INFORMATION TO USERS

The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the original text directly from the copy submitted. Thus, some dissertation copies are in typewriter face, while others may be from a computer printer.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyrighted material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each oversize page is available as one exposure on a standard 35 mm slide or as a $17" \times 23"$ black and white photographic print for an additional charge.

Photographs included in the original manuscript have been reproduced xerographically in this copy. 35 mm slides or $6'' \times 9''$ black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA

•

Order Number 8816364

Effects of dietary fat levels and fat sources on growth and trace mineral deposition in young male rats

Zúñiga, Thelma Howell, Ph.D.

The University of North Carolina at Greensboro, 1987

Copyright ©1987 by Zúñiga, Thelma Howell. All rights reserved.

U·M·I 300 N. Zeeb Rd. Ann Arbor, MI 48106

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark $\sqrt{}$.

- 1. Glossy photographs or pages _____
- 2. Colored illustrations, paper or print _____
- 3. Photographs with dark background _____
- 4. Illustrations are poor copy _____
- 5. Pages with black marks, not original copy
- 6. Print shows through as there is text on both sides of page_____
- 7. Indistinct, broken or small print on several pages _____
- 8. Print exceeds margin requirements _____
- 9. Tightly bound copy with print lost in spine _____
- 10. Computer printout pages with indistinct print _____
- 11. Page(s) ______ lacking when material received, and not available from school or author.
- 12. Page(s) ______ seem to be missing in numbering only as text follows.
- 13. Two pages numbered _____. Text follows.
- 14. Curling and wrinkled pages _____
- 15. Dissertation contains pages with print at a slant, filmed as received ______
- 16. Other_____

U·M·I

· • . . •

EFFECTS OF DIETARY FAT LEVELS AND FAT SOURCES ON GROWTH AND TRACE MINERAL DEPOSITION IN

YOUNG MALE RATS

by

Thelma Howell Zuniga

A Dissertation Submitted to the Faculty of the Graduate School at The University of North Carolina at Greensboro in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

> Greensboro 1987

> > Approved by

Hen Marie Dissertation Adviser

APPROVAL PAGE

This dissertation has been approved by the following committee of the Faculty of the Graduate School at The University of North Carolina at Greensboro.

Mayee Dissertation Adviser Aden (Kaven Committee Members mares

eptender 10, 1987 Jof Acceptance by Committee

Final Oral Examination

© 1987 by THELMA HOWELL ZUNIGA

ZUNIGA, THELMA HOWELL, Ph.D. Effects of Dietary Fat Levels and Fat Sources on Growth and Trace Mineral Deposition in Young Male Rats. (1987) Directed by Dr. Aden C. Magee. 100 pp.

This study investigated the effects of dietary fat levels and fat sources on growth and trace mineral deposition in young male rats at four weeks. Dietary factors included four levels of fat (2.5, 5, 10, and 20%) and three fat sources for each of two experiments. Fat sources used in the first experiment were coconut oil, lard, and safflower oil, while corn oil, olive oil, and soybean oil were the dietary fat sources for the second experiment. Criteria used to evaluate animal responses to various test diets included weight gain, feed intake, hemoglobin level, hematocrits, and copper, iron, and zinc deposition in the kidneys, liver, spleen and testes.

Analyses of variance (SAS programs) indicated that growth, in the experiment where coconut oil, lard, or safflower oil were the dietary fat sources, was effected significantly by the kilocalorie intake. Animals fed diets high in fat gained the most weight in both experiments. Animals fed dietary corn oil gained significantly more weight versus those fed olive oil or soybean oil. Hemoglobin levels were higher in animals fed coconut oil diets versus those fed lard, and both hemoglobins and hematocrits were higher at the low dietary fat levels.

Kidney copper deposition was greater in animals fed olive oil diets compared to those fed corn or soybean oil diets. A source x level interaction affected kidney iron deposition when coconut oil, lard, and safflower oil were the fat sources. Spleen iron was found to be higher in animals on olive oil diets versus those fed corn oil or soybean oil diets. Tissue zinc deposition was found not to be effected by either dietary fat level or fat sources.

ACKNOWLEDGMENTS

The author would like to express her appreciation and gratitude to the people who have aided and supported her in this research project. The assistance, guidance, and patience of Dr. Aden C. Magee is deeply appreciated, as is the support of Drs. Mildred Johnson, Laura G. Anderton, and Karen Graves.

The technical assistance of Ms. Shih-Min L. Wu, Dr. Jorge Zuniga and Mr. Patrick V. McCarthy is acknowledged and appreciated.

The author also expresses heartfelt thanks to her children, Steven and Adriana, for their encouragement, help, and support in this undertaking.

TABLE OF CONTENTS

			Page
APPRO	L PAGE	••	ii
ACKNO	EDGMENTS	•••	iii
LIST	TABLES	••	v
CHAPT			
	INTRODUCTION	••	1
I	REVIEW OF THE LITERATURE	••	3
II	METHODS AND PROCEDURES	••	7
	Animals	•••	7 8 10 12
I	RESULTS AND DISCUSSION	••	13
	Growth, Feed Intake, and Feed Efficiency Hemoglobin and Hematocrits Tissue Dry Weights Tissue Copper Tissue Iron Tissue Jinc	• • • • • • • •	13 19 23 26 28 34
	GENERAL DISCUSSION	••	37
V	SUMMARY AND RECOMMENDATIONS	••	44
	Recommendations	••	48
BIBLI		••	50
APPEN	CES		
	pendix A. Composition of Experimental Diets	••	55
	pendix B. Raw Data	• •	61
	pendix C. Statistical Analyses	••	86

LIST OF TABLES

...

Table		P	age
1	Growth of Young Male Rats Fed Different Levels and Sources of Fat	•	14
2	Feed Intake of Young Male Rats Fed Different Levels and Sources of Fat	•	15
3	Feed Efficiency Ratios of Young Male Rats Fed Different Levels and Source of Fat	•	17
4	Hemoglobin Levels and Hematocrits of Young Male Rats Fed Coconut Oil, Lard, and Safflower Oil	٠	20
5	Hemoglobin Levels and Hematocrits of Young Male Rats Fed Corn Oil, Olive Oil, and Soybean Oil	•	22
6	Dry Tissue Weights of Young Male Rats Fed Coconut Oil, Lard, and Safflower Oil	•	24
7	Dry Tissue Weights of Young Male Rats Fed Corn Oil, Olive Oil, and Soybean Oil	•	25
8	Tissue Copper Levels of Young Male Rats Fed Coconut Oil, Lard, and Safflower Oil	•	27
9	Tissue Copper Levels of Young Male Rats Fed Corn Oil, Olive Oil, and Soybean Oil	•	29
10	Tissue Iron Levels of Young Male Rats Fed Coconut Oil, Lard, and Safflower Oil	•	30
11	Tissue Iron Levels of Young Male Rats Fed Corn Oil, Olive Oil, and Soybean Oil	•	32
12	Tissue Zinc Levels of Young Male Rats Fed Coconut Oil, Lard, and Safflower Oil	•	35
13	Tissue Zinc Levels of Young Male Rats Fed Corn Oil, Olive Oil, and Soybean Oil	•	36
A- 1	Composition of Basal Diets	•	56
A- 2	Composition of Mineral Mix, Wesson Modified Osborne-Mendel	•	57
A- 3	Composition of Vitamin Mix	•	58

Table Page 59 A- 5 Dietary Fat Fatty Acid Composition and Ratios 60 B- 1 Total Feed Consumption of Rats in 62 B- 2 Total Weight Gain of Rats in 63 Blood Hemoglobin Concentration in Rats in B- 3 64 Blood Hematocrits of Rats in B- 4 65 B- 5 Kidney Weights of Rats Fed Coconut Oil, 66 B- 6 Liver Weights of Rats Fed Coconut Oil. 67 B- 7 Spleen Weights of Rats Fed Coconut Oil, 68 Testes Weights of Rats Fed Coconut Oil, B - 869 Kidney Weights of Rats Fed Corn Oil, B- 9 70 B-10 Liver Weights of Rats Fed Corn Oil 71 B-11 Spleen Weights of Rats Fed Corn Oil, 72 Testes Weights of Rats Fed Corn Oil, B-12 73 Kidney Copper Concentrations of Rats in B-13 74 B-14 Kidney Iron Concentration of Rats in 75 B-15 Kidney Zinc Concentration of Rats in 76

Table		Page
B-16	Liver Copper Concentration of Rats in Experiments 1 and 2	. 77
B-17	Liver Iron Concentration of Rats in Experiments 1 and 2	. 78
B-18	Liver Zinc Concentration of Rats in Experiments 1 and 2	. 79
B-19	Spleen Copper Concentration of Rats in Experiments 1 and 2	. 80
B-20	Spleen Iron Concentration of Rats in Experiments 1 and 2	. 81
B-21	Spleen Zinc Concentration of Rats in Experiments 1 and 2	. 82
B-22	Testes Copper Concentration of Rats in Experiments 1 and 2	. 83
B-23	Testes Iron Concentration of Rats in Experiments 1 and 2	. 84
B-24	Testes Zinc Concentration of Rats in Experiments 1 and 2	. 85
C- 1	Analysis of Variance of Growth Data of Rats Fed Coconut Oil, Lard and Safflower Oil	. 87
C- 2	Analysis of Variance of Growth Data of Rats Fed Corn Oil, Olive Oil, and Soybean Oil	88
C- 3	Analysis of Variance of Feed Intake Data of Rats	. 89
C- 4	Analysis of Variance of Feed Efficiency Data	90
C- 5	Analysis of Variance of Hemoglobin and Hematocrit Data of Rats Fed Coconut Oil, Lard, and Safflower Oil	91
C- 6	Analysis of Variance of Hemoglobin and Hematocrit Data of Rats Fed Corn Oil, Olive Oil, and Soybean Oil	92
C- 7	Analysis of Variance of Tissue Dry Weight Data of Rats Fed Coconut Oil, Lard, and Safflower Oil	93
C- 8	Analysis of Variance of Tissue Dry Weight Data of Rats Fed Corn Oil, Olive Oil, and Soybean Oil	94

÷

Table

C- 9	Analy sis Rats Fed	of Variance of Tissue Copper Data of Coconut Oil, Lard, and Safflower Oil	•	•	•	•	٠	٠	•	95
C-10	Analysis Rats Fed	of Variance of Tissue Copper Data of Corn Oil, Olive Oil, and Soybean Oil	•	•	•	•	٠	•	•	96
C-11	Analys is Rat s Fed	of Variance of Tissue Iron Data of Coconut Oil, Lard, and Safflower Oil	•	•	•	•	•	•	•	97
C-12	Analysis Rats Fed	of Variance of Tissue Iron Data of Corn Oil, Olive Oil, and Soybean Oil	•	•	•	•	•	•	•	98
C-13	Analysis Rats Fed	of Variance of Tissue Zinc Data of Coconut Oil, Lard, and Safflower Oil		•	•	•	•	•	•	9 9
C-14	Analysis Rats Fed	of Variance of Tissue Zinc Data of Corn Oil, Olive Oil, and Soybean Oil	•	•	•	•	•	٠	•	100

,

Page

CHAPTER I

INTRODUCTION

Health professionals and health organizations in the United States are recommending that people reduce their fat intake to 30% of caloric intake and restrict their intake of highly saturated fats. A 1978 FAO/WHO report recommended that dietary fat be reduced and that a balance between dietary polyunsaturated fatty acids (PUFA) and saturated fatty acids (SFA) be achieved so that a polyunsaturated fatty acid to saturated fatty ratio (P/S) between 0.6-1.0 could be maintained. The higher dietary P/S ratio is considered to be one of the factors which helps to reduce the risk of cardiovascular disease (CVD) (Hamilton & Whitney, 1979, p. 504).

Taylor, Gibney, and Morgan (1979) pointed out that not only the P/S ratio of the diet may be important in CVD, but that the ratio of the different PUFA families (n-6 to n-3) may be just as important. Budowski and Crawford (1985) suggested that a "natural" diet, and one that aids in CVD prevention, should also have a dietary PUFA ratio of n-6 fatty acids to n-3 fatty acids not exceeding five. They have maintained that diets in many western industrialized countries have ratios of linoleic acid (n-6) to linolenic (n-3) well above five, mainly as a result of increased consumption of plant oils.

In order for many people to achieve the recommended dietary balances between dietary lipid components, marked changes in the amount and types of lipids consumed must occur. The typical steak dinner of red meat and potatoes with a salad, has a high percentage of caloric intake from saturated fats. Since changes in a major dietary component can influence the availability and utilization of other nutrients, including trace minerals, information regarding the relationships between various nutrients needs to be considered. The effects of dietary fat on trace minerals have been reported by many researchers (Amine & Hegsted, 1975; Barbatunde, 1972; Bettger, Reeves, Moscatelli, Reynolds, & O'Dell, 1979; Bowering, Masch, & Lewis, 1977; Johnson, Lukaski, & Brown, 1987; Lukaski, Klevay, Bolonchuk, Mahalko, Milne, Johnson, & Sandsted, 1982), but the exact nature of the relationship between dietary fat and trace mineral deposition needs further clarification.

The purpose of this study was to investigate further the effects of fat level and fat source (type) on growth and deposition of the trace minerals, copper, iron, and zinc in young male rats. Fat sources with different fatty acid compositions were chosen in order to determine, if possible, which fatty acid component (P/S ratio or linoleic acid/linolenic acid ratio), along with fat level might have the greatest influence on trace mineral status.

CHAPTER II

REVIEW OF THE LITERATURE

Although interrelationships between dietary fat and the trace minerals, zinc, iron, and copper, in several animal species have been reported, the exact natures of the interrelationships are not clearly defined. The relationship between zinc and dietary fat has been reported by several researchers. Babatunde (1972) reported a direct relationship between dietary levels of lard and zinc required for optimum growth and feed utilization, with the absence of parakeratosis, in young pigs. As the dietary level of lard increased, the amount of zinc needed also increased. Babatunde reported that with a 5% level of lard, 100 ppm of zinc was needed for optimum growth and health of the pig. Bettger, Reeves, Moscatelli, Reynolds, and O'Dell (1979) reported that rats exhibited better growth on diets containing corn oil than on diets containing hydrogenated coconut oil when zinc was limiting. These researchers also found that the effects of zinc deficiency, low growth and dermal lesions were exaggerated by an essential fatty acid deficiency in rats, no matter what the fat source. The corn oil would supply the essential fatty acid, linoleic acid, as compared to the hydrogenated coconut oil with no linoleic acid. Bettger, Reeves, Moscatelli, Savage, and O'Dell (1980) found that chicks fed a zinc deficient diet had higher growth rates when hydrogenated coconut oil was the fat source than when soybean oil was the fat source. Cunnane

and Horrobin (1980) reported that supplements of evening primose oil, with a high linolenic acid content, but not olive oil, high in oleic acid, or safflower oil, high in linoleic acid, could prevent dermal lesions and stimulate significant growth in rats fed zinc deficient diets. Frimpong (1982) stated that the effects of dietary fat levels on growth in young rats might be dependent on the type of fatty acids present in the diet.

The effect of dietary fat on the trace mineral iron has also been studied. Amine and Hegsted (1975) reported that rats fed diets with 5% coconut oil exhibited greater iron absorption than did rats fed diets with 5% corn oil. Onderka and Kirksey (1975) also found higher iron concentrations in tissues of rats fed coconut oil as contrasted to rats fed safflower oil. Bowering, March, and Lewis (1977) found that increases in dietary lard (a saturated fat source) were associated with slight increases in total liver iron deposition in male rats as compared to animals fed low levels of corn oil (an unsaturated fat source). Mahoney, Farmer, and Hendricks (1980) reported that rats fed high fat diets incorporated more iron into the liver than did rats fed low fat diets. They also observed that rats fed turkey meat diets, prepared with beef fat, utilized dietary iron for hemoglobin synthesis better than rats fed turkey meat diets prepared with corn oil. Jones (1985) found that liver iron deposition was higher in animals consuming diets high in saturated fats. Increased iron absorption by rats on high fat diets, 30% vs. 5%, was reported by Johnson, Lukaski, and Bowman (1987), as well as higher liver iron

deposition and higher hemoglobin levels in animals fed dietary coconut oil compared to safflower oil.

The relationship of dietary fat and the trace mineral copper has also been reported. Lukaski, Klevay, Bolonchuk, Mahalko, Milne, Johnson, and Sanstead (1982) reported that copper retention in humans was impaired by polyunsaturated dietary fat. Sinthusek and Magee (1984) reported that the liver deposition of copper in the rat was increased when coconut oil (a saturated fat source) was used in the diet, while apparent zinc retention was increased when the diets contained corn oil (a polyunsaturated fat source). Lin (1985) also reported that liver copper deposition increased in rats fed diets with coconut oil versus those fed diets with lard. Jones (1985), however, observed that the type of fat had no apparent effect on copper or zinc liver deposition in young rats. Magee, Jones, Lin, Sinthusek, Frimpong, and Wu (1986) concluded that the apparent bioavailability of copper, iron, and zinc may be dependent upon the type and level of fat in the diet, an observation which is supported by the research findings previously mentioned.

Previous studies pertaining to possible effects of dietary fat on trace mineral bioavailability have generally utilized fats which were highly saturated or highly unsaturated, and in most of these studies only one level of fat was used. Information concerning the effects of specific fat composition (polyunsaturated/saturated fatty acid ratio, linoleic/linolenic ratio) as well as low to high levels of dietary fat is particularly limiting. Some of the previous studies also involved mineral deficiency states or focused primarily on the effect of the zinc/copper ratio on lipid profiles and trace mineral status. This study was designed to investigate the effect of dietary fat level and dietary fat composition, in terms of the kind and concentration of fatty acids present, on tissue deposition of copper, iron, and zinc in young male rats fed diets containing adequate amounts of these minerals.

CHAPTER III METHODS AND PROCEDURES

The purpose of this study was to investigate the effects of different levels of dietary fat and different fat sources on the growth and tissue deposition of copper, iron, and zinc in male weanling rats. Parameters used for evaluating the results included feed intake, weight gain, hemoglobin, hematocrit, and liver, kidney, spleen, and testes concentration of copper, iron, and zinc.

The study was conducted in two experiments. A 4 x 3 factorial design was used for both experiments. The experimental dietary variables for each experiment were four levels of fat (2.5, 5, 10, and 20% by weight) and three fat sources. Three different fat sources, of different fatty acid composition, were used for each experiment. The diets were randomly assigned in a randomized block design involving eight replications.

