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The goals of this study were (a) to examine children’s normative sympathetic and 

parasympathetic autonomic nervous system (ANS) responses toward distinct emotional 

and cognitive laboratory challenges from preschool to grade 1 and to compare the 

magnitude of ANS responses across these challenges, (b) to examine the associations 

between sympathetic and parasympathetic ANS responses during laboratory challenges, 

(c) to examine stability (or instability) and continuity (or change) in ANS functioning 

from preschool to grade 1, and (d) to examine profiles of children with distinct patterns of 

sympathetic and parasympathetic functioning in preschool, and to test whether these 

profiles differ with respect to children’s self-regulation outcomes in preschool and one 

year later.   

Two hundred and seventy-eight children and their caregivers (96% mothers) 

participated in laboratory assessments when children were in preschool, kindergarten, and 

first grade, and teachers reported on children’s behavior when children were in 

kindergarten. Children’s sympathetic and parasympathetic ANS responses were 

measured during 2 emotionally demanding and 2 cognitively demanding laboratory 

challenges in preschool, kindergarten, and first grade. Three self-regulation outcomes 

were assessed: (a) executive functioning, (b) emotional reactivity/regulation, and (c) 

behavioral regulation in the classroom. In preschool, executive functioning was measured 

using 3 tasks designed to assess working memory, inhibitory control, and cognitive 



flexibility; emotion regulation was observed during frustrating challenges; and mothers 

reported on children’s emotional reactivity. In kindergarten, teachers reported on 

children’s emotional reactivity and behavioral regulation composed of attention control, 

discipline/persistence, and work habits in the classroom.    

Although children, on average, demonstrated parasympathetic inhibition (RSA 

withdrawal) across all challenges, they showed sympathetic responsivity only during 

certain challenges. In particular, the cognitively demanding problem-solving Tangrams 

task, on average, elicited sympathetic activation (PEP shortening) across all time points, 

whereas the less challenging Go/No-Go task, did not lead to a change in sympathetic 

activity in preschool or kindergarten but led to sympathetic activation in grade 1. Four 

blocked-goal frustration tasks (Locked Box, Impossible to Open Gift, Puzzle Box, & 

Broken Toy) did not lead to a change in sympathetic ANS activity from baseline to task, 

whereas the two interpersonally upsetting tasks (Toy Removal and Not Sharing) led to 

sympathetic inhibition (PEP lengthening). There was a positive association between 

sympathetic and parasympathetic responsivity during only certain challenges (e.g., 

Tangrams & Locked Box in preschool, Not Sharing & Impossible to Open Gift in 

kindergarten), such that greater sympathetic activation was associated with greater 

parasympathetic withdrawal. There was moderate stability in ANS children’s 

responsivity across different tasks within the same assessment. There was modest 

stability in parasympathetic ANS responses but no stability in sympathetic responses 

toward laboratory challenges across time. In regards to developmental continuity/change, 

both baseline sympathetic and parasympathetic ANS activity increased from preschool to 



first grade. However, there was no clear pattern of change in children’s ANS responsivity 

toward the cognitively demanding laboratory challenges over time, suggesting that mean-

level ANS responsivity scores were mostly continuous over time. Finally, the latent 

profile analyses yielded four profiles of ANS functioning: (a) a buffered profile with 

moderate ANS responsivity, (b) a sensitive profile with high ANS responsivity, (c) a 

coinhibition profile, and (d) a vigilant profile. Children in the sensitive profile 

demonstrated better executive functioning than children in the buffered and the vigilant 

groups. The buffered profile showed lower levels of emotional reactivity than the 

sensitive profile, and better behavioral regulation than the sensitive, coinhibition, and 

vigilant groups. Profiles did not differ with respect to mothers’ report of emotional 

reactivity or observed emotion regulation. 
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CHAPTER I 

INTRODUCTION 

The ability to respond effectively to everyday challenges is critical for adaptive 

functioning. On a typical day, children experience a variety of challenges including those 

that are emotionally upsetting or frustrating such as a peer taking away a loved toy or not 

being able to reach a goal, as well as those that are cognitively demanding such as 

solving difficult problems or concentrating during a prolonged and repetitive task. One 

prominent approach adopted by developmental researchers for identifying pathways to 

adaptive and maladaptive functioning has been examining whether ordinary variations in 

children’s responses to distinct types of challenges predict important life outcomes such 

as social-functioning and academic success. Children’s responses to emotional and 

cognitive challenges have been studied largely separately under the rubrics of emotion 

regulation or cognitive control, yet findings from both lines of research have 

demonstrated repeatedly that there are large, early emerging, and relatively enduring 

individual differences in how children respond to challenges, and that such variations are 

meaningful predictors of academic achievement (Graziano, Reavis, Keane, & Calkins, 

2007), social competence (Masten et al., 2012), behavioral adjustment (Kim, Nordling, 

Yoon, Boldt, & Kochanska, 2013), and health, wealth and public safety outcomes 

(Moffitt et al., 2011). 
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Children respond to challenges at integrated, yet distinct levels, particularly at the 

biological, psychological, and behavioral levels (Calkins & Marcovitch, 2010). Much of 

the research on children’s responses to emotional and cognitive challenges focused on 

variations in behaviors such as the extent to which one can attend, persist, engage in a 

task, or display positively or negatively valenced facial expressions. However, a large 

body of theoretical and empirical work in neuroscience as well as in stress physiology 

research underscores the importance of examining children’s neural and/or peripheral 

physiological functioning because these processes can often provide novel information 

regarding the mechanisms and processes that lead to adaptive functioning. For example, 

examining autonomic nervous system responses can shed light on children’s internal 

physiological regulation to cope with challenges, which may not necessarily be reflected 

in children’s facial expressions or coping behaviors. Likewise, this line of work can 

demonstrate processes in which the “outside environment,” such as the type of caregiving 

one receives, can “get under the skin” by affecting individuals’ neural functioning and/or 

stress physiology, which can then mediate pathways to adaptive functioning (Gunnar & 

Quevedo, 2007). Notably, similar to the variations in children’s behavioral responses to 

challenges, there are large individual differences in children’s physiological responses to 

challenges or stressors (Ellis, Jackson, & Boyce, 2006). As such, although some children 

may show very powerful or elevated physiological responses to quite familiar and mildly 

stressful challenges, others may show very mild responses to novel and highly stressful 

challenges. These responses are often referred to as individuals’ “stress responsivity” or 

the characteristic way of responding to challenges physiologically. Understanding the 
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origins of individual differences in children’s stress responsivity, as well as the functions 

of such responses is an important quest for understanding adaptive functioning. 

Physiological responses to challenges are supported by an integrated and complex 

network of systems (i.e., central, autonomic, and endocrine), which together refer to 

stress response systems (Ellis, Jackson, & Boyce, 2006). One of the stress response 

systems that most readily and pervasively responds to external challenges is the 

autonomic nervous system (ANS; Kreibig, 2010). ANS coordinates the rapid 

communication between the central nervous system, most notably the brain, and the 

internal organs and muscle tissues, and plays an important role in preparing and 

energizing the body to deal with external challenges (Berntson, Quigley, & Lozano, 

2007). During external challenges, ANS quickly suppresses internal demands to 

effectively respond to external challenges, whereas during calm states it serves the needs 

of the internal organs (Porges, 2011). The ANS oversees these functions via the 

coordination of its two branches, the sympathetic nervous system and parasympathetic 

nervous system. The sympathetic nervous system mobilizes the body to effectively 

respond to external challenges, whereas the parasympathetic nervous system down-

regulates the body’s energy resources to promote the body’s growth and restoration 

(Porges, 2011). As such, both of these branches play an important role in supporting 

individuals’ ability to respond to stressors.     

There are at least three reasons why studying individual differences in children’s 

ANS functioning is important. The first reason is that particular indices of ANS 

functioning may reflect individuals’ trait-like or characteristic way of anticipating and/or 



 

 
 

4

dealing with stressors or external challenges, which may mediate pathways to adaptive or 

maladaptive outcomes. In particular, a multitude of contemporary theoretical perspectives 

posit that certain physiological states, such as basal levels of ANS functioning when 

individuals are at a resting state (e.g., watching a relaxing video), and/or processes, such 

as changes in ANS functioning as a response to external challenges (e.g., interpersonal 

conflict), may contribute to specific adaptive and maladaptive outcomes. For example, 

both the Polyvagal Theory (Porges, 2011) and the Neurovisceral Integration Model (e.g., 

Thayer, Hansen, Saus-Rose, & Johnsen, 2009) suggest that basal parasympathetic ANS 

functioning may index the integration between the heart and the brain and reflect 

individuals’ capacity for self-regulation. A growing body of work provided empirical 

support for this proposition, showing direct associations between basal parasympathetic 

ANS activity and emotional and cognitive aspects of self-regulation (for a metaanalysis, 

see Holzman & Bridgett, 2017). In light of these two theoretical perspectives, researchers 

have demonstrated empirically that basal levels of sympathetic ANS functioning as well 

as changes in parasympathetic and sympathetic ANS activity during laboratory 

challenges may also reflect a range of adaptive and maladaptive processes (e.g., 

Beauchaine, Gatzke-Kopp, & Mead, 2007; Calkins, Graziano, & Keane, 2007). An 

important implication of this line of work for the development of prevention and 

interventions is that if certain aspects of ANS functioning serve as biomarkers of adaptive 

and maladaptive developmental outcomes, then it may be possible to develop 

biologically-informed strategies for enhancing children’s adaptive functioning; for 
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example, by assessing and improving children’s biological capacity for effective self-

regulation. 

The second reason why studying children’s ANS functioning may be important is 

because a growing body of theoretical and empirical work support the view that 

contextual experiences including the quality of the caregiving experiences contribute to 

the emergence of individual differences in stress responsivity including ANS functioning, 

which in turn may mediate pathways to adaptive or maladaptive outcomes. Examples of 

early work in this area include research that supports: (a) the “stress inoculation” 

hypothesis with evidence showing that early experience of contextual adversity or stress 

serve as a vaccine to prepare individuals to deal with later stress (e.g., Levine, 1962; see 

Russo, Murrough, Han, Charney, & Nestler, 2012) and (b) the view that environmental 

stress alters physiological functioning with evidence showing that exposure to early 

adversity such as neglectful or abusive caregiving is linked with heightened (e.g., 

Cicchetti & Rogosch, 2001) or diminished physiological reactions to stressors (e.g., 

Fernald, Burke, & Gunnar, 2008; for a review see Obradović, 2012). Likewise, 

contemporary perspectives including the Biological Sensitivity to Context theory (Boyce 

& Ellis, 2005) and the Adaptive Calibration Model (Del Giudice, Ellis, & Shirtcliff, 

2011) offer detailed alternative accounts on how specific contextual experiences may 

contribute to the emergence of different patterns of stress responsivity. According to the 

Biological Sensitivity to Context theory, the quality of the environment and children’s 

stress physiology likely has a curvilinear relation, such that both highly nurturing and 

highly threatening environments lead to heightened sensitivity, whereas environments 
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that are neither sensitive nor insensitive lead to low sensitivity (Boyce & Ellis, 2005).  

Extending this theory, the Adaptive Calibration Model describes four specific 

environments differing in stress levels, ranging from low stress to severe/traumatic, that 

lead to four distinct profiles of stress responsivity: sensitive, buffered, vigilant, and 

unemotional (Del Giudice, Ellis, & Shirtcliff, 2011). Notably, there are also alternative 

theoretical propositions that detail the proximal processes through which caregiving may 

influence the development of children’s physiological responses. For example, 

caregivers’ emotional sensitivity and responsiveness to infants’ needs and distress have 

been proposed to contribute to children’s ability to build internal capacities for exercising 

effective physiological regulation (e.g., Perry, Calkins, & Bell, 2016). Overall, these 

advancements in theory allow researchers to test alternative hypotheses regarding how 

quality of context may influence individual differences in children’s autonomic nervous 

system functioning. Examining the relations between specific aspects of the context and 

children’s ANS functioning can ultimately help researchers understand the origins of 

different profiles or patterns of ANS functioning linked with adaptive and maladaptive 

outcomes.  

The third reason why studying children’s ANS functioning is important and may 

help contribute to both basic science and intervention work is because children with 

distinct patterns of ANS functioning may be influenced by the quality of context 

differentially. The notion that children’s ANS functioning would moderate the influence 

of contextual influences in leading to different outcomes have been emphasized across a 

variety of theoretical perspectives. Based on the diathesis-stress model (see Monroe & 
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Simons, 1991), one can argue that certain patterns of ANS functioning may act as a 

“vulnerability” factor and therefore predispose children to be affected more negatively by 

adverse environmental experiences. In contrast, based on the idea that certain aspects of 

ANS functioning reflect effective physiological regulation, one can expect children who 

experience such patterns of ANS functioning to be protected against the negative 

influences of adverse environments because they would physiologically regulate 

themselves effectively in dealing with adverse circumstances (e.g., Perry, Calkins, 

Nelson, Leerkes, & Marcovitch, 2012). Moreover, two evolutionary-based perspectives, 

Differential Susceptibility (Belsky, 2005) and Biological Sensitivity to Context theories 

(Boyce & Ellis, 2005), suggest that a pattern of heightened ANS responses may reflect 

susceptibility or sensitivity to contextual influences, and therefore predispose children to 

be more susceptible than others to the quality of the environmental experiences, such that 

children with this heightened ANS responses would be affected more negatively by 

stressful, adverse experiences but also would benefit more from positive experiences, 

compared to children with dampened physiological responses.  

Despite the richness in testable competing theoretical perspectives and the 

advancements in methodology for assessing ANS functioning, there are still important 

gaps within the current state of the literature. The first important gap is that, although 

both sympathetic and parasympathetic branches of the ANS are implicated in the 

production of a wide spectrum of responses in dealing with external challenges, the vast 

majority of research on children’s ANS functioning examined children’s parasympathetic 

ANS functioning only, without including assessments of children’s sympathetic ANS 
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functioning. Limited work focused on children’s sympathetic ANS functioning, and even 

far less work examined children’s sympathetic and parasympathetic ANS functioning 

simultaneously within the same study. Notably, basic developmental questions that have 

been answered for children’s parasympathetic ANS functioning are yet to be answered 

for children’s sympathetic ANS functioning. For example, less is known about children’s 

normative sympathetic ANS response patterns towards different challenges and whether 

sympathetic ANS responses are stable and/or continuous over time. Moreover, given the 

scarcity of work examining children’s sympathetic and parasympathetic ANS functioning 

together, less is known about the relations between children’s sympathetic and 

parasympathetic ANS functioning during challenges. Based on the idea that an 

association between sympathetic and parasympathetic responsivity to challenge indicates 

the reciprocal functioning of the two branches of the ANS, this study will examine the 

associations between sympathetic and parasympathetic responsivity across different tasks 

to identify contexts that lead to reciprocal functioning of the two branches.  

The second important gap in the literature is that although a multitude of 

prominent theories on ANS functioning, including the Polyvagal Theory (Porges, 2011) 

and the Neurovisceral Integration Model (Smith, Thayer, Khalsa, & Lane, 2017) propose 

that ANS responses are context-dependent, less research has been devoted to 

understanding children’s ANS functioning across different laboratory challenges. 

Examining children’s ANS functioning across different laboratory challenges is 

important for several reasons. First, examining children’s ANS functioning across 

different laboratory challenges would be necessary for understanding whether the 
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associations between children’s ANS functioning and particular outcomes related to 

adaptive functioning depend on the context that ANS functioning has been assessed. For 

example, it is possible that elevated physiological responses, such as greater sympathetic 

activation and greater parasympathetic withdrawal, may be adaptive for dealing with 

certain kinds of challenges that require active mobilization of the body’s resources, but 

may not be adaptive when responding to mildly challenging tasks. Therefore, although 

heightened ANS responses during one type of challenge may predict adaptive outcomes, 

the same kind of ANS response during another challenge may predict maladaptive 

outcomes. The context-dependency of ANS responses may explain the mixed findings 

regarding the links between particular indices of ANS functioning and children’s 

adjustment. For example, previous research has linked greater parasympathetic inhibition 

(vagal withdrawal) with both lower and higher levels of externalizing problems (e.g., 

Calkins & Keane, 2004; Hinnant & El-Sheikh, 2009, respectively). Given that these 

contradictory findings may be a function of the context during which ANS functioning 

has been observed, an initial step towards understanding when ANS responsivity is 

linked with adaptive or maladaptive outcomes would be to investigate systematically the 

normative ANS responses to distinct laboratory challenges.  

Another important reason for examining children’s ANS functioning across 

different laboratory challenges is that children’s characteristic way of responding to 

certain kinds of challenges, but not others, may determine how they are influenced by the 

context in which they live. For example, it has been shown that children’s ANS responses 

to two different types of laboratory challenges, an interpersonal challenge and a cognitive 
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challenge, moderated the influence of marital conflict on children’s adaptive functioning 

in different ways (Obradović et al., 2010). Specifically, although high ANS responsivity 

during the interpersonal task acted as a protective factor against marital conflict, high 

ANS responsivity during the cognitive task acted as biological sensitivity to context 

factor such that it led to better outcomes in low conflict and worse outcomes in high 

conflict. One explanation provided for these findings was that greater ANS responsivity 

to laboratory challenges that are more similar to the real-life adversities that children 

encounter may serve as a buffer against the negative influences of such adversities; 

whereas greater ANS responsivity to non-interpersonal, cognitive challenges may reflect 

overall biological openness or proneness to contextual influences. Given the importance 

of this line of work, advancing our understanding of whether children’s ANS responses to 

different challenges moderate certain contextual influences requires a better 

understanding on how distinct challenges influence children’s ANS functioning.   

Given that understanding children’s sympathetic and parasympathetic ANS 

responses to different types of everyday challenges would be important for identifying 

the pathways towards adaptive functioning, the overarching goal of this dissertation is to 

systematically investigate children’s sympathetic and parasympathetic ANS responses to 

laboratory challenges from 4 to 6 years of age, corresponding to the window of time 

between preschool and first grade. Towards this goal, the first aim of this study is to 

examine children’s ANS responses to two distinct categories of laboratory challenges, 

emotion regulation and cognitive control tasks, across the early childhood period. Within 

each of these categories of challenges, children’s responses will further be examined 
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across 2 distinct types of tasks. The two types of emotion regulation tasks will include: 

frustrating obstacles that are either too difficult or impossible to resolve, and 

interpersonally upsetting tasks. The two types of cognitive tasks will include: a spatial 

problem-solving tangrams task, and an inhibitory control Go/No-Go task. This study 

design, particularly the inclusion of two distinct types of emotion regulation and 

cognitive control challenges, will be advantageous for understanding children’s 

sympathetic and parasympathetic ANS responses toward different types of emotional and 

cognitive challenges. Obrist’s (1981) active and passive coping approach and the 

Motivational Intensity Theory (see Wright & Kirby, 2001) are used to guide predictions 

regarding children’s sympathetic responses to laboratory challenges, whereas the 

Polyvagal Theory (Porges, 2011) and the Neurovisceral Integration Model (Thayer et al., 

2009) guide the hypotheses on children’s parasympathetic responses to challenges.  

Overall, this line of investigation has potential for advancing our understanding regarding 

(a) which challenges lead to the activation or inhibition of the sympathetic and 

parasympathetic systems, and (b) whether laboratory challenges differ with respect to the 

magnitude of physiological responses they elicit. 

The second goal of this study is to examine the associations between children’s 

sympathetic and parasympathetic ANS responses across different laboratory challenges.  

An early assumption on ANS was that its two branches are regulated reciprocally by the 

central nervous system, such that increases in the activation of one branch would 

correspond to increases in the inhibition of the other branch (Fulton, 1949). This view 

likely gained popularity because the influence of the two branches of the ANS on internal 
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organs and muscles, especially those controlled by lower-level reflex systems, are often 

antagonistic (Porges, 2011). For example, the sympathetic branch accelerates the heart, 

whereas the parasympathetic nervous system slows it.  However, there is ample evidence 

suggesting that higher level neural systems control these two branches in a rather flexible 

way leading to reciprocal, coactivational, coinhibitional, or independent patterns of 

activities (Berntson, Quigley & Lozano, 2007). Although the functioning of the two 

branches are orthogonal, during certain types of challenges that may require active 

engagement or mobilization, these two branches may function reciprocally with one 

another with increases in sympathetic activation paralleling parasympathetic inhibition. 

In order to gain a greater understanding on when these two systems work reciprocally, 

the associations between children’s sympathetic and parasympathetic responses will be 

examined across distinct tasks.     

