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Curcumin is one of the promising herbal-based drugs. It has been shown to have 

antioxidant, antibacterial, anti-angiogenic and other biological activities. As 

curcumin’s derivative, chalcone shares similar functions. Both of these two 

compounds have α,β-unsaturated carbonyl structures (enone), which is a typical 

1,4-conjugate addition (Michael addition) acceptor. Glutathione is an endogenous 

tripeptide, whose sulfhydral group is a typical nucleophilic agent. In this case, the 

derivatives of curcumin and chalcone may be reduced by glutathione and their 

pharmacological functions would be changed. 

The study herein focused on how to use quantum chemistry tools and transition 

state theory to access to the conjugate addition of α,β-unsaturated carbonyl 

compounds. In addition, the reductions of the derivatives of chalcone were studied. 

The characteristics of the reactions were obtained by analyzing geometries and energy 

profiles of the simplified reactions, as well as the influence of functional groups on 

derivatives in this type of reaction. This study may be generally useful for the 

scientific community for two fundamental reasons: (a) to provide general strategies to 

enhance or retard drugs from reacting with glutathione, and (b) to provide insight into 

computational methods that are able to help design potential lead candidates. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Medicinal Plant Drug Discovery 

Plants have been used as medicines for thousands of years. By spoken or written 

word, plants are sorted and used to treat specific diseases. Since morphine was isolated 

from opium in the early 19
th

 century, natural products have become important sources 

for new drugs. Some widely used medicines, such as Galantamine which treats 

Alzheimer’s disease, were first discovered in plants. Generally, medicinal plant drug 

discovery includes lead identification, optimization, and development.
[1]

 Except for 

lead identification, which mostly relies on different types of bioassays, both lead 

optimization and development have been assisted by the use of computational 

chemistry, including but not limited to ADME/Tox, docking, and scoring. These 

methods provide additional information helpful in determining whether or not a 

compound is a potential drug candidate. 

1.2 Statement of the Problem 

Unlike in vitro experiments, the effect of drugs may be influenced by many 

predicted or unpredicted factors in vivo. For example, glutathione interacts with the 

drugs having electrophilic structure, and the reactions are catalyzed by certain enzymes. 
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In our cases, the derivatives of curcumin and chalcone which contain α,β-unsaturated 

carbonyl moieties may be reduced by glutathione.
[2]

 Then the reduced form of the 

derivatives may not have the same pharmacological functions. So the problem is 

whether the possibility of the reduction and prevention can be predicted using 

theoretical methods.  

O

R1 R2
+ SH R

O

R1 R2

S
R

 

Figure 1. The general reaction between enones and thiols 

1.3 Purpose of Study 

The primary aim of this research is to study the reaction between glutathione and 

α,β-unsaturated carbonyl compounds with ab initio quantum chemistry methods. Based 

on the information, new compounds may be screened in silico for interactions with 

glutathione. 

1.4 Research Questions 

The study includes two parts. First, there is an interest in better understanding 

Michael additions by glutathione reduction. Glutathione has a sulfhydryl functional 

group, and thiols are good nucleophilic agents. The α,β-unsaturated carbonyl systems 

are good electron acceptors. Although the mechanism of Michael additions seems clear, 

when it comes to specific reactants, it is still necessary to characterize the whole 
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reaction. Second, there is an interest in the modifications of compounds that might be 

made to reduce their susceptibility for glutathione addition. By modifying the structure, 

the energy of reactants and products will be changed, as will the transition states and the 

activation barriers. Therefore, the dynamics of the reactions are subject to change. If 

one reaction has a much higher activation energy, it will be more difficult to form the 

Michael product. Understanding the electronic and steric interactions favoring and 

disfavoring this addition is the central goal. 

1.5 Significance of the Study 

Drug metabolism is an interesting area of pharmacology. In the past, studies were 

carried out to determine the chemical transformations drugs would undergo in vivo. 

Now, there are an increasing number of studies concerning the genetic diversity and its 

influence on drug metabolism. With this knowledge, combined with the use of 

computational methodologies, it is very likely that new drugs can be designed to be 

more effective and safer. Moreover, there are many reduction/oxidation agents within 

the human body. This study may be used as a reference for similar research which needs 

to enhance or retard drugs from reacting with those agents. These studies may provide 

insight into computational methods that are able to help find and modify potential lead 

candidates. 
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CHAPTER II 

 REVIEW OF LITERATURES 

 

2.1 Curcumin as a Versatile Molecule 

2.1.1 Chemical Structure 

Natural products are experiencing a modest resurgence in popularity in medicinal 

chemistry. Many new drugs based on integrants of herbs from traditional medicine are 

available, while more compounds are being tested in labs and have great potential to 

treat diseases in the future.
[3]

 Compared to synthetically derived drugs, herbal-based 

medicines may be safer and more effective. Curcumin is one of those compounds which 

may have a promising future. It is an active ingredient from a herb called Curcuma 

longa, which is widely used in traditional medicine in different countries.
[4]

 The 

commercially available sources for curcumin contain curcuminoid complex. This 

complex is composed of 77% of curcumin I, 17% curcumin II (demethoxycurcumin) 

and 3% curcumin III (bisdemethoxycurcumin), as shown in Figure 2. Among these, 

compounds curcumin I shows better activity.
[5, 6] 

Curcumin was first discovered in 1815 and then identified as diferuloylmethane. 

The color of curcumin powder is yellow to slightly orange. It cannot dissolve in water 

but is soluble in ethanol, DMSO, and acetone.
[5]

 Its chemical name is 
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1,6-heptadiene-3,5-dione-1,7-bis(4--hydroxyl-3-methoxy--phenyl)-(1E, 6E). Studies 

provide evidence suggesting the structural features that are responsible for its 

biological activity may be the bis-α,β-unsaturated β-diketone, the methoxy groups, the 

phenolic hydroxyl groups, and/or  the double-conjugate bonds.
[7-9]

 The collection of 

critical functional groups and their three-dimensional relationship is called the 

pharmacophore. 

