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Among women in the U.S., breast cancer is the most commonly diagnosed cancer 

and the second leading cause of cancer death (after lung cancer). Metabolomics, an 

approach to the study of small molecules, provides insight of characteristic biochemical 

phenotypes in disease, and facilitates the development of novel diagnostic tools. This 

thesis project was to investigate the metabolic signature and to identify potential 

biomarkers for breast cancer using metabolomics methods. GC-TOFMS and LC-TOFMS 

spectra were acquired in the plasma collected from 138 breast cancer patients and 76 

healthy women. Multivariate and univariate statistics methods were applied to analyze 

the metabolic alterations in breast cancer. Of the 41 identified differential metabolites, 

aspartate was the most significantly reduced in breast cancer plasma samples and 

obtained good predictive power for distinguishing breast cancer patients from healthy 

controls. An established combination of 7 markers (asparagine, hypotaurine, 5-

oxoproline, cysteine, aspartate, glutamate and glutamine) was found to provide even 

better predictive power than aspartate alone. The altered expression of aspartate was 

confirmed in an independent set of serum samples and 20 pairs of breast tumor tissue and 

its adjacent normal tissue. It was also found that the metabolic profiles of stage I and 

stage IV patients can be separated in the constructed OPLS-DA model. In conclusion, 

breast cancer exhibits profound metabolic dysregulations and potential biomarkers in 

breast cancer can be identified using metabolomics approach. 
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CHAPTER I 

INTRODUCTION 

 Among women in the U.S., breast cancer is the most commonly diagnosed cancer 

and the second leading cause of cancer death (after lung cancer). Metabolomics, an 

approach to the study of small molecules, provides insight of characteristic biochemical 

phenotypes in disease, and facilitates the development of novel diagnostic tools. The 

purpose of this thesis project is to investigate the metabolic signature and to identify 

potential biomarkers for breast cancer using metabolomics methods. The specific aims 

for this project, described in Figure 1, include: 

Aim 1. To investigate the metabolic profiles and identify potential biomarkers in breast 

cancer. Working hypothesis of this aim is that breast cancer patients have a characteristic 

signature of plasma metabolic profiles, and identifying metabolic shifts helps discover 

potential biomarkers. Approach of this aim includes collecting plasma samples from 138 

breast cancer patients and 76 healthy controls, dividing them into an age-matched 

training set and a test set, constructing the OPLS-DA model using the training set to 

identify differential metabolites, verifying the model in the test set, and evaluating the 

diagnostic abilities of the potential biomarkers using ROC analysis. 

Aim 2. To validate the alterations of potential biomarkers in an independent sample set 

of serum samples. Working hypothesis of this aim is that the potential biomarkers 

identified in the Aim 1 offer predictive power to distinguish breast cancer patients from 
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healthy controls in another independent sample set. Approach of this aim includes 

collecting serum samples from 80 breast cancer patients and 70 healthy controls, 

quantifying the serum levels of the potential biomarkers identified in the Aim 1 and 

evaluating their diagnostic abilities. 

Aim 3. To validate the alterations of potential biomarkers in breast tumor tissues. 

Working hypothesis of this aim is that the potential biomarkers discovered in the blood 

are also expressed differently in tumor tissues. Approach of this aim includes measuring 

the tissue levels of the potential biomarkers in twenty pairs of breast tumor tissue and its  

adjacent normal tissue. 

 

Figure 1. Study design.  
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CHAPTER II 

REVIEW OF THE LITERATURE 

Breast cancer and its diagnosis 

Breast cancer is a global health concern, as it is one of the top ten worldwide 

causes of mortality in women according to statistics by the World Health Organization 

(World Health Organization, 2012). Breast cancer originates mostly from the lobules 

which are the glands for milk production, or from the ducts connecting the lobules to the 

nipple. Breast cancer confined within the lobules or the ducts is called in situ cancer, 

while breast cancer invading the surrounding tissue of the breast is called invasive breast 

cancer.  

According to global cancer statistics in 2011, breast cancer accounted for 23% 

(1.38 million) of total new cancer cases and 14% (458,400) of cancer deaths in women in 

that year, making it the most commonly diagnosed cancer and the leading cause of cancer 

death among females in the world (Jemal et al., 2011). Among women in the U.S., breast 

cancer is also the most frequently diagnosed cancer and the second leading cause of 

cancer death (after lung cancer) (U.S. Cancer Statistics Working Group, 2012). Although 

breast cancer rates decrease every year because of improvement in early detection and 

treatment, the American Cancer Society still estimates that in the year 2012, 226,870 new 

cases of invasive breast cancer and 63,300 new cases of in situ breast cancer will be 

diagnosed among women, and that around 39,920 U.S. women will die from breast 
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cancer (American Cancer Society, 2012).  

One of the most commonly used classifications of breast cancer is the TNM 

system, which is based on tumor size (T), lymph node involvement (N) and whether the 

cancer has spread, or metastasized, to distant organs (M). The stage of a particular case of 

breast cancer is determined based on the TNM information. Stage 0 describes non-

invasive in situ cancer, Stage I describes early stage invasive cancer, and Stage IV 

describes the most advanced or metastatic cancer. 

The stage at diagnosis has been reported to influence breast cancer survival 

(American Cancer Society, 2011). Early detection of breast cancer improves the chance 

of successful treatment. Therefore, it has been recommended by experts that women 

receive annually breast cancer screening beginning at age 40. 

Three breast cancer detection methods listed in the American Cancer Society 

guidelines are mammography, clinical breast examination (CBE) and magnetic resonance 

imaging (MRI) (American Cancer Society, 2011). Among these, mammography is the 

most popular screening methods. However, it exposes patients to radiation and is 

uncomfortable for many women. A relatively low sensitivity of 54% to 77% depending 

on the type of mammography (Skaane et al., 2009) often necessitates follow-up 

examinations, such as biopsies. 

Breast cancer is a heterogeneous disease, consisting of distinct clinical and 

histological forms. Because of this heterogeneity, so far no universal biomarker has been 

found which can diagnose all types of breast cancer.  Currently, well-studied biomarkers 

of breast cancer are categorized into seven groups. They are (i) steroid (hormone) 



5 
 

receptors, (ii) the epidermal growth factor receptor family, (iii) the proliferation marker 

Ki67, (iv) cell-cycle regulation and apoptotic markers, (v) angiogenesis-related proteins, 

(vi) extracellular matrix-related proteins and (vii) cyclooxygenase-2 (COX-2). Steroid 

(hormone) receptors (ER and PR) and the epidermal growth factor receptor family 

(HER2/ ErbB2) are the most extensively investigated biomarkers. Despite the fact that 

these common biomarkers provide abundant information regarding molecular features 

and classifications of breast cancer, none of these biomarkers is abnormally expressed in 

all breast cancer patients and thus none of them has satisfactory diagnostic ability. 

Therefore, there is a compelling need to identify safer and more sensitive biomarkers that 

can distinguish breast cancer patients from normal population.  

 

Metabolomics 

Metabolomics is a new approach to the qualitative or quantitative analysis of the 

small-molecule metabolites of a biological organism. Metabolic variations, regarded as 

the downstream end products of alterations in gene and protein expressions, reflect not 

only genetic phenotype but also environmental influences. Because small changes in 

enzyme activities can be amplified and detected on the metabolite level, metabolomics 

may offer hope for the discovery of potential biomarkers for diseases. It has been widely 

used to identify differential metabolites that can distinguish between healthy people and 

patients with several types of cancer, such as prostate cancer (Fan et al., 2011), ovarian 

cancer (Chen et al., 2011; Garcia et al., 2011), breast cancer (Chen et al., 2009; Nam et 

al., 2009; Frickenschmidt et al., 2008), pancreatic cancer (Nishiumi et al., 2010), kidney 
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cancer (Kim et al., 2011), colorectal cancer (Qiu et al., 2010), gastric cancer (Cai et al., 

2010), oral cancer (Wei et al., 2011), lung cancer (An et al., 2010), and bladder cancer 

(Pasikanti et al., 2010).  

Metabolic profiles have been analyzed in various types of biological specimens, 

including blood, plasma, serum, urine, tissue, cells, saliva, cerebrospinal fluid, and tears. 

Some biofluid samples, such as blood, urine, and saliva, are non-invasive and easy to 

acquire, making them appropriate for biomarker discovery research and other clinical 

studies, while tissue and cell samples may be used for preclinical research. 

Two of most commonly used analytical tools in metabolomics are nuclear 

magnetic resonance (NMR), and mass spectrometry (MS). NMR detects compounds by 

measuring the magnetic influence on nuclei of compounds by an external magnetic field. 

The sample preparation process for NMR is easy, but it has low sensitivity. MS detects 

molecules by creating electrically charged ions in the ion source, separating introduced 

ions in an analyzer, and then using a detector to detect ions and record information of 

mass-to-charge ratios. Common ionization methods include electron ionization (EI), 

chemical ionization (CI), electrospray ionization (ESI) and atmospheric pressure 

chemical ionization (APCI). Common analyzers of MS include quadrupole, triple 

quadrupoles, time-of-flight (TOF), and ion traps. MS is always coupled with either liquid 

chromatography (LC) or gas chromatography (GC) to separate different compounds 

based on the differential partition between the mobile and stationary phases. The time it 

takes compounds to be eluted from the column (also called retention time) is another 

parameter to identify the compounds. GC-MS is used to analyze the volatile compounds, 
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with the advantage of high resolution. However, during the sample preparation process, 

derivatization may be needed to reduce the polarity of the compounds and render them 

volatile. LC-MS has an easier sample preparation process and is able to detect a wider 

range of compounds than GC-MS. The raw data acquired from the instruments must be 

processed by software programs, with the processing steps like baseline fitting, 

deconvolution, and peak picking.  

Metabolomics is a high-throughput technology and usually produces complex 

multivariate datasets, and thus chemometric, bioinformatic and statistical methods are 

required to interpret and visualize the data. Several web-based metabolomics data 

processing tools have been developed, including MetaboAnalyst and metaP-Server. 

These tools offer a variety of functions, including univariate statistical methods (such as 

fold change analysis and t-test), unsupervised and supervised multivariate statistical 

methods (such as PCA, PLS-DA and hierarchical clustering), metabolite identification 

and pathway mapping. 

Two major metabolomics methods are targeted and non-targeted metabolic 

profiling. Non-targeted metabolomics studies the profile of the whole metabolome, so 

that metabolites with unknown chemical structures may still be detected. However, non-

targeted metabolomics may produce biased results due to the limitations of current 

technology to detect all metabolites. Many factors may influence the results, including 

the sample collection process, sample stability, extraction methods, ion suppression for 

LC-MS, and derivatization for GC-MS. In contrast, the targeted strategy, which was 
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developed to quantitatively analyze particular sets of metabolites (e.g. lipids or amino 

acids), may provide more robust and reliable results (Christians et al., 2011). 

 

Metabolomics in the field of breast cancer research 

In the field of breast cancer research, both targeted and non-targeted 

metabolomics methods have been used for identifying biomarkers for diagnosis and 

prognosis, predicting treatment activity and toxicity, classifying types of breast cancer, 

and studying the mechanisms of tumor growth and progression. 

Discovery of potential biomarkers for diagnosis 

Metabolic profiles of breast cancer between patients and healthy volunteers have 

been compared in several studies. Urine samples are the most commonly used biofluids 

in the analysis because they offer an easily acquired and non-biopsy screening approach.   

Some altered metabolic pathways and dysregulated metabolites have been detected in 

breast cancer patients by univariate and multivariate statistical model. Receiver operating 

characteristic (ROC) analysis has been used to select optimal classifiers from these 

differential metabolites, which may be helpful for the detection of disease.  

A study conducted by Nam et al. (2009) analyzed metabolic profiles of the urine 

samples collected from 50 breast cancer patients and 50 healthy individuals. Four 

differentially expressed metabolites (homovanillate, 4-hydroxyphenylacetate, 5-

hydroxyindoleacetate and urea) were identified as potential biomarkers. This combination 

of markers yielded a good classification performance in the ROC analysis, with area 

under the ROC curve (AUC) values of 0.75, 0.79, and 0.79 using three classification 
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algorithms of a linear discriminate analysis (LDA), a random forest classifier (RF), and 

the support vector machine (SVM), respectively.   

Another study conducted by Chen et al. (2009) combined a metabolomics 

approach and a metabolic correlation network analysis to investigate the metabolite 

profiles of 20 breast cancer patients and 18 healthy volunteers. Twelve urine metabolites 

including dimethylarginine, tyrosine, phenylalanine, pantothenic acid, succinyladenosine, 

dimethylguanosine, apronal, threonylcarbamoyl adenosine, tryptophan, kynurenic acid, 

nicotinuric acid and indolelactic acid were identified as potential biomarkers in this study.  

Cancer cells show a high rate of RNA turnover to satisfy the metabolic 

requirements of dysregulated growth. The excretion of modified nucleosides, which are 

the intermediates of RNA metabolism, has been found increased in the urine in cancer. 