The third goal of this study is to examine the stability (instability) and continuity 

(or change) in children’s sympathetic and parasympathetic responses to different 

laboratory challenges from 4 to 6 years of age. Examining the stability in children’s ANS 

responses to different types of challenges is important for two reasons. First, examining 

stability is critical for understanding the reliability of different laboratory measures. 

Evidence of longitudinal stability in individuals’ responses to laboratory tasks may 

suggest that the measures show some degree of reliability. As such, this line of 

investigation can help identify laboratory tasks that allow for measuring ANS 

responsivity more consistently across time. Second, examining stability is also important 

for understanding development. For example, individual differences to certain laboratory 
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tasks may be stable early in development (from age 4 to age 5), whereas for others, they 

may become stable only later in early childhood (from age 5 to age 6). Thus, examining 

when individual differences become more stable across time can advance our 

understanding on when during development children start to show more trait-like, 

characteristic way of dealing with certain types of challenges.         

In regards to the continuity and discontinuity in children’s ANS functioning, more 

work has examined change in baseline sympathetic and parasympathetic functioning 

(e.g., Esposito, Koss, Donzella, & Gunnar, 2016), but few studies examined the 

development of children’s ANS responses across different tasks. One of the advantages 

of the design of this study is that two of the laboratory challenges (i.e., Tangrams and 

Go/No-Go) have been used across the 3 assessments, and therefore results showing 

continuity or change in ANS responses during these challenges would likely be 

attributable to the actual developmental changes children’s physiological responses rather 

than to the differences in the nature of the tasks. Previous research conducted to answer 

this question frequently assessed ANS responses across different tasks over time (e.g., 

Perry et al., 2013) or created composite scores derived from children’s ANS responses to 

a range of laboratory tasks (e.g., Alkon et al., 2003; Boyce et al., 2001). Based on the 

assumption that ANS responses may be context specific, examining children’s ANS 

responses during the same task across time can inform us about the development of ANS 

responsivity over time.        
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The fourth goal of this study is to examine whether there are profiles of children 

with qualitatively distinct sympathetic and parasympathetic functioning at 4 years of age 

corresponding to the preschool year, and if so, whether these profiles differ with respect 

to children’s self-regulation outcomes in preschool and one year later. Adopting a person-

centered methodological approach for investigating children’s ANS functioning has 

several unique advantages over using a variable-based approach. First, this line of 

investigation can help examine patterns of within-person functioning of the sympathetic 

and parasympathetic systems. Although some children may typically experience 

reciprocal sympathetic activation and parasympathetic inhibition, others may typically 

experience parasympathetic inhibition but no change in the sympathetic branch. Second, 

based on the idea that sympathetic and parasympathetic activity during calming states and 

during challenges provide unique information about children’s ANS functioning, several 

scholars have advocated for examining these two aspects of ANS activity together (e.g., 

(Del Giudice et al., 2011; Hinnant & El-Sheikh, 2009; Quas et al., 2014). Adopting a 

person-centered approach would also allow for examining physiological activity during 

baseline and challenge together. Third, adopting a person-centered approach would allow 

for testing models, such as the Adaptive Calibration Model (Del Giudice, Ellis, & 

Shirtcliff, 2011), that propose non-linear relations between context, ANS functioning, and 

adaptive functioning. If there are profiles of distinct patterns of ANS functioning, then 

groups will be compared with respect to self-regulation outcomes. 
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CHAPTER II 

THEORETICAL FRAMEWORK 

The ability to cope with challenges effectively is key for leading a healthy and 

successful life. Early childhood is a period during which children become increasingly 

more adept at responding effectively to distinct forms of challenges. For example, during 

emotionally challenging experiences, rather than bursting into tears, most young children 

regulate their arousal and negative affect successfully and solve problems in a proactive 

manner. Likewise, during cognitive challenges, young children become increasingly 

more competent at sustaining their attention and using higher-order cognitive skills that 

fall under the rubric of executive functions. For example, children become better at 

holding rules and goals in their memory (i.e., working memory), inhibiting prepotent 

responses in favor of alternative responses (i.e., inhibitory control), or switching across 

rules, tasks, or strategies flexibly (i.e., cognitive flexibility; Carlson, Zelazo, & Faja, 

2013). Finally, in classroom contexts that present a variety of emotional and cognitive 

challenges, young children show increasing competence at regulating their behaviors, 

particularly when they need to concentrate on instructions or tasks, work independently, 

or transition across different tasks (Morrison, Ponitz, & McClelland, 2010). The 

improvements in children’s ability regulate their emotions, thoughts, and behaviors to 

cope with external challenges have been proposed to contribute to a range of 

psychological adjustment outcomes including greater ability to engage in prosocial 
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behaviors and decreases in externalizing behaviors such as hitting or hurting others that 

are normative during toddlerhood years. As such, given the improvements in children’s 

ability to cope effectively with challenges, it is important to understand the processes that 

support or mediate effective coping responses during this period. 

One key biological system that supports individuals’ ability to coordinate their 

moment-to-moment responses to various types of external challenges is the autonomic 

nervous system (ANS; Janig, 2008). Several theoretical perspectives support the view 

that, as one of the fastest responding biological systems, the ANS mediates pathways to 

adaptive functioning by supporting individuals’ emotional, cognitive, and behavioral 

responses to cope with everyday challenges (Porges, 2011; Thayer et al., 2009). Given 

that variations in the functioning of the ANS may be linked with distinct pathways to 

adaptive and maladaptive outcomes, understanding the development and functioning of 

this system during early childhood may be important for identifying ways to promote 

children’s adaptive functioning. Towards this end, the overarching goal of this study is to 

examine the functioning of the two branches of the ANS – the sympathetic and 

parasympathetic systems – across ordinary emotional and cognitive challenges during 

early childhood to address four main goals: (1) to understand normative ANS responses 

to emotional and cognitive challenges, (2) to identify challenges that demand the two 

branches of ANS to work reciprocally, (3) to understand the stability and continuity in 

indices of ANS functioning over time, and (4) to examine whether there are distinct 

profiles of ANS functioning, and whether these profiles differ with respect to child self-

regulation outcomes. To review the major theoretical perspectives relevant for these 
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goals, I will (a) provide an overview of the functioning of the ANS and introduce the 

measures of cardiac ANS functioning, (b) describe theories that explain how the two 

branches of the ANS may respond to distinct challenges, (c) review theoretical work on 

the role of the ANS for adaptive functioning, (d) discuss the relations between the ANS 

and specific self-regulation outcomes. 

The Functioning of the Autonomic Nervous System 

In order to understand how the ANS responds to everyday challenges and may 

contribute to adaptive outcomes, a basic understanding of this system’s functions as well 

as functioning is necessary. Although the ANS has traditionally been viewed as a 

vegetative peripheral system that awaits passively to respond to external challenges, 

contemporary theories describe it as a complex system that works in conjunction with 

other neurophysiological and neuroanatomical systems to actively regulate behavioral 

responses (Janig, 2008; Porges, 2011; Smith et al., 2017). The ANS coordinates the rapid 

communication between the central nervous system, and the internal organs and muscle 

tissues via the afferent pathways that relay external stimuli from sensory organs to the 

brain and the efferent pathways that control effector organs such as the muscles to 

generate bodily responses (Kandel, Schwartz, & Jessell, 2013). These pathways allow the 

central nervous system, particularly the brain, to modulate both the autonomic nervous 

system and the neuroendocrine stress systems (Porges, 2011; Ulrich-Lai & Herman, 

2009). By using the information distributed by the central system, the ANS plays a 

central role in coordinating individuals’ responses to various types of challenges. 
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One main reason why the ANS plays such a central role in supporting individuals’ 

responses to challenges is because of its core function of regulating the homeostatic 

function of the body. Homeostasis, which refers to the organisms’ tendency to maintain a 

stable internal environment, is not only a key concept in most contemporary theories on 

autonomic nervous system functioning, but also “a dominant explanatory framework” for 

understanding autonomic physiological regulation (Cannon, 1929, 1939; Ramsay & 

Woods, 2014). Homeostasis, described as the wisdom of the body (Cannon, 1932), 

encompasses the self-regulatory processes of maintaining physiological parameters such 

as blood glucose or body pressure in a tenable range that allows for the capacity to shift 

the internal state of the organism from being upset to a normal state (see Janig 2008; 

Ramsay & Woods, 2014). Although the idea of homeostasis is at the core of many 

contemporary theories on ANS, the term, allostasis, which refers to achieving stability 

through change (Sterling & Eyer, 1988), has been developed to with an attempt to 

emphasize that the goal of physiological regulation is not to preserve the internal state at 

a particular “set-point” but to promote fitness through adjusting internal parameters to 

adapt to changing circumstances (Sterling 2004, 2011). The notion of allostasis has 

gained much popularity; though notably, many proponents of allostasis did not abandon 

the homeostasis framework but use the term allostasis to describe the regulatory 

processes through which homeostasis is maintained (e.g., McEwen, 2010; Schulkin, 

2004; also see Sterling, 2004). Thus, one shared notion across both approaches is that, the 

regulation of the internal state of the organism is critical for the body’s ability to produce 

behavioral responses.     
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The ANS regulates homeostatic functions and responds to external challenges via 

the orthogonal and synergistic coordination of its two anatomically distinct branches, the 

sympathetic and parasympathetic systems. The sympathetic nervous system promotes 

increased metabolic output to effectively mobilize the individual to produce defense 

responses (i.e., fight, flight), whereas the parasympathetic nervous system down-regulates 

the body’s energy resources to promote the body’s growth and restoration. The influence 

of these two branches on internal organs and muscles are often antagonistic. For example, 

the sympathetic nervous system accelerates the heart, dilates the pupil, and inhibits 

intestinal movements, whereas the parasympathetic nervous system slows the heart, 

constrict the pupil and relaxes internal movements. The two systems influence the heart 

differentially; the sympathetic system has a larger influence on cardiac contractility, 

whereas the parasympathetic system has a greater influence over heart rate. These 

opposing effects on the heart are mediated by distinct cardiac neurons: the beta-

adrenergic neurons of the sympathetic system and cholinergic neurons of the vagal 

system (Smith et al., 2017). 

In order to understand the unique responses of the two branches of ANS to 

distinct types of external challenges, it is important to consider the differences in their 

response timescales. Compared to the parasympathetic system, the sympathetic system 

has a slower timescale; a shorter latency of action, a slower rise time, and a lower 

frequency capacity (Berntson, Cacioppo, & Quigley, 1991). Specifically, the sympathetic 

nerves exert their influence within few seconds, whereas the parasympathetic nerves lead 

to changes within milliseconds (Nunan, Sandercock, & Brodie, 2010). Given that the 
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sympathetic system has a slower response to challenges, it has been proposed that the 

moment-to-moment changes in autonomic responses that support flexible behavioral 

responses are largely supported by the parasympathetic system (Saul, 1990; Smith et al., 

2017). Overall, the two branches of the ANS are supported largely by distinct neural 

processes and anatomical structures, exert orthogonal influences on the body organs, and 

serve different roles in supporting the organism’s functioning via distinct response 

timelines.     

Sympathetic and parasympathetic responses can be measured via a multitude of 

measurement strategies. Although sympathetic nervous system functioning can be 

indexed by measures such as salivary alpha-amylase or skin conductance (Nater & 

Rohleder, 2009), an alternative index that offers a more fine-tuned time resolution is a 

cardiac indicator: pre-ejection period (PEP). PEP refers to the time interval in 

milliseconds between the onset of ventricular depolarization (Q wave of the ECG) and 

onset of left ventricular ejection. This measure is thought to reflect the force of 

myocardial contraction via beta-adrenergic influences and index the overall sympathetic 

influence on the heart. PEP shortening (i.e., decreases in PEP from baseline to task) 

reflects sympathetic activation, whereas PEP lengthening (i.e., increases in PEP from 

baseline to task) reflects sympathetic inhibition. Similarly, although there are alternative 

ways of measuring parasympathetic activity, Porges (1985) developed a method that 

quantifies the amplitude of respiratory sinus arrhythmia (RSA), a special heart rate 

pattern that emerges as a function of the influences of the smart vagus on the heart. In 

particular, RSA is the rhythmic oscillations in heart rate observed at the frequency of 
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spontaneous breathing (Porges, 2003). RSA withdrawal (i.e., decreases in RSA from 

baseline to task) reflects parasympathetic inhibition, whereas RSA augmentation (i.e., 

increases in RSA from baseline to task) reflects parasympathetic augmentation. 

Sympathetic and Parasympathetic ANS Responses to Distinct Challenges 

Given the distinct functions of the sympathetic and parasympathetic ANS, an 

important question is how these two branches of the ANS respond to different contexts or 

types of challenges. Answering this question has several important implications. First, 

understanding which laboratory challenges lead to changes in the activity of the branches 

of the ANS may help identify the type of challenges that are more appropriate for 

studying the responsivity patterns of a specific branch or both branches. Second, this line 

of work can help identify the type of challenges are more challenging or lead to more 

intense coping responses. Third, this work can help understand whether ANS response 

patterns to challenges differ based on the domain (i.e., emotional vs. cognitive) or type of 

challenge within the same domain (i.e., frustrating tasks vs. interpersonally upsetting 

emotional tasks).  

One theory that explains how the sympathetic and parasympathetic branches of 

ANS may respond to external challenges is the Polyvagal Theory (Porges, 1995, 2001, 

2011). According to the Polyvagal Theory, individuals respond to external challenges via 

the support of three hierarchically organized circuits or systems, which have evolved 

across three phylogenetic stages. These systems are: (a) the unmyelinated vegetative 

vagal system of the parasympathetic branch, shared with most vertebrates, that support 

behaviors related to immobilization such as freezing, behavioral shutdown, or feigning 
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death, (b) the sympathetic nervous system responsible for mobilizing the organism and 

engaging in defense behaviors, and (c) the uniquely mammalian myelinated vagal system 

of the parasympathetic branch responsible for promoting social communication and 

engagement with the environment. The Polyvagal Theory proposes that, when confronted 

with a challenge, the phylogenetically newer circuits are recruited first, but if they are 

rendered functionless, the phylogenetically older circuits are recruited. Based on the 

hierarchical functioning of these systems, the phylogenetically newer circuits, such as the 

myelinated vagal system, inhibit or disinhibit the activity of the phylogenetically older 

circuits, such as the sympathetic system, to promote effective responding to external 

challenges. Based on this theory, the recruitment these systems do not occur in an all-or-

none fashion, but that there are transitional blends in their functioning, such that more 

than one system may be recruited depending on the demands posed by the challenge. 

Thus, based on the Polyvagal Theory, individuals first respond to a challenge via 

the myelinated vagal system. Specifically, the special efferent pathways of the 

myelinated vagus nerve (“smart vagus”), originating from the brainstem nucleus 

ambiguous, send input to heart to produce changes in cardiac activity that allow the 

organism to switch between servicing metabolic demands and responding to external 

challenges. During a challenge, the smart vagus increases the heart rate by disinhibiting 

vagal influence on the heart – a phenomenon referred to as vagal withdrawal or 

parasympathetic inhibition – to promote active coping, whereas during calm states, it 

slows the heart rate by increasing vagal influence on the heart – a process referred to as 

vagal augmentation or parasympathetic activation – to calm the organism. On the other 
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hand, during more chronic challenges that pose threat to one’s safety, the vagal system 

withdraws its inhibitory influence on the sympathetic system to facilitate active 

mobilization or defense responses. Notably, this perspective suggests that the state of the 

myelinated vagal system is the defining characteristic of stress given that this system 

responds to external challenges more frequently and ubiquitously, mostly in the absence 

of major shifts in the sympathetic ANS (Porges, 2011). Based on this approach, greater 

vagal withdrawal indicates greater engagement in coping responses, and thus, it is 

reasonable to assume that laboratory challenges that require greater active coping would 

lead to greater vagal withdrawal.  

Another theoretical perspective useful for understanding how ANS may respond 

to distinct types of challenges is Obrist’s (1981) active and passive coping approach. 

Obrist posited that, depending on the demands posed by the challenge, individuals may 

engage in either active or passive coping. Accordingly, individuals tend to engage in 

active coping, which involves exertion of cognitive effort, when they anticipate that their 

overt or covert responses would be effective to either resolve or escape out of the 

situation. On the other hand, individuals engage in passive coping when they anticipate 

no means of avoiding the situation or its consequences. Active coping tends to evoke 

sympathetic activation, whereas passive coping tends to evoke sympathetic inhibition.  

Based on this rationale, Obrist suggested that challenges may be classified as active and 

passive challenges, such that active challenges may lead to sympathetic activation, 

whereas passive challenges may lead to sympathetic inhibition.  
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Obrist’s (1981) active coping approach has been integrated with the Motivational 

Intensity Theory (Brehm & Self, 1989) to make specific predictions about the amplitude 

of the sympathetic activation during active coping (Wright & Kirby, 2001). Drawing on 

Obrist’s ideas, this integrative perspective suggests that the effort or the extent to which 

one mobilizes energy during active coping is supported by sympathetic influences on the 

heart, and that the magnitude this sympathetic response is proportional to effort, such that 

greater effort spent would correspond to greater sympathetic activation (Obrist 1976, 

1981). Thus, based on the idea that greater sympathetic response would reflect greater 

effort expenditure, an important question is what factors determine the amount of effort 

individuals spend on challenges. The Motivational Intensity Theory suggests that two 

factors determine the extent to which individuals spend effort on a task: (a) the 

experienced difficulty of the instrumental behavior, and (b) whether or not the goal is 

attainable (Brehm & Self, 1989). Based on this theory, the amount of effort that is 

mobilized on a behavior should parallel the perceived difficulty of the task: greater effort 

should be spent on tasks that are perceived to be more difficult. However, if success on 

the task is perceived as too difficult, either beyond the ability of the individual or that the 

task itself is impossible to resolve, then individuals should spend less effort because 

investing effort would not help attain the goal. Thus, individuals would mobilize effort as 

long as succeeding in the task is perceived to be possible. Based on Wright’s integration 

of Obrist’s views with the Motivational Intensity theory, one would expect greater 

sympathetic activation on challenges perceived as more difficult, as long as success on 

the task is possible. However, if success on the task would be perceived as unattainable, 
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then individuals would experience no change in sympathetic activity given that they 

would not mobilize energy to promote active coping. 

ANS Functioning and Adaptive Outcomes 

Although understanding the normative ANS responses to distinct challenges is 

important, children’s normative or group-level responses to challenges cannot elucidate 

on which patterns of autonomic functioning may support adaptive functioning.  

Therefore, in order to identify the specific patterns of ANS functioning that may 

contribute to adaptive outcomes, it is important to understand how ordinary variations or 

individual differences in ANS functioning may relate to adjustment outcomes.  

Moreover, given that the sympathetic and parasympathetic branches of the ANS work in 

an orthogonal but synergistic fashion in preparing and mobilizing individuals to respond 

effectively to challenges (Berntson, Cacioppo, & Quigley, 1991), it is critical to 

understand how these two systems function concurrently within the person to promote or 

hinder positive behavioral outcomes. Although there is greater consensus that both 

branches of the ANS play critical roles for individuals’ behaviors, most available theories 

focus on the role of a single branch rather than considering the roles of both branches for 

behavioral outcomes. However, a pursuit towards understanding whether and how 

distinct profiles of ANS functioning may relate to children’s behaviors and psychological 

adjustment requires an integrative review of the shared and distinct propositions of 

available theories.  

The Polyvagal Theory (Porges, 2011) offers important propositions regarding the 

relations between ANS functioning and behavioral outcomes, particularly with respect to 
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what different vagal cardiac indices may reflect and how the sympathetic system may 

play a role in adaptive functioning. Based on this theory, the sympathetic ANS is 

specialized to respond to external challenges, whereas the parasympathetic ANS 

maintains homeostasis by fostering the metabolic demands. Given that both fostering 

homeostatic functions and responding to external challenges are important for adaptive 

functioning, the ability to switch efficiently and timely between the states of homeostasis 

and stress has been theorized to be a critical mechanism for adaptive functioning. This 

has been proposed to be achieved largely by the vagus nerve that serves as a brake that 

can inhibit or disinhibit influence on the sympathetic system and the heart. Based on this 

theory, baseline vagal tone or RSA reflects the state of homeostasis and indexes the 

capacity to respond to challenges, such that higher baseline RSA would reflect greater 

capacity to respond. Based on this rationale, baseline RSA has been proposed to play a 

key role in attentional, emotional, and cognitive control. Moreover, this theory posits that 

vagal withdrawal in response to challenge reflects mobilization of metabolic resources to 

promote active coping responses (Porges, 2007). As such, based on this theory, the 

direction and amplitude of RSA change would reflect individuals’ stress response to the 

challenge.   

