x, b, . . .). 

After 47  time units we have entered the halting state    H    and our 

final  tape appears as 

'47 
(.   .   .,  b,   1,  0,   1,   1,  x,   1,  0,  1,   1, b,   .   .   .). 

H 

In the above examples, we have displayed the computing function 

in tabular form.  As long as the machine is fairly simple, a table will 

suffice as an adequate representation of the operations.  However, as 

a machine becomes more complex in design, the table description 

necessarily loses much of its simplicity, and the nature of the 

computation becomes harder to visualize.  For this reason, we shall 

adopt a graphic notation. 

Suppose we are given a machine M in tabular form.  We could 

represent one line of the computing function table in the following 

way: 

©—30 ^ 3*0 
The above symbol will stand for    f(aQ,   sQ) - (a,  s,  n).     We convert  the 

table to graphical form by drawing a circle  (node)  for each state  in 

S    and then connecting various nodes in the above fashion,  one arrow 

for each line of  the  computing function  table. 
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We will adopt several conventions in constructing these state 

graphs.     No input  symbol at   the base of an arrow will mean that  that 

arrow is  for every  input symbol.     No output symbol will mean  that   the 

input symbol  is   left unaltered.     The following state graph represents 

the machine of Example  2.1. 

Figure 2.2:    A State Graph 

As we have  stated in the  introduction,  automata theorists are 

concerned with  formalizing the concept of computation.    Machine-like 

structures similar  to  Figure 2.2 have become the standard approach 

to this study.     There are several standard machine models widely 

discussed in the literature.     Our particular computing machine 

encompasses attributes of a number of these models.     A natural 

question arises  in such a case:     are  there algorithms which can be 

performed by a machine   in one class and not by any machine of another 

class?     Does one class of machines,  by virtue of some  design  feat-re, 

possess more computing power than another class?    Recall that a finite 
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state machine is  a computing machine with the set    B    restricted  to 

integers of  the same sign.     Then  it is clear that a finite state 

machine  is not allowed  to return to a previously scanned  input position. 

It can be shown  that no machine  in this class can perform the 

computation of Example 2.2.     Now consider a similar restriction on the 

set of computing machines.     Call a machine    M_    a Turing machine  If 

M= (A,   S,   B,   f)     is a computing machine with    B =   {-1,  0,   1).     Arc- 

there computations which can be performed by a computing machine but 

which cannot be performed by  any Turing machine?     For  the remainder 

of  this  chapter,  we will  turn our attention to  this question. 

Physically,   a Turing machine    Hj,    differs from a general 

computing machine  in that  the head movement of    Rj.    is of length at 

most 1.     This restriction would seem to restrict  the computational 

capability otherwise available to a computing machine.     To examine this 

question,   consider one  line of a function table for some machine 

M=   (A,   S,   B,   f),   say    f(a, s)  =   (a',   s',  n)    where     |   n   | *   1.     Then 

by adding states between    s    and    s1    which leave an  input  tape    i 

unaltered,  we could accomplish the head movement by moving one square 

per unit   time.     Obviously  the set     S    must be altered, which in  turn 

will  force us  to define a new computing function    f,  but  the alphabet 

A    would remain  the same.     The implication is  that  for any computation 

which can be performed by a computing machine,   there  is a Turing 

machine which can perform the same computation.     More formally we have 

Theorem 2.1:     Given a computing machine    M =  (A,   S,   B,   f), 

there exists a Turing machine    M'=    (A,   S',  B1,   f)    such  that for 
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each    x e   T :    if    M    produces     t      in    i     time units and    M'     produces 

I*       in    i    time units,   then there exists a sequence of positive 

integers     {n(i))iit,      (depending on    T)     such that 

(1) n(i)   < n(i+l) 

(2) Ti " T'n(i) 

(3) T*j - T'n(i)     f°r all    "CD  s J   < n(i+l). 

Proof:     Consider any node    s    in the graph of  the given machine 

M.    Since    M    contains only a finite number of states and a finite 

alphabet    A,   there are only a finite number    m    of arrows  into node    s. 

Assume that  the arrows are  labeled so that    n,, n^i   •   •   • >  nir    are *U 

positive and    n,+.>   •   •   •   •»  nm      are flH negative,  where the    n,     are 

the respective  head movements.     The no-head-moveroent  transitions will 

remain unaltered so   that they need not be considered.     Let 

n = max  {n.,   n2 ,  n. }.     Now modify    M    in the  following way. 

