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A  second heterocaryon gene has been identified  in Neurospora  that 

affects   the maintenance of  stable growth rates of  heterocaryons,   rather 

than heterocaryon  formation,  as do  the genes £,  D,   and  E.    The alleles of 

the new gene have been  tentatively designated in and Jii,   for heterocaryon 

instability.     On growth  tubes,   forced HI + HI and hi + jri heterocaryons 

grow normally.     HI + hi heterocaryons grow at wild   type rate  initially, 

then growth slows or ceases.     The behavior of HI + hi heterocaryons appears 

to be unrelated to nutritional requirements of  the component strains. 

Results of conidial platings and  single hyphal  tip  isolations from unstable 

heterocaryons suggest   (1)  a greatly reduced number of hi nuclei   In conidia 

and hyphae growing  from the conidial  inoculum,   (2)   that migration of  hi 

nuclei  is not totally inhibited.     Direct observations show that HI and hi 

conidia germinate and fuse normally.     The behavior of HI + hi heterocaryona 

appears  to be independent of initial nuclear ratios,   unlike that of  the 

previously described I+± heterocaryons.    These results suggest a non- 

adaptive change in nuclear ratios of  the unstable heterocaryons.     We have 

been unable  to determine whether  this change is a result of  selective 

mitotlc inhibition,   interference with nuclear migration,   or a combination 

of both.     Preliminary genetic analysis suggests  that   the new gene is on 

the left arm of linkage group II. 
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INTRODUCTION 

Heterocaryosis may be defined as  the coexistence of two or more 

genetically different nuclei in cytoplasmic  continuity with one another 

(Davis,   1966).     In  theory,  any multinucleate  cell may be heterocaryotic, 

but  frequent hyphal fusions and nuclear exchanges make heterocaryosis a 

common condition in many fungi   (Wilson,   1958).     It is  often a preliminary 

requirement  for sexual reproduction  (Pontecorvo,  1953),   and for the para- 

sexual cycle   (Pontecorvo,   1956).     Under  certain conditions,  heterocaryosis 

offers  a simple alternative to genetic  testing for allelism. 

The first artificial heterocaryons were synthesized by Burgeff   (1914), 

Using Phycomyces  nltens,  he squeezed the contents of a sporangiophore of 

one mating type into a sporangiophore of  the opposite mating type and 

transferred the second sporangiophore to a nutrient medium where it occa- 

sionally regenerated vegetative hyphae which were bisexual  heterocaryons. 

Hansen and Smith   (1932)  and Hansen   (1938)   concluded  that the "dual 

phenomenon"  i.e.   heterocaryosis,   occurred with great  frequency in Botrytis 

cinerea and  a number of other fungal species.     Single spore  isolations 

revealed  that most  conidia of the strains were heterocaryotic.     Single 

spores  of B^.   cinerea gave rise  to three culture types:    M  (aconidial); 

C  (conidial);   and an intermediate between M and C.     Single spores of M or 

C gave rise only  to M or C culture  types.     Single spores of   the MC interme- 

diates produced M,   C,  and MC intermediate culture  types.     Comparable results 

in other species suggested that heterocaryosis  is probably  the natural 

state for many fungi. 



Beadle and Coonradt   (1944)   found that they could force hetero- 

caryosis  in N.   crassa by satisfying the following criteria:     The two 

strains must be of  the same mating  type;   they must  each carry at least one 

recessive gene for a nutritional deficiency;   the mutant genes  involved 

must be nonallelic.     Inocula of two strains satisfying these criteria wore 

superimposed on minimal agar medium so that heterocaryosis was a  prereq- 

uisite for growth.     They used heterocaryons  to test  for allelisin,  and to 

inhance fertility in mutant  strains.    Results of  their  investigations 

tended  to confirm ideas concerning the physiological basis of hetero- 

caryotic vigor proposed by Dodge  (1942).     They proposed the idea  that 

hyphae containing  the most favorable range of nuclear ratios would attain 

a higher growth rate than hyphae with less favorable ratios,   eventually 

resulting in a hyphal frontier  in which nearly all hyphae would contain 

nuclear ratios in an optimal range.     This process has been termed hyphal 

selection. 

Genetics of Heterocaryosis in Neurospora crassa 

Holloway   (1953)   and Garnjobst   (1953)  demonstrated the presence of 

genetic  factors  that controlled heterocaryon formation.     Holloway,   using 

Emerson wild types E5297,   5531 pan-1,  and 4545 lys, was able to determine 

the existence of at least four genes controlling heterocaryosis,  and to 

distinguish  seven distinct patterns of heterocaryotic growth.     No definite 

correlation has been established between those genes and the genes 

described by other researchers.     Garnjobst discovered some isolates of 

rib strain Y 30539  that consistently formed heterocaryons with 5531 oan 

while others never did.     The "het+"  isolates of Y 30539 rib formed 



l.eterocaryons with all of  the standard mutants except 37401  inos.     This 

inos  strain would not form heterocaryons with  the same standard   strains. 

She determined   that   two unlinked pairs of alleles   (het-C and het-D) were 

responsible.     Later work indicated that a single gene difference at either 

of   the  two loci prevented heterocaryon formation.     The genetic combinations 

CD + CD,  Cd + (M,  cD + cD,   cd + cd,  permitted heterocaryon formation;   the 

combinations CD + cD,   CD + Cd,  Cd + cd,   cD + Cd,   cD + cd prevented hetero- 

caryon formation   (although  the combination Cd + cd occasionally  exhibited 

faltering growth).    The interactions of  the net genes were unrelated to 

any biochemical deficiencies with which they might be associated 

(Garnjobst,   1953;   1955).    Microscopic examinations of hyphal fusions 

revealed a protoplasmic  incompatibility reaction associated with  the mixing 

of net- protoplasms.     The reaction apparently began shortly after proto- 

plasmic  flow between the two fused cells.     The protoplasm first appeared 

granular near  the point of fusion.     It  then became increasingly vacuolated 

until  the entire protoplasmic contents of  the cell were disorganized.     The 

reaction often affected a number of adjacent cells.    Those affected became 

sharply delimited by septal  plugs.     Eventually,   only remnants of  the 

original protoplasm were left.     Similar incompatibility reactions occurred 

when A and a strains fused   (Garnjobst and Wilson,   1956).    Microinjection 

studies  indicated  that  the incompatibility reactions were due to an 

extractable protoplasmic component which was apparently a protein or 

protein-RNA complex   (Wilson,  Garnjobst,   and Tatum,   1961;  Williams and 

Wilson,  1966).     A third gene,   het-e,  was found  in St.  Lawrence wild  types 

and derivatives.    A difference at  the E locus resulted in a cytoplasmic 

incompatibility reaction similar  in appearance to  that described by 



Garnjobst and Wilson   (1956).     The following linkage relations were estab- 

lished for the three genes:     d^ in linkage group IIR,  distal  to 11   (fluffy); 

£ in group TIL,  distal   to ro-3   (ropy);  and  <z  in group VIIL,  distal to nic-3 

(Wilson and Garnjobst,   1966). 

Perkins   (1975)  used strains containing duplication-generating 

chromosome rearrangements to  study known het genes  in N.   crassa by creating 

duplications  of  these genes in a single strain.     Strains with homozygous 

duplications of the het genes   (G/C,  E/E,  or A/A)  appeared normal, while 

those with heterozygous duplications   (C/c,  E/e, or A/a)  were initially 

inhibited and  released a dark pigment  into the agar  in the presence of 

phenylalanine and  tyrosine.     The heterozygous duplication phenotypes were 

different from those of   incompatible heterocaryons,  but,   the duplication 

phenotypes were easily recognizable,  and appeared   to be analogous to 

conventional heterocaryon incompatibility.     Crosses between duplication 

generating strains and normal strains produced   two kinds of progeny: 

normal;  and  inhibited with dark agar; whenever the crosses were hetero- 

zygous for any of the het genes  studied.     The method  proved to be valid 

for use in the search for,  and  identification of new het genes.     Resolution 

of  this technique is apparently  limited only by the number and  lengths of 

the various duplications that can be formed.    A number of  strains,  both 

standard het gene testers and wild  types of unknown het genotype, were 

tested  to determine the genotype of  each.     Results of these crosses 

suggested  the presence of  at least one new het gene on the left arm of 

linkage group II in addition to het-C. 

Mylyk   (1975) used  the same  techniques  to examine extensively the 

N.   crassa genome for   the presence of other het genes.     He reported the 



presence of five previously unmapped genes  (het-5 in group  lit,   het-6 in 

group IIL distal  to  het-C,   het-7  in IIIR,   het-8  in VIL,  het-9 in VIR,   and 

het-10  in group VIIR)  which gave heterozygous duplication phenotypes 

resembling those of  heterozygous duplication strains of het-C,  het-E,  or 

mating  type. 

Studies on Cenes Affecting Nuclear Ratios 

Evidence for nonadaptive changes in nuclear ratios in Neurospora 

heterocaryons was first observed by Ryan and Lederberg   (1946)  and Ryan 

(1946).     In studies on adaptation of  leucineless mutants back to wild  type, 

certain cultures derived from leucineless strain 33757 were found which 

had reverted so that  they were physiologically identical to wild  type. 

Growth rates of the adapted  cultures were the same as wild  type and were 

independent of   the concentration of leucine in the medium.     Genetic  studies 

indicated  that  the adaptations were due to back mutations of  the same gene 

or a closely linked gene.    On minimal medium,   heterocaryons formed with 

the leucineless and the adapted cultures had growth rates characteristic 

of  the adapted  control strains on minimal medium.     Heterocaryons formed on 

minimal medium plus limiting  concentrations of leucine grew at  the same 

rate as  leucineless controls on limiting concentrations of leucine.     Hyphae 

were isolated from heterocaryons in which the leucineless and adapted 

strains contained different marker genes for conidial color.     When hetero- 

caryotic hyphae were  isolated and grown on minimal medium,   color markers 

associated with leucineless nuclei could not be demonstrated.     Such hyphae 

grown on limiting concentrations of  leucine did not show color markers 

associated with the adapted strains.     This evidence indicates some selective 



activity which acts on the nuclei themselves,  and which may be modified by 

supplementing,   with leucine,   the medium on which the heterocaryon is 

growing.     They were unable to determine whether  this selective activity 

inhibited  or destroyed  the unsuccessful nuclei.    Attempts to demonstrate 

an extractable  inhibitor of  leucine-independent nuclei from both leucine- 

less strains and heterocaryons were unsuccessful. 

Gross   (1952)  reported successful synthesis of bisexual hetero- 

caryons.     He used  the conditionally lethal mutants 5531 pan-1 and 4545 lys. 

The heterocaryons  produced were self fertile,  but  the growth rates   (on 

growth tubes) were severely reduced   (approximately 0.5 wm./hr.).     Isola- 

tions of  single hyphal  tips and results of  conidial platings indicated 

highly disparate nuclear ratios,  which could account for  the reduced growth 

rates of these heterocaryons.    Gross believed  that the divergent nuclear 

ratios were due  to replication inhibition of A nuclei by £ nuclei when the 

two were in a heterocaryon. 