The Polyvagal Theory does not offer definite predictions regarding what amount 

of RSA withdrawal is conducive to positive outcomes. Instead, it suggests that 

physiological responses should match the demands of the situation. Based on this 

perspective, the disruption of homeostasis and activation of sympathetic responses may 

be adaptive in the short term but may be metabolically costly in the long term. As such, 
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the duration and amplitude of the physiological response has been proposed to be an 

important determinant of adaptive functioning; such that longer and more intense 

physiological responses would be costly and relate to maladaptive outcomes. Overall, in 

addition to providing a rationale regarding the associations between the indices of the 

vagal system and behavioral outcomes, this theory offers an important perspective for 

understanding how the activation of the sympathetic system may be costly for the 

individual. 

Another theoretical perspective that offers specific predictions regarding the 

relations between ANS functioning and adaptive outcomes is the Neurovisceral 

Integration Model (Smith et al., 2017; Thayer & Lane, 2000; Thayer et al., 2009). This 

model outlines how different neural structures and neurophysiological processes exert 

direct and indirect influences on the heart in the production of self-regulatory behaviors 

critical for adaptive functioning (Smith et al., 2017; Thayer et al., 2009). Specifically, the 

central autonomic network (CAN) –  an integrated neural circuit including the anterior 

cingulate, frontoparietal regions, amygdala, medulla, and the nucleus ambiguous (NA) – 

supports self-regulatory processes by impacting the sympathetic (i.e., adrenergic) and 

parasympathetic (i.e., cholinergic) neurons’ influence on the heart (Smith et al., 2017; 

Thayer et al., 2009). Given the integration between these neural regions and the heart, 

this model suggests that heart rate variability indexes the level of integration between the 

autonomic and the central nervous systems and is associated with self-regulatory 

behaviors supported by the central autonomic network (Smith et al., 2017).  
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Put simply, this model posits that the central autonomic network is constantly 

engaged in an iterative process of determining which hierarchically organized neural 

structures will have a stronger influence on heart via the vagus nerve (Smith et al., 2017).  

Based on this model, in safe contexts, the prefrontal cortex would be recruited to support 

deliberate, goal-directed behaviors, whereas in contexts appraised as threatening, the 

subcortical brain regions may be recruited to allow for the facilitation of more automatic 

and non-volitional emotional reactions necessary for survival (Smith et al., 2017; Thayer 

et al., 2009). Moreover, according to this model, compared to the subcortical regions, the 

prefrontal cortex facilitates responses that are more sensitive to larger contextual 

information necessary for successful self-regulation. Based on the idea that heart rate 

variability reflects the communication between higher-order structures such as the 

prefrontal cortex and the heart, this model supports the view that higher RSA both during 

baseline and during challenges reflects greater precision to prefrontally mediated control 

sensitive to the individual’s goals and the contextual cues (Smith et al., 2017). Thus, 

based on this perspective, greater baseline RSA and lower RSA withdrawal during 

challenges would be associated with better self-regulation and adjustment outcomes 

because they would reflect greater engagement of the higher-level brain regions such as 

the prefrontal cortex. 

Although both the Neurovisceral Integration Model (Thayer et al., 2009) and the 

Polyvagal Theory (Porges, 2011) suggest that greater baseline RSA reflects greater 

capacity for adaptive self-regulatory responses to challenges, some researchers have 

suggested that moderate levels of baseline RSA may be more optimal for certain 
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outcomes (e.g., Kogan, Gruber, Shallcross, Ford, & Mauss, 2013). For example, it has 

been proposed that individuals with higher baseline RSA may tend to show lower 

prosociality because they may evaluate the environment as safe and have higher threshold 

for responding to the environment, which may prevent them to notice and respond to 

others’ needs (Hastings, Zahn-Waxler, & McShane, 2006; Miller, Kahle, & Hastings, 

2017). On the other hand, moderate baseline RSA has been proposed to be an optimal 

physiological state that allows individuals to notice others’ emotional cues and respond to 

them (Hastings, Zahn-Waxler, & McShane, 2006; Miller, Kahle, & Hastings, 2017). 

Based on the idea that high levels of baseline RSA may interfere with the ability to notice 

and respond to environmental cues, one may expect high baseline RSA to associate 

negatively with other behaviors that require responding based on environmental cues. As 

such, more theoretical (as well as empirical) work is needed to understand what levels of 

baseline RSA is conducive to distinct self-regulation and adjustment outcomes.  

Similar to the debates on what levels of baseline vagal tone support positive 

outcomes, there is also theoretical discussion on whether low, moderate, or high vagal 

withdrawal is more optimal for certain behavioral and psychological outcomes. For 

example, Marcovitch et al. (2010) suggested that moderate vagal withdrawal may 

facilitate the use of cognitive skills such as executive functions during laboratory 

challenges because this pattern of vagal withdrawal would increase heart rate modestly 

and allow individuals to attend and process environmental stimuli in a flexible manner.  

On the other hand, based on the idea that high vagal withdrawal would lead to increased 

heart rate and mobilization responses, these authors suggested that such excessive 
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physiological response may interfere with the ability to attend or respond to 

environmental stimuli in a flexible manner (also see Beauchaine, 2001). Moreover, 

consistent with the Polyvagal Theory’s proposition that excessive vagal withdrawal may 

activate sympathetic system’s defense responses, it has been suggested that this form of 

physiological regulation may index emotional lability and proclivity towards engaging in 

fight/flight responses (Beauchaine, 2001). It is important to note that theoretical 

conceptualizations regarding what level of vagal withdrawal is more optimal for child 

outcomes are at least partially guided on assumptions regarding how the sympathetic 

ANS may be reacting to challenges. However, given that the sympathetic and 

parasympathetic systems may function in an orthogonal fashion (Berntson, Cacioppo, & 

Quigley, 1991), assumptions regarding sympathetic responses based solely on 

information on parasympathetic activity may be misleading. As such, in order to 

understand the optimal patterns of ANS functioning conducive to adaptive outcomes, it is 

important to consider the functioning of the two branches of the ANS together.   

Consistent with this view, scholars have called attention to the need to understand 

how the concurrent functioning of the two branches of the ANS may promote or hinder 

adaptive functioning (e.g., Alkon et al., 2003; Boyce et al., 2001; El-Sheikh & Erath, 

2011). This line of work is influenced largely by the Autonomic Space Model (Berntson 

et al., 1991; Berntson & Cacioppo, 2004), which suggests that the orthogonal functioning 

of the sympathetic and parasympathetic systems can support 9 distinct modes of 

autonomic control. Based on this model, one common mode of autonomic control is 

reciprocal sympathetic activation, which is characterized by sympathetic activation and 
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parasympathetic inhibition. This mode has been proposed to reflect active coping 

responses to external challenges, given that it would lead to increases in heart rate and 

mobilization responses (Berntson et al., 1991; El-Sheikh et al., 2011). Other autonomic 

modes include coactivation and coinhibition of both systems; as well as patterns 

involving change in one system but no change in the other. Although there is limited 

theoretical work describing how these distinct modes may support adaptive function, El-

Sheikh et al. (2011) proposed that coactivation may reflect an insufficient coping 

response given that the absence of vagal withdrawal may hinder effective coping, 

whereas the coinhibition pattern reflects an ambivalent coping response given that the 

sympathetic withdrawal may reflect failure to mobilize sufficient energy to deal with 

challenges. Moreover, given that mild challenges may require parasympathetic inhibition 

without the activation of the sympathetic system, it is possible that moderate levels of 

parasympathetic inhibition without a change in the sympathetic activity may also reflect 

an adaptive physiological response because this autonomic mode may not be 

metabolically costly. Although these perspectives provide a starting point for 

understanding what modes of autonomic control may be adaptive, there is a need for 

more theoretical work that draw specific links between distinct patterns of ANS 

functioning and adaptive outcomes. 

Importantly, a recent evolutionary-developmental theory, The Adaptive 

Calibration Model (Del Giudice, Ellis, & Shirtcliff, 2011), may provide useful 

propositions regarding how distinct patterns of ANS functioning may be linked with 

adaptive outcomes. This model extends the Biological Sensitivity to Context theory to 
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explain the sources of individual differences stress response patterns (i.e., ANS & the 

hypothalamic-pituitary-adrenal axis) and their functions in supporting behavioral 

responses to promote fitness. Based on this model, the large variations in the functioning 

of the stress response system emerge largely as a result of evolutionary adaptations that 

allow organisms to match their observable traits or behaviors to the demands of the 

environmental conditions in which they live in, a phenomenon referred to as conditional 

adaptation. Given that the variations in environmental conditions range from high levels 

of stress (e.g., low availability of food, safety and care) to low levels of stress (e.g., high 

availability of food, resources, and care), this model proposes that there is not one “best” 

stress response pattern that would promote survival in all environmental conditions, but 

rather distinct configurations of stress responses may better equip the organisms to deal 

effectively with certain types of environmental conditions. This model proposes four 

prototypical patterns of stress responsivity (i.e., sensitive, buffered, vigilant, and 

unemotional), each of which involve distinct profiles of physiological functioning.  The 

stress responsivity patterns emerge as a function of exposure to different types and levels 

of stress in the environment and promote certain traits and behavioral responses that 

serve the organisms’ life history strategies (Del Giudice, Ellis, & Shirtcliff, 2011).    

A sensitive pattern is characterized by high levels of responsivity to the 

environment. The physiological profile is theorized to be marked by (a) high baseline 

parasympathetic activity and parasympathetic responsivity, and (b) moderate baseline 

sympathetic activity and sympathetic responsivity. Consistent with the Polyvagal Theory, 

greater baseline parasympathetic activity and parasympathetic withdrawal are theorized 
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to support both cognitive and social-emotional competencies. In terms of cognitive 

competencies, this pattern of responsivity would support greater attentional flexibility, 

executive functions, and inhibition of responses (e.g., delay of gratification), and in terms 

of social-emotional competencies, it would support emotional stability, prosocial 

behaviors, and social collaboration.  

A buffered pattern is characterized by a “low-to-moderate” range of stress 

responsivity that develops as a result of exposure to moderate levels of environmental 

stress. Given that high-levels of responsivity may be costly in the face of environmental 

stress, this moderate pattern of responsivity may constitute a more optimal response 

pattern that buffers individuals from risks associated with an environment that is not 

consistently nurturing and safe. Specifically, individuals in this profile are theorized to 

have (a) moderate baseline parasympathetic activity and parasympathetic responsivity, 

and (b) low to moderate baseline sympathetic activity and sympathetic responsivity.  

Compared to the unemotional and vigilant patterns of responsivity, buffered individuals 

are theorized to be less prone to aggression, anxiety, and risk-taking behaviors. Notably, 

this responsivity pattern is consistent with the “stress-inoculation” proposition suggesting 

that early exposure to stressful experience may act as a vaccine to prepare the individual 

to cope with stress.     

A vigilant pattern is theorized to be a “sympathetically-dominated” responsivity 

pattern that develops as a result of chronic exposure to high levels environmental stress to 

support the ability to cope effectively with threats and dangers in the environment. 

Individuals in this profile would have (a) low to moderate baseline parasympathetic 
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activity and low parasympathetic responsivity, and (b) high baseline sympathetic activity 

and sympathetic responsivity. Behaviorally, this responsivity pattern would be associated 

with heightened attentional responses to threat and high levels of anxiety, which would 

both facilitate adaptive responses to deal with dangers in the environment. This 

responsivity pattern has been theorized to give rise to distinct phenotypes in males and 

females. In males, this response pattern would be associated with more “fight” responses 

such as impulsivity, aggression, and increased risk-taking, whereas in females, it would 

be associated more with “flight” responses such as high levels of fearfulness and social 

anxiety and low levels of impulsivity and risk-taking. 

An unemotional pattern is theorized to be a “low stress responsivity” pattern. 

Individuals in this profile would have (a) low baseline parasympathetic activity and 

parasympathetic responsivity, and (b) low baseline sympathetic activity and sympathetic 

responsivity. This pattern of low responsivity to stressors is theorized to be adaptive in 

severely stressful contexts. Although individuals with an unemotional responsivity 

pattern are expected to show low levels of physiological responses to certain types of 

challenges such as social evaluation or performance, they may show high levels of 

physiological activation in response to immediate dangers or threats. Behaviorally, this 

response pattern would be associated with callous-unemotional traits such as low 

empathy and guilt, and high levels of antisocial behaviors. Males are theorized to be 

over-represented in this group.   

Although the Adaptive Calibration Model provides a useful, detailed framework 

for speculating about individual differences in patterns of ANS functioning, it is 
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important to stress that this model has proposed these four prototypical physiological 

response patterns based on the integrative functioning of both the ANS and the HPAA.  

As such, given that this study only focuses on distinct profiles of ANS functioning and 

their relations to adaptive outcomes, the propositions of this theory may not be directly 

tested using only indices from ANS functioning. However, given the scarcity of 

theoretical work focusing on how distinct patterns of sympathetic and parasympathetic 

ANS functioning may relate to distinct outcomes, this model still provides one of the 

most comprehensive accounts on what possible profiles of ANS functioning may emerge, 

and whether these profiles would differ with respect to different outcomes.  

Overall, the theoretical work reviewed in this section highlights several issues 

important for understanding the role of ANS functioning for adaptive outcomes. First, 

several perspectives suggest that both baseline levels of ANS activity as well as 

responsivity of the ANS to external challenges may provide meaningful information 

regarding individuals’ behavioral and psychological outcomes. As such, it would be 

important to consider the roles of both baseline levels and responsivity patterns of ANS 

for adaptive functioning. Second, certain indices of ANS functioning and adaptive 

outcomes may not necessarily have a linear relationship, but rather may be associated in 

non-linear and/or quadratic way. As such, it would be important to consider 

methodological approaches that can allow to test for non-linear relations between indices 

of ANS functioning and child outcomes. Third, several theoretical perspectives 

emphasize the importance of understanding how individual differences in the functioning 

of both the sympathetic and parasympathetic branches of ANS may relate to adaptive 



 

 
 

36

outcomes. These three points together suggest that it would be important to examine 

individual differences in patterns of both sympathetic and parasympathetic ANS 

functioning that involves both baseline (i.e., baseline RSA & PEP) and responsivity (i.e., 

RSA & PEP change) measures, and whether these distinct patterns ANS functioning 

support important behavioral outcomes.     

ANS Functioning and Specific Self-Regulation Outcomes 

Given that a number of theoretical perspectives suggest that individuals’ 

characteristic pattern of ANS functioning may support a range of adaptive outcomes, it is 

important to understand what specific psychological and behavioral outcomes may be 

supported by distinct patterns of ANS functioning. Particularly, both the Polyvagal 

Theory and the Neurovisceral Integration Model suggest that certain patterns ANS 

functioning would directly be linked to self-regulation outcomes. Moreover, the 

Polyvagal Theory emphasizes the role of the ANS functioning for social engagement 

outcomes such as prosocial behaviors (Porges, 2011), whereas the Neurovisveral 

Integration Model suggests that, as the output of a larger neuro-physiological circuit, 

indices of ANS functioning may be linked a wide variety of self-regulation outcomes 

supported by this circuit (Thayer et al., 2009). Importantly, the Adaptive Calibration 

Model drew on the propositions of both of these theories to describe how individual 

differences in patterns of ANS functioning may be linked with self-regulation outcomes 

(Del Giudice, Ellis & Shirtcliff, 2011).  

Self-regulation is a multifaceted construct that includes a range of processes that 

allow individuals to regulate their arousal, attention, emotion, and cognition to manage 
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goal-directed behaviors (Karoly, 1993; Bridgett et al., 2015; Calkins, Perry, & Dollar, 

2016). Variations in ANS functioning may be associated with three specific aspects of 

self-regulation: emotion regulation, executive functions, and behavioral regulation.  

Emotion regulation involves both a reactivity and a regulatory component 

(Calkins & Hill, 2007; Carthy, Horesh, Apter, & Gross, 2010). Emotional reactivity 

includes the threshold of stimuli needed for the generation of emotion as well as the 

intensity and duration of affective responding, whereas emotion regulation involves 

‘‘behaviors, skills, and strategies, whether conscious or unconscious, automatic or 

effortful, that allow children to modulate, inhibit, or enhance emotional expressions and 

experiences’’ (Calkins & Hill, 2007, p. 229). Although reactivity and regulation are 

conceptualized as distinct processes, they are ultimately interrelated, such that reactivity 

to an upsetting event in terms of the intensity and duration of negative emotion would 

ultimately influence how much effort need to be put into regulation. Individual 

differences in these processes of emotion regulation have been important predictors of 

academic achievement, social skills, as well as psychological adjustment outcomes such 

as internalizing and externalizing behaviors.  

Executive functions refer to a diverse range of general purpose or more volitional 

forms of attentional and cognitive processes, orchestrated largely by the prefrontal cortex, 

that support a wide range of self-regulatory processes including the regulation of 

emotions, thoughts, and behaviors (Best & Miller, 2010; Diamond, 2013; Zelazo & 

Cunningham, 2007). Executive functions are characterized as general-purpose because 

they support a wide range of abilities critical for adaptive functioning including the 
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regulation of emotion (Zelazo & Cunningham, 2007), understanding other individuals’ 

perspectives (Devine & Hughes, 2014), math competence (Bull, Espy, & Wiebe, 2008), 

and literacy (van der Sluis, de Jong, & van der Leij, 2007). One dominant perspective on 

executive functions suggests that there is a set of dissociable but interrelated executive 

functions that often work interactively to support goal-directed behaviors (Friedman et 

al., 2008; Huizinga, Dolan, & van der Molen, 2006; Miyake et al., 2000). The three basic 

units of executive functions that have received much attention are working memory, 

defined as the ability to actively manipulate or update information maintained in working 

memory (Lehto, 1996; Morris & Jones, 1990); inhibition, defined as the ability to 

deliberately suppress dominant and automatic responses in favor of subdominant 

responses, and lastly cognitive flexibility, defined as the ability to flexibly shift across 

tasks or operations. Based on empirical evidence suggesting that basic components of 

executive functions are less dissociable in early childhood (e.g., Hughes, Ensor, Wilson, 

& Graham, 2010; Willoughby, Wirth, & Blair, 2012), executive function/s is 

conceptualized as a unitary construct that embodies three of its core components. 

Behavioral regulation refers to the use and coordination of attentional and 

cognitive processes to direct, coordinate, and plan one’s own behaviors. The ability to 

listen and comply with instructions, maintain attentional focus and persist during 

challenging tasks, inhibit pre-potent responses in favor of appropriate, alternative 

responses, and perform self-directed behaviors are all indicators of successful behavioral 

regulation (Morrison, Ponitz, & McClelland, 2010). The ability to engage in successful 

behavioral regulation is critical in formal educational settings that demand children to 
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comply with rules and instructions, follow classroom routines, and conform to social 

demands in a consistent manner. Successful behavioral regulation has been proposed to 

that facilitate children’s engagement in learning activities and promote adaptive social 

relationships with peers and teachers. Given the ecological importance of the classroom 

context for examining behavioral regulation, behavioral regulation is conceptualized as a 

latent construct composed of: attention control, the ability to regulate attention and 

concentrate on tasks; work habits, the ability to engage in good work behaviors; and 

discipline/persistence, the ability to persist on tasks and direct behavior based on 

classroom rules.  

  Certain patterns of ANS functioning may be associated with better self-

regulation outcomes. Specifically, higher baseline RSA, theorized to index greater 

integrity in the coordination between the brain and the heart, may support greater 

capacity for self-regulation. On the other hand, moderate RSA withdrawal may be 

associated with better self-regulation based on the idea that it may support greater 

orienting and attention responses and provide optimal levels of coping responses to deal 

with challenges. On the other hand, low levels of sympathetic activation may be 

associated with lower levels of emotional reactivity and better behavioral regulation 

given that this pattern would reflect low rather than high levels of mobilization that 

activates defense responses such as fight or flight.
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CHAPTER III 

LITERATURE REVIEW 

The current section reviews empirical work providing support for the theoretical 

perspectives guiding the four goals addressed by this study: (a) sympathetic and 

parasympathetic ANS responses to emotional and cognitive challenges, (b) associations 

between sympathetic and parasympathetic ANS responsivity across distinct challenges, 

(c) stability and continuity in ANS functioning over early childhood, and (d) distinct 

profiles of ANS functioning and their relations with maternal emotional support, self-

regulation and social adjustment outcomes. 