First add    n -   1    new states  labeled    tj ,   tn_1 such that 

Q^Q^ /+i /+i< s.' 

If    n, > 1,   then  remove  the arrow 

and replace  it with the arrow 

b./+l 0^^G 
The one  time unit operation of printing    b1    and then jumping    nJ 

squares  to the right is  replaced by the printing of    bx    and a move 

n:    squares  to the right one square per time unit without altering the 

intermediate squares.     The Cape alterations are the same except  that 
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this new machine takes longer to move its read/write head to a new 

position. This alteration and its affect on the original computation 

performed by M on a particular input tape will lead quite naturally 

to the sequence of positive integers required in the statement of the 

theorem. Now make this type of substitution for each arrow into node 

s. That is, replace 

©" h^l 
with 

•0   lsl5 

Similarly,   let    N = max {|n.|    : k + 1 <  i £ n}    and    add    N - 1    new 

states  to    M    labeled    T,,   .   .   .,  T„ .     so  that we have 

0-^*0- 1-1 ^>±U0 
We now use the same construction as above to handle these left moving 

states.  Finally, make these alterations at every node s in the 

configuration of M.  Let M' «= (A, S', B', f) be the new machine 

created from M by the above process.  Then B' - {-1, 0, 1}  and 

M'  is a Turing machine. 

Consider now the machines M and M'  above with input tape 

T.  Let M produce the sequence of output tapes tj« T2> T-J, . • • 

and M'  produce the sequence s = (t'ji T'2» ■ • •)•  In tne 

construction of M', one notices that Tfc appears in the sequence 

sT for each k, i.e. xfc - T*n(k) e sx  for some n(k). 

We now have the following: 
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and T ' ,, ,,. 
n(k)       n(k+l) 

T l '      n(l)"      n(2) 

It is also seen that the tapes intermediate to t1 

are identical to T'n(k)  since M'  is only concerned with head 

movement in these added states.  Thus we have displayed the required 

sequence. Q.IC.D. 

We now apply the technique of Theorem 2.1 to Figure 2.2.  The 

only nodes that require modification are s~ and s, since Si  has 

no arrows entering it which have a move such that 1.  At s„ 

we find n = 2 and N - 2.  Thus for the right moving states we add 

one state and for the left moving states we also add one state.  This 

is shown in Figure 2.3. 

Figure 2.3: Added States at s2< 

0/+1    /    \     /+1 
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Apply the same technique to So. We have the new machine as shown by 

Figure 2.4. 

Figure 2.4:  The Turing Machine for Example 2.1. 

\    1+1 mtd 
t. 

)/+l 

Let    i =(...,   b,   0,   0,   0,   0,   0,  0, b,   .   .   .)    and consider the 

sequence of output  tapes. 

TQ =   T'Q =(...,   b,  0,   0,  0,   0,  0,   0,  b,   .   .   .) 

.   •) I1,-   (.   .   .,   b,   1,  0,   0,   0,  0,  0,  b, 

A 

T«     -(...,  b,   1,  0,   0,   0,  0,  0,  b, .   .) 

t', 



ri =  T*3 =(•••'  b,   1,  0,  0,   0,   0,  0,  b,   .   .   .) 

'2 -   '  4 T'     =(...,  b,   1,  0,   0,   0,   0,  0,  b,   .   .   .) 

T»     =(...,   b,   1,  0,   1,   0,  0,  0, b,   .   .   .) 

t1. 

t1, =   (.   .   .,  b,   1,  0,   1,  0,  0,  0, b,   .   .   .) 

t'. 

18 

T3 = T'? =   (.   .   .,   b,   1,  0,   1,   0,   0,   0,  b, •   •) 

T4 = T'8 ■(••••   b«   l«  °»   l»   °*   °»  °i  b' •   •) 

T'9 =(...,   b,   1,  0,   1,   0,   1,  0, b, 

t', 

.   ■) 

T'10 -(...,   b,   1,  0,   1,   0,   1,  0,  b,   .   .   .) 

V 
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T5 = T'n =(•••» b, 1, 0, 1, 0, 1, 0, b, b, . . .) 

