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Visually evoked cortical potentials (VERs) to checker- 

board stimulation were studied as a function of locus of retinal 

stimulation, check size, and relative distribution of response 

over the cortex.  Pattern stimuli of checks subtending 7.5, 15, 

30, and 60' of arc were presented to the upper, central, lower, 

and lower-peripheral visual field.  Evoked responses were 

recorded simultaneously from scalp electrodes located approxi- 

mately 5 cm to the right or left of a point 2.5 cm above the 

inion, and approximately 2.5, 7.5, and 12.5 cm above the inion. 

Results obtained from the four electrode locations illustrated 

the differential effect of visual field stimulation on VER wave- 

form in relation to the topography of the visual cortex.  When 

activity was recorded from electrodes near the inion, VERs 

decreased as retinal stimulation was moved from the central to 

the lower-peripheral visual field.  Such results indicate only 

that neural activity in response to peripheral stimulation 

decreased in the cortical area concerned with macular activity 

and not that, in general, VERs are less to peripheral than 

central visual stimulation.  Responses at electrodes placed 

anteriorly over the peripheral projection area increased in 

amplitude as stimulation was changed from the central to the 

peripheral visual field. 

In general, maximal responses were obtained from lower 

field stimulation across all check sizes.  Checks subtending 15» 



and 30* of arc exerted a more differential influence on VER wave- 

form with the lower and central visual fields being more differ- 

entially effected by manipulations in check size.  As stimulation 

moved toward the lower peripheral visual field, larger checks 

evoked the greatest response. 



TOPOGRAPHICAL DISTRIBUTION OF VISUALLY 

EVOKED CORTICAL POTENTIALS IN 

RELATION TO LOCUS OF RETINAL 

STIMULATION AND CHECK SIZE 

by 

Pamlyn D. Atkins 

A Thesis Submitted to 
the Faculty of the Graduate School at 

The University of North Carolina at Greensboro 
in Partial Fulfillment 

of the Requirements for the Degree 
Master of Arts 

Greensboro 
June, 1971 

Thesis Adviser 



APPROVAL PAGE 

This thesis has been approved by the following committee 

of the Faculty of the Graduate School at The University of 

North Carolina at Greensboro. 

Thesis Adviser 

Committee Membe 

^;r^ 

>Uy > ?,   /1 7/ 
Date of Approval 



ACKNOWLEDGEMENTS 

The author is indebted to Dr. Robert G. Eason for his 

guidance and support through all phases of this research. 

She would also like to express her appreciation to Drs. Russell 

M. Harter and Robin W. Pratt for their helpful and informative 

assistance.  The interest and encouragement of Drs. Eason, Harter, 

and Pratt greatly contributed to the learning experience involved 

in the present study. 

A special word of thanks is directed to the author's 

father, Kenneth Atkins, and friend, Paul Nickel, for their unfail- 

ing support through various phases of this study. 

The time and cooperation devoted by subjects Fran Deaton, 

Steve Harris, and Sharon Shan is acknowledged with gratitude. 

The research was supported in part by NSF Grant # GB--7324. 

iii 



TABLE OF CONTENTS 

Page 

LIST OF TABLES  vi 

LIST OF FIGURES  vii 

Introduction  1 

Topographical Distribution of VER   1 

Visual Field Stimulation  9 

Check Size and VER  12 

Retinal Eccentricity  14 

Method  19 

Subjects  19 

Experimental Design   19 

Methods for Data Collection and Stimulation   23 

Results  25 

Main Effects  25 

First-Order Interactions  30 

Higher-Order Interactions   40 

Discussion  43 

VERs in Relation to Topography of the Visual Cortex ... 43 

Relative Contribution of Central and Peripheral 
Retinal Areas to VER  45 

Interaction between Check Size and Locus of Retinal 
Stimulation:  Effect on VER  47 

VER in Relation to Check Size, Locus of Retinal 
Stimulation, and Electrode Location   50 

iv 

384991 



Summary Statement, 

References   

Appendix   

Page 

51 

53 

57 



LIST OF TABLES 

Table Page 

Analysis of Variance for VER Waveform: 
S PA     58 

Analysis of Variance for VER Waveform: 
S FD     59 

Analysis of Variance for VER Waveform: 
S SH     60 

Analysis of Variance for VER Waveform: 
S SS     61 

VI 



LIST OF FIGURES 

Figure 

1. 

Page 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

Medial view of cerebral hemisphere showing 
projection of the retina on the calcarine 
fissure in man (Ganong, 1969)  

Stimulus displays for the four areas of 
retinal stimulation.  Degree of eccentricity 
in relation to each fixation point is 
given in degree of arc   21 

Averaged  evoked  cortical   responses   for   S  PA 
recorded  from four  electrode placements   to 
various   check   sizes   (in min of  arc)   presented 
to   various   retinal   locations.      Each   super- 
imposed  tracing  represents   the   summation   of 
50   responses     26 

Average (see text) amplitude of quantified com- 
ponents of VERs for the four Ss illustrating 
the main effects of retinal location, electrode 
location, check size, and 50-millisecond 
interval   27 

Interaction effects for each S of locus of 
retinal stimulation and 50-millisecond inter- 
val on the average amplitude of quantified 
components of VERs (see text)   31 

Interaction effects for each S of electrode 
location and 50-millisecond interval on the 
average amplitude of quantified components 
of VERs (see text) 33 

Interaction effects for each S of check size 
and 50-millisecond interval on the average 
amplitude of quantified components of VERS 
(see text) 35 

Interaction of effects for each S of electrode 
placement and retinal location on the average 
amplitude of quantified components of VERs 
(see text) 37 

Interaction effects for each S of check size 
and retinal location on the average ampli- 
tude of quantified components of VERs (see 
text). 39 

vn 



Figure Page 

10.   Interaction effects for each S of electrode 
location and check size on the average 
amplitude of quantified components of 
VERs (see text)  41 

vm 



Introduction 

Systematic investigation of neural mechanisms involved 

in the sensations and perceptions of man has recently been 

facilitated by advancements in computer technology.  Electronic 

devices that record the electroencephalogram (EEG) are now 

being used to differentiate EEG from averaged characteristics 

of time-locked cortical responses to peripheral receptor 

stimulation.  The visual system has not only proved to be an 

ideal receptor for experimental manipulation but is also of 

utmost importance to the adaptive information processing capac- 

ities of man.  A vast amount of research is developing from 

experimentation with electrodes placed on the scalp above the 

occipital lobe.  These electrodes record visually evoked 

responses (VER) .  "By an evoked potential is meant the detectable 

electrical change of any part of the brain in response to delib- 

erate stimulation of a peripheral sense organ" (Chang, 1959, 

p. 299).  In the case of VER, the electrical change is recorded 

from the occiput and the stimulated sense organ is the eye. 

Topographical Distribution of VER 

Evoked potentials obtained from electrodes vary according 

to the location of the scalp electrode and the stimulus conditions 

of a particular experiment.  A majority of VER research is obtained 

from scalp electrodes placed within 1 to 3 cm superior to the 



inion (DeVoe, Ripps, & Vaughan, 1968; Dustman & Beck, 1969; Eason, 

White, & Bartlett,  1970; Groves & Eason, 1967; Harter, 1971; 

Harter & White, 1970; Rietveld, Tordoir, & Duyff, 1965).  The 

cortical area underlying this specific electrode location is the 

primary visual receiving area, or the visual cortex.  The anatom- 

ical distribution of retinal projections on the cortex is dis- 

cussed in greater detail in following sections. 

Early VER studies did not systematically investigate the 

effect of electrode placement on VER.  It was not recognized that 

VER could be spatially specific as well as stimulus-specific. 

Later studies were concerned with electrode placement only to the 

extent that the electrode would obtain a maximal response to a 

particular phase of experimentation (Perry & Childers, 1969). 

In 1964 Nagata and Jacabson obtained VERs from electrodes 

placed along the midline from the inion to the vertex.  An optics 

tube was used to stimulate the retina with a sharp small focus. 

This was in contrast to stimuli of larger visual angles that had 

been used in the past (specific visual angles used in this experi- 

ment were not stated).  Stray light effects were reduced by back- 

ground illumination.  Results showed that maximal VERs were 

obtained from an electrode on the midline 5 cm superior to the 

inion and from 3 cm lateral and 1 cm superior to the inion. 