ANS Responsivity During Emotional and Cognitive Challenges 

The first question addressed by this study is how the sympathetic and 

parasympathetic autonomic systems respond to distinct emotional and cognitive 

challenges. One proposition shared across a number of theoretical perspectives on 

autonomic nervous system functioning is that individuals’ sympathetic and 

parasympathetic cardiac responses are context-dependent (Porges, 2011; Smith et al., 

2017). The type of coping response demanded by the challenge likely influences both the 

direction and intensity of activity in the sympathetic and parasympathetic systems. Given 

that sympathetic and parasympathetic systems are orthogonal, distinct challenges may 

lead to a) reciprocal activity (i.e., activation in one system coupled with inhibition in the 

other), b) non-reciprocal activity (i.e., activation or inhibition in both systems), or c) 
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activation or inhibition in one system but no change in the other (Berntson, Cacioppo, & 

Quigley, 1991). Several studies with adults and children examined sympathetic and 

parasympathetic responses to different types of challenges experienced in everyday life. 

In research with adults, autonomic cardiac responses to emotional and cognitive 

challenges have been studied largely separately, whereas in developmental research, 

children’s responses to a wide range of tasks are examined in the same sample of 

participants.   

Research on Emotional Challenges 

A large body of adult emotion research examined whether discrete emotions such 

as anger, fear, and joy are accompanied by distinct ANS responses (e.g., Sinha, Lovallo, 

& Parsons, 1992; see Cacioppo et al., 2000). Inherent in this line of investigation is the 

idea that an event evokes a particular emotion, which is either preceded, accompanied, or 

followed by an ANS response (Mauss & Robinson, 2009). Based on this 

conceptualization, researchers used a variety of laboratory tasks such as emotionally 

evocative imagery, videos, or stories to invoke discrete emotions and assessed 

participants’ ANS responses during these tasks (Kreibig, 2010). In a review paper on 

adults’ experiences of discrete emotions and ANS responses with 134 studies, it has been 

reported that individuals experience sympathetic activation for anger and fear, but 

sympathetic inhibition for sadness (Kreibig, 2010). On the other hand, individuals 

experience parasympathetic inhibition during anger, fear, and sadness, but experience 

parasympathetic augmentation during disgust. Although these findings do not provide 

conclusive evidence regarding whether distinct emotions are accompanied by unique 
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ANS responses, they lend strong support for the view that different contexts or events 

lead to different ANS responses, particularly contexts that elicit sadness (but not anger) 

likely lead to sympathetic inhibition (i.e., PEP inhibition) and contexts that elicit negative 

emotions such as anger and sadness (but not disgust) likely lead to parasympathetic 

inhibition (i.e., RSA withdrawal).   

Research on Cognitive Challenges  

Several adult studies tested whether cardiac autonomic responses depend on the 

nature or intensity of the cognitive challenge. For example, Berntson, Cacioppo, and 

Fieldstone (1996) examined adults’ sympathetic and parasympathetic responses to two 

cognitive tasks: a cognitively challenging mental arithmetic task and an illusion tasks. 

During the mental arithmetic task, on average, adults experienced sympathetic activation 

(i.e., PEP shortening) and parasympathetic inhibition (i.e., RSA withdrawal). However, 

during the illusion task, on average, adults experienced no change in sympathetic activity 

and showed parasympathetic activation (i.e., RSA augmentation). Consistent with the 

proposition of the motivational intensity theory, one explanation for these findings is that 

challenges that pose greater “cognitive effort” may require greater energy mobilization, 

supported by a response pattern of sympathetic activation and parasympathetic 

withdrawal. However, challenges that do not demand cognitive effort may not require 

energy mobilization and “active coping” responses accompanied by sympathetic 

activation and parasympathetic inhibition.   

Based on the idea that sympathetic activity (i.e., beta-adrenergic influence) 

mediates energy mobilization, it has been suggested that the intensity of sympathetic 
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activation would be proportional to cognitive effort because greater effort likely requires 

greater energy. Given that more difficult tasks would require greater cognitive effort and 

mobilization, individuals are expected to show greater sympathetic activation in more 

difficult tasks. In a randomized experimental design, Richter, Friedrich, and Gendolla 

(2008) examined differences in adults’ sympathetic responses across four conditions of 

task difficulty: low, medium, high, and impossible. Findings showed that the intensity of 

sympathetic activation paralleled the task difficulty, such that more difficult tasks elicited 

greater sympathetic activation, as long as success was possible. Consistent with the 

motivational intensity theory’s proposition that energy expenditure would be low if 

success on a task is unattainable, adults did not show sympathetic activation in the 

impossible condition. These findings provide support for the idea that greater task 

difficulty leads to greater sympathetic responses likely because of the need for energy 

mobilization.    

Developmental Research 

Few developmental studies examined children’s ANS responses to both emotional 

and cognitive challenges. Buss, Goldsmith, and Davidson, (2005) examined whether 

toddlers’ sympathetic and parasympathetic functioning differed from baseline to three 

laboratory challenges: mental scale, stranger approach, and toy removal. Their results 

indicated that, overall, children experienced parasympathetic withdrawal across all three 

tasks, but there was no change in children’s sympathetic activity. Using a similar design, 

Quigley and Stifter (2006) examined children’s and adults’ ANS responses across four 

laboratory tasks: an emotionally evocative video, reaction time task, interview, and cold 
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forehead task. Children experienced significant RSA withdrawal across all four tasks and 

experienced sympathetic inhibition during the emotionally evocative video and the 

interview. There was no change in children’s sympathetic responses to the other two 

tasks. These studies together suggest that during challenges that require active coping 

responses, on average, children experience parasympathetic withdrawal. On the other 

hand, findings suggest that the challenges that elicit changes in parasympathetic activity 

do not necessarily lead to changes in sympathetic activity.  These findings may support 

the notion that individuals may rely solely on the faster-responding parasympathetic 

system during a range of mild challenges but recruit the sympathetic system only during 

certain types of challenges. As such, it is important to understand the type of challenges 

that demand sympathetic activation or inhibition.      

Goal 1. To Examine Children’s Sympathetic and Parasympathetic Cardiac 

Responses to Emotional and Cognitive Challenges in Early Childhood 

1a). Will there be significant mean-level changes in children’s sympathetic activity 

from baseline to task across emotional and cognitive challenges? If so, during which 

tasks, will children experience sympathetic activation (i.e., PEP shortening) or 

inhibition (i.e., PEP lengthening)? 

Cognitive tasks.  The Motivational Intensity Theory integrated with Obrist’s 

approach suggests that individuals experience greater sympathetic activation during 

challenges there are perceived as difficult, as long as they are attainable (Wright & Kirby, 

2001). Previous research showed that although cognitively challenging tasks led to 

sympathetic activation, cognitively easy or less challenging tasks did not (Berntson, 
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Cacioppo, & Fieldstone, 1996). In line with this work, it is hypothesized that, on average, 

children will experience sympathetic activation (i.e., PEP shortening) during the 

cognitively challenging spatial problem-solving tangrams task that required children to 

solve puzzles increasing in difficulty. On the other hand, it is hypothesized that children’s 

sympathetic responses will not change significantly during the Go/No-Go cognitive task, 

which constitutes a prolonged, repetitive, and cognitively less demanding task.  

Emotion tasks. Based on the proposition that individuals tend not to mobilize 

their resources if success on a task is unattainable (Richter et al., 2008), no mean-level 

change in sympathetic activity is expected during emotion regulation tasks that required 

children to solve frustrating and unattainable problems (e.g., Locked Box, Impossible to 

Open Box, and Puzzle Box). However, given that some children may perceive such 

challenges as resolvable and thus exert greater effort to solve them, there will be a wide 

variation in children’s sympathetic responses during these tasks. Moreover, consistent 

with the idea that individuals would experience sympathetic inhibition when they 

anticipate no means of escaping an aversive situation or its consequences (Obrist, 1981), 

as well as findings that have linked experiences of sadness with sympathetic inhibition 

(Kreibig, 2010), it is hypothesized that, on average, children will experience sympathetic 

inhibition (i.e., lengthened PEP) during the two emotion regulation tasks, Toy Removal 

and Not Sharing, designed to evoke negative emotions by making children experience 

injustice. Given that there would be variations in children’s emotional responses with 

some experiencing anger as opposed to sadness, there will be variations in children’s 
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sympathetic responses with some experiencing sympathetic activation rather than 

inhibition.     

1b). Will there be significant mean-level changes in children’s parasympathetic 

activity (i.e., RSA withdrawal) from baseline to task during emotional and cognitive 

challenges?  

Consistent with theoretical work and empirical findings suggesting that 

withdrawal of the parasympathetic influence on the heart supports coping responses 

(Porges, 2011), it is hypothesized that, on average, children will experience 

parasympathetic inhibition, as indexed by RSA withdrawal, across all laboratory 

challenges. Specifically, there will be a significant mean-level change from baseline to 

task RSA across all laboratory challenges. Based on the notion that tasks that are more 

challenging may require greater “active coping,” children may experience greater RSA-

withdrawal during both more demanding emotional (e.g., Locked Box) and cognitive 

tasks (e.g., tangrams) compared to tasks that are less cognitively or emotionally 

challenging (e.g., Go/No-Go, disappointing gift).     

Associations Between Sympathetic and Parasympathetic Functioning  

During Laboratory Challenges  

 The second question addressed by this study is whether and during which 

challenges sympathetic and parasympathetic autonomic systems’ activity would be 

associated or work reciprocally. Sympathetic and parasympathetic branches of the ANS 

likely work reciprocally if responsivity of these two systems are associated, such that 

greater activation in the sympathetic branch relates to greater inhibition of the 
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parasympathetic branch. Correlations between sympathetic and parasympathetic 

responses to emotional and cognitive laboratory challenges were examined in several 

studies. In a study with adults, Berntson, Cacioppo, and Fieldstone (1996) showed that 

individuals’ sympathetic and parasympathetic responsivity, as indicated by PEP and RSA 

change scores respectively, were correlated during a cognitively challenging mental 

arithmetic task, but not during a cognitively less demanding illusion task. Thus, one 

explanation for these findings may be that the sympathetic and parasympathetic systems 

may work reciprocally only during cognitive tasks that require greater cognitive effort, 

but not during those that demand less cognitive effort. Similar to the null finding on the 

illusion task, Guiliano et al. (2017) did not find an association between adults’ 

sympathetic and parasympathetic responses to a selective attention task. Although the 

extent to which this specific task requires cognitive effort has not been reported, it is 

possible that the lack of association may be due to the cognitive effort required by the 

task.  

 Studies that examined the associations between sympathetic and parasympathetic 

ANS functioning in children also yielded mixed results. There were no associations 

between RSA and PEP change scores during emotional challenges in toddlers (Buss, 

Goldsmith, & Davidson, 2005), an incentive/motivation task in a sample of preschoolers 

diagnosed with ADHD (Beauchaine, Gatzke-Kopp, Neuhaus, Chipman, Reid, & 

Webster-Stratton, 2013), and during a physiological responsivity protocol composed of 

several challenge tasks in 3-to 8-year olds (Alkon et al., 2003). In contrast to these null 

findings, a recent study that examined children’s ANS responsivity to a stressful 
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challenge task (i.e., a worksheet task during which children received negative feedback) 

showed an association between RSA and PEP change scores, such that increases in 

sympathetic activation were associated with increases in parasympathetic withdrawal 

(Roos et al., 2017). Given these discrepant findings, it is possible that whether 

sympathetic and parasympathetic ANS responses correlate with each other may depend 

on the nature of the task. For example, in more physiologically arousing or frustrating 

tasks, increases in RSA withdrawal may be associated with increases in PEP shortening. 

However, in less challenging tasks, SNS and PNS responses may not correlate.  

Goal 2. To Examine Whether and During Which Challenges Children’s 

Sympathetic and Parasympathetic Cardiac Responses Correlate or Work 

Reciprocally 

Previous research showed that individuals’ sympathetic and parasympathetic 

responses are associated during certain tasks (e.g., mental arithmetic, stressful challenge), 

but not others (e.g., illusion task, attention task). Based on Obrists’ distinction between 

“active coping” and “passive coping” tasks, sympathetic and parasympathetic responses 

may be associated only during tasks that require active rather than passive coping 

responses (see Obrist, 1976; Wright & Kirby, 2001). As such, it is possible that during 

more physiologically arousing or frustrating tasks that require active coping responses, 

the two branches of the ANS may work reciprocally, such that increases in RSA 

withdrawal may be associated with increases in PEP shortening; but in physiologically 

less arousing challenges, there may not be associations between the activity of the two 

branches. Given that the cognitively challenging tangrams task and emotionally 
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frustrating tasks such as the Locked Box task likely require active coping responses, 

children’s sympathetic and parasympathetic responses may be associated during these 

tasks. On the other hand, given that the cognitively less demanding Go/No-Go task and 

the interpersonally upsetting tasks may be considered as more passive tasks, children’s 

sympathetic and parasympathetic responses may not work reciprocally during such tasks.  

Development of ANS Functioning in Early Childhood 

The third question addressed by this study is whether children’s ANS activity 

across different tasks are stable and continuous over time. Examining the stability in 

children’s ANS responses to different types of challenges is important for understanding 

both development, and the reliability of different laboratory measures. In regards to 

development, greater stability in individual differences across time may suggest that 

children tend to develop more trait-like or characteristic physiological responses for 

dealing with certain types of challenges. As such, it would be important to characterize 

the stability in individual differences across different tasks over the period of early 

childhood. In regards to reliability, a certain degree of stability in individual differences 

during a certain task may suggest that that task elicits similar physiological responses 

consistently over time. As such, evidence for greater stability in certain tasks than others 

may suggest that certain tasks may more reliably elicit physiological responses that 

reflect individuals’ characteristic physiological response.  

Moreover, examining continuity and change in children’s physiological responses 

would help illuminate whether children show greater, lower, or the same magnitude of 

physiological responses over time. Calkins and Keane (2004) suggested that evidence for 
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an increase in the magnitude of parasympathetic inhibition or vagal withdrawal may 

suggest that children engage in greater physiological regulation over time, whereas 

decreases in parasympathetic inhibition may indicate less reliance on physiological 

coping responses, especially if the laboratory tasks became easier for children over time. 

As such, understanding the continuity and change in physiological responses over time 

can help us understand the changes in how much children rely on physiological 

regulation over time.  

Stability in Children’s ANS Functioning 

Parasympathetic functioning. Studies consistently demonstrated modest to 

moderate levels of stability in children’s baseline levels of RSA in early childhood (e.g., 

Alkon, Boyce, Davis, & Eskenazi, 2011; Esposito et al., 2016; Patriquin, Lorenzi, Scarpa, 

Calkins, & Bell, 2015; Perry et al., 2013). In contrast to the consistent findings on the 

stability of baseline RSA, research that examined the stability in children’s RSA change 

scores revealed mixed findings. For example, Calkins and Keane (2004) measured 

children’s parasympathetic responsivity during four types of tasks (attention, empathy, 

frustration, and problem-solving) when children were 2 and 4.5 years of age and found 

modest levels of stability in RSA change across certain tasks. In particular, children’s 

RSA change score during the problem-solving task at age 2 predicted RSA change during 

the problem-solving task as well as the empathy and frustration (but not the attention 

task) at age 4.  Moreover, children’s RSA change during the empathy and frustration 

tasks at age 2 also predicted the problem-solving task at age 4. These findings suggest 

that children’s RSA change scores, at least during certain challenges, show modest 
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stability from toddlerhood to preschool age. Likewise, Perry et al., (2012) reported 

modest levels of stability in children’s parasympathetic responsivity to emotional 

challenges from 3 to 4 years, and from 4 to 5 years of age. These studies together lend 

support for a modest level of stability in children’s parasympathetic responsivity in at 

least certain tasks during early childhood.  

In contrast to these findings, a greater number of studies failed to find stability in 

children’s RSA change scores. For example, Bornstein and Suess (2000) did not find 

stability in RSA change scores from infancy (2 months) to early childhood (5 years). 

Given that early childhood is a time of rapid transformation in children’s stress responses, 

the null finding may be due to the long interval (i.e., 5 years) between the two 

assessments. As such, it would be important to examine the stability in children’s 

parasympathetic responses across visits separated by shorter intervals. As such, in a 

strikingly different study design, Doussard-Roosevelt, Montgomery, and Porges (2003) 

examined the stability in 5- and 6-year old children’s vagal withdrawal during a negative 

affect task across three sessions that were only 2-weeks apart, and found stability from 

the first session to the second, but not from the second to the third session. One 

explanation for a lack of stability in children’s parasympathetic responses from the 2nd to 

3rd visit, in a 2-week period, may be that because the same negative affect task used 

across all three sessions, children may have been familiarized to this task, showing lower 

levels of coping responses, and thus may not have showed a stable pattern of response 

across sessions.  
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In a recent study, Alkon et al. (2010) measured children’s RSA responses at 6-, 

12-, 42-, and 60-months of age, and reported moderate to high stability in mean scores 

derived from the challenge tasks but did not find stability in RSA change scores. Notably, 

in this study, the authors created an aggregate of RSA change scores in response to a 

battery of tasks. Given that ANS responses are context-specific, it is possible that an 

aggregate of children’s physiological responses to distinct laboratory tasks may be less 

stable compared to stability in responses to the same task over time. Another explanation 

for the null findings is that the task durations may have been too short (i.e., 2-minute 

tasks) to capture children’s characteristic ways of responding to challenges, and therefore 

may have been less stable over time. Similar to these findings, Hinnant, Philbrook, Erath, 

and El-Sheikh (2018) did not find stability in RSA change scores in middle childhood 

(from 8 to 10 years of age) but did find moderate-to-high levels of stability in 

adolescence (from 16 to 18 years of age), suggesting that RSA change may not become 

stable until later years in development. Overall, the discrepancy in findings may be due to 

several factors, including, (a) children’s age, (b) the interval/s between assessments, (c) 

children’s familiarity with the task/s, (d) duration of the task/s, and (e) whether 

physiological responses are assessed in the same type of tasks/contexts, or averaged 

based on responsivity towards different contexts. As such, an important task for 

researchers is to demonstrate the conditions in which individual differences in 

physiological responsivity show stability over time.   

Sympathetic functioning. Similar to the findings on the stability of baseline RSA 

over time, there is some evidence suggesting that there is modest to moderate levels 
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stability in children’s baseline levels of PEP during early childhood (e.g., Alkon et al., 

2011; Esposito et al., 2016). Compared to the number of studies examining the stability 

in RSA change scores, fewer studies were conducted to examine the stability in PEP 

change scores during early childhood. Similar to their findings on stability in RSA scores 

over time, Alkon et al. (2011) did not find stability in PEP change scores across infancy 

and early childhood, despite finding moderate to high levels of stability in mean PEP 

scores derived from the challenge tasks.  

Continuity and Change in Children’s ANS Functioning in Early Childhood 

Parasympathetic functioning.  Previous research reported increases in children’s 

baseline parasympathetic cardiac functioning, as indexed by baseline RSA, during early 

childhood. For example, Perry et al. (2013) demonstrated increases in baseline RSA from 

3 to 5 years of age, and Alkon et al. (2011) demonstrated increases from 4 to 6 years of 

age.  On the other hand, the few studies that examined continuity and change in RSA 

change (i.e., vagal withdrawal) over time revealed mixed findings. For example, Calkins 

and Keane (2004) found that the magnitude of RSA withdrawal decreased from 2 to 4.5 

years of age, such that children tended to engage in lower levels of vagal withdrawal as 

they got older. Given that vagal withdrawal reflects coping responses to challenge 

(Porges, 2011), it is possible that children needed to rely less on physiological coping 

responses if the laboratory tasks became easier for them over time. In another 

longitudinal study, Perry et al. (2013) examined change in RSA withdrawal in response 

to emotion regulation tasks from 3 to 5 years of age and found that there was no change 

in the means of vagal withdrawal over time. Moreover, the trajectory analyses suggested 
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that for almost half of the children RSA withdrawal decreased and for the other half RSA 

withdrawal increased over time. Notably, this study used different emotion regulation 

tasks at different time points for the tasks to be novel and stressful for the children. Given 

that these tasks may not have been equivalent with respect to how frustrating or stressful 

they were, and that different children may find different types of tasks frustrating, the null 

findings may be a function of using different tasks over time. As such, it would be 

important to examine changes in RSA withdrawal in the same tasks over time. For 

example, if tasks become less challenging for children, there may be decreases the 

magnitude of RSA withdrawal; however, certain tasks may not get easier across early 

childhood, in which case there may be continuity in children’s ANS responses.  