In studies on adaptation in pantothenate-requiring strains of 

Neurospora,  Davis   (1960 a;   1960 b)  found a modified strain,   pan-1, m, 

derived from 5531 pan-1.     The modified strain was apparently able to 

utilize lower  concentrations of pantothenate which would be limiting to 

the normal pan-1  strain.     On growth tubes containing unlimiting concentra- 

tions of pantothenate,  pan-1 homocaryons grew at rates between 3.5 and 

4.0 inm./hr.     Homocaryons of pan-1,  m,  grew at  2.4 mm./hr.     Growth rates of 

heterocaryons on unlimiting pan concentrations were linear with time  (as 

were growth rates of  the homocaryons) but,   those with lower EMP values 

grew at lower rates.     (The plating  technique used measured only the numbers 

of homocaryotic pan-1  colonies.    Also,   homocaryotic conidia are often 



•produced in higher numbers   than expected on the basis of random chance. 

For  these  reasons,  nuclear frequencies in this work, were recorded as 

maximal estimates of pan-1 nuclear frequency.     These frequencies were 

referred to as EMP values).   Conidial samples,   taken from three widely 

separated ports along the growth  tubes,  were plated  to  determine the EMP 

values at   these intervals.     The EMP values were constant   (within 8%) 

throughout   the length of  the mycelium.     When this experiment was repeated 

on growth   tubes  containing limiting pantothenate concentrations,   growth 

of pan-1 homocaryons was  severely  limited,   demonstrated by a very short 

period of  growth before   they stopped.    The growth rates of pan-1,  m 

homocaryons were nearly equal  to  those of pan-1,  m on unlimiting medium. 

Heterocaryons of pan-1 + pan-1, m exhibited unstable growth rates, 

consisting of a short period of  growth,   followed by a period of no growth. 

Growth then resumed,   either at   (1)   a rate characteristic of pan-1,  m 

homocaryons,   (2)   a slowly increasing rate  that approached  that of pan-1, 

m homocaryons,   (3)  a   fluctuating rate intermediate between those of the 

component homocaryons,   or   (4)  a high rate,   followed by a second cessation 

of growth.     To determine correlations between changes in nuclear fre- 

quencies and  fluctuations  in growth  rates,  heterocaryons were inoculated 

at the edges  of large Petri dishes  containing limiting concentrations of 

pantothenate.     The heterocaryons  grew rapidly at  first,   then stopped. 

Renewed growth  then appeared at sectors along the hyphal  frontier.    These 

sectors either continued growing,   or,   in some cases,   stopped a second 

time.     Conidial samples  from various points  of growing and nongrowing 

sectors of  the mycelium were  plated,   and the EMP values  in each of  the 

sectors was determined.     Results  indicated  that,   in general,   growth 
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occurred only when BMP values were below 0.45.     Growth stopped when EMP 

values were above 0.50.     It was  evident that changes  in growth rates  of 

pan-1 + pan-1,  in heterocaryons were due  to changes in nuclear ratios. 

Davis assumed   that  the non-adaptive increase in pan-1 nuclei was the 

reason for  cessation of growth  in the heterocaryons,   and that further 

growth involved hyphae having a more  favorable ratio of pan-1  to pan-1, m 

nuclei.     He suggested  that  this phenomenon supports  the hyphal selection 

hypothesis of  Beadle and Coonradt   (1944).     Heterocaryons of pan-1,  m + 

nic-2,  al-2 and pan-1 + nic-2,  al-2 showed stable growth rates  and stable 

EMP values.     These results suggested  that the variable growth rates and 

fluctuating nuclear ratios were peculiar to the pan-1 and pan-1,   m geno- 

types.     The evidence also supports  the idea that  the fluctuating nuclear 

ratios  may be due  to nuclear competition for intracellular constituents 

(probably pantothenate). 

Pittenger and Brawner   (1961)   reported on the alleles _I and i^ which 

affected  the nuclear ratios and growth rate in N.   crassa heterocaryons. 

I_ + I. and  i. + i. heterocaryons exhibited stable growth rates   (growth was 

measured on growth tubes,   but little comparative data was actually 

reported).     In I +i heterocaryons,   I nuclei underwent a nonadaptive in- 

crease which ultimately resulted in a culture homocaryotic  for I nuclei. 

The biochemical deficiency associated with homocaryosis caused  growth  to 

stop.     The conidial color markers al-1 and al-2,  and the auxotroph nic-2 

were used to detect any nuclear selection that resulted in highly diverse 

nuclear ratios.     Heterocaryons of al-1 + al-2 exhibit normal to near normal 

orange  color with a variety of nuclear ratios.    High proportions of al-1 

nuclei result  in dark yellow,   light yellow,  or white conidia;  an excess  of 

I 



al-2 nuclei  results in light pink to white conidia.    The auxotroph nic-2 

was  used because  it releases a reddish brown pigment into  the medium when 

nicotinic acid is  limiting.     Thus a heterocaryon of pan-1,   al-1 + nic-2, 

al-2 might show white conidia,   indicating a highly diverse nuclear ratio, 

and a reddish brown pigment  indicating a deficiency  for nicotinic acid. 

Conidia were  isolated  from heterocaryons containing complimentary auxo- 

trophs and the color markers  al-1 and al-2.    When conidia from a hetero- 

caryon produced a majority of  cultures deviating from wild  type coloration, 

the heterocaryon was  investigated  to determine the existance of nuclear 

competition.       This   technique would tend to screen any nonadaptive nuclear 

increase by one component of a heterocaryon, whether it was due  to 

competition for some intracellular  component,  or active inhibition of one 

nuclear  type by  the other.    This is how the strains carrying I and i^ were 

discovered.     I + I and i + 1 heterocaryons  grew at approximately normal 

growth  rates and showed no systematic increase by one nuclear component, 

even when started from a variety of nuclear input ratios.     When 1 + 1 

heterocaryons were examined,  growth rate and interactions between 1^ and i 

nuclei depended  to some degree,  on the initial nuclear ratios.     If  the 

initial input ratios of i nuclei exceeded about  70%,   the growth rates and 

nuclear ratios  showed no systemic change.    When the initial  input ratios 

were less  than 70% in  favor of  the i_ component,   growth stopped and there 

appeared a sharp decrease in the production of i_ nuclei, when the nuclear 

ratios of   the proximal and distal ends of the growth  tubes were compared. 

These results demonstrated a nonadaptive change in the nuclear ratios of 

the heterocaryon,  which resulted in cultures  that were essentially homo- 

caryotic   for I nuclei.     Interactions of 1^ and A nuclei appear to be 
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independent of any particular auxotrophic markers  used, i.e.   4545 lys-5, 

10575  trip-1,   and  3416 nic-1.     To determine  the behavior of conidial 

derived I. + i. heterocaryons,   conidia were  isolated  from 1 + JC,   i + ji,  and 

I + _i combinations.     Auxotrophs and color markers have already been 

mentioned.     The majority of colonies resulting from conidia of  1^ + _I,  and 

i, + i. heterocaryons had wild  type coloration,  while   the majority of  those 

resulting from I_ + i. heterocaryons had color phenotypes  indicating the 

presence cf a high proportion of I_ nuclei,   regardless of   the initial input 

ratios of the original heterocaryons.    The few conidial derived cultures 

that were not white had a high  proportion of i nuclei.     Some of  the 

conidial derived _I + _i heterocaryons were   transferred  to  growth  tubes. 

In some cases,   these heterocaryons had a normal color,   normal growth rate, 

and an J. nuclear frequency  in excess of  70%.     Most however,   grew varying 

distances before stopping.     These cultures had become homocaryotic for I. 

nuclei.    Apparently a nonadaptive increase of _I nuclei occurred in 

conidial derived heterocaryons,   unless   the nuclear ratio within  the 

conidium approaches II  :   3i or II   :  4i..     Inheritance studies,   especially 

linkage data,  were limited.     Thirteen unordered asci,   from a cross hetero- 

zygous   for I_ gave a 1   :   1 segregation of 1^ and i.    Genetic analysis 

indicated  that   the locus was in linkage group  I or II.     The al-1 marker 

used is associated with a reciprocal  translocation occurring between groups 

I and II,   making linkage data difficult  to obtain.    The  results  supported 

the ideas  that   I + I and  i + i heterocaryons  undergo no systematic changes 

in nuclear ratios or growth rates,   and that I + i heterocaryons are subject 

to a nonadaptive increase in _I nuclei causing unstable growth or cessation 

of growth unless  the initial proportion of i nuclei is   70% or above. 
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The genes 1 and i. are found  in strains either derived  from,   or 

compatible with wild type strain 74-OR-8-la, which is now known to have 

the heterocaryon genotype Cde   (Wilson and Garnjobst,   1966).     The existence 

of J_ and  1^ in strains derived from Rockefeller-Lindegren wild  types has 

not been shown. 

A number of  strains derived from Rcckcfeller-Lindegren wild  types 

have been found  that readily form heterocaryons with other Rockefeller- 

Lindegren strains,   but which do not maintain stable growth rates.     These 

unstable heterocaryons grow at wild  type rate initially,   then growth slows, 

or ceases.     This growth pattern suggests the presence of a hitherto unknown 

gene   (tentatively designated HI and hi,  for heterocaryon instability)  in 

these isolates,  which controls the latter stages of heterocaryotic growth. 

The behavior of  the allcles HI and hi in heterocaryons appears  to be 

unrelated to  the nutritional requirements of the component strains. 

Results of  single hyphal tip isolations from unstable heterocaryons   (HI + 

hi)   suggest:     (1)   a greatly reduced number of hi nuclei in conidia and 

hyphae growing from the original conidial inoculum, and   (2)   that migration 

of hi nuclei  is not totally inhibited.    The behavior of HI + hi hetero- 

caryons appears to be independent of initial nuclear ratios,  unlike that 

of the previously described l+± heterocaryons.    In the present  study, we 

describe  the effects of   the alleles in heterocaryons,   determine how the 

alleles inhibit heterocaryotic growth,  compare and contrast the characteris- 

tics of  the new alleles with the characteristics of  the alleles  I and  i_, 

and present some evidence suggesting mitotic  inhibition of hi nuclei in 

the presence of HI nuclei. 
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MATERIALS  AND METHODS 

The media used for these experiments are:    Vogel's Medium N (Vogel, 

1964);  Fries medium   (Ryan,  Beadle, and Tatum,  1943;  and Beadle and Tatum, 

1945)  for microcultures;  synthetic crossing medium  (Westergaard and 

Mitchell,  1947);   and Glycerol Complete Medium  (Tatum,   Barratt,   Fries,  and 

Bonner,   1950)  with the substitution of 0.4% sucrose for  half  the glycerol. 

Nutritional supplements were nicotinamide hydrochloride and  calcium 

pantothenate   (5 ug/ml)  and  inositol   (50 ug/ml). 

The tester  strains   (Table 1)  all have the heterocaryon genotype C, 

D,  E,  and were derived  from Rockefeller-Lindegren wild  types.     The mutants 

include:     inl   (37401),   pan-1   (5531),  al-2 (15300),and nic-3   (Y31881). 

Growth rates were measured using methods described by Ryan,   Beadle, 

and Tatum   (1943). 

Mass cultures of  conidia were grown in 250 ml Erlenmeyer flasks 

containing  50 ml of Vogel's Minimal Medium plus the appropriate nutritional 

supplement.     They were incubated for  7 days at 30 C.    The conidia were 

harvested  in 30 ml of  sterile distilled water and filtered  through two 

filter flasks.     The suspensions were diluted 1:1000 and counted on a 

hemacytometer.     The yield varied between 5 x 10    and 10 x 10    conldia/ml 

for  the undiluted suspension. 