 

 

O O

OH OH

H3CO OCH3

O O

OH OH

OCH3

O O

OH OH

          
(1)

(2)

(3)
 

Figure 2. Chemical structures of curcumin I(1), II(2) and III(3)
 [10] 

 

2.1.2 Functions 

Curcumin is a versatile molecule. Numerous studies found curcumin to have  

antioxidant
[11]

, antibacterial
[12]

, antifungal
[13]

, antiviral
[14]

, anti-inflammatory
[6]

, and 

anti-angiogenic
[15]

 activities. It is also a potential agent to treat cancer and 

neurodegenerative diseases.
[16, 17]

 On the molecular level, curcumin has the ability to 
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interact with many disease-related targets and involves some important signaling 

pathways. There is a relationship with several targets, including cycloxygenase 

(COX)-2, lipoxygenase (LOX), glutathione, protein kinase C, ATPase, multidrug 

resistance proteins 1 and 2 (MRP1 and MRP2).
[5, 16, 18-21]

 Curcumin also regulates 

pathways by up-regulating or down-regulating some transcription factors. For example, 

p53 is involved in the pathways of apoptosis. Curcumin can activate p53 and induce 

p53-related cell death. It influences other important transcription factors like BAX, 

Caspase, TNF and BCL2 as well. Therefore, curcumin has great potential as a 

chemotherapeutical drug.
[8, 15, 22]

 

The chemical structure of curcumin is symmetric. Assuming that the two are 

important for biological activity, the linking electrophilic portion may be modified to 

1,3-diaryl-2-propen-1-ones, which has the common name chalcone. Studies show that 

it also has anti-inflammatory and anticancer activities.
[15, 23]

 On the molecular level, it 

influences the formation of inmicrotubule and the cellular signaling pathways.
 [24]

  

2.2 Chalcone and Derivatives 

Generating analogues of natural products with the help of high-throughput 

screening is an effective approach in drug discovery. Combinatorial biosynthesis and 

structure-activity relationships studies (SARs) are important parts of that type of 

research.
[3]

 Compared to curcumin, chalcone derivatives are easier to prepare by aldol 

type condensations.
[25]

 Many studies related to chalcone also include the generation of 
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novel chalcone derivatives. Most of the chalcone-based compounds have had the two 

aromatic rings modified. Those derivatives often have better activities and easier 

synthesis steps.
[24-27]

  

 

O

A B

 

Figure 3. The chemical structure of chalcone 

 

2.3 Conjugate Addition of Enones 

Both curcumin and chalcone-based compounds include an α,β-unsaturated enone. 

It is a typical Michael addition acceptor. A Michael addition is a conjugate addition. It 

is a reaction where the nucleophile adds to the α,β-unsaturated carbonyl compound in a 

1,4 fashion instead of a common 1,2-addition across the C=O bond. 

The general mechanism involves electron donors attacking the unsaturated 

structure at the β-carbon. This mode of nucleophilic attack is due to the resonance 

stabilization of enones. The resonance results in the partial positive charge of the 

β-carbon, which will be attacked by nucleophilic agents as shown in Figure 4. 

 

CH3 CH3

CH3O

C
+

CH3 CH3

CH3O
-

CH3

C
+

CH3

CH3O
-

 
Figure 4. Resonance Stabilization of α,β-Unsaturated Ketones (Enones) 

Below is the mechanism of a typical Michael addition reaction involving a thiol 
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and an α,β-unsaturated enone. In this reaction, electrons transfer from nitrogen to sulfur, 

and then to the β-carbon of enolate intermediate. This step also determines the rate of 

the reaction.
[28]

  

Because this reaction is widely used in organic and bio-synthesis, there are a lot of 

studies about the catalysis and its application in polymer sciences. But actually, it is 

also very common inside the human body. 

 

Et3N :
S

H

C6H5

O

O
-

C6H5S

N
+

Et
Et

Et
H

C6H5S
O

+ Et3N

 

Figure 5. Mechanism of the Conjugate Addition of Benzenethiol  

to Enones in Nonpolar Solvents
[28] 

 

For example, some of the chalcone derivatives were reported to inhibit nuclear 

factor kappa B (NF-κB) pathway, and NF-κB is an important drug target for cancer.[25] 

The structure-activity relationship (SAR) study revealed the potential inhibition 

mechanism of those compounds reacting with IKKβ[25], as shown in Figure 6. This 

reaction involves reaction between the sulfhydryl and α,β-unsaturated carbonyl groups, 

which is a typical Michael addition reaction. It has been shown that the α,β-unsaturated 

carbonyl functional group is essential for the inhibition of NF-κB.
[25] 
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H3CO

H3CO

OCH3

O

OCH3

OH H3CO

H3CO

OCH3

O

OCH3

OH

S
IKK

S

IKK
H

H
+

Figure 6. Possible mechanism of chalcone compounds to modify IKKβ
[25] 
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Figure 7. Possible reaction pathways for the Michael addition of thiols to α,β-unsaturated carbonyl 

compounds
[2] 

 

When thiols attack the α,β-unsaturated carbonyl structure, there are two possible 
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reaction pathways as shown in Figure 7. One mode is a 1,2-addition which is a direct 

nucleophilic attack on the carbonyl carbon, and the other mode is a 1,4-addition, which 

is also called Michael addition. The Michael addition involves a nucleophilic attack on 

the β-carbon. Previous computational work suggested that for some reactions, proton 

transfer is intramolecular in 1,2-additions while in 1,4-additions it is between 

molecules.
[29]

 In this case, 1,4-addition is the more favorable one.
[29]

 Some 

experimental data also agree with this statement. In some cases, even if the differences 

between their activation barriers are very close, 1,4-addition is still favored in those 

reactions.
[2]

  

2.4 Glutathione and Glutathione Transferase 

Compared to alcohols, thiols are more easily oxidized. Its deprotonated forms are 

called thiolates, and they are very potent nucleophiles. The pKa of thiols are ~8-10, 

which vary due to the changes of the environment. Under physiological conditions, 

thiols are usually in the form of protonated (R-SH) and deprotonated(R-S
-
), while the 

protonated state is the primary form.
[2]

  

Glutathione is an endogenous tripeptide, which also has a sulfhydral group. It is 

composed of L-cysteine, L-glutamic acid, and glycine.
[30]

 Glutathione is an antioxidant 

with a reducing sulfhydryl group. The reaction related to this functional group requires 

the presence of glutathione transferase (GST).
[31]