Spehlmann (1965) investigated VERs to diffuse and to pat- 

terned stimuli by varying both the interface density of the stimuli 

and the distribution of electrodes over the occiput.  Visual stimuli 

subtended the central 40-60 degrees of the visual field. Spehlmann 



found that the responses to both diffuse and patterned light 

reached their maximum in an area within 3 cm foreward and to the 

sides of the inion.  Spehlmann*s interpretation of the components 

of VER to patterned light initiated investigations concerned with 

the neural basis of the specific components of VER wave form. 

Spehlmann found that pattern stimuli resulted in a later (180- 

375 msec) maximum positive wave than did diffuse light stimuli. 

Spehlmann considers this "late wave" a "specific" component in 

that amplitude varies with the density of contrast borders.  The 

late wave was possibly related to activity at the single unit 

level resulting from lateral inhibition (Hubel, 1963). 

Groves and Eason (1967) recorded VERs to a dim, foveal 

stimulus from occipital, parietal, frontal, and temporal elec- 

trode locations.  The purpose of this study was to investigate 

the cortical distribution of activity involved in the onset 

latency of the response.  Results from the different electrode 

placements revealed that the largest VER occurred at the occipital 

lobe 2.5 cm above and to the right of the inion.  Although VER 

recorded from the occiput yielded waves of maximum amplitude, 

onset latency was longer than that recorded from other brain areas. 

Groves and Eason interpreted the longer latency VER to indicate 

the involvement of the unspecific thalamic projection system in 

the evoked response. 

The three studies discussed above illustrate two important 

factors of VER: (a) the wave form of neural activity correspond- 

ing to visual stimulation varies according to the visual quality 



of stimuli and yields different components which may be related 

to the physical properties of that stimulus, and (b) variations 

in latency and amplitude of VERS are found when recording from 

different electrode locations.  It should be remembered that 

maximum activity near the inion was obtained from stimulation 

using very small and usually foveal stimuli. 

In 1955 Potts and Nagaya explicitly used VER to obtain 

an objective measure of foveal function.  A very small (0.06°) 

red stimulus, dimly illuminated, yielded VERs which were 

diminished at stimulation beyond 1° nasally and/or temporally. 

VERs were abolished at 2° stimulation.  Potts and Nagata were 

able to obtain VERs to foveal stimulation from areas not limited 

to the occiput.  These results were interpreted according to the 

anatomical distribution of foveal projection areas.  VER was 

thought to be a response to large numbers of cortical neurons 

which were one or more synapses removed from the "calcarine 

cortex."  The reasoning was that since the primary foveal pro- 

jections occupy a large number of cortical cells, the secondary 

foveal projections must also be large. 

It should be stressed that the visual cortex receives pro- 

jections from two types of retinal photoreceptors:  rods and 

cones.  These biological photoreceptors contain the visual pig- 

ment which, upon light stimulation, initiates the first electrical 

impulses to be transmitted to the brain.  The foveal centralis 

contains a concentration of cone receptors.  The remaining retina 

contains both rod and cone receptors.  It is at the rod-free fovea 



that visual acuity is the greatest.  The majority of foveal cones 

have a direct electrical pathway to the optic nerve; however, in 

more peripheral areas, where the rods predominate, there is a 

great deal of convergence (Ganong, 1969).  Figure 1 shows a 

medial view of cerebral hemisphere showing projections of the 

retina on the calcarine fissure in man (taken from Ganong, 1969. 

Redrawn and reproduced from Brouwer, 1934). 

It is thought by the author that the topographical dis- 

tribution of the retina on the visual cortex and around the cal- 

carine fissure plus the placement of a particular electrode on 

the scalp overlying a particular projection area determines the 

VER waveform obtained from a specific stimulus.  Ganong (1969) 

states that fibers which subserve vision in the upper portion of 

each half of the visual field end on the superior lip of the cal- 

carine fissure.  Fibers from the inferior half of each visual 

field end on the lower lip of the calcarine fissure.  Macular 

(foveal) projections end in the posterior part of the calcarine 

fissure—posterior to the peripheral (rods and cones) projection 

areas.  This posterior foveal representation on the occipital 

cortex insures that electrodes placed near the inion will record 

photopic (cone) activity.  The above anatomical facts perhaps 

explain the findings that maximum VERs are obtained within 3 cm 

of the inion since stimuli were presented to the foveal-macular 

area as opposed to the more peripheral rod-cone areas (Rietveld, 

et al., 1967; Devoe, et al., 1968; Copenhaver & Beinhocker, 1963; 
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Fig.   1.     Medial  view of  cerebral   hemisphere   showing 
projection"of   the  retina on   the   calcarine   fissure   in   man 
(Ganong,   1969). 



Eason, Oden, & White, 1967; Eason & White, 1967; Eason, White & 

Oden, 1967; Harter & White, 1968; Ciganek, 1961; van Balen, 

et al., 1966). 

Alpern, Lawrence, and Wolsk (1967) plotted the relative 

contribution of visual fields to visual acuity, noting that 

maximal acuity is a mechanism of the rod-free fovea .  Studies 

by Harter and White (1968, 1970) have yielded evidence that VER 

amplitude is related to visual acuity.  Conditions that resulted 

in greater VERs varied for individuals depending on the least 

amount of refractive error for that particular individual.  Since 

VERs were obtained from 2.5 cm above the inion, a topographical 

explanation is relevant.  Electrodes were recording from the 

cortical area of foveal representation. 

An inverted U-shaped function has been found between VER 

amplitude and check-size with maximal VERs to checks of 20' of 

arc (Harter & White, 1968, 1970; Rietveld, et al., 1967).  This 

function might also be explained by a topographical hypothesis 

since visual acuity varies in both central and peripheral retinal 

fields.  Harter (1971) dealt further with this problem and found 

that the check-size to which maximal VERs are obtained depends 

on the eccentricity of retinal stimulation. 

Rietveld, et al., (1967) manipulated electrode placement, 

visual field stimulation, and contour density in relation to 

EPs.  These manipulations, however, seem out of phase.  When 

central and peripheral portions of the retina were stimulated, 

VERs were recorded from one electrode located 1% cm above the 



inion.  When electrode locations were varied, one stimulus was 

presented at a 20° visual angle.  From these manipulations, 

Rietveld, et al. concluded that "the central foveal area con- 

tributes by far the greatest part to the pattern response" and 

that maximum VER activity is in the area l?g cm above the inion 

on the midline.  Had Rietveld concurrently varied field stimu- 

lation and electrode placements he possibly would have obtained 

greater VERs from the more peripheral projection areas when using 

peripheral stimuli. 

Jeffreys (1968, reviewed in MacKay, 1969; 1971) simul- 

taneously obtained VER recordings from a 12-electrode array to 

whole field, upper and lower half-field patterned stimulation, 

eyes centrally fixated.  Wave shape and polarity of VER was found 

to vary according to the particular visual field stimulated and 

the area of the cortex represented under the electrode.  Results 

were explained on the basis of the retinotopic arrangement of the 

human visual cortex. 

Comparisons have been made (Vaughan, 1964) between record- 

ings taken from the scalp and the cortex of human patients under- 

going occipital surgery.  Scalp electrode recordings were similar 

to cortical recordings taken from the posterior margin of mesial 

occipital cortex.  Similarities diminished as the recording site 

shifted anteriorally.  Vaughan concluded that scalp electrodes 

overlying the occipital pole reflect the waveform of evoked 

responses beneath with little contribution from the more anterior 

striate cortex.  Since the posterior pole receives projections 



from the fovea,  Vaughan states that the scalp VER may be expected 

to reflect activity generated primarily in the central area of 

the retina. 

Visual Field Stimulation 

Recently research with VER has found that components of the 

ER vary to differential stimulation of upper, lower, and central 

visual fields (Eason & White, 1967; Eason, White, & Oden, 1967; 

Jeffreys, 1968, 1971; Schreinemachers & Henkes, 1968; Eason, 

White, & Bartlett, 1970; Eason, Groves, White, & Oden, 1957). 

Eason, et al. (1967) became interested in visual field 

effects on VER during an effort to provide further evidence for 

an inverse relation between reaction time (RT) and VER amplitude. 