Therefore, several breast cancer biomarker studies focused on the metabolic phenotype of 

urinary modified nucleosides. An examination of nucleosides in the urine samples of 113 

breast cancer patients and 99 healthy volunteers was performed by Frickenschmidt et al. 

(2008). This study revealed that a model containing 31 nucleosides could be used to 

differentiate between breast cancer patients and healthy volunteers with a sensitivity of 

87.67% and a specificity of 89.90%. In another study (Bullinger et al., 2008), eleven 

nucleosides were quantitatively measured in the urine samples collected from 51 breast 

cancer patients and 65 healthy controls, and the results of this study showed that this 

panel of eleven nucleosides achieved a sensitivity of 94% and a specificity of 86% in a 

SVM model. 
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In addition to urine, saliva has also been used in the biomarker discovery research, 

because it is easy and cost-effective to collect. The metabolic profiles of saliva from 30 

breast cancer and 87 healthy controls were analyzed (Sugimoto et al., 2009). A total of 28 

metabolites were identified as biomarker candidates, and they could provide a high AUC 

value of 0.973 in the ROC analysis to discriminate breast cancer patients from healthy 

controls. 

Although biofluids have shown superiority over other type of samples in the 

biomarker discovery research, identifying potential markers in the tissue samples may be 

complementary to the microscopic analysis of biopsies. The biopsy levels of choline 

related metabolites were analyzed by NMR in 85 breast tumor tissues and 18 adjacent 

non-tumor tissues (Sitter et al., 2006). Tumor tissues could be distinguished from non-

tumor tissues using the relative intensities of glycerophosphocholine, phosphocholine and 

choline, with a sensitivity of 82% and a specificity of 100%. 

A large cohort of 271 breast cancer and 98 normal tissue samples were 

investigated by GC/TOFMS (Budczies et al., 2012).  Using cut-off criteria of sensitivity 

and specificity greater than 80%, 13 metabolites increased in breast cancer tissues 

(including cytidine-5-monophosphate, adenosine-5-monophophate, phosphoethanolamine, 

taurine, pyrazine2,5-dihydroxy, creatinine, N-acetylaspartate, hypoxanthine, glycerol-

alpha-phosphate, aminomalonate, glutamic acid, malate and oxoproline) and 7 

metabolites increased in normal tissues (including heptadecanoic acid, lignoceric acid, 

hexadecanol, pentadecanoic acid, glycolic acid, benzoic acid and hydroxylamine) were 

identified as potential biomarkers. To discriminate breast tumors from normal tissues, 
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classifiers were constructed from dividing one tumor marker by one normal tissue marker. 

Among these classifiers, the ratio of cytidine-5-monophosphate/ pentadecanoic acid had 

the highest discriminant ability with a sensitivity of 94.8% and a specificity of 93.9%. 

Discovery of potential biomarkers for prognosis 

There are five commonly used treatment options for patients with breast cancer, 

which are surgery, radiation therapy, chemotherapy, hormone therapy and targeted 

therapy (American Cancer Society, 2011). However, all the breast cancer patients face 

risks of recurrence even after successful treatments. A report revealed that the 5-year and 

10-year residual risks of recurrence for breast cancer patients were 11% and 20%. Tumor 

grade, stage, and status of hormone receptors were related with late recurrence (Brewster 

et al., 2008). Improved prognostic tools are needed for detecting the cancer recurrence 

early and estimating the survival time. Metabolomics may also help indentify biomarkers 

for recurrence, besides the occurrence of breast cancer.    

Asiago et al. (2010) performed a metabolic profiling analysis of 257 serum 

samples collected from 20 recurrent breast cancer patients and 36 patients with no 

clinical evidence of disease. Data were acquired from NMR and GC/GC-MS. A 

prediction model containing 11 metabolites was established using the logistic regression 

method. These 11 metabolites included formate, histidine, proline, choline, tyrosine, 3-

hydroxybutyrate, lactate, glutamic acid, N-acetyl-glycine, 3-hydroxy-2-methyl-butanoic 

acid and nonanedioic acid. This panel of 11 markers provided a sensitivity of 86% and a 

specificity of 84% from ROC analysis.  
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Sitter ea al. (2010) quantitatively analyzed and compared differential metabolites 

in the tissue samples of 13 patients with good prognosis and 16 patients with poor 

prognosis. Prognosis status was defined by tumor size, estrogen and progesterone 

hormone receptor status, and whether the cancer cells had been spread to axillary lymph 

nodes. They found that the ratios of taurine/glycine, total cholines/glycine and 

glycerophosphocholine/glycine were significantly different between the good and poor 

prognosis groups. Even in the poor prognosis group, patients who had experienced 

recurrence had significantly lower ratios of taurine/glycine and 

glycerophosphocholine/glycine, compared to the patients who were healthy five years 

after surgery.  

Alteration of lipid metabolism is a hallmark of breast cancer. A high level of 

glycerol-3-phosphate acyltransferase (GPAM), a key enzyme catalyzing the biosynthesis 

of triacylglycerols and phospholipids, was found significantly correlated with a better 

overall patient survival.  Phosphatidylcholines were increased significantly in the high 

GPAM expression tumors. The other differential metabolites between the groups of high 

and low expression of GPAM included oxalic acid, glucose, flavin adenine dinucleotide, 

2-aminoadipic acid, ribose-5-phosphate, myo-inositol, idonic acid, serine, capric acid, 

tyrosine, cholesterol, dehydroasorbate, 2-hydroxyglutaric acid, β-alanine and maltotriose 

(Brockmoller et al., 2012). 

Oakman et al. (2011) found that the early stage breast cancer patients have 

characteristic metabolic profiles in the serum. The established multivariate statistical 

model showed the early stage cancer patients were clustered together, and could be 
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separated from the metastatic breast cancer patients. Therefore, they developed a 

prognostic method called metabolic risk for early stage patients, which was calculated as 

the inverse distance of each early stage cancer patient from the cluster barycenter of the 

metastatic patients. However, this method requires further development and validation. 

Detection and prediction of treatment efficacy 

 Breast cancer is a heterogeneous disease, and therefore, patients at the same stage 

of cancer or with similar symptoms may exhibit different responses to the same treatment. 

It is important to develop approaches to evaluate the efficacy of treatments for breast 

cancer. Researchers have utilized metabolomics methods to detect chemotherapy 

efficiency. By analyzing serum metabolic profiles of 34 HER-2-positive patients who 

were treated with both paclitaxel (an inhibitor used in breast cancer chemotherapy) and 

lapatinib (a tyrosine kinase inhibitor targeting HER-2), it was found that patients with 

longest time to progression (TTP) had significantly distinctive metabolomes, compared to 

the patients with shortest TTP. The serum levels of glucose were higher in the patients 

with longest TTP, while the serum levels of glutamate and phenylalanine were higher in 

the patients with shortest TTP. The constructed model in this study provided a high 

accuracy of 89.6% to predict the effect of treatment on TTP. Although these results are 

required to be further validated in the sample sets with larger sample sizes, this study 

confirms the role of metabolomics in detection and prediction of treatment efficacy 

(Tenori et al., 2012). 

It has been shown that weight gain during the breast cancer treatment is 

associated with a poor prognosis. Keun et al. (2009) published a study which utilized the 
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metabolomics methods to investigate the potential mechanism underlying the weight gain 

induced by the breast cancer chemotherapy. The serum level of lactate was found 

increased by 63.5% in the weight gain patients, compared to the weight same or loss 

patients. 

Classification of breast cancer 

In addition to stages, breast cancer can also be classified into four types based on 

gene expression profiles: luminal A, luminal B, basal-like, and HER-2 enriched. Patients 

with luminal A, with a higher expression of estrogen receptor (ER) and low expressions 

of progesterone receptor (PR) and HER-2, have the best prognosis. Patients with luminal 

B have a high expression of PR but low expressions of ER and HER-2. Patients with 

HER-2 enriched expression and with basal-like type (ER PR and HER-2 negative) have 

the worst prognosis. Although patients with luminal A have a relatively good prognosis, 

there are still some patients who do not respond to anti-estrogen treatment. Therefore, 

further study on classification of breast cancer is required. Using metabolomics methods, 

luminal A breast cancer could be further classified into three subtypes based on 

hierarchical clustering of the HR MAS MR spectra (Borgan et al., 2010). One of these 

three subtypes had a lower level of glucose and a higher level of alanine than other 

subtypes. 

Uncovering the altered metabolic pathways 

Metabolic reprogramming is recently perceived as another hallmark of cancer, in 

addition to sustaining proliferative signaling, evading growth suppressors, resisting cell 

death, enabling replicative immortality, inducing angiogenesis, and activating invasion 
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and metastasis (Hanahan and Weinburg, 2011; Ward and Thompson, 2012). Tumor cells 

reorganize their metabolic phenotypes to support rapid growth and proliferation, and thus 

exhibit a characteristic metabolic signature. Therefore, unraveling the alterative 

metabolism of cancer is another research focus in metabolomics studies. Understanding 

the fundamental metabolic pathways altered by cancer may facilitate the discovery of 

new therapeutic targets.  

The most noticeable metabolic feature of tumor cells is the Warburg effect. The 

Warburg effect, which was initially found by Nobel laureate Otto Warburg in 1924, 

describes that cancer cells tend to take up more glucose, and more glucose is converted 

into lactate through pyruvate instead of entering into the TCA cycle to produce energy. 

Normal cells produce a large amount of lactate only when oxygen is absent, but cancer 

cells maintain this metabolic process even though oxygen is present, so this process is 

called aerobic glycolysis. 2-[
18

F]Fluoro-2-deoxyglucose positron emission tomography 

(FDG-PET) scanning, which assesses the Warburg effect by measuring glucose uptake in 

the local tissue, has been widely applied to diagnosis and staging of cancer. FDG-PET 

scanning also plays an important role in diagnosis, staging, and prognosis in breast cancer 

(Kumar and Alavi, 2004).  

Aerobic glycolysis produces excess lactate and generates much less ATP than 

oxidative phosphorylation, which is an inefficient way to consume glucose. One possible 

reason explaining why cancer cells remain this inefficient metabolism is because ATP is 

not a limiting resource for the cancer cells and it is necessary for cancer cells to balance 

energy generation and macromolecule production in the cancer cells (Heiden et al., 2009). 
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It has been shown that aerobic glycolysis produces a great amount of precursors for 

biosynthesis of biomass, such as lipids, nucleotides and amino acids, and fulfills the 

metabolic requirements of cell growth and proliferation.  

In addition to the Warburg effect, various other metabolic alterations that tumors 

cells undergo have been found in breast cancer using metabolomics methods. 

Nucleoside metabolism 

Increased biosynthesis of nucleotides and nucleosides was detected in the breast 

cancer tissues when analyzing metabolic profiles of 271 breast cancer tissues and 98 

normal tissues using GC/TOFMS. The levels of CMP and AMP were significantly 

increased in the breast cancer tissues, with fold changes of 10.3 and 7.8 respectively 

compared to the normal tissues (Budczies et al., 2012).   

Cancer cells have also shown a high rate of RNA turnover to satisfy the metabolic 

requirements of dysregulated growth. The excretion of modified nucleosides, the 

intermediates of RNA metabolism, is increased in the urine in cancer, because of the lack 

of specific phosphorylases to recycle them. Woo et al. (2009) analyzed the urine levels of 

nucleosides among 10 breast cancer patients and 22 normal controls, and found that two 

nucleosides, 8-hydroxy-2-deoxyguanosine and 5-hydroxymethyl-2-deoxyuriding, were 

significantly increased in the urines of breast cancer patients. The profiles of modified 

nucleosides of MCF-7 breast cancer cells and MCF10A normal breast cells were 

measured and analyzed using LC-MS (Bullinger et al., 2007). 5-methyluridine, N
2
,N

2
,7-

trimethylguanosine, N
6
-methyl-N

6
-threonylcarbamoyladenosine and 3-(3-

aminocarboxypropyl)-uridine were significantly elevated in the medium of MCF-7 cells.  
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Lipid metabolism 

The change of lipid metabolism is another characteristic feature observed in 

breast cancer. Fatty acids have essential functions as energy source and compositions of 

cell membrane lipids. Fatty acids in human body are obtained by diet or de novo 

synthesis. Breast cancer cell growth was impeded by silencing the gene ELOVL1 

(elongation of very long chain fatty acid-like1), and it suggests that de novo biosynthesis 

of fatty acid plays an important role in breast cancer cells (Hilvo et al., 2011).  

The free fatty acid profiles of serum have been compared in breast cancer patients 

and healthy controls by GC-MS (Lv and Yang, 2012). This work found that breast cancer 

patients had significantly increased levels of C16:0, C18:0 and C18:2, and had 

significantly decreased levels of C18:3, C20:5 and C22:5 compared to the healthy 

controls. 