For platings,  a loop of conidia from growth tubes or  slants was 

suspended  in a 10 ml sterile distilled water blank and filtered twice 

through thistle  tubes filled with glass wool.    The suspensions were counted 

and diluted  to a  concentration of 300 conidia/ml,  and plated at 
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Table 1.     Tester Strains for Heterocaryon Instability 

inl,  HI 

NCRL73(1-4)A al-2;   inl; HI 

(2-3)A inl;  HI 

NCRL74(l-2)a al-2;   inl;  HI 

29 a  inl; HI 

inl, hi 

NCRL74(2-3)A al-2;   inl; hi 

NCRL74(3-5)A al-2;   inl;  hi 

(2-7)A inl;   hi 

(ll-7)a inl;  hi 

3a al-2;  inl;  hi 

pan-1, HI 

(2-3)A al-2;   pan-1;  HI 

2A pan-1;  HI 

(3-7)a al-2;   pan-1; HI 

2a pan-1;  HI 

pan-1,  hi 

NCRL73(1-8)A pan-1;  hi 

NCRL74(1-6)A pan-1;  hi 

18A pan-1;  hi 

188A al-2;  pan-1;   hi 

21a al-2;   pan-1;  hi 

NCRL74(2-8)a pan-1;   hi 
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100 conidia/plate.     Platings were made in triplicate for each nutritional 

class,  but all  slant heterocaryons were double plated   (i.e.   six plates per 

class).     The plating medium was  that described by Brockman and De Serres 

(1963). 

Control  of nuclear ratios in conidia  inocula was accomplished by a 

modified version of  the technique reported by Pittenger and Atwood   (1954) 

and Pittenger and  Brawner  (1961).     First,   the per cent of viable conidia 

produced by each component strain was determined by plating conidia from 

7 day old  cultures of  each strain grown at 30°C on Vogel's Medium plus the 

appropriate nutritional  supplement.     The component strains were then grown 

in conidial  flasks for  7 days under  the same conditions.    The resulting 

conidia were harvested according to  the procedure already described,  and 

the two  suspensions were mixed by volume in ratios adjusted   to compensate 

for differential  conidial viability.     The calculations were based on the 

assumption that  the average number of nuclei per conidium was  the same  in 

the component  strains.     The mixed suspension was centrifuged at 500 x g, 

the supernatant fluid decanted,  and a portion of  the conidial pellet was 

transferred   to  the medium with a loop.     Heterocaryons with extreme nuclear 

ratios were formed by microinjections,  as described below. 

To  test  the effect of nutritional supplements on unstable hetero- 

caryons,   a heterocaryotic plate colony was grown for 18 hrs at  25 C and 

agar blocks were cut  from the frontier region and  transferred   to growth 

tubes containing supplemented media.    These tubes contained sampling ports 

through which conidial  samples could be removed at various distances from 

the  inoculum site.     Blocks of agar and mycelium were removed from the area 

1 cm behind the hyphal frontier,   incubated 24 hrs at 30°C,  and  the result- 

ing conidia were plated. 
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Plate cultures for hyphal tip isolations were started  from pellets 

of centrifuged conidia.     The numbers of  conidia of  the  two component 

strains in  these pellets were adjusted  to givs a 1:1 ratio with allowance 

for differential per  cent germination.     The cultures were incubated for 

12 hrs at  25 C before the hyphal tips were  isolated.     The isolation 

procedure was carried out under a  transfer hood  fitted with an adapter to 

allow the eyepieces of a dissecting microscope to extend above the hood. 

The hyphal  tips were  transferred to 10 x 75 mm slants and  incubated at 

30°C for at least 48 hrs. 

For  the diffusable inhibitor  tests,  a 2X concentration of De Serres 

sorbose medium  (Brockman and De Serres,   1963) was used.    Conidial flasks 

were  incubated and harvested in the usual manner, and the resulting 

conidial suspension contained  50 x 10    conidia/ml.     Two ml of  this suspen- 

sion were transferred  to a 250 ml Erlenmeyer flask containing 50 ml of 

modified Vogel's liquid with supplement.     Because the carbohydrate composi- 

tion is crucial,   this medium was made with 0.1% dextrose,  and 0.1% 

fructose instead of  sucrose to avoid sucrose accumulation in the final 

plating.    The cultures were incubated at 30 C for 6 hrs on a shaker. 

Samples of the cultures were examined under a microscope to assure that 

most conidia were germinating.     The cultures were then filtered   through a 

5 um Millipore filter.     The filtrate was mixed  1:1 with melted  2X sorbose 

medium,  and this mixture was used for the final plating medium. 

Microscope slides for  the conidial coalescence experiments were 

prepared  in the following manner.     A dotted  line was drawn on the underside 

of   the slide,   dividing  it into the right and  left halves   (Figure 1).     The 

upper surface of  the slide was coated with melted Fries medium  (Ryan, 
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Figure 1.  Diagram Showing Microscope Slide Prepared for Conidial 
Coalescence Experiments 

Strain A Conidia z. 
Microneedle 

X -Strain B Conidia 

"7 
^ Dott ed Line on Underside 
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Beadle,  and Tatum,   1945).    Microneedles were pulled by hand from 1 ram 

diameter,   soft j,l.-?;,.'; capillary tubing.    The technique has been described 

by Chambers and Kopac   (1950).     Coaidia irom each component strain were 

streaked on each side of  the agar coated slide.     The inoculated  slide was 

placed under a microscope, and,  by means of a mlcr(manipulator,   one or  two 

coaidia from each strain were pushed  to the middle of   the slide,  using  the 

open spaces in  the dotted line for  spacial  orientation.     The resulting 

clumps of conidia were incubated  in moist chambers at 30 C for   6 hrs. 

After   6 hrs,   the conidia were examined under a microscope for  signs of 

gemination-     They were photographed at 6 hrs,  and every 3 hrs  thereafter 

until it appeared that a heterocaryon had been established,  at which time 

they were  transferred  to a plate containing minimal medium.     Sterility was 

maintained by  inspection,  and  the criterion for heterocaryosis was growth 

on minimal medium. 

Microsurgical operations were carried out according  to the methods 

described by Wilson  (1961;   1963),  and Wilson, et al.   (1961),   except that 

the injection apparatus was modified by using a 1 ml  syringe connected   to 

the micropipet chuck by Clay-Adams polyethylene tubing   (PE 260 fitted with 

size D male Luer-Lock adapters).     The small syringe confers a greater 

mechanical advantage when injecting material against  the high turgor 

pressure of Neurospora.     Crude extract for microinjectinns was prepared 

from a   24 hr   shake culture of an  inl,  HI strain grown in Vogel's minimal 

plus inositol at 30°C.     The mycelium was harvested using a  suction  funnel 

and washed  in phosphate buffer.     The mycelial mat   (approximately 12 g wet 

weight)  was chilled and  sand ground  in equal amounts of  sand and  0.1>1 

phosphate buffer,   PH 6.8.     The crude extract was centrifuged at  500 x g 

for 20 min to remove the  sand. 
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The cross for genetic analysis was carried out on synthetic crossing 

medium   (SCM)   plus pantothenate.     The ascospores were   isolated in order,  and 

only  tetrads with at   least   three of  the meiotic  products present were 

analysed.     Testing for heterocaryon instability genotype was done on growth 

tubes by forming heterocaryons between the isolate being tested,  and a 

known HI or jii  tester  strain. 

The confidence limits,   i.e.   the probability of detecting  interme- 

diates in the sample of  eight tetrads if  two loci are present,  were deter- 

mined using  tables   (Dixon and Massy,   1969)  based on the binomial probability 

function 

P[y]   =   $  X y(l-X)N--y 

where y   is  the. number of intermediates,  x is the expected per cent of 

crossing over,   and N is the total number of asci. 



19 

RESULTS 

Behavior of Unstable Heterocaryons 

The  effect of   the alleies HI and h_I  on forced heterocaryons Is 

illustrated  graphically  in Figure 2.    At  30°C,   hooocaryotic JU or hi 

strains grow at nearly equal,  and fairly constant rates   (approximately 

4 mm/far),   that  are linear with time throughout their growth periods. 

Forced heterocaryons,  which are homozygous for HI,   such as 73(1-4)A al-2; 

inl;  HI +  (2-3)A al-2;   pan-1,  HI,   also grow at approximately 4 iran/hr,   much 

like a wild   type homocaryon.     Heterocaryons which are homozygous  for hi 

74(3-5)A al-2;   inl;   hi + 73(1-8)A pan-1; hi,   exhibit a nearly identical 

growth pattern.     Heterocaryons which are heterozygous for   the two alleies, 

29a  xnl;   HI + 21a al-2;   pan-1;   hi,   73(1-4)k al-25   inl; HI + 18A pan-1;  hi. 

and  ±62A al-2;   nlc-3;  hi +  73(1-4)A al^J Mi SD »**,   ■■  illustrated   in 

Figure 2,   exhibit any of a number  of" growth patterns.    The most common is 

characterized  by an early growth rate which is linear with time and 

approaches  that  of wild  type for up to 72 hrs.     Between 36 hrs and  72 hrs 

however,   the growth of  these heterocaryons may slow down,   become very 

erratic,   or cease completely. 

Conidial Platings 

The possibility   that HI + hi hetarocaryons might stop because they 

had become homocaryotic was  tested by plating conidia  from slant  cultures 

of four  stable heterocaryons   (as controls)  and four unstable   (HI + hi) 

heterocaryons.     The results are  tabulated  in Table 2.     Each plating 

represents  the assay of  a separate heterocaryotic culture. 
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Figure 2.     Representative Growth Curves for Stable and Unstable 
Heterocaryons 
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Table 2.     Indicated Nuclear Ratios of Stable and Unstable Heterocaryons 

Heverocaryor 
Culture 
Number 

Homocaryotic 
Colonies 

pan-1     inl 

lletero- 
c.aryotic 
Colonies 

Total 
Count 

Control 
Count Error 

29a  inl;  HI 1 37 70 277 384 358 7% 

+ 
2a pan-1;   HI 2 45 43 347 435 455 4% 

3a al-2;   inl;   hi 
+ 

21a al-2;  pan-1; 

3 158 25 334 517 546 5% 

M 4 33 22 330 385 443 13% 

29a  inl;  HI 5 173 471 6 648 642 1% 

+ 
21a al-2;   pan-1; jhi± 6 0 422 0 422 428 1% 

2a pan-1; HI 7 340 0 1 341 348 2% 

+ 
3a al-2;   inl;   hi 8 604 5 4 613 641 4% 
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Culture ill   (29a  inl;  HI + 2a pan-1;  HI)  produced 277 heterocaryotic 

colonies,   37 horaocaryotlc  pan-1;   HI colonies,  and   70 homocaryotic  inl;  HI 

colonies.     The total of  the heterocaryotic and homocaryotic plate count 

(358)  agrees with  the control plate count   (384)   to within 7%.     Culture Q2 

(same strains)   produced  347 heterocaryotic colonies,   45 homocaryotic pan-1; 

HI colonies,  and 43 homocaryotic   inl;  HI  colonies.     The total hetero- 

caryotic  plus homocaryotic  count   (435)  agrees with the control plate count 

(455)   to within 4%.    Culture #3   (3a al-2;   inl;   hi + 21a al-2;   pan-1;  hi) 

produced 334 heterocaryotic colonies,   158 homocaryotic al-2;   pan-1;  hi 

colonies,  and 25 homocaryotic al-2;  inl;   hi colonies.     The total hetero- 

caryotic plus homocaryotic count   (517)  agrees with the control plate count 

(546)   to within 5%.     Culture #4   (same strains)   produced 330 heterocaryotic 

colonies,   33 homocaryotic al-2;  pan-1;  hi colonies and  22 homocaryotic 

al-2;   inl;   hi colonies.    The total heterocaryotic plus homocaryotic count 

(385)  agrees with the control plate count   (443)   to within 13%.     These 

heterocaryons consistently produced all three classes of conidia,   including 

substantial numbers of  heterocaryotic conidia, and roughly equal numbers 

of  each homocaryotic class.     The unstable heterocaryons showed  two very 

different trends.     Culture 05   (29a inl; HI + 21a 81^2;   pan-1;   hi)   produced 

only 6 heterocaryotic colonies,  171 homocaryotic al-2;   pan-1;   hi colonies, 

and 471 homocaryotic  inl; HI colonies.    The total heterocaryotic plus 

homocaryotic  plate count   (648) agrees with the control plate count   (642) 

to within 1%.     Culture #6   (same strains)  produced no heterocaryotic col- 

onies,  and no homocaryotic al^; 2™zl:  hi colonies.     The homocaryotic 

inl;   HI count   (422)   and  the control plate count   (428)   agree to within 1%. 

