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INTRODUCTION 

Studies  were conducted on human  lymphocytes  in  vitro aimed 

at ultimately defining the mechanism by which exposure to suboptimal 

temperature acts on cell division.     Even though various effects of 

"cold"  have been  observed by several investigators,  the mode of 

action of exposure to suboptimal temperature or the  process of cell 

division is only vaguely understood. 

Studies conducted with "cold" adapted mammalian cell lines of 

L (mouse subcutaneous fibroblasts), Detroit-6  (human bone marrow) 

and Hela (human  epidermoid carcinoma)   lines have revealed that 

exposure to H°C influences certain activities in the dividing cul- 

tures  more than  others.     These cell lines were  isolated from the 

survivors of wild cell populations  exposed repeatedly to 4°C  for 

increasing time periods, and have been maintained from two to four 

vears.     (Holeckova,  et al, 1965)    The three cold-adapted cell lines 

showed increased numbers of polyploid cells as compared to con- 

trols maintained at  37°C, which persisted for months after the 

last exposure.     Immediately after U°C exposure, increased endore- 

duplication  (re-duplication occuring during interphase, producing 

diplochromosomes which may be observed as the cell enters mitosis) 

was evident.     The cold-adapted cell lines showed increased syn- 

thetic efficiency and increased growth rate which was not seen in 

other polyploid lines investigated.     (Cerny, et al,  1965; Holeckova 

et  al,   1967) 



Swedish investigators working with the human epithelial cell line 

Lu 106, and the fibroblast-like strain HEL, both derived from 

embrvonic lung tissue, have described the effects of a single 

exposure to suboptimal temperatures of 3°,  loo, and 20 C (most 

experiments at  3 C) on the chromosomes.    The frequency of poly- 

ploid  chromosome    numbers  was  increased  in this  short  cold treat- 

ment.     This  increase was attributed by the  investigators to a  selec- 

tive phenomenon since the short exposure would not likely have 

allowed  time for the action of chromosone  doubling mechanisms.     A 

higher frequency of endoreduplications in Lu 106 was also noted and 

was compared to a similar tendency induced bv a variety of treat- 

ments.     Detailed  karyotype analysis  revealed a ruggedness  in chro- 

mosome  outlines,  alternating  segments  of the chromosome showing 

strongly stained and unstained regions in irregular sequence along 

the chromosome length, the unstained regions appearing as constric- 

tions.     These constricted regions showed a tendency toward breakage, 

as a result of cold treatment.    It was concluded that the constric- 

tions were probably exaggerations of normal secondary constrictions, 

indicative of the chomomeric pattern.     The pattern of breaks 

induced by cold treatment was different from the pattern produced 

by two DNA inhibitors studied, but the patterns produced by cold 

and DNA-inhibitors were more similar to each other than to patterns 

produced by either X-ray (random breakage) or measles.    The obser- 

vation that breaks induced by low temperature exposure produce 

definite patterns, while other types of treatment induce random 

breakage, was related to the fact that various treatments probably 

affect different stages of the chromosomal replication.     It was 



significant to the  investigators that a non-specific influence such 

as suboptimal temperature might cause highlv specific,  localized 

chromosome breakage.    Cold treatment produced a high incidence of 

dicentrics and acentrics, which were formed during the preceding 

Gi or pre-DNA-svnthesis  stage of the cell cycle.     (Hanoel,  and Levan, 

1964)    Abnormal anaphases, with bridges and acentric fragments, 

were present   in  greater frequency after cold treatment. 

The above studies indicate that temperatures of 3° and 4°C 

affect  certain processes necessarv  for the normal functioning of 

the mitotic apparatus, as well as the morphology of the chromosomes. 

Small temperature  changes  seem to produce  less  dramatic effects, 

but do affect the kinetics of certain parts of the division cycle 

differentially.     Sisken and coworkers   (1965),  in  studies with 

monolayer cultures of human arnnion cells, found that temperatures 

of 34O-1+0.5°C affect all phases of the mitotic cycle; temperatures 

above and below the optimum prolonged all phases.     (See  Figure  1, 

and page 7)     But the  effects were most  nronounced  in some phases 

than others.     They found G2 and metaphase to be most sensitive to 

temperature change,  % and the period between completion of DNA 

synthesis and metaphase to be less sensitive, and anaphase essen- 

tially insensitive  (with the qualification that higher temperature 

favors shorter anaphase in contrast to the U-shaped response of 

each of the other parts of the cycle>     (Sisken,  1965; Sisken, 

et al,   1965) 

Rao and Englebert (1966) studied the effects of temperatures 

ranging from 33°-*+0°C on HeLa cells in suspension culture. The 

immediate effect of a temperature shift was to increase the relative 



duration of mitosis the longest,  followed by G1$ S, and G2 in 

decreasing order.    The durations of the phases increased during the 

transient period until they approached a steady-state value (in 

contrast to Sisken's studies in which such a progressive increase 

was not found).    Determinations of the stage durations, after cells 

had reached the steady-state, revealed that at low temperatures the 

duration of mitosis and metaphase in particular was much prolonged. 

In the range from 25°C-31°C, cells could not be grown in the steady 

state.     During the transient from one temperature to another the 

rate of cell division approached zero, while the mitotic index 

increased with time.     At these suboptimal temperatures, cells in 

metaphase had a normal appearance, with intact spindles and well- 

defined chromosomes.    However, mitoses which accumulated in the 

cold did not divide in the normal manner when returned to 37°C. 