The elevated biosynthesis of cell membrane lipids has been observed in breast 

cancer as well. A lipidomic profiling analysis (Hilvo et al., 2011), conducted in 257 

breast cancer tissue samples and 10 adjacent breast tissue samples, showed that 

phosphatidylcholines, phosphatidylethanolamines, phosphatidylinositols, sphingomyelins 

and ceramides were significantly increased in tumor tissues. The mRNA expression of 

glycerol-3-phosphate acyltransferase (GPAM), a key enzyme catalyzing the biosynthesis 

of triacylglycerols and phospholipids, was also found higher in breast cancer and 

gynecological cancer than that in other types of cancer by analyzing the GeneSapiens in 

silico transcriptiomics database. In addition, it was reported that breast cancer tissues had 
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a higher level of sn-glycerol-3-phosphate which is a substrate of GPAM compared to 

normal tissues. 

Amino acid metabolism 

Amino acid metabolism is also altered in cancer. The plasma free amino acid 

profiles of five types of cancer (lung, gastric, colorectal, breast and prostate cancer) were 

measured by HPLC-MS (Miyagi et al., 2011). It was found that different types of cancer 

shared several similar changes of plasma free amino acid profiles, such as decreased 

concentrations of tryptophan and histidine in all of the cancers except prostate cancer. 

Each cancer exhibited a unique characteristics of metabolic profiles as well, for instance, 

breast cancer had an increased concentration of threonine, which was decreased in gastric 

and colorectal cancer. But differences between cancer patients and controls were larger 

than those among different types of cancer. 

Glutamine is a nonessential amino acid. However, cancer cells show a distinct 

characteristic that they cannot survive in the absence of exogenous glutamine. This 

metabolic signature of cancer is regarded as glutamine addiction. Glucose tends to be 

converted into lactate instead of producing energy through TCA cycle and oxidative 

phosphorylation in cancer cells as described in the Warburg effect. Glutamine has been 

considered as another essential source of energy and nitrogen for cancer cells. It has been 

shown that glutamine can be converted into α-ketoglutarate to replenish TCA cycle 

intermediates and provide energy for the cancer cells (Wise and Tompson, 2010). 
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Unraveling the mechanisms of progression 

As a tumor rapidly grows, the center of tumor may undergo hypoxia condition 

because of deprived blood supply. Weljie et al. (2011) studied metabolic alterations 

induced by hypoxia condition in breast cancer. They analyzed the metabolite patterns of 

MDA-MB-231 breast cancer cells in both hypoxic and normoxic conditions in vitro, and 

they also in vivo compared the serum metabolic profiles of the mice introduced with 

MDA-MB-231 cells and control animals using NMR. When comparing the in vitro and in 

vivo results, it was found that the concentrations of threonine, leucine, lysine, 

phenylalanine, 1-methylhistidine and 2-hydroxybutrate were increased, while 2-

oxoglutarate was decreased, in both the medium of cells under hypoxic condition and the 

serum of mice with tumors.  

 Richardson et al. (2008) conducted a stable isotope flux analysis of carbon 

metabolism in the MCF10 model of breast cancer which included normal breast cells 

MCF10A and three MCF10A derived breast cancer cell lines in different stages of tumor 

progression (transformation, tumorigenicity and metastasis). A total of 22 key 

metabolites and 15 metabolic pathways were quantitatively measured using 2D HSQC-

NMR and GC-MS. It was found that in the breast cancer cell lines, more glucose was 

metabolized and converted to pyruvate via pentose phosphate pathway, rather than via 

glycolysis, and the production of ribose through pentose phosphate pathway was also 

increased in the breast cancer cells compared to normal cells. Carbon flux through TCA 

cycle was increased and the level of succinate, a key metabolic intermediate in the TCA 

cycle, was higher in the breast cancer cells. Compared to the normal cells, de novo 



20 
 

synthesis of palmitate (C16:0), stearate (C18:0) and oleate (C18:1) were elevated in the 

tumor cells. Transformed and tumorigenic cells had higher pool size of glutamate, while 

metastatic cells had smaller pool size of glutamate but higher proline.  

 

Conclusion 

Breast cancer has been the most frequently diagnosed cancer and the second 

leading cause of cancer death among American women. There is a compelling need to 

identify novel biomarkers that can distinguish breast cancer patients from normal 

population.  

Metabolomics, an approach to study of small molecules, provides high-resolution 

insight of characteristic biochemical phenotypes in disease, and may offer opportunity for 

the discovery of new diagnostic tools for breast cancer. Numerous targeted or non-

targeted metabolomics studies have revealed that breast cancer undergoes profound 

metabolic alterations in glycolysis, TCA cycles, lipid metabolism, amino acid 

metabolism and nucleic acid metabolism. Metabolomics has also been used for 

identification of biomarkers for diagnosis and prognosis in breast cancer, prediction of 

treatment activity and toxicity, and classification of breast cancer. 

Blood and urine are two biofluids commonly used in the metabolomics research. 

However, most of potential biomarkers for breast cancer diagnosis were identified in the 

urine. Analysis of metabolic patterns and identification of potential biomarkers of breast 

cancer have never been performed in a large cohort of plasma samples. The metabolites 

and nutrients are transported by blood and excreted into urine only when their 
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concentrations exceed the relevant kidney threshold. As the main function of urine is to 

remove unwanted compounds from the body, the levels of nonnutrient compounds found 

in urine will naturally be higher than those found in blood. Therefore, blood and urine of 

breast cancer patients may obtain distinct metabolic profiles, and further studies are 

required to investigate whether there are any differentially expressed metabolites in the 

circulating blood that can achieve remarkable diagnostic power and serve as biomarkers 

for breast cancer. 
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CHAPTER III 

ANALYSIS OF METABOLIC PROFILES AND IDENTIFICATION OF  

POTENTIAL BIOMARKERS IN BREAST CANCER 

Abstract 

Metabolomics provides insight of characteristic biochemical phenotypes in 

disease, and facilitates the development of novel diagnostic tools. In order to identify 

potential biomarkers for breast cancer, GC-TOFMS and LC-TOFMS spectra were 

acquired in the plasma collected from 138 breast cancer patients and 76 healthy women. 

Multivariate and univariate statistics methods were applied to analyze the metabolic 

alterations between groups. Of the 41 identified differential metabolites, aspartate was 

significantly reduced in breast cancer and obtained good predictive power for 

distinguishing breast cancer patients from healthy controls. An established combination 

of 7 markers (asparagine, hypotaurine, 5-oxoproline, cysteine, aspartate, glutamate and 

glutamine) was found to provide even better predictive power than aspartate alone. The 

altered expression of aspartate was confirmed in an independent set of serum samples and 

20 pairs of breast tumor tissue and its adjacent normal tissue. It was also found that the 

metabolic profiles of stage I and stage IV patients can be separated in the constructed 

OPLS-DA model. In conclusion, metabolomics offers a powerful opportunity to detect 

profound metabolic dysregulations and to identify potential biomarkers in breast cancer.
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Introduction 

Among women in the U.S., breast cancer has been the most commonly diagnosed 

cancer and the second leading cause of cancer death (after lung cancer) for most of the 

past decade (U.S. Cancer Statistics Working Group, 2010). One of the most popular 

screening methods for breast cancer is mammography. However, mammography exposes 

patients to radiation and is uncomfortable for many women. Furthermore, it has a 

sensitivity of only 54% to 77% depending on the type of mammography (Skaane, 2009). 

A safer and more sensitive diagnostic method is thus required. Biomarker in the urine or 

blood is an indicator of health status, and it has advantage in easy acquisition. However, 

breast cancer is heterogeneous disease, consisting of distinct clinical and histological 

forms. This heterogeneity makes it lacking of the universal diagnosis biomarker. 

Therefore, there is a compelling need to identify novel biomarkers that can distinguish 

breast cancer patients from healthy people.  

Metabolomics is a new approach to the study of small molecules, and may 

facilitate to identify the metabolic alterations of cancer and offer opportunity to discover 

biomarkers for disease diagnosis. Three common analytical tools used in metabolomics 

are nuclear magnetic resonance (NMR), liquid chromatography-mass spectrometry (LC-

MS) and gas chromatography-mass spectrometry (GC-MS). Metabolomics method has 

been widely used to identify differential metabolites between disease patients and healthy 

people in the field of cancer research, such as prostate cancer (Fan et al., 2011), ovarian 

cancer (Chen et al., 2011; Garcia et al., 2011), breast cancer (Chen et al., 2009; Nam et 

al., 2009; Frickenschmidt et al., 2008), pancreatic cancer (Nishiumi et al., 2010), kidney 
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cancer (Kim et al., 2011), colorectal cancer (Qiu et al., 2010), gastric cancer (Cai et al., 

2010), oral cancer (Wei et al., 2011), lung cancer (An et al., 2010), and bladder cancer 

(Pasikanti et al., 2010).  

Metabolic reprogramming is recently perceived as a hallmark of cancer. The most 

noticeable metabolic feature of tumor cells is the Warburg effect, which describes that 

cancer cells tend to take up more glucose and convert it into lactate via aerobic glycolysis. 

2-[
18

F]Fluoro-2-deoxyglucose positron emission tomography (FDG-PET) scanning, 

which assesses the Warburg effect by measuring glucose uptake in the local tissue, plays 

an important role in diagnosis, staging, and prognosis in breast cancer (Kumar et al., 

2004). In addition to the Warburg effect, breast cancer patients have also been reported to 

show the perturbed metabolic patterns of lipids (Hilvo et al., 2011; Lv and Yang, 2012), 

nucleosides (Budczies et al., 2012; Woo et al., 2009; Bullinger et al., 2007) and amino 

acids (Miyagi et al., 2011). Previous metabolomics studies have identified a couple of 

potential biomarkers for breast cancer diagnosis in the urine and saliva samples. However, 

the metabolic pattern of breast cancer has never been analyzed in a large cohort of plasma 

samples.  

The aim of the present study was to investigate metabolic signature of breast 

cancer and to identify potential biomarkers by analyzing plasma samples from 138 breast 

cancer patients and 76 healthy women using LC-TOFMS and GC-TOFMS. The 

metabolic profiles of patients in different stages were also compared. A target analysis 

was performed in the serum samples to validate the potential biomarker. In order to 

investigate whether the altered expression of the potential biomarker in the plasma can be 
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also observed in tumor, 20 pairs of breast tumor tissue and its adjacent normal tissue were 

analyzed as well. 

 

Materials and Methods 

 Plasma and serum sample collection 

We obtained a batch of plasma samples to discover differential metabolites for 

breast cancer in this study. These plasma samples were collected from 138 breast cancer 

patients aged 30-70 years and 76 healthy women aged 20-40 years at the City of Hope 

Cancer Center in California. Their TNM stages were recorded from pathological result 

with: stage I, 19 patients; stage II, 50 patients; stage III, 49 patients; stage IV, 20 patients. 

The subjects were divided into a training set, which was used to construct the statistical 

model to discriminate the patients from the healthy controls, as well as a test set to verify 

the statistical model. The training set included 35 patients and 35 age-matched healthy 

controls, and the remaining patients and healthy controls were analyzed as the test set.  

Another batch of serum samples was used to validate the discovered differential 

metabolites. They were collected from 80 newly diagnosed breast cancer patients, 

including 10 stage I patients, 45 stage II patients and 25 stage III patients, and 70 healthy 

volunteers at Ruijin Hospital in Shanghai, China. The patients ranged in age from 36 to 

78, with an average age of 49.5, and the healthy volunteers ranged in age from 35 to 76, 

with an average age of 58.3.  

All the patients were newly diagnosed as breast cancer and were not on any 

medication prior to sample collection. All the samples were collected in the morning 
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before breakfast and were stored in the clean tubes at -80°C until analysis. The 

characteristics of patients were summarized in Table 1. This study was approved by the 

local institutional review boards and all patients gave informed written consent before 

they were involved in the study.  

Breast cancer tissue samples 

Twenty pairs of frozen tissue were purchased from Biochain (CA, USA). Each 

pair of tissue consisted of breast tumor tissue and its adjacent normal tissue from the 

same patient. These samples were excised from 20 patients in stage I (n=1), stage II 

(n=10), stage III (n=8), stage IV (n=1) .The average age of the patients was 62.5 (from 46  

to 75 years). The characteristics of patients were summarized in Table 1. 

Table 1. Summary of the characteristics of patients used in this study. 

 

Plasma and serum sample preparation and data acquisition by GC-TOFMS 

Plasma and serum metabolites extraction and derivatization were performed 

following our lab’s previously published procedure with minor modifications (Bao et 

al.,2009; Qiu et al., 2009). Briefly, a 50 µL aliquot of plasma or serum sample was spiked 
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with two internal standard solutions (10 µL p-chlorophenylalanine in water, 0.1 mg/mL; 

10 µL heptadecanoic acid in methanol, 1 mg/mL). The mixed solution was extracted with 

175 µL of methanol: chloroform (3:1) and vortexed for 30 seconds. After storing for 10 

minutes at -20°C, the samples were centrifuged at 13,200 rpm for 10 minutes at 4°C. An 

aliquot of 200 µL supernatant was transferred to a glass sampling vial to vacuum dry at 

room temperature. The dried extracts were derivatized using a two-step procedure. First, 

50 µL methoxyamine (15 mg/mL in pyridine) was added to the vial and derivatized at 

30°C for 90 minutes. After adding 10 µL C10-C40 (all even alkanes, 12.5μg/mL) as 

retention index, the samples were added 50 µL BSTFA (1%TMCS) and derivatized at 

70°C for 60 minutes.  