T6 * T 12 (. . ., b, 1, 0, 1, 0, 1, 0, b, b, . . .) 

Thus from Example 2.1 and the above, we see that each t  of 
k 

Example 2.1 is in the above sequence and the tape remains unaltered 

while cycling through the added states. 

There are several other ways in which our computing machine may 

be modified without altering computing power. All of the following 

classes of machines can perform exactly those computations which can 

be performed by our particular machine. 

(1) We may restrict the alphabet A to contain only two 

symbols. 

(2) The set S may be restricted to contain only two states 

(the alphabet is necessarily enlarged). 

(3) We need only have a set of tapes which are infinite in 

one direction. 

(4) We can require that any input symbol on a tape be altered 

at most once. 

The equivalences of the above classes is shown in the literature and 

we mention them only as a sampling of how machines can be modified. 

These are by no means the only alterations we could make.  They serve 

to indicate that our computing machine is certainly not one of a kind. 



20 

CHAPTER III 

STATE MINIMIZATION 

It is quite probable that if several persons were asked to 

design a computing machine to perform a given computation, that each 

machine would be different in design.  If we are only concerned with 

the "answers" that machines produce from an input tape, then any of 

the machines would serve our purpose as long as they had a logical 

structure which conformed with the algorithm.  However, this is seldom 

the sole criteria in determining whether one machine is somehow 

preferable to any others which perform the same computation.  The 

features to be considered in the selection of one machine from several 

should be emphasized in the machine design process.  One such feature 

is utility of design, i.e. minimizing the number of states Introduced. 

We ask the question, "If a computing machine M is given, Is there 

any way to determine whether M has the least number of states 

necessary for the computation and if not, can we somehow reduce the 

number of states without changing the action of M?" In this chapter, 

we will answer the above question by presenting an algorithm which 

merges redundant states.  This algorithm for minimizing the number 

of states is motivated by the following observation.  If M/(q, T) 

and M/(r, T)  produce the same output tape sequence for each initial 

tape T, then it is somehow redundant to list q and r as separate 

states. 
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Suppose for    T e  T     that    T.     is  the  tape produced by    M/(s,   x) 

in    i    time units with the  sequence of head movements given by 

m      nu,, m-,   .   .   .     and    t'.     is the tape produced by    M/(s',   T)     in     i 

time units with the sequence of head movements    m',, m'   ,  m'   ,   .   .   . 

Consider the  following 

Definition 3.1:     State    s     is    E    - equivalent to state    s', 

denoted    sE s',   if    t    » t'       and    m.  - m'       for    1 & 1 < n,   and 
n i i i l 

for all    t e   T. 

It should be noted that Definition 3.1   treats  the head movements 

as an  integral part of  the output.     This  treatment is crucial to  the 

development of  the algorithm for state minimization.     As we shall 

show in Chapter IV,   disregarding the sequence of head movements 

introduces a significant obstacle to further generalization of  the 

notion of state equivalence. 

We observe  that   the relation    En    on the set    S    is reflexive, 

symmetric,   and  transitive.     Thus we have the  following lemma. 

Lemma  3.1:     E      is an equivalence relation on  the set    S. 

Since    E      is an equivalence relation,  we have a partitioning 

of the  set of states    S    into equivalence classes.     States    s    and    s' 

belonging to  the same equivalence class for    En    cannot be distinguished 

by observing  the output  for    n     time units or less.     Thus we could 

consider    s    and    s'     as approximately equal if    sEns*     for large    n. 

To be indistinguishable  regardless of the machine run  time, we define 

Definition  3.2:     s    is  said to be equivalent  to    s',  denoted 

sEs\   if     sEns'     for    n -  1,   2,   3,   .   .   . 
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Note that    E    is an equivalence relation on    S.    Also,   if    sEs', 

then    s    and    s'     could be merged into a single state.     Let    P.     be 

the set of equivalence classes for    E,     and let    P    denote the 

equivalence classes for    E.     We then have 

Lemma  3.2:     States which belong to different sets  in    P.     belong 

to different  sets  in    Pj.+1' 

Proof: Pick s, s' in S such that sE\s'. Then there is 

some T £ T such that either T. T T* or ■.fa*, for some i, 

1 < i < k.     Since    l<i<k<k+l,  by Definition 3.1 we have 

sE k+r Q.E.D. 

