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The purpose of this thesis is to examine the development of a 

quantum mechanical Boltzmann equation for a general polyatomic gas. 

To formulate such an equation the method used was the development of 

a density matrix to describe the ensemble and then the equation of 

motion various operators have been formulated in as general a manner 

as possible to include explicit time dependence and effects of magnetic 

and electric fields,  and yet not sacrificing the basic assumption of 

molecular independence.     In the process of generating these operators 

it was discovered that because of the employment of the formal theory 

of scattering,  the operators were time independent.    We obtain an 

equation of motion for the density matrix in terms of the time dependent 

density matrix and interaction potential,  and the time independent wave 

operators.    To put this equation of motion for the density matrix into 

a form more recognizable as the Boltzmann transport equation required 

the development of a Wigner type distribution function.    An illustrative 

example of the necessary procedure is then given,  and a more familiar 

Boltzmann equation results. 
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CHAPTER 1 

INTRODUCTION 

This paper proposes to examine the process by which a quantum 

mechanical Boltzmann equation for a dilute polyatomic gas, involving 

only binary collisons, is developed.    The method employed parallels 

the work of R.  F. Snider (Journal of Chemical Physics, April,  I960.), 

which is referenced throughout the text.    Snider's procedure is 

extended to the case of a polyatomic gas in the presence of magnetic 

and electric fields, which may be time variant. 

Chapter 2 is devoted to describing a quantized system by use of 

the concepts of state vectors and state functions.    The state vectors 

and functions are then used to develop the idea of system averaging; 

specifically the concept of expectation values. 

Chapter 3 extends the work of Chapter 2 in developing ensemble 

averaging from expectation values.    The density matrix; is then defined 

by its relationship to the ensemble average for the operator,  and the 

operator itself. 

In Chapter h,  the equation of motion for the density matrix is 

derived by employing the definition of the density matrix, developed in 

Chapter 3.    The dilute nature of the gas is then used (i.e., use of the 

Boltzmann property) to rewrite the equation of motion in terms of the 

one and two particle density matrices.    The problem is,  thereby,  greatly 

simplified.    It then becomes necessary to solve the equation of motion 



for the two particle density matrix, the inherent problem of binary- 

collisions included. 

Chapter 5 deals with solving the two particle density matrix 

equation of motion.    In dealing with this problem, we will first de- 

termine the appropriate form of the Hamiltonian, bearing in mind that 

this form necessarily must account for the effects of fields.    Applying 

this Hamiltonian to the Shrodinger equation, we develop the eigen- 

functions,  and,   subsequently, the density matrix.    The Hamiltonian 

also appears in sets of equations which are used to solve the actual 

two particle equations of motion.    The implied explicit time dependence 

of the Hamiltonian complicates the solution and requires a non-explicit 

time dependence assumption.    This assumption effects a meaningful solution 

of the equations of motion in terms of formal scattering theory procedure. 

It should be noted that formal scattering theory is required to describe 

the collision effects. 

Chapter 6 discusses the use of Wigner type distribution functions. 

These functions are necessitated by the fact the momentum and position 

can not be simultaneously determined.    Further, the Wigner type dis- 

tribution functions must be employed in placing the final equation of 

motion for the density matrix into a more recognizable form of the 

Boltzmann integrodifferential equation. 

Concluding, the results of this study indicate that while the 

method of developing the Boltzmann equation in terms of quantum mechanics 

is    sound, the required use of Wigner type distributions renders this 

problem most difficult.    It is suggested in the summary that a procedure 



which does not include the Wigner type distribution functions should 

be employed to complete the quantum analog to the Boltzmann equation. 



CHAPTER   2 

REPRESENTATION OF A QUANTIZED SYSTEM 

The intent of this  section is to develop the basic concepts 

underlying the density matrix.     To do so  one must first understand how, 

in as  general a manner as possible, to formulate a quantum mechanical 

description of the ensemble.     This is accomplished by use of a state 

vector1 to describe a state of the system. 

A state vector is an element of Hilbert space upon which act the 

operators  corresponding to an observable.     To determine what state a 

system is in one must make a measurement,  or set of measurements by 

acting on the  system with the appropriate  operator.     Actual measurement 

of a physical observable carries the state vector of the system into 

an eigenvector belonging to the observed eigenvalue of the observable. 

In actuality a system can be in more than one possible eigenstate, 

represented by an eigenvector; and we will assume that there is a set 

of j possible eigenvectors.     Then by the principle of superposition,  or 

the linear nature of Hilbert space, we have 

0      . 
Or,  in other words,  any vector     <f>   may be  expanded in terms  of the 

eigenvectors      fL      .     Note that    ^ 's    are eigenvectors and (ft i s a 

i'-The State of a Quantized System," Advanced Quantum Mechanics, 
Paul Roman,  1st ed.   (l vol.   Reading, Massachusetts,  Addison-Wesley 
Publishing Company), 1965, p.  H. 



state vector.    Or rewording slightly, an arbitrary physical state can 

be considered as a linear superposition of some suitably chosen states 

(eigenstates).    However, the converse of the above statement, viz., an 

arbitrary superposition of physical  states  is again a possible physical 

state, is not true, unconditionally,  (which deals with the phenomenon 

of selection rules.)     So,  in summary, one may consider a state, 

represented by a state vector,   before a measurement is made, to be some 

superposition,  such as 

After a measurement has established ■«>*,   for example,  as the  eigenvalue 

corresponding to the operator A, the state becomes   0« ,  or the state 

vector is determined to be {RK   ,  or 

3) A4*U*<& 
The   <.(   will be   shown to behave as probability weight factors. 

It should be noted that a complete  description  of the state vector 

requires the simultaneous measurement of the maximal set of commuting 

operators,  i.e., momentum, position,   spin et cetera.     It is the common 

eigenvector of the members of the maximal set into which the state is 

projected by the maximal measurement;  hence this eigenvector is the 

state vector.     Again the state vector can be represented by a 

superposition of the eigenvectors of the operators of the maximal set, 

and we expect an expression such as that of equation 2. 

For the purpose of continuing this  work we now replace the  cj,j 

of equation 2 by  H»\j)    which results  in; 

to %wl<*(n)$t   ' 



If one  is involved with continuous as well as discrete eigenvalues . 

then the  state vector is; 

where    T^W/)    is commonly called a state function, N refers to discrete, 

and uit    refers to continuous variables.     In  summary it is apparent that 

a state  is represented by a state vector,   I*   is a superposition of 

eigenvectors,  or a maximal set, appropriately choosen to result in 

Denoting H*i   by _. , 

where W^3   Cj   ,  the  \fal)'S are state functions, and only discrete 

states are  considered.     In a more  general notation 

6) sh= Zyftwrt^*<*)A, 
where N are the discrete and X the continuous variables for the  ith state. 

Before going further a discussion of the state function may be 

instructive.    A state function is determined by the  inner product 

where the set of     <^>W(J<.J    is orthogonal and   <$,#)     is a member. 

Since the eigenvector set is known the state vector, XL > 

is exhaustively characterized by the set of coefficients, i.e., the 

state functions     tyjb^t}      , which makes the role of the state 

function as a probability weighting factor more evident.     In the 

following development the importance of  our state function to 

observables and ultimately the  density matrix will become apparent. 