Each 1 µL aliquot of the derivatized solution was injected in splitless mode into 

an Agilent 7890A gas chromatograph with the Agilent 7683 autosampler coupled to a 

Pegasus HT time-of-flight mass spectrometer (Leco Corporation, St Joseph, USA). To 

minimize systematic error, each healthy control sample was run for every one or two 

breast cancer samples, and one quality control sample was run for every ten analyzed 

samples. Breast cancer samples from different stages were also run evenly in the whole 

experiment.  Separation was achieved on an Rxi-5 ms capillary column (Crossbond
®

 5% 

diphenyl/ 95% dimethyl polysiloxane; 30m × 0.25mm i.d. × 0.25µm; Restek, PA, USA), 

with helium as the carrier gas at a constant flow rate of 1.0 mL/min. The temperatures of 

injection, transfer interface, and ion source were set to 260°C, 260°C, and 210°C, 

respectively. The GC temperature programming was set to 2 min isothermal heating at 

80°C, followed by 10°C/min oven temperature ramps to 220°C, 5°C/min to 240°C, and 
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25°C/min to 290°C, and a final 8 min maintenance at 290°C. Electron impact ionization 

(70 eV) at full scan mode (m/z 40-600) was used, with an acquisition rate of 20 

spectra/second in the TOFMS setting. 

The raw data generated in GC-TOFMS instrument were processed by 

ChromaTOF software (v4.43, Leco Co., CA, USA), including baseline computation, peak 

detection and peak area calculation. Compound identification was performed by 

comparing the mass fragments (or retention time and retention index if available) with 

our in-house standard library and NIST 11 mass spectral library. Those metabolites 

identified from our in-house library were viewed as identities confirmed by standards. 

Peak areas of unique mass were normalized to the internal standard. Internal standards 

and any known artificial peaks, such as peaks caused by noise, column bleed and 

derivatization procedure, were removed from the data set. 

Plasma and serum sample preparation and data acquisition by LC-TOFMS 

The plasma or serum samples were thawed and centrifuged at 13,200 rpm for 5 

min. A volume of 100 µL supernatant was mixed with 10 µL of p-chlorophenylalanine 

(10 µg/mL, internal standard) and 400 µL of a mixture of methanol and acetonitrile (5:3). 

The mixture was vortexed for 2 min, allowed to stand for 10 min, then centrifuged at 

13,200 rpm for 20 min, and the supernatant was used for liquid chromatography-time of 

flight mass spectrometry (LC-TOFMS) analysis. 

An Agilent HPLC 1200 system equipped with a binary solvent delivery manager 

and a sample manager (Agilent Corporation, Santa Clara, CA, USA) was used with 

chromatographic separations performed on a 4.6 × 150 mm 5 μm Agilent ZORBAX 
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Eclipse XDB-C18 chromatography column. The LC elution conditions were optimized as 

follows: isocratic at 1% B (0–0.5 min), linear gradient from 1% to 20% B (0.5-9.0 min), 

20-75% B (9.0-15.0 min), 75-100% B (15.0-18.0 min), isocratic at 100% B (18–19.5 

min); linear gradient from 100% to 1% B (19.5-20.0 min) and isocratic at 1% B (20.0–

25.0 min). Here, A = water with 0.1% formic acid and B = acetonitrile with 0.1% formic 

acid. The column was maintained at 30 °C. A 10 µL aliquot sample was injected onto the 

column. Mass spectrometry was performed using an Agilent model 6220 MSD TOF mass 

spectrometer equipped with a dual sprayer electrospray ionization source (Agilent 

Corporation, Santa Clara, CA, USA). The system was tuned for optimum sensitivity and 

resolution using an Agilent ESI-L low concentration tuning mix in both positive (ES+) 

and negative (ES-) electrospray ionization modes. Agilent API-TOF reference mass 

solution kit was used to obtain accurate mass time-of-flight data in both positive and 

negative mode operation. The TOF mass spectrometer was operated with the following 

optimized conditions: (1) ES+ mode, capillary voltage 3500 V, nebulizer 45 psig, drying 

gas temperature 325 °C, drying gas flow 11 L/min, and (2) ES- mode, similar conditions 

as ES+ mode except the capillary voltage was adjusted to 3000 V. The TOF mass 

spectrometer was calibrated routinely in ES+ and ES- modes using the Agilent ESI-L low 

concentration tuning mix. During metabolite profiling experiments, both plot and 

centroid data were acquired for each sample from 50 to 1,000 Da over a 25 min analysis 

time. 

The resulting .d files were then centroided, deisotoped, and converted to mzData 

xml files using the MassHunter Qualitative Analysis Program (vB.05.00, Agilent). 
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Following conversion, xml files were analyzed using the open source XCMS package 

(v1.24.1), which runs in the statistical package R (v.2.15.1) to pick, align, and quantify 

features (chromatographic events corresponding to specific m/z values and retention 

times). The software was used with default settings as described except for xset (bw = 5) 

and rector (plottype = “m”, family = “s”). The created .tsv file was opened using Excel 

software and saved as .xls file. The resulting data sheet normalized to the internal 

standard was used for the further analysis. Metabolites annotation was performed by 

comparing the accurate mass (m/z) and retention time (RT) of reference standards in our 

in-house library and the accurate mass of compounds obtained from the web-based 

resources such as the Human Metabolome Database. 

Profiling analysis of tissue samples by GC-TOFMS and LC-TOFMS 

 Approximately 40 mg of tissue samples were prepared using two-step extraction. 

The tissue sample was first added with 50 µL of the first-step extraction solvent 

(chloroform : methanol : water = 1:2.5:1) and homogenized for 6 min in a bullet blender 

(Next Advance, Inc., BIOBOX
TM

).  Then the sample was extracted with another 250 µL 

of first-step extraction solvent, and centrifuged at 13,200 rpm for 20 minutes at 4°C. An 

aliquot of the 100 µL supernatant was transferred to a GC sampling vial and another 100 

µL supernatant was transferred to a LC sampling vial. The rest of supernatant was used 

as quality control (QC) samples. At the second step, the deposit of tissue was extracted 

with 300 µL methanol. After centrifugation at 13,200 rpm for 20 minutes at 4°C, two 

aliquots of 100 µL supernatant were transferred to the GC and LC vials, and the rest was 

pooled into QC samples.  
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For the GC-TOFMS analysis, the samples spiked with two internal standard 

solutions (10 µL p-chlorophenylalanine in water, 0.1 mg/mL; 10 µL heptadecanoic acid 

in methanol, 1 mg/mL) were vacuum-dried at room temperature. The dried extracts were 

derivatized using a two-step procedure. First, 50 µL methoxyamine (15 mg/mL in 

pyridine) was added to the vial and derivatized at 30°C for 90 minutes. Then, the samples 

were added 50 µL BSTFA (1%TMCS) and derivatized at 70°C for 60 minutes. The 

samples were separated through an Rxi-5 ms capillary column (Crossbond
®

 5% diphenyl/ 

95% dimethyl polysiloxane; 30m × 0.25mm i.d. × 0.25µm; Restek, PA, USA), and 

analyzed by an Agilent 7890A gas chromatograph coupled to a Pegasus HT time-of-flight 

mass spectrometer (Leco Corporation, St Joseph, USA). Helium was used as the carrier 

gas at a constant flow rate of 1.0 mL/min. Each 1 µL aliquot of the derivatized solution 

was injected in splitless mode. The GC temperature programming was set to 2 min 

isothermal heating at 80°C, followed by 10°C/min oven temperature ramps to 220°C, 

5°C/min to 240°C, and 25°C/min to 290°C, and a final 8 min maintenance at 290°C. To 

minimize systematic error, each normal control sample was run for every one breast 

cancer samples, and one quality control sample was run for every ten analyzed samples. 

GC-MS data, processed by ChromaTOF software (v4.43, Leco Co., CA, USA), was 

normalized to QC samples and then to total peak area of each subject. Metabolites were 

identified by our in-house standard library or annotated by the NIST library. 

For the LC-TOFMS, the samples were mixed with 10 µL of p-

chlorophenylalanine (10 µg/mL) as internal standard, and each 10 µL aliquot sample was 

injected onto a Agilent ZORBAX Eclipse XDB-C18 chromatography column (150 × 4.6 
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mm, 5 μm). The samples were analyzed by an Agilent HPLC 1200 system coupled with 

an Agilent model 6220 MSD TOF mass spectrometer (Agilent Corporation, Santa Clara, 

CA, USA). The HPLC was performed at a flow rate of 0.4 mL/min with mobile phase A 

(water with 0.1% formic acid) and mobile phase B (acetonitrile with 0.1% formic acid). 

The gradient in both positive and negative mode is isocratic at 1% B (0–0.5 min), linear 

gradient from 1% to 20% B (0.5-9.0 min), 20-75% B (9.0-15.0 min), 75-100% B (15.0-

18.0 min), isocratic at 100% B (18–19.5 min); linear gradient from 100% to 1% B (19.5-

20.0 min) and isocratic at 1% B (20.0–25.0 min). The TOF mass spectrometer was 

operated with the following optimized conditions: (1) ES+ mode, capillary voltage 3500 

V, nebulizer 45 psig, drying gas temperature 325 °C, drying gas flow 11 L/min, and (2) 

ES- mode, similar conditions as ES+ mode except the capillary voltage is adjusted to 

3000 V. During metabolite profiling experiments, both plot and centroid data were 

acquired for each sample from 50 to 1,000 Da over a 25 min analysis time. LC-MS data, 

processed by the MassHunter Qualitative Analysis Program (vB.05.00, Agilent) and 

XCMS package (v1.24.1), was normalized to QC samples and then to total peak area of 

each subject. Metabolites were identified by our in-house standard library or annotated by 

the HMDB library. 

Data analysis 

All annotated variables from GC-TOFMS and LC-TOFMS were combined into 

one excel file. The combined data sheet were imported into SIMCA-P software 12.0 

(Umetrics, Umeå, Sweden) for multivariate statistical analysis. Principal component 

analysis (PCA), projection to latent structures-discriminant analysis (PLS-DA) and 
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orthogonal projection to latent structures-discriminant analysis (OPLS-DA) were carried 

out to discriminate between breast cancer patients and healthy controls. Based on a 

variable importance in the projection (VIP) threshold of 1 from the 7-fold cross-validated 

OPLS-DA model, differential metabolites were identified. In parallel, the metabolites 

identified by the OPLS-DA model were validated at a univariate level using the 

nonparametric Mann-Whitney test with the critical p-value set to 0.05 for the plasma 

samples and using the paired t test with the critical p-value set to 0.05 for the paired 

tissue samples. The corresponding fold change shows how these selected differential 

metabolites varied between the cancer and healthy control groups. The quantification of 

metabolites in serum was performed based on six-point calibration curves. The 

concentrations of metabolites were expressed in µg/mL serum. 

Using the differential metabolites identified from GC-TOFMS and LC-TOFMS 

analysis, Receiver Operating Characteristic (ROC) curve analysis was conducted by 

SPSS 18.0 (SPSS Inc.). The optimal cut point was determined for each biomarker by 

searching for those that yielded the maximum corresponding sensitivity and specificity. 

ROC curves were then plotted on the basis of the set of optimal sensitivity and specificity 

values. Area under the curve (AUC) was computed via numerical integration of the ROC 

curves. The biomarker with the largest AUC value was identified as having the strongest 

predictive power for detecting breast cancer. 
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Results 

Plasma metabolic profiling of breast cancer patients 

In the plasma samples, 812 features were detected using GC-MS and 1662 

features were detected using LC-MS, including 1023 features from ES+ and 639 features 

from ES-. A total of 227 metabolites were identified in either GC-MS (128 metabolites) 

or LC-MS (99 metabolites), including amino acids, amines, organic acids, carbohydrates, 

fatty acids and nucleic acids (Appendix A). A total of 102 out of 227 metabolites (44.9%, 

69 metabolites from GC-MS and 33 metabolites from LC-MS) were confirmed by 

standard compounds, while others were annotated by the available libraries (either NIST 

or HMDB).  

In the training set, separation tendency could be observed between breast cancer 

patients and healthy controls in the PCA score plot using 6 components (R
2
Xcum=0.407, 

Q
2

cum=0.115) (Figure 2). The 7-fold cross-validated PLS-DA model was obtained with 2 

components showing the difference between breast cancer samples and healthy controls 

(R
2
Xcum=0.14, R

2
Ycum= 0.861, Q

2
cum=0.697) (Figure 3). Validation model using the 999 

random permutation tests demonstrated the robustness of the PLS-DA model, with the 

Q
2
Y-intercept of -0.269 (Figure 4). Clear separation could be observed in the 7-fold 

cross-validated OPLS-DA model using one predictive component and one orthogonal 

components (R
2
Xcum=0.14, R

2
Ycum= 0.861, Q

2
cum=0.717) (Figure 5).  