<u>Animals</u>

Ninety-six weanling male albino Sprague-Dawley rats¹, approximately 21-26 days old and weighing an average of 59 grams, were used for both experiments. The rats were weighed and randomly assigned to a replication according to initial body weight. Eight replications were used, and diets were randomly assigned to individual animals

¹Holtzman Company, Madison, Wisconsin.

within a replication. The animals were housed in individual, stainless wire-bottom cages and had free excess to feed and distilled water at all times. They were housed under controlled temperature, 25°C, with a l2-hour light/dark cycle. Feed consumption records were kept, and the animals were weighed weekly for the experimental period of four weeks.

At the end of the experimental periods, animals were fasted for 12 hours and blood was drawn from the tip of the snipped tail for hemoglobin and hematocrit determinations. Animals from five randomly selected replications were anesthetized with ether and sacrificed. The liver, kidneys, spleen, and testes of each animal were removed and weighed. Dry weights were obtained after drying samples to constant weight in an oven at 60° C. The tissues were wet ashed with hot nitric and perchloric acids, and the ash of each sample was dissolved in 3 ml of 0.6N HCL and diluted to 25 ml with redistilled water. Copper, iron, and zinc contents of appropriate aliquots were determined by atomic absorption spectrophotometry.²

Diets

The first experiment conducted included coconut oil 3 , safflower oil 4 , and lard 5 as the sources of fat. These fats were chosen

²Perkin-Elmer Model 272, Norwalk, CT.
³ICN Nutritional Biochemicals, Cleveland, OH.
⁴ICN Nutritional Biochemicals, Cleveland, OH.
⁵Armour and Company, Phoenix, AZ.

primarily because of differences in the polyunsaturated/saturated (P/S) ratios and in the linoleic and linolenic acid concentrations. Corn $oi1^6$, soybean $oi1^7$, and olive $oi1^8$ were the sources of fat used for the second experiment and were fed at the levels used for the first experiment. These fat sources were chosen because two had a similar P/S ratio, but different oleic, linoleic, and linolenic acid concentrations. The fat sources were analyzed for fatty acid composition by gas liquid chromatography⁹ (Table A-5).

In addition to fat, the diets contained 15% protein¹⁰, 54-72% starch¹¹, 4% mineral mix¹², 2% vitamin mix, 2% cellulose¹³, 2% vitamin A and vitamin D mix¹⁴, and 10 ppm zinc (in the form of zinc sulfate). The composition of all diets, mineral mix, and vitamin mix are given in Appendix A, Tables A-1 through A-5. The diets were ashed and analyzed for copper, iron, and zinc using atomic absorption spectrophotometry

⁶ICN Nutritional Biochemicals, Cleveland, OH.

⁷Pure soybean oil, A&P, Montvale, NJ.

⁸Spanish pure imported olive oil, Fantis Foods, Inc., NY.

⁹Tracor Instrument Model 222, Austin, TX.

¹⁰Vitamin free casein, ICN Nutritional Biochemicals, Cleveland, OH.

¹¹Cornstarch, Teklad Test Diets, Madison, WI.

¹²Wesson Modified Osborne-Menkel Mineral Mix, Teklad Test Diets, Madison, WI.

¹³Alphacel, ICN Nutritional Biochemicals, Cleveland, OH.

¹⁴The mix contained 3000 units of vitamin A palmitate/gram and 400 units of vitamin D/gram. The vitamins were purchased from Teklad Test Diets, Madison, WI.

(Table A-4). Diet energy content was calculated using 9 kilocalories (Kcal)/gm fat and 4 Kcal/gm of carbohydrate and protein.

Analytical Methods

<u>Fatty acid composition</u>. The method of Metcalfe and Schmitz (1961), as modified by Wang and Peter (1983), was used for the fatty acid analysis of the oils used in the diets. An aliquot of 250 mg of the oil being analyzed was placed in a 25 ml volumetric flask and 5 ml of 0.5 M methanolic sodium hydroxide was added. The mixture was heated on a hot plate at 100° C for about 15 minutes or until the solution was homogenous. Three ml of methanolic-BF₃ was added to this solution and heated for about five minutes.

The mixture was allowed to cool, and the fatty acid methyl esters were extracted with 5 ml of heptane. The heptane layer was pushed into the neck of the volumetric flask with a saturated sodium chloride solution. The flask was shaken, and the phases were allowed to separate. The heptane layer was removed and placed into a small vial with anhydrous sodium sulfate. After standing, the heptane solution of fatty acid methyl esters was removed and injected into the gas liquid chromatograph for analysis.

The GC profiles of the fatty acid methyl esters were obtained on a Tracor instrument model 222 using a glass column, 6 ft. by 1/4 in. O.D., packed with 12% DEGS on anakron ABS, 90/100 mesh (Analab, Inc.) with a flame ionization detector (FID). The carrier gas was nitrogen with a flow rate of 30 ml per minute. The initial column temperature was 170° C and the final temperature was 200° C, with a program rate change of 2° per minute. The injector port and detector temperature was 210° C. The peaks were integrated using a Hewlett Packard 3380 or 3392 integrator¹⁵, and peak percentages are percentages of the total area integrated. The fatty acid compositions of fat sources are given in Table A-5.

<u>Hemoglobin and hemotocrits</u>. Hemoglobin was determined by the method of Shenk, Hall, and King (1934). The tips of the rats' tails were cut with a sharp razor blade, and blood was drawn into a graduated diluting pipette to the first mark. A freshly prepared solution of 0.1% sodium carbonate was then drawn into the pipette to the second mark. The diluted blood was then drained freely into culture tubes. The optical density of each sample was then determined at a wavelength of 542 nm against a distilled water reference on the Spectronic 20 spectrophotometer.¹⁶ The hemoglobin (Hb) concentration was determined from the optical density by the following equation: optical density (0D) x 28.58 = grams Hb per 100 ml blood.

For the hematocrit determinations, blood was drawn from the tail at the same time as the blood for the hemoglobin was drawn. The heparinized hematocrit capillary tubes were filled, plugged with critoseal, and centrifuged in the hematocrit centrifuge. The hematocrit percentage was then read from the Lancer Critocap Manual reader and recorded.

¹⁵Hewlett Packard, Palo Alto, CA.

¹⁶Bausch & Lomb, Rochester, NY.

<u>Tissue minerals</u>. As already noted, the copper, iron, and zinc concentrations of the animal tissues were determined after ashing by atomic absorption spectrophotometry. A commercial analytical AA standard for each mineral was diluted and used as known standards for the determinations. All glassware was acid washed, and only redistilled water was used in diluting standards or tissue samples. The copper determinations were read at 324.8 nm, iron at 248.3 nm, and zinc at 213.9 nm, using an air-acetylene flame.

Statistical Methods

The analysis of variance (SAS program) was used to analyze the data of experiments 1 and 2, and the reported significant effects were based on the 0.05 level of probability. Covariant analyses were done on the weight gain data to see the effect of diet on weight gain adjusted for feed consumption, or kilocalories, and on the tissue mineral data to adjust for weight gains and/or dry weights. Two-way analysis of variance was used to determine fat source and fat level interactions. The least significant differences (LSD) were provided as an indicator of differences between individual means which were needed to show significance at the 0.05 and 0.01 levels of probability.

CHAPTER IV

RESULTS AND DISCUSSION

The raw data obtained in this study are presented in Appendix B. The results of the statistical analyses of the data are given in Appendix C.

Growth, Feed Intake, and Feed Efficiency

Weight gains of young male rats fed diets with coconut oil, lard, or safflower oil (Experiment 1) are shown in Table 1. A significant source x level interaction ($\underline{p} \ge 0.05$) was detected (Appendix C, Table C-1). The data indicated that at low fat levels the animals fed lard diets grew less than those fed coconut or safflower oil diets, but at high fat levels animals fed lard diets gained the most weight followed by those animals fed safflower oil diets, while the animals fed coconut oil diets gained the least. Increasing levels of dietary fat were associated with highly significant ($\underline{p} \le 0.01$) increases in weight gains. It appeared, however, that this occurred only when lard was the source of fat. The growth of animals fed diets with coconut oil or safflower oil was essentially the same over all fat levels.

Feed intake of animals fed coconut oil, lard, or safflower oil diets decreased as the level of fat in the diet increased (Table 2). Animals fed coconut oil diets showed a marked decrease in feed intake at a 10% fat level, whereas animals fed lard and safflower oil diets showed a marked decrease only at the 20% fat level. Analysis of the

Table 1

Growth of Young Male Rats Fed Different Levels and Sources of Fat

		Fa	at Level (%)						
Source	2.5	5	10	20	Mean				
	4 weeks weight gain (gm) ^a								
Experiment 1									
Coconut oil	184 <u>+</u> 8	193 ± 12	187 ± 3	197 ± 7	190				
Lard	173 ± 6	182 <u>+</u> 5	213 ± 4	215 ± 9	196				
Safflower oil	192 ± 7	201 ± 6	201 ± 10	201 ± 5	199				
Mean	183	192	201	205					
LSD ^b 0.05 0.01	17 23								
Experiment 2									
Corn oil	164 <u>+</u> 7	169 ± 5	195 ± 7	191 ± 6	180				
Olive oil	149 ± 3	155 ± 4	161 ± 6	179 ± 5	161				
Soybean oil	156 ± 4	168 ± 6	161 ± 7	186 <u>+</u> 7	168				
Mean	157	164	173	186					
LSD _{0.05} 0.01	16 21								

^aEach value is the mean of 8 animals [±] standard error of the mean (SEM). ^bLeast significant differences at specified probability levels. Feed Intake of Young Male Rats Fed Different Levels and Sources of Fat

		Fat Level (%)								
Source		2.5	5	10	20	Mean				
			4 weeks	feed intake ((gm) ^a					
Experime	<u>ent l</u>									
Coconut	oil	466 <u>+</u> 10	456 ± 17	419 ± 7	380 ± 11	430				
Lard		441 <u>+</u> 8	440 ± 11	467 ± 9	411 ± 14	439				
Safflow	er oil	444 ± 17	440 ± 8	443 ± 8	381 ± 9	427				
	Mean	450	445	443	390					
	LSD ^b 0.05 0.01	28 37								
Experime	ent 2									
Corn oi	1	457 ± 18	405 ± 14	437 <u>+</u> 14	373 ± 12	418				
Olive of	i]	418 ± 9	406 <u>+</u> 9	389 <u>+</u> 13	375 ± 6	397				
Soybean	oil	420 <u>+</u> 8	415 ± 6	382 ± 7	365 ± 10	395				
	Mean	431	408	402	371					
	LSD _{0.05} 0.01	30 40								

^aEach value is the mean of 8 animals \pm SEM.

^bLeast significant differences at specified probability levels.

data (Appendix C, Table C-3) revealed a highly significant ($\underline{p} < 0.01$) source x level effect on feed intake. At low fat levels the animals fed coconut oil diets consumed significantly more feed, but at high fat levels the animals on lard diets consumed more feed. There was a significant ($\underline{p} < 0.01$) level effect on feed intake. The higher fat level, 20%, led to a significantly lower feed intake as compared to the 2.5% or 5% dietary fat levels.

Covariant analysis of the growth data (Appendix C, Table C-1) indicated that the effects of diets were significant ($\underline{p} < 0.01$) after adjusting for feed intake (grams). However, when the growth data were adjusted for feed intake in terms of kilocalories (Table C-1) no significant effects of diets were shown. The differences in weight gains appear to be due to differences in kilocalories consumed by the animals.

Animals fed safflower oil diets had significantly higher $(\underline{p} < 0.05)$ feed efficiency ratios (weight gain/feed intake) than animals fed either coconut oil or lard diets (Table 3, Appendix C, Table C-4). The highest feed efficiency was observed in animals fed a 20% level of fat, while the lowest occurred in animals on 2.5% fat level diets.

These results from Experiment 1 suggest that the degree of saturation or polyunsaturation of the fat in the diet, the P/S ratio, is less important with respect to four weeks growth than the level of dietary fat as the statistical analysis showed on a significant dietary fat level/kilocalorie effect on weight gain. However, when diets are

Table 3

Feed Efficiency Ratios of Young Male Rats Fed Different Levels and Source of Fat

	Fat Level (%)								
Source	2.5	5	10	20	Mean				
Experiment 1									
Coconut oil	0.40 ± 0.01	0.42 ± 0.02	0.45 ± 0.01	0.52 ± 0.02	0.45				
Lard	0.39 ± 0.01	0.41 ± 0.01	0.46 ± 0.01	0.52 ± 0.01	0.45				
Safflower oil	0.44 ± 0.02	0.46 ± 0.01	0.45 ± 0.02	0.53 ± 0.01	0.47				
Mean	0.41	0.43	0.45	0.52					
	0.05 0.02 0.01 0.03								
Experiment 2									
Corn o i l	0.37 ± 0.03	0.42 ± 0.02	0.45 ± 0.02	0.52 ± 0.01	0.44				
Olive oil	0.36 ± 0.01	0.38 ± 0.01	0.42 ± 0.01	0.48 ± 0.02	0.41				
Soybean oil	0.37 ± 0.01	0.41 ± 0.01	0.42 ± 0.02	0.51 ± 0.02	0.43				
Mean	0.37	0.40	0.43	0.50					
LSD ^b	0.05 0.04 0.01 0.05								

^aEach value is the mean of 8 animals \pm SEM.

^bLeast significant differences at specified probability levels.

low in fat (2.5%), the highly unsaturated fat, safflower oil, with a P/S of 8, supported better growth.

Increased growth of young male rats fed corn oil, olive oil, and soybean oil diets (Experiment 2) was observed as the fat level of the diets increased (Table 1). Animals fed a 10% corn oil diet had essentially the same amount of growth by four weeks as animals fed olive oil or soybean oil diets at a 20% level. Analysis of the data (Appendix C, Table C-2) revealed that both source and level of fat had highly significant ($\underline{p} < 0.01$) effects on weight gains. Animals fed corn oil diets had significantly greater weight gains than animals fed olive oil or soybean oil diets, and those fed the 20% fat level diets showed weight gains significantly higher than those fed the 2.5% fat level diets.

Similar to the results of Experiment 1, the amount of feed consumed by the animals in Experiment 2 decreased as the level of fat in the diets increased (Table 2, Experiment 2). Analysis of the feed intake data (Appendix C, Table C-3) revealed a significant ($\underline{p} < 0.05$) source x level interaction. Animals fed corn oil at a 2.5% level and at a 10% level consumed significantly more feed than animals fed either 2.5% or 10% olive oil or soybean oil. At the 10% and 20% levels of dietary fat, animals fed soybean oil diets consumed the least amount of feed. At the 20% dietary fat level, animals fed olive oil and corn oil diets consumed essentially the same amount of feed. The highly significant ($\underline{p} < 0.01$) effect of corn oil and of the 2.5% and 20% fat levels on feed intakes were also noted on analysis. Analysis of covariance (Appendix C, Table C-2) revealed that the effects of fat source and level were still highly significant (p < 0.01) after adjustment of weight gains for feed intake or kilocalorie intake. The differences in weight gains observed in this experiment appeared not to be due to differences in feed intake or kilocalorie intake.

In Experiment 2, fat level had a highly significant effect $(\underline{p} < 0.01)$ on feed efficiency, while fat source had a significant $(\underline{p} < 0.05)$ effect (Table 3, Appendix C, Table C-4). The highest feed efficiency was observed in animals fed the 20% fat level diets, while animals on the 2.5% fat level diets had the lowest, as in Experiment 1. Animals fed corn oil and soybean oil diets had higher feed efficiency ratios than did animals fed olive oil diets. The animals fed diets with polyunsaturated fat sources, corn oil and soybean oil, and higher P/S ratios had the higher feed efficiency ratios.

These data show that the corn oil diets supported weight gain in the young male rats better than olive or soybean oil diets at four weeks. Corn oil has a higher linoleic/linolenic acid ratio than the other two fat sources. The feed efficiency ratios of corn oil and soybean oil were, however, about the same, with olive oil having the lower feed efficiency ratio.

Hemoglobin and Hematocrits

Hemoglobin concentrations and hematocrits of animals fed coconut oil, lard, and safflower oil diets are shown in Table 4. Analysis (Appendix C, Table C-5) showed a highly significant (p < 0.01) source and a significant (p < 0.05) level effect on hemoglobin concentration.

Table 4

Hemoglobin Levels and Hematocrits of Young Male Rats Fed Coconut Oil, Lard, and Safflower Oil

	Fat Level (%)								
Source		2.5	-	5		10		20	Mean
					gm	<u>/d1</u> a			
Hemoglobin									
Coconut oil	14.3	3±0.5	13.	5 ± 0.3	14.	0 ± 0.4	14.	2 ± 0.4	14.0
Lard	13.0	6±0.3	13.	6±0.4	13.	0 ± 0.3	12.	5 ± 0.1	13.2
Safflower oil	14.	5 ± 0.7	12.	9 ± 0.2	13.	1 <u>+</u> 0.3	13.	5±0.4	13.5
Mean		14.1		13.3		13.4		13.4	
LSD ^b 0.05 0.01		1.1 1.4							
					Per	<u>cent</u> a			
Hematocrit									
Coconut oil	46	<u>+</u> 2	51	<u>±</u> 1	46	<u>±</u> 2	48	± 2	48
Lard	52	± 2	50	<u>+</u> 1	46	<u>±</u> 2	47	± 2	49
Safflower oil	49	± 1	46	<u>+</u> 2	49	± 1	45	± 1	47
Mean		49		49		47		47	
LSD _{0.05} 0.01		4 5							

^aEach Value is the mean of 8 animals \pm SEM.

^bLeast significant differences at specified probability levels.
Rats fed coconut oil tended to have higher hemoglobin levels than did rats fed either lard or safflower oil diets. With the exception of animals fed coconut oil diets, increased dietary fat was associated with decreased hemoglobin concentrations. Correlation analysis also revealed a negative correlation of weight gain and hemoglobin concentration. Analysis of the hematocrit data (Appendix C, Table C-5) indicated there was a significant ($\underline{p} < 0.05$) source x level interaction. Increased dietary fat was associated with decreased hematocrits of animals fed either lard or safflower oil, but with slight increases in hematocrits of animals fed coconut oil. In general the effects of fat source and level of fat on hemoglobin and levels and hematocrits were small.