Interpretation of the state functions  is facilitated by 

consideration of the following.    We know that at a specific time a 



state  is represented by a state vector of Hilbert space;   the mathematical 

formulation of this   state vector has already been discussed.    However, 

the  concept  of probability associated with this representation has not 

been considered.    If a measurement is made on a state, i.e., acted 

upon by a Hermitian operator, one knows that the measurement can 

produce  only one  of the  set of eigenvalues (coresponding to the 

eigenvector of that specific time  and state)   associated with that 

operator from the maximal set.     The probabilities, the incidents  of 

measurement,  of a specific measurement is  connected to the state 

function, as will be shown. 

In general,  the measurement of a physical observable does not 

lead with certainty to a specific value.    Any one of the possible 

eigenvalues may be obtained, but with different probabilities.     The 

average value,   or expectation value of the result of the measurement of 

A is given axiomatically by the expression 

where    ^i    is the state vector of the system at a particular moment. 

So much for the method of calculation of the expectation value. 

To more clearly understand what is meant by the expectation value the 

following example should be considered. 

If a large number of identical systems exist such that they are 

exactly in the  same state, and one  measures a certain common physical 

quantity,  one will always obtain a definite eigenvalue corresponding to 

one  of the eigenvectors,  but not the same eigenvalue for each state, 

or measurement.     The weighted mean value  of all measured values is 



what one then calls  the expectation value  of the physical  quantity  or 

observable.     The  same procedure can be applied to one  system by time 

averaging the results, always  being sure to return the  system to the 

original state,  since as we have  stated before measurement  is a means 

of preparing a system in a specific state.     If a state ^i    happens to 

be an eigenstate       (pi    of the operator A, then 

9) </V> = (*lj ArfO * ( 4i ,«* Jt) ■ U4 I 

as is  expected.     But the basic  question is, what is the probability of 

obtaining,  in a single measurement of a definite state,  a specific 

eigenvalue of a given physical  observable?     In general a state vector, 

as noted previously,   is represented by 

10) *;=     2  W^,t)$UlJcAx. H 
So for our problem our definite state is 

The expectation value is then given as, 

11) 

4r*  • 

or 

12) 

Since   A^,00=Wn^v,tX)       > where Wy>    is the eigenvalue of   P$) 

corresponding to A, we have 

»)     <A> = Z 2 \-L VKtjo*^*"*) (*.#), <*<MJ)&^. 
Since the eigenvectors are orthogonal, then 

so that, 



r 
15) 

The last expression demonstrates that the expectation value for 

the ith state is the weighted average of the eigenvalues and the 

probability weight factor        HvC^J^M'/WAJ     . 

The quantity j£  tyt'W'JkJ tMW cUxc&Jc' is the 

probability of the  occurrence of $„(*) in the measurement. 

Now that we have described what is meant by a state vector and 

function, and eigenvector and function, and the physical arguments 

behind them, we can proceed to a discussion and development of the density 

matrix. 
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CHAPTER 3 

DEVELOPMENT OF THE DENSITY 

MATRIX 

It has been shown that a state vector can describe a quantized 

system.     The state vector acts as a condensed symbol for the result 

of a maximal measurement.     In other words its collects the maximum 

information that can be obtained by measurement. 

In some  cases, however, a maximal measurement either has  not been 

made or cannot be made.     Yet some predictions  can still be made 

concerning the  system behavior.     Such may be the case of an ensemble, 

or system of mixed states.     In such cases  it is possible,  with some basic 

knowledge of the system, to  construct a probability distribution function. 

For example, the  symbol wcp)   means that the probability of finding a 

particle  with momentum p to p +c}$    is u)Cja)J$    •   «CfJ     is a distribution 

function of the  system with respect to momentum.     By use of such 

distribution functions the  classical Boltzmann equation was developed. 

Hence, although no definite state vector can be assigned to the system, 

it is possible to determine,  in a statistical mechanical sense, the 

outcome  of any observation.     One must form the usual quantum theoretical 

expectation value (for that observable)  for all possible situations and 

2"The Density Matrix", Advanced Quantum Mechanics,   Paul Roman, 
1st ed.   (1 vol.  Reading, Massachusetts, Addison-Wesley Publishing Company), 
1955, P.  90. 
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add them incoherently, or take the ensemble average of the expectation 

values weighted with the known probability factors,  as given by the 

distribution functions. 

So when considering an ensemble,  one is dealing with two 

different average concepts.    First the quantum mechanical average, 

as already discussed in the expectation value calculation,  calculated 

in a pure  state;   and second the ensemble average of these numbers 

with the weighting factors >-o4> , as previously described.     The first 

average  is inherent in the nature of quantized systems, and the  second 

closely resembles the case of statistical mechanics and is introduced 

because of our lack of complete information.    All this information 

is carried by the density matrix. 

Since pure and mixed states have been mentioned, a distinction 

between them should be made.     Systems completely specified by a single 

state vector are said to be in a pure state.     Mixed states, however, 

are a set of possible states represented by a set of state vectors 

and the probability of occurrence of each.     By measurement,  a mixed 

state may be  carried over into a pure state.     In usage of the density 

matrix one treats pure and mixed states on the same footing. 

Mathematically the density matrix can be developed by considering 

the determination of the expectation value again.    Corresponding to the 

ith state the expectation value of a physical observable A is given 

by 

16) <4>;*CM*0      , 
where one assumes the state vector,   for simplicity, is normalized such 

that (ti"    ^l)   -     ' •     Expanding equation 16, we obtain 
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17)       <A>i = (2"jAfe«wfc«)Aj IpMi) ** *) • 
Regrouping equation 17 we now have, 

18) 

Defining the inner product in the above integral as a matrix element 

19) /UK;K)s(k.«0,A]M>9) 
we can rewrite equation 18 as 

which is the  expectation value   of A acting on the ith system.     The 

ensemble average  can be  generated by summing over all possible states 

and considering the weighting factor of each, which will be 

represented by  VF*   for the ith system,  of   Wo    system. 

21) 

or 

22) 

where one now defines 

23) 

►»„ 

as the  element of the density matrix.    And so the ensemble average is 

given by 

To overcome a slight notational problem let us consider matrix 

multiplication of the following example.    If one multiplies matrices 

A and B of a type functionally similar to the density matrix and 
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operator matrix A above, then the matrix element of the product of A 

and B is  given by, 

IN   J J 

where   X     is used as a general coordinate.    Rewriting the penultated 

expression for the ensemble average as 

26) <A>e * 2(1)% \v fwttJLO^OWjiw) , 
and considering only diagonal elements of the product of A and B 

above /■ 

27)     ML^*?WMJWWi)**' , 
then the ensemble average above is the sum of diagonal elements of the 

matrix product, 

28) 

or 

29) 

The diagonal  summation is usually referred to as the trace,  so we have 

3o)     <A\= T, i>usn»)«ttjtn 
The advantage of the density matrix in application to other 

operators is oovious.    The density matrix provides an alternate 

characterization of states of an arbitrary quantized system, whether 

pure or mixed.     Since every representation can be formulated in terms 

of the density matrix,   there is no need for the state vector concept 

to describe a physical system.     In fact,  if one takes equation 30 as 

the definition of the density matrix, by operation of f  on as many 



Ill 

independent operators as there are independent parameters in   ^>   , 

then p   can be computed from that equation.    Once p   is known it may be 

applied to any other operator.     In a sense the density matrix formalism 

is more   general than the state vector formalism,   since one may deal 

with all systems, without regard to the completeness or incompleteness 

of one's knowledge  of the systems. 
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CHAPTER h 

TIME EVOLUTION OF THE DENSITY MATRIX 

From the previous discussion the density matrix element was 

defined in the following manner; 

23) ?^ = Zv^
(V?^t)VAVK/t)       . 