In order to validate the predictive ability, this OPLS-DA model was applied to an 

external test set consisting of plasma samples for 103 breast cancer patients and 41 

healthy controls, which were not matched in age and excluded in the model building 
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process. In the training set, the samples with t-score > 0 were assigned to the breast 

cancer group and the samples with t-score < 0 were assigned to the healthy control group. 

T-predicted scatter plot shows the predicted t-score (tPS) for the test set (Figure 6). With 

the cutoff of 0, a total of 100 out of 103 patients and 36 out of 41 healthy controls were 

correctly predicted, with a sensitivity of 97.1% and specificity of 87.8%. This suggests 

that the constructed OPLS-DA model provides great predictive ability between breast  

cancer and healthy control groups. 

 

Figure 2. PCA scores plot for the training set. In the training set, the PCA scores plot 

using 6 components (R
2
Xcum=0.407, Q

2
cum=0.115) was constructed between breast cancer 

(BC) patients (n=35) and healthy controls (n=35). Separation tendency could be observed 

between breast cancer patients and healthy controls. 
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Figure 3. PLS scores plot for the training set. In the training set, The 7-fold cross-

validated PLS-DA model (R
2
Xcum=0.14, R

2
Ycum= 0.861, Q

2
cum=0.697) was obtained with 

2 components showing the difference between breast cancer (BC) patients (n=35) and  

healthy controls (n=35). 

 

Figure 4. Validation model. The validation model was constructed using the 999 

random permutation tests with 2 components, with R
2
Y-intercept of 0.583 and Q

2
Y- 

intercept of -0.269.  
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Figure 5. OPLS-DA scores plot for the training set. In the training set, the 7-fold 

cross-validated OPLS-DA model using one predictive component and one orthogonal 

components (R
2
Xcum=0.14, R

2
Ycum= 0.861, Q

2
cum=0.717) was constructed and clear 

separation could be observed between breast cancer (BC) patients (n=35) and healthy 

controls (n=35).  
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Figure 6. T-predicted scatter plot for the test set. The test set containing 103 breast 

cancer (BC) patients and 41 healthy controls was predicted using the OPLS-DA model 

constructed with the training set. In the training set, breast cancer patients and healthy 

controls were assigned to t-score > 0 and < 0, respectively. T-predicted scatter plot shows 

the predicted t-score (tPS) for the test set. A total of 100 out of 103 patients and 36 out of 

41 healthy controls were correctly predicted, with a sensitivity of 97.1% and specificity  

of 87.8%. 

Potential biomarker identification for breast cancer 

Variable importance in the projection (VIP) value, which was obtained from 

OPLS-DA model, describes the contribution of a variable to the model. Using the VIP 

values (VIP > 1) and p-values from Mann-Whitney test (p-value < 0.05), a total of 41 

metabolites were selected as differential variables between breast cancer patients and 

controls (Table 2). To visualize the variations of those differential metabolites in all the 

cancer samples, the heatmap was carried out with the ratio of the individual value of each 

metabolite to the mean value of healthy controls (Figure 7). To further interpret the 
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significant differences in plasma metabolites between breast cancer patients and healthy 

controls, the metabolites were linked to metabolic pathways using the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) database. Several pathways were found 

dysregulated in breast cancer patients, including the TCA cycle, γ-glutamyl cycle, amino 

acid metabolism, lipid metabolism and nucleotide metabolism. Of these, the amino acid 

metabolism pathway had the most differential metabolites and showed a profound change. 

The receiver operating characteristics (ROC) analysis was used to select potential 

biomarkers for breast cancer based on the predictive performance of the 41 differential 

metabolites. When analyzing each individual metabolite, aspartate, whose plasma levels 

were significantly decreased in breast cancer patients (FC = 0.34, p-value = 6.27E-13), 

obtained the best predictive performance with an area under the ROC curves (AUC) of 

1.000, a sensitivity of 100% and a specificity of 100% in the training set. In the test set, 

aspartate did not show a perfect predictive performance, only obtaining an AUC of 0.935 

(95% confidence interval: 0.884-0.987), a sensitivity of 85.4% and a specificity of 95.1%. 

However, in the test set, the plasma levels of aspartate were still significantly lower in 

breast cancer patients than those in the normal controls (FC = 0.47, p-value = 3.99E-16). 
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Table 2. A list of 41 differential metabolites between breast cancer patients and 

healthy controls.  The 41 metabolites selected as differential variables between breast 

cancer patients and healthy controls. Variable importance in the projection (VIP) was 

obtained from OPLS-DA with a threshold of 1.0; p-value was calculated from the Mann-

Whitney test; Fold change (FC) with a value more than 1 indicates a relatively higher 

concentration in the breast cancer samples, while a value less than 1 means a relatively 

lower concentration compared to healthy controls. 
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Figure 7. Heatmap for 41 differential metabolites. 

Since the combination of several biomarkers may provide more information than 

the individual one, we tried to construct a model containing multiple markers. Of ten 

most differential metabolites with the highest VIP values, seven were related to amino 

acid metabolism. Therefore, these seven plasma metabolites (asparagine, hypotaurine, 5-

oxoproline, cysteine, aspartate, glutamate and glutamine) were selected to construct the 

combination model. This combination model obtained an AUC of 1.000 with a sensitivity 
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of 100% and a specificity of 100% in the training set (Figure 8A) and an AUC of 0.956 

(95% confidence interval: 0.902-1.000) with a sensitivity of 98.1% and a specificity of 

90.2% in the test set (Figure 8B). The boxplots of these seven metabolites in the training  

set is shown in Figure 8C- I.  

 

Figure 8. Analysis of seven combined potential biomarkers. A ROC curve analysis for 

predictive power of seven combined potential breast cancer biomarkers. (A) The 

calculated AUC in the training set was 1.000, with a sensitivity of 100% and a specificity 

of 100%. (B) The AUC in the test set was 0.956 (95% confidence interval: 0.903-1.000), 

with a sensitivity of 98.1% and a specificity of 90.2% in the test set. (C-I) Box plots of 

seven potential biomarkers distinguishing breast cancer (BC) from healthy controls in the 

training set. 

 

 



43 
 

Comparison of metabolic profiles among different stages of breast cancer 

 The plasma metabolic profiles of breast cancer patients in different stages, to my 

knowledge, have not been investigated. Therefore, multivariate statistics based on 227 

annotated metabolites was performed in breast cancer patients in various stages, 

including 19 patients in stage I, 50 patients in stage II, 49 patients in stage III, and 20 

patients in stage IV. An OPLS-DA model was established with different stages of cancer 

(R
2
Xcum=0.0796, R

2
Ycum= 0.577, Q

2
cum=0.138). It showed that the metabolic profiles of 

stage II and stage III were merged together, and they couldn’t be separated from either 

stage I or stage IV (Figure 9). However, separation tendency could be observed clearly 

between the metabolic profiles of stage I and stage IV in the constructed OPLS-DA 

model (R
2
Xcum=0.193, R

2
Ycum= 0.778, Q

2
cum=0.309; Figure 10).  

The significantly differential metabolites, selected using the VIP values (VIP > 1) 

and p-values from Mann-Whitney test (p-value < 0.05), have been listed in the Table 3. 

Interestingly, aspartate, one of the most differential metabolites in breast cancer patients, 

also had significantly different levels between stage I and stage IV patients. The plasma 

levels of aspartate in stage IV patients were 1.86 times higher than that in stage I patients 

(p-value = 0.001), 1.57 times higher than that in stage II patients (p-value = 0.001), and 

1.58 times higher than that in stage III patients (p-value = 0.001). 
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Figure 9. Analysis of metabolic profiles among four stages of breast cancer. An 

OPLS-DA model (R
2
Xcum=0.0796, R

2
Ycum= 0.577, Q

2
cum=0.138) was established with 

breast cancer patients in stage I (n=19, blue triangle), stage II (n=50, green open triangle), 

stage III (n=49, red circle) and stage IV (n=20, red dot). It showed that the metabolic 

profiles of stage II and stage III were merged together, and they could not be separated 

from either stage I or stage IV. 
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Figure 10. OPLS-DA scores plot established between the breast cancer patients in 

stage I and stage IV. Separation tendency could be observed clearly between the 

metabolic profiles of stage I and stage IV in the constructed OPLS-DA model 

(R
2
Xcum=0.193, R

2
Ycum= 0.778, Q

2
cum=0.309). 
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Table 3. A list of differential metabolites between stage I and stage IV patients. 

Variable importance in the projection (VIP) was obtained from OPLS-DA with a 

threshold of 1.0; Fold change (FC) with a value more than 1 indicates a relatively higher 

concentration in stage IV patients, while a value less than 1 means a relatively lower 

concentration compared to stage I patients; p-value was calculated from the Mann-

Whitney test (* means p-value < 0.05, ** means p-value < 0.01, and *** means p-value < 

0.001). 
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Validation in serum samples 

Because aspartate was one of the most dysregulated metabolites and offered the 

best predictive performance in the plasma samples, quantification of aspartate was 

performed by GC-TOFMS and the diagnosis ability was evaluated in the serum samples 

collected from 80 breast cancer patients (aged from 36 to 78, with an average age of 49.5) 

and 70 healthy volunteers (aged from 35 to 76, with an average age of 58.3) at Ruijin 

Hospital in Shanghai, China. 

Using a six-point calibration curve, the concentrations of aspartate were 

determined. Breast cancer patients had an average concentration of 1.06 µg/mL, whereas 

healthy volunteers had an average concentration of 2.79 µg/mL. The serum level of 

aspartate in breast cancer patients was 0.38 times lower than the level in healthy 

volunteers (p value = 7.25E-24, Figure 11A). ROC analysis showed that it obtained an 

AUC of 0.978 (95% confidence interval: 0.949-1.000) with a sensitivity of 97.1% and a 

specificity of 97.5% (Figure 11B). These results confirmed the altered expression of 

aspartate in breast cancer. 
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Figure 11. Quantitative measure and diagnosis ability analysis of aspartate in the 

serum samples. (A) Box plot of aspartate concentrations in the serum samples of breast 

cancer patients and healthy volunteers. (B)  A ROC curve analysis for predictive power 

of aspartate. The AUC was 0.978 (95% confidence interval: 0.949-1.000), with a  

sensitivity of 97.1% and a specificity of 97.5%. 

Profiling analysis and differential metabolite identification in tissue samples 

In this current study, 20 pairs of breast tumor tissue and its adjacent normal tissue 

were also analyzed by GC-TOFMS and LC-TOFMS. A total of 206 metabolites were 

identified in either GC-TOFMS (143 metabolites) or LC-TOFMS (63 metabolites). A 

total of 155 out of 206 metabolites (122 from GC-TOFMS, and 33 from LC-TOFMS) 

were confirmed by reference standards, while others were annotated by the available 

libraries (either NIST or HMDB). Multivariate statistical models were established using 

these 206 annotated metabolites. The PCA score plot using 6 components (R
2
Xcum=0.665, 

Q
2

cum=0.406) showed that tumor tissue could be separated from normal controls (Figure 

12A), and a clear separation tendency between these two groups was obtained in the  

OPLS-DA model controls (R
2
Xcum=0.476, R

2
Ycum= 0.914, Q

2
cum=0.725; Figure 12B).   
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Figure 12. Multivariate statistical analysis of tissue samples. (A) PCA scores plot 

(R
2
Xcum=0.665, Q

2
cum=0.406) was constructed between the breast tumors (n=20) and the 

peritumoral tissues (n=20). (B) A clear separation tendency between breast tumors and 

the peritumoral tissues was obtained in the OPLS-DA model (R
2
Xcum=0.476, R

2
Ycum=  

0.914, Q
2

cum=0.725). 

Using the criteria of VIP values (VIP > 1) and p-values from paired t test (p-value 

< 0.05), 83 metabolites were found significantly altered and they provided great 

contribution to discriminate tumor samples from normal controls in the OPLS-DA model. 

These 83 differential metabolites, which have been listed in the Appendix B, mainly 

contained amino acids, free fatty acids, carbohydrates and nucleosides.  

 Among these 83 differential metabolites, we observed that aspartate and a couple 

of metabolites involved aspartate metabolism were significantly altered in breast tumor 

tissue. Aspartate and asparagine were elevated by 1.92 and 2.18 fold, respectively, in the 

tumor tissues compared to the adjacent normal tissues (Figure 13). Seven nucleosides or 

nucleobases, including uridine, uracil, guanosine, orotidine, dihydrouracil, hypoxanthine, 

and 8-hydroxy-deoxyguanosine were increased in breast tumor as well, while the level of  

cytosine was decreased in the tumor tissues.  
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Figure 13. Tumor levels of aspartate and asparagine. Aspartate and asparagine were 

elevated by 1.92 and 2.18 fold, respectively, in the tumor tissues compared to the  

adjacent normal tissues. Data are presented as mean ± SEM of twenty samples.  