Culture 111   (2a pan-1;   HI + 3a al^2;   inl;   hi)   produced 1 heterocaryotic 
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colony,  340 homocaryotic pan-1;  HI colonies, and no horaocaryotlc al-2;   inl; 

hi colonies.     The  total heterocaryotic plus homocaryotic count   (341) 

agrees with  the control plate count  (348)   to  within 2%.     Culture #8  (same 

strains)  produced 4 heterocaryotic colonies,   604 homocaryotic pan-1;   HI 

colonies,  and  5 homocaryotic al-2;   inl;  hi colonies.     The  total of the 

three colony  types   (613)  agrees with the control plate count  (641)  to with- 

in 4%.     The plating results for  every unstable  (HI + hi)   heterocaryon 

indicated  that  such heterocaryons produced a majority of conidia which 

w<:re homocaryotic for HI nuclei,  a much smaller number of conidia which 

were homocaryotic for hi nuclei,  and very few if any heterocaryotic 

conidia.     These data suggest  that unstable heterocaryons either became 

homocaryotic  for  the HI component,  or there was a selective process which 

favored  the inclusion of HI rather  than hi nuclei in conidia.     It was also 

apparent  that   the hi nuclei are not  inactivated or  inhibited by  their 

association with HI  nuclei.     A number of  suspected hi vegetative reisolates 

were tested for  their nutritional requirements   (on minimal and  supplemented 

minimal medium)   and  for  their hi genotypes   (on growth tubes),  and  in every 

case,   the  integrity of   their  genetic composition was confirmed,   i.e.   the 

reisolates were still hi.     The observation of  a small number  of hetero- 

caryotic colonies,  produced with some degree of  regularity,   suggests that 

heterocaryotic conidia can germinate.     This observation is  important for 

two reasons.     (1)     The efficiency of recovery approaches 100%  in two 

Platings.     When this   is considered   together with the observation that all 

three classes of  conidia can germinate, we have some justification for 

believing   that we have accounted for all classes of conidia.     (2)     If 

suppression of protein synthesis   (or  similar biochemical activity)   occurred, 
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it  is unlikely  that heterocaryotic conidia could germinate  to form viable 

colonies.    A conidium containing   the combination pan-1;  HI + inl;   hi 

probably would not germinate at all,  while a conidium containing the 

combination inl;  HI + pan-1;  hi would probably exhibit characteristics 

similar to  inositol-less death. 

Conidial Platings Along  the Length of  an Unstable Heterocaryon 

If  there were a gradual decrease in the proportion of hi nuclei 

along the length of  a growing HI + hi heterocaryon,   the trend might be 

detected by plating  conidia at intervals along the length of  the mycelium. 

Such a trend would show up as a decreasing number of heterocaryotic,  and 

homocaryotic hi colonies,  and would suggest a gradual or incomplete 

inhibition of replication of  the hi nuclei.     If such a  trend were not 

observed,   inhibition of nuclear migration, or nuclear selection at conidia- 

tion would be more reasonable hypotheses.    Two unstable heterocaryons were 

started on growth tubes made with four  sampling ports spaced 1.5 cm apart 

along   the first  7 cm of  the  tubes.     (As  the most rapid changes  in growth 

rate occurred during   the first 7 cm of growth,   it seemed most probable 

that a   trend,   if   it existed, would be detected   in this portion of  the 

mycelium.)     Blocks of  agar  containing hyphae and conidia were removed 

through the sampling ports  every 2h hrs,   either until the heterocaryons 

stopped,   or until they grew past the  last sampling port.    The conidia were 

plated and  the results are  tabulated   in Table 3.    No hi colonies were 

recovered in any of  the platings,   suggesting an abrupt decrease in the 

proportion of  hi nuclei,  or  the possibility of nuclear selection at 

conidiation.     It  is also possible that the plating density was not high 

enough  to detect  any changes   in the hi nuclear frequency,  but  the 
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Table 3.     Conidial Platings Along  the Length of Two Unstable Heterocaryons 

Distance 
from 

Sample Number Inoculum 

Homocaryotic 
Colonies Heterocaryotic 

pan-1 inl Colonies 

First Heterocaryon 

1 10 mm 

2 30 mm 

3 50 mm 

Second Heterocaryon 

1 20 mm 

2 40 mm 

Error 

252 0 0 11% 

213 0 0 13% 

201 0 0 8% 

146 0 0 5% 

197 0 0 U 

Strains were 2a pan-1;  HI + 3a al-2;   Inl; hi 
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possibility that  nuclear  selection at conidiation was affecting  the 

plating results  seemed   to  indicate that a direct, assay of single hyphal 

tips would be more efficient a.id more appropriate. 

Effect of Nutritional Supplements on Unstable Heterocaryons 

In order for an assay of  single hyphal tips to be reliable,   it was 

necessary to determine whether or not  the instability reaction could be 

reversed by supplying  the nutritional  supplements necessary for growth of 

the individual component  strains.     The experiment was designed so that even 

if complete reversal of  the instability reaction were not observed,  recov- 

ery of hi nuclei in the frontier region of unstable heterocaryons would 

indicate that hi nuclei had migrated.     The unstable heterocaryon 29a  inl; 

HI + 21a a 1-2;  pan-1;   hi was  started on a minimal plate,  and  incubated for 

18 hrs at  25°C,   thus forcing heterocaryosis.    Agar blocks were then removed 

from the frontier region and   transferred  to growth tubes containing min- 

imal, minimal + inositol,  and minimal + pantothenate.     Growth rates were 

recorded for  each group,  and representative results are graphed in 

Figure 3.     Hyphae placed on minimal agar grew only 4.0 m during  the first 

24 hrs.     By 96 hrs,   the frontier had advanced only 8 ram,   after which it 

stopped growing.     On minimal medium + inositol,  both blocks of agar 

produced mycelia  that grew to the ends of  the tubes at constant rates that 

approached   that of wild  type.     The hyphae placed on tubes containing min- 

imal + pantothenate exhibited very slow,  faltering growth during  the first 

48-72 hrs.     After  72 hrs,  growth of  both heterocaryons became quite errat- 

ic.     Growth rates  increased  to those of wild  type for one or  two days,   and 

then slowed abruptly,   or ceased for varying periods of  time before starting 

again.     One of  these heterocaryons appeared  to reestablish wild type growth 
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Figure   3.     Behavior of  Unstable Heterocaryons on Supplemented Media 

Strains:     29a  inl;  HI 
+ 

21a &1-2;   pan-1;   hi 

0 minimal + pan 
O minimal + inl 
fS minimal 

336 334 "(32 

TIME   (hrs) 
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rates,  but   the other one did not.     To confirm that raycelia on minimal 

medium + pantothenate were actually heterocaryotic,  conidia from the dis- 

tal end of   the mycelium having     the more stable growth rate were plated. 

(We assumed   that  this mycelium was more likely homocaryotic for the pan-1; 

hi component.     Erratic growth of  the other heterocaryon was probably a 

result of unstable heterocaryosis.)     The results of   the platings were as 

follows:     2 heterocaryotic colonies,   7  colonies on sorbose + pantothenate, 

267  on sorbose + inositol,   and   288 colonies on sorbose + pantothenate + 

inositol.     The mycelia were apparently heterocaryotic,   the instability was 

only partially,  and intermittently reversed,  and  the HI nuclear population 

apparently remained predominant  throughout the experiment.     Isolation of 

homocaryotic  al-2;   pan-1;   hi colonies,  and heterocaryotic colonies from 

these growth  tube cultures indicates that viable hi nuclei were recovered 

from  the original  giant colony approximately 25 mm from the inoculum site, 

suggesting  that at least  some hi nuclei were able to migrate from cell  to 

cell.     The experiment also indicated  that scoring single hyphal tips might 

be productive. 

Scoring of Single Hyphal Tips 

Conidial platings of unstable heterocaryons grown on growth tubes 

suggested   that   (1)  an abrupt decrease in the numbers of hi nuclei occurred 

early in  the growth of the heterocaryons   (as if   the instability were due 

to partial migration inhibition),  or,   (2)   that there was some nuclear 

selection favoring HI nuclei at conidiation.     To determine if nuclear 

selection at conidiation were occurring,  and,   in particular,   to  identify 

any hi nuclei  that might be in the hyphae,   single hyphal  tips were isolated 

from small colonies   (3-10 mm radius)  of 2a pan-1;  HI + 3a al^;   inl;   hi, 
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and  transferred   to minimal agar slants, with and without pantothenate 

and/or   inositol supplements.     The results are shown in Table 4.     None of 

the 127 hyphal   tips on minimal  slants produced visible cultures.     Eighty 

of  102 hyphal  tips on minimal + pantothenate + inositol slants did produce 

visible cultures.     These results suggest that the hyphae had either become 

homocaryotic,   or,   that  one group of nuclei had been inactivated.    Also, 

the processes causing  the instability reaction had proceeded   to completion 

within 3-10 mm from the center of  the inoculum.     One hundred new hyphal 

tips were incubated on minimal  slants for 24 hrs at 30 C, after which an 

appropriate concentration of  calcium pantothenate was added  to 50 of   the 

slants.    One culture developed  from a hyphal  tip on a minimal slant,  while 

22 cultures developed  from hyphal tips on minimal + pantothenate slants. 

This experiment  shows  that a  substantial number of functional pan-1; HI 

nuclei existed within  the hyphal  tips.     Previous plating studies and growth 

tube experiments   indicated  that unstable heterocaryons could be revived 

and grown  if  conidia or portions of  the hyphal frontier were transferred 

to minimal agar  containing nutritional supplements necessary to support 

homocaryotic growth of   the hi component.     This enabled us  to score for 

either  type of  nucleus  in  the hyphal  tips.     Fifty hyphal  tips were placed 

on minimal + inositol  slants,  and  50 tips on minimal + pantothenate slants. 