Woodworth (1938), Poffenberger (1912), and Rains (1963) had 

obtained evidence that RT was faster to stimuli presented to the 

nasal than to the temporal retina.  0sterberg (1935) discussed 

a relevant aspect of the physiology of the retina in that the 

nasal part of the retina is more plentifully equipped with rods 

and cones than is the temporal retina.  Recording from 2.5 cm 

above the inion and to the right of the midline, Eason and White 

(1967) obtained smaller VERs to nasal than to temporal field 

stimulation of the right eye.  These results were inconsistent 

with the existing evidence between RT and VER since RTs were 

shorter to temporal stimulation.  Since the placement of the 

electrode determines the area of the brain from which activity 

will subsequently be recorded, VERs obtained from 2.5 cm to the 
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right of the midline recorded activity arising from the temporal 

retina of the right eye (Eason, Groves, White & Oden, 1967).  An 

excellent illustration of the visual field and its projection in 

the occipital brain is given by Schreinemachers and Henkes (1968, 

p. 19).  It is shown that binocular stimulation of the right 

visual field is projected to the nasal retina of the right eye 

and the temporal retina of the left eye.  Projections of the 

nasal retina terminate on the left occipital lobe; whereas, those 

of the temporal retina terminate in the right lobe.  In other 

words, the right visual cortex is concerned with the left half 

of the visual field and the left visual cortex with the right 

half of the visual field (Hubel & Wiesel, 1967). 

In 1897, Hall and von Kries presented evidence that reaction 

times were faster to stimuli presented to the upper retina than 

to the lower retina.  Rains (1963) and Payne (1967) also found 

shorter RTs to stimuli presented above the horizontal meridian. 

Payne further found that sensitivity curves for visual RTs and 

threshold reflect the distribution of rod and cone receptors along 

the horizontal and vertical meridians.  This paralleled 0sterberg*s 

(1935) contention that rod and cone count is greater in the upper 

part of the retina than in the lower retina.  Bason, White, and 

Oden (1967) recorded VERs simultaneously from electrodes placed 

one inch above the inion, to the right and to the left of the 

midline.  Both eyes were stimulated with upper and lower field 

presentations. (Upper field stimuli correspond to the lower half 
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of the retina and lower field to the upper retinal half). Greater 

VERs were recorded from both the right and left lobe to stimuli 

occurring in the lower visual field.  Latencies were also shorter 

under lower visual :rield conditions. 

Eason, White, and Bartlett (1970) obtained interesting 

results by varying check-size within the visual field.  Lower 

field stimulation was more sensitive to changes in check-size, 

with maximum amplitude recorded to checks subtending 39 min of 

arc.  Upper field stimulation yielded a maximal response to 

checks of 9.4 min of arc.  In summary of their results, Eason, 

et al. suggested that the cortical visual system is more 

responsive to patterned stimuli appearing in the lower visual 

field, but that the system is relatively more sensitive to smaller 

objects appearing in the upper field.  Attention should be called 

to the fact that VERs were recorded from one electrode location, 

2.5 cm above the inion on the midline, and that VER results could 

be specific to that cortical area.  Jeffreys (1968, 1971) obtained 

VERs from a 12-electrode array to visual field stimulation and 

showed a reversal in the polarity of VER peaks to upper and lower 

field stimulation.  As activity increased over one cortical area 

to upper field stimulation, activity in that cortical area 

decreased to lower field stimulation.  These results were explained 

on the basis of the topography of the human visual cortex. 

The polarity reversal of the upper- and lower-quadrant 
pattern EP's could be explained if the responses were 
generated in the regions of striate cortex inside the 



calcarine fissure, because the cortical layers repre- 
senting the upper quadrants would be inverted in 
relation to the overlying cortex representing the 
lower quadrants (MacKay, 1969, p. 214). 

12 

Check Size and VER 

VER experiments were classically performed using diffuse 

light stimulation.  In 1965 Sphelmann compared the various 

aspects of the response to patterned and diffuse light flashes. 

VER to patterned light resembled that to diffuse light only 

under conditions in which the contrast borders were blurred 

beyond recognition.  Since that time, numerous studies have 

dealt with VER to patterned light (Rietveld, et al., 1967; John, 

Herrington, & Sutton, 1967; Harter & White, 1968, 1970; Harter 

& Suitt, 1970; Harter, 1971; Eason, et al., 1970; Clynes & 

Kohn, 1967). 

Harter and White (1968, 1970) indicated that certain com- 

ponents of VER are sensitive to the size of the black and white 

checks used in checkerboard patterned stimulation.  Check sizes 

subtending 10-20 min of arc produced the greatest amplitude VER 

under conditions of heightened visual  acuity—when recording at 

2.5 cm above the inion on the midline.  Alpern, et al. (1967) 

have shown that visual acuity is maximal in the rod-free fovea 

and steadily decreases with an increase in rod distribution. 

Hubel and Wiesel (1968) have presented physiological evi- 

dence concerning receptive field organization which may account 

for maximal VER responses to small check sizes (10-20 min of 
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arc).  The receptive field of a cell in the visual system is 

that area of the retina within which illumination will excite 

or inhibit the firing of a particular cell (Michael, 1968). 

Hubel and Wiesel have found that the optimal stimulus size which 

results in maximal sensitivity corresponds to the size of the 

cell's receptive field center.  Receptive field centers vary 

from small to large as a function of the distance of the ganglion 

cells input from the area centralis (Wiesel, 1960).  The spatial 

discrimination abilities of the visual system are reflected by 

the arrangement of inhibitory and excitatory regions in the 

receptive field—foveal fields are more strongly influenced by 

inhibitory-excitatory surrounds (Hubel, 1963).  The finding that 

VER reaches maximal amplitude in response to checks subtending 

10-20' of arc plus the later finding that the check size which 

evokes the greatest amplitude VER depends on eccentricity of 

retinal stimulation (Harter, 1971) lends further support to the 

following hypothesis:  "The effectiveness of patterned stimuli in 

initiating activity in cortical cells depends on the size and 

shape of each cell's retinal receptive field" (Harter & White, 

1970, p. 53).  Eason, White, and Bartlett (1970) also speculate 

using a receptive field hypothesis.  Maximal VERs to different 

check size, depending on the visual field stimulated, might indi- 

cate differences in the receptive fields located in upper and 

lower retinal area. 
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Retinal Eccentricity 

Cortical responses recorded from approximately 2.5 cm 

above the inion have been shown to vary according to the 

eccentricity of retinal stimulation with maximal VER obtained 

from central stimulation (Perry & Copenhaver, 1964; DeVoe, et al., 

1968; Copenhaver & Beinhocker, 1963; Rietveld, et al., 1965, 1967; 

Harter, 1971; Eason, Oden, & White, 1967; Potts & Nagaya, 1965; 

Schreinemachers & Henkes, 1968; van Balen, et al., 1966; Eason 

& White, 1967).  Eccentricity refers to the site of retinal 

stimulation in relation to the fovea.  Projections range from 

photopic (macular) to scotopic (peripheral) representation in 

the retina. 

Perry and Copenhaver (1964) were among the first to 

systematically study the contribution of photopic and scotopic 

systems to VER.  From bipolar electrodes placed on the midline 

and above the inion, Perry and Copenhaver found that dark adaption 

had no effect on VERs during 24 minutes of recording.  Larger 

VERs were obtained from central as compared to peripheral stimu- 

lation.  VER was, therefore, concluded to be primarily a photopic 

response; size being dependent upon two factors:  (a) the type of 

receptor stimulated, and (b) the nearness of receptor cortical 

projections to the recording electrodes.  When scalp electrodes 

are used to record cortical activity, it should be remembered 

that the projections of the central retina are situated at the 

occipital pole, thereby enhancing the likelihood of recording 

responses originating at the fovea (DeVoe, et al., 1968). 
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Although the photopic visual system has greater spatial 

representation in the visual cortical projection area than the 

scotopic system (Talbot & Marshall, 1941), the peripheral retina 

and not the fovea is capable of both  areal and temporal summa- 

tion.  An increase in VER to foveal stimulation, therefore, seems 

to record improved visual acuity without indicating the increase 

in visual sensitivity that is characteristic of the scotopic 

system.  It should also be remembered that, while it is possible 

to stimulate only the cones by central stimulation, peripheral 

stimuli excite both rod and cone receptors.  Harter (1971) tested 

the relative sensitivities of evoked response to checks of various 

sizes as they were presented at different retinal eccentricities. 

The distance from the fovea determined the check size which would 

elicit the greatest response.  Checks subtending angles of 15-30' 

of arc evoked the greatest amplitude response when the foveal 

area was stimulated; larger checks (with angles up to 60' of arc) 

evoked the greatest response when more peripheral areas of the 

retina were stimulated.  Harter proposed that the shift in maxi- 

mal VER was a function of the physiological processes which 

influence spatial resolution—namely spatial summation and inter- 

action at the rod-cone ganglion level. 

In a study of RTs to various eccentricities, Rains (1963) 

found that RT-curves to scotopic stimulation paralleled rod 

density versus retinal position curves.  Scotopic RTs decreased 

to stimulation 10-20° on the side of the fovea.  Eason, et al. 