Discussion 

Potential biomarkers for breast cancer 

Although a number of potential biomarkers have been found in the urine and 

tissue samples of breast cancer patients, metabolic patterns of breast cancer have never 

been analyzed in a large cohort of plasma samples. In the present study, we acquired GC-

TOFMS and LC-TOFMS spectra of plasma metabolites from 138 breast cancer patients 

and 76 healthy controls, and we discovered a novel potential biomarker, aspartate, whose 

expression has never been reported altered in the urine samples in the previous studies. 

Aspartate obtained the best predictive power among the 41 differential metabolites to 

distinguish breast cancer from normal controls, with both sensitivity and specificity of 

100% in the age-matched training set.  

In the non-age-matched test set, aspartate was significantly reduced in the breast 

cancer patients as well, and offered a lower but still good predictive power, with a 
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sensitivity of 85.4% and a specificity of 95.1%. The difference in predictive power of the 

training and test set might be due to a larger sample size of the test set with a greater 

intra-group variation. Although the test set is non-age-matched, no difference of aspartate 

level was found between young and old subjects in either breast cancer patients or 

healthy volunteers (data not shown). But the difference might be caused by the test set 

containing more stage IV patients, whose aspartate level was significantly different from 

the levels in the patients at other stages.  

The diagnostic ability of aspartate was also validated in an independent set of 

serum samples and it obtained a sensitivity of 97.1% and a specificity of 97.5%. The 

plasma samples were collected from American women, while the serum samples were 

collected from Chinese women. The metabolic profiles among various races of people 

may be distinct due to different genetic phenotypes, diets and lifestyles. In order to 

minimize the effect of diet, we collected the plasma and serum samples in the morning 

before breakfast. Aspartate exhibited good diagnostic abilities in both American and 

Chinese patients, and this may reflect that the altered expression of aspartate is not 

affected by race. 

The current study showed that the metabolism of amino acids underwent great 

alterations in breast cancer. Of ten most differential metabolites with the highest VIP 

values, seven were related to amino acid metabolism. These seven metabolites 

(asparagine, hypotaurine, 5-oxoproline, cysteine, aspartate, glutamate and glutamine) 

were thus selected to construct a combination model to distinguish breast cancer patients 

from normal controls. This model offered good classifying performance with an AUC of 
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1 in the training set, and better performance in the test set than aspartate alone, providing 

a sensitivity of 98.1% and a specificity of 90.2%. 

Aspartate metabolism 

In the training set, aspartate was significantly reduced by 0.34 times in the plasma 

of breast cancer patients with the smallest p-value of 6.27E-13, and in the test set 

aspartate was decreased by 0.47 times in breast cancer with a p-value of 3.99E-16. In the 

independent set of serum samples, the level of aspartate in breast cancer patients was also 

found 0.38 times lower than the level in healthy volunteers. In order to investigate 

whether the decrease of aspartate in the blood was due to the metabolic alterations of 

breast cancer tissues, we analyzed 20 pairs of breast tumor and its adjacent tissue, and we 

found that aspartate levels in breast cancer tissue were 1.92 times higher than the levels in 

the adjacent normal tissues. 

Aspartate is a non-essential amino acid, synthesized from oxaloacetate which is 

an immediate of TCA cycle. Oxaloacetate was found decreased in the plasma of breast 

cancer patients in the current study. In addition to protein biosynthesis, aspartate is 

involved in many other metabolic pathways as well, including generating asparagine, 

functioning as a substrate of de novo biosynthesis of pyrimidine, participating in urea 

cycle to facilitate the removal of ammonia, playing a role in translocating NADH 

(produced from glycolysis) into mitochondria across inner mitochondria membrane for 

oxidative phosphorylation by aspartate-malate shuttle, and undergoing gluconeogenesis 

by being converted to alanine.  
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There is a high demand for nucleotides in dividing cells. In this current study, we 

observed increased levels of seven nucleotides or nucleobases in breast tumor. The de 

novo pyrimidine biosynthesis activity was found elevated by 4.4 folds in the MCF-7 cells 

compared to that in the MCF-10A cells (Sigoillot et al., 2004). They also found that de 

novo pyrimidine biosynthesis pathway in the MCF-10A cells was tightly regulated in 

each growth phase, while this pathway remained elevated in all growth phases in the 

MCF-7 cells. A large multifunctional protein CAD, which has carbamoyl phosphate 

synthetase, aspartate transcarbamoylase and dihydroorotase activities, is the rate-limiting 

enzyme in the de novo pyrimidine biosynthesis pathway. The activity of CAD has been 

found increased in the tumor cells (Calva et al., 1959; Aoki et al., 1982), also revealing 

an enhanced de novo pyrimidine biosynthesis pathway in the cancer cells. It was found 

that H-Ras oncogene, which is activated in many cancers, increased the conversion of 

aspartate from 
13

C-glucose via the transamination of oxaloacetate and the produced 

aspartate entered pyrimidine nucleotide biosynthesis in the H-Ras transformed cells 

(Telang et al., 2007). Biosynthesis may not satisfy the high demand for aspartate, so 

cancer cells may absorb aspartate from the bloodstream, leading to low level of aspartate 

in the plasma and high level in tumor, to satisfy its high rate of de novo pyrimidine 

biosynthesis. 

In addition, asparagine synthetase, which catalyzes the biosynthesis of asparagine 

from aspartate, was found overexpressed under glucose-deprived condition in the 

pancreatic cancer cells, and had a protective capability against apoptosis for the cancer 

cells (Cui et al., 2007). The overexpression of insulin-like growth factor (IGF) 1 and 2 
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(an essential regulator of breast cancer development) in the MCF-7 breast cancer cells led 

to an increased expression of asparagine synthetase (Pacher et al., 2007). In the current 

study, asparagine was elevated in the plasma of breast cancer patients compared to 

normal controls, and was increased in breast tumor relative to adjacent normal tissue. It is 

possible as well that the elevated demand for aspartate in breast cancer cells is due to the 

increased biosynthesis of asparagine.  

Other amino acid metabolism 

Glutamate performs an essential role in the metabolism of amino acids. It 

provides nitrogen for amino acid synthesis and collects nitrogen to form urea during the 

degradation of other amino acids. A decreased plasma level of glutamate may suggest an 

increased turnover of amino acids. Glutamine is produced from glutamate by glutamine 

synthetase. Besides glycolysis, glutaminolysis has been suggested as another important 

energy source in cancer cells. Glutaminolysis is a process that converts glutamine to 

glutamate and then to α-ketoglutarate, which is a substrate for the TCA cycle. The 

increased level of plasma glutamine may indicate a higher requirement of glutamine for 

cancer development and an increased synthesis of glutamine in non-cancerous tissues.  

Glutathione plays a role in protecting cells from oxidative damage due to its 

abilities to form oxidized glutathione by interacting directly with free radicals and to act 

as a cofactor for antioxidant enzymes such as GSH peroxidases. Glutathione also 

participates in the phase II detoxification process in which glutathione S-transferases 

catalyze the conjugation of glutathione with electrophilic metabolites, including many 

carcinogens (Balendiran et al., 2004). 5-oxoproline is an intermediate of the γ-glutamyl 
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cycle, which is involved in glutathione biosynthesis and metabolism. In this cycle, γ-

glutamyl moiety is transfered from glutathione to other amino acids, which then are 

converted to 5-oxoproline by the action of γ-glutamylcyclotransferase. 5-oxoproline is 

converted back to glutamate, and glutathione is synthesized again from glutamate, 

glycine and cysteine. In the tumor cells, increased fluxes from 3-phosphoglycerate to 

glycine, and then to glutathione have been found (Richardson et al., 2008). The 

expression of γ-glutamylcyclotransferase was reported significantly increased in breast 

cancer tissue in the previous study (Gromov et al., 2010). These findings showed that 

breast cancer may have an increased glutathione metabolism. Therefore, the abnormal 

low level of 5-oxoproline in the plasma of breast cancer patients may be due to the higher 

uptake 5-oxoproline of tumor cells drived by this increased glutathione metabolism.   

Although L-cysteine is a precursor of glutathione (which acts as an antioxidant 

and detoxifying agent as mentioned above), it itself may produce an excess amount of 

free radicals and hydrogen peroxide, and therefore may increase the oxidative stress of 

the cells, damage their DNA and lead to cancer development. It was shown that elevated 

plasma L-cysteine was associated with an increased risk of developing breast cancer in a 

prospective case-control study (Lin et al., 2010). The current study showed a similar 

result in that the plasma levels of L-cysteine of breast cancer patients were higher than 

those of the control group. L-cystine, which is formed by the oxidation of cysteine, was 

also found increased.  
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Glycolysis and TCA cycle 

The plasma level of four TCA cycle intermediates, 2-Ketoglutarate, succinate, 

oxaloacetate and malate, were decreased, while the pyruvate level was increased in the 

breast cancer patients. These findings were consistent with the Warburg effect, which 

describes the higher conversion of glucose to pyruvate and lactate via the aerobic 

glycolysis pathway in the cancer cells. Surprisingly, the plasma level of lactate was 

decreased in our study. It has been shown that certain cancer cell lines can take up lactate 

by monocarboxylate transporters and utilize lactate. Lactate levels have been 

demonstrated to vary between tumor samples and within individual tumors. This 

variation may be caused by different levels of monocarboxylate transporter
 
activities and 

varied abilities of lactate reutilization (Kennedy et al., 2010).  

Lipid Metabolism 

Three free fatty acids (arachidonic acid C20:4, octadecanoic acid C18:0 and 9-

tetradecenoic acid C14:1) were observed at decreased levels in the breast cancer patients, 

suggesting an alternative metabolism of fatty acids. C18:0 was reported increased in the 

serum of breast cancer patients (Lv and Yang, 2012), while we observed an opposite 

trend in our study. This may be caused by the variations of different sample sets. 

Carnitine and its esters have a crucial role in transporting long chain fatty acids 

into the mitochondria for β-oxidation, and facilitating the excretion of accumulated acyl-

CoA out of mitochondria in a reverse mode. In the breast cancer patients, the plasma 

level of two carnitine esters butyrylcarnitine (C4) and propionylcarnitine (C3) were 

significantly increased, which may demonstrate the alteration of fatty acid oxidation.  
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Choline is converted into phosphatidylcholine, an essential phospholipid in the 

cell membrane bilayer, by the Kennedy pathway. Phosphocholine is an intermediate of 

this pathway, whose production is catalyzed by choline kinase α. It has been shown that 

choline kinase α is overexpressed in the breast cancer cells and the production of 

phosphocholine is increased as well (de Molina, 2004).  It has also been reported that 

choline and choline containing metabolites positively correlated with the rate of breast 

cancer cell proliferation (Miyake and Parsons, 2011). The decreased plasma level of 

choline in the breast cancer patients in the present study may suggest the high 

requirement of choline for tumor growth. Glycerophosphocholine, another major 

derivative of choline, has been shown reduced in the breast cancer tumor (Smith et al., 

1991), which is consistent with what we found in our study.  

 

Conclusion 

In the current study, we used the GC-TOFMS and LC-TOFMS analytical 

platforms to characterize the metabolic profiles in the plasma of breast cancer patients. 

The constructed OPLS-DA model showed a clear separation of breast cancer patients and 

healthy controls, and this model was validated by a test set as well. We also found stage I 

and stage IV patients can be separated using their metabolic profiles. 

Among the 41 identified differential metabolites between breast cancer and 

normal controls, 7 metaboites (asparagine, hypotaurine, 5-oxoproline, cysteine, aspartate, 

glutamate and glutamine) were selected to establish a combination of biomarkers to 
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discriminate breast cancer patients from healthy controls. However, these biomarkers 

need to be validated in a larger size of samples. 

We also noticed that aspartate had the most significantly altered expression, and it 

alone provided a good diagnostic power in the training set of plasma samples. The 

alteration of aspartate was validated in an independent set of serum samples. The current 

study also revealed that breast tumor tissues had an elevated level of aspartate, and 

several metabolites involved in the aspartate metabolism, such as asparagine and 

nucleosides, were differently expressed in breast tumor as well. Further studies are 

needed to find out which pathway drives the altered expressions of aspartate in the blood 

and breast tumor.  
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CHAPTER IV 

EPILOGUE 

Metabolic transformation is recently regarded as a hallmark of cancer. Tumor 

cells reorganize their metabolic phenotypes to support rapid growth and proliferation, and 

thus exhibit a characteristic metabolic signature. Identification of these metabolic shifts 

may provide opportunity to discover novel biomarkers for cancer diagnosis.  

 In this thesis project, global metabolic profiling analysis of breast cancer was 

performed in the plasma samples collected from 138 breast cancer patients and 76 

healthy women. 41 differential metabolites were identified using multivariate and 

univariate statistical methods. A predictive model containing seven markers was 

constructed to distinguish breast cancer patients from healthy controls with good 

diagnostic performance. Aspartate, which was significantly depleted in the plasma of 

breast cancer patients, provided a good diagnostic power as well. The decreased 

expression of aspartate and its diagnostic power were validated in an independent set of 

serum samples. We also observed an increased level of aspartate in breast tumor tissue by 

metabolic analysis of 20 pairs of breast cancer tissue and its adjacent normal tissue. 