Hemoglobin levels and hematocrits of animals fed corn oil, olive oil, and soybean oil diets are presented in Table 5. Analyses indicated that neither fat source nor fat level had any significant effects (Appendix C, Table C-6) on hemoglobin levels or hematocrits. Hemoglobin levels of animals fed olive oil diets tended to be higher than hemoglobin levels of animals fed corn oil or soybean oil diets. As noted in Experiment 1, the more saturated fat was associated with higher hemoglobin levels, but these animals also had lower weight gains. Hemoglobin levels also tended to decrease slightly as the level of fat in the diet was increased. Hematocrits of animals fed these three fat sources showed little variation.

Hemoglobin Levels and Hematocrits of Young Male Rats Fed Corn Oil, Olive Oil, and Soybean Oil

		<u> </u>			Fat	Level (%	;)		- <u></u>
Source		2.5		5		10		20	Mean
					g	m/dl ^a			
<u>Hemoglobin</u>									
Corn oil	13.0	0 ± 0.4	12.	8 ± 0.3	12.	7 ± 0.4	12.	7 ± 0.3	12.8
Olive oil	13.4	1 ± 0.5	13.	1 ± 0.6	12.	8 ± 0.3	13.	5 ± 0.3	13.2
Soybean oil	12.0	5 ± 0.4	13.	0 ± 0.3	12.	7 ± 0.3	12.	2 ± 0.2	12.6
Mean		13.0		12.9		12.7		12.8	
LSD ^b 0.05 0.01		0.9 1.2							
					P	<u>ercent</u> a			
Hematocrit									
Corn oil	48	± 2	46	± 1	43	± 1	44	<u>+</u> 1	45
Olive oil	48	<u>±</u> 2	46	<u>+</u> 2	45	<u>+</u> 1	47	± 1	46
Soybean oil	44	<u>±</u> 2	46	± 1	46	± 2	43	± 1	45
Mean		47		46		45		45	
LSD 0.05 0.01		4 5							

^aEach value is the mean of 8 animals ± SEM.

Tissue Dry Weights

Tissue dry weights of the kidney, liver, spleen and testes for animals of Experiment 1 are given in Table 6. Statistical analyses of the tissue data revealed that diet had highly significant (p < 0.01) effects only on the liver dry weight (Appendix C, Table C-7). Analysis showed that the 10% dietary fat level significantly increased the liver dry weights. It was noted, however, that animals fed safflower oil diets tended to have the higher tissue dry weights and the higher weight gains. Animals on coconut oil diets generally had the lower tissue dry weights and the lower weight gains. Animals fed the 2.5% dietary fat level had the lower tissue dry weights, while animals fed the 10% fat level had the higher tissue dry weights. Animals fed coconut oil and safflower oil diets had the higher liver dry weights at a 10% level of dietary fat, while those fed lard diets showed increased dry weights with increased dietary fat. Animals fed coconut oil and safflower oil diets had decreased, or the same, tissue dry weights at the 20% level of dietary fat.

The kidney, liver, spleen, and testes dry weights for the animals of Experiment 2 are presented in Table 7. Statistical analyses of this dry weight data revealed only a highly significant (p < 0.01) effect of fat source on spleen dry weight and a significant effect (p < 0.05) of level (Appendix C, Table C-8). The animals fed corn oil diets had the higher spleen dry weights, and animals on the low, 2.5%, level of dietary fat had the lower spleen dry weights. In this experiment the animals fed olive oil diets tended to have the lower tissue

Dry Tissue Weights of Young Male Rats Fed Coconut Oil, Lard, and

Safflower Oil

		Fa	t Level (%)		
Source	2.5	5	10	20	Mean
		gr	ams ^a		
Kidneys Coconut oil Lard Safflower oil Mean LSD ^b 0.05 0.01	$\begin{array}{c} 0.45 \pm 0.02 \\ 0.45 \pm 0.01 \\ 0.46 \pm 0.02 \\ 0.45 \\ 0.06 \\ 0.08 \end{array}$	0.46 ± 0.03 0.50 ± 0.03 0.51 ± 0.01 0.49	0.50 ± 0.02 0.48 ± 0.02 0.51 ± 0.02 0.50	0.44 ± 0.02 0.48 ± 0.02 0.46 ± 0.02 0.46	0.46 0.48 0.49
Liver Coconut oil Lard Safflower oil Mean LSD 0.05 0.01	1.96 ± 0.12 1.65 ± 0.07 1.87 ± 0.04 1.82 0.29 0.35	1.80 ± 0.09 1.98 ± 0.07 2.05 ± 0.06 1.95	2.09 ± 0.05 2.21 ± 0.08 21.9 ± 0.06 2.17	2.00 ± 0.09 2.28 ± 0.09 2.12 ± 0.06 2.14	1.97 2.03 2.06
<u>Spleen</u> Coconut oil Lard Safflower oil Mean LSD 0.05 0.01	$\begin{array}{c} 0.16 \pm 0.02 \\ 0.14 \pm 0.01 \\ 0.15 \pm 0.01 \\ 0.15 \\ 0.04 \\ 0.05 \end{array}$	0.13 ± 0.05 0.16 ± 0.02 0.16 ± 0.01 0.15	0.17 ± 0.01 0.18 ± 0.02 0.16 ± 0.02 0.17	0.15 ± 0.01 0.18 ± 0.01 0.15 ± 0.02 0.16	0.15 0.16 0.16
Testes Coconut oil Lard Safflower oil Mean LSD 0.05 0.01	$\begin{array}{c} 0.38 \pm 0.02 \\ 0.35 \pm 0.01 \\ 0.39 \pm 0.01 \\ 0.37 \\ 0.03 \\ 0.05 \end{array}$	0.37 ± 0.03 0.36 ± 0.02 0.38 ± 0.01 0.37	0.39 ± 0.01 0.40 ± 0.01 0.38 ± 0.01 0.39	0.39 ± 0.01 0.41 ± 0.01 0.39 ± 0.01 0.40	0.38 0.38 0.39

^aEach value is the mean of 5 animals \pm SEM.

Dry Tissue Weights of Young Male Rats Fed Corn Oil, Olive Oil, and

~

Soybean Oil

	Fat Level (%)					
Source	2.5	5	10		Mean	
		grams ^a				
<u>Kidneys</u> Corn oil Olive oil Soybean oil Mean LSDb 0.05 0.01	$\begin{array}{r} 0.49 \pm 0.03 \\ 0.48 \pm 0.02 \\ 0.50 \pm 0.02 \\ 0.49 \\ 0.08 \\ 0.10 \end{array}$	0.49 ± 0.04 0.46 ± 0.03 0.57 ± 0.04 0.51	$\begin{array}{c} 0.52 \pm 0.03 \\ 0.45 \pm 0.02 \\ 0.51 \pm 0.01 \\ 0.49 \end{array}$	$\begin{array}{c} 0.53 \pm 0.04 \\ 0.50 \pm 0.01 \\ 0.53 \pm 0.02 \\ 0.52 \end{array}$	0.51 0.47 0.53	
Liver Corn oil Olive oil Soybean oil Mean LSD 0.05 0.01	$2.08 \pm 0.15 \\ 1.94 \pm 0.04 \\ 2.06 \pm 0.10 \\ 2.03 \\ 0.45 \\ 0.59$	2.20 ± 0.14 2.04 ± 0.11 2.22 ± 0.14 2.15	2.49 ± 0.23 1.91 ± 0.08 2.20 ± 0.08 2.20	2.30 ± 0.13 2.52 ± 0.24 2.11 ± 0.25 2.31	2.27 2.10 2.15	
<u>Spleen</u> Corn oil Olive oil Soybean oil Mean LSD 0.05 0.01	$\begin{array}{c} 0.18 \pm 0.02 \\ 0.15 \pm 0.01 \\ 0.15 \pm 0.01 \\ 0.16 \\ 0.04 \\ 0.05 \end{array}$	0.19 ± 0.01 0.17 ± 0.02 0.19 ± 0.02 0.18	0.21 ± 0.03 0.19 ± 0.01 0.19 ± 0.01 0.20	0.23 ± 0.01 0.17 ± 0.02 0.17 ± 0.02 0.19	0.20 0.17 0.17	
Testes Corn oil Olive oil Soybean oil Mean LSD 0.05 0.01	$\begin{array}{r} 0.39 \ \pm \ 0.02 \\ 0.37 \ \pm \ 0.01 \\ 0.34 \ \pm \ 0.01 \\ 0.37 \\ 0.04 \\ 0.05 \end{array}$	$\begin{array}{c} 0.35 \pm 0.01 \\ 0.38 \pm 0.01 \\ 0.36 \pm 0.02 \\ 0.36 \end{array}$	0.37 ± 0.01 0.35 ± 0.02 0.36 ± 0.02 0.36	0.38 ± 0.01 0.38 ± 0.91 0.36 ± 0.02 0.37	0.37 0.37 0.36	

^aEach value is the mean of 5 animals \pm SEM.

dry weights, especially lower kidney and liver dry weights. As noted before, these animals also had the lower weight gains. Animals fed corn oil and soybean oil diets tended to have the higher tissue dry weights, and these animals also had higher weight gains. Overall the dietary fat level did not appear to effect the animal dry tissue weights, except that at the higher fat levels, higher dry weights were observed.

Tissue Copper

Tissue copper concentrations in animals fed coconut oil, lard or safflower oil diets are given in Table 8, and the statistical analysis of the data is presented in Appendix C, Table C-9. Analysis of the data revealed that diet apparently had little effect on kidney copper deposition. It was observed, however, that kidney copper levels tended to be highest in animals fed 10% fat level diets, and increasing the fat level to 20% resulted in a decrease in kidney copper concentration. A decrease in kidney dry weights was also observed at the 20% dietary fat level for animals fed coconut oil and safflower oil diets.

Animals on the 20% fat level diets in this experiment had lower liver copper levels than did the animals on the three other levels of dietary fat. Tissue copper levels appear not to be greatly effected by any of these fat sources--coconut oil, lard, or safflower oil. There is a tendency, however, for the high fat level, 20%, to be associated with lower tissue copper concentrations and lower tissue dry weights.

Tissue Copper Levels of Young Male Rats Fed Coconut Oil, Lard, and

Safflower Oil

		Fa	t Level (%)		
Source	2.5	5	10	20	Mean
		mcg/	′gm dry weigh	t ^a	
<u>Kidneys</u> Coconut oil Lard Safflower oil Mean LSDb 0.05 0.01	25.1 ± 2.8 26.0 ± 2.2 29.6 ± 1.7 26.2 13.8 17.9	25.6 ± 2.3 22.3 ± 1.0 23.8 ± 1.0 23.9	39.4 ± 9.5 34.8 ± 7.3 32.4 ± 10.2 35.5	21.7 ± 1.3 22.9 ± 1.5 28.8 ± 4.7 24.5	28.0 26.5 28.2
Liver Coconut oil Lard Safflower oil Mean LSD 0.05 0.01	$ \begin{array}{r} 18.8 \pm 0.7 \\ 20.4 \pm 0.2 \\ 19.1 \pm 0.5 \\ 19.4 \\ 2.6 \\ 3.4 \end{array} $	19.5 ± 0.7 19.5 ± 0.5 19.0 ± 0.7 19.4	20.6 ± 1.3 19.9 ± 0.4 18.3 ± 0.5 19.6	19.1 ± 1.8 16.5 ± 1.0 17.0 ± 1.2 17.5	19.5 19.1 18.3
<u>Spleen</u> Coconut oil Lard Safflower oil Mean LSD 0.05 0.01	$7.1 \pm 2.5 \\ 6.5 \pm 1.3 \\ 6.3 \pm 1.3 \\ 6.6 \\ 2.6 \\ 3.3 $	7.1 ± 1.5 6.4 ± 1.5 5.5 ± 0.7 6.3	4.3 ± 0.8 6.1 ± 1.9 6.3 ± 1.3 5.6	7.5 ± 1.8 4.6 ± 0.8 6.9 ± 1.9 6.4	6.5 5.9 6.3
Testes Coconut oil Lard Safflower oil Mean LSD 0.05 0.01	$12.6 \pm 0.5 \\ 13.1 \pm 0.5 \\ 13.0 \pm 0.4 \\ 12.9 \\ 1.4 \\ 1.8 \\ 1.8 \\ 12.9 \\ 1.4 \\ 1.8 \\$	13.2 ± 0.9 12.7 ± 0.3 13.0 ± 0.3 13.0	13.2 ± 0.6 12.9 ± 0.6 13.3 ± 0.4 13.1	12.4 ± 0.7 12.3 ± 0.6 12.5 ± 0.5 12.4	12.8 12.8 13.0

^aEach value is the mean of 5 animals \pm SEM.

The tissue copper levels of the animals fed corn oil, olive oil, and soybean oil diets are given in Table 9. Kidney copper levels were significantly higher ($\underline{p} < 0.01$) in animals fed olive oil diets versus those fed corn oil or soybean oil diets. Statistical adjustment of the data for the dry tissue weight or for weight gain did not change the significance effect of the fat source, olive oil, on kidney copper deposition (Appendix C, Table C-10). An increase of the dietary fat level from 2.5% to 5% was associated with an increase in kidney copper concentration, but at the 20% fat level a decrease was noted. This trend of increasing tissue copper overall with fat level to the 10% fat level and then decreasing at the 20% level was also noted in Experiment 1. Neither fat source nor fat level had any significant effect on liver, spleen, or testes copper deposition in young male rats at four weeks.

Tissue Iron

Tissue iron levels of the animals fed diets containing coconut oil, lard, and safflower oil are given in Table 10, and the statistical analyses are given in Appendix C, Table C-11. Increases in dietary fat were associated with increases in kidney iron deposition; the analysis revealed a significant ($\underline{p} < 0.05$) source x level interaction. Further analysis of the data with adjustment for weight gains or for dry tissue weight did not change the significance of the source x level effect. Kidney iron levels of animals fed lard and safflower oil diets generally increased as the level of dietary fat increased. In the case

Tissue Copper Levels of Young Male Rats Fed Corn Oil, Olive Oil, and

Soybean Oil

		Fa	t Level (%) ^a		
Source	2.5	5	10	20	Mean
		mcg/	′gm dr y w eigh	ta	
<u>Kidneys</u> Corn oil Olive oil Soybean oil Mean LSDb 0.05 0.01	26.1 ± 1.8 31.6 ± 4.5 27.7 ± 2.5 28.4 7.3 9.5	31.9 ± 3.7 37.9 ± 3.7 29.3 ± 4.2 33.0	25.4 ± 0.5 40.3 ± 3.2 27.3 ± 1.2 31.0	26.5 ± 2.4 37.7 ± 4.4 25.2 ± 1.3 29.8	27.4 36.9 27.4
Liver Corn oil Olive oil Soybean oil Mean LSD 0.05 0.01	16.7 ± 0.6 16.3 ± 1.3 17.4 ± 0.4 16.8 2.7 3.5	18.9 ± 0.5 16.5 ± 0.8 17.0 ± 0.4 17.5	16.5 ± 0.9 18.1 ± 0.6 16.2 ± 0.2 16.9	16.0 ± 0.7 15.4 ± 0.9 16.7 ± 2.2 16.0	17.0 16.6 16.8
<u>Spleen</u> Corn oil Olive oil Soybean oil Mean LSD 0.05 0.01	4.9 ± 0.8 8.7 ± 1.5 7.3 ± 0.8 7.0 2.7 3.5	6.7 ± 0.8 8.5 ± 0.9 6.4 ± 0.3 7.2	7.8 ± 0.8 7.5 ± 0.9 6.8 ± 0.7 7.4	7.6 \pm 0.7 5.7 \pm 0.8 6.9 \pm 0.9 6.7	6.7 7.6 6.9
Testes Corn oil Olive oil Soybean oil Mean LSD 0.05 0.01	15.0 ± 0.8 14.4 ± 1.2 16.8 ± 0.4 15.4 2.0 2.6	15.6 ± 0.7 14.3 ± 1.0 15.8 ± 1.8 15.2	16.0 ± 0.5 17.1 ± 0.7 15.5 ± 0.4 16.2	14.9 ± 0.5 14.7 ± 0.6 15.0 ± 1.1 14.9	15.4 15.1 15.8

^aEach value is the mean of 5 animals ± SEM.

Tissue Iron Levels of Young Male Rats Fed Coconut Oil, Lard, and

Safflower Oil

			Fat Level (%)		
Source	2.5	5	10	20	Mean
		mcg,	/gm dry weigh	it ^a	
<u>Kidneys</u> Coconut oil Lard Safflower oil Mean LSD ^b 0.05 0.01	260 ± 20 338 ± 65 301 ± 67 300 125 162	362 ± 42 286 ± 54 284 ± 48 311	355 ± 42 280 ± 38 392 ± 54 342	265 ± 36 405 ± 69 449 ± 65 37	311 327 356
Liver Coconut oil Lard Safflower oil Mean LSD 0.05 0.01	$517 \pm 63 665 \pm 46 549 \pm 47 577 126 164$	554 ± 41 476 ± 27 430 ± 16 487	559 ± 68 428 ± 15 454 ± 17 480	590 ± 51 477 ± 34 429 ± 48 499	555 511 466
<u>Spleen</u> Coconut oil Lard Safflower oil Mean LSD 0.05 0.01	491 ± 59 574 ± 105 514 ± 47 526 193 252	480 ± 56 427 ± 60 412 ± 46 440	537 ± 59 398 ± 67 438 ± 90 457	611 ± 117 489 ± 77 404 ± 54 501	530 472 442
<u>Testes</u> Coconut oil Lard Safflower oil Mean LSD 0.05 0.01	174 ± 21 152 ± 7 198 ± 49 175 53 69	154 ± 26 165 ± 8 155 ± 6 158	152 ± 3 140 ± 10 179 ± 35 157	157 ± 12 140 ± 12 147 ± 7 148	159 150 170

^aEach value is the mean of 5 animals \pm SEM.

of animals fed lard and safflower oil diets generally increased as the level of dietary fat increased. In the case of animals fed coconut oil diets, an increase in kidney iron was seen as the fat level increased for 2.5 to 5% or 10%, but at the 20% level the iron level decreased as did the tissue dry weight. At the higher fat level (20%), animals fed safflower oil diets had the highest kidney iron concentrations, and those fed coconut oil the lowest.