Only one visible culture had grown on a minimal + inositol  slant at  the 

end of  12 days.     (Its pale pink conidia  indicated  that it was probably 

heterocaryotic although nearly homocaryotic for  the hi nuclei.)    There were 

38 orange cultures growing  on minimal + pantothenate.     (Orange cultures 

may be heterocaryotic,  but conidial color and  the larger number of viable 

cultures growing on minimal + pantothenate suggest  that  they are largely 
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Table 4.     Nuclear Composition of Single Hyphal Tips 

Tast 
Number Medium 

Number of 
Hyphal Tips 

Number of 
Cultures Produced 

Minimal 

Minimal + 
Pantothenate + 

127 

Inositol 102 80 

2 Minimal 50 1 

Minimal + 
Pantothenate 
at 24 hrs 50 22 

3 Minimal + 
Inositol 50 1 

Minimal + 
Pantothenate 50 38 

Minimal + 
Inositol 

Minimal + 
Pantothenate 

50 

50 

0 

47 
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homccaryotic foi   the pan-1;  HI component.)     These data  indicated  that  the 

pan-1; 111 nuclei were functional,  and  that  they were the dominant nuclear 

type.    As only 38  of   50 hyphal  tips were recovered on minimal + pantothenatc; 

slants,   the experiment was repeated  to rule out the possibility of  losing 

hi nuclei due to mechanical  injury of  the hyphal tips.     The second  time, 

none of  the 50 tips  placed on minimal + inositol  slants produced visible 

cultures,  while 47  of  50 tips on minimal + pantothenate did  produce visible 

cultuies.     These results  tend  to confirm that there were only very small 

numbers of  h_i nuclei  in hyphal tips 3-10 mm from the inoculum site.    When 

it occurs,  resulting growth on minimal + inositol appears to be too abun- 

dant  to be due  to residual precursor pools of necessary nutrients within 

the hyphal  tips.     Later,   during microsurgical experiments,   three to five 

cell hyphal  segments placed on minimal agar plates did not grow nearly as 

mil.    The observation  that hi colonies,   or heterocaryotic colonies are 

recovered from hyphal  tips suggests  thai, the hi nuclei in the hyphal tips 

are biochemically active, with the exception of  those reactions related  to 

raitotic processes,  or  possibly processes affecting nuclear migration.     It 

is also probably safe to assume,   based on available data,   that hi nuclei 

are not destroyed by an association with the HI  strains.     The experiments 

appear   to rule out nuclear  selection at conidiation as a  cause for previous 

Plating  results,  and although the occurrence of differential  inhibition of 

nuclear migration can not be completely eliminated,  this evidence does 

little  to support  this hypothesis because localised  high concentrations of 

hi nuclei have not been found.    The experiment does not rule out the 

possibility of differential germination rates of HI and hi conidia when 

they are in close association with one another.     Also,  both types of 
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conidia may germinate,  follov;ed by a differential rate of fusion between 

HI and hi hyphae. 

Test for a_ Diffusable. Germination Inhibitor 

Testing for  the production of a diffusable germination inhibitor 

was done by plating conidia from strains  2a pan-1;  HI and   21a al-2;  pan-1; 

hi on sorbose agar made with a filtered minimal + pantothenate liquid 

medium in which the HI_ strain had previously been grown for 6 hrs at 30 C. 

As the carbohydrate composition of  sorbose medium  is crucial,   the minimal + 

pantothenate medium was modified by using fructose and glucose instead of 

sucrose.     Control platings of the HI_ and hi strains were made on regular 

sorbose medium.     On the experimental  plates,   strain 2a pan-1;  HI produced 

138 colonies from 300 conidia   (46% conidial viability),  and 21a al-2;  pan-1; 

hi produced  249  colonies   (83% conidial viability).     Unfortunately,  control 

plates were lost.     However,   previous conidial viability studies gave 65% 

viability for  the HI  strain, and 47% viability for  the hi strain.     These 

results strongly suggest that there is no diffusable germination inhibitor 

involved  in  the unstable heterocaryons. 

Conidial Germination and Coalescence of Stable and Unstable Heterocaryons 

Using a micromanipulator,  clumps of  two and  four conidia   (half of 

them from each of   two different strains) were formed on microscope slides 

coated with Fries minimal agar,   so  that any abnormalities in the formation 

of unstable heterocaryons might be observed.    The slides were incubated in 

moist chambers at 30°C,  and examined at about   6 hrs for signs of germina- 

tion.     Photomicrographs   (Figure 4) were taken at 3 hr intervals after 

germination.     Germinated conidia were transferred to a plate of minimal 
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Figure 4.     Heterocaryons Formed by Four Conidia 

HI + HI hi + hi 

HI + hi 

Conidia photographed at approximately 9 hrs.     Arrows point  to 
original conidia   (C),  and to fusions   (F).     Magnification 1300X. 
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□edium.    The tabulated results are included in Table 5.     It was difficult 

to determine exactly when coalescence first occurred,  but under  the condi- 

tions of  this experiment,   (conidia from each strain touched one another) 

coalescence appeared  to occur at the same time, or even before formation 

of a germ tube.     Continuity of  the protoplasm was often not evident until 

after germ tube formation.    However,   it appeared that conidial  coalescence 

was a  prerequisite to heterocaryon formation because fusions always 

occurred between conidia,   and never between young hyphae.    Although this 

experiment is not well suited  for  statistical analysis,  we encountered no 

unusual difficulty in establishing either stable or unstable heterocaryons. 

Four heterocaryons  of   the strains 21a al^;  pan-1;  hi + 3a al^S H&S M 

were recovered  from 24 attempts.     These heterocaryons all arose from clumps 

of four conidia.     We were unable to form this type of  heterocaryon by using 

only one conidium from each strain.     Five heterocaryons were formed  from 17 

attempts using strains 74<l-2)a £-2} M* Si +   <3~7)a ^; 2SS=iS -H-I 

(two conidia from each strain).     One heterocaryon was also recovered from 

six attempts using one conidium from each strain.    Two unstable hetero- 

caryons  resulted  fro,.  19 attempts   (four conidia)   using  the strains  (3-7)a 

,1-2,  pan-1;   HI + 3a ai^;   inl;   hi.    Unstable combinations seemed  to 

germinate and coalesce just as well as stable combinations.     No morpholog- 

ical or   intracellular abnormalities were observed that could be associated 

with either of  the stable combinations,   or with the unstable one.    This 

experiment has not revealed any defects in germination or fusion that 

might be due  to the HI ♦ hi  instability.     Newly formed  stable hetero- 

caryons,   transferred   to minimal plates,  covered the entire surface of   the 

Plates in 48 hrs.    The unstable heterocaryons stopped growing before the 
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.'able 5.     Conidial Germination and Coalescence of Stable and Unstable 
Heterocaryons 

Heterocaryon Attempts Successes Ratio 

21a al-2;   pan-1;   hi + 3a al-2;  inl;  hi 24 

74(l-2)a al-2;   inl; HI +  (3-7)a al-2;  pan-1; HI      17 

(3-7)a 31^2;   pan-1;  HI + 3a al-2;   inl;  hi 19 

4 4/24 

5 5/17 

2 2/19 

Conidia were placed  on minimal agar in clumps of four, using a micro- 
manipulator. 
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plates were completely covered.     The results of  this experiment  suggest 

that unstable heterocaryons are formed  (from conldia)   in much the same way 

as stable heterocaryons.     Apparently, HI_ conidia do not inhibit germination 

of hi conidia,  and neither  is the unstable combination a result of dif- 

ferential conidial coalescence. 

Growth Tube Tests for  Clustering of hi Nuclei in the Inoculum and for 
Biochemical Activity of hi Nuclei 

Recovery of  only small numbers of heterocaryotic and homocaryotic 

al-2;   inl; hi hyphal  tips within 3-10 mm of the inoculum suggested  the 

possibility  that differential nuclear migration might cause clustering of 

most of  the hi nuclei within the conidial inoculum.    To  test for this 

clustering,   the growth rates of unstable heterocaryons of  the strains 

(3-7)a al-2;   pan-1;   HI +  (ll-7)a inl;  hi were compared with  the 

rates of  similar heterocaryons from which the inocula were removed after 

12 hrs incubation.     Representative results of  this and  related experiments 

are given in Figure 5.     Unstable heterocaryons had noticably lower growth 

rates,  and underwent more rapid changes to lower growth rates at  24 hrs 

when their inocula were removed,  than when the mycelia were left intact. 

That   these differences in growth rates were not due to mechanical injury 

was demonstrated by cutting the inoculum from one of  two homocaryons of 

the HI strain growing on growth tubes containing supplemented minimal agar. 

There was little difference in the growth of  the two homocaryons   (see 

Figure 5) .    A nintoal + pantothenate agar block was inoculated with conidia 

of  the HI component,   and  transferred   to a growth tube containing minimal 

agar.     These conidia germinated,  but  the homocaryon grew only 20 mm in 

36 hrs before stopping.     (This growth may be exaggerated due to diffusion 
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Figure 5.     Effect  of Cutting Inoculum From Unstable Heterocaryons 

#  (3-7)a al-2;   pan-1; HI   (conidial inoculum)   on 
minimal + pan 

^  (3-7)a al-2;  pan-1; HI   (Inoculum removed)  on 
minimal + par. 

".00 
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2 50 

C 

200 

150 

100 

■   (3-7)a al-2;  pan-1 + (ll-7)a inl;   hi on minimal 
(inoculum in) 

A   (3-7)a al-2;  pan-1 H» (ll-7)a inl; hi. on minimal 
(inoculum removed) 

f    (3-7)a al-2;  pan-1;  HI on minimal 

TIME   (hrs) 
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of pantothenate from  the inoculum block.)    Unstable heterocaryons usually 

grow further  than 20 mm.     It  is obvious that mechanical injury did not 

cause a  lag  in growth of   the homocaryotic 111 component,  and doubtful that 

it caused  the observed changes in growth of the unstable heterocaryons. 

It is also obvious  that  the HI component did not grow far enough on minimal 

medium to account for  the growth observed  in the unstable heterocaryons. 

It follows that   the M nuclei exerted some active influence on a portion 

on the metabolism of  the unstable heterocaryons.     It appears that signif- 

icant numbers of hi nuclei were located within 7-8 mm of  the inoculum,  and 

that removal of   this region from an unstable heterocaryon removed an 

important nutrient source. 

Effects of Temperature on Unstable Heterocaryons 

The apparent effect of   the new gene on nuclear activity is somewhat 

smilar  to  that of   the cdc   (cell division cycle) mutants in Saccharomyces 

cerevisiae reported by Hartwell, et al.   (1974)  and Hartwell   (1974).     To 

test  the effects of  temperature on unstable heterocaryons,   two unstable 

heterocaryons were grown at 25°C,  and three at 34°C.     The growth rates of 

the two groups were compared to previously collected data for unstable 

heterocaryons grown at 30°C.     Representative results are shown in Figure 6. 

Unstable heterocaryons grown at 25°C and 30°C  exhibit so.e variations in 

their growth patterns but both groups show changes from relatively rapid 

early growth rates  to lower and less constant rates, which are characteris- 

tic of  the instability.     The curves for unstable heterocaryons at 34°C show 

the most  conformity among  themselves, but  they are very different from the 

25°C and   the 30°C growth curves.     Growth was nearly linear with time 

throughout most of  the experiment,  with the important exceptions of changes 
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Figure 6.     Effect of Temperature on Growth of Unstable Heterocaryons 

'400 

73(1-4)A al-2;  inl;  HI H   (2~3)A al-2;   pan-1; 
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to lower growth rates during  the first 72 hrs,  and slow growth rates 

(1.0 iiim/hr)  during  the remainder of   the experiment.     Two of the hetero- 

caryons  stopped just short of  'he end of  the tubes,  and one actually 

reached   the end.     This slow growth pattern, which occasionally alternates 

with more rapid  spurts of growth has also been observed at 30 C,  and 

therefore,   it  is not clear whether the differences in the growth curves 

are actually due  to  temperature,  or other unknown factors.     It  is clear 

however,   that the  instability  is not reversed  at 25 C or at 34 C. 