Sympathetic functioning.  The few studies that examined change in baseline 

sympathetic cardiac functioning, as indexed by baseline PEP, found increases during 

early childhood. For example, Alkon et al. (2010) reported increases in baseline PEP 

from 4 to 6 years of age, and Esposito et al. (2016) reported increases in baseline PEP in 

a mixed-age group sample across the early childhood period. Notably, there is a scarcity 

of research on continuity and change in PEP change over time; and therefore, it would be 

important to examine whether children elicit greater or lower levels of sympathetic 

activation for the same tasks across time.  
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Goal 3. To Examine the Stability and Continuity/Change in Children’s Sympathetic 

and Parasympathetic Cardiac Responses in Early Childhood 

3a). Are children’s sympathetic and parasympathetic cardiac responses stable over 

the course of early childhood? 

Baseline functioning. Consistent with the findings of previous work, it is 

hypothesized that there will be modest to moderate levels of stability in children’s 

baseline sympathetic (i.e., baseline PEP) and parasympathetic (i.e., baseline RSA) 

activity across early childhood.  

Sympathetic and parasympathetic responsivity (i.e., change scores). Based on 

findings suggesting that parasympathetic responsivity is somewhat stable over time, it is 

hypothesized that there would be modest levels of stability in RSA change over time.  

Laboratory challenges that elicit greater physiological responsivity and require “active 

coping” may show greater stability over time compared to tasks that elicit lower levels of 

physiological response and elicit “passive coping.”  Given the scarcity of research 

examining the stability in children’s PEP change scores over time, whether or not there 

will be stability in PEP change scores will be an exploratory question.  

3b). Are children’s sympathetic and parasympathetic responses continuous or 

discontinuous across early childhood? 

Baseline functioning. Based on previous findings indicating increases in baseline 

RSA and PEP from 4 to 6 years of age (Alkon et al., 2011), it is hypothesized that there 

will be increases in baseline RSA and PEP over the course of the study. In testing this 
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hypothesis, this study will examine whether there is change from 4 to 5 years, and from 5 

to 6 years, and test whether there is linear growth from 4 to 6 years. 

Sympathetic and parasympathetic responsivity (i.e., RSA & PEP change 

scores). The limited work that examined continuity and change in parasympathetic and 

sympathetic responsivity across the early childhood yielded inconsistent findings. 

Therefore, this examination will be more exploratory. Continuity and change in ANS 

responsivity will be examined for two cognitive challenges (i.e., Tangrams & Go/No-Go) 

given that they were administered across all assessments. 

Indices of Autonomic Nervous System Functioning and Adaptive Functioning 

Vagal Tone 

Vagal tone, often indexed by baseline RSA, has been proposed to index the 

integrity of the coordination between the prefrontal brain regions and the heart, and 

capacity for self-regulation (Thayer et al., 2009). A large body of evidence suggests that 

greater vagal tone is associated with better cognitive, emotional, and behavioral control. 

Greater baseline RSA has been linked with better recognition memory and attention in 

infancy (Linnemeyer & Porges, 1986), better response inhibition (Marcovitch et al., 

2010) and performance in fluid intelligence measures including processing speed, 

working memory and cognitive efficiency in early childhood (Staton, El-Sheikh, & 

Buckhalt, 2009), better sustained attention in middle childhood (Suess, Porges, & Plude, 

1994), and better response inhibition in adults (Gillie, Vasey, & Thayer, 2014; Hovland 

et al., 2012; Johnsen et al., 2003). There is also evidence suggesting that greater vagal 

tone is associated with better emotion regulation (Holzman & Bridgett, 2017). Moreover, 
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findings from a recent metanalysis showed that although greater vagal tone was 

associated with multiple aspects of self-regulation including emotional and behavioral 

regulation, the effects were very small (r = .09; Holzman & Bridgett, 2017). Overall, 

although these studies support the proposition that greater vagal tone is associated with 

better self-regulation, given the very modest associations, it is important to consider non-

linear associations between baseline RSA and self-regulation or understand the 

conditions under which these associations exist. 

Although there is vast empirical work suggesting that greater baseline RSA may 

be associated with better self-regulation and social adjustment outcomes, there is newer 

evidence suggesting that there may be quadratic relations between baseline RSA and 

certain psychological and behavioral outcomes, such that moderate vagal tone predicts 

better outcomes, whereas lower and higher vagal tone predicts less adaptive outcomes. 

For example, across three samples of children, Miller, Kahle, and Hastings (2017) found 

quadratic relations between children’s vagal tone and prosociality, such that moderate 

vagal tone was associated with greater child self-reported prosociality and better 

observed emphatetic concern toward others’ distress cues, concurrently; and better self-, 

teacher-, and mother-reported prosical behaviors longitudinally.   Likewise, in a sample 

of adults, Kogan and colleagues (2014) tested quadratic relations between vagal tone and 

a range of outcomes, and found that moderate vagal tone was associated with greater 

prosociality, compassion, and gratitude. These two studies suggest that the association 

between vagal tone and social adjustment outcomes may have a quadratic relation such 

that moderate vagal tone may be more optimal for social adjustment than either low and 
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high vagal tone. Based on this evidence, it would be critical to understand whether high, 

moderate, and low baseline RSA would support self-regulation outcomes as well as other 

social adjustment outcomes such as externalizing behaviors. 

Moreover, consistent with the notion that low baseline RSA may reflect low 

capacity for self-regulation, results from a meta-analysis have shown that in clinical or 

high-risk samples, children with considerable externalizing problems or who were 

diagnosed with an externalizing disorder such as conduct problems experienced low 

absolute levels of vagal tone (Graziano & Derefinko, 2013). Consistent with the idea of 

allostasis or to maintain stability through changes in the functioning of the biological 

systems, it is possible that individuals’ baseline RSA may reflect their adaptation to 

environmental conditions.  

Vagal Withdrawal  

Vagal withdrawal, as indexed by RSA withdrawal, reflects inhibition of the 

parasympathetic influence on the heart. As such, vagal withdrawal and parasympathetic 

inhibition can be used interchangeably. According to the Polyvagal Theory, vagal 

withdrawal may mobilize metabolic resources to promote coping with challenges such as 

environment threats (Porges, 2011). Based on this perspective, greater vagal withdrawal 

may reflect higher levels of coping responses to deal with challenges, whereas moderate 

levels of vagal withdrawal facilitate orienting to stimuli and good attention (Porges, 1995, 

2011). On the other hand, according to the Neurovisceral Integration Model, in contexts 

appraised as threatening, the prefrontal cortex withdraws its vagally mediated inhibitory 

influence on subcortical brain regions allowing for the facilitation of more automatic and 
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non-volitional behaviors necessary for survival (Thayer & Lane, 2000; Thayer et al., 

2009). Based on this model, greater vagal or RSA withdrawal may reflect greater 

activation of amygdala and lower involvement of frontal regions (Thayer et al., 2009). 

Given the central role of the frontal regions of the brain in “top-down” aspects of self-

regulation, high vagal withdrawal therefore may reflect lower ability to perform well in 

executive functions or regulate their emotions.  

Studies that examined associations between RSA withdrawal and child self-

regulation and adjustment outcomes revealed mixed findings. In infancy, RSA 

withdrawal was associated with greater orientation to mother but not with greater 

distraction from aversive stimuli (Perry et al., 2016). Likewise, greater RSA withdrawal 

during a delay/emotion-regulation task was associated with greater other-oriented self-

regulation behaviors such as engaging with adults (Calkins, 1997). However, in early 

childhood, studies failed to find linear associations between RSA withdrawal and self-

regulation outcomes (Blandon et al., 2008; Marcovitch et al., 2010; Perry et al., 2013). It 

has been shown that moderate but not high levels of vagal withdrawal was associated 

with better response inhibition performance in young children (Marcovitch et al., 2010). 

Given the mixed findings, it would be important to examine the optimal levels of RSA 

withdrawal for effective self-regulation.  

Several studies examined the associations between RSA responsivity and child 

adjustment outcomes. Results from a meta-analysis involving 44 studies suggested that 

greater RSA withdrawal was associated modestly with fewer externalizing and 

internalizing behavior problems, and better cognitive academic outcomes (Graziano & 
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Derefinko, 2013). However, it is critical to note that the association between RSA 

withdrawal and adjustment outcomes may depend on the nature of the laboratory task 

during which RSA was assessed. For example, in contrast to the findings of Graziano and 

Derefinko’s meta-analysis, greater RSA withdrawal during tasks designed to elicit 

negative affect were associated with increased internalizing symptom severity during 

early childhood (Calkins et al., 2007) and adolescence (Boyce et al., 2001). Moreover, 

Fortunato, Gatzke-Kopp, and Ram (2013) found that greater RSA withdrawal in response 

to fearful and sad movies was associated with internalizing symptom severity, whereas 

attenuated RSA withdrawal during a happy film was associated with externalizing 

symptom severity. Greater RSA withdrawal during inhibitory control tasks was 

associated with greater externalizing behavior (Utendale, Nuselovici, Saint-Pierre, 

Hubert, Chochol, & Hastings, 2014). These mixed findings underscore the importance of 

examining the associations between RSA responsivity and behavioral outcomes may 

depend on the nature of the task. As such, it may be important to examine the relations 

between RSA responsivity and behavioral outcomes using multiple challenges. 

Sympathetic Tone 

Sympathetic tone, as indexed by baseline PEP, reflects sympathetic activity 

during resting state. Greater sympathetic tone is indexed by shorter or lower levels of 

baseline PEP.  Previous research has linked lower baseline PEP with greater fearfulness 

and poorer emotion regulation (Buss, Davidson, Kalin, & Goldsmith, 2004).  Compared 

to a control group, children diagnosed with ADHD and oppositional defiant disorder 

exhibited lower levels of baseline PEP (Crowell et al., 2006).  Likewise, in a sample of 
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children with ADHD, attenuated baseline PEP was linked with greater conduct problems 

and aggression (Beauchaine et al., 2013). Lower baseline PEP following adoption was 

associated with greater behavioral difficulties two years later (Esposito et al., 2016). 

These studies together suggest that greater sympathetic tone or lower baseline PEP may 

reflect difficulties with self-regulation or social adjustment, especially in high-risk or 

clinical populations. 

Previous research has also linked exposure to stressful caregiving or contextual 

experiences with greater sympathetic tone. For example, in a sample of adopted children, 

previously institutionalized children were shown to have greater sympathetic tone than 

those who were previously foster cared (Gunnar, Frenn, Wewerka, & Van Ryzin, 2009). 

In a sample of children in foster care, children who had a history of neglect had greater 

sympathetic tone than those who did not (Oosterman, De Schipper, Fisher, Dozier, & 

Schuengel, 2010). These findings together suggest that exposure to high levels of 

contextual stress may lead to increases in sympathetic tone. 

Sympathetic ANS Responsivity  

An important body of research examined children’s sympathetic responsivity 

during tasks that involved motivational components such as incentive or awards with 

externalizing behavior problems. Inherent in this line of research is the idea externalizing 

problems emerge as a result of vulnerability to impulsivity related problems (Beauchaine, 

2012). Impulsivity is viewed as socially inappropriate behaviors that are emitted without 

thinking (Beauchaine, 2012). It has been suggested that individuals who have trait 

impulsivity frequently engage in reward-seeking behaviors to upregulate their 
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underactive mesolimbic dopamine system. Based on the notion that PEP shortening 

during motivational tasks reflects dopaminergic reactivity to reward or punishment, 

individual differences in PEP responsivity has been proposed to reflect proclivity towards 

reward sensitivity, aggression, and/or externalizing behaviors (Beauchaine, 2012). As 

such, PEP shortening to incentives has been linked primarily with externalizing behaviors 

(Beauchaine, 2012). Despite this line of research that utilized tasks that involved 

motivational components, less research examined whether sympathetic responsivity 

during other challenges relate to self-regulation or social adjustment outcomes.  

Profiles of Sympathetic and Parasympathetic ANS Functioning in Early Childhood 

 The adaptive calibration model was tested only in few empirical studies.  Del 

Giudice, Hinnant, Ellis, and El-Sheikh (2012) conducted the first empirical study to test 

this model and examined profiles of sympathetic and parasympathetic functioning during 

baseline and a challenge task in a sample of 8- to 10-year-old children. In support of the 

adaptive calibration model, results from finite mixture modeling yielded four profiles: 

buffered (45%), sensitive (27%), unemotional (18%), and vigilant (10%). Compared to 

the buffered group, children in the unemotional and vigilant groups were more likely to 

be exposed to greater levels of negative family relationships and lower levels of family 

warmth and predictability.  Although not proposed by the model, negative family 

relationships were also more common in the sensitive group as compared to the buffered 

group.  Contrary to the propositions of the model, higher levels of ecological stress, a 

latent variable including indicators such as low socioeconomic status, economic strain 

and alcohol use, did not predict odds of membership in the groups.  



 

 
 

63

In a second study, Quas et al., (2014) examined physiological profiles of 

sympathetic (PEP), parasympathetic (RSA), cardiac activity (HR), and adrenocortical 

activity (cortisol) across four independent samples with a total of 664 children ranging in 

age from 4- to 14-years. In addition to obtaining baseline levels of physiological activity, 

children’s physiological responses to challenge were obtained during a standardized 

protocol that included a social task during children were asked about their likes and 

dislikes, a cognitive task during which children were asked to repeat numbers they heard, 

a sensory task which involved tasting a new substance, and an emotional task during 

which children watched emotionally evocative videos. Their results from latent profile 

analyses revealed six distinct profiles, four of which shared similarities with the profiles 

proposed by the adaptive calibration model.  Similar to adaptive calibration model’s 

buffered profile, the greatest proportion of children were in the moderate reactivity group 

(52-80%) characterized by low to moderate levels of responsivity across all systems. The 

parasympathetic specific reactivity profile (2-36%), characterized by parasympathetic 

responsivity to task but no change in sympathetic and cortisol responses, was argued to 

resemble the sensitive profile proposed by the adaptive calibration model. The 

anticipatory arousal profile (4-9%), characterized by high anticipatory responses (high 

baseline values prior to the challenges), but blunted responsivity to challenges, has been 

argued to show similarities with the adaptive calibration’s vigilant profile (Kolacz et al., 

2016).  Notably, the underaroused profile (2-36%) resembled the unemotional profile 

proposed by the adaptive calibration model. The authors also found two additional groups  
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that were not proposed by the adaptive calibration model: a multi-system reactivity group 

(7-14%) and an HPA-specific reactivity group (6-7%).  

In a third study on children’s physiological profiles, Kolacz, Holochwost, 

Gariépy, and Mills-Koonce (2016) examined children’s profiles of basal levels of 

parasympathetic (RSA), sympathetic (salivary alpha-amylase), and adrenocortical 

activity (cortisol) and their associations with two temperamental styles, negative 

affectivity and surgency, as reported by parents. Their results yielded four profiles: 

sensitive (17%), buffered (45%), vigilant with low adrenocortical activity (24%), and 

vigilant with high adrenocortical activity (15%). Their findings demonstrating a large 

group of children with a buffered physiological pattern, and a small group of children 

with a vigilant high profile were consistent with the adaptive calibration model. However, 

the proportion of the children in the sensitive physiological pattern was smaller than what 

has been reported by Del Guide et al. Moreover, contrary to the adaptive calibration 

model, the authors did not find an unemotional group; but found a new pattern of 

physiological functioning referred to as vigilant low. The children in the buffered group 

were reported to have lower negative affectivity than those in the vigilant high group, and 

lower fearfulness and discomfort to sensitivity compared to the vigilant low group, 

suggesting that distinct patterns of physiological functioning can meaningfully relate to 

distinct temperamental styles. Notably, an important limitation of this study was that, 

although adaptive calibration model proposes distinct profiles based on both baseline 

values and responsivity to challenges, only baseline values were used in the examination 

of patterns of physiological functioning.  
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Goal 4. To Examine Whether There are Profiles of Children with Distinct Patterns 

of Sympathetic and Parasympathetic Functioning, and Whether These Profiles 

Differ with respect to Self-Regulation Outcomes 

4a). Are there profiles of children with unique patterns of sympathetic and 

parasympathetic functioning during baseline and challenge tasks? 

Based on the adaptive calibration model’s proposition, it was hypothesized that 

there would be four patterns of stress responsivity: sensitive, buffered, vigilant, and 

unemotional.  It was expected that a sensitive profile with high level of parasympathetic 

activity (i.e., high baseline RSA & RSA change) and moderate levels of sympathetic 

activity (i.e., moderate baseline PEP & PEP change) would emerge and constitute one of 

the largest groups given that this stress responsivity pattern is theorized to be 

overrepresented in low stress contexts. Moreover, a buffered profile with moderate levels 

of parasympathetic activity (i.e., moderate baseline RSA & RSA change) and 

sympathetic activity (i.e., moderate baseline PEP & PEP change) was expected to 

emerge.  Given that the buffered profile is theorized to develop as a result of exposure to 

moderate-levels of environmental stress, we expected this group to constitute one of the 

largest groups.  Finally, a vigilant profile with high levels of sympathetic activity and low 

level of parasympathetic activity, and an unemotional profile with low responsivity in 

both branches were expected to emerge.  Given that these profiles are theorized to 

develop in high stress environments, these profiles were expected to be smaller in a 

community sample like in this study.  
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4b). Are there group differences across these profiles with respect to self-regulation 

outcomes?  

 Based on the adaptive calibration model, it is hypothesized that children in the 

buffered and sensitive profiles will have better self-regulation (i.e., executive functions, 

emotion regulation, behavioral regulation) and lower behavioral adjustment problems 

(i.e., externalizing problems) than those in the vigilant and unemotional profiles.  

Moreover, based on the adaptive calibration model, it is hypothesized that children in the 

sensitive profile will show better self-regulation and behavioral adjustment outcomes 

than those in the buffered profile.  
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CHAPTER IV 

METHODS 

Participants 

The sample for this study were 278 children (55% girls) and their primary 

caregivers (96% mothers) who participated in a longitudinal study examining the 

physiological, emotional and cognitive predictors of early academic readiness. Children’s 

mean age at the preschool, kindergarten, and first grade assessments were 56.37 

(SD=4.68), 70.80 (SD = 3.86), and 82.76 (SD=4.02) months, respectively. At the 

preschool assessment, mothers’ ages ranged from 19 to 58 (M=35) and approximately 

61% of mothers had a 4-year college degree or had completed higher levels of education. 

Average income-to-needs ratio, calculated by dividing the total family income by the 

poverty threshold for that family size, was 2.11 (SD=1.41). The sample was diverse with 

respect to race and ethnicity with 59% of the children reported as European American, 

30% as African American, and 11% as other races; 6.5% of the sample identified as 

Hispanic. Of the 278 participants in the original sample, 249 returned for the kindergarten 

assessment and 240 returned for the first-grade assessment. Participants who did not 

return for the last assessment did not differ from the remaining participants with respect 

to gender, minority status, maternal education, or observed caregiver behaviors.  
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Procedure 

Overview 

Children and their primary caregivers participated in laboratory assessments when 

children were at preschool, kindergarten and first grade. Participants were recruited from 

daycare centers, local establishments (e.g., children’s museum) or via participant referral 

in a midsized Southeastern city in the United States. Laboratory assessments were 

scheduled with caregivers who either called the research center directly or provided 

contact information to be contacted by the researchers. Before each visit, mothers 

provided written consent and children were briefed about the games that they were going 

to play. Following the consent, children participated in a battery of tasks designed to 

assess their cognitive and emotional development, whereas mothers filled in 

questionnaires and participated in a mother-child interaction task. Physiological data was 

collected from children during the first half of the visits that typically lasted for 2 hours. 

In order to assess children’s behaviors in the school setting, teachers were asked to 

complete online surveys using Qualtrics in the spring semester of the target children’s 

kindergarten year. Only the teachers of children whose mothers completed a consent 

form to allow the researchers to contact the child’s teacher were contacted. Mothers 

received monetary compensation for their participation, and children selected a small toy 

at the completion of the visit. All procedures were approved by the university 

institutional review board.  
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Laboratory Assessment 

Across all time points, a similar laboratory procedure took place. After the 

informed consent, mothers left the room to fill in questionnaires in an adjacent room, and 

children participated in three academic assessments, particularly Woodcock Johnson’s 

applied problems, literacy, and numbers reversed tasks. Next, approximately 20-25 

minutes into the session, the experimenter placed the physiological equipment onto the 

child. After the placement, children participated in a series of tasks during which their 

cardiac electrophysiological data were collected. The first procedure involved two non-

arousing, baseline tasks. During the fish task (2 minutes), children watched a video of 

colorful fish swimming. During the statue task (1 minute), children watched numbers 

decreasing gradually from 60 to 0 at the center of the screen. Following the baseline 

procedure, children participated in two learning engagement tasks: tangrams and story. 