The liver iron data analyses revealed that source and level of dietary fat after adjustment for weight gains and/or dry tissue weights had no significant effects on liver iron deposition in the rats in this study. Liver iron levels were, however, highest in animals fed coconut oil diets at all but the 2.5% dietary fat level. As the fat level of the diet increased, liver iron concentration tended to increase in these animals fed dietary coconut oil. At the low (2.5%) fat level, the animals on lard and safflower oil diets had the higher liver iron depositions and the lower liver dry weights.

The spleen and testes iron levels were not significantly effected by dietary fat source or fat level. Animals on coconut oil diets did, in general, show increased spleen iron levels with increased fat, while those animals on safflower oil diets tended to have decreased spleen iron levels with increased dietary fat.

The tissue iron levels of animals fed corn oil, olive oil, and soybean oil are shown in Table 11. Analyses of the data (Appendix C, Table C-12) revealed no significant effects of diet on kidney iron levels. Animals fed corn oil diets generally had lower kidney iron

Tissue Iron Levels of Young Male Rats Fed Corn Oil, Olive Oil, and

Soybean Oil

Source	2.5	5	Fat Level (%) 10	20	Mean
	.	mcg/	gm dry weight ^ë	l	
Kidneys Corn oil Olive oil Soybean oil Mean LSDb 0.05 0.01	198 ± 7 162 ± 7 200 ± 22 187 45 59	159 ± 12 181 ± 18 188 ± 21 176	147 ± 11 192 ± 14 193 ± 22 177	145 ± 10 212 ± 17 183 ± 21 180	162 187 191
Liver Corn oil Olive oil Soybean oil Mean LSD 0.05 0.01	$\begin{array}{r} 408 \pm 30 \\ 384 \pm 66 \\ 487 \pm 65 \\ 426 \\ 156 \\ 203 \end{array}$	475 ± 71 402 ± 107 357 ± 61 411	242 ± 48 441 ± 24 473 ± 108 385	372 ± 49 432 ± 65 313 ± 31 372	374 415 407
<u>Spleen</u> Corn oil Olive oil Soybean oil Mean LSD _{0.05} 0.01	900 ± 66 745 ± 31 790 ± 49 812 181 236	687 ± 52 1229 ± 131 668 ± 66 861	573 ± 5 887 ± 97 762 ± 62 741	655 ± 48 858 ± 9 721 ± 35 745	704 930 735
Testes Corn oil Olive oil Soybean oil Mean LSD 0.05 0.01	168 ± 15 175 ± 6 186 ± 21 176 42 54	141 ± 19 159 ± 12 150 ± 11 150	168 ± 9 164 ± 12 177 ± 20 170	166 ± 14 185 ± 17 172 ± 11 174	161 171 171

^aEach value is the mean of 5 animals ± SEM.

levels than those animals on olive oil or soybean oil diets, but animals fed soybean oil diets had the higher kidney dry weights. Increased dietary fat levels led to decreased iron deposition in animals on the polyunsaturated fats, but to increased iron deposition in the animals on olive oil, a saturated fat.

Increases in dietary fat were also associated with decreases in liver iron levels in animals fed corn oil or soybean oil diets, and with increases in liver iron levels in rats fed olive oil. Statistical analysis of the liver iron data revealed no significant effects of fat source or fat level on liver iron.

Analysis of the spleen iron data (Appendix C, Table C-12) revealed a highly significant (p < 0.01) effect of fat source and source x level interaction on spleen iron concentration, even after adjustment of the data for weight gains and/or spleen dry weights. Spleen iron levels of the animals on olive oil diets increased with increased dietary fat level. In contrast, those animals on corn oil diets generally showed a decrease in spleen iron levels with increased dietary fat, and a significantly increased tissue dry weight. At the low fat level, 2.5%, these animals had the highest spleen iron levels. Spleen iron levels of rats fed soybean oil diets were esstentially the same regardless of dietary fat level. Testes iron levels of young male rats at four weeks were essentially the same at all fat levels and for all fat sources--corn oil, olive oil, and soybean oil. In general, it would appear that increased dietary polyunsaturated fat leads to decreased tissue iron levels while saturated dietary fats lead to increased iron deposition.

Tissue Zinc

The zinc concentration of the kidneys, liver, spleen, and testes of the animals fed coconut oil, lard, and safflower oil diets are presented in Table 12. Analysis of the data (Appendix C, Table C-13) revealed that these three fats had no significant influence on the deposition of zinc in these organs at four weeks. Animals fed lard diets tended to have the higher kidney and liver zinc depositions at low fat levels, but the lowest spleen and testes zinc concentrations. The tissue zinc concentrations of the animals fed corn oil, olive oil, and soybean oil are given in Table 13. As shown in the analysis (Appendix C, Table C-14), neither dietary fat source nor dietary fat level had a significant effect on tissue zinc deposition.

Tissue Zinc Levels of Young Male Rats Fed Coconut Oil, Lard, and

Safflower Oil

			Fat Level	(%)	
Source	2.5	5	10	20	Mean
		mcg/	gm dry weigh	t ^a	
<u>Kidneys</u> Coconut oil Lard Safflower oil Mean LSDb 0.05 0.01	86 ± 4 90 ± 7 86 ± 3 87 10 13	83 ± 4 89 ± 1 82 ± 3 84	84 ± 2 90 ± 2 82 ± 5 86	90 ± 5 86 ± 3 91 ± 2 89	86 88 85
<u>Liver</u> Coconut oil Lard Safflower oil Mean LSD 0.05 0.01	102 ± 4 117 ± 8 103 ± 5 107 24 32	98 ± 5 114 ± 9 115 ± 8 109	107 ± 11 115 ± 2 119 ± 14 114	108 ± 8 121 ± 9 120 ± 8 116	103 117 114
<u>Spleen</u> Coconut oil Lard Safflower oil Mean LSD 0.05 0.01	93 ± 3 94 ± 5 102 ± 2 96 16 21	94 ± 12 91 ± 5 107 ± 6 98	96 ± 7 96 ± 4 97 ± 7 96	95 ± 7 95 ± 4 103 ± 9 98	95 94 102
Testes Coconut oil Lard Safflower Mean LSD 0.05 0.01	176 ± 9 165 ± 7 174 ± 9 172 19 24	172 ± 8 174 ± 7 169 ± 3 172	182 ± 10 165 ± 5 168 ± 7 172	175 ± 5 163 ± 1 173 ± 7 170	176 167 171

^aEach value is the mean of 5 animals \pm SEM.

Tissue Zinc Levels of Young Male Rats Fed Corn Oil, Olive Oil, and

Soybean Oil

				Fat Lev	el (%)		
Source	2.5	5		10	20		Mean
			mcg	/gm dry	weight ^a		
<u>Kidneys</u> Corn oil Olive oil Soybean oil Mean LSDb 0.05 0.01	87 ± 1 91 ± 2 86 ± 4 88 8 11	91 ± 90 ± 80 ± 87	5 2 3	88 ± 87 ± 87 ± 87 5	3 83 ± 4 86 ± 3 86 ± 85	2 3 2 5	87 88 85
Liver Corn oil Olive oil Soybean oil Mean LSD 0.05 0.01	85 ± 3 84 ± 8 92 ± 3 87 17 23	96 ± 89 ± 85 ± 90	4 6 7	88 ± 90 ± 81 ± 86	7 81 ± 7 78 ± 5 92 ± 83	7 4 10 3	88 85 87
<u>Spleen</u> Corn oil Olive oil Soybean oil Mean LSD 0.05 0.01	82 ± 3 86 ± 2 82 ± 3 83 14 19	83 ± 87 ± 86 ± 85	3 13 6	74 ± 79 ± 79 ± 78	6 82 ± 2 82 ± 1 83 ± 82	1 3 2	81 83 83
Testes Corn oil Olive oil Soybean oil Mean LSD 0.05 0.01	153 ± 4 157 ± 4 162 ± 4 158 14 19	156 ± 152 ± 149 ± 152	3 5 10	160 ± 150 ± 153 ± 154	5 155 ± 5 152 ± 3 155 ± 154	3 6 2	156 153 155

^aEach value is the mean of 5 animals \pm SEM.

CHAPTER V GENERAL DISCUSSION

These studies indicated that dietary fat levels had significant effects on feed intakes of young male rats for four weeks. Rats fed low dietary fat levels had the highest feed intakes while the animals consuming diets with 20% fat levels had the lowest animal feed intake. This is in agreement with the results of Frimpong (1982), who reported that animals fed at a 10% fat level consumed more feed than animals on 20% fat level diets. Johnson, Lukaski, and Bowman (1987) also noted a decrease in feed intake with increasing dietary fat levels from 5% to 30%. In Experiment 1, animals fed dietary lard generally consumed more feed than did those fed either coconut or safflower oil diets. Animals on safflower oil diets consumed the least amount of feed. In Experiment 2, animals fed dietary corn oil consumed more feed than did animals fed dietary olive oil or soybean oil. The least amount of feed

Increasing dietary fat levels, which resulted in increases in total caloric consumption, were associated with increased growth rates. This trend was most evident when lard or olive oil were the dietary fat sources, but animals fed these two dietary fats at a 2.5 and 5.0% level exhibited the poorest growth. Animals fed diets high in saturated fats (coconut and olive oil) grew less than animals fed polyunsaturated fats with high levels of linoleic acid (safflower and corn

oil). Similar growth patterns in young male rats were reported by Sinthusek and Magee (1984) and Lin (1985). Onderka and Kirksey (1975) reported that animals fed dietary safflower oil had higher weight gains and consumed less feed than animals fed coconut oil. These researchers reported an increased liver and spleen size in animals fed safflower oil versus those fed coconut oil. The results of this study also showed increased liver sizes in animals fed safflower oil diets versus those fed coconut oil, but the analysis revealed that the only significant effect on liver dry weights was the fat level. The two higher dietary fat levels, 10 and 20%, resulted in significant increases in liver dry weights compared to the other two dietary fat levels. The other organs in the experiment where the dietary fat sources were coconut oil, lard, and safflower oil showed no significant differences in dry weights. In general, however, the animals fed safflower oil tended to have the largest kidneys and livers, while those on lard diets tended to have the largest spleens and testes. Johnson et al. (1987), however, reported better growth in animals fed dietary coconut oil than in animals fed safflower oil in their 19-week study.

When the dietary fat sources were corn oil, olive oil, and soybean oil, the only organ dry weight which was significantly affected by dietary fat source and fat level was the spleen. Both fat source and fat level had significant effects on spleen dry weight. Animals fed corn oil diets had larger spleens and they were larger at the 20% dietary fat level. Animals fed olive oil and soybean oil had the higher spleen dry weights at the 10% dietary fat level with a decrease in dry weight at the 20% dietary fat level.

Covariant analysis of the growth data from Experiment 1 revealed that weight gains were not significant after adjustment for feed consumption in terms of kilocalories. Thus, it would appear that the differences in weight gains were due to kilocalorie consumption and not to the type or level of dietary fat. In Experiment 2, the effects of fat source and level were still significant after adjustments in weight gains for kilocalories, were made by covariant analysis. These findings suggest that the differences in weight gains were not due to differences in kilocalorie consumption but were the results of differences in the nature of the fat consumed.

Animals consuming diets with fat sources high in linoleic acid had higher feed efficiency ratios than did animals fed diets which were low in linoleic acid. Significantly higher feed efficiency ratios were also observed when the dietary fat level was 20% versus the other dietary fat levels.

Increases in dietary fat from 2.5 to 20% were associated with decreasing hemoglobin levels and hematocrits in both experiments. Animals fed more saturated fats also tended to have the higher overall hemoglobin levels and hematocrits overall, but the effect was statistically significant only where coconut oil, lard, and safflower oil were the fat sources. Similar results have been reported by others (Johnson, Lukaski, & Bowman, 1987; Mahoney, Farmer, & Hendricks, 1980). In this study animals with lower weight gains tended to have higher hemoglobin levels and hematocrits, as the correlation analysis showing a negative correlation of weight gain with hemoglobin confirms. The effects of fat source or level on tissue copper levels were not statistically significant. In general, tissue copper levels were highest in animals fed 10% dietary fat and lowest in rats fed the 20% dietary fat levels in both experiments. When the dietary fat sources were coconut oil, lard, or safflower oil, the 10% dietary fat level was associated with increased kidney copper levels in the animals. Animals on coconut oil diets tended to have higher kidney and liver copper levels than animals fed the other fats. Onderka and Kirksey (1975) reported higher liver copper levels in rats fed 20% dietary safflower oil than in animals fed 20% dietary coconut oil in their 19-week study. The tissue copper levels reported here are similar to those reported by Cohen, Keen, Lonnerdal, and Hurley (1985) and by Owen (1972).

When the fat sources were corn oil, olive oil, or soybean oil, the more saturated fat source, olive oil, was associated with a significantly higher kidney copper deposition. No significant effects of fat source or fat level on liver, spleen, or testes copper concentrations were observed in these studies. This is in contrast to the findings of Sinthusek and Magee (1984) that increases in the saturation of dietary fat were associated with increases in liver copper. Other researchers (Frimpong, 1982; Jones, 1983) reported no apparent effect of fat sources on liver copper.

When coconut oil, lard, and safflower oil were the dietary fat sources (Experiment 1), animals fed lard and safflower oil diets tended to have increased kidney iron levels with increased dietary fat levels. Analysis of the kidney iron data revealed a significant source x level

interaction, which was still significant after covariant analysis of data for weight gains and dry tissue weights. Animals consuming coconut oil diets showed increased kidney iron concentration as the level of dietary fat increased from 2.5% to 10% only. The tissue iron levels generally were highest in the liver, spleen, and testes of animals fed the 2.5% dietary fat level in both experiments, where growth and tissue dry weights were the lowest. These results do not support the findings of Onderka and Kirksey (1975) who found higher kidney iron levels in animals fed 20% coconut oil diets than in animals fed 20% safflower oil diets. The experimental period was 19 weeks in their study.

Liver iron levels tended to be lowest in animals fed safflower oil, while the highest liver iron levels were found in animals fed coconut oil diets. These results support results reported by Onderka and Kirksey (1975). An increase in liver iron concentration associated with an increase in dietary fat level has been reported by Johnson, Lukaski, and Bowman (1987). The positive influence of coconut oil, and lard diets, on iron levels has been reported previously by others (Amine & Hegsted, 1975; Bowering, Masch, & Lewis, 1977). The significant effects of diets seen in this study on liver iron were not apparent when the liver iron data were adjusted for weight gains and/or liver dry weights. This indicated that there were no significant effects of fat source or fat level on liver iron concentrations. No significant effects of fat sources or fat level were observed on iron concentrations of the spleens and testes when the animals were fed coconut oil, lard, or safflower oil diets.

When the dietary fat sources were corn oil, olive oil, and soybean oil, animals fed the lower fat levels tended to have the higher tissue iron concentrations: and the lower weight gains and dry tissue weights. In general animals consuming polyunsaturated fat sources (corn oil and soybean oil) tended to show decreased iron concentrations with increased dietary fat levels, whereas animals on olive oil diets tended to have increased iron levels with increased fat levels. Animals on corn oil diets, at the higher fat levels, tended to have the lowest tissue iron levels compared to animals fed olive oil or soybean oil diets. These animals had the higher weight gains and generally higher tissue dry weights. These results revealed a tissue iron deposition pattern similar to one reported in rats fed cholesterol (Onderka & Kirksey, 1975). Onderka and Kirksey observed reduced iron deposition in liver, kidney, and spleen in rats fed cholesterol.

Animals fed olive oil diets tended to have the highest tissue iron levels, and the spleen iron levels of these animals were significantly higher than those of animals fed corn oil or soybean oil diets, even after adjustment of the data for weight gain and/or spleen dry weight. Onderka and Kirksey (1975) also found higher spleen iron in animals fed diets high in saturated fats. No significant effects of fat source or fat level on iron levels of the animal tissues, kidney, liver and testes were observed in the animals fed corn oil, olive oil, or soybean oil.

Neither dietary fat source nor dietary fat level had significant effects on the tissue zinc concentrations of the young male rats in

these studies. Jones (1985) and Frimpong (1982) also reported that liver zinc deposition in rats was not effected by dietary fat source. Lukaski, Klevay, Bolonchuk, Mahalko, Milne, Johnson, and Sanstead (1982), however, reported that zinc retention in humans decreased with PUFA but increased in the presence of SFA. The tissue mineral values reported here are similar to those reported by Cohen et al (1985) and Hambridge, Casey, and Drebs (1986).

CHAPTER VI SUMMARY AND RECOMMENDATIONS

Two studies were conducted where three fat sources, with different P/S ratios and/or linoleic/linolenic acid ratios, were fed at four fat levels (2.5, 5, 10, and 20%). Coconut oil, lard, and safflower oil were the dietary fat sources in the first experiment, while corn oil, olive oil, and soybean oil were the dietary fat sources in the second experiment. Parameters used for the evaluation of animal responses to the test diets were feed intake, weight gain, hemoglobin levels, hematocrits, and tissue (kidney, liver, spleen, and testes) copper, iron, and zinc deposition.

Both dietary fat sources and fat level had significant effects on the weight gains of the young male rats. Animals consuming corn oil and safflower oil diets had higher weight gains than the other animals and had the highest feed efficiency ratios. Since these two dietary fats had the higher linoleic acid concentrations, there is the possibility that the presence of this essential fatty acid allowed for higher weight gains and feed efficiency ratios. Polyunsaturated fats also have the higher bond energies and higher heats of combustion. Low weight gains were generally observed by animals fed coconut oil and olive oil diets where the P/S ratio of the fat is low. This effect may be due to the lack of essential fatty acid or to the poor absorption of the fat. There were, however, no other signs of essential fatty

deficiency, loss of hair or scaly skin. The higher dietary fat levels also resulted in greater weight gains because the caloric value of the diets increased. Animals fed at the 2.5% fat level consumed the most feed, while those fed the 5 and 10% dietary fat level consumed similar amounts of feed. Animals fed the 20% dietary fat level showed a significant decrease in feed consumption.