However, we still do not know whether aspartate depletion in the blood and its 

accumulation in the tumor are due to the higher uptake of aspartate in cancer cells, and if 

it is the case, how aspartate is utilized and which metabolic pathway drives cancer cells to 

absorb more aspartate need to be studied. Therefore, it would be worthwhile to expand
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this study in the future by investigating the mechanisms behind these metabolic 

alterations at the cell culture level.  

Metabolomics, especially untargeted profiling analysis, is a high throughput 

approach and often generates a high volume of data. In order to identify the underlying 

features and complex relationships of the data, data mining and machine methods are 

critical in the metabolomics study. In this project, by applying unsupervised (such as 

PCA) and supervised (such as OPLS-DA) learning methods to interpret our data, we 

observed a distinct metabolic pattern of breast cancer in both plasma and tissue samples, 

and discovered numerous differential metabolites contributing much to this characteristic 

pattern. How to interpret these differential metabolites is very important as well. We 

categorized these metabolites based on their related metabolic processes, but we only 

focused on several ones with great diagnostic power. However, there is still abundant 

information hidden in these data requiring further interpretations using methods such as 

pathway mapping and metabolic network modeling.   

Considerable previous studies have dedicated to the discovery of diagnostic 

biomarkers in the urine samples using metabolomics methods, and lots of differential 

metabolites or combinations of differential metabolites have been found with good 

diagnostic abilities. However, many confounding factors such as age, diet, and race may 

increase the variations among the sample sets from different studies, resulting that the 

potential biomarkers with great diagnostic abilities discovered in one study might not 

obtain consistent performances in another study. In our current study, an age-matched 

training set was used to minimize the influence of age, and we collected the plasma and 
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serum samples from the subjects in the morning before breakfast to reduce the variations 

introduced by diet.  We identified aspartate as a potential biomarker for breast cancer in 

American women and validated its diagnostic power in Chinese women, which may 

reflect the alteration of aspartate in breast cancer is universal in different races.  However, 

in order to transform pre-clinical studies into therapeutic application, the potential 

biomarkers found in this study still require to be validated in more independent sample 

sets with large sample sizes. 

Different types of cancer may share some similar metabolic patterns. For instance, 

the Warburg effect is a universal metabolic signature for cancer. Also, the analysis of free 

amino acid profiles in the plasma of patients with five types of cancer (lung, gastric, 

colorectal, breast and prostate cancer) showed decreased ratios of tryptophan and 

histidine in all of the cancers except prostate cancer (Miyagi et al. 2011). Therefore, the 

potential biomarkers, which have good predictive power to discriminate patients with one 

particular type of cancer from healthy controls, may not be able to distinguish them from 

patients with other types of cancer. Aspartate, which was identified as one of potential 

biomarkers, has also been found increased in multiple types of tumor, including prostate 

cancer (Taylor et al., 2007), colorectal cancer (Piotto et al., 2009) and lung cancer (Chen 

et al., 2011). And thus the alteration of aspartate may be a universal phenomenon in 

cancer, and may not be a unique biomarker specifically for breast cancer. 

However, some previous studies have showed that one particular type of cancer 

may exhibit unique metabolic shifts as well. Slupsky et al. (2010) performed 

metabolomics analysis using NMR in the urine samples collected from 48 breast cancer 
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patients and 50 ovarian cancer patients. They observed a clear separation of metabolic 

profiles between breast cancer and ovarian cancer based on the 67 annotated metabolites. 

Woo et al. (2008) analyzed urine levels of hormone metabolites and nucleosides among 

10 breast cancer patients, 9 ovarian cancer patients, 12 cervical cancer patients and 22 

normal controls. They also observed a clear separation of metabolic patterns between 

breast cancer and other types of cancer on the PLS-DA model. Therefore, there is still 

hope for identifying the unique metabolic biomarker for one particular type of cancer, but 

great effort will be needed in the future.  
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APPENDIX A 

LIST OF 227 METABOLITES INDENTIFIED BY EITHER GC-TOFMS  

OR LC-TOFMS IN THE PLASMA SAMPLES 

Name Database Instrument Mass RT 

1,2-dimethylpropanol NIST GC-MS 117 4.44 

18-Hydroxycorticosterone HMDB LC-MS 362.209 19.71 

1H-Indole-3-acetic acid NIST GC-MS 202 16.50 

1-hydroxy-1-cyclohexen NIST GC-MS 155 5.25 

1-Pyrroline-2-carboxylic acid HMDB LC-MS 113.048 3.75 

2,2'-Bipyridine NIST GC-MS 156 10.65 

2,3-Diaminopropionic acid Standard LC-MS  105.065 3.40 

2,3-Dihydroxybutanoic acid NIST GC-MS 117 9.56 

2,3'-Dipyridyl NIST GC-MS 156 11.83 

2,4-bishydroxybutanoic acid NIST GC-MS 103 10.30 

2-amino-6-methylaminohexanoic acid NIST GC-MS 116 14.29 

2-aminobutyric acid  Standard GC-MS 130 6.96 

2-Butenedioic acid Standard GC-MS 245 9.34 

2-Hydroxycinnamic acid HMDB LC-MS 164.047 11.22 

2-hydroxypyridine NIST GC-MS 152 5.01 

2-methyl-butyric acid NIST GC-MS 159 4.22 

2-oxo-3-methyl-pentanoic acid Standard GC-MS 151 7.07 

2-oxo-4-methylvaleric acid Standard GC-MS 200 7.55 

2-Piperidinecarboxylic acid NIST GC-MS 156 9.65 

3, 4 dehydroproline NIST GC-MS 208 15.22 

3,4-bishydroxybutanoic acid NIST GC-MS 73 10.55 

3,6-Dioxa-2,7-disilaoctane, 2,2,4,7,7-pentamethyl- NIST GC-MS 117 4.52 

3-amino-2-Piperidone NIST GC-MS 243 10.85 

3-Aminosalicylic acid, TMS Standard GC-MS 186 11.64 

3-Hydroxybutyric acid Standard GC-MS 147 6.77 

3-Hydroxydodecanedioic acid HMDB LC-MS 246.147 18.92 

3-hydroxyoxyisovaleric acid NIST GC-MS 131 7.48 

3-hydroxypyridine Standard GC-MS 152 6.41 

3-Indolepropionic acid HMDB LC-MS 189.079 20.14 

3-methyl-2-oxo-butanoic acid NIST GC-MS 202 6.43 

3-Phosphoglyceric acid, TMS NIST GC-MS 211 19.46 

3-Pyridylacetic acid Standard LC-MS  138.053 3.86 

3-Succinoylpyridine HMDB LC-MS 179.058 18.25 
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4,8 dimethylnonanoyl carnitine HMDB LC-MS 329.257 19.66 

4-Aminohippuric acid HMDB LC-MS 194.069 5.57 

4-Deoxypyridoxine NIST GC-MS 282 13.67 

4-Hydroxy-2-oxoglutaric acid HMDB LC-MS 162.016 3.14 

4-hydroxy-proline Standard LC-MS  132.073 3.88 

5-Acetylamino-6-formylamino-3-methyluracil HMDB LC-MS 226.07 17.22 

5-Hydroxyindoleacetic acid HMDB LC-MS 191.058 3.14 

5-Hydroxylysine HMDB LC-MS 162.1 3.63 

5-Hydroxy-tryptophan NIST GC-MS 174 21.61 

5-Methoxytryptophol HMDB LC-MS 191.095 17.93 

5-Oxoproline Standard GC-MS 156 11.66 

5-Phosphoribosylamine HMDB LC-MS 229.035 24.78 

6-Dehydrotestosterone glucuronide HMDB LC-MS 462.225 21.35 

6-deoxy-mannose NIST GC-MS 204 17.36 

6-Phosphogluconic acid Standard LC-MS  275.012 3.15 

9,12-Octadecadienoic acid (Z,Z)- Standard GC-MS 337 19.06 

á-Amino isobutyric acid NIST GC-MS 211 7.21 

à-Aminoadipic acid NIST GC-MS 260 12.06 

Acetylcarnitine Standard LC-MS  204.123 4.14 

à-Hydroxyisobutyric acid Standard GC-MS 131 6.31 

Alanine Standard GC-MS 116 5.95 

Alloisoleucine Standard GC-MS 158 8.70 

Aminoacetone HMDB LC-MS 73.0528 3.82 

Aminomalonic acid NIST GC-MS 218 11.05 

Androstenedione HMDB LC-MS 286.193 18.43 

Anthranilic acid NIST GC-MS 208 12.67 

Arabinofuranose NIST GC-MS 217 14.58 

Arachidonic acid Standard GC-MS 91 20.80 

Arginine Standard LC-MS  175.116 3.49 

Asparagine Standard GC-MS 116 13.42 

Aspartate Standard GC-MS 232 11.66 

Benzaldehyde HMDB LC-MS 106.042 15.04 

Benzocaine HMDB LC-MS 165.079 15.00 

Benzoic acid  Standard GC-MS 179 7.98 

Beta-alanine Standard GC-MS 174 10.46 

beta-D-Glucopyranuronic acid HMDB LC-MS 314.064 3.79 

Bilirubin HMDB LC-MS 584.263 19.32 

Bisnorcholic acid HMDB LC-MS 380.256 22.24 

Butyrylcarnitine HMDB LC-MS 231.147 16.24 

Cadaverine NIST GC-MS 174 18.36 
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Calcidiol HMDB LC-MS 400.334 21.84 

Caproic acid NIST GC-MS 173 5.47 

Carnitine Standard LC-MS  162.107 3.64 

Carnosine Standard LC-MS  225.106 3.67 

Cholesterol Standard GC-MS 129 27.22 

Choline Standard LC-MS  104.105 3.54 

cis-2-Methylaconitate HMDB LC-MS 188.032 3.08 

cis-3-Hexenyllactate NIST GC-MS 83 4.67 

Citric acid Standard GC-MS 273 15.10 

Citrulline Standard LC-MS  176.093 3.66 

Creatine Standard GC-MS 115 12.11 

Cyclohexanone NIST GC-MS 58 4.61 

Cyclohexyloxy NIST GC-MS 157 4.64 

Cystathionine Standard LC-MS  223.072 3.67 

Cysteine Standard GC-MS 220 12.08 

Cystine Standard GC-MS 218 20.30 

Decanoic acid Standard GC-MS 229 10.74 

Decanoylcarnitine HMDB LC-MS 315.241 19.43 

Dehydroascorbic acid HMDB LC-MS 174.016 5.48 

Delta-hydroxylysine Standard LC-MS  163.108 3.63 

Deoxycholic acid Standard LC-MS  393.291 23.11 

D-Fructose Standard GC-MS 217 15.75 

d-Galactose Standard GC-MS 157 15.77 

D-Glucuronic acid NIST GC-MS 333 16.43 

Dihydroxyacetone phosphate HMDB LC-MS 169.998 3.15 

Dodecanoic acid Standard GC-MS 211 13.07 

Dodecanoylcarnitine HMDB LC-MS 343.272 20.17 

D-Ribofuranose NIST GC-MS 217 14.73 

d-Xylose NIST GC-MS 217 13.43 

Elaidic acid Standard GC-MS 339 19.19 

Epinephrine Standard LC-MS  184.09 3.60 

Epinephrine glucuronide HMDB LC-MS 359.122 4.44 

Erythrose NIST GC-MS 205 14.38 

Galactonic acid Standard GC-MS 73 17.12 

Glucopyranose NIST GC-MS 204 16.82 

Glucose 6-phosphate Standard LC-MS  259.033 3.61 

Glutamate Standard GC-MS 246 12.82 

Glutamine Standard LC-MS  147.074 3.57 

Gluticol NIST GC-MS 73 13.58 

Glyceraldehyde Standard GC-MS 192 7.53 
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Glyceraldehyde 3-phosphate Standard LC-MS  171.004 3.15 