 This enzyme has a quaternary 

structure. Glutathione transferase has different subtypes of enzymes. Based on the 
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studies of the characterization of site-specific mutated GSTs, the residues of active sites 

are in domain I and II, including Tyr6, Trp7, Val9, Leu12, Ile 111, Tyr115, Phe208, 

Ser209.
[32] 

HOOC

N

N COOH

O

ONH2 H

SH

H

 

Figure 8. The chemical structure of glutathione 

 

The studies on mutants of glutathione S-transferase described the special role of 

the hydroxyl group of tyrosine. As shown in Figure 9, both the hydroxyl groups of two 

tyrosines form hydrogen bonds and participate in the electron transfer chain. It is the 

rate-limit step of the reaction sequence.
[32]

 Some other research also provided evidence 

that the hydroxyl groups of tyrosine may help to stablize the enol or enolate 

intermediate for the 1,4-addition reaction.
[33]

 In addition to this, the protonation of 

tyrosine relates to the presence of GSH.
[34] 

Therefore, this study provided information 

about how GSH reacts with enones. 



 

12 

O
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O

H
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G
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O
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Figure 9. Y115(tyrosine) of GST participates the Michael addition of different substrates
 [32] 

 

2.5 Potential Energy Surface 

While experimental data provides clues to characterize the reaction, an increasing 

number of scientists are using computational tools to help their research. In 

computational chemistry, there is an extremely important concept called potential 

energy surfaces (PESs). PES satisfies the Schrödinger equation (Equation 1),  

H=Tr+TR+V(r,R)                               (Eq. 1) 

where Tr and TR are operators for kinetic energy of electron motion and nuclear motion 

respectively, and V(r,R) represents the potential energy from the electrostatic 

interactions between particles with charge. The Born-Oppenheimer approximation 



 

13 

neglects the kinetic energy of protons and separates vibrational, translational, and 

rotational motions due to the differences in mass of the proton and electron. Using this 

approximation, the Schrödinger equation can be converted and plotted by E(R) versus 

R, while E(R) as a parametric function of nuclear coordinates R. Plotting shows the 

potential energy surface. On a PES graph, the extreme is located. The energy minima 

are the local valleys, and the highest point of the pathway between the reactants and 

products is the optimized transition states. The pathway itself is the reaction path. 

Therefore, the first and second derivatives of the PES can be obtained to predict the 

transition state and the reaction pathway. For example, the Hessian matrix is used to do 

the minimization. By the hybrid of QM/MM, ab initio PES calculation can be 

conducted.
[35] 

2.6 Transition State Theory 

Transition State Theory is very important for calculating the reaction pathway. In 

this theory, with the formation of new bonds and/or interactions, as well as the change 

of energies, the reactants are converted to the intermediate transition state initially. 

Then proceeding along the reaction pathway, the products will be formed. Because the 

transition state is not stable and short-lived, it is difficult to prove its existence 

experimentally. The transition states of the reactions, however, can be approximately 

predicted using computational PES methods. As discussed above, they should be the 

highest point of the reaction pathways. The activation energy also determines the 
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reaction. It is the amount of energy needed for a reaction to occur. The activation energy 

is the differences between the energy of the transition state and the reactants. The lower 

the activation energy is, the faster the reaction will occur. For instance, a catalyst is able 

to lower the energy of transition state. This will result in even faster reactions. 

R

CH3

O

R

CH3

O

GS
-

GS
-

R

CH3

O
-

CH3
H

R

CH3

O
-GS H

R

CH3

O
CH3

H

R

CH3

O
GS H

A

B

Figure 10. Two possible transition states in the Michael addition of phenylbutenone
[36] 

 

For example, because of the chiral center, the Michael addition products have two 

possible configurations. In Figure 10, there should be two different stereochemical 

products A and B. The experimental data showed that the ratio of these two products is 

not 1:1 but 9:1.
[36]

 With the stabilization effect by the enzyme, the activation barrier of 

transition state A was lower than transition state B. Therefore, the reaction generating 

product A then became the favorable reaction pathway. 

In recent years, some studies applied the transition state theory by calculating the 

energies and geometries to help new drug design and modification. One example is that 

Xiong and his colleagues used QM/MM calculation to reveal the enzyme-catalyzed 
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reaction pathways and activation barriers.
[37]

 The calculation provided the details of the 

reactions and geometries were very useful for further rational drug design.
[37]

 Clearly, 

the study of transition state structure, combined with computational studies and 

structure-activity relationship studies, will help to design transition state analogues, 

which can be used to find new drugs or improve the high-affinity features.
[38]
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CHAPTER III 

METHODOLOGY 

 

3.1 Environment and Settings of Ab initio Calculation 

3.1.1 Quantum Chemistry Methods 

Quantum Chemistry calculation methods were used in this study. Compared to 

molecular mechanics, quantum mechanics describes the electronic structure of 

molecules from fundamental theoretical principles. Thus, it is more accurate while 

having a relatively higher computational cost. The computational cost increases with 

the complexity of model systems and basis sets used in the calculation. In addition, ab 

initio methods are more expensive than semi-empirical methods with the important 

advantage of being accurate. 

In this study, calculations usually started from semi-empirical methods to get 

roughly optimized results and then applied Hartree-Fock method, which should save 

computing time. However, semi-empirical methods sometimes resulted in the wrong 

transition states conformations which will be described later. 

3.1.2 Calculation Environment and Settings 

In this study, all the calculations were carried out using SPARTAN 08’ 

(Wavefunction Inc.) with CentOS(Linux) operation system. The software provides 
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tools to calculate the geometries, energies, and other properties of the reactions.  

All model systems were calculated by Hartree-Fock ab initio methods with the 

3-21G basis set.
[39]

 Frequencies in the IR spectrum were also calculated to verify the 

validity of transition states. Because the reactions occurred under physiological 

condition, it is necessary to consider solvent effect. In this study, all the calculations 

were computed with water as solvent.  

3.1.3 General Procedure of Calculations 

Both the equilibrium geometries and transition states of reactants and products in 

each model system were calculated by SPARTAN. The initial optimizations of 

equilibrium geometries were conducted with a semi-empirical method. Then the 

Hartree-Fock model with the 3-21G basis set were applied to get a more reliable result. 