In  shifting the cells  from 37°C to 29<>C,  it was  found that the 

duration of mitosis depends both on the temperature and the time 

the cells sp«nd at this temperature before entering mitosis.    When 

transferred to 29°C in fig and S, cells divided normally upon 

entering mitosis,  while those transferred in  G]_ showed abnormal 

anaphases; the chromosomes traveled to the poles  individually or 

in small groups, and the sister chromatids often remained together 

(Rao, and Engleberg, 1966). 

In summary, effects of subnormal temperatures upon cells 

cultured in vitro have been manifested on the mitotic process bv 

producing polyploidy. on the chromosomal level in induced constric 

tions and breaks, and on the relative durations of fe S. G2 and 

mitosis in the cell cycle (GL and metaphase being prolonged at sub- 

normal temperature). 



It would seem probable that these effects are interrelated— 

perhaps  explicable in terms of a specific mechanism by which sub- 

normal temperature acts, or a site of action which would be common 

to chromosomal structure, and G± and metaphase activities, perhaps 

an action on certain types of proteins. 

A clue to the mechanism might be found in studying polyploidy 

resulting from suboptimal temperature exposure.     One might ask 

several questions,  one of them being, at what point in the cell cycle 

does reduplication of the chromosomes occur? 

Hsu and Moorhead (1956) describe five types of reduplication: 

1. Inter-reduplication,  or endoreduplication,  occurs when 
chromosomes  reduplicate during  interphase.     As the 
reduplicated chromosomes enter mitosis,  diplochromosomes 
(paired homologs) may be observed. 

2. Pro-reduplication,  or endomitosis, occurs when the 
chromosomes are slightly condensed and within the 
nuclear membrane,  as during prophase. 

3. Meta-reduplication, or C-mitosis, is a result of meta- 
phase without a normal spindle.     (The spindle may be 
well-formed at first and then degenerate, or may 
never be formed normally.)    The chromosomes are 
reconstituted into a nucleus without going through 
anaphase and without normal cytokinesis. 

4. Ana-reduplication results when chromosomes move back 
to the equatorial area from the poles. 

5. Telo-reduplicatipn is a simple fusion of daughter 
cells after cytokinesis. 

Since endoreduplication was noted in the above cold exposure 

studies immediately after exposure, the polyploidy persisting over 

several generations might be a result of normal division of endo- 

reduplicated cells in the mitosis following a few endoreduplications 

in the first generation.    Abnormal anaphases and prolonged metaphase 

(which means that the pole-to-pole movement during anaphase is 



delayed) suggest a possible effect on the mitotic spindle apparatus, 

which could be an effect initiated during mitosis, or an effect ini- 

tiated during interphase which shows up during mitosis. 

Increased polyploidy is often cited as a means by which cells 

adapt to adverse, or other than normal, conditions.     For instance, 

cells taken from normal mammalian organisms and grown in cell or 

tissue culture usually give rise, after years of subculturing, to 

cell lines, whose modal chromosome number is polyploid.    This is a 

selective phenomenon, since the few polyploid cells in the first 

few generations of culture can survive conditions under which 

diploid cells would die out; consequently, the population after 

several generations would be predominently polyploid. 

The polyploidy resulting from below-normal temperature exposure 

might be explained in these terms, but the explanation falls short 

of explaining two observations made by the investigators working 

with cold-adapted cell lines  (p.  1).     It does not account for the 

initial endoreduplication observed, nor does it account for the 

increased growth rate which was not found in other polyploid lines 

studied. 

The present research attempts were efforts to reproduce some 

of these effects of suboptimal temperature on short-term lymphocyte 

cultures, in particular, to induce polyploidy by subnormal temperature 

exposure.     It would seem interesting to note whether or not cultures 

of relatively "de-differentiated" cells were effected in a fashion 

similar to the cell lines of epithelial and fibroblast-like cells; 

whether or not cells exposed only briefly in short-term culture to 

cold could be induced toward increased polyploidy.     If this were the 

■ 



case, this system might be studied in detail in an attempt to define 

the mode of action of suboptimal temperatures upon cell division, 

if indeed there is a specific effect. 

In vitro cultures of human peripheral lymphocytes were used 

in these studies.     Mature lymphocytes in the periperal blood system 

in vivo do not normally divide, but are in th« GQ or G,  stage. 

Medium end large lymphocytes in the lymph nodes and spleen divide 

and give rise to these peripheral blood lymphocytes.    In vitro, small 

peripheral blood lymphocytes, with darkly staining nuclei, are 

transformed into large blast-like cells with palely staining large 

nuclei, showing abundant cytoplasm and prominent nucleoli.    These 

blasts are capable of undergoing mitosis.     Morphologically similar 

to undifferentiated, primitive blood cells, the blasts may be the 

result of de-differentiation.    The transformation may occur sponta- 

neously,   (Sabesin,   1965), but the process  is  more  effectively  induced 

by the addition of phytohemagglutinin(PHA)  to the cultures.     PHA is 

an extract from the red kidney bean.    Cultures containing PHA may 

contain 70% blastoid cells on the third day of culture, the diame- 

ters of the largest blasts being three times the size of small 

lymphocytes.     Glycolysis is probably the main energy source for 

blastogenesis, which can occur in the absence of oxygen.     Glucose 

is utilized, with the production of lactic acid.     (Rabbins, 1964) 

RNA synthesis takes place during the first 24 hours of culture (Gx), 

the initial response being the synthesis of non-ribosomal RNA, which 

is probably m-RNA.    At some point in the 25-34th hour of culture, 

DNA synthesis begins.     The first S period is estimated by Bender 

and Prescott  (1962) to be approximately 12 hours,  followed by a G2 

I 



stage of six hours.    Transformation,  the progressive cell enlarge- 

ment  of the cells,  is  essentially completed in 24-48 hours.     It 

seems that the initial cell cycle takes approximately 48 hours. 