Studies on Artificial Heterocaryons 

Results obtained from hyphal  tip isolations and from conidial 

germination  experiments indicated  that the reaction(s) associated with the 

HI + hi instability did not occur before conidial germination,  but after 

coalescence, and  before  the hyphal frontier had advanced as little as 3 mm 

froK the inoculum.     The instability reaction(s)   probably occur shortly 

after fusion of   the  two  strains  involved.     Nuclear transplantation, by 

microinjection,   is probably  the only artificial means  to   simulate   hyphal 

fusions.     This approach controls the donor and recipient roles of  the  two 

strains,  and makes possible the  production of extreme nuclear ratios.     A 

number of   nuclear  transplants were performed  to determine the effect of 

reciprocal   transplants on the  instability phenotype.    The results are 

tabulated   in Table  6.     Reciprocal   transplants between 74(1-2). ftfe*   inl; 

III and   (3-7)a al^; Bfig-li ffi demonstrated  that artificial heterocaryons 

could be formed with  two HI drains, and that heterocaryosis was not 

prevented by donor or recipient roles of  either nutritional mutant. 

Artificial heterocaryons could also be formed between two hi strains 

., LI!       Unstable heterocaryons could 
(3a £1^2;   inl;   hi and 21a al-2; s3Szl> h±> •     unscaD 
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Table 6.     Formation of Heterocaryons by Nuclear .Transplantation 

Component Strains Attempts Successes Ratio 

?4(l-2)a al-2;   inl;   HI ■*■  (3-7)a al-2;  pan-1;  hi 

(3-7)a al-2;   pan-1; HI * 74(l-2)a al-2;   inl;  KI 

3a al-2;   inl;   hi ■*■ 21a al-2;  pan-1;  hi 

3a al-2;   inl;   hi ■*  (3-7)a al-2;  pan-1; HI 

(3-7)a al-2;   pan-1;  HI + 3a al-2;  inl; hi 

74(l-2)a al-2;   inl.;  HI * 21a al-2;   pan-1;  hi 

21a al-2;   pan-1;   hi ♦ 74(1-2)a al-2;   inl; HI 

18 8 8/18 

19 4 4/14 

7 2 2/7 

19 2 1/19 

13 4 4/13 

10 4 4/10 

6 1 1/6 

Arrow   ( * )   indicates direction of nuclear  transplant 
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be formed by  transplanting III nuclei into hi recipient strains, and donor 

and recipient roles of   the associated nutritional mutants did not prevent 

heterocaryosis.     However,   if  hi nuclei were injected into HJ_ recipient 

strains,   the production of unstable heterocaryons was very low.     Only three 

heterocaryons were recovered from 25 injected cells.    At no time has a 

protoplasmic incompatibility reaction, of the type described by Garnjobst 

and Wilson   (1956),  been observed.     When artificial heterocaryons  (HI ■* hi 

and hi ■*■ HI) were placed on growth tubes,  there were marked differences 

between  the growth patterns of each group.    When HI protoplasm was injected 

into an hi recipient,   early growth varied from 2 mm/hr  to A mm/hr followed 

by a rapid decrease in growth rates at 48 hrs, and cessation of growth 

between 197 hrs and  275 hrs   (Figure 7).    These growth curves resemble 

curves obtained most often when heterocaryons are started from simultaneous, 

superimposed  conidial   inocula.     Total growth varied between 197 mm to 

275 nun down  the growth  tubes.     Growth curves were very different for 

artificial heterocaryons formed by  injecting hi protoplasm into HI recip- 

ients.     Growth rates for   these heterocaryons were never normal,   0.21 mm/hr 

and 0.33 nun/hr  initially,  and neither heterocaryon ever grew 50 mm in  total 

length.     The very slow,   inhibited growth may have accounted  for  the low 

recovery rate of   hi ■► HI heterocaryons.    This result is probably due to 

the fact only small amounts of hi protoplasm are injected, and thus small 

numbers of hi nuclei are injected into the recipient cell.     This cell is 

then removed in a  segment of  three to five cells,  and placed on a minimal 

Plate.     Thus the nuclear ratio heavily favors the HI component  (or any 

recipient).     It probably takes much longer for  small numbers of  injected 

HI nuclei  to produce enough of the active agent to inactivate all or most 
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Figure  7.    Growth Curves  for Artificial El + hi Heterocaryons 
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of the hi nuclei in the recipient cells.    When small numbers of hi nuclei 

arc injected   into an HI  recipient,   the small numbers of jii nuclei are 

probably inactivated much more rapidly.    These experiments also indicate 

that the  inactivation reaction(s) are unidirectional against the hi nuclei, 

and that  the ultimate outcome of  the III + hi instability,  unlike the 

interaction of  I and i nuclei described by Pittenger and Brawner   (1961), 

is unaffected by highly diverse nuclear ratios. 

An Attempt   to Extract an Active Agent 

Extraction of  an active agent from a mycelial culture of 74(l-2)a 

al-2;  inl; HI was attempted using 0.1 M phosphate buffer at pll 6.8.    The 

ability of the crude extract  to  inhibit regeneration was  tested by a series 

of rr.icroinjections  into strain  21a al^; pan-lS hi-    The microlnjections 

Here alternated with control punctures without injection.    A comparison of 

the times required   for  injected and control cells to regenerate is tab- 

ulated in Table 7.     As  shown in Table 7,  there was no difference in the 

time required  for regeneration of   injected and control cells,   suggesting 

that the active agent may be involved  in processes not  immediately 

concerned with regeneration,  e.g.  mitosis itself,  or that the active agent 

is only produced   in heterocaryons.     It is,  of  course,  also possible that 

the agent was not extractible by our method. 

Genetics of  Heterocaryon  Instability 

Genetic data for  this gene are not extensive.    The het^carvon 

instability phenotype is usually observed as a change to a lower growth 

.,B11  after protoplasmic  transfer, 
rate in the later  stages of heterocaryosis,  well arte    P 

IH hP a lengthy process.     In an attempt 
so scoring of  progeny phenotypes would be a leng    y v 



45 

Table 7.     Effects of Microinjected HI Extract on Regeneration 
of hi Recipient Strains 

Injected 
Cells 

Control 
Cells 

Regeneration Times Failed  to      Killed 
20 Din.     50 min.     60 min.     90 min.      Regenerate    Cells      Total 

3 

4 

15 

18 

30 

27 

HI extract derived from 74(l-2)a al-2;   inl;  HI.     Recipient 
ilrain was 21a  al-2;   pan-1;  hi-    Control Cells were punctured 
but not  injected.     Killed Cells died due to mechanical injury 
or failure of wound healing mechanism. 
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to simplify and  speed up genotype identification, a testing scheme was 

adapted from  that of Pittengei  and Brawner   (1961), who used the conidial 

color markers a 1-1 and al-2.     When these markers are incorporated into 

hcterocaryons,   the conidia  exhibit wild type coloration, unless the nuclear 

ratio heavily favors one nuclear  type.    Using both of these albino mutants 

would probably have been better than using al-2 and  its wild type allele 

alone, but al-1 is associated with a reciprocal translocation, and has the 

heteroc.aryon genotype C,  d,   e_,   so an attempt was made using al-2 and its 

wild type allele.     The hope  that unstable heterocaryons on slants would 

exhibit the color  of  the HI  component   (e.g.   (3-7)a al-2; pan-1;  HI +   (ll-7)a 

inl; hi would produce white conidia) was unrealized.     The conidial color of 

such heterocaryons ranged from white or pink,   to shades of orange indistin- 

guishable from wild   type color.     Conidial color was,   therefore, unrealiable, 

and it was necessary to compare the growth rates of two heterocaryons,  each 

formed by the  isolate being  tested,  and one HI or hi tester strain. 

Twelve ordered   tetrads were  isolated from the cross 2a jjan^l; HI x 

21a al-2;  pan-1;  hi   (2a pan-1; HI was  the protoperithecial parent)   and 

eight   tetrads containing at  least  three of the meiotic products were 

scored.    The isolates were tested for mating type, auxotrophic genotype, 

and heterocaryon instability genotype.    The ratio of HI to hi genotypes 

did not deviate  from   the expected  1:1 ratio.    Five of  the eight  tetrads 

exhibited  second division segregation,  suggesting a centromere distance of 

about 30 units. 

The confidence  level obtained from eight asci,  is 72.5% probability 

that  two loci night  occur within fifteen units of  each other.     Scoring of 

15 asci would have resulted  in a 79% confidence level two loci are within 
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ten units of each other.     However, using growth tubes to test for  the 

instability phenotype  in so many  isolates becomes quite cumbersome and 

-ime consuming.     This problem could best be attacked using the duplication 

generating strains used by Perkins   (1975) and Mylyk (1975)  for hetero- 

caryon and vegetative incompatibility genes.    Dr.  Perkin has applied  the 

techniques using the duplication generating strains of  two of  our  isolates 

and has kindly furnished us with the following information.     "My first 

results indicate that HI is in IIL covered by NM149 duplications but not 

by P2869 duplications.     (P2869 was called UU2M  •   •   •)     This would put 

it quite close  to het-c."     (Personal Communication, October 22,  1974) 
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DISCUSSION 

A new heterocaryon gene has been found in Neurospora crassa that 

controls  the maintenance of  stable growth rates of heterocaryons rather 

than heterocaryon formation,  as do the genes het-c,  het-d,   and het-e 

investigated by Garnjobst   (1953;  1955),  Garnjobst and Wilson  (1956), 

Wilson  (1958),  Wilson,   Garnjobst and Tatum (1961), Wilson and Garnjobst 

(1966), and Williams and Wilson (1966).    The alleles of the new gene have 

been tentatively designated HI and hi for heterocaryon instability. 

On growth tubes,  HI + HI and hi + hi heterocaryons grow at constant 

rates approaching those of wild  type  (4.2-4.4 mm/hr at 30°C).    HI + hi 

heterocaryons may exhibit a number of different growth patterns.    Growth 

usually proceeds at nearly wild type rates for 12 hrs  to 72 hrs,  and  then 

slows to a subnormal rate, and finally ceases before reaching the ends of 

the tubes.     Occasionally,  growth does not stop,  but proceeds  to the ends 

of the growth tubes at subnormal rates.    Growth may proceed in erratic 

starts and  stops during  the later  stages.     Growth may also stop within 

12 hrs and not start again.     Experiments using various nutritional mutants 

(inl; j*^  and nic^)   suggest  that the behavior of unstable heterocaryons 

(HI + hi)   is  independent of any nutritional requirements of   the component 

strains. 

The ultimate outcome of   the interaction of  the HI and hi alleles is 

not reversed by higher or lower temperatures.    Unstable heterocaryons grown 

at 25°C had growth patterns that closely resembled those of heterocaryons 

i     t  ^4°C crew at a rate 
grown at 30°C.     One unstable heterocaryon incubated at 
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approaching that  of wild  type for 24 hrs,  then slowed  to a subnormal rate 

which it maintained  to  the end of  the growth tube.    The other hetero- 

caryons   (same  strains)   never grew at wild type rates,  but did grow at sub- 

normal rates  to within about  1 cm of  the ends of  the growth tubes where 

they stopped without using the remaining  surface of the medium.     Incubation 

at 34°C apparently prolonged growth of  these unstable heterocaryons but it 

neither prevents  the changes to lower growth rates,  nor reverses the 

cessation of growth  that  often occurs. 