In order to obtain better accuracy without significantly increasing the calculation cost, 

the 6-31G* basis set was used to study the conjugate addition with some simpler 

model systems.
[39]

  

The SPARTAN software provides a build-in tool to predict the transition states of 

reactions. By indicating the electron transfer of the reaction, the software can give a 

roughly estimated transition state. However, it could go wrong in some cases and 

require manually adjusted to get appropriate results. Afterwards, the detailed profiles 

of transition states could be obtained by setting the calculation with “transition state” 

task. The other calculation settings such as calculation models, basis sets, solvent, etc. 
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were similar with the calculation of equilibrium geometries. 

After the completion of the calculations, geometric parameters (distance, angle, 

and dihedral angles), energy profiles, IR spectrum, molecular orbitals and other 

properties were viewed in SPARTAN for analysis. 

3.2 Research Design 

3.2.1 Simplify the Reaction 

The proposal research plan was designed to study the reaction pathways of the 

1,4-conjugate addition between glutathione and α,β-unsaturated carbonyl compounds, 

as well as the influences of different functional groups on the activation barriers and 

geometries. The more complex a system, however, the more time-consuming the 

calculation. Since glutathione is a tripeptide which is not suitable for quantum 

chemistry calculation, without access to a cluster system, it is a wise choice to build 

initially the simplest model to mimic the reaction.  

In this study, glutathione was simplified to methanol or methanethiol; all 

α,β-unsaturated carbonyl compounds had no more than four additional functional 

groups besides the backbone structure. Because the reaction sites are the same, the 

results and conclusions ought to have similar characters of the conjugate addition 

between glutathione and enones.  
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In this reaction, methanol reacts with propenal and form the intermediate, and 

then form the final ketone product. This study only focuses on the first part. Because 

this reaction is an intermolecular reaction which means the relative positions of these 

reactants may affect the energies. In addition, an extra base is involved in the reaction 

which brings more components to computation. All these increase the potential 

inaccuracy of the results. As shown in Figure 11, since the transition states can be 

obtained starting from either reactants or intermediates/products, it is more convenient 

to calculate an intramolecular reaction if in a reverse direction. 

Methanol or methanethiol were used to replace the large molecule of glutathione. 

Oxygen and sulfur atoms have similar properties, but since the oxygen atom has a 

smaller size, it is easier for computation of complex systems. In this study, the results 

and conclusions of derivatives were based on methanol model systems. Both 

methanol and methanethiol model systems were studied for the conjugate addition 

reactions. 

O
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Figure 11. The transition state is reversible 



 

20 

3.2.2 Model Systems 

As mentioned, the conjugate addition between glutathione and enones were 

simplified for calculation convenience. Thus, the first step is to build up a simplest 

model system. In this case, the simplest enone and methanol were chosen as shown in 

Figure 12. The intermediate of these two reactants contains only the backbones of the 

reaction with a negative charge by deprotonation. Then the absence of the catalytic 

base in the model system could be neglected. The model system with methanethiol 

was also studied. By obtaining the transition state, the information obtained from this 

basic reaction will give clues for further study. 

 

O
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H

  

Figure 12. Structure of intermediate from methanol and propenal 

 

Because the molecule of chalcone has two phenyl groups, the reaction from the 

previous model system is insufficient. Therefore, the hydrogen connected to the 

carbonyl carbon was replaced by a phenyl group. Since the intermediate contains a 

double bond, it is necessary to consider the trans- and cis- isomers as shown in Figure 

13. The geometries and energies of isomers are different, as well as the transition 

states. Similarly, model systems with two phenyl groups in Figure 14 and model 

system with methanethiol were also studied.  
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Based on the data obtained from simple, with one phenyl group and with two 

phenyl groups model systems, the characteristics of this type of conjugate addition 

could be concluded. 
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Figure 13. Trans- and Cis- Isomers of one phenyl group system 
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Figure 14. Trans- and Cis- Isomers of two phenyl groups' system 

 

3.2.3 Derivatives of Chalcones 

The information of the 1,4-addition provides references for further investigations. 

In this study, it is about the derivatives of chalcones. Some common modifications of 

curcumin or chalcone might include the additional of R-groups on either or both phenyl 

rings, or substituting phenyl groups with other similar aromatic rings. The aim of this 

study was to determine whether those functional groups will affect the energies and 



 

22 

geometries of the reaction. Because this is a preliminary research, most derivatives 

were selected from those with existing experimental data.
[8]

 The modification took 

isomers under consideration as shown in Figure 15, since isomers have different 

energies and geometries. Follow the same steps, geometries and energies of the 

reactants, intermediates, and transition states were examined. The information 

obtained in silico may provide clues for more effective modifications of curcumin 

analogues. 

 

R2

O
-

R1

O

H

H

H

H

        

R2

O
-

R1

O

H
H

H

H

  

Figure 15. General forms of trans/cis intermediates of the derivatives 

 

3.3 Data Analysis 

3.3.1 Data Collection 

SPARTAN generates profiles of reactants, transition states, and products. 

Energies and IR Spectrum were computed as well. Geometries such as dihedral angles, 

angles and distances of atoms near the reaction sites are also recorded and compared. 

The unit of energy in ab initio calculation (au) was converted into kcal/mol. 
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3.3.2 Data Analysis 

 The calculations provide information on the geometries and energies of the 

reactants and products, as well as the transition states. Potential energy surface theory 

can help to find out the transition states and the reaction pathways by quantum 

chemistry computation. They also relate to the activation barriers and the energies of 

the products. Besides, the transition states geometry provides information about how 

the conjugate addition happens. 

The data collected from derivatives will be more useful for future studies. For 

example, it may help to design new derivatives. After adding different functional 

groups to several sites of the reactants, both the geometries and energies are changed.  

The data about energies of reactants, products, and transition states were collected 

and compared as shown in Figure 16. Activation energies or activation barriers were 

defined as ΔE1, which is the difference in energies between the transition state and the 

reactant, while ΔE2 was defined as the difference in energies between the transition 

state and the intermediate. After obtaining the activation energies, the differences 

between them and the original reaction were compared. Moreover, the corresponding 

geometries of transition states are checked to see if they are reasonable.  