To consider its  change with respect to time,  one takes the first 

derivative, assuming the weight factor is not a function of time. 

Following the work of McCormack3 we have 

31>      &**** l^™%.w**'®>*tiit*ti}. 
where,   from earlier work, ty    is given by equation 7, and 

32) 

where 

We now have by differentiating with respect to time 

33). *P*».C*.aMJU 

From the equation of motion for the state vector one obtains 

3U)    a 

b 

Unpublished work by F. J. McCormack, 1972. 
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To first consider the 

•rr 4**(wjX'"t\ term of the equation of motion of P , one 

develops, from equation 33a, the following; 

or 

35) -x 

By use of the Hermitian   property of  H   equation 35 becomes 

36) 2 \ ^V<$M*>**) «**• 
Similarly, we have -> 

37) fr**>«t&*v^ I j«. WsW &*•)*] 

The equation of motion can now be written as 

Relabeling indices   j= k.   we obtain from equation 38 

39)   M »% i L [| *» w^#;^s,i) w* $ - 
M. :" 

and applying the definition of the density matrix 39 becomes 

Noting the matrix multiplication in the last expression, it is then 



17 

written as 

la) 

We now have an expression for the variation of the density matrix as 

a function of time under action of the Hamiltonian,     \\    . 

It might be well to recall at this point that the intent of 

this work is to derive as general a Boltzmann equation for polyatomic 

gases as possible and to consider the effect of external electric and 

magnetic fields  on the gas.    With this in mind it is  simply noted that 

the general  form of the Hamiltonian,  since we are dealing with neutral 

polyatomic molecules,  can be expressed as^ 

In this expression N denotes the number of particles involved,  H^c') 

is the one-particle Hamiltonian (in this case the kinetic energy plus 

other energy terms that might be due to the existence of fields),  and 

\J/:   iia the  intermolecular potential between molecules denoted by i 
u 

and j. 

Having made the assumption that the polyatomic gas is dilute 

it is well to consider what this means in terms of our density matrix. 

Because of the dilute nature of the gas the polyatomic molecules spend 

most of the time far apart and are in general independent of each other. 

5 The mathematical relationship that expresses this is the  Boltzmann property?, 

^"Quantum-Mechanical Modified Boltzmann Equation for Degenerate 
Internal States," Journal of Chemical Physics, R. F.  Snider, Vol.   32, 
No. U, April, I960, p. 1051. 

*R.  F.  Snider,  Journal of Chemical  Physics, Vol.  32, No. It, April 
I960, p.   1052. 
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viz., 

1*3) 
ial       ' 

which simply says that the  N particle density matrix is a product of 

one particle  density matrices.    Hie N particle density matrix is the 

density matrix which contains the information about the entire system 

of molecules.    Reference has not been made before to this N particle 

matrix, but it is the matrix to be considered in the density matrix. 

If one treats each particle as a "system" of the ensemble then 

the state vectors can be written as done before in the derivations of 

the density matrix,  and its associated equation of motion, as 

where as before the   K denotes discrete indices of that individual 

particle and the X    the continuous variable associated with that particle. 

However, when one considers a system consisting of the entire ensemble one 

would represent it by a state vector of the form; 

W) 
1   I    ™      _  i   -     — f&«2  v.- p'to^^w^Mi^-^iaMWii. 

And being consistent with our definition of the density matrix, 

k6) 
NQ raj 

Now if the particles are all independent we may use a form of separation 

variables so  that; 

where the notation      Ifc lWijt)    refers to the kth particle of the 

ith system.     The density matrix is now written as 
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U8) p^*|,^WW.)^wJib^ . 
Rewriting equation 1*8, we have 

U9) 

50) 

which is simply the Boltzmann property. 

Since it is now possible to express the density matrix as a 

product of singlet density matrices  one needs to consider the  implications 

of this fact in terms  of an ensemble average and the writing  of the 

density matrix itself. 

Previously the density matrix for N particles had been written, 

from equation U8,  in the form 

Here summation over  i refers to sums over possible states of the 

system where the k denotes particle numbers of that state.    However, 

it  is more convenient to attribute to each particle the characteristics 

of a state.    Making the assumption that the states are equally probable 

JO is replaced by   V^o  •    Therefore, we can write 

51) a AS * K yyntMt'bW& a) 
or absorbing   '/K results in, 

y.-\ 

52) 

[Htm/ WM^^) 

One now needs to examine the  operator properties  of the density 

matrix with consideration of the singlet density matrices previously 
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discussed. 

Again taking the expectation value of an operator which we define 

as A,  for the system, we have     <A>^ - C-Sfc* j AStiy 

The    Y\'S   and ■o\\    denote discrete states and the V«     and "x'5     continuous 

variables for each molecule.     Taking the ensemble average and using the 

Boltzmann property, we obtain, 

We now consider one  of two operators  classes, viz., operators A such that 

A= 4(X,*,)        ,   and an operator of the form    VijOA/Xc }1\jXj ) 

Having chosen our operators as above we may now expand the ensemble 

average, noting that ., 

55'    (M»"j*W*^~) --Lj^lh^^-'^ 
and 

56)     (^^••■jiWi^)ii-J * 

We then obtain 

which becomes 

b 
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From before we had     KA\ = Ty»(* ft) , and the same is true here if 

one requires the singlet matrix to be defined as: 

Then upon substituting equation 58 into 57 we  obtain 

or 

Suppose now that we consider our other operator f VAJOUX; jUjkj'J   . 

The ensemble average of this operator can then be constructed as 

6i) a     y^\ = £<J0<\U>« C &>Z.  Z   | [ iJtarfMHft*)* 

which reduces,  although not simply, to 

b "it ZZ fev^K^ 

Which as before can be forced into the form of 

■<CV^e
=    *^PV) if one defines   ^   as 

So that one  now has 
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or 

<i>t*M?">V)   . 
Now what has been accomplished in the last section?    First, by examining 

operators of the form of   A     and V     , we have defined density matrices 

for the  singlet and two particle   cases, and because of the clever 

choice of the independent variables on which the operator is dependent, 

we have dealt with the singlet Hamiltonian of the form   H   and the 

encounter term for 2 particles of the form V    .    Secondly, it is now 

possible  to express both the singlet and doublet density matrix in 

terms of the N particle matrices, as will be shown below. 