In subsequent  proliferation, the generation time  is  about  19-22 

hours.     Sasaki and Norman attribute the increase in DNA synthesis, 

which  is  evident  from 48-72 hours,  entirely to cell proliferation. 

After 60-72 hours of culture,  cells  are  in their second cycle.     A 

peak of mitosis is usually arount the 72nd hour of culture. 

The  aspects  of blastogenesis  itself have been studied by 

several persons in the past four years.     (Robbins, J.,  1964; Sabesin, 

1965)    Interesting results were demonstrated by Epfcein and Smith 

(1968)  in recent studies in which mouse lymphocytes were induced 

by PHA to undergo transformation in vivo.    The changes observed 

were similar to those seen  in  vitro.     There was a marked shift  in 

the mesenteric node and the peripheral blood,  from small lympho- 

cytes to medium and large ones, many resembling the blast-like cells 

seen  in  vitro. 

During blastogenesis in cell culture, there are always some 

lymphocytes which do not undergo transformation, even in high 

concentrations of PHA.    This is apparent in Figure 2, which shows 

small lymphocyte nuclei from cells which did not transform, along 

with large nuclei from blast cells, with their pale staining and 

prominent nucleoli.     Figure S shows the nucleus of a blast-lik« 

large lymphocyte, actually 47 f in diameter.    The cell nuclei  in 

a typical field in our cultures ranged from 8-45*. . 

The generation time for human peripheral lymphocyte culture 

after the completion of blastogenesis has been reported from the 



results of autoradiographic studies.     The durations of the cycle 

stages as reported are as follow: 

Gl 

S 

G2 

1-1 

Total 

Cave (1966) Susaki and German (1964) 
Norman (1966) 

H.6 hrs. 6 hrs. 

9.6 11 

3.5 3 

2 

3-4 hrs. 

22 hrs. 

The discrepancies in the reports of these investigators are 

probably a result of differences in method of culture.     In our 

own laboratory it has been found that the number of blood cells per 

volume  of culture medium is  an  important  variable.     A micro- 

technique, in which three drops of blood are cultured in five 

milliliters of medium, is employed in our laboratory. 

The diagram in Figure 1 illustrates a generalized cycle, 

based on a total generation time of twenty hours duration.    The 

cells transverse in a clockwise direction.    G1 occupies the part 

of the cycle from the end of telophase to the initiation of DNA 

synthesis.     S is the period of DNA synthetic activity, and G2 is 

the interlude between the cessation of DNA synthesis and mitosis, 

M.    (A prolongation of Gx would simply refer to the fact that  DNA 

synthesis  is  delayed.) 

Lymphocytes in tissue culture transverse the cell cycle asyn- 

chronously.     At any one time in the cycle of 20 hours total, 

theoretically 1/2 of the cells would be synthesizing DNA, 1/H in 
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the pre-DNA synthesis period of 0«( 7/40 in G2, and 3/40 in mitotic 

division.     In subjecting such  a culture to suboptimal temperature, 

no cause and effect relationship between the time of exposure and 

a specific stage  of the  cell cycle can be postulated.     In  view of 

this, a synchronized culture would be desirable in which at any one 

point during the cycle, the majority of cells would be engaged in 

the  same   cyclic process.     If this were  accomplished, the  sensitivity 

of Gi and mitosis to temperature could be investigated more thor- 

oughly.      Indeed,  such  a  synchronized culture  would be  valuable  in 

future studies of any parameters during lymphocyte cell culture. 

Several investigators have achieved partial synchronous  cul- 

tures of mammalian cells by the cpplication of an excess of thymidine, 

a  2'deoxyriboside  of thymine  (l-^-D-2-deoxyribofuranylthymine),  which 

in normal physiological amounts is the precursor of DNA synthesis 

by the  following scheme: 

Thymidine-^thymidine  5'phosphate(dTMP) ^thymidine  diphosphate(dTDP) 

// 
thymidine triphosphate(dTTP) 

DNA 

«0CW* 
The thymidine is phosphorylated  upon 

incorporation  into the  cell. 

Ry/re «t- TTiyWlteltB* ^  large ,xcesg  of tnymidine  (amounts  of 2.0-25 mmoles 

have been  used  in previous  studies)   inhibits  DNA 

synthesis.     The  mechanism is  only vaguely understood; 

. 
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investigators attempting explanations disagree, and the most recent 

persons using this technique do not speculate about it at all. 

Generally stated, the effect is probably a type of negative feedback 

inhibition,  in which the  excess thymidine  inhibits one  or more 

enzymes  required for the  conversion  of immediate or distant  precur- 

sors to their reaction products.     (There is indication from recent 

studies, that excess thymidine blockage did not affect thymidine 

kinas« activity.    The investigators concluded that this enzyme 

forming system was  apparently regulated by thymidylate  and 

deoxycytidylate;  Stubblefield and Murphie,  1967)     If a regulation 

site were  affected,  the precise site of action would be difficult 

to define, since inhibition might occur at various points along the 

pathway which are not directly affected by the excess thymidine. 