By  the contrapositive of Lemma 3.2, we know that if    aE^jS1, 

then    sE.s'.     We  then make  the following observations. 

(1) Two states   that belong  to different equivalence classes 

in    P.     will belong to different equivalence classes in 
K 

P^    for    8. >   k. 

(2) To check two states for     (n + 1)  - equivalence, we need 

only consider  those states which are already    n-equivalent. 

Let    qE r.     Assume that for a particular initial input symbol, 

that    q    and    r    transition to    q'     and    r'     respectively.     If    q 

and    r    are  to be     (n + 1)  - equivalent,   then    q'     and    r*    must be 

n-equivalent.     This is  true because one iteration with initial states 

q    and    r    moves  the read/write head to the same new position.    This 

new position was previously considered as a starting position  in 

checking the    n-equivalence of    q1     and    r\     If the transition states 

after one iteration   (for each input symbol)  are    n-equivalent,  then 



23 

To determine  the equivalence classes  for    E,  we must find the 

equivalence  classes  for     E  ,  n ■  1,  2,  3,   .   .   .      .     The  following  len 

shows  that   this  process must eventually terminate. 

Lemma  3.3:     There exists    N >   0    such that    P.   = P„    for all 
  k N 

k > N. 

Proof:     Assume  the statement  is not true,   i.e.   assume for all 

n>   0    there exists    s(n) >   n    such that    P    + P / N-     Then we have n        s(n) 

Pl + Ps(l) * Ps(s(l))  +   '   •   •     and'   by assumption, 

1 < s(l)   *  s(s(l))   <   .   .   .     .     But since    P^    is a refinement of    Pn 

for any    k *   n,   this implies   that we have an infinite number of states. 

This  is a contradiction   to     |   S   |   < ». Q.K.I). 

Perhaps we should examine just what has been established. 

Suppose we are given a machine    M    containing the states    q    and    r, 

and we wish to determine whether    qEr    or    qjtr.     We proceed as 

follows   (see Figure  3.1): 

(1) check    q    and    r    for    Ej^ - equivalence 

(2) if    qE,r,   then    qgr;  otherwise check    q    and    r    for 

E-  ~ equivalence 

(3) if    qjt2r>   then    qEr;  otherwise check    q    and    r    for 

E~ - equivalence 

(4) continue this process until    qEkr    for some    k. 
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Figure 3.1:  Equivalence Class Refinements 

^rz?  cz> 

CS) o 

By Lemma 3.2, we know that q£r if q and r ever fail to belong 

to the same equivalence class in P,  for some k.  We also know by 

Lemma 3.3 that if qE,.r, then qEr.  However, we have no way of 

knowing the value of N.  Let up suppose N > 1000.  Further, let us 

assume that qE,0f)0r.  We might then conclude that qEr.  But what is 

to prevent q and r from belonging to different equivalence 

classes at some time k > 1000?  Fortunately, we are not only assured 

of being able to determine whether q and r are equivalent, but we 

can also determine the maximum number of iterations required to 

determine their equivalence or non-equivalence.  The following 

development provides the necessary stepping stones toward our ultimate 

aim; establishing a bound for the number of iterations required to 

determine the equivalence or non-equivalence of states In any machine 

M. 

Lemma 3.4:  If a machine M contains two states s and 8 

such that s|ts'  but sE.s*  for some k,  then M contains two 

states t and t'  such that tEkt'  but  t(k+]t'. 
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Proof:     Let     i    be the first  time unit  for which    M/(s,   T) 

and    M/(s',   T)     disagree.     Since    sE^',   then    £ >  k.     If    l = k + 1, 

let    t ^  s    and    t1   H  S'.     Assume    I - k > 1.     Let     t    and    t'     be the 

present states of    M/(s,   T)     and    M/(s',   T)    respectively after 

J. - k -  1     time units.     Then    M/(t,   T)    and    M/(t\   T)    must disagree 

for    I - k £  i <   8.    since either    x^ =f T'J    or    me 4 m\     by 

assumption     (M/(s,   T)     and    M/(s',   T)    disagree at time     l).     But  from 

time    i. - k    to time    II    there are    k + 1    time units.     Hence    tf,, ,,t'. k+1 

We now claim    tE, t'.     If not,   then  there exists     T <   T    such 

that    T,  +   T'.     or    m,   4 m'i     f°r SOIne    i,  1 £  i £ k.     But  this 

implies that    M/(s,   T)     and    M/(s',   T)    disagree at least by time 

I - 1,  a contradiction  to our assumption. Q.E.D. 