Since the N particle matrix is given by 

we can rewrite the singlet density matrix as 

65) 

or 

66) 

Similarly, we have 

67) 

and further 

68) P*.W /,J - TV & 

The utility of the  above identities can be seen when one 
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takes the trace 2 of the N particle equation of motion 

iC.s 68) 

recalling 

if- w>*]    > 

btain 

where, 

Doing this, we obtain 

69) k. 

Dropping some inconvenient notation, we can write 

70) a ^ 

b 

In the last term we encounter the doublet density matrix, which is to 

be expected since, physically, the interaction term requires two 

molecules  for its expression.     However, the equation of  ^" requires 

some knowledge of   ^V so that the equation of motion for ^ is needed. 

By the  same procedures as above the  equation of motion for   ^    is 

found by taking the trace over all but two molecules: 

6R.  F.  Snider, Journal  of Chemical   Physics, Vol.  32, No.  h, 
April I960, p. 1052. 
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where    Hb)r Jlf^t H^t^ftji)     > and the indices 1 and 2 represent 

molecule numbers.     The    W    term above represents3 molecule interactions 

and will hereafter be neglected since they are an extremely rare occurence 

in a dilute gas.     Therefore the equation for -P " reduces to 

All that remains to be accomplished is to obtain the solution for ^ J 

and use that in the expression for    Gr-   . 

We have obtained the equation of motion for the two particle 

density matrix of the form 

•to 72) C'^l^l, 
)* 

which is valid only during collisions between two molecules.    Still, 

as noted in the last section, our primary objective is to solve the 

equation of motion for the singlet density matrix. 

Since the above equation involves scattering of molecules, 

examination of that theory, although the development will be incomplete, 

is necessary. 
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69) 

and 

72) 

In the last section two equations were derived, viz., 

f - % [**> n '1 
Where  H*!'  and Ifl1   represent kinetic energies, K,  of moLecuLes L and 2 

and   K    represents the kinetic energies and the interaction potentials 

energies of the 2 molecules,  i.e., 

73) IP»Mittft*)4VCv»)   > H'V+v    . 
Up to this point the operator   [■(** has been of little consequence; it 

has simply been assumed to be an Hermitian operator.    Now,  however, for 

generality we will assume that it is at least time dependent.    This 

assumption is necessary to include such notions as time varying fields, 

and the following developments will proceed along these lines.    Foregoing 

any long discussion of the Schrodinger or Heisenberg formulations of 

quantum mechanics we will simply assume, based on previous work, that we 

may separate the time dependence of    f(°H)   by use of unitary 

transformations as follows: 

where tfftfoj  is a unitary operator which takes the system from time 
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t.  to   t    .    Equation 7k is a solution of equation 72 if the following 

conditions apply: 

76) $ rtw - -Vi Wfl«ftM«» 
and 

77) ^% fturuj^rw  , 
which may be further reduced to 

and 

79) s^mu . a* 

Since equation 79 is the adjoint of 78, one need only solve one of 

these equations.    Equation 78 is formally solved by 

80) ,„,,,,     T      »>L   \     u hvMlfr ^ \ J.I< WM'T-^lwiMW 
where X is the unitary operator.    This is a Volterra type integral 

equation.7   A Neumann-Liouvilie series expansion of the Volterra 

equation will always be convergent.    Since it is convergent it is not 

unreasonable to formulate a series solution by successive approximations 

as follows. 

81) Let Urt>0|fe) *    '       ' 

7Advanced Quantum Mechanics, p. 311* 
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Then the first approximation is given by; 

82) 

and the second is given by; l is given by;  , . ,y 

Continuing in the above manner one generates a series solution of the 

form; 

8b) 

where 

85) 
'^•' 

A considerable problem is uncovered when one realizes that     n   \A) 

does not necessarily commute with    fr^tf)   > a™1 this problem is due 

to the differences in times {jViV,   •••  et cetera«    In fact bv 

arrangement of the intergral,  the following ordering is required: 

86) £| tnit**'£  ' "   *'  tt. 

The operators    H'%) H"ft*Jetc.  are time ordered from the 

right in equation 85.    Solution of the integral would be greatly 

facilitated if the upper limits were all equal.    This is achieved by 

the invention of Dyson8.    By use of the Dyson method a chronological 

time ordering operator is introduced, represented here by P, whose 

properties are summarized in the following relations 

87) fHttOW'J      *'><-" 

8Advanced Quantum Mechanics, pp. 311-314 
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In the case of equation 85, we have 

88) ft HHV) wo- wr})« »Wfj- p*) 
where 88) a i'f i*f ...   <*     , 

and the equality signs of expression 88) a are the result of all 

being equal at the same time.    It should be noted that for any ordering 

of the  H^the operation of P on the set has the same results, that 

is 

Since there are  V\\ ways of ordering the Hamiltonian operators 

corresponding to different times then the following relationship 

holds: 

Using the ordering operator, P, equation 85 may no. be re.ritten as 

iu* i\ W SI- 0^m' m] ***"• 
P can be evaluated if the commutator relations between the U'J 

are known.    That is if      ty?) represents the commutator of   HtfJ 

and \pQ*) i.e., 

93) then 

where 

P [*■« H V)) • HHrtlPW -J*VJ *5tfj 
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For the case of 91 we have 

*)        t(\Ptr) If*4;.»HTHtth r(r)HW)-A(e-f*")i)Wi. 
However for our purposes,  to find a general solution of 

equation 72, we need only, the result 

95) 

or 

96) 

U(i,to) * (UM* U ,(+*) * U, (to) t • • • 

In summary we have obtained a solution of equation 72 by use of 

equation 7I4,  and the required form of the unitary operator is given by 

equation 96.    If the Hamiltonian were time independent, the unitary 

operators would take the form; 

97) uw*fcWW)   . 
However,  since we are considering fields, in general,  time variation 

must be included.    In order to properly treat the above, an expression 

for     ff    must be developed. 

As noted previously we now need an expression for the two 

particle Hamiltonian.    To do so, we must first write the Hamiltonian 

for the single polyatomic molecule, then we must consider electron 

degrees of freedom and finally intermolecular forces and general external 

conservative forces.    Also while we are developing the Hamiltonian 

it will be appropriate to consider the resulting eigenfuction and 

density matrix. 
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For this problem the Hamiltonian will be written as (for N 

molecules)5 

(Greek letters indicate molecule number throughout) where     \\u 

denotes  single molecule energy and    Va*.     denotes molecular collisions. 

The single molecule Hamiltonian can be further separated into the following 

form: <L   11 

Term one,  of this very general expression, is due to all possible 

external conservative forces acting on the molecule u.   and is in general 

given by 

100) <0    r   fpM L(?Ujf^"l    5 

where the center of mass coordinate for the molecule is given by 

ioi) ^ r  '/fa ^ [tn.lu-v «JL*» MAu]' where *s 8?* ' 

In this expression, \fa   ..-j^      locate individual atoms in the molecule. 

Momentum is given by the time derivative of equation 101 or 

1021      &X+&»+••• V   . 
Term two and three of equation 99 are translation and rotation- 

vibrational energy terms, respectively, and the momentum operators 

are given by v 

103) **&'**%*   W«$»    * 

loU) 
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105) In equation 103 and 10l< 

is the interatomic separation of atoms in the molecule and      is the 

reduced mass of the atoms of the molecule.    The momentum for a rotation 

and vibration state of two atoms is given by, 

106) 
fy*tt r   Yvu+mi \_Y*U ft)*- *\j fy * J 

Term four of equation 99 is the interaction potential of the individual 

atoms in the molecule.    Term five encompasses the effects of the electric 

and   magnetic fields (time dependence of these fields is not ruled out). 