When conidia from stable heterocaryons   (HI + HI or hi + hi) were 

plated, both nuclear components were easily recovered.    When conidia from 

unstable heterocaryons   (HI + hi)  were plated,   the resulting colonies were 

predominantly homocaryotic for  the HI component strain.    Only small numbers 

of colonies have been recovered which were homocaryotic for the hi compo- 

nent strain, and very few colonies which were heterocaryotic.     Several of 

these homocaryotic hi colonies were scored for  their nutritional and 

heterocaryon instability phenotypes,  and  in every case,   the integrity of 

both nutritional and   instability genes has been maintained,  i.e.   these 

nuclei did not  undergo genetic adaptation.     The observation that only small 

numbers of  homocaryotic hi colonies and heterocaryotic colonies are 

recovered   suggests three possibilities.     First,   the mycelium has most 

probably become virtually homocaryotic for  the HI component.    Second,   the 

hi nuclei may have been biochemically inactivated so that  they may be 

present,  but unable  to express  themselves.     Third, differential nuclear 

selection at conidiation,  favoring  inclusion of HI nuclei, might produce 

these results as  an artifact, but  it  is unlikely that events occurring 

during conidiation would stop mycelial growth of  the heterocaryons.    We 
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favor the first hypothesis because the homocaryotic HI counts agree very 

closely with the control plate counts,   suggesting that we have accounted 

for all,  or nearly all, viable conidia.    There   is also evidence that the 

homocaryotic III  strains cannot grow far enough on minimal medium to account 

for the amount of  growth that usually results from an unstable hetero- 

caryon.    The third  possibility is unlikely because assays of  single hypha] 

tips give, results that are statistically comparable to those obtained by 

conldial platings. 

Heterocaryon instability was not reversed by supplying the growth 

medium with nutritional supplements necessary to grow the component strains 

individually.     When agar blocks from the frontier region of a plate culture 

of an unstable heterocaryon were placed on minimal medium containing the 

nutritional supplement necessary to support  the HI component strain,   the 

hyphal tips produced a culture that grew at wild type rate, just as  if HI 

conidia had been inoculated on to  this medium.     When the medium contained 

the supplement  that supported growth of  the hi component strain,   the 

instability was only partially reversed,   and growth rates were erratic. 

This strongly suggests that   the interaction of   the two genes is  independent 

of the utilization of any of  the usual growth factors.    This experiment 

also indicated   that some hi nuclei were capable of migrating from the 

inoculum region to the frontier region,  a distance in this case of approx- 

imately 25 mm to 30 mm from the inoculum region.     It appears that hetero- 

caryotic, or homocaryotic hi hyphal tips can be revived if placed on medium 

containing the appropriate nutritional supplements. 

c      fc-vta  heterocaryons  suggested 
Results of conidial  platings of unstable hetero 

that they probably stopped growing because the mycelium had become 
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.waoc.iryotic for  the HI component.    Homocaryosis could develop in a number 

of ways.     Differential migration rates of  the two types of nuclei, or, 

differential rates of nuclear replication might be responsible. 

If   the alleles HI and hi affect the conidial viability,   then fewer 

hi conidia might germinate,  and   the resulting heterocaryon wou]d be nearly 

homocaryotic from the beginning.     A number of tester strains were plated, 

to determine the per cent conidial viability for each, and no correlation 

betwsen heterocaryon instability genotype and conidial viability was 

detected.     Germinating HI conidia might produce a diffusible product  that 

inhibits   the germination of  hi conidia,  or hi conidia might germinate but 

fail to fuse with conidia or hyphae of  the HI strain.     I believe that the 

evidence eliminates all  but   two of  the possibilities   (either differential 

nuclear migration,  or  differential rates of nuclear replication).    When 

conidia were plated  from various points along the length of an unstable 

heterocaryon,  no heterocaryotic or homocaryotic hi colonies were recovered 

from any of  the conidial  samples.     Failure to detect a decreasing trend in 

the numbers of   hi nuclei suggests an abrupt decrease in the numbers of 

these nuclei,  or,   that   the nuclei are excluded during conidiation.     It  is 

also possible that  the plating density was not high enough to detect 

existing hi nuclei,  but an assay of  single hyphal tips allowed a more 

direct and more efficient approach to all three questions,   than would in- 

creasing plating densities of  conidia. 

It became crucial to find any hi nuclei existing within the mycelium. 

Apparently there are few if any hi nuclei in the conidia of unstable hetero- 

caryons at any point along the entire length of the mycelium.    Assays of 

single hyphal tips removed from a frontier as 
close as 3 mm from the 
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inoculum of a  plate culture indicated  that there were only small numbers 

cf hi nuclei  in  the hyphae;  and  that   the nuclear ratios that occur  in 

conidia are probably  the  sane as  those that occur in hyphae      This assay 

indicated that an unstable heterocaryon becomes homocaryotic   (or nearly so) 

very early in the life of  the mycelium, and  that the biochemical processes 

causing the instability reaction are already near completion by the time 

the frontier has advanced 3 aim from the inoculum.    The abrupt decrease in 

the hi nuclear count  is  probably not due to a failure of hi conidia   to 

germinate in the presence of HI conidia.    Conidia from an hi strain 

germinated and produced colonies on sorbose medium made with liquid minimal 

medium in which conidia from an HI strain had previously germinated  and 

grown for  6 hrs.    This  tends  to rule out the existance of  a diffusable 

germination inhibitor  produced by the HI conidia.    The processes of 

conidia]   germination and heterocaryon formation from conidia were examined 

in detail by observing the formation of both stable and unstable hetero- 

caryons,   from clumps of  two and  four conidia, under a microscope.    When 

heterocaryons were formed  from small conidial clumps,  protoplasmic exchange 

was accomplished  by direct  conidial coalescence, rather than by fusion of 

germ tubes,  or  fusion  of  one germ tube with a conidium of  the other compo- 

nent strain.     Although it was often difficult  to determine exactly vhen 

protoplasmic  exchange between  two conidia first occurred,  com. 

coalescence always occurred  early in the formation of  the heterocaryon. 

Based on these observations,   it appears  that conidial coalescence is a 

prerequisite for  heterocaryosis under these coniditions. 
i  <n obtaining heterocaryons 

No particular difficulty was encountered in obtain! g 

f  conidia    and no morphological or 
from stable or unstable combinations of  conioia, 
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Intracellular differences in the germination-coalescence processes were 

obsarved which could be associated with the formation of unstable hetero- 

caryons.     Apparently hi conidxa do germinate and fuse normally with HI 

conidla during formation of unstable heterocaryons.     It appears that bio- 

chemical reactions causing the instability occur after conidial coalescence, 

and before  the resulting hyphae have grown 3 mm.     In most cases,   it was 

necessary   to have four conidia  to form a heterocaryon successfully.     One 

heterocaryon was formed between the strains   (3-7)a al-2; pan—1;  HI,  and 

74(1-2)a al-2;  inl; HI from two conidia.     It is probable that the higher 

incidence of  successes using four conidia stems from the fact  that most of 

the strains used  in  the coalesce experiment had approximately 50% conidial 

viability.     This means  that  two conidia from each strain are necessary to 

increase  the probability that one from each strain will germinate. 

When  the inoculum region was removed  from unstable heterocaryons 

after 12 hrs on growth tubes,   the change  to lower growth rates at 24 hrs 

was more pronounced,  and  the subnormal growth rates during  the later stages 

were lower  than when the mycella were left  intact.     A control test dem- 

onstrated  that  the effect of mechanical injury was negligible.     When the 

n.an-1,  HI component was placed on minimal medium,   the total amount of growth 

was not enough to account for the amount of growth of either group of 

unstable heterocaryons, whether  the inocula had been removed or not. 

Removal of   the inoculum region seems  to have removed a  significant number 

of hi nuclei from the mycelium,   thus reducing the growth rate.     The evidence 

strongly suggests that  the majority of the hi nuclei are located within  the 

inoculum region,  which suggests differential nuclear migration as a cause 

for progressive homocaryosis.    However,   it may also be possible for rapid 
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inhibition of  hi nuclear replication to produce similar results by reducing 

the nuuber of hi nuclei available to each succeeding cell,   thus increasing 

:he proportion of HI nuclei in each new eel].     It is clear however,   that 

hi nuclei do control  synthesis of vital nutrients in unstable hetero- 

caryons,  and  that  it  is progressive horaocaryosis that  inhibits growth of 

these heterocaryons regardless of  the actual cause of homocaryosis itself. 

At least  two previous cases of nonadaptive changes  in nuclear ratios 

of Neurospcra heterocaryons have been reported  in which the nuclear ratios, 

and  the behavior of   the heterocaryons was related to the nutritional 

requirements of   the component strains.    Lederberg  (1946), and Ryan and 

Lederberg   (1946)   reported that heterocaryons of  leu   (33757)  and a back 

nutation of  leu underwent changes in nuclear ratios favoring the nuclei of 

the adapted back mutation when the heterocaryons were grown on minimal 

medium.     When similar heterocaryons were grown on medium supplemented with 

leucine,   the nuclear ratios favored  the leu nuclei.    Growth rates also 

changed   to resemble the rates of the individual component strains.     Davis 

(1960)  reported a  similar effect caused by a mutation in the membrane 

transport   systems  involved  in the uptake of pantothenate from the medium. 

the pan-1, m strain absorbed limiting concentrations of pantothenate more 

efficiently  than   the pan-1  strain.     If heterocaryons of   these two strains 

weie grown   in medium containing limiting concentrations of pantothenate, 

the nuclear ratios   tended   to favor  the pan-1, m nuclei,  and growth rates 

tended  to resemble  those of  the pan-1, m homocaryons.     If  the medium 

contained unlimiting pantothenate concentrations, pan^l was  the predominant 

nuclear component.     Heterocaryons of 2™zL + W±* 1 also start a°d St°P 

growing at   irregular  intervals depending on the changes  in the nuclear 
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ratios.     Although the HI  component of an unstable heterocaryon may escape 

the effect of unstable heterocaryosis when the appropriate nutritional 

supplement  is added,  plating results have indicated that inhibition of hi 

nuclei cannot be completely reversed by adding either  supplement. 

Studies on artificial heterocaryons have shown that reciprocal 

nuclear   transplants between two HI strains or two hi strains may be 

successful regardless of   the. donor or recipient roles of the associated 

nutritional deficiencies.     However, when 1U nuclei were transplanted   into 

hi recipient  strains,   the resulting artificial heterocaryon grew at or 

near wild  type rates for up to 48 hrs  (after an initial lag)   then slowed 

to subnormal rates,  and  stopped growing between 120 hrs and  168 hrs,   or 

after as much as 275 mm total growth.    When hi nuclei were injected into 

HI recipient strains,   total growth of the resulting heterocaryon did not 

exceed 50 mm.     These observations suggest a unidirectional inhibition of 

hi nuclei.     They also  suggest  that since only very small numbers of donor 

nuclei can be injected  into the recipient strain,  small numbers of hi 

nuclei are  inhibited much more rapidly when the direction of  the transplant 

is hi -*• HI,   than when the direction of the injection is HI + hi..     It is 

particularly important  to note  that, unlike the I + i heterocaryons 

described by Pittenger and Brawner   (1961),   the ultimate fate of an unstable 

heterocaryon is  unchanged by manipulating the initial nuclear ratios.    At 

no time was a protoplasmic incompatibility reaction such as that described 

by Garnjobst and Wilson   (1956)  observed. 