Theorem 3.1:     PR - Pk+1    if and only if    Pfc = P. 

Proof:     The if part is clear since    P,   = P    obviously implies 

P.   = Pk+i-     For the only if, we  take the contrapositlve of Lemma 3.4 

which states:     if  for any states    t    and    t'     for which    *-\t'    we 

have    tE.+.t',   then  there are no states    s    and    s'     for which    sEks 

and    sts\ Q'B'D- 

Lemma 3.5:     If    Pk-1 + Pk>   then     |   Pfe  |   i  k + 1. 

Proof:     Assume    Pk-1 + Pfe.     Then    Pr-1 f  Pr    for 

r = 1,   2,   .   .   .,  k.     Now by the contrapositlve of Lemma 3.2,   the 

classes of    P      are  further refinements of  the classes of    Pr_r 
Then 

P _     |.     Suppose 1.     Then    P.  = P    which 

contradicts our assumption  that    Pk_j t P^- So ?l   |  2   2.     By 

iteration we have 2  k + 1. 
Q.E.D. 
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We now have  the capability whereby we can make a definitive 

statement as to  the maximum number of  iterations  required to determine 

the equivalent states  for any machine    M.     The crucial question as  to 

when our minimization procedure will  terminate  is answered by the 

following theorem. 

Theorem 3.2:     In an    N-state machine,  P    .  = P   =   P. 

Proof:     PN-1 + PN    implies by Lemma 3.5  that     |  P„  |   •  N +  1 

which   is   impossible  since   there  can  be  at  most     N     subsets   in  a 

partition of   the    N    states. Q.E.I). 

The algorithm we have constructed  is meaningful for any 

computing machine    M.     We will  first give the procedure for determining 

the equivalence classes  for    E    and then apply this process  to a 

specific machine. 

(1) Determine    P   ;   i.e.,   s    and    s'     belong  to the same 

equivalence  class   if   the  output  and  head movement   rows 

of  the computing function  table for    M/(s,  T)     and 

M/(s',   T)     are identical. 

(2) Determine    PR+1    from    Pk-     Two states,  s    and    s',   in 

the same class  in    Pfc    stay together  in    Pk+1     if and 

only if  for each input symbol,   their respective next 

states are together in    Pk>   after identical head movements. 

(3) Stop when  for some    k,   Pfc = Pk+r     We  then have    P = PR. 

This must occur for some    It S   |   8  |  - 1. 

Consider the following computing function  table  for a machine 
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Table 3.1:  A Computing Function Table for a 
Non-minimized Computing Machine 

State   Input   Output 
Next 
State 

Head 
Movement 

0 0 sl +1 

1 0 s6 +1 

0 0 sl +1 

1 0 H +1 

0 1 s2 +1 

1 0 s5 +1 

0 s5 +1 

1 s8 +1 

0 sl 
+1 

1 S3 +1 

0 s8 
+1 

1 s5 
+1 

0 s6 -1 

1 S3 -1 

0 s2 +1 

1 0 85 
+1 

From the table we observe that 

Pl * {(sl' s2)'   (s3' S5' S8)' °V s6)' (s7)K 

To determine P„, we observe that SjE^.  Thus we test s: and s2 

for E2 - equivalence.  The next states for Sj are sx and s6 



28 

respectively;   for    s2     they are    Sj^    and    s^.     Clearly    s E s   .     Since 

sj^.s^,  we determine that    s.E.s.. 

Figure  3.2:     Sample Calculation of    P,. 

Applying  this   technique   to all E.   - equivalent states,  we have 

P2 = {(Sl,   s2),   (s3,   s5,   s8),   (s4,   s6),   (s7)}.     Now    P1 = p      so 

P.  - P.     Hence we merge states    s^    and    s-,  s.,    and    s,    and    Sg,   and 

finally    s,     and    s,-.     Since    s-,    is not    E,-equivalent to any other 

state,   it  is  retained as a separate state.     The minimized machine is 

denoted by Table 3.2. 