During the Tangrams task (10 minutes), which required children to engage in spatial 

problem-solving, children were asked to fit wooden shapes into the pictures of shapes 

presented on paper. For some pictures, children needed to combine two shapes to make a 

larger shape and flip a shape to make it fit in the lines. Following a brief demonstration, 

children were presented with puzzles of increasing difficulty and instructed to ask for 

help if needed. Following the learning engagement tasks, children participated in two 

executive functions tasks, one of which was the Go/No-Go tasks (see below for detailed 

information). During the Go/No-Go task, which can be characterized as a long and 

repetitive task that requires attention, children were asked to press the button for all 

animals except for the dog. This task is typically used to assess inhibitory control. After 
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this task, children participated in emotion regulation tasks designed to elicit negative 

affect. Given that novelty of the task is important for eliciting negative affect, different 

emotion regulation tasks were used at each time point. These brief tasks described below 

were terminated early if the child became very upset or in rare instances if the child left 

the situation. After the emotion regulation tasks, the physiological equipment were 

removed and children received snacks. 

During the preschool assessment, there were two emotion tasks: Locked Box and 

Toy Removal.  The Locked Box task originates from Lab-TAB’s “transparent box” 

episode of distress (Gange, Hulle, Aksan, Essex, & Goldsmith, 2011). During this task, 

children were first demonstrated how to open a lock with a key. After ensuring that the 

child can use a key to unlock a lock, the child was asked to select a toy from a set of three 

attractive toys. The selected toy was then placed in a transparent box and Locked with a 

padlock. The experimenter provided the child with a large ring of wrong keys and 

instructed the child to use the keys to unlock the lock in order to play with the toy. The 

experimenter prompted the child to open the box in 15 second intervals throughout the 4-

minute task. To terminate the task, the experimenter told the child that she has found the 

correct key and allowed the child to open the box to access the toy. The Toy Removal 

task followed the Locked Box task. After allowing the child to play with the toy removed 

out of the box momentarily, the experimenter took the toy away from the child and 

played with it for two minutes.  The experimenter periodically commented on how fun it 

was to play with the toy.  After two minutes, the experimenter returned the toy to the 

child.  
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During the kindergarten assessment, there were three emotion tasks: Not Sharing, 

The Impossible to Open Gift, and the Disappointing Gift. For the purposes of this study, 

only the first two emotion tasks were used. The Not Sharing task originates from Lab-

TAB’s “I’m not sharing” episode of distress (Goldsmith, Reilly, Longley, & Prescott, 

2001). This interpersonal task targets the child’s feelings of being treated unjustly and is 

intended to be upsetting/frustrating for the child. The task starts with the experimenter 

telling the child that the assistant has a surprise for them. The assistant comes into the 

room with candy and instructs the experimenter to divide the candy evenly between them 

both. After the assistant leaves, the experimenter shares the first 6 candies equally. 

However, after that, the experimenter gives themselves more candy than the child 

multiple times, and at one point eats a piece of the child’s candy. At the very end of the 

unfair episode, the experimenter takes all of the child’s candy. Following the unfair 

episode, the experimenter allowed the child to pick and eat 2 pieces of their favorite 

candy. After the recovery, the Impossible to Open Gift task, adapted from Carlson and 

Wang (2007) and Goldsmith, Reilly, Lemery, Longley, and Prescott (1999), was 

administered. In this task, the experimenter presented the child with a gift for all their 

hard work and encouraged the child to open the gift right away; however, the gift was 

sealed so it could not be opened. After giving the gift, the experimenter leaves the room, 

and returns after one minute and apologizes to the child for giving them the wrong gift 

box. The experimenter then gives the child a gift box that is very easy to open but has a 

disappointing gift inside: a piece of tree bark. The experimenter acts busy in the room 

while the child’s responses are recorded for one minute. After one minute, the 
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experimenter notices that the wrong toy was wrapped, and gives the child the toy they 

were supposed to receive: a small soft animal.  

During the first-grade assessment, there were two emotion tasks: Puzzle Box and 

Broken Toy.  In the Puzzle Box task, children were asked to assemble a wooden puzzle in 

a large box without looking at it (Eisenberg et al., 2000, 2001). One side of the box had 

plexiglass through which the experimenter could observe the child’s hand movements 

and the other side had two sleeves through which the children were asked to slip their 

arms to access the puzzle. The sleeves were covered by a cloth that could be lifted if a 

child wanted to peek at the puzzle. Children were told to work on the puzzle without 

peeking and that it was an easy puzzle so they had only 4 minutes to finish it. Children 

were told that once they finished the puzzle, there was a surprise for them. The 

experimenter watched the child and made comments such as “finish the puzzle,” and 

“that puzzle isn’t very hard” in 15 second intervals. In the Broken Toy task, the 

experimenter told the child that she has a really cool toy for them to play with because 

the child worked hard on the puzzle box and left the room to bring two hand computer 

toys. Next, the experimenter brought toys, demonstrated how to turn on and pick a game 

on the toy, and then gave the child the toy that does not work. The experimenter played 

with her toy for two minutes periodically making comments like “I really like this game!” 

“This toy has so many fun games on it!” After 2-minutes, the experimenter said, “Oh no! 

Is your toy not working?” and gave her own toy to the child.  

For the purposes of this study, children’s ANS functioning was assessed during 2 

emotional and 2 cognitive challenges across all assessments. At each assessment, 
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children’s ANS functioning was measured during 2 cognitive tasks: (a) the spatial 

problem-solving Tangrams task, (b) Go/No-Go task. The Tangrams task has been 

conceptualized as a cognitively more demanding task than the Go/No-Go task. Four of 

the 6 emotion tasks (Locked Box, Impossible to Open Gift Box, Puzzle Box, Broken 

Toy) were conceptualized as frustrating challenges during which children’s goals were 

blocked, whereas the Toy Removal and Not Sharing tasks were conceptualized as 

interpersonally upsetting tasks that involve an injustice/unfairness component.  

Measures 

Physiological Measures 

The cardiovascular data was collected using Mindware BioNex 8SLT Chassis 

(Gahanna, OH), which measured electrocardiogram (ECG) and impedance cardiogram 

(ICG) signals simultaneously. Seven spot electrodes were placed on participants to record 

cardiogram signals. ECG signals were obtained using the modified Lead II configuration 

with two ECG electrodes placed on the distal end of the right clavicle and lower left rib, 

with a ground electrode placed on the lower right rib. To quantify the HR data, the ECG 

signal was passed through an A/D converter with ECG sampled at 1,000 Hz and Zo 

sampled at 500 Hz. ICG signals were recorded using four electrodes. Two impedance 

electrodes were placed on the front of the participants’ body, specifically on the left 

collarbone horizontal to the jugular notch and at the bottom of the sternum. Two current 

electrodes were placed on the back, specifically on the participant’s neck and 

approximately one inch below the lower receiving electrode.  
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Respiratory sinus arrhythmia (RSA). RSA is heart rate variability measured in 

the interbeat interval (IBI) series associated with the phases of breathing. RSA was 

derived from the IBI series over the course of each 30 second epoch, using Mindware 

Technologies HRV 3.0 analysis software. This program calculates RSA by subjecting the 

IBI series for each epoch to Fast Fourier Transform (FFT) and applying a Hamming 

window for the .24-1.04 Hz frequency range (the frequency band appropriate for use in 

children this age; Bar-Haim, Marshall, & Fox, 2000) of the resulting spectral distribution, 

which offers a reliable estimate of the extent of parasympathetic influence on the heart 

(Bernston, Cacioppo, Quigley, & Fabro, 1994). Spectral distributions of the respiration 

signals were examined to ensure that integral power peaked within the .24 -1.04 

frequency range as expected for all participants. The integral of the power in the .24 – 

1.04 RSA band was extracted and the natural logarithm of this measure was the RSA 

statistic.  

The RSA data files were cleaned and edited using software provided by 

MindWare Technologies to derive mean RSA for each 30-second epoch. Trained 

researchers have visually inspected each epoch to correct misidentified beats manually, 

identify and exclude spurious data due to equipment or sticker problems or child 

movement. Scores derived from these epochs were averaged to create mean RSA scores 

for each task. Task specific change in these measures were calculated by subtracting task 

RSA from baseline RSA (RSA ∆ = Baseline RSA-Task RSA) such that positive scores 

indicate parasympathetic withdrawal, with larger scores indicating greater withdrawal. 

For short tasks (e.g., impossible to open gift), two artifact-free epochs were needed to 
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retain participants’ task RSA score.  For the long tasks (e.g., tangrams), participants’ task 

RSA scores were retained if at least 50% of the epochs were artifact-free.   

Preejection period (PEP). PEP, derived from the ICG signals, refers to the time 

interval in milliseconds between the onset of ventricular depolarization (Q wave of the 

ECG) and onset of left ventricular ejection (B point of the dz/dt wave; Sherwood et al., 

1990). The Q and B points were identified automatically using algorithms provided by 

the MindWare IMP 3.1 analysis software. The Q point was identified at the lowest point 

of the signal appearing within 25 seconds prior to the R-point (Bush, Caron, & Alkon, 

2016). The B point was estimated using Lozano’s method, which approximates the B-

point based on the dz/dt peak (percent dz/dt was identified as 55%, plus 4; see Lozano et 

al., 2007).  

The PEP data files are cleaned and edited using the IMP 3.1 software provided by 

MindWare Technologies to derive mean PEP for each 30-second epoch. Trained 

researchers have visually inspected each epoch to correct misidentified beats manually, 

identify and exclude spurious data due to equipment or sticker problems or child 

movement. Scores derived from these epochs were averaged to create mean PEP scores 

for each task. Task specific change in these measures were calculated by subtracting task 

PEP from baseline PEP (PEP ∆ = Baseline PEP-Task PEP) so that positive scores 

indicate sympathetic activation, with larger scores indicating greater activation. For short 

tasks (e.g., impossible to open gift), two artifact-free epochs were needed to retain 

participants’ task PEP score. For the long tasks (e.g., tangrams), participants’ task PEP 

scores were retained if at least 50% of the epochs were artifact-free.   
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Child Self-Regulation Measures 

(a) Child emotion regulation in preschool and kindergarten. Observed 

emotion regulation and teacher-report of child emotion reactivity scores were used. 

Observed emotion regulation. Children’s affect and regulation was coded for 

each emotion regulation task conducted in the laboratory. The three emotion regulation 

indicators used in this study are: global regulation, latency to distress, and verbal 

negativity. Global regulation reflects the ability to maintain or regain neutral or positive 

affect and was rated on a scale from 1 (unregulated) to 5 (well-regulated). Latency to 

distress refers to how long it takes for the child to show the first sign of distress and was 

calculated as the difference between the first display of distress and the start time of the 

task in seconds. Verbal negativity refers to the frequency of the child’s negative verbal 

expressions of frustration and was rated on a scale from 0 (no negative vocalizations) to 3 

(6 or more instances of negative vocalizations). In preschool, reliability was calculated on 

53 double rated cases and intraclass correlation coefficients (ICC’s) were .88 and .83 for 

global regulation, .87 and .90 for verbal negativity, and .70 and .91 for latency to distress, 

for Locked Box and Toy Removal respectively. In kindergarten, reliability was calculated 

on 40 double rated cases and ICCs were .89 and .91 for global regulation, .92 and .96 for 

verbal negativity, and .80 and .95 for latency to distress, for Not Sharing and Impossible 

Gift respectively. Given the good coder reliability for all indicators as well as moderate 

within-indicator correlations across two tasks (r = .39 - .60), composite scores were 

created for global regulation, verbal negativity, and latency to distress by averaging 

across the scores obtained from two laboratory tasks. Next, given that these 3 indicators 
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of emotion regulation were strongly correlated both in preschool (r = .71-.81) and in 

kindergarten (r = .61-.73), a global emotion regulation composite was created by 

averaging the standardized scores of these three observed indicators for each assessment.  

Teacher-report of child emotion reactivity in kindergarten. The Emotion 

Regulation Checklist (ERC) will be used as a teacher-report measure of child emotion 

regulation (Shields & Cicchetti; 1997, 1998). The version used in the STAR Project 

included 24 items. Each item describes how children control their emotional states using 

a 4-point Likert scale ranging from 1 (Never) to 4 (Always). The ERC includes two 

subscales: reactivity (15 items; e.g., “is easily frustrated”) and regulation (8 items; e.g., 

“can modulate excitement in emotionally arousing contexts”). Items are averaged such 

that higher scores indicate greater reactivity and regulation respectively. Internal 

consistency reliability reported in the original publication of the ERC was .96 for the 

reactivity subscale, and .83 for the regulation subscale (Shields & Cicchetti, 1997). 

(b) Observed executive functions in preschool and kindergarten.  Three core 

components of children’s executive functions were assessed. These are: 

updating/working memory, inhibitory control, and cognitive flexibility. 

Working memory. Children’s working memory capacity/updating was measured 

using the Numbers Reversed test of The Woodcock Johnson III (Woodcock, McGrew, & 

Mather, 2001). During this task, participants were instructed to listen to the experimenter 

recite a string of numbers and then repeat the numbers backward. In each block, there 

were five different series of numbers with equal number of digits. In the first block, 

children were asked to repeat two numbers backwards, and in each subsequent block 
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there was one more number to recite.  The task was terminated if participants missed all 

five trials in a given block. An overall accuracy score was calculated by adding children’s 

correct responses (each trial 1 point) such that higher scores reflect more efficient 

working memory and updating.  

Inhibitory control. Children’s inhibitory control was measured via a 

computerized animal go/ no-go association task (Lahat, Todd, Mahy, Lau, & Zelazo, 

2009), which was presented using E-Prime Version 2.0 (PST, Pittsburgh, PA). During 

this task, children were instructed to press the button as soon as they saw an animal (go 

stimulus) except for the dog (no-go stimulus). Before each trial, a fixation point, 

accompanied by a “ding” sound, appeared at the center of the screen, and stayed for 1500 

ms. This was followed by an animal stimulus (i.e., cow, horse, bear, pig, or dog) that 

appeared on the screeen for 1500 ms., or until a response was registered. Following a 

brief introduction, children were presented with 10 practice trials composed of 6 go and 4 

no-go stimuli. The practice block was repeated until children answered 9 out of 10 

correct. The actual task included 144 trials (75% Go, 25% No-Go) divided into four 

blocks. After correct answers, a yellow smiley face appeared on the screen, whereas after 

incorrect or missed responses, a red frowning face was shown. Participants received a 

value of .185 (5 points/27 go trials) for every correct go stimulus, and a value of .56 (5 

points/nine n- go trials) for every correct no-go stimulus (Zelazo et al., 2013). A 

discriminability index (d′) was calculated as a measure of task performance such that d′ = 

Z(Correct/Hit) – Z (Incorrect/False Alarm). Higher scores indicated better performance. 
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Cognitive flexibility. Children’s cognitive flexibility was measured via the 

computerized version of The Dimensional Card Sort task designed to assess the extent to 

which children can use rules flexibly to direct their behavior (Espinet, Anderson, & 

Zelazo, 2012).  During this task, children were presented with a fixation screen with 

stimuli at the bottom that varied across two dimensions: color and shape (e.g., red rabbit 

and blue boat).  During the preswitch block (15 trials), children were asked to sort stimuli 

according to one dimension (i.e., shape) by pressing the corresponding sticker covered 

button. Children who performed at or below chance (7 or fewer correct trials out of 15) 

during pre-switch were considered to fail this task and were given a score of 0 for their 

post-switch score. This strategy allowed us to ensure that all children who received a 

post-switch score understood the basic rule of the game.  During the postswitch block (30 

trials), children were asked to sort the stimuli according to the other dimension (i.e., 

color). Performance on the postswitch task was scored as the number of correct responses 

out of 30 trials. The postswitch was followed by a more complex “borders” block of the 

task (12 trials); children were instructed to sort stimuli on one dimension (i.e., color) if 

the picture had a border around it but the other dimension (i.e., shape) if the picture did 

not have a border (Zelazo, 2006). Post-switch performance was scored as the number of 

correct responses out of 30 trials, whereas borders performance was scored as the number 

of correct responses out of 12. Scores of postswitch and borders tasks were averaged to 

create an overall cognitive flexibility score. Higher scores indicated greater cognitive 

flexibility. 

(c) Teacher-report of child behavioral regulation in kindergarten. 
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Attention control. Children’s attention control at kindergarten was assessed via 

the attention problems subscale (10 items) of The Child Behavior Checklist Teacher 

Report Form (Achenbach & Rescorla, 2001). The teacher was asked to indicate how well 

each item described the target child currently or within the last six months using a scale 

of 0 (not true), 1 (somewhat or sometimes true), and 2 (very true or often true). Example 

items include “inattentive or easily distracted” and “can’t concentrate, can’t pay attention 

for long.” Teachers’ ratings on these items were summed and reverse scored such that 

higher scores indicated better attention control. Items of this scale had good internal 

reliability (Cronbach’s alpha .95).  

Work habits. The work habits scale of The Mock Report Card was used to 

measure teachers’ judgments of children’s work habits in the classroom setting. Teachers 

reported on children’s classroom work habits (six items) on a 5-point scale ranging from 

1 (very poor) to 5 (very good). Example items include “works well independently,” 

“works neatly and carefully,” and “uses time wisely.” Teachers’ ratings on these items 

were averaged to create the work habits scale. Higher scores indicated better work habits. 

The work habits scale demonstrated good internal reliability ( .95).  

Discipline/persistence. Children’s discipline and persistence was assessed using 

the Discipline/Persistence subscale of the Learning Behaviors Scale (McDermott, 1999; 

Rikoon, McDer- mott, & Fantuzzo, 2012). Teachers reported on children’s discipline and 

persistence (eight items) on a Likert-type scale, ranging from 0 (does not apply) to 2 

(most often applies). Example items include “sticks to a task with no more than minor 

distractions” and “tries hard but concentration soon fades and performance deteriorates.” 
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Teachers’ ratings on these items were summed and reverse scored. Higher scores 

indicated greater discipline and persistence during activities. The items of this scale had 

good internal reliability (alpha=.82). The Learning Behaviors Scale demonstrates internal 

reliability, convergent and divergent validity, and predictive validity regarding children’s 

future school adjustment (McDermott, Rikoon, & Fantuzzo, 2016; Rikoon et al., 2012).  
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CHAPTER V 

RESULTS 

Preliminary Analyses 

Preliminary data analyses included the following procedures: (a) identifying the 

reasons for missing data, (b) examining outliers, and (c) checking normality of the 

distributions by evaluating descriptive statistics and histograms. Reasons for missing data 

are detailed in supplemental materials (see Appendix B). Outliers were examined for 

mean RSA, mean PEP, RSA responsivity, and PEP responsivity scores for each task at 

each time point. In each variable, there were either no outliers or no more than 3 outliers. 

In the case of outliers, the validity of the data was checked by examining the raw dataset 

as well as watching the video during which the physiological data was collected. If 

outliers were due to artifact or technical problems, they were removed from the dataset. 

Otherwise, analyses were conducted with and without the outliers to make sure results 

were not driven by the outliers. Analyses without the outliers are presented in the results 

section. All physiological variables had normal distributions.  

Table 1 includes descriptive information for mean RSA. Table 2 includes 

descriptive information for RSA responsivity. Table 3 includes descriptive information 

for mean PEP, and Table 4 includes descriptive information for PEP responsivity. Each 

of these tables include descriptive information for scores obtained during baseline and the 

laboratory challenges conducted in preschool, kindergarten, and grade 1. Composite 
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scores for ANS activity during emotion tasks were calculated by averaging the ANS 

scores obtained from the emotional challenges conducted during that year’s assessment. 

For example, mean RSA for Emotional Tasks Composite is the average of mean RSA 

during the Locked Box and Toy Removal tasks.  

Primary Analyses 

Goal 1. To Examine Children’s Sympathetic and Parasympathetic ANS Responses 

to Emotional and Cognitive Challenges in Preschool, Kindergarten, and Grade 1 

A series of random-intercept hierarchical linear models (HLM) were conducted to 

examine which laboratory challenges elicited a change in ANS activity from baseline to 

task. Next, follow-up pair-wise comparisons of the fixed effects (hypotheses testing) 

were conducted to examine whether the magnitude of ANS responsivity differed across 

challenges. Although a repeated-measures ANOVA followed by post-hoc paired t-tests 

could also be conducted, using random intercept HLM provided two main advantages. 

The first one was missing data was handled by full-information maximum likelihood 

(FIML). Thus, all individuals with data for least one laboratory task was included the in 

the analyses. The second advantage was that the magnitude of the ANS responsivity 

across challenges could be compared within the same model, taking into account the 

dependency across the measures.  