Xeros   (1962)  found that excess thymidine to a level of 2mM, 

applied for 24 hours to monolayers of genetically heterogeneous 

Chong-appendix cells effected partial synchrony.    Accumulated 

C-mitoses in 6 1/4-12 1/2 hours after the release of the block 

were 44%,  and between 6 3/4-12 3/4 hours, 40%.    Peterson and 

Anderson  (1964)  achieved synchrony by applying two thymidine blocks 

to a suspension culture of Chinese hamster ovary (CHO) cells and in 

HeLa monolayers.     Bootsma and co-workers  (1964)  synchronized a 

cell line of human kidney cells with a double block, obtaining 

80-90% synchrony in the S phase after 1-3 hours, and 15-25% of cells 

in mitosis after 8-10 hours.    Similar work was reported by Puck 

(1964), who employed the double block technique.    He found that 

excess thymidine affects all stages of DNA synthesis, in that the 

first block stops cells at all points during the S phase.     In HeLa 



12 

cells, synchronized by this method by  Rao and Engelberg, 90% of the 

cells  divided between  7-11 hours  after the  release  of the second 

thymidine block.     These workers  emphasize that  although as many as 

98% of the cells accumulate at the beginning of S in a region about 

5% of the total generation time,  after release  of the block  and 

the ensuing mitosis, the cells are no longer in this synchrony due 

to intrinsic variability and the nonhomologous population. 

The following series  of studies  was  conducted in our laboratory 

in view of the overall plan to define the mechanism of action for 

the effects  on  cell division produced by below-normal temperature 

exposure.    The studies to date are only preliminary steps in this 

direction.    Since no previous work dealing with temperature effects 

had been initiated in our laboratory, the preliminary investigation 

dealt with the development of techniques for such a study and evalu- 

ation of these in regard to possibilities for future research. 

Three series of experiments have been conducted: 

I.     Lymphocyte culture under normal conditions at 37°C. 

II.    Exposure of lymphocytes to 4° and 15°C for varying lengths 
of time. 

III.     Modification of the excess thymidine technique for inducing 
cultures to divide synchronously—as a possible axd in the 
temperature studies. 
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MATERIALS  AND METHODS 

Preparation of culture medium 

Vials to contain media were autoclaved and the plastic tops 

were soaked in 70% ethanol, usually for several days.     Using sterile 

technique,  the following were mixed:     Medium 199  (with sodium 

biocarbonate, Microbiological Associates), 800 ml.;  Fetal bovine 

serum (Microbiological Associates),  200  ml.;  Sodium heparin  solution 

(1000 units/ml.  solution,  an anticoagulant), 20 ml.; phytohemagglu- 

tin-M (Difco Laboratories, rehydrated with sterile distilled water), 

a mitogenic agent,  20 ml.     Approximately  five ml.  of medium were 

poured into each culture vial.     Vials containing medium were frozen 

until needed. 

Method of culture and preparation of cells for cytological analysis 

The method of lymphocyte culture was a modification of Moorhead's 

and Nowell's,  developed for use  in our  laboratory by  Dr.  L.   G. 

Anderton and J.  0.  Hall.     It involved the following: 

1) Collection  of blood--Three to four drops  of blood  obtained from 
the  finger or arm of the  subject by sterile technique 
were placed into prewarmed vials of sterile medium. 

2) Incubation—The vials  were  stoppered tightly,  gently swirled 
to mix, and incubated at  36.5°-37°C, for four days. 
Culture  medium was  observed daily for pH  changes  as 
indicated by the phenol red included in the medium and 
adjustment made as indicated. 

3) Cells arrested at metaphase—On the morning of the fourth day 
(counting the dav the  culture  is set  up  as  day 0),  0.02 
ml.  of colcicine solution (100 g /ml., Nutritional 
Biochemicals Corporation) was added with a tuberculin 
syringe, and the culture was reincubated for 3-5 hours. 
Colchicine acts to arrest mitotic cells in metaphase by 
preventing spindle formation.     (Tannock, 1967, and 
Kihlman,  1966,  discuss various metaphase arrest agents). 

» 

» 
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4) Sedimentation of cells—The contents of the vials were aspirated, 
and placed in a graduated conical centrifuge tube (pool- 
ing the three vials from each subject in one tube).    Cells 
were centrifuged at 280-450 RCF for ten minutes, and the 
supernatant removed. 

5) Washing of cells—8-10 ml.  of Hanks balanced salt solution 
(Microbiological Associates) was added to the cells in the 
tube to wash them free of exogenous medium.    Cells were 
resuspended by aspiration and centrifuged. 

6) Hypotonic treatment—All but 0.5 ml. of Hanks was removed,  and 
2.0 ml. of glass distilled water was added, and allowed 
to stand 8-10 minutes.     This hypotonic treatment caused 
hemolysis of  the red blood cells  and served to burst  the 
nuclear membranes of the lymphocytes, dispersing the 
chromosomes. 

7) Removal of red blood cells—Resuspension  and centrifugation 
followed the hypotonic treatment, and all of the super- 
natant,  including the "shadow cells" of the hemolyzed 
red blood cells were removed. 

8) Fixation—Two ml.   of freshly made  fixative was  added to each 
centrifuge tube, avoiding disruption of the pellet 
(glacial acetic acidic acid:    absolute methanol, 1:3). 
This was allowed to stand stoppered and undisturbed for 
30 minutes.     Upon resuspension, centrifugation was 
repeated.    The supernatant was discarded and the cells 
were resuspended in appronimately one milliliter of 
fresh fixative, a fine suspension being obtained by 
repeated aspiration with a fine-tipped pippette and 
continued change of fixative, if necessary. 