Attempts   to  extract an active agent from an HI strain have been 

unsuccessful.     It  is possible that  the agent is not extractible in phos- 

phate buffer,   that  the agent  is only present during heterocaryosis,  or 
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that our as3ay   (inhibition of regeneration of  injected cells) would not 

detect   the agent.     Attempts to detect an active agent by injecting whole 

protoplasm from HI + hi heterocaryons into an hi strain have also been 

unsuccessful.     As heterocaryon instability is a delayed phenotype,   it may 

be very difficult  to design the appropriate assay.     It is also possible 

that hi codes  for a receptor site  (involved with nuclear replication or 

nuclear migration)   that has a reduced affinity for a substrate or  inducer 

ccrimon  to both strains.    Homocaryotic growth would then be normal because 

the corresponding receptor site coded by HI would not be competing for  the 

substrate or  inducer.     In an unstable heterocaryon,  competition for  the 

substrate would favor  the HI receptor  site with its higher substrate 

affinity.     In this situation,   as the nuclear ratios become more diverse, 

the severity of competitive inhibition  increases.     If  the postulated 

receptor  sites were located on the nuclear membrane, or within the nuclei 

themselves,  differential nuclear activity could be explained quite easily. 

Only preliminary genetic data can be presented at  this time.     There 

was no deviation from a  1:1 ratio of HI: hi progeny in eight ordered 

tetrads.     Because  the   instability is detectable only on growth tubes,  and 

only  in the later  stages of heterocaryotic growth,   conventional genetic 

analysis  is quite cumbersome and  ttoe consuming.    Recently, Perkins   (1975) 

and Mylyk   (1975)   have used duplication generating strains  to map hetero- 

caryon incompatibility, genes.     Dr.  David Perkins has subjected two of our 

testers to this technique and has kindly reported to us that HI  is probably 

in linkage group III close to het^c   (Perkins,  personal letter, October 22, 

197.).     Since I may also be  in linkage group II   (Pittenger and Brawner, 

1961)  we cannot rule out   the possibility that the new gene  is I acting 
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differently  in a different genetic background,   or  that it may be an allele 

of I. 

The apparent  effect of  the new gene on nuclear activity is somewhat 

similar  to  that of  the ede   (cell division cycle) mutants in Saccharomyces 

cercvisisc reported by Hartwell et al (1974) and llartwell   (1974).    Approx- 

imately 150 temperature-sensitive mutants   (defining 32 genes,  each of 

whose products  is essential for the completion of one step in the cell 

division cycle)  have been isolated and characterized.    The steps  involved 

include those  involved with budding and DNA synthesis among others. 

However,   the new gene probably resembles more closely the nuclear replica- 

tion mutants found   in Aspergillus.     Orr and Rosenberger   (1976a;  1976b) 

reported finding eleven temperature-sensitive mutants in A.  nidulans which 

could undergo  conidial germination and even some cell elongation at the 

non permissive temperature, but could not undergo nuclear replication so 

that only one,  or at most two, nuclei could  exist  in a cell.     This approach 

was possible because Aspergillus conidia are usually mononucleate.     Multi- 

nucleate conidia,  and   the apparent inability to differentiate the nuclei 

of  the two strains  in hyphae,  have been major hindrances in studies of the 

new gene.     The absence of  thymidine kinase in Neurospora crassa   (Grivell 

and Jackson,   1968)   has prevented use of  the usual autoradiographic 

techniques.     Future work on  this gene may be possible by coupling micro- 

iniection with autoradiography. 



58 

BIBLIOGRAPHY 

Beadle,  G.W.   and V.L.  Coonradt.     1944.    Heterocaryosls in Neurospora 
crassa.     Genetics 2^:   291-308. 

Beadle, G.W.   and E.L.  Tatum.     1945.     Neurospora.     II.    Methods of producing 
and detecting mutations concerned with nutritional   requirements. 
Am.   J.   Botany 32:   678-686. 

Brockiuan, H.E.   and F.J. de Serres.     1963.     Induction of ad-3 mutants  of 
Neurospora crassa by 2-aminopurine.     Cenetics 48:   597-604. 

Burgeff,  H.     1914.     Untersuchungen u'ber Variabilita't,  SexualitSt und 
Erblichkeit bei Phycomyces nitens Kunze.     Flora 107:   259-316. 

Chambers,  R.  and M.J.  Kopac.     1950.    Micrurgical technique for  the study 
of cellular phenomena.     In McClung's Handbook of Microscopical 
Technique.     3rd Ed.   (Ruth McClung Jones,   ed.).     p.   492-543. 
Paul  B.   Hoeber,   Inc.  New York. 

Davis,  R.H.     1960a.    Adaptation in pantothenate-requiring Neurospora.     1. 
A gene modifying pantothenate mutants.    Am.  J.   Botany j47:   351-357. 

Davis, R.H.     1960b.     Adaptation in pantothenate-requiring Neurospora.     II. 
Nuclear competition during adaptation.    Am.  J.   Botany 47:   648-654. 

Davis,  R.H.     1966.    Mechanisms of  inheritance 2.     Heterokaryosis.     In The 
Fungi, An Advanced Treatise, Volume II, The Fungal Organism, 
p.   567-588.    Academic Press,  New York. 

Dodge,  B.O.     1942.     Heterokaryotic vigor in Neurospora.     Bulletin of  the 
Torrey Botanical Club ^9:   75-91. 

Dixon, W.J.   and  F.J. Massey, Jr.     1969.     Introduction to Statistical 
Analysis.     McGraw-Hill Book Co.,  New York.     637 pp. 

Carnjobst, Laura.     1953.    Cenetic control of  heterocaryosls   in Neurospora 
crassa.     Am.  J.   Botany 40=   <N°-  8)   607-614. 

Garujobst, Laura.     1955.     Further analysis of genetic control of  hetero- 
caryosls  in Neurospora crassa.    Am. J.   Botany 42:   (No.   5)   444 448. 

Garnjobst,  Laura and J.F. Wilson.     1956.     Heterocaryosls and Protoplasmic 
incompatibility  in Neurp^ora crassa.    Proc.  Natl.  Acad.   bci.  J.S. 

42:   613-618. 



59 

Grivell,  A.R.   and J.F.  Jackson.     1968.    Thymidine kinase:     evidence for 
its absence from Neurospora  crassa and some other microorganisms, 
and  the relevance of  this  to  the specific labelling of deoxyribo- 
nucleic acid.     J.  Gen. Microbiol. _54:   307-317. 

Gross,   S.R.     1952.     Heterokaryosis between opposite mating  types in 
Keurospora crassa.     Am.   J.   Botany 39:   574-577. 

Ilarsen, H.N.     1938.    The dual phenomenon in the Fung:-'   Tmperfecti. 
Mycologia 30:   442-455. 

llansen, H.N.   and R.E.   Smith.     1932.    The mechanism of variation in Fungi 
Imperfect!.     Phytopathology 22:   953-964. 

Iloiloway,  B.W.     1955.     Genetic control of heterocaryosis  in Neurospora 
crassa.     Genetics 40:   117-129. 

Hartwell, L.H.     1974.     Saccharomyces cerevisiae cell cycle.     Bacteriological 
Reviews 38:   164-198. 

Hartwell, L.H.,  J.  Culotti, J.R.  Pringle and B.J.  Reid.     1974.     Genetic 
control  of   the cell division cycle in yeast.     Science 183:   46-51. 

Mylyk, O.M.     1975.     Heterokaryon incompatibility genes in Neurospora crassa 
detected using duplication-producing chromosome rearrangements. 
Genetics 80:   107-124. 

Orr,  E.  and R.F.  Rosenberger.     1976a.     Initial characterization of 
Aspcrgillus nidulans mutants blocked  in the nuclear replication 
cycle.     J.   Bacteriol.   126:   895-902. 

Orr, E. and R.F.   Rosenberger.     1976b.    Determination of execution points of 
mutations  in the nuclear replication cycle of Aspergillus .nidulans. 
J.   Bacteriol.   126:   903-906. 

Pittenger, T.H.   and K.C. Atwood.     1954.     The relation of growth rate to 
nuclear ratio  in Neurospora  heterocaryons.     Genetics 39:   987-988. 

Pittenger,   T.H.   and T.G.   Brawner.     1961.    Genetic control of nuclear 
selection in Neurospora heterocaryons.     Genetics 46:   1645-lbbJ. 

Pontecorvo,  G.     1946.     Genetic  systems based on heterocaryosis.     Cold 
Spring Harbor Syir.p.  Quant.  Biol.   11:   193-201. 

Pontocorvo, G.     1956.     The parasexual cycle in fungi.    Ann.   Rev. Microbiol. 
10:   393-400. 

Perkins, D.D.     1975.     The use of duplication-generating ^""f^"?;*, 
studying heterocaryon incompatibility genes in Neurospora.     Genetics 

80:   87-105. 



60 

Ryan, F.J.,  G.W.   Beadle and E.L.  Tatura.     1943.    The tube method of 
measuring the growth rate of Neurospora.    Am.  J.   Botany 30:   784-799. 

Ryan. F.J.     1946.     Back-mutation and adaptation of nutritional mutants. 
Cold Spring Harbor Symp.  Quant.   Biol.   11:   215-227. 

Ryan,  F.J.  and J.  Lederberg.     1946.    Reverse mutation and adaptation in 
leucineless Neurospora.     Proc. Nat. Acad.   Sci. U.S.   12:   163-173. 

Tatum,  E.L., R.W.   Barret, N.  Fries,  and D.  Bcnner.     1950.     Biochemical 
mutant  strains of Neurospora produced by physical and chemical 
treatment.    Am.  J.   Botany 3_7:   38-46. 

Vogal,  H.J.     1964.     Distribution of  lysine pathways among fungi:     evolu- 
tionary   implications.    Am. Naturalist 98:  435-446. 

Wt'.stergaard, M.   and H.K. Mitchell.     1947.    Neurospora.     V.     A synthetic 
medium favoring sexual reproduction.    Am. J.   Botany _34:   573-577. 

Wilson,  J.F.     1958.     Studies on the nature of gene-controlled protoplasmic 
incompatibility in Neurospora crassa.     Ph.D.  Thesis.     Stanford 
University.     105 p.     University Microfilms.    Ann Arbor, Mich. 
(L.C.  Card No. Mic 59-290) Dissertation Abstr.   19:   2217-2218. 

Wilson,  J.F.     1961.    Micrurgical  techniques for Neurospora.    Am.  J.   Botany 
'48:   46-51. 

Wilson, J.F.     1963.    Transplantation of nuclei  in Keurospora crassa.    Am. 
J.   Botany  50:   780-786. 

Wilson, J.F.  and L.  Garnjobst.     1966.    A new incompatibility locus in 
Neurospora  crassa.    Genetics 53:   (No.  3)   621-631. 

Wilson, J.F.,  L.  Garnjobst and E.L. Tatum.     1961.    Heterocaryon 
incompatibility in Neurospora crassa- microinjection studies.     Am. 
J.   Botany 48:   299-305. 

Williams,  C.A.  and J.F.  Wilson.     1966.     Cytoplasmic *™W«U>J"*>'«•■•- 
tions  in Neurospora crassa.    Annals of  the New York Academy of 
Sciences 129:  Article  1,   853-863. 