Glyceric acid, TMS Standard GC-MS 189 9.23 

Glycerol Standard GC-MS 218 8.45 

Glycerolphosphate Standard GC-MS 299 14.50 

Glycerophosphocholine HMDB LC-MS 257.103 3.58 

Glycerylphosphorylethanolamine HMDB LC-MS 215.056 18.35 

Glycine Standard GC-MS 174 8.88 

glycol NIST GC-MS 147 4.32 

Glycolaldehyde HMDB LC-MS 60.0211 3.76 

Glycylprolylhydroxyproline HMDB LC-MS 285.132 22.57 

Glyoxylic acid NIST GC-MS 160 4.33 

Guanidineacetic acid Standard LC-MS  118.073 3.63 

Guanine HMDB LC-MS 151.049 5.00 

Heneicosanoic acid NIST GC-MS 117 20.52 

Hexadecanoic acid Standard GC-MS 117 17.19 

Hexanoylcarnitine HMDB LC-MS 259.178 18.11 

Hexanoylglycine HMDB LC-MS 173.105 18.45 

Homoanserine HMDB LC-MS 254.138 23.27 

Homocysteic acid HMDB LC-MS 183.02 17.74 

Hordenine HMDB LC-MS 165.115 15.36 

Hydroxyacetic acid Standard LC-MS  75.0239 4.27 

Hydroxycarbamic acid NIST GC-MS 221 9.58 

Hypotaurine Standard GC-MS 188 13.01 

Hypoxanthine Standard LC-MS  137.046 5.22 

Indoleacrylic acid HMDB LC-MS 187.063 17.31 

Inositol NIST GC-MS 318 17.38 

Isoleucine Standard GC-MS 158 8.65 

Isopentenyl pyrophosphate HMDB LC-MS 246.006 3.11 

Isovalerylcarnitine HMDB LC-MS 245.163 17.89 

Lactate Standard GC-MS 117 5.36 

L-Homoserine NIST GC-MS 218 13.75 

Linoelaidic acid HMDB LC-MS 280.24 23.59 

Linoleyl carnitine HMDB LC-MS 423.335 21.44 

L-Leucine Standard GC-MS 158 8.39 

L-Lysine Standard GC-MS 156 16.10 

L-methionine Standard GC-MS 176 11.62 

L-Ornithine NIST GC-MS 142 15.04 

L-phenylalanyl-L-proline HMDB LC-MS 262.132 17.74 

L-Threonic acid Standard GC-MS 292 12.22 

L-Tryptophan Standard GC-MS 202 19.39 
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L-Tyrosine Standard GC-MS 218 16.27 

Lysine Standard LC-MS  145.09 3.56 

Malate Standard GC-MS 73 11.26 

Maleimide NIST GC-MS 154 5.77 

Mannitol Standard GC-MS 319 16.36 

Methionine Standard LC-MS  150.058 5.00 

Methylcysteine Standard GC-MS 218 10.40 

Methylguanidine Standard LC-MS  74.0583 3.82 

Myo-Inositol Standard GC-MS 217 18.07 

Myristic acid Standard GC-MS 117 15.19 

Myristoleic acid NIST GC-MS 256 15.07 

N,N-Dimethyl-2-isopropoxyethylamine NIST GC-MS 58 4.31 

N6-Acetyl-L-lysine Standard LC-MS  187.109 4.30 

N-Acetyl glucosamine NIST GC-MS 274 14.32 

N-acetyl-glutamine Standard LC-MS  187.082 5.04 

N-acetyl-glycine Standard GC-MS 144 9.67 

N-Acetylneuraminic acid NIST GC-MS 362 21.73 

N-formyl-glycine Standard GC-MS 160 10.05 

Nicotine NIST GC-MS 163 5.90 

Nicotinic acid NIST GC-MS 180 8.31 

Nicotinuric acid HMDB LC-MS 180.053 5.02 

Nonanoic acid Standard GC-MS 215 9.49 

Norleucine Standard LC-MS  132.102 10.48 

Octadecanoic acid Standard GC-MS 117 19.40 

Octanoic acid NIST GC-MS 201 8.18 

Octanoylcarnitine HMDB LC-MS 287.21 18.75 

oleoylcarnitine HMDB LC-MS 425.35 22.00 

Olic acid Standard GC-MS 339 19.12 

Ornithine Standard GC-MS 204 15.05 

o-Tyrosine HMDB LC-MS 181.074 11.22 

Oxalic acid Standard GC-MS 73 6.52 

Oxaloacetate Standard LC-MS 130.992 3.15 

Oxanilic acid NIST GC-MS 147 13.22 

Palmitoleic acid Standard GC-MS 129 16.99 

Palmitoylcarnitine Standard LC-MS  400.342 21.84 

Parabanic acid NIST GC-MS 243 10.15 

Pentosidine HMDB LC-MS 378.202 17.37 

Phenylalanine Standard GC-MS 218 12.92 

Phenylglyoxylic acid HMDB LC-MS 150.032 3.15 

Phenyllactic acid Standard LC-MS  165.053 18.33 
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Phosphoserine Standard LC-MS  186.019 3.12 

Picolinic acid NIST GC-MS 180 9.03 

Progesterone HMDB LC-MS 314.225 19.14 

Proline Standard GC-MS 142 8.74 

Proline betaine HMDB LC-MS 143.095 4.04 

Propionylcarnitine HMDB LC-MS 217.131 13.17 

Pseudo uridine NIST GC-MS 217 20.79 

Pyrrole-2-carboxylic acid Standard GC-MS 240 9.52 

Pyruvate Standard GC-MS 174 5.18 

Quinic acid HMDB LC-MS 192.063 4.32 

Ribitol Standard GC-MS 217 14.11 

sarcosine NIST GC-MS 116 6.44 

Serine Standard GC-MS 204 9.62 

Sorbose NIST GC-MS 103 14.73 

Sphingosine HMDB LC-MS 299.282 24.41 

Sphingosine 1-phosphate HMDB LC-MS 379.249 22.24 

Stearoylcarnitine HMDB LC-MS 427.366 22.68 

Succinate Standard GC-MS 247 8.91 

Succinyladenosine HMDB LC-MS 383.108 3.61 

Tetracosahexaenoic acid HMDB LC-MS 356.272 23.51 

Tetradecanoylcarnitine HMDB LC-MS 371.304 21.00 

Thiamine HMDB LC-MS 265.112 18.01 

Threitol Standard GC-MS 217 11.58 

Threonine Standard GC-MS 219 9.99 

Tiglylglycine HMDB LC-MS 157.074 15.98 

trans-Hexadec-2-enoyl carnitine HMDB LC-MS 397.319 21.22 

Trimethylamine N-oxide Standard LC-MS  76.065 3.67 

Undecanoic acid HMDB LC-MS 186.162 21.44 

Uracil Standard LC-MS  113.022 5.08 

Urea Standard GC-MS 189 7.97 

Uric acid Standard GC-MS 441 18.10 

Valine Standard LC-MS  118.092 4.33 

Xylitol NIST GC-MS 217 13.98 

α-ketoglutarate  Standard GC-MS 198 12.30 

 

 

 

 



78 
 

APPENDIX B 

LIST OF 83 DIFFERENTIAL METABOLITES BETWEEN BREAST TUMORS  

AND NORMAL CONTROLS 

  Name Library Instrument FC p VIP 

A
m

in
o

 a
ci

d
 m

et
a

b
o

li
sm

 

4-hydroxyphenylacetic acid STD GCMS 0.34 6.2E-09 1.79 

N-formyl-glycine STD GCMS 0.39 1.7E-08 1.71 

pyrrole-2-carboxylic acid STD GCMS 0.35 1.8E-08 1.70 

picolinic acid STD GCMS 0.37 4.8E-08 1.69 

4-hydroxy-proline STD GCMS 3.40 6.1E-08 1.86 

glutamate STD GCMS 2.01 1.1E-06 1.62 

asparagine STD GCMS 2.18 5.9E-06 1.45 

aspartate STD GCMS 1.92 7.4E-06 1.39 

tyrosine STD GCMS 1.69 1.7E-05 1.41 

gamma-aminobutyric acid STD GCMS 4.73 1.8E-05 1.59 

phenylalanine STD GCMS 1.69 2.6E-05 1.37 

methionine STD GCMS 1.73 2.9E-05 1.30 

isoleucine STD GCMS 1.68 3.3E-05 1.37 

5-oxoproline STD GCMS 1.58 3.3E-05 1.44 

tryptophan STD GCMS 1.68 7.0E-05 1.28 

histidine STD GCMS 1.57 1.0E-04 1.20 

proline STD GCMS 1.52 1.2E-04 1.30 

methylcysteine STD GCMS 1.48 1.5E-04 1.17 

aminomalonic acid NIST GCMS 2.42 3.8E-04 1.29 

carnosine STD LCMS 0.42 3.9E-04 1.05 

serine STD GCMS 1.46 4.0E-04 1.10 

threonine STD GCMS 1.45 4.3E-04 1.15 

cysteine STD GCMS 2.02 9.9E-04 1.23 

leucine STD GCMS 1.39 1.0E-03 1.11 

2-aminobutyric acid STD GCMS 1.91 1.4E-03 1.08 

3-methylhistidine HMDB LCMS 0.36 2.0E-03 1.10 

C
a

rb
o

h
y

d
ra

te
 

m
et

a
b

o
li

sm
 

citric acid STD GCMS 0.28 1.6E-05 1.55 

myo-inositol STD GCMS 0.47 4.0E-05 1.55 

xylulose STD GCMS 1.54 4.3E-05 1.24 

sucrose STD GCMS 0.32 7.5E-05 1.32 

xylose STD GCMS 1.96 3.6E-04 1.12 

N-acetyl-D-glucosamine STD GCMS 2.00 4.4E-04 1.29 

rhamnose STD GCMS 1.74 5.1E-03 1.06 
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nonadecanoic acid (C19:0) NIST GCMS 0.35 3.3E-09 1.83 

glycerol STD GCMS 0.40 5.1E-09 1.79 

capric acid (C10:0) STD GCMS 0.45 2.4E-08 1.70 

hexanoic acid (C6:0) STD GCMS 0.45 4.7E-07 1.54 

adrenic acid (22:4(n-6)) NIST GCMS 0.58 4.9E-06 1.57 

nonanoic acid STD GCMS 0.45 7.6E-06 1.46 

phosphoethanolamine STD GCMS 3.21 1.7E-05 1.45 

palmitoleic acid (C16:1) STD GCMS 0.29 1.9E-05 1.54 

myristic acid (C14:0) STD GCMS 0.31 4.6E-05 1.48 

squalene STD GCMS 0.14 5.0E-05 1.44 

lauric acid (C12:0) STD GCMS 0.30 6.7E-05 1.43 

lysoPC(16:0) HMDB LCMS 0.35 1.1E-04 1.01 

cholesterol STD GCMS 0.48 1.2E-04 1.26 

linolic acid (18:2(n-6)) STD GCMS 0.24 1.2E-04 1.34 

hexadecanoic acid (C16:0) STD GCMS 0.41 1.7E-04 1.38 

octanoic acid NIST GCMS 0.60 2.2E-04 1.15 

palmitoylcarnitine STD LCMS 4.21 9.5E-04 1.13 

octadecanoic acid (C18:0) STD GCMS 0.53 9.6E-04 1.16 

glyceraldehyde 3-phosphate STD GCMS 2.50 1.4E-03 1.21 

hexanoylcarnitine STD LCMS 3.85 1.7E-03 1.15 

1-stearoylglycerol STD GCMS 0.65 1.8E-03 1.06 

3-dehydrosphinganine HMDB LCMS 3.72 1.9E-03 1.06 

arachidyl carnitine HMDB LCMS 12.09 3.8E-03 1.04 

palmitin STD GCMS 0.60 3.8E-03 1.03 

N
u

cl
ei
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a
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d

 m
et

a
b

o
li

sm
 

cytosine NIST GCMS 0.45 5.2E-08 1.68 

ribose NIST GCMS 2.54 3.5E-07 1.61 

uracil STD GCMS 2.95 2.9E-06 1.69 

guanosine STD GCMS 3.81 3.3E-05 1.55 

orotidine STD GCMS 4.42 4.8E-05 1.42 

dihydrouracil STD GCMS 3.52 8.4E-05 1.26 

hypoxanthine STD GCMS 1.54 2.5E-04 1.25 

8-hydroxy-deoxyguanosine HMDB LCMS 3.75 4.5E-04 1.20 

ribonic acid NIST GCMS 1.62 9.1E-04 1.13 

uridine STD GCMS 2.10 2.5E-03 1.01 
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3-hydroxypyridine STD GCMS 0.37 7.9E-09 1.80 

2-hydroxypyridine STD GCMS 0.35 1.2E-08 1.80 

phenol STD GCMS 0.28 1.4E-08 1.79 

cyclohexanol NIST GCMS 0.30 1.6E-08 1.78 

3-octenoic acid NIST GCMS 0.34 3.2E-08 1.73 

phosphate NIST GCMS 0.51 2.5E-07 1.70 

benzoic acid STD GCMS 0.37 3.1E-06 1.48 

threonic acid STD GCMS 0.36 3.0E-05 1.60 

diphosphoric acid NIST GCMS 0.36 1.2E-04 1.43 

methylsuccinic acid STD GCMS 0.54 1.3E-04 1.13 

hydroxyacetic acid STD GCMS 0.43 1.3E-04 1.32 

1,4-butanediamine STD GCMS 3.28 4.2E-04 1.29 

alpha-tocopherol (vitamin E) STD GCMS 0.37 1.5E-03 1.12 

pantothenic acid (vitamin B5) STD GCMS 1.84 1.8E-03 1.13 

spermidine STD LCMS 2.65 2.0E-03 1.02 

5-hydroxyindoleacetic acid HMDB LCMS 3.16 2.4E-03 1.03 

 

 