9) Preparation of slides—One drop of cell suspension was allowed 
to run down the cold wet surface of each slide at a 
45° angle (clean slides having been in a container of 
iced, distilled water).    Each slide was immediately 
passed face down through a flame until it was just 
warm to the back of the hand.    The slides were waved 
vigorously to complete drying as rapidly as possible. 
If metaphases were scarce or concentrated, adjustment 
was made by resuspension in less or more fixative. 

10)    Staining (on completion of drying)— 

a) 

b) 
c) 

d) 

slides are hydrolyzed in 1 N HC1 at 6°C for 10 
minutes (to remove acid soluble protein not de- 
natured previously) 
rinsed in distilled water 
placed in freshly made Giemsa for 8-15 minutes 
(distilled water: stock Giemsa:0.15M NH^OH, 90:10:7) 
dipped in Acetone 1—4 dips, AcetDne II—6 dips 
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e) placed in acetone-xylol, 1:1 for 2 minutes, 
f) placed in Xylol I, 5-10 minutes, Xylol II, for 10 

minutes, 
g) slides were mounted in permount and coverslips were 

placed on. The prepared slides were allowed to dry 
thoroughly and were subjected to microscopical analy- 
.sis.  Selected representative metaphases were photo- 
graphed, and karyograms were prepared. 

Preliminary studies under normal conditi .ns of culture were 

conducted in order to become acquainted with the techniques involved. 

In the second series of experiments cultures were subjected to sub- 

normal temperatures of H°+ 2°C and 15°+ 2°C for varying lengths of 

time and at different points during the culture period, from 48-72 

hours. Each exposure was followed by incubation at 37°C, prior to 

harvesting the cells (with the exception of one experiment). 

In the third series of experiments, application of excess 

thymidine was accomplished by a modification of the methods of Puck, 

Bootsma and co-workers, Peterson and Anderson, and Rao and Engelberg. 

After approximately 60 hours of culture, the medium was decanted 

from the vials containing the cells to be synchronized.  Medium 

containing thymidine (3 mg/ 5 ml., 2.5mM) was filtered through a 

millipore filter, pore size 0.22 , in a Swinny Adapter, directly 

into the vials containing cells. Cells were resuspended and the 

vials incubated at 37°C. To remove excess thymidine, the medium 

was decanted, the cells washed in sterile Hanks balanced salt 

solution two or three times (with centrifugation at 130°CF), and 

the sterile media was added to the cells. The medium was changed 

in the control cultures when thymidine was added or removed from 

the experimentals. This procedure was repeated upon application 

and removal of the second block. 

I 
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Upon the application of the first thymidine block, cells were 

incubated at 37°C for the duration of the total generation time, 

minus S, which allowed the cells to be stopped in the S stage. Upon 

release from the first block, cells were allowed to incubate for 

the duration of S, when a second thymidine block was applied- 

causing the accumulation of all the cells at the beginning of the 

S stage. After removal of this second block, the cells continued 

through S and G_. Colchicine was added to arrest the cells in 

metaphase, and the cells are treated as indicated previously. 

Figure 5 illustrates the time sequence of events during induction 

of synchrony, based on arbitrary average values for the cell cycle 

time. 

RESULTS AND CONCLUSIONS 

I. Culture under normal conditions 

In the lymphocyte cultures of four days duration at 37 C, the 

modal chromosome complement was diploid, with a chromosome number 

of 46. Figure 6 shows a typical chromosome spread (of a female) 

from a 4-day old culture, and Figure 7 is a karyogram of this 

spread. 

II.  Exposure of cultures tc 4°C and 15 C 

The results of these experiments are compiled in Table I. In 

these preliminary studies on subnormal temperature exposure, cells 

exposed to H°C    seemed to divide normally upon reincubation at 37°C. 

In those subjected to 15°C, there was evidence of a premature sepa- 

ration of sister chromatids and of the type of heterogeneous 

• ! 
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staining reported by Hanpel and Levan.     (Sea pp.   1 and 2)    Figures 

8 and 9 show these effects in their most exaggerated forms.    The 

incidence of polyploidy was insignificant.     Figure 10 shows a 

polyploid spread with otherwise normal chromosomes.     The polyploid 

cell  in  Figure  8  shows the  effects mentioned above.     (Both  of these 

spreads are from Exp.  C.) 

It would be difficult to make any generalizations concerning 

the results of these experiments.     The time at which cold was 

applied varied unsystematically from one experiment to another as 

can be seen in Table I, and time did not permit repetition of each 

of these.     More  detailed cytological examination  of the prepared 

slides might reveal other minor effects, but such study probably 

could not be evaluated in view of the lack of any rigorous design 

in the original planning of these studies. 

III.     Synchrony with excess thymidine 

Results are indicated in Table II.    Exp.  A was based on a 

generation time of Gr9 hours, S-6 hours, G2-10 hours, M-l hour. 

Experimentals showed a mitotic index of 0.247 as compared with 0.03 

in the controls.     The metaphases examined appeared normal, as in 

Figure  11.     The  subsequent  experiments  B, C,  and  D were based on 

the  generation time-Gj-S hours,  S-10 hours,  G2-3.5  hours,  M-l.5 

hours, which corresponded with that reported by Cave, and Susaki 

and Norman.     In  B.  the  experimentals  and controls showed the  same 

mitotic index.     Results were inconclusive in C and D, due to the 

bacterial contamination found.    The count of cells in D revealed 

a mitotic index of only 0.083 in experimentals, and 0.023 in 

controls. 
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The relative lack of success of the most recent synchrony 

experiment may be due in part to the generation time used as a 

basis  for the thymidine  schedule.     It  is possible that  Cave's and 

Susaki and Norman's values are not applicable under the conditions 

in our lab.     Furthermore, the durations of the various stages in 

the cycle may    be shifted as a result of the thymidine inhibition. 