(1967) found concomitant changes in VER latency and RT, both 
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decreased to stimulation 15-20° from the fovea.  Beyond 20° there 

was an increase in RT and a corresponding reduction in VER ampli- 

tude; however, no inverse relation between amplitude and RT was 

found to the 15-20° stimulus conditions.  In fact, amplitude 

decreased to the low intensity (scotopic) stimulation.  This 

finding is to be expected since VER was recorded from the corti- 

cal area of foveal representation.  A topographical hypothesis 

would be especially true if VER amplitude reflects the number of 

cortical neurons excited by a stimulus (Harter, 1971). 

Several investigators have noted differential contributions 

of photopic and scotopic processes to VER under conditions of 

varying light intensities (Vaughan, 1964; DeVoe, et al., 1968). 

Vaughan and DeVoe, et al. found that VER latency was correlated 

with sensitivity functions of rods and cones.  Vaughan (1964) 

suggested that the initial positive component of VER (PI) repre- 

sents processes necessary for the detection of a photopic stimulus 

since that component was absent in responses obtained from a 

patient suffering from homonymous hemianopia.  When PI latency 

was plotted as a function of intensity, two limbs were gener- 

ated.  Short latencies occurred at higher intensities with a 

break to longer latencies at cone threshold. DeVoe, et al. (1968) 

concluded that, as an indicant of foveal-peripheral mechanisms, 

VER latency depends on luminance level since optic nerve fibers 

subserving both rod and cone receptors transmit only cone mes- 

sages when the brightness of the stimulus exceeds cone threshold 

(Gouras & Link, 1966).  Rietveld, et al. (1965) plotted the 
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relative contribution of foveal and parafoveal stimulation to VER. 

Latency results paralleled those of Vaughan (1964) and DeVoe, et 

al. (1968) in that the latency of the B-wave (PI) was apparently 

determined by elements of the central region of the retina. 

Rietveld proposed that the relative obscureness of the peripheral 

projection areas located on the medial face of the cerebral 

hemispheres would influence the recording of activity evoked in 

that area since electrodes were placed on the scalp. 

The usefulness of VER for interpreting neural and visual 

processes involved in photopic and scotopic mechanicms, visual 

acuity, retinal eccentricity, visual field, and pattern vision 

has been shown in the research survey section above.  A majority 

of the studies reported interpreted  findings in terms of scalp 

electrodes placed from 1 to 3.0 cm superior to the inion.  It 

is proposed that (a) the topographical distribution of the retina 

on the visual cortex, and (b) the placement of electrodes on these 

retinal representation areas determines the electrical activity 

that will subsequently be recorded.  Visual stimulation of retinal 

areas whose projections end on the posterior occipital cortex will 

result in maximum VERs when scalp electrodes are placed superior 

to the inion.  Thus activity arising from certain types of retinal 

stimulation will be maximally recorded while that arising from 

other aspects of stimulation will be obscured.  By placing elec- 

trodes over several areas of the cortex, one might be able to 

record activity arising from the upper and lower, and anterior 
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retinal projection areas.  One would then be able to adequately 

extend interpretations of VER to peripheral field stimulation. 

The purposes and general questions to be fostered in the 

forthcoming research are as follows: 

(a) to simultaneously record electrical activity arising 

from both the horizontal and vertical planes of the 

occiput in response to various manipulations of the 

visual field.  Will activity be differentially affected 

by stimulus parameters and will the effect be in 

accordance with cortical topography? 

(b) to further investigate the differential sensitivity 

of retinal visual fields to check-size.  How is the 

interaction between visual field and check-size 

affected by patterned light presentation at different 

eccentricities? 

(c) to lend further support to the receptive field hypo- 

theses by recording EPs from cortical locations repre- 

senting both photopic and scotopic projection areas. 

As electrical activity increases in areas receiving 

macular projections, will activity decrease in the 

cortical areas receiving more peripheral projections? 

Is this interaction dependent on receptive field centers 

represented by checks of various sizes? 

(d) to investigate the specificity of research that has 

been based on VER recordings taken from 1 to 3.0 cm 

above the inion.  How specific to the recording site 
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is the finding that lower visual field stimulation 

yields maximal VERs? Will maximal VERs to checks 

subtending angles of 15-20' of arc be obtained from 

all electrode locations?  How does eccentricity affect 

VERs when visual field and check size are concurrently 

manipulated? 

Method 

Subjects 

Data were obtained from four psychology graduate students 

at the University of North Carolina at Greensboro.  Subjects ranged 

from 23 to 45 years of age. 

Experimental Design 

The foregoing research was concerned with change in the 

amplitude of specific components of VERs as affected by three 

variables:  (a) electrode location, (b) locus of retinal stimu- 

lation, and (£) check-size. 

VERs and electrode placement.  VERs were recorded from 

four electrodes, three of which were aligned along the midline 

from the occiput to the vertex and one along a horizontal plane 

with respect to the occipital lobe.  The midline electrode place- 

ments were approximately 2.5 (occipital), 7.5 (parietal), and 

12.5 (vertex) cm above the inion; the temporally placed electrode 

was approximately 5 cm to the right or left of the occipital 

electrode.  Simple counterbalancing across sessions was used to 

obtain VERs from the two sides of the inion.  Visually evoked 
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responses were recorded simultaneously from the four electrodes 

thus enabling an analysis of activity arising from four different 

cortical areas to any given visual stimulation.  All scalp record- 

ings were obtained monopolarly.  The reference signal consisted 

of the combined output of two electrodes placed on the right and 

left ear lobes. 

Each S' s EEGs were monitored continuously with a Grass 

polygraph as a check for the adequacy of electrode contact and 

for detecting body movement and other artifacts.  The input from 

the four electrode locations to the polygraph amplifier channels 

was counterbalanced over sessions to nullify any slight differ- 

ences in the gain level of the amplifiers. 

Locus of retinal stimulation.  Evoked potentials to bin- 

ocular stimulation of upper, central, lower, and lower-peripheral 

visual fields were recorded.  Site of stimulation was varied by 

having Ss fixate one of four points differentially positioned with 

respect to the 8 x 8 cm stimulus display.  The display remained 

stationary over all experimental sessions.  Depending on the 

experimental condition Ss were required to fixate:  (a) the mid- 

point of the lower edge of the stimulus display (Condition A), 

(b) the center of the display (Condition R) , (c) the midpoint of 

the upper edge of the display (Condition C) , and (d) a point 5°19- 

above the midpoint of the upper edge of the display (Condition D) 

(see Figure 2).  Except for Condition B, the fixation points were 

small white squares subtending approximately 10 min of visual 

angle.  During Condition B, Ss fixated the intersection of two 
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imaginary lines connecting the midpoints of each side of the 

display.  Thus the retina was stimulated at four locations rang- 

ing from above to below the fovea.  During Condition B the fixation 

point was such that the midpoint of all edges of the stimulus dis- 

play was 2°40* from the fixation point.  For Condition D the 

fixation point was 5°19' and 10°33' of arc from the midpoint of 

the upper and lower edge of the stimulus display respectively. 

Fixation points for Conditions A and C were such that the lower 

and upper edge, respectively, of the stimulus display cut through 

the fovea.  This resulted in the stimulation of the retina in 

either the upper or lower field extending to a vertical distance 

of 5°19'.  Area of retinal stimulation was held constant for all 

conditions. 

Check-size. The visual stimuli consisted of square-shaped 

displays containing black and white checkerboard patterns, each 

display being composed of checks of different sizes. The check 

sizes for the four displays, expressed in terms of visual angle 

subtended, were 7.5, 15, 30, and 60 min of arc. The width (and 

height) of each display was 5 19'. 

Counterbalancing.  Four replications were obtained for each 

S with one of the four sessions lasting one hour; a total of four 

hours running time for each S.  Flashes were presented for each 

condition in blocks of 50.  The order of stimulation for each 

retinal locus and check-size was presented according to a Graeco- 

Latin square design such that every retinal location occurred 

once and only once with every check-size during one experimental 

session. 



Control.  White noise was used to mask any extraneous 

sounds that might evoke auditory cortical potentials or be dis- 

tracting to Ss. 
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Methods for Data Collection and Stimulation 

Visual stimulus apparatus.  Patterned light flashes of 

approximately 10 Msec  duration were presented binocularly to 

each S at a rate of about 1 Hz.  Flashes were generated by a 

Grass PS - 2 Photostimulater.  Flash intensity level was set 

at 2 on the Photostimulator with subjective intensity approxi- 

mately 3 log units brighter than the background luminance level, 

which was approximately 0.5 millilamberts.  Fixation points were 

clearly visable under all conditions. 