Before dealing with the fifth term it is instructive to discuss the 

Hamiltonian without the presence of the fields. 

Without term five the single molecule Hamiltonian (molecule u.) 

is, ..   - 

107)      ni'»<M^i ■♦% *V(*«A*-0« . 
Further reducing by eliminating the external conservative faces, which 

may be carried with theXuin some cases, we have 

Substituting equations 103 and I0I4 into 108. one obtains 

The eigenfunction ttllfeXW Hamiltonian is derived from the 

following equations: 

\Lw<r« w 109) 

iio)        [4vito+iffc*^]*!^=t^(ij^u). 
The eigenfunction can be developed by use of the separation of variables 
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method, resulting in 

In the absence of external forces acting on the molecules, we have 

112) .     -— K .   . .    iV(*'ft4 4<t4t) •?***'" 
and 

where Y-.   .    (ti,. ff,..\ is a spherical harmonic for 

an atomic pair  (ij) in the molecule and      Z-faiWe       is a radical 

o 
function that is the  solution of the following expression: 

Note that in the above discussion it is assumed that the atomic coupling 

term is basically of the form,  or can be made to fit an expansion of 

the form 

If equation 115 is valid, and subsequently IU4, the term HVfr^MJt/rf 

equation 111 can be written as 

116) ^TCVV^ ' to^O^M*!--- 
In the above, and in what will follow, the molecular collision term te 

not involved since we "rotate" to the collision tijne from tijnes before 

the collision, precisely when we solve equation 111. 

9"Iransport Phenomena in a Fluid Composed of Dzatonac *£cule|. 
fournal of Chemical Physics, John S. Dahler, Vol. 30, No. 6,  June,  1959, 

P.  U62.        
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Term five of equation 99 has been omitted, but if arbitrary 

electric and magnetic fields are to be considered it must be included. 

To do so one must consider electron degrees of freedom.    Nuclear spin 

interactions will be neglected in this consideration.    The Hamiltonian 

ll        , for each atom is written as follows. 

117) 

where summation is made over the numbers of electrons per atom. In 

equation 117, for an electron with position vector y^ AtiVjt) is 

the electromagnetic field vector potential; Ifoyt)     the electric field; 

V(Vx}      coulombic potential; L(v\t) total angular momentum; 

and Sc is spin.    Possible time dependence of the fields is included. 

Since   WK can be written as the sum of ith electron Hamiltonians, 

all functionally independent of each other, each of these operators 

commute and it Is possible to write the eigenfunction for the total 

atom neglecting electron interactions, as 

U8) <**(*,*>» ft tUM). 
Equation 99 can be rewritten in the form 

and since _ —i 

one may write the eigenfunction for a molecule as follows: 

121) 
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where   ($tfj«] means fofujniCwi) ***    [**}       means 

/y.    t\ li|V\ S J      *    ^e sinS^-e molecule density matrix is given by 

122) 

and 

123) 

matrix. 

N 

■P "'  —    I)      AA J ^Nj is the N molecule density 

Noting from the form of equations 122 and 123 it is possible to 

write the density matrix for a molecule as the product of density 

matrices for the center of mass molecules, atoms of the molecules, and 

electrons of the atoms for each molecule.    With this in mind, equation 

112 can be written as 

a) _   fj>, ?(jM)f({M^)f(lW?Fj*), 
where   ^M.   locates center of mass of the molecules.      ^ TJJ j^ 

locates pairs of A interacting atoms of molecule M} g^JJ J^       *re 

electron coordinates for <0e   electrons for each A  atom pairs of the 

molecule W .    In general Greek letters,  label molecules; capital 

English label atoms;   small English letters label electrons. 

Prom our development of the Hamiltonian for one molecule it 

is apparent that if explicit dependence of tUne is to be^found it will 

be in the form of tke varying fields,     !($*»*) «*    fcfcjt)    . 

It should be noted that we have assumed that, consistent with the 

notation applied in derivation of the Hamiltonian, the intermolecular 

interaction term is dependend only on  {*« jftjfc   and possibly 

explicity on time, 1 .    The two particle Hamiltonian «W   can now be 



35 

•written as 

125) «» «£• aft** v**o 
«f       -*      _« 

where ^(«A,V\ is intermolecular potential dependent on (j^vJj^,(bill 

and H2; and Hy'   are given by the expression that follows, differing 

only in subscript lettering 

126) «•*« 4U (C,t) + ^U"*  ^M**fa>%)*+ 

Rewriting the above expression so that time dependent terms are 

separated one obtains 

which for further convenience will be written as 

Prom equations 95 and 96 of the previous section the operator IX  can 

be written as 

where   P    is the Dyson chronological time ordering operator.    It should 

be noted that the exponential can not be separated since the operators 

do not necessarily commute with each other.    It will be useful to show 

that  UCfcW)  m the form of equation 129 is a unitary operator (see 

Append* A.)    Because the operator is in fact unitary we may now use this 
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fact to obtain a more favorable representation in which to consider this 

problem.    The physical significance of the operator is that it transforms 

the density matrix from time T0 to t       under the action of the Hamiltonian. 

Suppose the Hamiltonian had no explicit time dependences and 

could instead be written as 

130) 

131) 

(I f^.^o}     would then be given by 

With the aid of yet another unitary operation the density matrix 

could be transformed to an "interaction representation" where the 

density matrix changes are due only to the collision term.    This trans- 

formation is attained as follows: 

L32) ***<«• •U*%ftl   faW/k 

That this accomplishes the purpose stated above is shown by use of the 

2 particle equation of motion in the derivative which follows. 

Taking the time derivative of equation 132 we have, 

133) 

or 

so that 

13M 

-;**/*> 
J ) 

_;Kt/tv 
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Since the unitary operator        g '*•    represents, in this case, only 

kinetic energy terms,  they have no effect on the collision operator 

V- therefore the above equation may be rewritten as 

which is the equation of motion of the two particle Hamiltonian in 

the interaction representation. 

This same type of operator used previously may now be used in 

this representation, that is 

L36) f»wta«7U*)f»ek)yfc*J . 
In exactly the same manner as shown above, the time dependent case can 

be considered by use of the following unitary operators) 

137) 

where 

138) 

139) 

«?»*).kxVtfWw 
*-*• 

TC-^©}       is evaluated as follows, 

while 

Uio) 
I- 

Combining equations 139 and UiO, we obtain 

so that ,_ . 
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which can be rewritten as 

where a new operator has been derived, namely, 

Physical meaning maybe ascribed to the operator formulated in equation 

]||)| if we consider again the time independent case.    In that case 

and 

U|6) Ikfla********^. fti/M*W) 

Taking the inverse of U46, we have 

Then 

or 
UCW-> U(°,vth £~ L UC*»M)tfWi 

The physical significance of the times "t   and t» is that at time t   the 

nolecules are 1* the middle of a collision.    At tine t„ the molecules 

are before the collision, where the Boltzmann property is valid namely, 

The effect of the operator   U****)    ** to transform a system 

in the interaction representation at tfcne   4-t       before a collision to 

tinet-0 m the middle of the collision.    It should be noted that the 

operator   Uty<b-t)   has no effect on the system until a collision has 
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occurred, and is for that reason insensitive to the length of times 

before the collision,  even an infinitly long period.    In fact it has 

been shown by Jauoh10 that for the case of time independence one can 

write 

wo       xJ(o,.«)• U~ e,HtA
e"'krA= #>, 

where    $P       is a I^ller wave operator to be discussed later. 