Rao and Engelberg in their studies found that the duration of S 

plus G« was 7 hours in the synchronized cells in contrast to 10.5 

hours in unsynchronized cells at 37°C.    The various stage durations 

could be delineated by autoradiographic studies, but at present this 

cannot be accomplished in our lab. 

If this synchrony technique were perfected for use in our 

lymphocyte  culture,  it  could be  used in connection with  suboptimal 

temperature exposure,  as  stated elsewhere.     Before this  could be 

done effectively however, a more rigorous means of maintaining con- 

stant temperatures would need to be devised, as well as a more 

efficient means for gradually shifting the temperature of the cul- 

tures to avoid "temperature  shock" in  some  of the studies. 

Biochemical studies of the sort accomplished with cell lines, 

might be valuable in conjunction with a synchronous lymphocyte 

culture, in efforts to compare the characteristics of short-term 

and long-term culture on the molecular level—and in relation to 

differentiated and undifferentiated mammalian tissue.     It would be 

interesting to extend these effects to a longer-term lymphocyte 

culture, by subculturing the cells in fresh medium 72 hours after 

the initiation of incubation, and thereafter every HO or so hours. 

Mccarty and co-workers (1965) were able to isolate and propagate a 
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continuous  culture of human lymphoblasts (CCRF-CEM) from the 

peripheral blood of a patient with acute lymphoblastic leukemia. 

Chromosome  counts  revealed modal numbers of 46  and  47  chromosomes. 

DISCUSSION 

The  attempts  to induce  polyploidy in  short-term lymphocyte 

culture  and th-  use  of excess thymidine to  induce  synchrony in 

these  cultures have  been  relatively unsuccessful to date.     But 

these  experiments,   even though not producing the  desired results, 

are  valuable,  as  any  such preliminary steps would be,  in  evaluating 

experimental design  in relation  to possibilities  for future  studies. 

It  is evident that  subsequent experiments  should  be undertaken  only 

on the  basis  of very rigorous experimental design.     Culture techniques 

and temperature  exposure parameters  should  be  strictly uniform. 

Prior to further use  of synchrony techniques, the  durations  of the 

cell-cycle  stages  would need to be  determined  for the conditions 

in  our  laboratory.     Autoradiography could be used to accomplish 

this.     If the equipment were  available, time-lapse  cinemicrography 

would be  valuable   in  determining the durations  of the  various 

mitotic  stages,   as well as  allowing one to view the mitotic events 

as they happen.    Polarization optics could be employed tc view 

the highly organized spindle structures.     Autoradiographic 

studies with isotopically labeled protein precursors, such as leucine 

and valine, and arginine and lysine  (which are the main two amino 

acids in histones) might be designed in connection with tritiated 

thymidine and/or suboptimal temperature exposure,   in order to deter- 

mine  the  effects of the  low temperatures on  DNA and protein  synthesis. 
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Research such as that  suggested briefly above might  aid  in 

the attempt to elucidate cell division activities during and after 

exposure to suboptimal temperatures.     (But since such studies would 

reouire  use   of unfamiliar techniques and require various time- 

consuming experimentation, it would be unrealistic to attempt this 

in  our cytogenetics  laboratory at  the present time.) 

Several correlations can be postulated and questions can be 

explored in  relation  to the temperature  effect  on  cell division. 

Since  the most  obvious  correlation  of temperature  changes would ap- 

pear to be on proteins, a consideration of protein synthesis during 

the cycle would be relevant  (although temperature shifts could effect 

existing proteins as well as newly  synthesized ones).     Work  by  Donnelly 

and Sisken   (1967) with puromycin  and actinomycin  D suggests that   in 

order  for division  to occur, new protein molecules  must  be  synthe- 

sized  within a  30-60 minute  period prior to metaphase.     Are  these 

perhaps the  spindle proteins?    Thev found that  inhibition  of nucleclar 

RNA synthesis  did not  effect  the  entrv of cells  into mitosis  for 

periods up  to three  hours,   inferring that  cells  in  the  latter part 

of the  cell cycle  contain  a  1-3 hour supply of ribosomes utilizable 

for the  synthesis  involved  in preparation  for division.     Cells,   in 

which  ribosomal RNA was  inhibited  in G^  required more time to get 

to division;  cells  in which ribosomal RNA was  inhibited during late 

S or  02 were not  delayed  in  entering division, but  the  succeeding 

cycle  was  prolonged.     This  infers that  ribosomal  RNA synthesis  in  *% 

is necessary for the ensuing G± and/or S  activities. 

Shapira and  Levina  (1967) have also been  concerned with protein 

synthesis  during the  cycle.     Their studies  in particular on  human 

lymphocyte cell culture, indicate that nuclear protein synthesis 
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takes place before DNA synthesis, but after a preceding nine hours 

of RNA synthesis.     Their experiments with pulse and prolonged 

labeling with tritiated arginine and lysine permitted them to 

conclude that  synthesis of proteins and in particular chromosomal 

protein, proceeds during all of the mitotic cycle, taking place in 

both prophase and metaphase.    The rate in ^ is 2-3 times less than 

in S and G„. 

Subnormal temperature appears to prolong the duration of 

metaphase in several studies, and seems to maintain an intact, normal 

spindle apparatus, yet subnormal temperature has little if any effect on 

the duration of anaphase.    This would indicate that any abnormal 

anaphases  resulting from subnormal temperature exposure would be 

a result   of activities prior to the  "initiation" of  anaphase. 