Subjects were seated at a distance of 86 cm from the visual 

stimulus in an electrically shielded room. Electrodes were placed 

on the scalp before Ss entered the experimental cubical. 

Data collection.  VER recordings from the four electrode 

locations were amplified by a multichannel Grass Model 7 Poly- 

graph equipped with 7P 1 Preamplifiers and summed through four 

channels of a Mnemotron 400R Computer of Average Transients (CAT). 

At the completion of each of the 16 experimental conditions, the 

on-line records were written out by a Moseley X-Y plotter for 

graphical analysis. 

Subject's instructions.  Binocular fixation was required 

for all Ss.  Points of fixation were varied for each experimental 

condition (16 times per session).  To save experimentation time 
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Ss were asked to change the stimulus display after each condition. 

During this time the experimenter obtained the on-line VER records. 

To insure that Ss were attending to the stimulus, they were asked 

to count each light flash and to report the number counted at the 

end of each condition.  Flash number was varied from run to run 

in order that Ss could not anticipate the number to be presented; 

however, VERs to exactly 50 flashes were consistently recorded 

during each run. 

Data analysis.  Quantification of VER waveform was made 

by measuring the average height in millimeters of each waveform 

within the second, third, fourth, and fifth 50-millisecond 

intervals following stimulus presentation.  Average height was 

measured by algebraic  summation with respect to a common base- 

line representing zero voltage level (i.e., the average voltage 

level of the first 50-millisecond interval).  The average distance 

of each deflection from the baseline, as well as the location of 

the baseline, was determined by visual inspection in such a way 

that one-half of the total area within a 50-millisecond interval 

fell above as well as below a line drawn to fit that particular 

waveform.  To expedite the statistical analysis a constant was 

added to each amplitude measure so as to make all measures posi- 

tive.  The measures thus obtained for each S were subjected to 

an analysis of variance using a repeated measures design. 
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Results 

Evoked responses obtained under all 16 experimental 

conditions for S PA are given in Figure 3.  Superimposed trac- 

ings of VERs, made directly from X-Y plots, represent repli- 

cations for each experimental condition and illustrate the high 

degree of VER consistency.  As indicated on the abscissa, the 

VER waveforms in Figure 3 have been divided into 100 millisecond 

intervals.  The four major divisions along the ordinate repre- 

sent check size which is expressed in terms of visual angle 

(minutes of arc).  Visual inspection across each column reflects 

the effect of stimulating the retina with checkerboard patterns 

positioned progressively lower in the visual field.  It should 

be remembered that stimuli presented to the upper visual field 

impinges on the lower half of the retina; the lower field impinges 

on the upper half.  Visually evoked responses recorded from 

different electrode locations are shown on the ordinate with Vz, 

I' , O , and T_-T6 representing vertex, parietal, occipital, and 

temporal lobe activity respectively.  Each VER for this particular 

S had an average frequency of about 10 Hz.  The reader is reminded 

that each averaged waveform was based on a summation of 50 

responses. 

Main Effects 

Effects of retinal stimulation site on VER.  The effect 

of locus on retinal stimulation on VER is shown in Figure 4. 
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Fiq  3.  Averaged evoked cortical responses for SPA 
recorded from four electrode placements to various check sizes 
fin  min of arc) presented to various retinal locations.  Each 
superposed tracing represents the summation of 50 responses. 
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Each point in Figure 4 is representative of the average voltage 

level in microvolts, per 50-millisecond interval, of each wave- 

form summed over all experimental manipulations for a particular 

experimental condition.  As the graphic functions suggest, the 

effect of visual field on VER waveform is highly significant 

(p<,0.01 for all Ss) .  A comparison of VERs to stimulation at the 

different retinal locations (Figure 4) shows that the average 

amplitude of the waveforms differed in two general aspects: 

(a) central and lower field stimulation had a relatively similar 

effect on VER amplitude, as did upper and lower-peripheral stimu- 

lation, and (b) central and lower field responses were consistently 

more positive than responses evoked by upper and lower-peripheral 

stimulation.  The amplitude of upper field VERs fell between the 

amplitude of responses obtained from central and lower field 

stimulation and that obtained from lower-peripheral stimulation. 

For one S (SS), however, responses evoked by lower-peripheral and 

central field stimulation were relatively more similar than were 

responses evoked by upper and lower field stimulation, which were 

of similar average amplitude. 

Evoked potentials obtained from different electrode 

locations.  Variance analyses for individual Ss showed that changes 

in VER were significantly affected by the cortical area from which 

activity was recorded (p<0.01); however, graphical representations 

of the data (see Figure 4) show differential effects between Ss. 

For Ss FD and SH, responses became progressively more positive as 

the recording site was shifted from a more anterior (Vz) to a more 
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posterior (Oz) location along the midline.  Maximum positivity 

was recorded from electrodes placed over O .  Responses obtained 

from Tr-T6 fell between those obtained from electrodes over 0Z 

and Pz areas.  For Ss PA and SS maximum positivity was recorded 

from the V2 electrode, with positivity decreasing at sites 0 

and P .  Minimum positivity was recorded at the T5-T6 electrode. 

These effects are discernable in the waveform tracings of S PA 

(see Figure 3). 

The effect of check size on VER.  Both graphic (see Figure 

4) and variance analyses revealed that VERs were not differentially 

affected by changes in check size for three of the four Ss. 

Although the main effect of check size was not significant, inter- 

actions between check size and other experimental conditions were 

extremely significant (first-order interactions will be dealt with 

in a later section).  The main effect of check size was signifi- 

cant at the 0.01 level of probability for S PA.  Relative posi- 

tivity increased to stimulation with checks subtending visual 

angles of 30 and 60' of arc. 

VERs occurring within 50-millisecond intervals.  As was 

expected, variation in VER waveform was dependent upon the point 

in time that a particular component occurred following the onset 

of light stimulation.  Differences in potential over the second, 

third, fourth, and fifth intervals were significant for all Ss 

(PC0.01).  In general, the most positive response occurred within 

the fifth 50-millisecond interval following retinal stimulation, 

with least positivity (negative component) occurring during the 

third 50-millisecond interval (see Figure 4). 
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First-Order Interactions 

Locus of retinal stimulation X 50-millisecond intervals. 

Variance analysis revealed significant interactions between visual 

field and 50-millisecond intervals (p<0.01).  With respect to 

locus of retinal stimulation, VERs obtained from upper visual 

field stimulation were of relatively opposite polarity when com- 

pared to responses obtained from lower visual field stimulation 

within a particular 50-millisecond interval.  In general, polarity 

inversions between upper and lower field responses were readily 

apparent within the second 50-millisecond interval.  Maximum 

differences were manifested within third and fourth 50-millisecond 

intervals.  Figures 3 and 5 illustrate this polarity inversion 

effect. 

For   two  of   the   four  Ss   (PA and FD) ,   there was  a   systematic 

change   in waveform polarity   among  the four   50-millisecond  inter- 

vals  as   stimulation  was  moved  from  the  lower-peripheral   to the 

upper   visual   field.     For   example,   within   the  third  50-millisecond 

interval,   responses   for  PA  show a progressive   shift   from  maximum 

positivity   to  negativity  as   stimulation progressed  from  upper,   to 

central,   to   lower,   to   lower-peripheral   visual   fields.      Ry   the 

fourth   50-millisecond   interval,   maximum positivity was   evoked 

from  lower-peripheral   field   stimulation with positivity   steadily 

decreasing   as   stimulation was moved   to   the  upper  visual   field. 

This  change-over   effect   is  evident   in  the   tracings of  Figure   3. 
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In general, functions obtained from lower-peripheral field 

stimulation changed in the same direction as those obtained from 

lower field stimulation.  Magnitude of change, however, varied 

between Ss. 

Electrode location X 50-miHi second interval.  The analysis 

of variance performed on the data of each individual S revealed 

significant (p^O.Ol) interactions between electrode location 

and 50-millisecond intervals for all Ss; nevertheless, as Figure 

6 illustrates, trends varied between Ss. 