It is believed that the activation barrier is relevant to whether the reaction 

happens and the reaction rate. This study was concerned with uncovering ways to 

prevent the conjugate addition from occuring; in other words, the reactions with 
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higher relative activation barriers and appropriate geometries will be good candidates 

for further experimental studies as potential drug candidates. By repeating the 

calculation, those with larger activation barriers may be the potential drug candidates 

we are seeking. 

 

 

Figure 16. Reaction coordinate and energies 

 

3.3.3 Data Verification 

It is possible that the wrong transition states are obtained after calculation. There 

are several ways to rule out fake transition states. The most reliable method is based 

on the idea that the reaction sites will share similar geometries in the same type of 

reactions. Therefore, the data obtained from the previous calculation could be 

considered as criteria. If the geometries of the derivative models are far from the 

chalcone model, it is very likely that the calculation gives an invalid result. The more 

accurate the calculation model is, the less chance it will provide a wrong transition 

state. However, the computational time prevent the use of larger basis set or more 

accurate methods such as density function theory with the limited compute resources 
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available.  

Another way is to examine the validity of the transition state by computing the 

vibrational frequencies. The transition state should have only one negative frequency 

in the calculated IR spectrum. In SPARTAN, it will appear at the top of the chart and 

is very easy to identify the transition state. This negative value represents the 

vibrational motion which goes towards reactants in one direction and products in the 

other direction.  
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CHAPTER IV 

RESULTS AND DISCUSSION 

 

4.1 Model Systems with Methanol 

4.1.1 Simple Model 

For computational convenience, the study started from a very simple model 

system which consisted of the intermediate from one methanol molecule and one 

acrolein/propane molecule as shown in Figure 12. 

 

Table 1. Calculation results of simple model 

Calculation Settings HF with 3-21G HF with 6-31G* 

Reactant (kcal/mol) -1.9051E+05 -1.9160E+05 

Intermediate (kcal/mol) -1.9052E+05 -1.9159E+05 

Reaction (kcal/mol) -1.9048E+05 -1.9156E+05 

C-O (Å) 2.30 2.06 

C-C-O (degrees) 118.31 116.07 

C-C-C-O (degrees) 85.93 92.53 

ΔE1 (kcal/mol) 29.23 40.09 

ΔE2 (kcal/mol) 33.42 27.27 
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Figure 17. Structures of simple model with methanol 

 

The calculation methods presented use Hartree-Fock methods with 3-21G basis 

set, as well as Hartree-Fock method with 6-31G* basis set. Theoretically, 6-31G* 

basis set ought to provide better accuracy for the calculations. In this case, all the 

computed energies were around 100 kcal/mol lower than calculations with 3-21G 

basis set. The calculated data of geometries were close, and the energies were slightly 

different. If compared with the actual structures of the transition states visually, there 

were not much difference between the two results. One difference in geometries was 

with the methyl group of methanol, which might be the major contributor to the 

differences in energies of the transition states. Figure 17 shows the structures of this 

model system. All the numbers would be compared with the other models. 

  

Intermediate           Transition State 
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4.1.2 Model with one Phenyl group 

 

Figure 18. Structures of isomers with one phenyl group 

 

Table 2. Calculation results with different basis sets for trans-isomer with one phenyl group 

Basis Set 3-21G 6-31G* 

Intermediate (kcal/mol) -3.3376E+05 -3.3563E+05 

Transition State (kcal/mol) -3.3373E+05 -3.3561E+05 

C-O (Å) 2.24  2.03  

C-C-O (degrees) 117.32  115.98  

C-C-C-O (degrees) 86.41  88.04  
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Table 3. Calculation results with different basis sets for cis-isomer with one phenyl group 

Basis Set 3-21G 6-31G* 

Intermediate (kcal/mol) -3.3377E+05 -3.3564E+05 

Transition State (kcal/mol) -3.3373E+05 -3.3561E+05 

C-O (Å) 2.24 2.02 

C-C-O (degrees) 117.80 116.35 

C-C-C-O (degrees) 86.88 83.81 

  

Table 4. Comparison of calculation results with two isomers 

Conformation Trans- Cis- 

Reactant(kcal/mol) -3.3376E+05 -3.3376E+05 

Intermediate (kcal/mol) -3.3376E+05 -3.3377E+05 

Transition State (kcal/mol) -3.3373E+05 -3.3373E+05 

C-O (Å) 2.24  2.24  

C-C-O (degrees) 117.32  117.80  

C-C-C-O (degrees) 86.41  86.88  

ΔE1 (kcal/mol) 27.41  36.07  

ΔE2 (kcal/mol) 30.22  38.84  

 

Both curcumin and chalcone compounds have phenyl groups. Due to the size and 

chemical properties, it is necessary to consider the influence of phenyl groups to this 

conjugate addition. The first step is to replace the aldhyde hydrogen with a phenyl 

group. In this model system, isomers were studied. Both isomers were calculated with 

two basis sets. The energy and geometric parameters were similar, which supported 

the validity of each transition state as shown in Table 2 and Table 3. The structures of 
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the isomer intermediates and the corresponding transition states are shown in Figure 

18. Obviously, the intermediates of two isomers are quite different while the transition 

states are quite close. The numbers in Table 4 are also consistent with it. 

4.1.3 Model with two Phenyl groups 

 

 

Figure 19. Structures of transition states of cis (L) and trans (R) isomers 

 

Two phenyl groups were added to the simple model to generate chalcone. The 

two additional benezene rings significantly increased the calculation cost and 

influenced the energies and geometries of the transition states. Therefore, only 

Hartree-Fock method with 3-21G basis set was applied for this model system. 
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Table 5. Computation results of isomers with two phenyl groups 

Conformation Trans- Cis- 

Reactant(kcal/mol) -4.7700E+05 -4.7701E+05 

Intermediate (kcal/mol) -4.7700E+05 -4.7701E+05 

Transition States (kcal/mol) -4.7698E+05 -4.7697E+05 

C-O (Å) 2.17 2.14 

C-C-O (degrees) 111.64 112.20 

C-C-C-O (degrees) 79.13 73.87 

ΔE1(kcal/mol) 17.67 40.55 

ΔE2(kcal/mol) 18.84 41.33 

 

 

Figure 18. Graphic comparison with reactions of trans-/cis-isomers 

 

Again, the geometries of two isomers are close except the methyl groups and the 

torsion of the phenyl groups, as shown in Figure 19. And data in Table 5 confirms it. 