Since cells transferred to suboptimal temperatures  during G^ 

showed abnormal anaphases,  perhaps proteins  are synthesized during 

Gj which are specifically used in anaphase activities. 

Protein synthesis is usually preceded by RNA synthesis.     Robbins 

and  Scharff (   in  Cell Synchrony,  1966)   give  evidence that the rate 

of RNA synthesis increases from G, to G2, remaining steady through 

S, but  decreases  to a very  low  level in metaphase.      In relation to 

a possible effect   of temperature  on  RNA,  Byfield (Whitson,  et  al, 

1967)  has  suggested that the effect  of temperature  shock  in Tetra- 

hymena might be an effect of drastically reducing the half-life of 

RNA.     It  might be possible  in the  future to  relate  temperature effects 

specifically to some of the synthetic  activities mentioned above. 

.      , -. •# +h«.»* activities  and temperature effects A generalized summary of these ■*»▼»*« 

is diagrammed in Figure 12. 
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Also  of interest  is a consideration of the  labilities  of 

structural proteins involved in cell cycle processes.    Mazia 

(1961) mentions  in  addition to the relation between temperature 

and rate, the relation between temperature and the physical 

state of gels and polymers.    In this category would fall the 

spindle apparatus,  composed of proteins  existing in the spindle 

configurations for only a fraction of the cell cycle.    Mazia's 

investigation  and isolation  of the spindle  apparatus  in  sea urchin 

eggs has allowed extensive biochemical analysis of the apparatus. 

Much  emphasis  has  been  placed on the  interconversion of thiol and 

sulfhydryl linkages  in the  formation  and activation  of the  spindle. 

Mazia hypothesizes that other types of weak intermolecular links 

may be  important  and warrant  consideration.     He  found evidence  in 

early studies  of secondary bonds, probably hydrogen bonds, by 

solution of the apparatus with urea.     It is interesting that the 

conditions favorable for maintaining the stability of the isolated 

spindle were favorable to more hydrogen bonding and less hydrophobic 

bonding  (cold temperature,  phenol, pH  lower than normal).     (Hydro- 

phobic bonds are formed when two or more non-polar groups come 

into contact.)  During anaphase the main spindle fibers elongate 

and eventually  "dissolve."       Mazia cited hydration  of the  gel  as  a 

possible explanation.     Also feasible would be a change in the nature 

of weak intermolecular bonds,  resulting in an "unfolding" or "re- 

folding" of tertiary or quatenary protein structure.    M.  Joly, in 

considering the denaturation of proteins,  found that the ratio of 

hydrogen to hydrophobic bond as they vary with temperature, is 
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important to the stability of protein structure in aqueous systems. 

In  general,  both hydrogen bonding and hydrophobic bonding  stabilize 

protein  structure,  but  temperature  changes  affect these two types 

of bonding differently.     The  strength of hydrophobic bonds  decreases 

with  decreasing temperature,  below 60°C,  while the strength of 

hydrogen bonds  increases with  decreasing temperature.     Joly found 

that below  a maximum temperature  (about  60°C),  the  effect  of 

hydrophobic bonds  predominates;  the  helix stability of the protein 

decreases with  decreasing temperature.     Thus,  at  low temperatures, 

increased hydrogen bonding and decreased hydrophobic bonding would 

stabilize the  helix.     A similar effect might  possibly be applied 

to  fibrous  proteins  and the transitions  between  crystalline  and 

amorphous  forms.     For these  reasons,  the  effect  of low temperature 

on  mitosis may be  one of stabilizing  the  spindle proteins  configu- 

ration to such  an  extent that anaphase,  with dissolution of the 

spindle,  is not  initiated normally,  preventing normal cytokinesis. 

The  effect  might  also be  on the  level of  chromosomal proteins. 

Hydrogen  bonds bind the  chromosomal nucleic acid-chromsome  protein 

complex to histones.     (The ratios of histone  to  DNA are identical 

for m9taphase and interphase  chromosomes.     Metaphase  chromosomes, 

in an amount equal to histone, contain a mixture of non-histone 

proteins  soluble  in HC1—most probably the acid-soluble ribosomal 

protein,  according to Bonner and his  co-workers,   1968.) 

In considering possible mechanisms of subnormal temperature 

action  on  cell division,  one  is  reminded that  the basic mechanism 

is  a simple  one  of thermodynamics.     The rates  of biochemical 

reactions are a function of temperature and concentration of reactants. 
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The rate limiting step in a biochemical pathway at 37°C is 

probably not the rate-limiting step at a different temperature. 

For this  reason,  cells  maintained at  a subnormal temperature would 

be  expected to contain  different  relative amounts  of macromole- 

cular constituents.     On the molecular level, the effect would 

be quite  specific  for each enzyme-protein,  or particular  reaction, 

but  in  the  complex intercellular environment,  many reactions are 

interrelated in  a web  of biochemical pathways.     Changes  in tempera- 

ture  would be  expected to alter protein  structure,  alteration  in 

teriary and quatenary  structure  in turn altering micro-hydrophillic 

and hydrophobic surroundings.     Such  effects would encompass  enzyme 

activity and  subsequent  macromolecular synthesis,  structural 

proteins,  membrant    permeability  and transport,   energy relations, 

etc.     Therefore, the  attempt to delineate a specific mechanism for 

the  effect  of subnormal temperature  exposure  is perhaps  at best, 

unrealistic.     Such an attempt  must  remain  on the level of correla- 

tion     between  overall  surface  evidences  of the effects  of exposure. 