In general, responses obtained from Vz electrodes during 

each 50-millisecond interval were more similar to those obtained 

from Pz electrodes than were those obtained from Oz and T5-T& 

electrodes.  Responses recorded from 0Z and T5-T6 were also similar 

in waveform.  There was a progressive change toward positivity 

from third to fifth 50-millisecond intervals for responses taken 

from all electrode locations.  As an exception, S PA's responses 

from electrodes 0Z and T5-T6 decreased in positivity up to the 

fourth 50-millisecond interval and increased in positivity between 

intervals four and five.  Responses recorded from V2 to Pz elec- 

trodes were consistently more negative (or positive, depending 

upon the 50-millisecond interval) than were responses from O., and 

T5-T6 electrodes.  Pz responses for S SS were relatively more 

negative and positive during intervals three and five respectively 

than responses obtained from other electrode locations.  Oz 

responses for Ss FD and SH shifted toward negativity earlier 

(fifth 50-millisecond) than did those for Ss PA and SS. O^   and 



-1.0 

- .5 

.0 

.5 

1.0 

> 

1.5 

2-0 

2.5 

3.0 

S PA 

J I I I 

33 

SFD 

J I 

s ss 

A 
r^KV, 

50-MILLISECOND   INTERVAL 

Fig.   6.      Interaction  effects  for  each  S of electrode 
location  and  50-millisecor.d   interval   on  the average  ampli- 
tude  of quantified  components   of  VBRs   (see   text). 



34 

T -T  responses for Ss FD and SH were relatively more positive 

than those obtained for Ss PA and SS. 

Fifty-millisecond intervals for S_ FD exerted a more 

differential effect on VERs recorded from Oz in contrast to those 

recorded from V  (see Figure 6).  Although responses obtained 

from T -T  electrodes became less positive over time, there was 

relatively no change in components between third and fourth inter- 

vals.  In contrast to the T5-T  responses, VERs obtained from P2 

showed a monotonic relation with a shift toward maximal positivity 

over the four 50-millisecond intervals. 

Check size X 50-millisecond intervals.  Figure 7 illustrates 

the differential effect of check size on the 50-millisecond inter- 

vals both between and within Ss.  Interactions were significant 

at the 0.01 level for Ss SH and SS.  There was no significant 

effect for Ss FD and PA. 

The effect of check size on VER waveform as a function of 

time was orderly for both Ss SH and SS.  Systematic changes 

occurred between third and fourth intervals as check size varied 

for both Ss.  During these intervals responses to checks sub- 

tending 7.5' of arc changed from a more negative to a more posi- 

tive position in relation to responses obtained from 60' of arc 

checks (see Figure 7, S SH).  Response magnitude obtained from 

intermediate check sizes fell between that obtained from 7.5 and 

60' of arc checks.  Rotation between third and fourth intervals for 

S SS resulted in a greater degree of change for checks subtending 

30 and 60' of arc than for 7.5 and 15' checks.  Responses to 



35 

-1.5P fm  7.5' 

_S_FD 
 30' 
 60' 

- 

■ 

i    ;    i 

s ss 

4 5 2 3 4 
50- MILLISECOND   INTERVAL 

Fig.   7.     Interaction   effects  for   each S of check  size 
and   50-millisecond   interval   on   the average  amplitude  of 
quantified components  of VERs   (see  text). 



36 

checks of 7.5' and 15* of arc were consistently more positive 

than those obtained for checks of 30 and 60' of arc, except dur- 

ing the fourth 50-millisecond interval. 

Locus of retinal stimulation X electrode location.  Figure 

8 is illustrative of changes recorded from different electrode 

locations that resulted from visual field manipulations.  Inter- 

actions were significant (p^O.Ol) for each S.  It is clear that 

VERs obtained from lower-peripheral stimulation were not as 

differentially affected by electrode location as were responses 

to other visual field variables.  In general, VERs from upper, 

lower, and central field stimulation were affected differentially 

but in the same direction over all electrode locations.  Direction 

of change for S PA was similar for responses obtained from upper 

and lower-peripheral field stimulation and for responses to 

central and lower field stimulation.  As VERs were recorded from 

more posterior electrodes, positivity decreased to lower-peripheral 

stimulation for Ss PA and SS. 

In general, responses obtained over all electrode locations 

from lower and central stimulation were more positive than those 

obtained from upper and lower-peripheral stimulation.  Largest 

potentials to central and lower field stimulation were recorded 

from 0Z.   As Figure 3 illustrates, an exception to this find- 

ing was the lower-peripheral VERs from S PA which were more 

positive at Vz than were responses from upper, central, or lower 

stimulation.  Responses obtained from all visual field manipula- 

tions became progressively less negative as the recording site 
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shifted from P  to O .  From O  to T..-T, values moved in a 
z 2. z     5  6 

direction of lesser positivity. 

Retinal locus of stimulation X check size.  Response 

relations between locus of retinal stimulation and check size are 

shown in Figure 9.  Interactions between these variables were 

significant at the 0.01 level for all Ss except FD (p^O.10). 

Over check size, responses from central stimulation changed in 

directions which were opposite those obtained to lower-peripheral 

stimulation. At all retinal locations, checks subtending 15 and 

30' of arc had a more differential effect on VERs than did checks 

of smaller or larger visual angles.  A greater degree of change 

occurred between check size presentations to central and lower 

visual fields than to upper and lower-peripheral fields.  S PA, 

however, showed a differential change in upper field VERs in 

response to smaller checks  subtending 7.5 and 15' of arc.  Lower 

field responses to all check sizes were consistently more positive 

than responses recorded to other retinal locations for this 

particular S. 

Electrode location X check size.  With respect to the 

statistical analysis, electrode location and check size inter- 

actions were significant for only one of the four Ss (SH: p<O.01). 

Graphical representations of these results nevertheless show 

interesting functions for all Ss.  Although the analysis of 

variance revealed a significant interaction between check size 

and electrode location for S SH, the error variance for this 

particular S was extremely low (M.S. = 7.88; df, 768), and 
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graphical  analysis   illustrates  only  slight   differential   changes 

in VER   as  a   function of  check  size and  electrode   location. 

According   to   Figure  10,   checks   subtending  30'   of  arc 

exerted   the  most   differential   effect   on VERs  over   all  electrode 

locations.      Referring   to  S FD,   the influence  of  30'   checks  was 

most   evident   for   responses  taken   from  the  P     electrode.     As   check 

size   increased  from   15   to  30'   of  arc,   negativity  decreased  at  P 

and  increased   in  areas  V     and O   .     Positivity   at  T  -T,   increased 
z z '56 

as check  size   increased   to  30'   of arc,   but  any   further   increase 

in  check   size   had  no  effect  on  VER.     Responses   from 0    were  not 

greatly   affected  by   changes   in   check   size;   however,   maximal 

positivity  was  evoked with   15'   of arc   checks. 

The   graphical   representation of  S  PA   (see  Figure   10)    shows 

a  systematic   influence  of  30'   checks  on VER waveform.     Responses 

from all   electrode   locations  except Vz   reached maximal positivity 

when   the  eye  was   stimulated with   this  particular  check   size.     V 

responses progressively   increased  in positivity  as   check   sizes 

were   increased,   with  maximal  positive   responses  obtained  during 

stimulation  with   60*   of  arc checks.     This  was  also   the  case   with 

S  SS. 

Higher-Order   Interactions 

The   interaction  between   locus of  retinal   stimulation, 

electrode  location,   and   50-millisecond   interval  was   significant 

(p£ 0.01)   for   all   Ss.     The   significance of  this  and  other   second- 

order   interactions   suggests   the   tremendous   sensitivity of VER   to 
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manipulations of  all   the  stimulus parameters.     Not   only was   the 

waveform of   the  evoked   response   dependent   upon   the  area of  the 

brain   from  which   activity was   recorded,   but  also  upon  the  locus 

of  retinal   stimulation  and   the   specific   50-millisecond  interval 

during which  the   response was  observed.      Figure   3, for example, 

shows   that   evoked   responses   to   lower-peripheral   stimulation  varied 

according   to   two  additional   factors:      (a)    the particular   50- 

millisecond   interval   during  which   responses were  observed,   and 

(b)   the area  from which  activity was   recorded. 

Interdependencies  were   further   reflected between   site   of 

retinal   stimulation,   check   size,   and   50-millisecond  intervals. 

Interactions  between   these   variables   and  VER were   significant   for 

all but  one   S.     Tracings  in   Figure   3   illustrate   these   second-order 

interaction   effects.     Any   given VER  waveform within  a given   50- 

millisecond   interval   varied   in   terms   of   the particular   check   size 

that was  used  to   stimulate   a particular   visual   field.     More 

specifically,   VERs   from  central   stimulation during   the   third   50- 

millisecond   intervals  were   relatively  more positive  when   the  eye 

was  stimulated with   checks   subtending   15'   of  arc   than when   stimu- 

lated with   60'   of  arc   checks.     Additionally,   VERs  within   third 

50-millisecond   intervals   to   15'   checks were  relatively more nega- 

tive when   the   lower-peripheral   as  compared  to   the   central   visual 

field  was   stimulated. 