When coconut oil, lard, and safflower oil were the dietary fat sources, the only significant effect on tissue dry weights revealed by statistical analyses was the effect of fat level on the liver dry weights. The liver dry weights were higher overall at a 10% dietary fat level. Neither fat source nor fat level significantly affected the other tissue dry weights. When the fat sources were corn oil, olive oil, and soybean oil, statistical analyses revealed that only the spleen dry weights were significantly effected by fat source and fat level. Animals fed corn oil had the higher spleen dry weights, and animals fed the 10% dietary fat level had overall the higher spleen dry weights.

Animals fed coconut oil diets had significantly higher hemoglobin levels than those fed lard diets. Hemoglobin levels also tended to be higher at the low 2.5% fat level. Animals on lard diets had higher hematocrits at the 2.5% fat level, while those fed coconut oil diets had the lower hematocrits. At the 20% fat level animals fed safflower oil diets had the lower hematocrits, and those fed coconut oil diets the higher. Neither dietary fat source nor dietary fat level had any significant effects on hemoglobin levels or hematocrits

in the rats fed corn oil, olive oil, or soybean oil. It was noted that at the low dietary fat level, hemoglobin levels tended to be higher and growth was less. Animals on coconut oil and the olive oil diets exhibited the least growth overall and tended to have higher hemoglobin levels and hematocrits. Correlation analysis showed a negative correlation of weight gain with hemoglobin and hematocrits.

No significant effects of dietary fat source or dietary fat level on tissue copper deposition were observed in animals fed coconut oil, lard, or safflower oil. At the 20% dietary fat level, copper concentrations were noted to decrease in all tissues except the spleen. Kidney copper deposition was the highest at the 10% dietary fat level. When corn oil, olive oil, and soybean oil were the dietary fat sources, a significant ($\underline{p} < 0.01$) effect of fat source on kidney copper was noted. Animals on olive oil diets had the higher kidney copper levels even after the data were adjusted for weight gain. Again, animals on the lower dietary fat levels tended to have the higher tissue copper concentrations with a decrease at the 20% dietary fat level.

In the study where the dietary fats were coconut oil, lard, and safflower oil, a significant (p < 0.05) source x level interaction was observed on kidney iron concentration, and when adjusted for dry kidney weights, the effect was still observed. At the 2.5% fat level, animals fed lard and safflower oil diets had the higher kidney iron deposition, but at the 5% fat level, animals fed coconut oil diets had the higher kidney iron concentration. At the 10 and 20% dietary fat level, animals fed safflower oil diets had nigher kidney iron levels. The

significant effects of dietary fat source and fat level on liver iron deposition were not apparent when the data were adjusted for weight gain and tissue dry weight, indicating that liver iron levels were not effected by these dietary fat sources or levels. At high dietary fat levels the more saturated fat sources, coconut oil and lard, were associated with higher liver iron levels, versus safflower oil, a polyunsaturated fat source with a high linoleic/linolenic ratio. The spleen and testes iron levels were not significantly effected by dietary fat levels or dietary fat sources.

In the study where corn oil, olive oil, and soybean oil were the dietary fat sources, there were no statistical effects of diet on kidney, liver, or testes iron deposition. However, corn oil was associated with the lower tissue iron levels especially at the two higher fat levels, 10 and 20%, where growth was highest. Correlation analysis showed a negative correlation between weight gain and liver and kidney iron in those animals fed corn oil diets. Animals fed olive oil diets did have significantly higher spleen iron deposition as compared to animals fed dietary corn or soybean oil diets. Here the two fat sources with the lower linoleic/linolenic ratios--olive oil and soybean oil--were observed to be associated with the higher tissue iron levels and the lower weight gains.

In these studies the deposition of zinc in the tissues of young male rats was not significantly effected by either dietary fat source or dietary fat level. Thus, it would appear that zinc deposition was not affected by the fat sources, coconut oil, lard, safflower oil,

corn oil, olive oil, or soybean oil at the fat levels 2.5, 5, 10, and 20%.

In general, better growth was obtained with fat sources that had high P/S ratios and at the higher dietary fat levels. The animals generally consumed the most feed at the 2.5% fat level and the least at the 20% level of dietary fat. Mineral concentration, mcg/gram dry weight, was highest at low fat levels and with saturated fat sources versus polyunsaturated fat sources, especially iron deposition. Dilution effects of weight gain should be considered when reporting tissue concentrations. The interactions are, however, complex with different tissues affected in different ways by each dietary fat source and at each dietary fat level.

Recommendations

The relationship of dietary fat sources and fat levels to tissue mineral deposition in young male rats appears to be dependent on the tissue function and its interrelations to other tissues. It would be of interest to examine the effects of purified fatty acids, stearic, oleic, linoleic and linolenic, as opposed to the extracted plant oils on the parameters examined here. The effects of other test diets where only the linoleic/linolenic acid ratios were varied would also be of interest.

Extracted plant oils also have other sterol components which may have effects of the parameters examined here. An analysis of the sterol components of the dietary fat sources and an examination of

their effects on the growth and tissue mineral deposition patterns in young male rats would be of interest.

BIBLIOGRAPHY

- American Institute of Nutrition. (1977). Report to the American institute of nutrition ad hoc committee on standards for nutritional studies. Journal of Nutrition, 107, 1340-1348.
- Amine, E. K., & Hegsted, D. M. (1975). Effect of dietary carbohydrates and fats on inorganic iron absorption. <u>Agricultural and</u> <u>Food Chemistry</u>, 23, 204-208.
- Amine, E. K., Desilets, E. J., & Hegsted, D. M. (1976). Effect of dietary fats on lipogenesis in iron deficiency anemic chicks and rats. Journal of Nutrition, 106, 405-411.
- Babatunde, G. M. (1972). Optimum levels of zinc with diets of pigs in the tropics as influenced by the addition of graded levels of lard. Journal of the Science of Food and Agriculture, 23, 113-120.
- Bettger, W. J., Reeves, P. G., Moscatelli, E. A., Reynolds, G., & O'Dell, B. L. (1979). Interaction of zinc and essential fatty acids in the rat. Journal of Nutrition, 109, 480-488.
- Bettger, W. J., Reeves, P. G., Moscatelli, E. A., Savage, J. E., & O'Dell, B. L. (1980). Interaction of zinc and polyunsaturated fatty acids in the chick. Journal of Nutrition, 110, 50-58.
- Bettger, W. J., Wong, L. H., Paterson, P. G. (1986). Effect of environmental temperature on food intake and deficiency signs in rats fed zinc deficient diets. <u>Nutrition and Behavior</u>, <u>3</u>, 241-249.
- Bowering, J., Masch, G. A., & Lewis, A. R. (1977). Enhancement of iron absorption in iron depleted rats by increasing dietary fat. Journal of Nutrition, 107, 1687-1693.
- Budowski, P., & Crawford, M. A. (1985). Linolenic acid as a regulator of the metabolism of arachidonic acid: Dietary implications of the ratio n-6:n-3 fatty acids. <u>Proceedings of the Nutrition</u> <u>Society</u>, <u>44</u>, 221-229.
- Carlson, S. E., Carver, J. D., & House, S. G. (1986). High fat diets varying in ratios of polyunsaturated to saturated fatty acid and linoleic to linolenic acid: A comparison of rat neural and red cell membrane phospholipids. <u>Journal of Nutrition</u>, <u>116</u>, 718-725.

- Chanmugam, P., Wheeler, C., & Hwang, D. H. (1984). Fatty acid composition of the testes of zinc deficient rats: The effect of docosapentaenoic acid supplementation. <u>Journal of Nutrition</u>, <u>114</u>, 2073-2079.
- Clandinin, M. T. (1978). The role of dietary long-chain fatty acids in mitochondrial structure and function: Effects on rat cardiac mitochondrial respiration. <u>Journal of Nutrition</u>, <u>108</u>, 273-280.
- Clarke, S. D., Romsos, D. R., & Leveille, G. A. (1977). Differential effects of dietary methyl esters of long-chain saturated and polyunsaturated fatty acids on rat liver and adipose tissue lipogenesis. Journal of Nutrition, 107, 1170-1181.
- Cohen, N. L., Keen, C. L., Lonnerdal, B., & Hurley, L. S. (1985). Effects of varying dietary iron on the expression of copper deficiency in the growing rat: Anemis, ferroxidase I and II, tissue trace elements, ascorbic acid, and xanthine dehydrogenase. Journal of Nutrition, 115, 633-649.
- Cunnane, S. C., & Horrobin, D. F. (1980). Parenteral linoleic and linolenic acids ameliorate the gross effects of zinc deficiency. <u>Proceedings of the Society for Experimental Biology and</u> <u>Medicine, 164, 583-588.</u>
- Cunnane, S. C., Horrobin, D. F., & Manku, M. S. (1984). Essential fatty acids in tissue phospholipids and triglycerides of the zinc deficient rat. <u>Proceedings of the Society for Experi-</u> mental Biology and Medicine, 177, 441-446.
- Fairweather-Tait, S. J. (1987). The concept of bioavailability as it relates to iron nutrition. Nutrition Research, 7, 319-325.
- Food and Agriculture Organization/World Health Organization. (1978). Fats and oils in human nutrition. Rome: Author.
- Frimpong, N. A. (1982). The effects of saturated and polyunsaturated fat sources on copper, iron, and zinc status of young male rats. Unpublished master's thesis, University of North Carolina at Greensboro, Greensboro, NC.
- Frimpong, N. A. (1985). The effects of zinc and copper supplementation on growth, lipid profiles, and trace mineral status in young male rats. Unpublished doctoral dissertation, University of North Carolina at Greensboro, Greensboro, NC.
- Guthrie, H. A., Froozani, M., Sherman, A. R., & Barron, G. P. (1974). Hyperlipidemia in offspring of iron deficient rats. <u>Journal of</u> Nutrition, 104, 1273-1278.

- Hambridge, K. M., Casey, C. E., & Krebs, N. F. (1986). Zinc. In W. Mertz (Eds.), <u>Trace elements in human and animal nutrition</u> (pp. 1-137). New York: Academic Press.
- Hamilton, E. M., & Whitney, E. (1979). <u>Nutrition: Concepts and con-</u> <u>troversies</u> (pp. 504, 589). St. Paul: West Publishing.
- Hansen, H. S., & Jansen, B. (1986). Urinary excretion of argininevasopressin and prostaglandin E2 in essential fatty acid deficient rats after oral supplementation with unsaturated fatty acid esters. Journal of Nutrition, 116, 198-203.
- Johnson, P. E., Lukaski, H. C., & Bowman, T. D. (1987). Effects of level and saturation of fat and iron level and type in the diet on iron absorption and utilization by the rat. <u>Journal of</u> Nutrition, 117, 501-507.
- Jones, B. P. (1985). The effect of zinc supplementation on copper, iron, and zinc status of young male rats fed four different fat sources. Unpublished master's thesis, University of North Carolina at Greensboro, Greensboro, NC.
- Kris-Etherton, P. M., Ho, C. Y., & Fosmire, M. A. (1984). The effect of dietary fat saturation on plasma and hepatic lipoproteins in the rat. Journal of Nutrition, 114, 1675-1682.
- Lee, G. R., Nacht, S., Lukens, J. N., & Cartwright, G. E. (1968). Iron metabolism in copper deficient swine. <u>Journal of Clinical</u> <u>Investigation, 47</u>, 2058-2069.
- LeFevre, M., Keen, C. L., Loonerdal, B., Hurley, L. S., & Schneeman, B. O. (1986). Copper deficiency induced hypercholesterolemia effects on HDL subfractions and hepatic lipoproteins receptor activity in the rat. Journal of Nutrition, 116, 1735-1746.
- Leslie, A. J., & Kaldor, I. (1971). Liver and spleen nonheme iron and ferritin composition in the neonatal rat. <u>American Journal of</u> Physiology, 220, 1000-1004.
- Lin, F. M. (1985). The effects of zinc and copper supplementation on blood lipids, hemoglobin concentration, and trace mineral deposition of young male rats fed either coconut oil or lard. Unpublished master's thesis, University of North Carolina at Greensboro, Greensboro, NC.
- Lukaski, H. C., Klevay, L. M., Bolonchuk, W. W., Mahalko, J. R., Milne, D. B., Johnson, L. K., & Sanstead, H. H. (1982). Influence of dietary lipids on iron, zinc, and copper retention in trained athletes. Federation Proceedings, 41, 275a.

- Magee, A. C., Jones, B. P., Lin, F., Sinthusek, G., Frimpong, N. A., & Wu, S. (1986). Effects of zinc on copper and iron bioavailability as influenced by dietary copper and fat source. <u>Federation Proceedings</u>, 45, 3864a.
- Mahalko, J. R., Sanstead, H. H., Johnson, L. K., & Milne, D. B. (1983). Effect of a moderate increase in dietary protein on the retention and excretion of Ca, Cu, Fe, Mg, P, and Zn by adult males. <u>American Journal of Clinical Nutrition</u>, 37, 8-14.
- Mahoney, A. W., Farmer, B. R., & Hendricks, D. G. (1980). Effects of level and source of dietary fat on the bioavailability of iron from turkey meat for the anemic rat. <u>Journal of Nutrition</u>, <u>110</u>, 1703-1708.
- Metcalfe, L. D., & Schmitz, A. A. (1961). The rapid preparation of fatty acid esters for gas chromatographic analysis. <u>Analytical Chemistry</u>, 33, 363-364.
- Nielsen, F. H. (1985). The importance of diet composition in ultratrace element research. Journal of Nutrition, 115, 1239-1247.
- O'Dell, B. L., Reynolds, G., & Reeves, P. G. (1977). Analogous effects of zinc deficiency and aspirin toxicity in the pregnant rat. Journal of Nutrition, 107, 1222-1228.
- Onderka, H. K., & Kirksey, A. (1975). Influence of dietary lipids on iron and copper levels of rats administered oral contraceptives. Journal of Nutrition, 105, 1269-1277.
- Owen, C. A., Jr. (1964). Distribution of copper in the rat. <u>American</u> <u>Journal of Physiology</u>, 207, 446-448.
- Owen, C. A., Jr. (1973). Effects of iron on copper metabolism and copper on iron metabolism in rats. <u>American Journal of Physiology</u>, 224, 514-518.
- Prasad, A. S. (1982). <u>Clinical biochemical and nutritional aspects of</u> <u>trace elements</u>. <u>New York: A. R. Liss</u>.
- Underwood, E. J. (1977). <u>Trace elements in human and animal nutri-</u> <u>tion</u> (4th ed.). New York: Academic Press.
- Rader, J. I., Wolnik, K. A., Gaston, C. M., Celesk, E. M., Peeler, J. T., Fox, M. R. S., & Fricke, F. L. (1984). Trace element studies on weanling rats: Maternal diets and baseline tissue mineral values. Journal of Nutrition, 114, 1946-1954.
- Sable-Amplis, R., Sicart, R., & Reynier, B. (1987). Apparent retention of copper, zinc, and iron in hamsters: Influence of fruit enriched diet. Nutrition Reports International, 35, 811-818.

- SAS Institute Incorporated. (1985). The GLM procedure. In <u>SAS user's</u> guide: Statistics (5th ed.) (pp. 433-506). Cary, NC: Author.
- Shah, B. G., & Belonje, B. (1984). Bioavailability of zinc in beef with and without plant protein concentrates. <u>Nutrition</u> <u>Research</u>, 4, 71-77.
- Shenk, J. H., Hall, J. L., & King, H. H. (1934). Spectrophotometric characteristics of hemoglobins. Journal of Biological Chemistry, 105, 741-747.
- Sinthusek, G., & Magee, A. C. (1984). Relationship of dietary zinc/ copper ratios to plasma cholesterol and liver trace mineral deposition in young rats fed saturated and unsaturated fats. <u>Nutritional Research</u>, 4, 841-845.
- Solomons, N. W., & Jacob, R. A. (1981). Studies on the bioavailability of zinc in humans: Effects of heme and nonheme iron on the absorption of zinc. <u>American Journal of Clinical Nutrition</u>, 34, 475-482.
- Taylor, T. G., Gibney, M. J., & Morgan, J. B. (1979). Haemostatic function and polyunsaturated fatty acids. Lancet, 2, 1378.
- Tsai, S. L., Craig-Schmidt, M. C., Weete, J. D., & Keith, R. E. (1983). Effects of zinc deficiency on delta 6-fatty acid desaturase activity in rat liver. <u>Federation Proceedings</u>, <u>42</u>, 3110a.
- Wang, S. T., & Peter, F. (1983). Gas liquid chromatographic determination of fatty acid composition of cholesteryl esters in human serum using silica sep-pak cartridges. <u>Journal of</u> <u>Chromatography</u>, <u>276</u>, 257-265.
- Waterman, R. A., Romsos, D. R., Tsai, A. C., Miller, E. R., & Leveille, G. A. (1975). Effects of dietary safflower oil and tallow on growth, plasma lipids and lipogenesis in rats, pigs, and chicks. <u>Proceedings of the Society for Experimental Biology and</u> <u>Medicine, 50, 347-351.</u>
- Wilson, M. D., Hays, R. D., & Clarke, S. D. (1986). Inhibition of liver lipogenesis by dietary polyunsaturated fat in severely diabetic rats. Journal of Nutrition, <u>116</u>, 1511-1518.
- Zuniga, M. E., Lokesh, B. R., Kinsella, J. E. (1987). Dietary n-3 polyunsaturated fatty acids alter lipid composition and decreased prostaglandin synthesis in rat spleen. <u>Nutrition</u> Research, 7, 299-306.

APPENDIX A

.

COMPOSITION OF THE EXPERIMENTAL DIETS

/

Table A-1

Composition of Basal Diets

	2.5	5.0 <u>Pe</u>	ercent Fat 10	20
Ingredients			gm/kg	
Fat ^a	25	50	100	200
Cornstarch	719	694	644	544
Casein	166	166	166	166
Mineral Mix	40	40	40	40
Vitamin Mix	20	20	20	20
Cellulose	20	20	20	20
Vitamin A&D Mix	10	10	10	10
Zinc sulfate	0.01	0.01	0.01	0.01

^aExperiment 1: Coconut Oil, Lard, Safflower Oil Experiment 2: Corn Oil, Olive Oil, Soybean Oil
Composition of Mineral Mix, Wesson Modified Osborne-Mendel^a

Constituents	Percent
Calcium carbonate	21.000
Cupric sulfate 5H 0	0.039
Ferric pyrophosphate	1.470
Manganous sulfate (anhydrous)	0.020
Magnesium sulfate (anhydrous)	9.000
Aluminum potassium sulfate 12H 0	0.009
Potassium chloride	12.000
Potassium dihydrogen phosphate	31.000
Potassium iodide	0.005
Sodium chloride	10.500
Sodium fluoride	0.057
Tricalcium phosphate	14.900

^aTeklad, Madison, WI.