Oar Boltzmann equation is not, however, to be written in the 

interaction representation and we must return to the appropriate 

representation by yet another set of operators, all the while using the 

operator    t/^°,to-t)      since it allows us to use the Boltzmann property 

at the very time it is not valid, i.e. during collision. 

Using our newly derived operator, we have 

Recalling the following relationship 

152) ^;c-f).- jc*jt.)fv<syj^te), 

and transforming from the interaction representation we obtain, 

153) 0 ><*) rjC^ I4S)fWXV). P*<*) 
Substituting l£2 into 153 produces the result 

and using another interaction transformation, viz., 

155) f^fclV**^, 
I*.   F.   Snider,   ^urnaj   gg nhen,ical Physics,  Vol.  32,   No.  h, April 

I960, p.  10524 
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one finally obtains 

156) f {*) .t^ Ki.^T^^OfUlKi^J^^O, 

which expanded results in 

157) ^*{\).- £~~ T ^l)T^A)^o/,^TAtjr^O/ 

This very long expression may be simplified by use of the following 

expression: 

U^. Tt4>^)I*Ctt) = l » which holds by v±rtue o£ the 

definition of unitary operators and 

Then the expression becomes 

159) 

Once again if the time independence case is considered one obtains 

In the preceeding equation 159 1She I (   i,<U       ) operators serve to 

make the following modifications 

The physical meaning of such a transformation is that the single particle 

matrices are transformed by the Hamiltonian, excluding collision terms, 

for tijne f. to t   and assume coordinates, momenta, etc. due to the 

action of the Hamiltonian after   «-&        time has passed.    Substitution 
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of equation 161 into 166 now leaves us only, 

As noted before     UK^jh'X)      is insensitive to large negative values of 

{9-t      ,  in fact as large as   -OO        .    We will now use this fact 

to evaluate J/(0)-V)   and establish relationships with the transition 

matrix associated with scattering phenomena. 

It should    be noted before dealing with the scattering problem 

that that procedure is warranted by the following.    The equation of motion 

for the single particle matrix is now written as 

where in the low density limit, when the Boltzmann equation is valid, 

T Ut^jO becomes, or is rather not measurably different from.0   (Ij*), 

and for that reason the latter will hereafter be used.    We invoke the 

scattering theory in order to eliminate the operator   MtyfcJf) and 

along with it   VQ)l')t)     in favor of more physically pertinent quantities. 

In the formal scattering theory incoming and outgoing (scattered) 

states are related to each other in the following manner: 

I6I4)       (^**(flsSi",tt) , where s is the scattering 

operator,  or scattering "matrix."    In the time-dependent approach,  it is 

convenient, especially in our case, to treat the times   t   and t     as, 

respectively, very long after the collision and very long before the 

collision;  and in this manner    f-*«   and t'-**» , so that one is left 

with, 

165)       W~) s S WmC~») 
Physical meaning of S is derived by considering the following 
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.. ,„ IN 
example.    Suppose the incoming state is a specific state   f;    which 

is transformed into a superposition of the members belonging to the 

specifying maximal set; that is 

166) <* rT=? w * 
3 M  ** 

The transition "amplitude" from state i to some state g of the maximal 

set is given by 

w)      c,*0rJ,V")«CV*r) -<jWi>-%i- 
This, however, is not related, by   |S}i\ , to the transition probability 

between state g and i.    Since two eigenvectors of  H       belonging to 

different energy eigenvalues are orthogonal, any scattering matrix is 

always diagonal with respect to the energy.      For that reason 

168) S,,.$*4 fcMtfV 
where To j,  is the transition matrix between state g and i, and where 

there is no singularity in Ty whenE;*^ .    |TOA\     is related to 

the transition probability between states g and i. «|£p6*J  serves as 

an energy conservation factor,  since we are dealing with infinitely 

far removed initial and final states. 

Since we have been working in the interaction representation, we 

mist use that representation for a solution of the scattering matrix. 

In this representation recall that 

11-Th. Scattering Matrix", Quantum JJ^fcfpJg^B. 
1st edition (1 vol.  New York, John Wiley and Sons, Inc.), 1961, p. HK>. 
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A solution,  as noted before, was given by 

170) 

where 

171) 

In view of our previous discussion,  it follows that 

The difficulties encountered in going through the integration of <*♦••, 

^-♦-oo   can be eliminated by use of the filler wave operators.  These 

operators, 5t    and ft    ,  are defined such that 

173) a T(<V*0   =  ft*3 

Noting that since J is unitary 

it follows that 

175) S-rtf^ff1*      . 

It should be pointed out that, by such an arrangement, we have, by use 

of the Jailer operators,  eliminated time from consideration.    That is 

What is now needed is to show that with the required limiting 

operation fl?,-*) does exist and with it tf» . To do so one must use 

integrals of the following form, which are defined to be; 

*«*-*■ A* 
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and 

L77) 

Integrating both expressions by parts and then taking the indicated 

limits one obtains, 

178) a 
t*-" 

By a similar procedure we also find 

Applying this procedure to the case of XC+>to) whent.-*-* we have, 

Integrating, we obtain 

Because of the exponential convergence factor we may interchange the 

order of integration12 and obtain -j 

12Advanced Quantum Mechanics, p. 317 
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Since 

then taking 

so that 

183) 

is a proper integral, 

rev*) ^ x - %)l^ypjL^m'M. 
Noting that in this expression 

VI ■■►■♦o is similar to 

>arison of the two previous expressions we find that 

so that substituting into equation 183, one has, 

185) 

This result simply states that provided JH>«) exists, then J 

operators with finite arguments have the same form and properties of 

those with one infinite argument. 

So in summary we now write the general expression for the 

Itfller operator with our time dependent functions as 

186) jp, w j m (yg J °JisiV) J&J-o] ctt* 

and similarly 

187) ^r)s x + (fl) Jo*£v «''J Jft* t*j] ^ 
from equations li*3 and iWl,  coupled with the fact that  ff«-3lv«), 

we have 

188) S\*>„ j(v*)*fe awo-t>#<v«o, 
<..-»-•• 
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Now the Boltzmann equation, thanks to the limit insensitivity property 

of M(°&'t)>  can be written asj 

Up to this point our work has been very general and because 

of that we have kept time dependence in the general Hamiltonian.    In 

the case of the above Boltzmann equation it is carried in the single 

particle density matrices, as expected, and in the collision potential 

term    Vft*jt)   .    It is not explicitly found ±n\v J which is time 

independent,   (i.e.{-»o by choice, which is of no real consequence since 

we are dealing with scattering theory concepts.)    If we could eliminate 

explicit time dependence, the Boltzmann equation could then be written 

in a more simplified form in the sense that the collisional terms would 

not be present.    The elimination could be accomplished by separation of 

Wa) or by some Fourier decomposition.    In that case the time effects 

would appear as phase factors in the wave operators.    For continuation 

of this work we will simply assume that it has been eliminated from 

consideration.    With this assumption we now proceed to evaluate the 

Miller wave operator for the time independent case. 