Table   3.2:     The Minimized  Computing Machine 

Next Head 
State Input Output State Movement 

s'l 0 0 s'l +1 

s'l 1 0 s*3 + 1 

s'2 0 1 s'l +1 

s'2 1 0 s'2 +1 

S>3 
0 1 s*2 +1 

s'3 1 1 8'2 +1 

s\ 0 1 s'3 -1 

s\ 1 1 s'2 -1 
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Notice that the new state s'^ now represents the merged state created 

from s1  and s„.  The merging of redundant states under the equivalence 

discussed above has physical significance for the person required to 

build such machines.  But beyond that, the esthetic beauty contained 

in the derivation and implementation of the minimization procedure is 

typical of many of the deeper and more subtle questions about the 

structure of computing machines asked by modern theorists. 
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CHAPTER IV 

A GENERALIZATION OF STATE EQUIVALENCE 

The connotation probably most often associated with the term 

equivalence is one of "sameness".  We classify objects as equivalent 

if they have the same worth, possess the same features, or perform the 

same function.  Even though two procedures were entirely different in 

structure yet both produced the same results, we would consider them 

equivalent if results were our only concern.  Recall that the function 

of a machine is to mechanize a computation, the results of which appear 

as an output tape.  Thus it is natural to consider two states, s and 

s', of a machine M equivalent if for every T c T, M/(s, T) and 

M/(s', T) produce the same output tape in any amount of time.  In 

Chapter III, we defined an equivalence relation on the set of states 

S in which the sequence of head movements was considered to be an 

essential part of the output.  But in actual practice, our only 

concern would be the output tape and not the particular motions of 

the read/write head.  In the following discussion, we will explore 

the ramifications of altering the definition of state equivalence as 

given in Chapter III to the more natural concept we have introduced 

here. 

For T i T, let i,     be the output tape produced by M/(s, i) 

in i  time units and let T'J be the tape produced by M/(s*. i)  In 

i time units. 
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Definition 4.1:     State    s    is    Rn - equivalent  to state    s\ 

denoted    sR^s',   if     T± = i'±    for    1 <  i < n,  and  for all     T t   T. 

State    s     is equivalent  to    s',   denoted    sRs',   if     sR s'     for 

n = 1,   2,   3  

In considering Definition 4.1,  we think of head movement as 

invisible  to  the machine observer.     All he can see is  the sequence of 

output tapes for each  input tape. 

We observe that    Rfl    and    R    are equivalence  relations on    S. 

Let    P.     and    P    be  the equivalence classes for    R,     and    R 

respectively.     The  reader can easily verify  that  Lemma 3.2  and  Lemma 

3.3 are still  true;   that is,  states which belong to different sets in 

P.     belong  to different sets in    ?•_»«,  and there exists    N >   0    such 

that    P.   =  P. ,= P    for all    k >  N. k N 

Consider the machine of Figure 4.1. 

Figure 4.1:  State Graph of a Computing Machine 

0/1 

/l 

/l 

0/-1 
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We determine   the equivalence classes for    IL     to be 

Px = {(1,   2),   (3,  4),   (5,   6)} 

P2 =  {(1,   2),   (3,   4),   (5,  6)} 

P3 =  {(1),   (2),   (3,  4),   (5,   6)} 

P4 =  {(1),   (2),   (3,  4),   (5),   (6)} 

P5 = {(1), (2), (3), (4), (5), (6)} 

and we observe that ?1 = ?2 j  ?3  f P4 j ?5  = p.  Theorem 3.1 fails 

since we have P±  = ?2    but Pj^ j  P.  This means the algorithm for 

determining P, as constructed in Chapter III, is meaningless.  A 

replacement for this algorithm would necessarily calculate 

P., P~>   •   •   •     until P was encountered.  A bound on the first 

occurrence of  P in the sequence P]» ^9' ' ' *  would be needed to 

indicate the point at which the algorithm could be terminated.  We 

pose the following question:  is the number of iterations N required 

to determine P still bounded by some function of the number of 

states only? 