Composition of Vit	tamin Mix ^a
--------------------	------------------------

Constituents	Amount per 2 kg mix			
	mg			
Vitamin B-12	2			
Biotin	20			
Folic acid	100			
Thiamin HCL	500			
Pyridoxine HCL	500			
	gm			
Menadione (2 methyl-napthaquinone)	1			
Riboflavin	1			
Nicotinic acid	1			
Calcium pantothenate	3			
Para-aminobenzoic acid	100			
Inositol	100			
Choline chloride	150			
DL-methionine	600			
Cornstarch ^b	1040			

^aAll vitamins and methionine were purchased from ICN Nutritional Biochemicals, Cleveland, OH.

^bTeklad, Madison, WI.

.

Mineral Analysis of the Diets

Dietary Fat Source	Copper	Iron	Zinc
		mcg/gm	
Coconut Oil	2.7	81	17
Lard	3.6	96	18
Safflower Oil	3.4	96	18
Corn Oil	3.5	82	15
Olive Oil	2.7	84	13
Soybean Oil	2.5	100	14

~

Dietary Fat FAtty Acid Composition and Ratios

		Experime	nt 1 F	ats	Experim	ent 2 F	ats
Fatty Aci	lds	Coconut Oil	Lard	Safflower Oil	Corn Oil	Olive Oil	Soybean Oil
		W	eight	percent of	fatty ac	ids pre	sent
Caprylic	C8:0	5.4					
Capric	C10:0	5.3					
Lauric	C12:0	42.6					
Myristic	C14:0	19.0	1.3				
Palmitic	C16:0	10.8	25.6	6.9	11.8	11.9	10.9
Palmit- oleic	C16:1		2.5			0.9	
Margaric	C17:0		0.3				
Stearic	C18:0	3.3	17.9	2.5	1.9	3.2	3.7
Oleic	C18:1	11.3	42.3	12.3	27.7	78.6	24.3
Linoleic	C18:2	2.3	9.6	78.3	58.6	5.7	53.6
Linolenic	c C18:	3	0.5				7.4
P/S Ratic)	0.028	0.22	8.3	4.3	0.38	4.2
Linoleic/ Linolenic	, Rati	o 2.3	19	78	59	5.7	7.2

APPENDIX B RAW DATA 1

ĩ

.

.

Total Feed Consumption in Rats in Experiments 1 and 2.

.

		<u></u> ##		Repl	icates				
Diets	1	2	3	4	5	6	7	8	Mean
				<u>_qr</u>	ams				
				Exper	iment 1	-			
1 2 3 4 5 6 7 8 9 10 11 12	437 390 388 345 390 422 410 344 400 440 418 428	495 438 389 375 413 450 401 420 493 480 330	429 421 430 341 455 424 419 356 439 457 491 390	459 540 395 525 440 437 363 449 430 465 433	450 428 430 454 470 460 370 439 430 460 430	454 453 430 354 464 468 472 400 450 450 460 503 453	509 510 389 382 458 450 440 400 479 413 460 391	492 467 425 400 430 432 459 416 450 397 460 430	466 456 419 380 444 440 443 381 441 440 467 410
				Exper	iment 2	<u>-</u>			
1 2 3 4 5 6 7 8 9 10 11 12	450 322 448 404 407 410 372 381 400 428 372 406	420 447 517 347 421 397 387 329 450 446 374 362	460 420 388 383 450 443 390 359 410 362 345 380	477 446 404 410 440 403 420 376 450 410 385 358	441 377 419 335 390 410 384 366 410 384 270 381	560 398 440 409 440 410 376 406 390 410 474 379	458 420 356 402 407 356 323 390 410 390 353	386 410 336 406 443 370 378 446 398 398 382	457 405 437 373 420 415 382 365 418 406 389 375

Total Weight Gain of Rats in Experiments 1 and 2.

				Repl	icates				
Diets	1	2	3	4	5	6	7	8	Mean
				gr	ams				
				Exper	<u>iment l</u>	1			
1 2 3 4 5 6 7 8 9 10 11 12	162 153 186 191 230 180 196 192 147 185 201 223	203 164 191 172 172 182 218 229 164 201 212 167	165 183 202 186 194 203 189 187 180 185 210 190	177 225 194 221 188 191 189 182 165 193 222 223	199 153 185 192 177 224 141 197 161 174 204 227	180 217 188 183 213 229 235 208 180 183 207 252	227 232 173 220 189 196 217 206 208 180 224 211	162 214 178 214 176 194 224 207 180 157 224 232	184 193 187 197 201 201 201 173 182 214 216
				Exper	iment 2				
1 2 3 4 5 6 7 8 9 10 11 12	174 167 215 214 146 178 165 186 147 168 147 157	158 193 189 171 155 152 168 152 150 173 155 181	185 180 177 196 166 188 169 210 155 140 138 186	134 175 158 203 174 153 183 175 163 148 171 173	157 155 198 176 155 177 176 187 146 150 173 173	141 158 208 196 159 149 159 189 140 157 182 200	173 174 204 175 150 165 152 182 137 160 175 167	192 154 211 199 145 186 117 210 157 164 152 198	164 170 195 191 156 169 161 186 149 155 161 179

Blood Hemoglobin Concentration in Rats in Experiments 1 and 2.

				Repl	icates				<u></u>
Diets	1	2	3	4	5	6	7	8	Mean
				gī	m/dl				
				Exper	iment l				
1 2 3 4 5 6 7 8 9 10 11 12	17.1 13.7 13.1 13.3 14.5 13.3 12.2 12.9 14.5 14.0 12.3 12.4	$13.2 \\ 14.3 \\ 16.3 \\ 14.1 \\ 13.7 \\ 13.0 \\ 14.9 \\ 14.3 \\ 12.6 \\ 12.6 \\ 12.7 \\ 12.9 \\ $	14.6 12.6 14.0 16.5 17.2 12.1 13.9 15.4 13.0 14.9 14.1 12.6	13.6 12.3 14.9 13.7 14.0 12.5 12.9 13.0 13.9 12.1 12.7 11.7	14.4 15.4 12.7 15.3 17.7 13.3 13.0 12.3 14.9 14.9 14.9 12.7 12.3	15.3 13.4 13.4 14.9 11.7 13.0 12.5 12.7 13.9 13.7 14.5 12.3	13.3 13.7 14.9 13.4 14.5 13.1 12.8 12.5 12.6 12.9 12.6 13.3	12.5 12.9 13.0 12.7 12.3 12.4 12.3 14.5 13.1 13.4 12.6 12.1	14.2 13.5 14.0 14.2 14.5 12.8 13.1 13.5 13.6 13.6 13.0 12.5
				Exper	iment 2				
1 2 3 4 5 6 7 8 9 10 11 12	13.1 13.0 13.5 14.4 13.4 13.8 12.0 13.1 16.7 13.0 14.6	13.8 13.9 13.8 12.7 13.4 14.0 11.4 13.0 16.0 14.1 13.0 13.5	12.1 13.3 10.1 13.4 13.0 12.0 12.4 11.7 14.0 13.4 12.4 13.3	$12.0 \\ 12.5 \\ 13.1 \\ 12.4 \\ 13.6 \\ 12.1 \\ 12.4 \\ 13.2 \\ 14.4 \\ 12.4 \\ 13.0 \\ 14.4 \\ $	14.6 12.7 13.4 12.7 11.0 13.7 12.4 11.6 13.5 11.5 12.0 13.7	14.6 13.4 12.6 13.0 13.0 14.0 12.9 12.0 12.1 11.4 13.0 12.6	11.8 12.7 12.4 12.7 11.4 12.9 12.7 12.0 11.7 12.2 12.0 12.8	12.4 10.8 12.9 11.0 11.4 11.7 14.2 11.8 12.1 13.0 11.8 12.9	13.0 12.8 12.7 12.7 12.7 13.0 12.9 12.1 13.4 13.1 12.8 13.5

Blood Hematocrits of Rats in Experiments 1 and 2.

4				Rep	licates				
Diets	1	2	3	4	5	6	7	8	Mean
				per	rcent				
				Expe	riment	1			
1 2 3 4 5 6 7 8 9 10 11 12	54 50 49 53 51 (46) 54 46 55 56 46 47	42 55 46 52 48 (49) 48 54 51 57 47	51 52 58 (49) (46) 48 48 50 (50) 54 (47)	43 49 42 43 50 39 45 45 45 47 49 42 50	40 54 42 41 46 57 53 40 60 53 43 55	49 51 49 48 49 46 (49) 40 (52) 45 45 (47)	45 50 40 50 43 43 50 46 55 (50) 40 40	40 47 40 41 50 45 41 49 42 48 45 42	46 51 48 49 46 49 45 52 50 47 47
				Expe	riment	2			
1 2 3 4 5 6 7 8 9 10 11 12	48 41 52 50 46 50 45 52 48 42 47	49 50 44 43 43 46 47 40 55 57 46 45	45 42 44 42 41 45 39 52 45 40 47	43 46 42 44 43 43 46 43 45 46 45	58 51 42 39 52 40 47 49 40 45 49	50 49 45 46 48 42 41 49 40 48 42	48 45 46 45 50 48 51 47 41 43 50 53	42 41 46 40 40 43 50 46 45 46 45 45	48 46 43 44 46 46 46 48 46 45 47

a () estimated missing plot value.

Table B-5

.

Kidney Weights of Rats Fed Coconut Oil, Lard, and Safflower Oil.

÷

	Replicates							
Diets	1	2	3	4	5	Mean		
		Wet We	ights (gra	ms)				
1 2 3 4 5 6 7 8 9 10 11 12	1.48 1.75 1.80 1.46 1.84 1.83 1.95 1.85 1.56 1.99 1.56 2.09	1.97 1.60 1.94 1.74 1.68 1.83 2.01 2.19 1.80 2.20 2.09 1.64	1.54 1.57 1.84 1.69 1.67 1.87 2.00 1.77 1.77 1.77 1.71 1.97 1.73	2.04 2.04 2.10 1.90 1.83 2.00 1.64 1.55 1.77 1.84 1.93 1.92	1.79 1.46 1.83 1.96 1.86 2.05 2.03 1.91 1.68 1.67 1.81 2.01	1.76 1.68 1.90 1.75 1.78 1.90 1.90 1.80 1.70 1.90 1.90 1.90		
		Dry We	ights (gra	<u>ms</u>)				
1 2 3 4 5 6 7 8 9 10 11 12	0.38 0.52 0.48 0.38 0.47 0.50 0.57 0.47 0.45 0.57 0.41 0.54	0.47 0.41 0.50 0.45 0.45 0.47 0.48 0.53 0.45 0.56 0.52 0.47	0.42 0.42 0.53 0.44 0.41 0.50 0.52 0.43 0.49 0.47 0.48 0.42	0.49 0.54 0.56 0.46 0.47 0.53 0.43 0.39 0.41 0.49 0.53 0.49	0.50 0.40 0.44 0.47 0.51 0.53 0.53 0.53 0.50 0.44 0.41 0.45 0.49	0.45 0.46 0.50 0.44 0.46 0.51 0.46 0.45 0.46 0.45 0.48 0.48		

Liver Weights of Rats Fed Coconut Oil, Lard, and Safflower Oil.

			Replicates	5		
Diets	1	2	3	4	5	Mean
		Wet I	Weights (c	grams)		
1 2 3 4 5 6 7 8 9 10 11 12	6.39 6.50 7.88 8.45 7.07 6.57 6.94 8.53 5.48 7.43 8.04 9.93	8.54 6.59 8.35 7.61 6.91 6.84 8.51 9.16 6.45 7.85 8.12 6.73	6.25 6.96 8.47 6.80 7.07 8.11 7.45 7.32 6.87 6.82 7.71 6.46	7.87 7.55 8.17 8.41 7.76 7.37 7.84 7.67 6.36 7.24 8.52 9.66	8.83 6.25 7.45 7.74 7.10 8.50 10.20 8.31 6.71 6.57 8.25 9.63	7.58 6.77 8.06 7.80 7.18 7.48 8.14 8.20 6.37 7.18 8.13 8.13 8.48
		Dry I	Weights (g	grams)		
1 2 3 4 5 6 7 8 9 10 11 12	1.79 1.68 2.08 2.27 1.73 1.77 1.98 2.07 1.39 2.10 2.07 2.58	2.20 1.72 2.22 1.86 1.85 1.84 2.27 2.38 1.72 2.18 2.39 1.81	1.64 1.85 2.09 1.75 1.91 2.14 2.04 2.04 1.81 1.98 1.98 1.78	1.94 2.12 2.13 2.14 1.97 2.03 2.04 2.00 1.66 1.79 2.32 2.80	2.25 1.65 1.94 2.00 1.89 2.48 2.64 2.14 1.71 1.85 2.29 2.45	1.96 1.80 2.09 2.00 1.87 2.05 2.19 2.13 1.66 1.98 2.21 2.28

• .

.

Spleen Weights of Rats Fed Coconut Oil, Lard, and Safflower Oil.

		Re	eplicates	<u> </u>		<u></u>
Diets	1	2	3	4	5	Mean
		Wet We	eights (gra	ams)		
1 2 3 4 5 6 7 8 9 10 11 12	0.49 0.48 0.76 0.74 0.67 0.77 0.57 0.60 0.60 0.60 0.75 0.65 1.06	0.87 0.50 0.73 0.59 0.80 0.49 0.85 0.64 0.55 0.63 0.67 0.52	0.58 0.51 0.66 0.73 0.74 0.87 0.56 0.57 0.67 0.55 0.64 0.73	0.86 0.74 0.82 0.66 0.57 0.79 0.63 0.81 0.54 0.77 0.92 0.80	0.70 0.55 0.73 0.64 0.61 0.66 0.81 0.64 0.66 0.65 0.95 0.85	0.70 0.56 0.74 0.67 0.68 0.72 0.68 0.65 0.60 0.67 0.77 0.79
		Dry We	eights (gra	ums)		
1 2 3 4 5 6 7 8 9 10 11 12	0.11 0.17 0.18 0.15 0.18 0.14 0.13 0.13 0.13 0.17 0.15 0.25	0.18 0.12 0.18 0.13 0.18 0.10 0.19 0.15 0.13 0.14 0.15 0.12	0.14 0.12 0.16 0.16 0.17 0.19 0.12 0.12 0.12 0.12 0.16 0.13 0.15 0.16	0.20 0.17 0.18 0.15 0.13 0.18 0.14 0.18 0.12 0.12 0.17 0.21 0.18	0.16 0.13 0.18 0.15 0.14 0.15 0.20 0.15 0.15 0.15 0.23 0.20	0.16 0.13 0.17 0.15 0.15 0.16 0.16 0.16 0.15 0.14 0.16 0.18 0.18

.

.

Testes Weights of Rats Fed Coconut Oil, Lard, and Safflower Oil.

Replicates							
1	2	3	4	5	Mean		
	Wet	<u>Weights (c</u>	<u>(rams</u>)				
1.99 2.63 2.85 2.53 2.52 2.56 2.53 2.53 2.46 2.63 2.97 3.05	2.78 1.77 2.88 2.73 2.20 2.62 2.72 2.92 2.12 2.88 2.61 2.73	2.98 2.89 2.88 2.76 2.82 2.64 2.91 2.83 2.55 2.64 2.76 2.69	2.98 3.03 2.95 2.62 2.78 2.87 2.88 2.70 2.79 2.51 2.75 3.06	2.96 2.74 2.58 2.90 2.88 2.94 2.37 3.15 2.35 2.22 2.83 3.03	2.74 2.01 2.83 2.71 2.64 2.73 2.68 2.83 2.45 2.58 2.78 2.78 2.91		
	Dry	Weights (g	rams)				
0.29 0.36 0.40 0.38 0.38 0.36 0.36 0.35 0.35 0.35 0.35 0.38 0.45 0.42	0.38 0.26 0.39 0.39 0.38 0.38 0.38 0.41 0.31 0.41 0.37 0.38	0.42 0.41 0.39 0.39 0.39 0.37 0.40 0.39 0.36 0.36 0.36 0.40 0.38	0.42 0.42 0.39 0.38 0.39 0.39 0.41 0.36 0.39 0.35 0.35 0.38 0.42	0.41 0.39 0.36 0.41 0.39 0.42 0.33 0.42 0.35 0.32 0.40 0.43	$\begin{array}{c} 0.38\\ 0.37\\ 0.39\\ 0.39\\ 0.39\\ 0.38\\ 0.38\\ 0.38\\ 0.39\\ 0.35\\ 0.36\\ 0.40\\ 0.41\\ \end{array}$		
	1 1.99 2.63 2.85 2.53 2.52 2.56 2.53 2.53 2.46 2.63 2.97 3.05 0.29 0.36 0.40 0.38 0.36 0.36 0.35 0.35 0.35 0.35 0.42	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Replicates123Wet Weights (c1.992.782.982.631.772.892.852.882.882.532.732.762.522.202.822.562.622.642.532.722.912.532.922.832.462.122.552.632.882.642.972.612.763.052.732.69Dry Weights (c0.290.380.420.360.260.410.400.390.390.380.380.390.360.380.370.360.380.400.350.410.390.380.410.360.450.370.400.420.380.38	Replicates1234Wet Weights (grams) 1.99 2.78 2.98 2.98 2.63 1.77 2.89 3.03 2.85 2.88 2.88 2.95 2.53 2.73 2.76 2.62 2.52 2.20 2.82 2.78 2.56 2.62 2.64 2.87 2.53 2.72 2.91 2.88 2.53 2.72 2.91 2.88 2.53 2.92 2.83 2.70 2.46 2.12 2.55 2.79 2.63 2.88 2.64 2.51 2.97 2.61 2.76 2.75 3.05 2.73 2.69 3.06 Dry Weights (grams) 0.29 0.38 0.42 0.42 0.36 0.26 0.41 0.42 0.40 0.39 0.39 0.39 0.36 0.38 0.37 0.39 0.36 0.38 0.40 0.41 0.35 0.41 0.36 0.35 0.38 0.40 0.41 0.36 0.38 0.41 0.36 0.35 0.42 0.38 0.42 0.38 0.42 0.38 0.38 0.42	Replicates12345Wet Weights (grams)1.992.782.982.982.962.631.772.893.032.742.852.882.882.952.582.532.732.762.622.902.522.202.822.782.882.562.622.642.872.942.532.722.912.882.372.532.922.832.703.152.462.122.552.792.352.632.882.642.512.222.972.612.762.752.833.052.732.693.063.03Dry Weights (grams)0.290.380.420.420.410.360.260.410.420.390.400.390.390.390.390.360.380.370.390.420.360.380.370.390.420.360.380.400.410.330.350.310.360.390.350.380.410.360.350.320.450.370.400.380.420.420.380.380.420.43		

Kidney Weights of Rats Fed Corn Oil, Olive Oil, and Soybean Oil.