However, since the intermediate of cis-isomer has a lower energy for reactants and 

-4.7702E+05

-4.7701E+05

-4.7700E+05

-4.7699E+05

-4.7698E+05

-4.7697E+05

-4.7696E+05

reactant TS intermediate

Trans-isomer Cis-isomer
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intermediates, as well as a higher energy for transition states, both ΔE1 (activation 

energy) and ΔE2 are greater than trans-isomer model as shown in Figure 20. 

Considering that the lower energies the more stable compounds are, and larger 

activation energies increase the difficulties for reactions, the following studies on 

derivatives were studied mainly based on cis-isomer models.  

4.1.4 Models with Methanol 

Table 6 compares three models with methanol as the reactant. The geometries of 

the transitions states of three models are very close. It implies that this type of 

conjugate addition follows similar patterns. From the information of the calculated 

transition states’ geometries, the reaction details may be speculated. The dihedral 

angle of model with two phenyl groups is slightly different from the other two. It may 

be due to the angles between phenyl groups with the plane of the reaction site. 

Therefore, the existence of phenyl groups affects the geometries of the transition 

states, especially the dihedral angles. 

The two model systems with phenyl groups have another feature in common, 

that is the transition states from cis-isomers have larger activation barrier and lower 

energy for intermediate. Therefore, cis-isomer is very likely to be the actual form in 

reactions. In addition that based on the calculated energies, the activation barrier 

increases with more phenyl groups. It is probably due to the more crowded space 

which makes the nucleophilic agents difficult to attack β-carbon. 
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Table 6. Comparison of transition states of cis-isomer models with methanol 

 
C-O(Å) C-C-O(⁰) C-C-C-O(⁰) ΔE1(kcal/mol) ΔE2(kcal/mol) 

1 2.302 118.31 85.93 29.2332 33.4180 

2 2.238 117.80 86.88 36.0730 38.8448 

3 2.143 112.20 73.87 40.5472 41.3272 

(1-simple model; 2-model with one phenyl group; 3-model with two phenyl groups) 

 

4.1.5 Incorrect Transition State 

Sometimes, the calculations gave incorrect transition states with unrealistic 

geometries and more than one negative frequency in IR spectrum. Most of them 

shared some common characteristics. Firstly, the energies of transition states were 

lower; secondly, the distance between carbon atom and oxygen atom is greater; the 

dihedral angles are totally different. Usually these wrong transition states were 

obtained by semi-empirical methods. But if starting from Hartree-Fock methods, only 

the correct transition states were achieved. This no doubt is due to the inaccuracy of 

semi-empirical methods. 

 

 
Figure 19. Structures of correct(L) and incorrect(R) transition states 
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Table 7. Comparison the correct transition state with the wrong one 

Conformation Correct Wrong 

Reactant(kcal/mol) -1.9051E+05 -1.9051E+05 

Intermediate (kcal/mol) -1.9052E+05 -1.9052E+05 

Transition State (kcal/mol) -1.9048E+05 -1.9049E+05 

C-O (Å) 2.30  2.93  

C-C-O (degrees) 118.31  177.55  

C-C-C-O (degrees) 85.93  140.18  

ΔE1(kcal/mol) 29.2332  23.4990  

ΔE2(kcal/mol) 33.4180  27.6839  

 

 

Figure 20. Graphic comparison of two transition states 

 

Ab initio methods use a much more sophisticated Hamiltonian, only the 

wavefunction is being approximated to solve the Schrödinger equation. In contrast, 

semi-empirical methods approximate the Hamiltonian and then solve the Schrӧdinger 

equation accurately.
[40]

 Due to this reason, in some cases, the semi-empirical methods 

may differ from those obtained with ab initio methods. In this case, the 

-1.9052E+03

-1.9051E+03

-1.9050E+03

-1.9049E+03

-1.9048E+03 reactant TS intermediate

Correct Wrong
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semi-empirical methods provided pseudo transition states with lower energies. By 

data verification, these incorrect results were ruled out. 

4.2 Model Systems with Methanethiol 

4.2.1 Models with Methanethiol 

 Because the glutathione reacts with enones by thiol functional group, methanol 

needs to be replaced by methanethiol. Then the results will be more helpful for future 

research. Similarly to model systems with methanol, three model systems with 0, 1, 

and 2 phenyl groups were used in the calculations, analyzed and compared.  

 

 

Figure 21. Structures of simple model with methanethiol 

 

 

Figure 22. Structures of transition states of one phenyl(L) and two phenyl(R) groups 

 

Figure 23 and Figure 24 show the structures of the three model systems. In Table 
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8, the results from two basis sets were very close, which increases our confidence in 

the reliability of the calculations. The cis-isomers in reactants and intermediates still 

have lower energies, with higher energies for the transition states. The geometries for 

all three models were similar and the activation barrier increases with the numbers of 

phenyl groups. 

 

Table 8. Comparison of simple model with methanethiol 

Basis Set 3-21G 6-31G* 

Reactant (kcal/mol) -3.9210E+05 -3.9407E+05 

Intermediate (kcal/mol) -3.9210E+05 -3.9407E+05 

Transition State (kcal/mol) -3.9209E+05 -3.9406E+05 

C-O (Å) 1.86  1.85  

C-C-O (degrees) 114.93  115.57  

C-C-C-O (degrees) 108.07  111.28  

ΔE1(kcal/mol) 11.37  10.81  

ΔE2(kcal/mol) 4.91  4.48  

 

Table 9. Comparison of models with one phenyl group and methanethiol 

Conformation Trans- Cis- 

Reactant(kcal/mol) -5.3535E+05 -5.3535E+05 

Intermediate (kcal/mol) -5.3534E+05 -5.3535E+05 

Transition State (kcal/mol) -5.3533E+05 -5.3533E+05 

C-O (Å) 2.30  2.34  

C-C-O (degrees) 115.55  114.59  

C-C-C-O (degrees) 98.78  91.98  

ΔE1(kcal/mol) 14.86  19.77  

ΔE2(kcal/mol) 7.56  13.09  
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Table 10. Comparison of models with two phenyl groups and methanethiol 