Recall from equations 11*3, 3-U7 and 11*8 that 

190) 

and from 

To find #•>, one first needs T(V») as seen from equation 186.    To 

evaluate!^), we follow the same procedure as that used in equations 

176 through 179,  resulting in 
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193)      $pr) •Ow,-ikx)Jiw = -Avj(^'j 
where HVK--V >  as "B*8* De 'the case from equation 191.    Equation 

192 then becomes 

since 0^- T(0i-*°) from l9ii b we have 

Since, from equation 190,  it is obvious that J(«,o)rT   equation 

195) a becomes f f Q N 

*) >  ^>. %-J1'* S-' •   e   Vc* 1 
Since HV andX do not necessarily commute, even in the time independent 

case, we must resort to two other relationships derived from the formal 

theory of scattering,13'  llj 

196) %J*«(t*li 

and 

I97) vtvOft* »Tfc*) 
Equation 1<?6 simply means that for the time independent case the effect 

on the operator is to transform an eigenvector ofX(no collisional 

effects;  i.e. before collision) to a state vectortfduring the collision. 

^Advanced Quantum Mechanics, p. 317 

^Advanced Quantum Mechanics, p.  320 
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Equation 197 relates the transition matrix for transitions between 

states of particle 1 and 2. The commutation problem of H*andlC is 

eliminated by use of 

198) K^A-ti^i 

By use of 196 and 198 we now have 

199) a 

Adding exponents, we obtain 

b 

^-&ull-'Al>*t«n-*^J*. 

We can define still another operator by 

200) 

where 

By use of equations 196 and 200,  200 maybe written as 

201) 

or 

202) 

Equation 202, with the results of 197, can now be written as 

203) Qjfc  -i+Q^OrfTOjO       , 
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By use of equation 203 the wave operator may be eliminated from the 

Boltzmann equation: 

2d,)     tgm=% [tf%rt,«w]+Tr [n y^o^ifVM)- 

or 

205) ^- 4{[elH'J+ J&»«*MY^^MhTTwWfe^tfl} 
Then 205 becomes: 

206) 

We have already shown how to evaluate Gr\l)l>) for this case. 

What is now needed is a formal evaluation of the TtM,)matrix. 

We recall that 

With the help of equation 171 we now have 

In our theory developed so far the scattering matrix operator S 

produced from the initial state vector%H, the final state vector %0*$ 

where <fcffi+tf*-.It should be noted that the field effects must be 

included already at*-, and thus the only additional effects to be 

added by the S operator are the collisional effects.    The probability 

that a state represented by^   included, but not noted hereafter) 

will eventually become stated is given by 

20" \Hto.U<K,M0l*,W* 



We define our transition matrix operator in the following manner, 

210) T=S-I 

From equation 208,  209 and 210 we have 

211) 

212) 

and 

213) 

21i|) 

For the case of equation 206, b and a become references to molecules 

1 and 2 respectively. 

The intent of the preceeding development was the establishment 

of a formal device to evaluate the matrix elements for the transition 

matrix.    No evaluation will be made for this problem or any special 

case.    The reason for this is that, in our case, the problem is 

greatly complicated by the presence of the electric and magnetic fields; 

and for this reason the energy levels are split.    Calculation of transition 

probability between various tUnes is possible only with exact expressions 

for the state vector, which necessarily involve tUne in the most general 

case. 

A summary for the scattering theory section is now in order.    We 

began with our basic equation of motion for the one particle density 

matrix.    This was obtained by use of a unitary transformation, which 

produced a Volterra integral equation which was solved by employment 
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of Dyson time odering operators.    It then became necessary to develop 

a complete Hamiltonian to describe the polyatomic molecule in the 

presence of fields;  this was done along with the eigenfunctions and 

density matrix.    We found that collisional effects could be eliminated 

by completing the solution of the equation of motion for the two 

particle matrix in an interaction representation.    Such a procedure 

produced a set of unitary operators transforming the system from one 

representation to another, the entire process being complicated by 

the presence of explicit time dependence of the Hamiltonian.    However, 

out of this operator chaos rose an operator (ultimately connected to 

l^ller wave operators) which was insensitive to time dependence and 

allowed transformations from times before collisions to times during 

collisions.    This had the considerable advantage of providing justifi- 

cation for use of the Boltzmann property during the collision and made 

the final form of the equation of motion valid for all times. 

Formal scattering theory was then used to relate the operators 

to a transition matrix formalism.    However this was done for the special 

case when explicit time dependence is not included, and the result is 

equation 206.    The most general equation of motion is equation 189, 

where no special assumptions are made concerning time dependence. 

line dependence in 189 is abandoned so that we may more easily develop 

a quantum Boltzmann equation without special treatment of time dependent 

scattering. 
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CHAPTER 6 

DISTRIBUTION JUNCTIONS 

Equation 206 resembles the Boltzmann equation.    However, in the 

classical problem the equation is given in terms of distribution 

functions and for the quantum mechanical problem in terms of the Wigner 

distribution function.    From our work in developing the total Hamiltonian, 

(and from equation 121, the total eigenfunction for a molecule,) it is 

apparent that the distribution function must have many degrees of freedom. 

A Wigner distribution function can be generated in the following manner 

by use of the following equation developed by Wigner,  L5»       nw 

whereat   are vector integrating factors, integrated from-«o*«f|and 

Q'-I+A'^U.) , where fl',^/W.|) is the number of pairs of atoms which may interact. 

In equation 215 the notation has been kept consistent with the notation 

developed earlier.    It also should be noted thatM, refers to molecule 

number,A,the number of atoms and^the number of electrons per atom.    We 

have also made use of the separation of the density matrix into in- 

dependent parts developed earlier. 

tf»On the Quantum Correction For Themodynamic Equilibrium," 
Physical Review. E. Wigner,  Vol. 1*0, June 1, 193^, p.  «»• 

16j.  S.   Dahler,  Journal of Chemical Physics,  Vol.  30, No.  6, 

June, 1959, p.  11*63. 
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There is an unfortunate difficulty inherent in this equation, 

which consists of the inability to associate each integrating factor 

with a physical quantity.    This is especially true in the case of the 

internal momenta and coordinates, which are discrete observables in 

general.    Evaluation of 215 is a thesis problem in itself; and to 

demonstrate what we ask the distribution function to do for us can 

be illustrated by considering point monatomic molecules,  but in- 

cluding the necessary nondegenerate internal states.    In that case 

our general density matrix will be written as 

216) 

f'"0)- f 
) 

where Ki.fW  denotes molecular rotation and vibration states, *»••** S 

denotes electron states with their customary meanings, and Ri denotes 

the position of the point molecule number 1.    The Wigner distribution 

for a single molecule is then taken to be, from 215, 

217) 