If the answer to the above question were no, then there would 

exist a sequence of machines H^,  M2, Mj, . . ., each with the same 

number of states, so that for Mk, the first occurrence of PN = P 

is such that N > k.  This could not happen if we could show that 

there is a bound on the number r for which 

P=P   =      =p   ip   ..We have been unable to display 
k  rk+l  - -     k+r T rk+r+l 

such a bound as a function of the number of states only.  Even though 

the machine of Figure 4.1 suggests no such bound (Px = P2 T 
p3^' 

the author conjectures that such a bound does in fact exist. 
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This conjecture  is based upon experimentation and the  following 

intuitive argument.     Assume    C    is  the set of    L-state computing 

machines.     If  there are pairs of non-equivalent states of machines  In 

C    which are output  indistinguishable unless observed  for arbitrarily 

long periods of   time,   then  the "memory" of  the initial  states  is some- 

how contained in   the state designations.     But  this would attribute 

an unlimited capacity for differentiation to the finite number of 

states.     This is contrary  to intuition. 

An affirmative answer  to the question of bounding    N    would 

enable us  to more naturally define a notion of state equivalence 

and devise an effective algorithm for calculating    P.     In either 

case,   it should be noted  that    P      is no real help in  finding    P|vf|- 

This is because we are no longer concerned with head movement.     It 

is possible  for the relative positions of  the read/write head to be 

different after one unit of   time for    M/(s,   T)    and    M/(s',   T). 

At  this point,   the  two copies of machine    M    would be considering two 

different  tapes.     This  is no obstacle however,  since we can calculate 

P  .,    directly  (by use of brute force). 

We will now consider  the minimization problem with our new 

type of equivalence.     Though we have no effective algorithm for 

calculating    P    for every computing machine, we can find    P    for the 

machine of Figure 4.2.     The equivalence classes  for    R    are 

l-2 =   i(l,   2),   (3),   (4),   (5,  6)1-1' 
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Figure 4.2:  A Non-minimized Machine 

0/-1 /l 

/-l 0/1 

Since     |   P   |  ■ 4, we construct a machine with only four states which 

produces  identically  the same output as  the machine of Figure 4.2. 

(See Figure 4.3.) 

Figure 4.3:    Minimized Machine 

In  this minimized machine,   states  3 and 4 transition to state 

5/6    and state    5/6    transitions to state 1/2.     But how do we 

transition out  of state    1/2?    More generally,  suppose we merge states 

s.,   .   .   .,  s.     of some machine    M.     Then for each Input symbol, we 

have an arrow  in the original machine, with the  input synbol  at   the 

base,  emanating  from each state    »,.     With our old definition of 

equivalence,   equivalent states always transitioned to equivalent 
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states,   so we had no choice  for the associated transition  In   the 

minimized machine.     In Figure 4.2,  state    1    transitions  to state    3 

and state    2    to state    4.     Now    1R2,   but    3Jt4;  hence which of   the 

dotted arrows of   Figure 4.3 should we choose?    Fortunately,   the 

essence of  equivalence  is  that  it makes no difference; we can choose 

either arrow.     The reader can verify  that the machine of  Figure 4.3 

will perform exactly those calculations which can be performed by 

the machine of Figure 4.2. 

We also make the following observation.     If we minimize  the 

machine of  Figure 4.2 using  the equivalence of Chapter III, we  find 

that  it  is already minimal,   i.e, six states are  required.     However, 

only four states are required with the equivalence of Definition 4.1. 

This "coarser" refinement  is a result of  the fact that  if    sEs', 

then    sRs'     for any    s,s' e S.     Because of  this  implication, we can 

obtain a smaller minimized machine - one with fewer states - with this 

new concept of equivalence. 
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CHAPTER V 

SUMMARY 

In  this  paper,  we have discussed the  theory of computation and 

computing machines.     It was intended that  this discussion  remain as 

intuitive as possible,   for the author subscribes to  the opinion of 

Minsky   [4]   that  classical mathematical analysis cannot play a 

significant role in  this area. 

The  concepts of computation and computing machine were 

formalized   in Chapter   II.     We also  investigated  the question of what 

restrictions could be placed on computing machines without altering 

their  computing power.     In  Chapter  III,   the notion of equivalent states 

was discussed,  and we constructed an algorithm to accomplish a 

minimization of  any machine.     In Chapter IV,   the read/write head 

movement was ignored  as part of  the machine output,   and  the problem 

of  recognizing equivalent states was discussed. 
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