Conformation Trans- Cis- 

Reactant(kcal/mol) -6.7859E+05 -6.7860E+05 

Intermediate (kcal/mol) -6.7858E+05 -6.7859E+05 

Transition State (kcal/mol) -6.7857E+05 -6.7857E+05 

C-O (Å) 2.29  2.38  

C-C-O (degrees) 111.40  108.69  

C-C-C-O (degrees) 98.62  87.32  

ΔE1(kcal/mol) 19.37  25.73  

ΔE2(kcal/mol) 6.24  12.39  

 

Table 11. Comparison of transition states of cis-isomer models with methanethiol 

 
C-O(Å) C-C-O(⁰) C-C-C-O(⁰) ΔE1(kcal/mol) ΔE2(kcal/mol) 

1 1.86 114.93 108.07 11.3679 4.9089 

2 2.298 115.55 98.78 14.8607 7.5584 

3 2.285 111.40 98.62 19.3731 6.2374 

(1-simple model; 2-model with one phenyl group; 3-model with two phenyl groups) 

 

4.2.2 Comparison of Models with Methanol and Methanethiol 

In comparing Tables 6 and 11, it is easy to see the trends for the methanethiol 

models compared to the methanol models. This implies that the computational results 

are consistent, and the geometries data may be used as references for the following 

studies. Due to the size of the atom and less electro negativity, it is more difficult to 

run calculations on models with sulfur atom. There was also a higher chance however, 
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of getting incorrect transition states. Therefore, it is necessary to calculate the model 

systems with methanol first, and to use these results as the starting part for the 

methanethiol calculations. 

4.3 Models with the Derivatives of Chalcones 

4.3.1 Computation with Derivatives of Chalcones 

As mentioned in 4.1.2, in model systems, cis-isomers have lower energies of 

reactants and intermediates. For derivatives, the calculations showed similar results, 

and the transition states from trans- and cis-isomers are of little differences. Therefore, 

only the results computed from cis-isomer of derivatives, as shown in Figure 25, are 

discussed here. 
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Figure 23. General structure of derivatives 

 

Most of the derivatives of chalcones were selected from earlier research in 

Bowen group.
[8]

 There were experimental data available for these compounds. All 

substitutions are based on two phenyl groups. Methyl, methoxy, chloro, 

trifluoromethyl, and propyl groups were added to the chalcone structures as noted in 
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Table 12. 

 

 

Table 12. List of chalcone derivatives with structures 

No. R1 R2 Structure 

1 phenyl phenyl 

 

2 phenyl 2-trifluoromethylphenyl 

 

3 phenyl 1,5-dimethoxyphenyl 

 

4 1,5-dimethylphenyl phenyl 

 

5 1,5-dimethoxyphenyl phenyl 

 

6 1,5-dimethoxyphenyl 1,5-dimethoxyphenyl 
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7 1,5-dichlorophenyl 1,5-dimethoxyphenyl 

 

8 1,5-dichlorophenyl phenyl 

 

9 1,5-dichlorophenyl 1,5-dichlorophenyl 

 

10 1,5-dichlorophenyl 3-methylphenyl 

 

11 2,4-dichlorophenyl 3-methylphenyl 

 

12 3-chlorophenyl phenyl 

 

13 1-chlorophenyl 1,3-dimethylphenyl 
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14 3-methylphenyl 3-methylphenyl 

 

15 3-isopropylphenyl 3-methylphenyl 

 

16 3-methoxyphenyl 3-methoxyphenyl 

 

 

Table 13 contains all the molecular geometry and energy profiles of 16 

derivatives of chalcone used in this study. The molecular geometries of these 

derivatives were close according to the statistical data in Table 14. Among them, the 

dihedral angles have the greatest standard deviation, which indicates the dihedral 

angles are most influenced by the modifications on phenyl groups. The dihedral 

angles describe the planes and torsions at the reaction sites, which can be considered 

as the space for nucleophilic agents attacking the β-carbon. Therefore, it relates to the 

activation energies. However, according to the data, it seems there are no direct 

relationships between dihedral angles and activation energies. But if the dihedral 

angles differ significantly from chalcone, which has a relative higher activation barrier, 
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it is very likely that ΔE1 also will have a lower number. Chalcone itself has a relative 

higher activation barrier in reaction compared to most of its derivatives. Thus, 

chalcone may not easily react with glutathione and have a longer half-life. Since the 

dihedral angles change, modifications on both benzene rings are able to change the 

activation energies. Then it is possible to design molecules with higher activation 

energies. Figure 26 is the graph compared energies of different derivatives. 

 

Table 13 Calculation results of derivaties with geometries and energies 

No. C-O(Å) C-C-O(⁰) C-C-C-O(⁰) ΔE1(kcal/mol) ΔE2(kcal/mol) 

1 2.143 112.20  73.87  40.5472  41.3272  

2 2.205 111.40  71.17  33.5247  39.2821  

3 2.277 113.03  78.33  34.5476  35.2824  

4 2.143 110.35  65.41  31.7169  39.9285  

5 2.175 112.27  79.79  41.3360  39.8249  

6 2.175 111.75  86.95  30.0132  30.4782  

7 2.178 118.67  84.71  34.9893  35.9312  

8 2.165 115.75  81.95  33.2323  35.3100  

9 2.335 119.69  82.31  25.5516  42.8338  

10 2.158 115.95  82.11  33.3829  34.9460  

11 2.103 113.89  83.20  29.9190  34.2118  

12 2.111 113.63  82.59  31.5757  34.9021  

13 2.131 110.50  83.22  28.2750  31.7834  

14 2.191 111.47  72.46  36.4709  36.3347  

15 2.112 113.69  82.10  33.4676  33.2053  

16 2.187 112.09  72.71  36.1891  35.0307  
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Table 14. Statistics of geometries of derivatives 

Geometry Parameter C-O(Å) C-C-O(⁰) C-C-C-O(⁰) 

Average 2.174  113.52  78.93  

Standard Deviation 0.0605  2.7354  5.9929  

Confidence Interval 0.0249  1.1248  2.4644  

 

 

Figure 24. Graphic comparison of derivatives 

 

The analysis suggests that adding functional groups near the reaction site does 

not necessarily increase the difficulty of the reactions. There is no functional group 

that can significantly increase the activation barrier. If the analysis is combined with 

the actual structures of the transition states, the torsion angle of phenyl groups and the 

reaction sites may play more important roles. Take derivatives 6, 7 and 9 as examples, 

all of them have additional functional groups on 1,5-position of both benzene rings. 