Second-order   interactions  between   electrode   location,   check 

size,   and  50-millisecond  intervals were   significant   for   three  Ss 

at   the 0.01   probability   level   and  for   S  SS   at   the 0.05  level. 
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Figure  3   shows   that   response  magnitude   during  the  fourth   50- 

millisecond   interval  yielded  one  function when   responses   to  60' 

of arc checks  were   obtained   from  the 0Z  electrode  and a   relatively 

different   function  when   the   retina was   stimulated with   15'   of arc 

checks,   or when  all   variables  were  held  constant   except   electrode 

location. 

Significant   interactions   (p^O.Ol)   between   retinal   location, 

electrode   location,   and   check   size were   found  for one Ss   (FD) . 

Third-order   interactions   were   significant   (p<0.01)   for  S  SH. 

This   interaction   indicated  that VERs   for  a particular  S  were 

dependent   upon   the   interval   of  time  following  flash  presentation, 

the  retinal   site  of   stimulation,   the particular   size  of   the check 

used  in   stimulating   the   retina,   and   the   cortical   location   from 

which  activity  was   recorded. 

Discussion 

VERs   in  Relation   to  Topography  of   the  Visual   Cortex 

The   observed  variation   in  VER  waveform  to   stimulation at 

different   retinal   locations may  be   interpreted   in   terms  of  the 

retinotopically-arranged   visual   cortex.      Retinal   projections 

around the   calcarine  fissure     (see  Figure   1)   are  arranged   in 

such  a manner   that   macular  projections   end posteriorally   on 

the occipital   pole  with   respect   to   the   more   anterior  peripheral 

projections.      In   relation   to   the  occipital   lobe,   the   calcarine 

fissure extends   on   a  horizontal  plane  with   its   lower  extremities 

reaching  toward   the  occipital   pole   (Jeffreys,   1971).     Lower  visual 
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field projections lie mainly above the calcarine fissure in 

contrast to upper visual field projections which extend below 

the calcarine fissure.  Electrodes placed differentially around 

this area would therefore maximally, or minimally, record 

potentials evoked by stimulation of underlying retinal projection 

areas. 

Polarity inversions obtained in this study between corre- 

sponding components (second, third, and fourth 50-millisecond 

intervals) of VERs to upper and lower field stimulation are 

possibly indicative of differences in the anatomical origin of 

those responses in that lower field projections around the cal- 

carine fissure are inversely oriented in relation to those of 

upper field projections.  When VERs were recorded from 2.5 cm 

above the inion (Oz), response inversions were readily noticeable; 

however, as the recording site shifted to areas farther removed 

anteriorly from the calcarine fissure, responses obtained from 

upper field stimulation progressively decreased in magnitude. 

In general, lower field VERs from C  were more positive or more 

negative than responses to upper field stimulation with polarity 

inversions either missing or less apparent at C^.  These findings 

are inconsistent with those of Jeffreys (1971) who found upper 

VERs to reach a maximum 5-10 cm foreward of the occipital pro- 

tuberance and lower field 2-5 cm foreward of the occiput.  This 

discrepancy indicates a high degree of complication within the 

electrophysiological processes underlying VER and suggests the 

need for further research. 
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In relation to the topography of the visual cortex, elec- 

trodes recording from Pz   to Cz are relatively closer to that area 

above the calcarine fissure than to the area below the calcarine 

fissure.  Electrodes located on the vertex are, therefore, farther 

away from areas dealing with upper field responses than from those 

areas concerned with lower field VERs.  Further, vertex electrodes 

are located closer to peripheral lower field projections than to 

lower macular projections.  If a topographical hypothesis were 

relevant, VERs to lower peripheral field stimulation would be 

expected to reach maximal amplitude at recording sites closer in 

proximity to projections of the upper peripheral area of the 

retina.  As the tracings in Figure 3 illustrate, progressive 

shifts in stimulation from the lower to the lower-peripheral 

field resulted in maximal VERs at P  cortical areas.  Pz elec- 

trodes were approximately directly over peripheral lower field 

projections in the visual cortex.  The above finding is con- 

sistent with Jeffreys' data (1971) in that a progressive anterior 

displacement of VER distribution over the cortex was found as 

stimulation sites were changed from the center to the periphery 

of the lower visual field. 

Relative Contribution of Central and Peripheral Retinal Areas 

to VER 

Although Rietveld, et al. (1967) stated that "the central 

foveal area contributes by far the greatest part to the pattern 

response (p. 269)," the present study illustrates the profound 
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contribution  of   retinal   areas   other   than   the   fovea  to   the pattern 

response.      Under manipulations   in   four   check   size  variables, 

maximal  VERs   depended on   both   the   locus  of  retinal   stimulation 

and   the projection   area   underlying  a particular  electrode place- 

ment.     Rietveld's   conclusion  was  based  on  VERs  obtained  from 

bipolar electrodes   1.5  cm above   the   inion   in   response   to   central 

and perhiperal   (4°04')   stimulation  with   small   checks   (20.5'   of 

arc).     Tracings   in   Figure   3  are  an  example   of  the  general   find- 

ing   in  the present   study   that,   as   the pattern   response   to 

peripheral   stimulation  decreases   at   the  O     electrode,   activity 

increases   at   the  more   anterior   recording   sites.      Electrodes  placed 

over   the  area   2.5   cm  above   the   inion  yield  maximal   VERs   to   central 

stimulation   and minimal   activity   to  peripheral   stimulation.     This 

is   to be  expected when   the  topography  of   the   visual   cortex   is   taken 

into   consideration.      Stimulation  of   the  central   (more   foveal) 

retina  initiates   activity   that   is   transmitted  to   the posterior 

occipital   lobe.     Electrodes placed over   the   cortical   area   receiv- 

ing  this  activity   record   resultant   potential   changes.      Electrodes 

placed at   distances   farther   removed   from   the  posterior  pole   are 

less   likely   to   record activity   initiated   in   the macular   area,   but 

relatively  more   likely   to   record activity   from  the more  anterior 

peripheral   projection   areas  of   the   cortex.      The  central   foveal 

area,   therefore,   contributes   the  greatest  part  of  the pattern 

response  when  pattern   stimuli   are  being  projected   to   the  central 

visual   field  and when   activity   is  being   recorded   from   the  area 

within   3   cm  above   the   inion.     When  pattern   stimuli   are  being 
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projected to the peripheral visual field, the greatest part of 

the pattern response is contributed by the peripheral retinal 

area; however, this increase in activity will be recorded only 

if electrodes are placed over the more anterior cortical areas. 

Interaction between Check Size and Locus of Retinal Stimulation: 

F.ffect on VER 

It has been previously demonstrated that the critical check 

size evoking the greatest amplitude VERs depends on the area of 

the retina to which that stimulus is presented (Harter, 1971).  In 

general, the results of the present study obtained from Oz elec- 

trodes further illustrate that (a) checks subtending 15 to 30' of 

arc evoke maximal VERs when the central retina is stimulated, and 

(b) as the retina is stimulated progressively more peripherally 

(central to lower to lower-peripheral), check size evoking maximal 

VERs increases from 30 to 60' of arc.  For two Ss checks subtend- 

ing 30 to 15' of arc evoked the greatest VERs to upper field 

stimulation; 60' of arc checks evoked greatest VERs at the upper 

field for the remaining two Ss.  Further research concerning VERs 

from upper field stimulation should resolve this discrepancy. 

The following findings obtained from O  electrodes were in 

agreement with those obtained by Eason, et al. (1970):  (a) responses 

to lower field stimulation were consistently greater (more posi- 

tivity) than those of central and upper field stimulation, (b) 

lower and central field responses were more differentially affected 

by manipulations in check size than were upper (and lower-peripheral) 
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field VERs, (c) upper field responses contained a second sinusoidal 

oscillation; however, this oscillation was present over all check 

sizes for two of the four Ss and absent over all check sizes for 

the remaining two Ss, and (d) lower field VERs were greater for 

the relatively large check sizes (those subtending 30 and 60' of 

arc), while central field responses were maximal to checks sub- 

tending 30 and 15' of arc.  Eason, et al. further found upper 

field VERs to be more sensitive to checks subtending 9.4' of arc. 

Only one S (PA) showed this selective sensitivity to smaller 

checks in the upper field.  Since differences were found between 

check size and lower and central field stimulation, it is plausible 

that the upper visual field would also be differentially sensitive 

to check size thus reflecting differences in the size of the centers 

of the retinal receptive fields.  Harter (1971) and Harter and 

White (1968) presented evidence that suggests a correspondence 

between differentially effective check size on VER amplitude and 

the size of receptive field centers at different retinal locations. 