Replicates							
Diets	1	2	3	4	5	Mean	
		Wet	Weights (g	rams)			
1 2 3 4 5 6 7 8 9 10 11 12	2.25 1.87 2.38 2.37 1.72 2.25 2.06 1.98 1.92 2.15 1.68 1.89	1.69 2.24 2.11 1.75 2.30 1.98 2.04 2.48 2.00 2.18 1.64 2.21	2.07 1.83 1.93 2.23 2.00 2.55 2.11 2.33 1.98 1.54 1.64 1.96	1.71 2.23 1.79 2.34 2.04 2.03 2.28 1.86 2.00 1.68 2.10 1.98	1.69 1.45 1.98 1.74 1.71 1.93 1.92 2.04 1.67 1.68 1.85 1.98	1.88 1.92 2.04 2.09 1.95 2.15 2.08 2.14 1.91 1.85 1.78 2.00	
		Dry	Weights (g	rams)			
1 2 3 4 5 6 7 8 9 10 11 12	0.59 0.45 0.63 0.62 0.44 0.68 0.50 0.51 0.51 0.51 0.52 0.47 0.51	0.42 0.58 0.51 0.43 0.57 0.50 0.51 0.54 0.47 0.55 0.42 0.52	0.52 0.42 0.52 0.51 0.64 0.49 0.57 0.50 0.37 0.40 0.48	0.45 0.58 0.51 0.63 0.51 0.51 0.55 0.48 0.49 0.42 0.49 0.42 0.49 0.48	0.45 0.40 0.51 0.46 0.52 0.51 0.54 0.42 0.43 0.43 0.48 0.49	0.49 0.52 0.53 0.50 0.57 0.51 0.53 0.48 0.46 0.45 0.50	

Liver Weights of Rats Fed Corn Oil, Olive Oil, and Soybean Oil.

<u>,,,,</u>	<u></u>		Replicates	S		
Diets	1	2	3	4	5	Mean
		Wet	Weights (a	grams)		
1 2 3 4 5 6 7 8 9 10 11 12	7.66 8.42 10.93 9.01 6.89 9.44 7.33 8.55 7.71 7.06 6.72 7.46	7.50 10.36 8.02 7.96 9.12 8.02 7.71 6.10 6.84 9.10 7.13 10.59	10.11 7.55 7.29 8.38 6.90 9.68 7.66 9.75 7.60 7.02 6.76 8.20	6.57 8.13 6.72 9.03 8.69 6.95 10.15 7.80 7.45 8.48 7.62 10.73	7.67 6.43 9.02 7.04 7.64 7.46 7.25 8.28 7.01 6.38 8.13 9.16	7.90 8.17 8.41 8.28 7.85 8.32 8.02 8.10 7.32 7.61 7.22 9.20
		Dry	Weights (g	grams)		
1 2 3 4 5 6 7 8 9 10 11 12	2.09 2.15 3.24 2.71 1.77 2.47 2.09 2.38 2.02 1.98 1.75 2.00	1.98 2.66 2.32 2.09 2.40 2.04 2.22 1.17 1.86 2.37 2.01 2.65	2.63 2.22 2.16 2.35 2.01 2.60 2.13 2.58 2.03 1.90 1.72 2.37	1.73 2.21 1.92 2.43 2.09 1.81 2.51 2.14 1.88 2.21 1.97 3.36	1.98 1.76 2.81 1.94 2.02 2.15 2.04 2.26 1.92 1.73 2.12 2.20	2.08 2.20 2.49 2.30 2.06 2.22 2.20 2.11 1.94 2.04 1.91 2.52

*

Spleen Weights of Rats Fed Corn Oil, Olive Oil, and Soybean Oil.

- <u></u>	<u></u>	······	Replicates	3		<i></i>
Diets	1	2	3	4	5	Mean
·		Wet	Weights (g	rams)		
1 2 3 4 5 6 7 8 9 10 11 12	0.75 0.81 1.18 0.91 0.59 1.04 0.69 0.80 0.54 0.54 0.76 0.82 0.67	0.80 1.06 0.87 0.93 0.67 0.65 0.89 0.69 0.83 0.94 0.89 0.88	1.11 0.87 1.06 1.17 0.57 1.02 0.85 0.92 0.54 0.61 0.84 0.64	0.82 0.75 0.54 1.01 0.65 0.73 0.93 0.51 0.61 0.60 0.60 0.80	0.58 0.75 0.86 0.89 0.84 0.62 0.69 0.67 0.66 0.63 0.86 0.76	0.81 0.85 0.90 0.98 0.66 0.81 0.81 0.72 0.64 0.71 0.80 0.75
		Dry	Weights (g	Irams)		
1 2 3 4 5 6 7 8 9 10 11 12	0.17 0.18 0.27 0.22 0.13 0.23 0.16 0.18 0.12 0.16 0.19 0.15	0.17 0.24 0.21 0.15 0.16 0.21 0.16 0.19 0.22 0.20 0.19	0.25 0.20 0.25 0.26 0.13 0.24 0.20 0.21 0.13 0.15 0.21 0.15	0.18 0.17 0.12 0.23 0.16 0.17 0.21 0.11 0.14 0.15 0.13 0.20	0.14 0.17 0.20 0.21 0.20 0.14 0.16 0.17 0.15 0.15 0.20 0.18	0.18 0.19 0.21 0.23 0.15 0.19 0.19 0.17 0.15 0.17 0.19 0.17

Testes Weights of Rats Fed Corn Oil, Olive Oil, and Soybean Oil.

Replicates						
Diets	1	2	3	4	5	Mean
		Wet	Weights (g	rams)		
1 2 3 4 5 6 7 8 9 10 11 12	2.91 2.56 2.57 2.93 2.25 2.99 2.64 2.57 2.73 2.56 2.83 2.71	2.52 2.57 2.66 2.53 2.40 2.45 2.78 2.34 2.62 2.65 2.41 2.70	2.41 2.65 2.59 2.69 2.63 2.70 2.13 3.07 2.04 2.95 1.80 2.78	3.00 2.73 5.74 2.80 2.74 2.70 2.88 2.74 2.86 2.85 2.56 2.63	2.87 2.21 2.86 2.52 2.41 2.26 2.73 2.45 2.63 2.74 2.74 2.74	2.74 2.54 2.68 2.69 2.49 2.62 2.63 2.63 2.58 2.75 2.47 2.72
		Dry	Weights (g	rams)		
1 2 3 4 5 6 7 8 9 10 11 12	0.42 0.37 0.36 0.41 0.32 0.42 0.36 0.36 0.38 0.35 0.40 0.41	0.34 0.37 0.34 0.33 0.34 0.39 0.32 0.36 0.36 0.35 0.37	0.35 0.37 0.36 0.39 0.37 0.37 0.30 0.42 0.36 0.41 0.27 0.35	0.41 0.36 0.38 0.36 0.36 0.39 0.36 0.39 0.39 0.39 0.39 0.36 0.39	0.42 0.30 0.39 0.36 0.32 0.32 0.36 0.35 0.35 0.37 0.38 0.38 0.39	0.39 0.35 0.37 0.38 0.38 0.36 0.36 0.36 0.36 0.37 0.38 0.35 0.38

.

Kidney Copper Concentrations of Rats in Experiments 1 and 2.

*	<i></i>		Replicates			
Diets	1	2	3	4	5	Mean
		п	ncq/qm dry	wt_		
		<u>F</u>	Experiment	1		
1 2 3 4 5 6 7 8 9 10 11 12	35.9 19.7 23.7 20.9 26.6 20.5 17.9 36.3 22.7 21.9 49.9 27.4	24.2 22.2 65.9 17.7 27.8 26.6 71.0 42.9 25.3 22.3 28.4 19.3	24.4 27.1 27.9 25.8 30.5 25.0 35.0 26.4 27.8 21.8 54.5 21.6	20.9 33.7 58.8 22.2 21.6 23.6 21.1 20.4 33.3 25.5 23.5 25.5	20.5 25.6 20.7 21.8 31.2 23.6 17.1 18.2 20.7 19.4 17.7 20.9	25.1 25.6 39.4 21.7 27.6 23.8 32.4 28.9 25.9 22.2 34.8 22.9
		E	xperiment	2		
1 2 3 4 5 6 7 8 9 10 11 12	23.3 27.8 25.8 22.1 22.7 18.4 25.0 27.0 34.3 31.2 39.3 34.3	29.8 45.3 24.5 26.2 37.3 42.5 27.0 25.5 45.2 43.2 38.7 45.7	21.6 26.8 25.0 24.0 27.0 27.3 25.5 24.1 17.5 27.0 40.6 23.4	25.0 34.5 24.5 35.7 27.0 34.3 27.3 28.6 28.1 41.7 45.9 36.5	30.6 52.0 27.0 24.5 24.5 24.5 24.0 31.9 20.8 32.7 46.5 46.9 48.5	26.1 31.9 25.4 26.5 27.7 29.3 27.3 25.2 31.6 37.9 40.3 37.7

Kidney Iron Concentrations of Rats in Experiments 1 and 2.

			Replicate	S	· · · · · · · · · · · · · · · · · · ·	
Diets	1	2	3	4	5	Mean
		<u>1</u>	ncg/gm dry	wt		
		<u>]</u>	Experiment	1		
1 2 3 4 5 6 7 8 9 10 11 12	273 385 454 216 342 486 426 691 270 275 270 384	304 523 514 421 635 266 505 451 302 357 412 638	374 459 472 373 279 300 536 648 350 228 350 289	299 463 338 186 279 404 556 495 679 554 391 671	2365 241 252 319 189 168 216 279 333 218 175 335	297 414 406 303 344 325 448 513 387 327 319 463
		1	Experiment	2		
1 2 3 4 5 6 7 8 9 10 11 12	198 173 176 134 202 196 255 174 185 128 166 218	212 182 142 181 283 267 153 134 142 192 185 246	171 132 111 128 153 165 136 244 156 180 220 150	198 125 163 150 196 163 192 220 170 238 227 243	210 181 142 133 169 149 229 144 158 168 162 204	198 159 147 145 200 188 193 183 162 181 192 212

.

Kidney Zinc Concentrations of Rats in Experiments 1 and 2.

			Replicate	S		
Diets	1	2	3	4	5	Mean
		ma	cg/gm dry v	wt		
		<u>1</u>	Experiment	1		
1 2 3 4 5 6 7 8 9 10 11 12	89 70 88 102 93 77 67 93 86 90 97 79	87 88 81 75 85 86 82 96 81 85 87 77	94 89 82 93 87 85 83 90 79 91 88 95	88 87 91 95 83 88 96 82 117 86 90 90	73 78 82 84 79 75 83 83 83 85 90 88 87	86 83 95 90 86 82 82 91 90 89 90 86
		1	Experiment	2		
1 2 3 4 5 6 7 8 9 10 11 12	84 108 79 86 96 75 86 83 89 90 79 85	90 78 85 86 79 88 78 90 91 89 87 77	84 91 97 81 92 74 94 83 87 97 79 92	88 91 94 76 83 85 86 92 96 90 91 90	88 85 84 76 70 89 82 90 83 98 85	87 91 88 83 86 80 87 86 91 90 87 86

Liver Copper Concentrations of Rats in Experiments 1 and 2.

		<u> </u>	Replicates	;		
Diets	1	2	3	4	5	Mean
		<u>n</u>	ncg/gm dry	wt		
		E	xperiment	1		
1 2 3 4 5 6 7 8 9 10 11 12	20.1 17.9 20.2 12.3 20.2 19.8 17.7 18.4 20.1 20.5 20.3 12.8	18.6 19.8 19.4 20.4 19.1 19.6 20.3 20.2 20.3 19.7 18.8 17.1	20.7 22.2 21.1 22.9 19.9 17.8 18.1 17.2 20.4 17.7 21.2 18.0	17.5 18.0 25.4 20.6 18.8 21.2 18.1 13.5 21.1 20.7 19.0 16.1	16.9 20.0 17.0 19.5 17.5 16.9 17.0 15.9 19.9 19.5 20.0 18.4	18.8 19.5 20.6 19.1 19.1 19.0 18.3 17.0 20.4 19.6 19.9 16.5
		E	xperiment	2		
1 2 3 4 5 6 7 8 9 10 11 12	16.1 17.9 14.5 13.6 18.3 16.7 15.5 16.1 14.6 19.3 18.5 16.2	16.3 17.9 14.5 16.9 18.4 15.9 16.6 25.1 19.8 15.5 19.8 17.8	15.1 19.9 18.4 15.6 16.1 16.4 16.6 15.4 12.3 14.7 16.2 15.5	17.1 20.0 19.1 16.3 17.6 18.2 16.4 13.7 16.4 16.0 18.7 12.3	18.6 19.2 15.7 17.4 16.7 17.8 15.9 13.0 18.4 17.0 17.3 15.4	16.7 18.9 16.5 16.0 17.4 17.0 16.2 16.7 16.3 16.5 18.1 15.4

-

~

. •

Liver Iron Concentrations of Rats in Experiments 1 and 2.

Mean
517 554 559 590 549 430 454 429 665 476 428 477
408 475 242 372 487 357 473 313 384 402 441 432

,

Liver Zinc Concentration of Rats in Experiments 1 and 2.

····		<u></u>	Replicate	S	. <u></u>	
Diets	1	2	3	4	5	Mean
]	mcg/qm dry	wt		
			Experiment	1		
1 2 3 4 5 6 7 8 9 10 11 12	111 90 69 79 95 91 173 144 138 103 122 122	111 112 103 123 94 142 110 128 114 90 108 129	90 85 134 110 120 112 91 96 127 109 114 148	97 94 109 115 104 111 114 113 114 124 115 95	99 108 120 111 102 112 106 118 92 144 113 109	102 98 107 108 103 115 117 120 117 114 115 121
]	Experiment	2	~	
1 2 3 4 5 6 7 8 9 10 11 12	96 97 81 74 99 93 82 81 83 97 105 79	86 83 79 90 82 78 83 104 81 79 106 88	78 101 93 75 93 85 88 79 58 92 67 84	82 91 111 82 88 105 63 78 106 72 89 67	91 109 74 84 97 66 88 89 91 107 87 72	87 96 88 87 92 85 81 92 84 89 90 78

-

.

Spleen Copper Concentrations of Rats in Experiments 1 and 2.

- <u></u>			Replicates	;		
Diets	1	2	3	4	5	Mean
		m	cq/qm dry	wt		2
		E	xperiment	1		
1 2 3 4 5 6 7 8 9 10 11 12	17.0 11.4 7.4 6.9 8.3 6.9 8.9 9.6 9.6 11.0 8.3 7.5	$ \begin{array}{r} 6.9\\ 10.4\\ 3.5\\ 14.4\\ 10.4\\ 6.3\\ 9.9\\ 12.5\\ 9.6\\ 8.9\\ 12.5\\ 5.2\\ \end{array} $	4.5 5.2 3.9 7.8 3.7 6.6 5.2 5.2 3.9 4.8 4.2 3.9	3.1 3.7 3.5 4.2 4.8 3.5 4.5 3.5 5.2 3.6 3.0 3.5	3.9 4.8 3.5 4.2 4.4 4.2 3.1 4.2 3.6 2.7 3.1	7.1 7.1 4.3 7.5 6.3 5.5 6.3 7.0 6.5 6.4 6.1 4.6
		E	xperiment	2		
1 2 3 4 5 6 7 8 9 10 11 12	4.2 7.9 10.6 6.5 5.5 3.1 8.9 4.0 11.9 8.9 7.5 4.8	4.2 6.0 6.8 10.2 9.5 4.5 6.8 8.9 11.3 9.7 10.7 3.8	2.9 7.1 8.6 8.2 5.5 6.0 7.1 6.8 5.5 4.8 6.8 4.8	7.9 4.2 6.0 6.2 8.9 8.4 6.8 6.4 10.2 9.5 5.5 7.1	5.1 8.4 7.1 6.8 7.1 10.2 4.5 8.4 4.8 9.5 7.1 7.9	4.9 6.7 7.8 7.5 7.3 6.4 6.9 8.7 8.5 7.5 5.7

.

Spleen Iron Concentrations of Rats in Experiments 1 and 2.

	<u></u>	Replicate	es		
1	2	3	4	5	Mean
		mcg/gm dry	<u>wt</u>		
		Experiment	. 1		
432 659 397 500 567 347 268 538 385 485 550 380	708 375 639 981 625 400 474 300 692 482 300 792	429 521 703 391 382 500 750 354 656 462 467 453	513 500 514 400 423 528 446 528 854 515 488 444	375 346 431 783 571 283 250 300 283 191 185 375	491 480 537 611 514 412 438 404 574 427 398 489
		Experiment	2		
733 705 556 671 905 461 822 731 712 1327 984 846	1126 779 582 736 831 865 813 756 850 1017 1085 850	868 565 434 479 657 653 542 648 781 1508 813 892	833 570 750 642 865 733 725 839 692 1462 1011 842	940 814 542 747 692 626 908 652 692 831 542 859	900 684 573 655 790 668 762 721 745 1228 887 858
	1 432 659 397 500 567 347 268 538 385 485 550 380 733 705 556 671 905 461 822 731 712 1327 984 846	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Replicate 1 2 3 mcg/qm dry £xperiment 432 708 429 659 375 521 397 639 703 500 981 391 567 625 382 347 400 500 268 474 750 538 300 354 385 692 656 485 482 462 550 300 467 380 792 453 Experiment 733 1126 868 705 779 565 556 582 434 671 736 479 905 831 657 461 865 653 822 813 542 731 756 648 712 850 781 1327 1017 1508	Replicates1234mcg/gm dry wtExperiment 1432708429513659375521500397639703514500981391400567625382423347400500528268474750446538300354528385692656854485482462515550300467488380792453444Experiment 27331126868833705779565570556582434750671736479642905831657865461865653733822813542725731756648839712850781692132710171508146298410858131011846850892842	Replicates 1 2 3 4 5 <u>mcq/qm dry wt</u> <u>Experiment 1</u> 432 708 429 513 375 659 375 521 500 346 397 639 703 514 431 500 981 391 400 783 567 625 382 423 571 347 400 500 528 283 268 474 750 446 250 538 300 354 528 300 385 692 656 854 283 <u>Experiment 2</u> T33 1126 868 833 940 733 1126 868 833 940 733 1126 868 833 940 733 1126 868 833 940

Spleen Zinc Concentrations of Rats in Experiments 1 and 2.