Derivatives 7 and 9 have the largest and smallest activation energy respectively. The 
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structures of the reactants may give some clues as shown in Figure 27. Compared to 

methoxy groups, the halo groups were almost on the same plane. Then there will be 

fewer obstacles for nucleophilic agents to attack the enones. Therefore, derivative 9 

has the smallest ΔE1 value. For derivatives 14, 15 and 16, they have the similar 

modifications which are all far from the reaction sites. Derivatives 14 and 16 indeed 

have close activation energies while 15 is less than them. This suggests that besides 

the spacial structure of the reaction site, the characteristics of different functional 

groups also contribute to the change of the activation barrier. However, there is no 

clear pattern about it. 

 

 

Figure 25. Reactants of derivative 7(L) and 9(R), methanol is not included 

 

4.3.2 Comparison with Calculation and Experimental Results 

For earlier work in the Bowen group, most of the derivatives in Table 12 were 

studied experimentally. The activities of the compounds were evaluated by the percent 

inhibition of in vitro endothelial cell proliferation.
[8]

 Table 15 contains the calculation 

results and the experimental results for comparison.  

As the calculations imply, chalcone itself has a larger activation barrier; it showed 
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a better inhibition percentage in vitro experiment. ΔE1 is not in proportion with the 

experimental activity. But if the activation barrier is smaller, it is very likely that this 

derivative showed less activity in cells. One exception is those with chloro groups. As 

mentioned in 4.3.1, chloro groups were not helpful in increasing the activation 

energies due to the spacious reaction site. However, in the experiment, they showed 

better activity compared to those with methoxy groups. In this case, the experimental 

data does not have the same pattern with computations. In other words, the calculation 

result is not consistent with experiment. Thus, it is very likely that there are other 

mechanisms playing important roles for the activities of compounds 

 

Table 15. Comparison of calculation and experimental data 

No. ΔE1(kcal/mol) ΔE2(kcal/mol) 
SVR growth inhibition 

1μg/ml 3μg/ml 6μg/ml 

1 40.5472 41.3272 71.6 92.8 94.4 

2 33.5247 39.2821 42.3 87.4 96.9 

3 34.5476 35.2824 25.8 39.8 63.5 

4 31.7169 39.9285 47.7 57.9 89.6 

5 41.3360 39.8249 31.8 56.4 60.8 

6 30.0132 30.4782 36.2 49.2 39.2 

7 34.9893 35.9312 23.2 43.7 52.3 

8 33.2323 35.3100 4.6 61.0 94.0 

9 25.5516 42.8338 48.3 75.3 93.7 

10 33.3829 34.9460 19.9 10.4 84.7 

11 29.9190 34.2118 - - - 

12 31.5757 34.9021 - - - 

13 28.2750 31.7834 29.6 25.3 73.4 

14 36.4709 36.3347 36.3 67.3 89.5 
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15 33.4676 33.2053 19.5 14.2 59.2 

16 36.1891 35.0307 29.1 63.4 85.2 

 

There are many reasons for the inconsistency. Firstly, the model system uses 

methanol. Although oxygen atom is similar to sulfur atom, there are still many 

differences such as the size and electronegativity. The simplified model systems affect 

the generality of the calculations. The glutathione and methanethiol are very different 

structurally, except for the thiol group. If this reaction is catalyzed by enzymes, the 

shape of the substrates and other properties should also be taken under consideration.  

The suggested glutathione reduction may be only part of the reaction mechanism 

There are other factors influencing the activity of the derivatives. For example, 

Boumendjel and his colleagues suggested the lipophilicity of the chalcone derivatives 

affect the activities by testing the percentage of G2/M phases.
[41] 

Therefore, the study 

can only be as reference to study the conjugate addition. The information obtained by 

computational methods may be helpful but it cannot replace the roles of experimental 

studies to predict the activities of the compounds. 
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CHAPTER V 

CONCLUSION AND FUTURE WORKS 

 

5.1 Conclusion 

This study was done by quantum chemistry methods. It covers the conjugate 

addition of enones and the derivatives of chalcones. Reactants, transition states, and 

intermediates were computed by ab initio methods in SPARTAN, a computational 

chemistry software program. The molecular geometries and energies have been 

calculated, analyzed, and summarized. The derivatives of chalcone were also studied 

in the same way. In additional, the calculation results of the derivatives were 

compared with experimental data. 

With different model systems, the geometries of reaction site of the transition 

states still share similarities. The calculations suggest that the nucleophilic addition 

maintains essentially the same pattern. Then the information of the reaction from the 

simplified model systems can be helpful for the actual reactions between glutathione 

and enone compounds. 

The modifications on phenyl groups have been shown to have more influence on 

the activation energies rather than geometries; thus, it is possible to alter the activation 

barrier by modifications in order to make it difficult for conjugate addition. However, 
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it is not reliable to predict the activity of the compounds by calculating energies of the 

conjugate reactions. There are more factors contribute to the reactions. Therefore, the 

experiments are necessary to screen novel chalcone and curcumin derivatives. 

5.2 Future Study 

Firstly, the derivatives with methanethiol need to be studied and compared to 

those with methanol. In this study, although two model systems share similarities in 

geometries of the reaction sites, the differences in energies will be more interesting. It 

is possible that with methanethiol, the derivatives may display a more clear pattern in 

the relationship with the activation energies. 

Secondly, more derivatives will be tested. There are much more derivatives of 

chalcone reported in different articles. Various modifications should be considered to 

validate the method and enrich the data. For example, replace phenyl groups with 

other aromatic rings. Also more complex compounds need to be studied as well. 

The next step is to replace methanol and methanethiol with other structures which 

are closer to glutathione. The robustness of the model systems will be tested, and the 

results will be more reliable than those simplified model systems. 

Furthermore, other reactions may be studied in a similar way. Although 

computational methods may not be very accurate to predict independently reactions 

and activities, it may save time and cost before starting the synthesis and bioassay 

tests.  
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