Since lower-peripheral VERs showed a slight increase to 30 and 

60' checks, with sensitivity increasing to smaller (15*) checks 

as stimulation shifted from the lower to the central visual field, 

it is expected that responses from a larger sample would yield 

maximal VERs to small checks projected to the peripheral upper 

visual field.  This would further test the possibility of differ- 

ences in receptive field centers with respect to both retinal 

eccentricity and topography of the visual cortex. 
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Previous studies have found VER to be significantly affected 

by check size variables (Harter & White, 1968, 1970; Harter, 1971; 

and Eason, White, & Bartlett, 1970); however, check size failed 

to exert a significant effect in the present study.  The studies 

mentioned above were held under conditions of virtually complete 

darkness.  In the present study scattered light from an adjacent 

laboratory and from the area where the experimenter was monitor- 

ing EEG could have kept adaptation level at a minimum.  Perry and 

Childers (1969) discussed the differential effect of adaptation 

level on VERs in relation to photopic and scotopic processes. It 

is highly possible that variation in individual responses as well 

as the failure of check size to reach significance is related to 

the level of adaptation within the experimental cubical.  The need 

for further research concerning the effects of adaptation and the 

relative contribution of photopic and scotopic processes on VER 

is evident. 

Although the main effect of check size was significant for 

only one of four Ss, significant interactions obtained for some 

Ss between check size and visual field, check size and electrode 

location, check size and 5<0-millisecond intervals in addition to 

the second-order interactions with check size suggest the specifi- 

city of the effect of these variables on VER.  The significance 

and specificity of the results indicates the need for further 

research dealing with only one or two levels of the variables used 

in the present study. 
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VER in Relation to Check Size, Locus of Retinal Stimulation, 

and Electrode Location 

The interaction between check size and locus of retinal 

stimulation indicates that the relative contribution of check 

size on VER was dependent upon the locus of retinal stimulation 

and electrode location.  The data reported in this study are 

consistent with that of Harter (1971) in that surface-negativity 

was least affected as stimulation was changed from the central 

to the peripheral retina.  Negativity was, therefore, the dominant 

feature in the peripheral VERs. 

As the recording site was shifted anteriorally to C , 

peripheral responses were consistently greater in magnitude 

than were central VERs.  These findings are again in accordance 

with the topography of the visual cortex. 

The relationship between check size and anteriorally 

recorded (in relation to O ) VERs is not clear.  It has been 

shown that visual acuity gradually decreases as rod distribution 

increases (Alpern, et al., 1967).  As the rod count increases, 

however, so does the involvement of processes such as temporal 

and areal summation (Talbot & Marshall, 1941).  Perhaps the 

contribution of these two physiological processes cancels the 

relatively minor effect of check size on VERs at the periphery. 

For S PA response amplitude remained the same for peripheral 

and central responses to checks of 60* of arc but responses evoked 

by peripheral stimulation (5019') were clearly different in 

shape from those evoked by central stimulation.  As Figure 3 
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shows, the peripheral 60' check size response was more negative 

than the central response with second sinusoidal oscillations 

more evident for central stimulation at O  but consistently more 

evident for peripheral responses as electrodes moved anteriorally 

from Oz.  Second and third sinusoidal oscillations were readily 

apparent in peripheral responses recorded from checks of 15 and 

7.5' of arc, with second sinusoidal waves present at Oz from 

central stimulation of 7.5' checks.  Eason, et al. (1970) found 

second sinusoidal oscillations to be characteristic of VERs evoked 

by large checks in the upper visual field.  Since upper field 

responses were less sensitive to large checks in the Eason, et al. 

study and since second (and third) sinusoidal oscillations were 

apparent in those conditions for PA that have been previously 

found to result in lower amplitude responses, it is suggested that 

these oscillations following maximal evoked potentials are indica- 

tive of different physiological processes underlying the evoked 

response.  Further research is needed to see if similar findings 

can be considered typical of other S_s. 

Summary Statement 

The data presented above have illustrated the usefulness 

of VER in detecting visual processes involved in the retinotopically 

arranged visual cortex.  VERs were shown to be highly dependent 

upon the locus of retinal stimulation.  Response variability from 

a particular electrode location depicted manipulations in the locus 

of retinal stimulation and in the amount of contour contained 
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within the patterned stimuli presented to a particular visual 

field.  When both the locus of retinal stimulation and check size 

were held constant, systematic changes in VER were consistent with 

the topography of the visual cortex.  The location of scalp elec- 

trodes over specific retinal projection areas around the cal- 

carine fissure was shown to be an important factor in detecting 

different patterns of electrical activity concomitant with changes 

in the other independent variables. 
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TABLE 1 

ANALYSIS OF VARIANCE FOR VER 
WAVEFORM:  S PA 

Source df MS F 

Retinal location   (A) 3 173.09 6.48** 

Electrode location   (B) 3 581.75 21.79** 

Check   size   (C) 3 106.48 3.99** 

50-mi Hi second 
intervals   (D) 3 4986.82 186.77** 

A X B 9 57.76 2.16* 

A X C 9 112.68 4.22** 

A X D 9 1374.14 51.47** 

B X C 9 9.98 .37 

B X D 9 1708.26 63.98** 

C X D 9 35.58 1.33 

A X B  X  C 27 14.43 - 

A X B  X  D 27 68.87 2.58** 

A X C   X  D 27 103.80 3.88** 

B X C   X  D 27 73.09 2.73** 

A X B  X  C   X  D 81 21.30 - 

Total within 768 

* p<. 0.05 

** p< 0.01 
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TABLE 2 

ANALYSIS OF VARIANCE FOR VER 
WAVEFORM:  S FD 

Source df MS 

Retinal   location   (A) 

Electrode   location   (B) 

Check   size   (C) 

50-mi Hi second 
intervals   (D) 

A X B 

A X C 

A X D 

B X C 

B X D 

C X D 

A X B   X  C 

A X B  X   D 

A X C   X   D 

B X C  X  D 

A X B  X  C  X   D 

3 1621.14 53.45** 

3 1368.06 45.11** 

3 39.18 1.29 

3 3989.22 131.53** 

9 292.53 9.64** 

9 55.82 1.84 

9 2212.10 72.93** 

9 38.95 1.28 

9 3452.69 113.84** 

9 19.11 - 

27 124.33 4.10** 

27 622.27 20.51** 

27 100.11 3.30** 

27 95.19 3.13** 

81 31.71 1.04 

Total within 768 30.33 

* p<0.05 

** p<0.01 



TABLE 3 

ANALYSIS OF VARIANCE FOR VER 
WAVEFORM:  S  SH 

60 

Source df MS 

Retinal location (A) 

Electrode location (B) 

Check size (C) 

50-millisecond 
intervals (D) 

A X B 

A X C 

A X D 

B X C 

B X D 

C X D 

A X B X C 

A X B X D 

A X C X D 

B X C X D 

A X B X C X D 

3 263.13 33.39** 

3 1931.33 245.09** 

3 15.68 1.99 

3 6490.59 823.68** 

9 100.78 13.75** 

9 42.65 5.41** 

9 610.03 77.41** 

9 25.77 3.27** 

9 347.56 44.11** 

9 196.06 24.88** 

27 9.09 1.15 

27 129.55 16.44** 

27 52.24 6.62** 

21 27.83 3.53** 

81 542.14 68.79** 

Total within 768 

* p< 0.05 

** p^O.Ol 



TABLE 4 

ANALYSIS OF VARIANCE FOR VER 
WAVEFORM:  S SS 

61 

Source df MS 

Retinal   location   (A) 

Electrode  location   (B) 

Check   size   (C) 

50-millisecond 
intervals   (D) 

A X B 

A X C 

A X D 

B X C 

B X D 

C X D 

A X B  X   C 

A X B   X   D 

A X C  X   D 

B X C   X   D 

A X B  X   C   X  D 

3 474.70 21.72** 

3 447.71 20.48** 

3 24.54 1.12 

3 3062.69 140.10** 

9 42.94 1.96* 

9 150.59 6.89** 

9 493.31 22.57** 

9 12.56 - 

9 320.11 14.64** 

9 66.43 3.04** 

27 17.88 - 

27 70.66 3.23** 

27 29.61 1.35 

27 34.52 1.58* 

81 15.72 

Total   within 768 21.86 

* p^O.05 

** p<0.01 