At each time point (preschool, kindergarten, and grade 1), two random intercept 

models were tested: one for RSA and one for PEP. In each model, ANS activity (e.g., 

RSA or PEP) was the outcome variable, the intercept reflected ANS activity during 

baseline, and each laboratory task was entered as a predictor of ANS activity. At each 
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time point, 2 cognitive challenges (Tangrams & Go/No-Go) and 2 emotional challenges 

(e.g., Locked Box & Toy Removal) were entered as predictors. As an example, in 

preschool, the following two models were tested: 
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The intercept (γ00) reflected average baseline ANS activity and a significant p-

value associated with this coefficient suggested that baseline ANS activity was 

significantly different from zero. The fixed effect of each laboratory challenge indicated 

the extent to which ANS activity during the laboratory challenge was different than the 

intercept or baseline ANS activity. For example, in the RSA models, the coefficient for 

Tangrams (γ10) indicated the magnitude of RSA responsivity during Tangrams and a 

significant p-value linked with this coefficient suggested that there was a significant 

change in RSA from baseline to Tangrams. Negative values indicated that RSA 

decreased from baseline to task (parasympathetic withdrawal), whereas positive values 

indicated that RSA increased from baseline to task (parasympathetic augmentation). In 

the PEP models, negative values indicated that PEP decreased or shortened from baseline 

to task (sympathetic activation), whereas positive values indicated that PEP increased or 

lengthened from baseline to task (sympathetic inhibition). 
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Parasympathetic Responsivity 

Results from models testing the effect of laboratory challenge on RSA in 

preschool, kindergarten, and first grade are presented in Table 5. Across all time points, 

all fixed effect coefficients were negative and significant, p < .001, suggesting that all 

laboratory challenges led to a reduction in children’s RSA values or elicited RSA 

withdrawal response. 

Figure 1a includes results from the hypotheses tests comparing the magnitude of 

the fixed effects reflecting RSA responsivity in preschool. The magnitude of RSA 

responsivity during the Tangrams task was significantly larger than RSA responsivity 

during the Go/No-Go and Toy Removal tasks, but smaller than during the Locked Box 

task. Further, RSA responsivity in the Locked Box task was significantly larger in 

magnitude than RSA responsivity in the Go/No-Go task, and in the Toy Removal task. 

The magnitude of RSA responsivity in the Go/No-Go and the Toy Removal tasks did not 

differ from one another. Overall, these results suggest that RSA withdrawal was largest in 

the Locked Box task, which was followed by the Tangrams task, and the Go/No-Go and 

the Toy Removal tasks.  

Figure 2a includes results from the hypotheses tests comparing the magnitude of 

RSA responsivity across laboratory challenges in kindergarten. The magnitude of RSA 

responsivity in the Tangrams task was significantly larger than RSA responsivity in the 

Go/No-Go task and the Not Sharing task, but smaller than RSA responsivity in the 

Impossible Gift task. Go/No-Go RSA withdrawal was significantly smaller than RSA 

withdrawal in the Impossible Gift. Among the emotion regulation tasks, RSA withdrawal 
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in the Not Sharing task was smaller than RSA withdrawal in the Impossible Gift. There 

was no difference in the RSA responsivity between the Go/No-Go and Not Sharing tasks. 

Overall, these results suggest that RSA withdrawal was largest in the Impossible to Open 

Gift task, followed by the Tangrams task, the Go/No-Go and Not Sharing task. 

Figure 3a includes results from the hypotheses tests comparing the magnitude of 

RSA responsivity across laboratory challenges in grade 1. The magnitude of RSA 

responsivity in the Tangrams task was significantly larger than RSA responsivity in the 

Go/No-Go task and the Broken Toy, but not significantly different than the Puzzle Box. 

On the other hand, RSA responsivity in the Go/No-Go task was significantly smaller than 

RSA responsivity in the Puzzle Box and Broken Toy tasks. Finally, the Puzzle Box task 

elicited greater RSA withdrawal than the Broken Toy task. Overall, these results suggest 

that RSA withdrawal was greatest in the Tangrams and the Puzzle Box tasks, followed by 

the Broken Toy and the Go/No-Go tasks.  

Sympathetic Responsivity 

Table 6 includes results from models testing the effect of laboratory challenge on 

PEP in preschool, kindergarten, and first grade. The Tangrams task led to a reduction in 

PEP values (PEP shortening) from baseline to task in preschool (p <.001), in kindergarten 

(p =.052), and in grade 1 (p <.001), suggesting that the Tangrams challenge elicited 

sympathetic activation across all time points. The Go/No-Go task did not lead to a change 

in PEP from baseline in preschool or kindergarten but led to PEP shortening or 

sympathetic activation in grade 1. Among the emotional tasks, only 2 out of 6 tasks led to 

a change in PEP from baseline to task. The Toy Removal task in preschool and the Not 
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Sharing task in kindergarten led to an increase in PEP from baseline to task (PEP 

lengthening), suggesting these challenges elicited sympathetic inhibition. The other 4 

emotion regulation tasks (Locked Box, Impossible to Open Gift, Puzzle Box, & Broken 

Toy) did not lead to a change in PEP, suggesting that there was no mean-level change 

children’s sympathetic activity during these emotional challenges. 

Figure 1b includes results from the hypotheses tests comparing the magnitude of 

the fixed effects reflecting PEP responsivity in preschool. The magnitude of PEP 

shortening in the Tangrams task was significantly larger than PEP shortening in the 

Go/No-Go task, Locked Box task and the Toy Removal tasks. PEP responsivity in the 

Go/No-Go and the Locked Box tasks were larger than that of the Toy Removal task. 

However, there was no difference in PEP responsivity across the Go/No-Go and the 

Locked Box tasks. Overall, these results suggest that PEP activation was largest in the 

Tangrams task, followed by the Locked Box and Go/No-Go tasks. The smallest PEP 

responsivity was observed in the Toy Removal task.  

Figure 2b includes results from the hypotheses tests comparing the magnitude of 

the fixed effects reflecting PEP responsivity in kindergarten. PEP responsivity or 

shortening in the Tangrams task was significantly larger than PEP shortening in the 

Go/No-Go, and the Not Sharing tasks but not different from that of the Impossible Gift. 

On the other hand, PEP shortening in the Go/No-Go task was not different than PEP 

shortening in the Not Sharing or the Impossible to Open Gift task. Among the emotion 

regulation tasks, PEP shortening in the Not Sharing task was significantly smaller than 

that of Impossible Gift. Overall, based on the mean PEP responsivity scores, the greatest 
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PEP shortening was observed during the Tangrams task, followed by the Impossible Gift, 

Go/No-Go and the Not Sharing tasks.  

Figure 3b includes results from the hypotheses tests comparing the magnitude of 

the fixed effects reflecting PEP responsivity in grade 1. The Tangrams task yielded a 

greater PEP shortening response than both the Puzzle Box and the Broken Toy tasks but 

there was no difference in PEP responsivity between the Tangrams and the Go/No-Go 

tasks. The Go/No-Go task led to a greater PEP shortening response compared to both the 

Puzzle Box and the Broken Toy. The two emotion regulation tasks, Puzzle Box and 

Broken Toy, did not differ in relation to PEP responsivity. Overall, the results suggested 

that the Go/No-Go and the Tangrams tasks elicited the greatest PEP shortening response, 

followed by the Puzzle Box and Broken Toy tasks.  

Goal 2. To Examine Whether and During Which Challenges Children’s 

Sympathetic and Parasympathetic Cardiac Responses Correlate or Work 

Reciprocally 

In order to examine whether and during which children’s sympathetic and 

parasympathetic cardiac responses were associated, a series of bivariate correlation 

analyses were conducted. At each time point, correlations among PEP responsivity and 

RSA responsivity values were examined for each task to determine whether sympathetic 

and parasympathetic change scores work reciprocally with one another. For example, for 

the Tangrams task, if PEP and RSA change scores were correlated positively, this would 

indicate that greater PEP shortening is associated with greater RSA withdrawal during 
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this task. Examining the correlations across each time point would help determine 

whether these associations emerge consistently across different time points. 

As shown in Table 7, in preschool, there was a modest positive correlation 

between RSA and PEP responsivity across all tasks (ranged from .15 to .26) except for 

the Go/No-Go (r = .05) and the Toy Removal tasks (r = .05), suggesting that greater PEP 

shortening (sympathetic activation) was associated with greater RSA withdrawal 

(parasympathetic inhibition). As shown in Table 8, in kindergarten, PEP and RSA 

responsivity were correlated across the Not Sharing (r =.21, p <.01) and Impossible gift (r 

=.22, p <.01) but not during the Tangrams and Go/No-Go tasks. As shown in Table 9, 

unlike the small correlations that emerged between RSA and PEP responsivity scores 

during preschool and kindergarten, there were no significant correlations among RSA and 

PEP responsivity in first grade.  

Goal 3. To Examine the Stability and Continuity in Children’s Sympathetic and 

Parasympathetic Cardiac Responses in Early Childhood 

3a). Stability in ANS responses  

Cross-task stability in ANS responsivity within the same assessment. Cross-task 

stability in children’s ANS responses within the same assessment was examined by 

conducting pairwise Pearson’s correlations among ANS responsivity scores obtained 

from different tasks. Cross-task stability coefficients in RSA responsivity ranged from 

.47 to .70 in preschool, .40 to .60 in kindergarten, and .53 to .69 in first grade. Likewise, 

cross-task stability in PEP responsivity ranged from .52 to .71 in preschool, .38 to .58 in 

kindergarten, and .58 to .74 in first grade. These findings suggest that there was moderate 
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stability in children’s ANS responsivity toward different tasks within the same 

assessment. 

Stability in ANS responses across time. In order to understand whether there was 

longitudinal stability in children’s ANS responses, pairwise Pearson’s correlations among 

scores obtained from the same task in preschool, kindergarten, and first grade were 

examined. For example, stability in children’s sympathetic responsivity toward the 

Tangrams task was evaluated by examining the correlations among Tangrams PEP 

responsivity obtained in preschool, kindergarten, and first grade (see Table 11). Given 

that different emotion regulation tasks were used each year, longitudinal stability was 

examined for composite scores of emotion regulation tasks (e.g., average of RSA for 

tasks in preschool and kindergarten) as well as for individual tasks (e.g., Locked Box in 

preschool and Not Sharing in kindergarten). One major goal of these analyses was to 

understand whether all or only specific laboratory tasks elicit ANS responses that are 

stable over time. The second important goal was to understand whether the longitudinal 

stability in children’s sympathetic responses (PEP responsivity) were similar to the 

longitudinal stability in children’s parasympathetic responses (RSA responsivity).    

For most laboratory challenges, there was modest to moderate levels stability in 

RSA responsivity over time (see Table 10). Baseline RSA was moderately stable over 

time (r = .56 - .66, p < .01). In Tangrams, there was moderate stability from preschool 

and kindergarten (r = .32, p <.01), from kindergarten to first grade RSA (r = .46, p <.01); 

and from preschool and first grade (r = .31, p <.01).  In Go-No-Go, there was no stability 

in RSA responsivity from preschool to kindergarten (r =.10, NS), but there was modest 
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stability from kindergarten to first grade (r = .25, p <.01). The overall emotion regulation 

RSA responsivity also demonstrated low to moderate stability from preschool and 

kindergarten (r = .25, p <.01) and from kindergarten and first grade RSA responsivity (r 

= .31, p <.01).  In regards to individual emotion regulation tasks, there were correlations 

among some tasks but not others. In particular, RSA responsivity in the Locked Box task 

in preschool was associated with the Impossible to Open Gift (r = .24, p < .01) but not 

with the Not Sharing task (r = .08, NS). The Toy Removal task was associated with all 

kindergarten emotional tasks (r = .21-.24, p < .01). All kindergarten emotion regulation 

tasks were associated modestly with the first-grade emotion regulation tasks (r = .15-.30, 

p < .01).  

Although there was moderate stability in baseline PEP over time (r = .49 - .57, p 

< .01), there was no longitudinal stability in PEP responsivity in most laboratory 

challenges. In Tangrams, there was no stability in PEP responsivity from preschool to 

kindergarten (r = .12, NS), but there was modest stability from kindergarten to first grade 

(r = .26, p < .01). There was no stability in PEP responsivity in Go/No-Go or in emotion 

tasks. 

3b). Developmental continuity/change and growth in ANS responses. 

Developmental continuity and change in ANS responses toward laboratory 

challenges were examined by conducting repeated measures ANOVAs in SPSS.  In these 

analyses, the independent variable was time of assessment, whereas the dependent 

variable was the ANS score of interest. Given that sphericity is a main assumption of 

reseated-measures ANOVA, if there was a violation of sphericity (as indicated by a 
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significant Mauchly’s test), the Greenhouse–Geisser correction was applied (Greenhouse 

& Geisser, 1959). If there was a significant main effect of time, pairwise t-tests were 

conducted to determine whether and when there was change/discontinuity in children’s 

physiological responses. If results from the repeated-measures and paired wise t-tests 

provided evidence for a consistent pattern of change across time (e.g., increase in values 

from preschool to first grade), then linear growth modeling was used to test whether there 

was a linear pattern of change in that variable across time. For these analyses the Mplus 

software was used. 

Continuity and Change in Baseline ANS Measures 

Baseline RSA. The repeated ANOVA comparing baseline RSA scores across the 

three time points was significant, F(2, 205) = 15.94, partial (�= .03, p < .01. The post hoc 

t-tests indicated that baseline RSA in kindergarten (M = 7.32, SD = .07) was significantly 

larger than baseline RSA in preschool (M = 7.15, SD = .08), p = .01. Baseline RSA in 

first grade (M = 7.37, SD= .07) was greater than baseline RSA in preschool, p < .01; but 

did not differ from baseline RSA in kindergarten, p = .43. Overall, these results suggest 

that there was a mean-level increase in baseline RSA from preschool to kindergarten, but 

not from kindergarten to first grade.  

Given that the repeated-measures analyses indicated an overall increase in 

children’s baseline RSA, a linear growth model was conducted to examine (a) the overall 

mean-level change in baseline RSA across time, and (b) to test whether there is between-

individual variability in the intercept and slope. The fit of the linear growth model was 

acceptable, χ2(1) = 1.50, p = .22, CFI =1.00, RMSEA =.04 (.00-.17), SRMR = .02. As 
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presented in Table 12, the unstandardized coefficient for the mean of the intercept was 

7.22 (p < .001), suggesting that children showed moderate to high levels of baseline RSA 

in preschool. There was a significant and positive main effect for the slope (B =.09, p = 

.004), suggesting that on average, children’s baseline RSA increased over time. The 

variance of the intercept was significant (B = .92, p < .001), suggesting that there was 

between-individual variability in children’s baseline RSA scores in preschool.  The 

variance of the slope was also significant (B = .11, p =.021), suggesting that children 

varied in how their baseline RSA scores changed from preschool to first grade.  

Baseline PEP. The repeated ANOVA comparing baseline PEP scores across the 

three time points was significant, F(2, 168) = 16.05, partial (�= .09, p < .001. The post 

hoc t-tests indicated that baseline PEP in kindergarten (M = 92.52, SD = .51) was 

significantly larger than baseline RSA in preschool (M = 91.31, SD = .49), p = .01. 

Similarly, baseline PEP in first grade (M = 94.01, SD = .49) was larger than baseline PEP 

in kindergarten, p = .004. Overall, these results suggest that there was a mean-level 

increase in baseline PEP over time.  

Given that the significant results from the repeated-measures analysis and paired-

wise t-tests suggesting an overall increase in children’s baseline RSA, a linear growth 

model was conducted to examine (a) the overall mean-level change in baseline PEP 

across time, and (b) to test whether there is between-individual variability in the intercept 

and slope of baseline PEP. The unconditional linear growth model for baseline PEP 

yielded a negative variance for the slope, which is an impossible solution. One common 

approach for resolving this type of error is to constrain the variance of the slope to zero, 
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which allows for 2 additional degrees of freedom (see Hinnant et al., 2017 for a similar 

finding). The fit of this model was good, χ2(3) = 1.31, p = .73, CFI =1.00, RMSEA =.00 

(.00-.07), SRMR = .11.  As presented in Table 12, the unstandardized coefficient for the 

mean of the intercept was 91.12 (p < .001), suggesting that children’s baseline PEP 

scores in preschool was significantly different from zero. The mean of the slope was 

positive and significant (B =1.29, p = .004), indicating that children’s baseline PEP scores 

showed an average increase of 1.29 per year during the study. The variance of the 

intercept was significant (B = 24.09, p < .001), suggesting that there was significant 

variability in children’s baseline PEP scores in preschool. As indicated by the impossible 

negative variance in the slope of baseline PEP, there was no variability in the trajectories 

of baseline PEP across time.  

Continuity and Change in RSA Responsivity Scores 

The continuity and change in children’s RSA responsivity was examined for the 

two cognitive challenges, Tangrams and Go/No-Go, because they were conducted at each 

time point.  

Tangrams. The repeated ANOVA comparing RSA responsivity during Tangrams 

across the three time points was not significant, F(2, 202) = .44, p < .64, suggesting that 

there was no change in children’s RSA responsivity during Tangrams across time.  

Go/No-Go. The repeated ANOVA comparing RSA responsivity during Go/No-

Go across the three time points was significant, F(2, 191) = 4.58, (�= .02, p = .01. 

Results from the paired t-tests indicated that there was no difference in RSA responsivity 

scores obtained in preschool, and in kindergarten, p = .48. However, RSA responsivity in 
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first grade (M = .26, SD = .54) was significantly smaller than RSA responsivity in 

kindergarten (M = .40, SD = .51), p = .003, and in preschool (M = .36, SD = .47), p = .03, 

suggesting that children experienced lower levels of RSA withdrawal in in first grade 

than in preschool and kindergarten. 

Continuity and Change in PEP Responsivity Scores 

The continuity and change in children’s PEP responsivity was examined only for 

Tangrams and Go/No-Go because these tasks were used across all time points.  

Tangrams. The repeated ANOVA comparing PEP responsivity during Tangrams 

across the three time points was not significant, F(2, 145) = 12.73, p =.08, suggesting that 

there was no change in children’s Tangrams RSA responsivity scores across time.  

Go/No-Go. The repeated ANOVA comparing PEP responsivity during Go/No-Go 

across the three time points was significant, F(2, 142) = 12.83, partial (� = .08, p < .001. 

RSA responsivity scores during Go/No-Go decreased from preschool (M = .27, SD = 

2.36) to kindergarten (M = -.41, SD = 2.80), p = .02; but increased from kindergarten to 

first grade (M = 1.23, SD = 3.32), p < .01.  

Goal 4. To Examine Whether There are Profiles of Children with Distinct Patterns 

of Sympathetic and Parasympathetic Functioning in Preschool, and Whether These 

Profiles Differ with respect to Children’s Self-Regulation Outcomes 

Latent profile analyses were conducted to test whether there are profiles of 

children with distinct patterns of sympathetic and parasympathetic functioning in 

preschool. Latent profile analysis is a type of finite mixture modeling that allows us to 

test whether there are hidden subgroups or profiles of individuals based on a set of 
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continuous indicators. The Mplus 8.0 software was used to conduct this type of analyses. 

Missing data were estimated using full information maximum likelihood, a modeling 

technique that uses available data to estimate coefficients that have the highest 

probability of representing the sample. Model fit was evaluated using the following 

model fit indices: entropy, Akaike Information Criterion (AIC), Bayesian Information 

Criterion (BIC), Adjusted Bayesian Information Criterion (ABIC) and the adjusted Lo-

Mendell-Rubin (LMR) likelihood ratio test.  Smaller AIC, BIC, and ABIC values, and 

larger entropy values indicate better model fit, whereas a significant LMR test indicates 

that adding one more profile improves model fit.  Given that these fit indices may not 

converge on a best fitting model, decisions regarding the best fit should also be guided by 

the interpretability of the results.  

A total of 10 variables from the preschool assessment were submitted to latent 

profile analyses.  Five of these variables reflected children’s sympathetic ANS activity 

and included baseline PEP and PEP responsivity scores to 4 laboratory challenges 

(Tangrams, Go/No-Go, Locked Box and Toy Removal). The other five variables 

reflected children’s parasympathetic ANS activity and included baseline RSA and RSA 

responsivity toward the same 4 laboratory challenges. This analytic strategy is consistent 

with theoretical work suggesting that both baseline and responsivity scores are likely 

important indicators to identify subgroups of ANS functioning in the population. 