Replicates					
l	2	3	4	5	Mean
	1	mcg/gm dry	wt		
	4	Experiment	1		
96 62 89 86 109 112 92 93 87 80 96 94	88 82 101 117 105 129 110 111 82 92 104 94	84 133 102 104 96 102 104 129 90 102 93 104	99 103 114 86 99 99 108 101 111 102 103 80	97 90 74 83 103 96 72 79 101 80 82 91	93 94 95 102 107 97 102 94 91 96 95
	J	Experiment	2		
81 91 78 83 82 75 81 86 88 95 82 79	87 77 53 83 81 110 77 81 80 78 82 83	78 83 78 84 94 77 78 77 86 60 71 88	91 88 83 76 87 81 87 89 69 82 88	76 76 80 79 78 83 76 81 86 133 80 73	82 83 75 82 82 86 79 83 85 87 79 82
	1 96 62 89 86 109 112 92 93 87 80 96 94 81 91 78 83 82 75 81 86 88 95 82 79	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Replicate 1 2 3 mcg/gm dry Experiment 96 88 84 62 82 133 89 101 102 86 117 104 109 105 96 112 129 102 92 110 104 93 111 129 94 92 102 96 104 93 94 94 104 Experiment 81 87 78 91 77 83 78 53 78 91 77 83 83 83 84 82 81 94 75 110 77 81 77 78 86 81 77 88 80 86 95 78 60	Replicates1234mcg/gm dry wtExperiment 1968884996282133103891011021148611710486109105969911212910299921101041089311112910187829011180921021029610493103949410480Experiment 281877891917783888383848382819476751107787817778818681778788808689957860698282718279838888	Replicates12345mcg/gm dry wtExperiment 196888499976282133103908910110211474861171048683109105969910311212910299969211010410872931111291017987829011110180921021028096104931038294941048091Experiment 28187789176785378888383848379828194767875110778783817778818681778781808689957860699578606913382827182807983888873

Testes Copper Concentrations of Rats in Experiments 1 and 2.

Replicates						
Diets	1	2	3	4	5	Mean
		<u>n</u>	ncg/qm dry	wt		
		E	xperiment	1		
1 2 3 4 5 6 7 8 9 10 11 12	14.1 13.9 14.8 10.8 14.4 13.9 13.9 14.3 14.3 14.3 13.2 13.1 14.1	12.0 14.0 14.0 13.2 13.2 14.4 12.9 11.7 13.3 13.5 13.2	13.0 13.3 12.8 14.0 12.8 12.3 12.5 12.8 12.6 12.6 12.6 14.8 12.0	13.0 9.7 12.8 12.0 11.7 12.8 13.3 11.4 14.4 11.7 12.0 10.8	11.1 15.2 11.4 11.1 12.8 13.0 12.4 11.9 13.0 12.8 11.4 11.6	12.6 13.2 12.3 13.0 13.0 13.3 12.5 13.1 12.7 12.9 12.3
		E	xperiment	2		
1 2 3 4 5 6 7 8 9 10 11 12	15.3 17.4 17.9 15.7 17.9 18.7 15.9 15.9 15.9 18.8 14.3 17.9 15.7	16.8 15.4 14.7 17.3 18.9 14.7 15.6 13.9 17.9 18.4 15.4	12.2 13.5 15.9 14.2 15.4 15.4 16.7 15.3 11.9 12.2 18.5 13.2	16.3 15.9 16.3 16.3 17.2 17.2 15.9 12.2 14.7 14.7 15.9 15.9	14.7 14.3 14.7 13.2 16.4 8.9 14.6 10.9 12.9 12.5 15.0 13.4	$15.1 \\ 15.6 \\ 16.0 \\ 14.9 \\ 16.8 \\ 15.8 \\ 15.5 \\ 15.0 \\ 14.4 \\ 14.3 \\ 17.1 \\ 14.7 $

*

Testes Iron Concentrations of Rats in Experiments 1 and 2.

Replicates					
1	2	3	4	5	Mean
	L	mcq/qm dry	wt		
	-	Experiment	1		
203 153 168 161 177 142 168 157 184 111 149	161 207 151 167 158 145 316 140 161 177 142 174	241 213 154 192 388 159 166 138 170 170 172 132	131 74 141 132 112 144 143 160 138 150 145 149	134 122 150 128 170 152 129 148 136 145 131 99	174 154 152 157 198 155 179 147 152 165 140 141
	ļ	Experiment	2		
149 203 174 183 234 179 173 139 197 179 156 152	184 147 135 147 152 147 160 156 174 139 143 203	179 135 174 160 135 169 250 179 174 152 185 164	122 139 164 132 174 139 128 208 160 192 139 243	208 83 191 208 234 117 174 179 168 132 197 160	168 141 168 166 186 150 177 172 175 159 164 185
	1 203 153 153 168 161 177 142 168 157 184 111 149 149 203 174 183 234 179 173 139 197 179 156 152	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Replicate.123mcq/qm dryExperiment.203161241153207213153151154168167192161158388177145159142316166168140138157161170184177170111142172149174132Experiment149184179203147135174135174183147160234152135179147169173160250139156179197174174179139152156143185152203164	Replicates1234mcq/qm dry wtExperiment 120316124113115320721374153151154141168167192132161158388112177145159144142316166143168140138160157161170138184177170150111142172145149174132149Experiment 2149184179122203147135139174135174164183147160132234152135174179147169139173160250128139156179208197174174160179139152192156143185139152203164243	Replicates12345mcq/qm dry wtExperiment 12031612411311341532072137412215315115414115016816719213212816115838811217017714515914415214231616614312916814013816014815716117013813618417717015014511114217214513114917413214999Experiment 214918417912220820314713513983174135174244179147169139117173160250128174139156179208179197174174160168179139152192132156143185139197152203164243160

Testes Zinc Concentrations of Rats in Experiments 1 and 2.

.

Replicates						
Diets	1	2	3	4	5	Mean
		1	mcg/gm dry	wt		
			Experiment	1		
1 2 3 4 5 6 7 8 9 10 11 12	166 175 160 175 166 162 175 190 164 158 154 161	205 142 173 183 178 173 185 163 146 165 153 163	172 169 185 190 161 168 167 154 190 170 181 161	152 189 173 158 157 161 169 175 166 183 171 161	185 185 216 169 207 179 146 183 158 197 167 168	176 172 182 175 174 169 168 173 165 174 165 163
			Experiment	2	-	
1 2 3 4 5 6 7 8 9 10 11 12	142 154 156 161 167 163 158 149 154 160 156 130	157 155 152 160 159 150 151 159 168 151 153 145	163 152 180 146 149 145 140 159 156 133 130 164	145 168 155 150 166 173 157 158 162 160 156 163	159 149 155 160 170 115 156 150 145 157 159 155	153 156 160 156 162 149 153 155 157 152 150 152

APPENDIX C

.

STATISTICAL ANALYSES

.

Analysis of Variance of Growth Data of Rats Fed Coconut Oil, Lard, and Safflower Oil

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square
	Experi	ment 1	
Total Replicates Diet Source Level Source x Level Error	95 7 11 2 3 6 77	49898 5700 13680 1176 6538 5966 30517	814 1244** 588 2179** 994* 396
	Covarian	t Analysis	
Total Replicates Feed Intake Diet Source Level Source x Level Error	95 7 1 11 2 3 6 76	49898 3158 9028 20373 1563 14794 1835 21489	451 9028** 1852** 782 4931** 306 283
Total Replicates Kilocalories Diet Error	95 7 1 11 76	49898 3262 9300 4434 21217	466 9300** 403 279

* significant (p<0.05) ** highly significant (p<0.01)

Analysis of Variance of Growth Data of Rats Fed Corn Oil, Olive Oil, and Soybean Oil

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square
	Experi	ment 1	
Total Replicates Diet Source Level Source x Level Error	95 7 11 2 3 6 77	40590 624 19590 5680 11090 2820 20376	89 1781** 2840** 3697** 470 265
	Covarian	t analysis	
Total Replicates Feed Intake Diet Source Level Source x Level Error	95 7 1 11 2 3 6 76	40590 1173 2790 22280 3051 13323 1339 17586	168 2790** 2025** 1526** 4441** 223 231
Total Replicates Kilocalories Diet Source Level Source x Level	95 7 1 11 2 3 6	40590 1184 2998 9490 3047 6195 1239	169 2998** 863** 1524** 2065** 207
Error	76	17378	229

* significant (p<0.05) ** highly significant (p<0.01)

88

Analysis of Variance of Feed Intake Data of Rats

Source Variat	e of cion	Degrees Freedom	of	Sum of Squares		Mean Square	e
			Experiment	<u>1</u>			
Total Replic Diet Error	cates Source Level Source x Level	95 7 11 77	2 3 6	158527 20372 75064 63091	2753 56475 15836	2910 6824*: 819	* 1377 18825** 2639**
			Experiment 2	2			
Total Replic Diet Error	cates Source Level Source x Level	95 7 11 77	2 3 6	150260 11711 68115 70433	9974 45077 13065	1673 6192** 914	* 4987** 15026** 2178*

* significant (p<0.05)
** highly significant (p<0.01)</pre>

~

Analysis of Variance of Feed Efficiency Data

Source Variat	e of tion	Degrees Freedom	of	Sum of Squares		Mean Squaré	
	····		Experiment 1				
Total Replic Diet Error	cates Source Level Source x Level	95 7 11 77	2 3 6	0.3334 0.0182 0.2014 0.1138	0.0103 0.1826 0.0086	0.0026 0.0183, 0.0015	** 0.0051* 0.0609** 0.0014
			Experiment 2	2			
Total Replic Diet Error	cates Source Level Source x Level	95 7 11 77	2 3 6	0.3934 0.0160 0.2572 0.1202	0.0134 0.2395 0.0043	0.0023 0.0234* 0.0016	0.0067* 0.0798** 0.0007

* significant (p<0.05)
** highly significant (p<0.01)</pre>

Analysis of Variance of Hemoglobin and Hematocrit Data of Rats Fed Coconut Oil, Lard, and Safflower Oil

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square
	Hemog]	obin	
Total Replicates Diet Source Level Source x Le Error	95 7 11 2 3 evel 6 77	142 19 33 12 9 12 90	3 3** 6** 3* 2 1
	Hemato	perit	
Total Replicates Diet Source Level Source x Le Error	95 7 11 2 3 evel 6 77	2352 551 444 105 291 1357	79 40* 24 35 49* 18

* significant (p<0.05) ** highly significant (p<0.01)

.

Analysis of Variance of Hemoglobin and Hematocrit Data of Rats Fed Corn Oil, Olive Oil, and Soybean Oil

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square
	Hemoglobin		
Total Replicates Diet Error	95 7 11 77	108 24 11 74	3 1 1
	Hematocrit		
Total Replicates Diet Error	95 7 11 77	1519 183 200 1136	26 18 15

92
Analysis of Variance of Tissue Dry Weight Data of Rats Fed

Coconut Oil, Lard, and Safflower Oil

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square
	K	idneys	,
Total Replicates Diet Error	59 4 11 44	0.143 0.004 0.032 0.108	0.037 0.296 0.003
		Liver	
Total Replicates Diet Source Level Source x Level Error	59 4 11 2 3 6 44	4.367 0.306 1.800 0.093 1.155 0.552 2.262	0.076 0.164** 0.047 0.385** 0.092 0.051
	<u>S</u>	pleen	
Total Replicates Diet Error	59 4 11 44	0.054 0.005 0.013 0.036	0.001 0.001 0.001
	$\underline{\mathrm{T}}$	estes	
Total Replicates Diet Error	59 4 11 44	0.067 0.004 0.012 0.050	0.001 0.001 0.001

* significant (p<0.05) ** highly sighnificant (p<0.01)

.

Analysis of Variance of Tissue Dry Weight Data of Rats Fed

Corn Oil, Olive Oil, and Soybean Oil

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square
	Kić	lneys	
Total Replicates Diet Error	59 4 11 44	0.241 0.027 0.061 0.153	0.007 0.006 0.003
	Li	ver	
Total Replicates Diet Error	59 4 11 44	7.808 0.181 2.021 5.605	0.045 0.184 0.127
	<u>Spl</u>	een	
Total Replicates Diet Source Level Source x Leve	59 4 11 2 3	0.085 0.009 0.028 0.014 0.010 0.004	0.002 0.003* 0.007** 0.003* 0.001
Error	44	0.048	0.001
	Te	estes	
Total Replicates Diet Error	59 4 11 44	0.0578 0.0065 0.0116 0.0398	0.0016 0.0011 0.0009

* significant (p<0.05)
** highly sighnificant (p<0.01)</pre>

Analysis of Variance of Tissue Copper Data of Rats Fed

Coconut Oil, Lard, and Safflower Oil

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square
	Kic	dneys	
Total Replicates Diet Error	59 4 11 44	7581 808 1643 5130	202 149 117
	Liv	ver	
Total Replicates Diet Error	59 4 11 44	287 22 84 180	6 8 4
<i>'</i>	Sp	leen	
Total Replicates Diet Error	59 4 11 44	617 388 53 176	97 5 4
Total Replicates Diet Error	59 4 11 44	77 21 6 50	5 1 1

÷

Analysis of Variance of Tissue Copper Data of Rats Fed

Corn Oil, Olive Oil, and Soybean Oil

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square	
	e ye,	Kidneys		
Total Replicates Diet Source Level	59 4 11 2 3	3852 844 1574 1190 171	211 143** 595** 57	
Error Source x Level	6 44	212 1435	35 33	
	Co	variant Analysis		
Total Replicates Weight Gain Diet Error	59 4 1 11 44	3852 844 42 1529 1393	211 42 139** 32	
		Liver		
Total Replicates Diet Error	59 4 11 44	265 22 50 192	6 5 4	
		Spleen		
Total Replicates Diet Error	59 4 11 44	280 16 67 198 <u>Testes</u>	4 6 5	
Total Replicates Diet Error	59 4 11 44	244 92 44 105	23 4 2	

** highly sighnificant (p<0.01)

.

Analysis of Variance of Tissue Iron Data of Rats Fed

.

Coconut Oil, Lard, and Safflower Oil

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square
	Kic	lneys	<u> </u>
Total	59	1135380	
Replicates	4	310874	77719
Diet	11	273691	24881*
Source	2	28018	14009
Level	3	64481	21494
Source x Level	6	181192	30199*
LIO	44	550816	12519
	Liv	ver	
Total	59	753869	
Replicates	4	17582	4396
Diet	11	307464	27951**
Source	2	80396	40198*
Level	3	90548	30183*
Source x Level	6	136520	22753*
Error	44	428822	9746
	Covaria	nt Analysis	
Total	50	752060	
Replicates	4	175582	1396
Weight Gain	1	169567	169567
Dry Weight	1	29579	29579
Diet	11	159156	14469
Error	44	377984	9000
	Sple	<u>æn</u>	
Total	59	155422377	
Replicates	4	270633	67658
Diet	11	261650	23786
Error	44	1010094	22957
	Test	es	
(Moto)			
Popliestos	59	121670	
Diet	4	28770	7192
Prec	11	15798	1436
LET OF	44	77102	1752

* significant (p<0.05) ** highly sighnificant (p<0.01)

/

Analysis of Variance of Tissue Iron Data of Rats Fed

Corn Oil, Olive Oil, and Soybean Oil

Source of Variation	Degrees of Freedom	Sum of Squares	Mean 5 Square	
	Ki	dneys		
Total Replicates Diet Error	59 4 11 44	899949 8274 26256 55419	2069 2387 1260	
T.	L	iver		
Total Replicates Diet Error	59 4 11 44	1326220 384009 283506 658704	96002 25773 14971	
	Sp	leen		
Total Replicates Diet Source Level Source x Level Error	59 4 11 2 3 6 44	2614900 139345 1585674 599785 150344 835546 889880	34836 144152** 299893** 50115 139258** 20225	
	Covari	ant Analysis		
Total Replicates Weight Gain Dry Weight Diet Source Level Source x Level	59 4 1 1 11 2 3 6	2614900 139345 536833 68329 1136017 26418 88567 782633	34836 536833** 68329 103274** 132409* 29522 130439**	
Error	44	734375	17485	
	Tes	ites		
Total Replicates Diet Error	59 4 11 44	60101 2992 9331 47777	748 848 1086	

.

* significant (p<0.05)
** highly sighnificant (p<0.01)</pre>

Analysis of Variance of Tissue Zinc Data of Rats Fed

Coconut Oil, Lard, and Safflower Oil

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square
	<u>Ki</u>	dney	
Total Replicates Diet .Error	59 4 11 44	3708 654 576 2479	164 52 56
	Li	ver	
Total Replicates Diet Error	59 4 11 44	19410 128 3320 15962	32 302 363
	Sp	leen	
Total Replicates Diet Error	59 4 11 44	10807 2284 1233 7289	571 112 166
Total Replicates Diet Error	<u>Tes</u> 59 4 11 44	13072 1307 1640 10124	327 149 230

Analysis of Variance of Tissue Zinc Data of Rats Fed

Corn Oil, Olive Oil, and Soybean Oil

Source of Variation	Degrees of Freedom		Sum of Squares	Mean Square
		Kidney		
Total Replicates Diet Error	59 4 11 44		2480 163 505 1812	40 46 41
		Liver		~
Total Replicates Diet Error	59 4 11 44		10104 306 1553 8244	77 141 187
		Spleen		
Total Replicates Diet Error	59 4 11 44		6259 199 608 5452	50 55 124
Total Replicates Diet Error	59 4 11 44	<u>Testes</u>	6801 459 798 5545	115 73 126

100