If the effect  of subnormal temperature was to decrease the rates 

of a  few processes,   its  overall effect  might be to increase the 

rate  of another process which would not be morphologically or 

biochemically "visible"  under normal conditions.     This could 

result  simply  from a  shift  in  relative  rates,  or result   from acti- 

vation  or inhibition  of certain  macromolecules  at  the new temperature, 

both of which would produce the same overall effect.    Even so, the 

localization of suboptimal temperature influence to specific types 

of activities   (like metaphase  and G  )  may help to elucidate the 

process of cell division,  if one remembers  that these correlations 

are arbitrary from a thermcdynamic standpoint. 
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Studies  on  in vitro culture  cannot be directly  extra- 

polated to explain  conditions  in vivo,   for very obvious reasons. 

Yet  such  speculation  is nevertheless  attractive  to the newly 

initiated biologist!     Malignant tissue is generally composed of 

undifferentiated,  or "de-differentiated"  cells,  undergoing active 

mitoses,   similarly to lymphocyte  culture.     Does  "blastogenesis" 

perhaps  occur in  the  genesis  of malignancy?    Cancerous  cells tend 

to be more  frequently polyploid than non-malignant tissues.     Is 

this  a cause,   or effect  relationship? 

In  events  of  low temperature surgery,  one might  wonder if 

localized  cold application would affect  surrounding  cells  under- 

going mitotic activity.     Holeckova and his  co-workers note that 

their cold-adapted cell line  gains  increased resistence to cold 

without  the natrohumoral regulation  common  in  a mammalian  organism. 

These  adapted  cells  are able to live  in medium depleted of glucose, 

which  could be  caused by  increased utilization  of lipid substrate, 

and show  increased oxygen  consumption,   similarly to cold-adapted 

mammals.     Le Blanc has  studied the aspects  of peripheral tissue 

adaptation to cold in the rat.     He observed in rats  exposed to 6°C, 

that  if cold exposure blocked mitosis  only for a short time,  and 

if the number of layers in the stratum corneum of the skin increased 

as well as the number of capilliaries, then cold injury was not 

observed and adaptation took place.    In the skin of the abdomen of 

rats (6°C) there was an increase in the number of mast cells after 

1/2—2 months, with    a decrease after t months of exposure.    Similarly, 

in the skin of the fingers of fishermen adapted to cold water, more 
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mast cells were found than in control subjects. (Proceedings- 

Temp. Acclimation, 1963) One might wonder whether or not these 

mitotically dividing skin cells might be polyploid. 

The consideration of possible sites of differential 

temperature influence on the cell cycle, and the consideration 

of correlations between synthetic and structural activities 

having, at best, only vague delineations, is relatively specu- 

lative in nature.  This is dictated by the lack of abundant 

research in this area, and also by the inherent nature of an 

influence as general as a shift to suboptimal temperatures. 

Temperature shifts would be expected to affect all metabolic 

processes to different extents.  The specificity of action of 

subnormal temperature would depend upon the level of organization 

from which one views "specificity." If regarded from the stand- 

point of overall metabolism, the influence is a nonspecific one. 

If regarded from the level of particular biochemical processes 

occurring in an isolated duration of time, the influence could 

be thought of as specific; yet the boundary lines set up to define 

such a grouping of processes would be limits arbitrarily imposed. 

The mechanism for suboptimal temperature influence may of necessity 

remain undefined in view of the complexity of a cell's milieu 

interieur. 
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SUMMARY 

Studies were  conducted  cm human  lymphocytes  in vitro 

aimed at  ultimately defining the mechanism by which  exposure 

to suboptimal temperature acts  on cell division.     Investigators 

working with cell lines have reported that subnormal temperature 

affects    1) the mitotic process by inducing polyploidy,    2) the 

chromosomes  by  causing  constrictions  and breaks,  and 3)  the 

relative  durations of  G,,  S, G    and mitosis  in the cell cycle 

(G1 and metaphase being prolonged). 

As a preliminary step to relating these effects in a 

mechanism of action,  attempts were made to reproduce  some of 

these effects in human peripheral lymphocytes cultured in_ vitro 

by a modification  of the method of Moorhead and Nowell  (1964). 

Three  series  of experiments were  conducted:     1)  pilot  lymphocyte 

culture  under normal conditions  at  37°C;     2)  exposure  of cultures 

to  4° and 15°C  for varying  lengths  of time;     3)     application  of 

excess  thymidine  (to  levrel of 2.5 mK)  by a modification  of the 

methods of Puck, Bootsma and co-workers, Peterson and Anderson, and 

Rao and Engelberg, to induce synchrony in the dividing cells as 

a possible aid in the  temperature  studies. 

The  results were   inconclusive.     Exposure to  15°C induced a 

high incidence of exaggerated constrictions, and early separation 

of chromatids  in one experiment.    Partial synchrony was achieved 
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in one attempt, but subsequent experiments aimed at improving 

the technique did not collaborate this, although they did indicate 

that further experimentation was warranted. 

In considering the possible mechanism of subnormal temperature 

action on cell division, one is reminded that the basic mechanism 

is thermodynamic; temperature changes affect the rates of indivi- 

dual biochemical reactions differentially.  On the level of cell 

cycle activities these effects would be evident from an overall, 

nonspecific standpoint, as affecting some activities more than 

others.  This permits correlation betv.*een subnormal temperature 

and nucleic acid and protein synthesis, and subnormal temperature 

and the integrity of structural proteins participating in mitosis. 

These correlations may elucidate the process of cell division; 

however, they must remain arbitrary in view of the complexity of 

the biochemical interrelationships in the cell. 
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