Having written equation 217, all that remains to make the dis- 

tribution function usable is to evaluate the integration variable V • 

This is done by assuming,  as SniderL7has done, a "periodic" lattice 

type structure of the gas.    Since the gas is dilute it will be assumed 

that the distribution function varies very slowly inside the cell 

17R.   F.   Snider,  Journal of Chemical Physics,  Vol.  32,  No.  Uf 

April,  I960, pp.  1055-1057. 
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which will be defined to be    a volume of d\ where <X. is so chosen that 

4-  remains nearly constant.    These cells will be located in space by 

the position vector tjx« fa.Where the vectors is given by three 

coordinate values A«4Ufa , and were eaclrfl^.  value is an integer.    Any 

point in the gas is further located by |Ufa$( where Ti locates molecules 

in the cell relative to the center of the cell.    Because we are dealing 

with averages,\ now depends only on^* Equation 217 may now be written as 

Since we are dealing with neutral molecules the presence of the 

fields should not alter basic conservation of momentum; and for this 

reason when dealing with collision problems, it is convenient to use the 

momentum representation.    This may be arranged by taking the inverse 

Ppurier transformation of equation 218 and using a delta function in 

momentum space.    Doing this, we obtain 

where f tK (MO- \& 

to^nCy**1- 

Since  Rjeyv^t^o   it follows that 

220)        J «J*    5 

P    '     ft 
The summation over ?• is required since "?* is periodic. 

To evaluate 220, we treat momentum space in exactly the same 

manner as position space by use of the following expression 
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?= Pft+L P J       where ^=V (*%) and £|Jx <j VLfcand 3 are vectors 

whose components are positive and negative integers similar to>? except 

thatfc ranges from-oO toOa while* is restricted as follows:\q;|      ^    A a 

The above assumptions allow us to note the following relations 

so that 

With the above simplification we have 

221) 

Noting in equation 221 that 

since ^»C^1   »^»F*      )      ^ can write 221 as 

222) (u*   \K'LV    \ jf ^ e
{/i(lP>tP'3) T. 

v   £ \ r   ) *     UiiVIPhMjt). 
Equation 222 indicates that 0 is nearly diagonal in$  since the right 

hand side is approximately. It should be noted that in order to use 

equation 222 in our Boltzmann equation we need yet another Fourier typo 

transformation  (relating the density matrix of 222 to be distribution 

function) of the form 

2231 *M^)y*Mv.al??&7* • 
whereSi has the units of momentum and, in spite of the cell model of 

momentum space, we assume momentum to be a continuous variable.    This 

assumption requires only that   L"*°° 
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Using the results of 222 and equation 223 we can obtain the necessary 

modification for use in the Boltzmann equation. 

At the beginning of the section we saw that in order to make 

our Boltzmann equation 206 usable, or rather make it more like the 

Boltzmann equation, we need distribution functions of the form 215. 

These functions are very complex and contain the problem of how to 

treat internal states.    We "got around" this problem by assuming 

structureless single molecules for the purpose of illustration, and 

assumed that the density matrix carried the information with it.    In 

what follows we will complete the illustrative example of our, perhaps 

over simplified,  case and then discuss a possible more satisfactory 

method of treating the problem.    From equation 206,  and by use of the 

results of 2l2j, we have l    i  , / s* 

221,,   £«&)• ttfif+Mfl* ^'^"M^^^XUITIP;^/ 

A; A; 

It should be noted here that application of 2U4 involves the usage of 

a two particle state vector, or the system (2 particles) before the 

interaction and afterwards.    The T,6+T refer to operators as previously 

defined.    The reader should also recall that this expression is based 



57 

upon the same assumptions that allowed one to developG* that of explicit 

time independence of the Hamiltonian.£>»/»» refer to sets of quantum 

numbers before and Ai'&» refer to after the interaction quantum numbers. 

The conditions apply in the case of p,f4 and^ using the results of 222 

with 223  (where(ft*»?U))  is treated asf) in 22lj and the fact thatp= p0; 

we obtain 

<w.|Tli>.'p;/"\M.|TkR7e * 

Equation 225 represents the quantum Boltsmann equation based on a Wigner 

distribution function.    It is an equation for the change in the dis- 

tribution function for particle l.Jand % refer to changes in the 

distribution for molecule 1 due to momentum of 1 and net forces   F. . 

Everything on the right hand side refers to the effects of collisions 

between our molecule 1 and molecule 2.  The distribution functions are 
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derived from equation results of 222 and 223.    Terms of the form 

represent the distribution changes due to those molecules scattered 

into the range ft V?, , while terms of the form 

represent those scattered out of the range    T ,J)' . 
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SUMMUCf 

We have derived a quantum mechanical Boltzmann transport equation. 

This was done in as general a method as possible beginning with a density 

matrix describing the ensemble and using the equation of motion for that 

matrix.    In order to maintain the Boltzmann property, and its obvious 

advantage of being able to describe the N particle density matrix as a 

set of single density matrix products, we developed Miller wave operator 

and unitary operators so that the effects of the collisional interactions 

were   present while the Boltzmann property remained valid.    This produced 

equation    189 which is the most general possible for this problem.    The 

field effects are present in the Hamiltonian, and consequently in the 

iVller and unitary operators as well as the density matrix by way of the 

state function for the polyatomic molecule, equation 111. 

In order to make equation 189 recognizable as the Boltzmann 

equation we made a number of simplifying assumptions, among them the 

elimination of explicit time dependence from the Hamiltonian.    As a 

part of this procedure formal scattering theory was employed and we 

finally obtained equation 206.    It was then necessary to use Wigner 

type distribution functions to relate the density matrix and statistical 

mechanical distribution functions.    However, the Wigner functions which 

m employed dealt only with point molecules and the internal state in- 

formation was carried in the density matrix itself. 

In work on this thesis explicit time dependence of the Hamiltonian 

has been a problem,  and we have seen that relating the density matrices 
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and distributions for polyatomic molecules in general,  can not easily 

be handled by using Wigner distribution functions.    Another approach 

to this problem might be the use of creation and annihilation operators 

to describe the density matrix, at least for the internal states.    These 

operators would result in counting operators which might be used to 

actually count the number of molecules per state at a position in space 

and at a specific time. 
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APPENDIX 

To demonstrate that the operator UHjt0) of equation 129 is 

unitary one should first note that by its nature 

i) #¥iKCt«il 

is a unitary operator.    That operators of the form 

are also unitary is not so easily shown, but for generality it will 

be attempted. 

Because of the definition of a unitary operator we have, 

3) 

e^S&^f^e^fr***! 

where * is used to denote the adjoint. Using equation 2 in 3 one 

obtains, 

k) 

Therefore,  if  f*fs \    then   Yi.^%) i-s unitary. 

Suppose we choose two unitary operators Al*0 and 61+0   , 

By definition of the chronological time operator 

Suppose we now form the product and assume \<>\.   We then obtain 
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Rewriting equation 6 we have by use of adjoint property, 

7) A*W(?(t)P*PiKl)Aa)-- 
If the results of equations 6 and 7 are to be consistent, then 

r f^ I which demonstrates the rCf/to) is unitary. 