Moreover, given the context-dependent nature of physiological responses, this strategy 

allowed for capturing individual differences in responsivity toward multiple everyday 
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challenges. Another rationale for including ANS responsivity to different challenges in 

the analyses was to prevent loss of information due to aggregation.   

Number of ANS Profiles 

An evaluation of the fit indices suggested that a four-profile solution fit the data 

well and was interpretable. The fit statistics for models with different numbers of profiles 

can be found in Table 13. As shown in this table, as the number of profiles increased, the 

entropy values increased and the AIC, BIC, and Adjusted BIC values decreased. These fit 

statistics suggested that the four- and five-profiles solutions provided better fit to the data 

than the models with fewer profiles. Moreover, the LMR test comparing the three-profile 

solution to the four-profile solution was significant (p = .02), suggesting that the four-

profile solution provided better fit to the data than the three-profile solution. On the other 

hand, LMR test comparing the four-profile solution to the five-solution was not 

significant (p = .29), a result that also favored the four-profile solution.  

Characterization of the ANS Profiles 

Model estimates from the four-profile latent profile analysis are presented in 

Table 14. In order to best characterize the ANS profiles and understand how they differ 

from one another, two strategies were utilized. The first strategy was evaluating the 

profiles’ mean values for each indicator (e.g., baseline RSA) and checking whether the p-

values associated with each indicator was significantly different from zero (p < .05). For 

the RSA responsivity scores, positive mean values that are significant would suggest that, 

on average, individuals in that profile experience RSA withdrawal, whereas negative 

values that are significant would indicate that, on average, individuals in that profile 
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experience parasympathetic activation or RSA augmentation. For the PEP responsivity 

scores, positive mean values that are significant would indicate that, on average, 

individuals in that profile experience sympathetic activation or PEP shortening, whereas 

negative values that are significant would indicate the experience of sympathetic 

inhibition or PEP lengthening. As such, by evaluating the mean values of the indicators 

and their significance presented in Table 14, one can determine whether individuals in a 

profile experience activation, inhibition, or change in their sympathetic and 

parasympathetic ANS systems.  

The second strategy that was used to characterize the groups was to compare the 

profiles with respect to their sympathetic and parasympathetic functioning by conducting 

separate ANOVAs for each ANS indicator (e.g., baseline RSA). If the overall ANOVA 

was significant for that indicator, Tukey’s post hoc pairwise analyses were conducted to 

identify which profiles differed from one another. These results are reported in the 

characterization of each profile. 

Sensitive profile (high ANS responsivity). The sensitive profile, which 

constituted 30% of the sample, was the 2nd largest profile after the buffered profile. This 

profile showed high levels of parasympathetic inhibition (RSA withdrawal) and moderate 

to high levels of sympathetic activation (PEP shortening) across all tasks. Compared to 

the other three profiles, individuals in this profile showed significantly greater RSA 

withdrawal across all tasks (p <.05) except for the Toy Removal task. In the Toy 

Removal task, although the sensitive profile showed greater RSA withdrawal than the 

buffered and the vigilant groups (p <.05), its RSA withdrawal was only a marginally 
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different than the inhibited group (p = .07). Compared to the buffered and the 

sympathetically inhibited profiles, the sensitive profile showed greater sympathetic 

activation across all tasks (p < .05). However, compared to the vigilant profile, the 

sensitive profile showed lower sympathetic activation across all tasks (p < .05). 

Buffered profile (moderate ANS responsivity). The buffered group, which 

constituted 41% of the sample, was the largest profile. Individuals in this profile showed 

moderate RSA withdrawal across all tasks and sympathetic activation only in the 

Tangrams task. The PEP responsivity scores in the other 3 tasks were not significant (p < 

.05), suggesting that there was no change in their sympathetic activity during Go/No-Go, 

and the two emotional tasks. Across all tasks, the buffered profile’s RSA withdrawal was 

smaller than the sensitive group’s (p < .05), but comparable to the sympathetically 

inhibited group’s (p >.05). Compared to the vigilant group, the buffered profile showed 

greater RSA withdrawal in the Go/No-Go and the Toy Removal tasks (p <.05), and 

marginally greater RSA withdrawal in the Tangrams task (p =.05). In terms of 

sympathetic functioning, the buffered profile’s PEP responsivity scores were larger than 

the sympathetically inhibited group’s scores but smaller than the sensitive and the 

vigilant profiles’ scores (p < .05) 

Coinhibition profile. The coinhibition profile, which constituted 24% of the 

sample, was the 3rd largest profile. The sympathetic inhibition group experienced 

moderate levels of RSA withdrawal and some sympathetic inhibition across all tasks. 

This profile showed lower RSA withdrawal than the sensitive profile, comparable RSA 

withdrawal to the inhibited profile, and greater RSA withdrawal than the vigilant group. 
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The defining characteristic of this profile was that its PEP responsivity scores were all 

negative and significant (p < .05), indicating sympathetic inhibition. Paired t-tests 

indicated that the PEP responsivity scores of the co-inhibition profile were significantly 

smaller than the scores of the other three profiles (p < .05).  

Vigilant profile. By constituting only 4% of the sample, the vigilant profile was 

the smallest profile in the sample. This profile was characterized by low baseline RSA, 

low RSA responsivity, and high PEP activation. This profile’s baseline RSA score (M = 

5.50), which was significantly smaller than the baseline scores of the other three groups 

(p < .05). On the other hand, the vigilant profile’s baseline PEP score (M = 96.85) was 

significantly larger than the sympathetically inhibited group’s (M = 89.29) baseline PEP 

but comparable to the other profiles’ baseline PEP scores. The vigilant profile’s RSA 

responsivity score in the Tangrams and the Locked Box tasks were not different than zero 

(p = 96, p = 86, respectively), suggesting that this profile did not experience a change in 

its parasympathetic activity during these two tasks. On the other hand, for the Go/No-Go 

and the Toy Removal tasks, the RSA responsivity scores were negative and significant (p 

< .05), suggesting that individuals in this profile experienced parasympathetic 

augmentation during these two tasks. Finally, the vigilant profile’s PEP responsivity 

scores were significantly larger than the PEP responsivity scores of the other groups (p < 

.05), suggesting that individuals in this profile showed greater sympathetic activation 

than the other groups.  
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ANS Profiles and Self-Regulation Outcomes 

The next set of analyses were conducted to examine whether profiles differed in 

relation to self-regulation outcomes. Profiles were compared in relation to four indicators 

of self-regulation: (a) executive functions in preschool, (b) observed emotion regulation 

in preschool, (c) teacher-report of emotional reactivity in kindergarten, and (d) teacher-

report of behavioral regulation in kindergarten. Descriptive information for child self-

regulation outcomes can be found in Table 15. For each self-regulation outcome, the 

Wald equality test of means was used to determine whether profiles differed with respect 

to that specific self-regulation outcome. This procedure provides an overall chi-square 

significance test that help determine whether groups differ from one another, and 

pairwise comparisons of mean scores that allow to test which groups’ mean scores differ 

from one another. In these predictive models, the three-step method was used to adjust 

for measurement error (Asparouhov and Muthén 2014).  

Executive functions in preschool. The overall omnibus test comparing profiles 

in relation to executive functions was marginally significant F(3, 260) = 7.25, p = .06. As 

presented in Figure 4, the executive functions score of the sensitive group (M = .18, SE 

=.09) was significantly larger than that of the buffered group (M = -.09, SE = .09), χ2 = 

4.27, p = .04, and the vigilant group (M = -.34, SE = .22), χ2 = 5.06, p = .02. There were 

no other significant differences among the profiles’ executive functions scores. 

Observed emotion regulation in preschool. The overall omnibus test comparing 

profiles in relation to observed emotion regulation was not significant. 
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Teacher-report of emotional reactivity in kindergarten. The overall omnibus 

test comparing the profiles’ mean scores for teacher-report of emotional reactivity in 

kindergarten was significant F(3, 260) = 20.74, p < .001. As presented in Figure 5, the 

post hoc pairwise comparisons indicated that the emotional reactivity score of the 

sensitive group (M = 1.69, SE = .10) was significantly larger than that of the buffered 

group (M = 1.30, SE = .03), χ2 = 13.87, p < .001. There were no other significant 

differences among the emotional reactivity mean scores of the profiles. 

Teacher-report of behavioral regulation in kindergarten. The overall omnibus 

test comparing the profiles’ mean scores for teacher-report of emotional reactivity in 

kindergarten was significant F(3, 260) = 39.03, p < .001. As presented in Figure 6, the 

post hoc pairwise comparisons indicated that the behavioral regulation score of the 

buffered group (M = .50, SE = .06) was significantly larger than that of the sensitive 

group (M = -.23, SE = .18), χ2 = 14.03, p < .001 and that of the coinhibition group (M = -

.27, SE = .19), χ2 = 13.74, p < .001. Likewise, the behavioral regulation score of the 

buffered profile was marginally larger than that of the vigilant profile (M = -.42, SE = 

.51), χ2= 3.22, p = .07. There were no other significant differences among the behavioral 

regulation means of the profiles.  
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CHAPTER VI 

DISCUSSION 

Children respond to emotional challenges (e.g., experiencing an interpersonal 

conflict) and cognitive challenges (e.g., working on a difficult puzzle) at the biological, 

psychological, and behavioral levels. Although the majority of research conducted under 

the rubric of self-regulation has focused on children’s behavioral responses to emotional 

and cognitive challenges, understanding children’s physiological responses to these 

external challenges or stressors can reveal novel information regarding children’s inner 

experiences and their role in children’s self-regulation and adaptive functioning. The 

autonomic nervous system is a stress response system that readily and pervasively 

responds to external challenges via the coordination of its sympathetic and 

parasympathetic branches (Kreibig, 2010). Although both branches of the ANS are 

theorized to support to the production of behavioral responses and are implicated in 

adaptive functioning, most research on children’s ANS functioning has focused on 

children’s parasympathetic ANS functioning only. Fewer studies have been conducted to 

examine children’s sympathetic ANS functioning or how the sympathetic and 

parasympathetic ANS systems work within the same child. Moreover, although ANS 

responses are context-dependent, less is known about children’s ANS responses toward 

different challenges across the early childhood period. In particular, some researchers 

rely on single measures for assessing ANS functioning whereas others combine multiple 
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measures, and yet there is less clarity on what these assessments may index. An initial 

step toward understanding what ANS responsivity toward different challenges may index 

would be examining the similarities and differences in the magnitude of children’s 

responses toward commonly used laboratory challenges. As such, the major goal of this 

dissertation was to investigate children’s sympathetic and parasympathetic ANS 

responses toward emotional and cognitive challenges from 4 to 6 years of age (preschool 

to grade 1) and to examine whether certain patterns of ANS functioning are related to 

children’s self-regulation outcomes. 

Children’s ANS Responsivity toward Emotional and  

Cognitive Laboratory Challenges 

 The first goal of this study was to examine normative or group-level sympathetic 

and parasympathetic responsivity patterns toward distinct emotional and cognitive 

laboratory challenges from preschool to grade 1, and to compare the magnitude of ANS 

responsivity scores across distinct challenges. 

Parasympathetic ANS Responsivity 

As hypothesized, across all time points, all laboratory challenges elicited 

parasympathetic inhibition or RSA withdrawal, which has been proposed to reflect 

coping responses (Porges, 2011). Given that the challenges used in this study, regardless 

of their domain (emotional vs. cognitive), were commonly used laboratory tasks designed 

to assess children’s regulatory behaviors, it is not surprising that all tasks elicited 

parasympathetic inhibition suggesting that children engaged in coping. Moreover, results 

showing that children experienced parasympathetic inhibition across all tasks but 
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experienced sympathetic responsivity only during certain tasks is consistent with the 

Polyvagal Theory’s phylogenetic propositions. Based on this perspective, the myelinated 

vagus system – the parasympathetic system examined in this study – is the 

phylogenetically newest circuit that is recruited first in response to external challenges. 

The sympathetic-adrenal system, which is phylogenetically older than the myelinated 

vagus system, has been proposed to be recruited only during certain challenges when the 

responses of the myelinated vagus system are insufficient to cope with the challenge. As 

such, with the cognitively demanding Tangrams task for example, children not only 

responded with high levels of parasympathetic inhibition but also showed sympathetic 

activation, suggesting that this challenging task likely demands the recruitment of both 

branches of the ANS. 

Differences across challenges. Although all challenges elicited parasympathetic 

inhibition, there were differences in how much parasympathetic inhibition was elicited by 

distinct challenges. In particular, across all time points, the Tangrams task elicited greater 

parasympathetic inhibition than the Go/No-Go task, supporting the idea that cognitively 

more demanding tasks elicit greater RSA withdrawal than cognitively less demanding 

tasks. Moreover, across all time points, one emotion regulation task elicited greater RSA 

withdrawal than the other emotion regulation task, suggesting that emotion regulation 

tasks differ with respect to their demands on the ANS. In particular, the Locked Box task 

elicited greater RSA withdrawal than the Toy Removal Task, the Impossible Gift elicited 

greater RSA withdrawal than the Not Sharing task, and Puzzle Box elicited greater 

withdrawal than the Broken Toy task. The findings indicating that the Toy Removal and 
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Not Sharing tasks elicited lower RSA withdrawal compared to the other emotion 

regulation task conducted at that assessment support the idea that these two tasks may 

elicit a more passive coping response (low RSA withdrawal, PEP lengthening) than the 

other emotion regulation tasks, perhaps due to the injustice component present in both 

tasks and/or lower opportunities to solve the problem. Overall, these findings suggest that 

certain emotionally demanding tasks require greater “active coping” responses and 

therefore elicit greater RSA withdrawal. As such, future work examining children’s ANS 

responses to emotional challenges should take into account the demands posed by the 

emotional challenge given that normative responses to these challenges tend to differ. 

Emotional vs. cognitive challenges. In regards to comparing emotional and 

cognitive challenges with respect to the extent to which they elicited RSA responsivity, 

there was no simple answer as emotion tasks elicited greater ANS responsivity than 

cognitive tasks or vice versa. Rather, results supported the view that certain emotional 

and cognitive challenges that required active coping responses elicited high levels of 

RSA responsivity that were similar in magnitude. For example, in the first grade, the 

cognitively demanding Tangrams task and the emotionally demanding Puzzle Box task 

both elicited high levels of RSA withdrawal that were similar in magnitude. Likewise, 

certain challenges that required lower levels of active coping (or perhaps even passive 

coping responses) elicited similar low levels of ANS responsivity. For example, in 

preschool, the cognitively less demanding Go/No-Go task and the Toy Removal task 

elicited similar levels of low RSA responsivity and, in kindergarten, the low intensity 

Go/No-Go and Not Sharing tasks were similar in magnitude. Overall, with respect to the 



 

 
 

107

magnitude of RSA withdrawal elicited by the challenges did not depend on the domain of 

the challenge (emotional vs. cognitive) but rather appeared to depend on how much 

active coping was required by the task. 

Sympathetic ANS Responsivity 

Cognitive challenges. As hypothesized, the cognitively demanding spatial 

problem-solving Tangrams task, on average, elicited sympathetic activation across all 

time points. Moreover, the cognitively less challenging Go/No-Go task, on average, did 

not lead to a change in sympathetic activity in preschool or kindergarten but led to 

sympathetic activation or PEP shortening in grade 1. In preschool and kindergarten, the 

Tangrams task elicited greater sympathetic activation than the Go/No-Go task, but in 

grade 1, these two tasks elicited similar levels of sympathetic activation. These results are 

partially consistent with the notion that individuals experience greater sympathetic 

activation during cognitive challenges that are perceived as difficult (Wright & Kirby, 

2001) and previous findings showing no change in sympathetic activity during less 

challenging cognitive tasks (Berntson, Cacioppo, & Fieldstone, 1996). As such, given 

that the Tangrams task was a cognitively demanding task that required children to solve 

puzzles increasing in difficulty, the findings of this study support the proposition that 

such cognitively demanding challenges elicit sympathetic activation during early 

childhood. On the other hand, findings suggested that cognitively less demanding tasks 

like the Go/No-Go task, which was a repetitive and prolonged task that required children 

to maintain their attention, likely do not lead to a change in sympathetic activity in 

younger children. However, one finding that merits attention is that the Go/No-Go task 
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elicited sympathetic activation similar to a level that Tangrams had elicited in grade 1, 

during a period when children would likely not perceive tasks as more difficult. One 

explanation for this finding may be that there is a developmental increase in the beta-

adrenergic influence on the myocardium, as indexed by shortened PEP, during cognitive 

challenges across early childhood. As such, more research is needed to clarify whether 

there are developmental changes in children’s sympathetic responses to certain types of 

cognitive challenges. Another explanation may be that although the Go/No-Go task likely 

did not become more difficult for children at grade 1, children may have exerted more 

effort to answer all trials correctly and therefore may have experienced sympathetic 

activation.  It is possible that, after children start formal schooling, they exert greater 

effort in cognitive tasks to meet adult expectations to perform well. As such, given that 

the magnitude of sympathetic ANS responses have been proposed to be impacted by the 

perceived difficulty of the task as well as the amount of effort exerted, it would be 

important to examine relations between children’s perceptions of task difficulty, the 

amount of effort they have exerted, and their sympathetic responses to understand 

sources of individual differences as well as why children experienced sympathetic 

activation during a less demanding cognitive task in first grade. 

Emotional challenges.  Two out of 6 emotion tasks led to a change in children’s 

sympathetic ANS activity from baseline to task. As expected, the Toy Removal task in 

preschool and the Not Sharing task in kindergarten led to sympathetic inhibition as 

reflected by PEP lengthening or an increase in PEP from baseline to task, whereas the 

other 4 emotion regulation tasks (Locked Box, Impossible to Open Gift, Puzzle Box, & 



 

 
 

109

Broken Toy) did not lead to a change in sympathetic ANS activity from baseline to task.  

Moreover, in preschool, children’s sympathetic responsivity during the Toy Removal and 

Locked Box were significantly different and in kindergarten, children’s sympathetic 

responsivity during the Not Sharing and Impossible Task were statistically different. 

However, in grade 1, the Puzzle Box and the Broken Toy tasks in grade 1 did not differ 

with respect to how much sympathetic responsivity they elicited. These findings together 

suggest that children’s experiences during the Toy Removal and the Not Sharing tasks 

may be qualitatively different than the other emotion regulation tasks. These two tasks 

have been designed to evoke negative emotions by making children experience injustice 

(i.e., in Toy Removal, the experimenter takes away a toy that the child chose to play with; 

in Not Sharing, the experimenter does not share candy equally and takes away the child’s 

candy). However, the other four tasks have been designed for children to actively solve a 

problem to reach a goal (e.g., using keys to open a box, opening a wrapped gift). 

Sympathetic inhibition has been proposed to be experienced when individuals anticipate 

no means of escaping an aversive situation (Obrist, 1981) and has been linked with 

experiences of sadness (Kreibig, 2010). As such, it is possible that the Toy Removal and 

Not Sharing tasks may lead children, on average, to perceive the circumstances as 

aversive and difficult to escape and may elicit sadness more so than the other emotional 

challenges. Given that sympathetic ANS responses during emotional challenges may be 

related to how the situation is perceived as well as the actual emotional experiences 

experienced by children, it would be important for future research to examine whether 

children’s perceptions of the emotional challenges and the emotions they experience play 
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a role in children’s sympathetic responses. It is also important to note that the effect sizes 

of the sympathetic responses to these two tasks were small, therefore, replications would 

be necessary in future work.  

Emotional vs. cognitive challenges. In comparing emotional and cognitive 

challenges with respect to the extent to which they elicited sympathetic responsivity, 

findings suggested that only two emotional tasks but none of the cognitive tasks led to 

sympathetic inhibition. Given that sympathetic inhibition may be experienced during 

feelings of hopelessness or sadness, or during passive coping responses, these results 

suggest that only two of the tasks may have elicited these responses. Moreover, findings 

suggested that only cognitive tasks and, in particular, the cognitively demanding 

Tangrams task but none of the emotional challenges led to sympathetic activation. Based 

on the notion that effort or energy mobilization during active coping is supported by 

sympathetic activation, one explanation for these findings may be that the Tangrams task 

required greater overall effort than the emotional tasks. On the other hand, although 

children likely showed effort during the frustrating emotional challenges, they may have 

also spent more time in less active coping responses that required less effort (e.g., by 

observing the experimenter, looking around in the room). As such, tasks that require 

greater effort or active coping responses may be more likely to elicit sympathetic 

activation.  

It is important to note that these findings do not suggest that emotions or 

emotional experiences do not lead to sympathetic activation. For example, it is possible 

that emotions such as anger and fear may lead to sympathetic activation (Kreibig, 2010) 
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and, if so, the children in our sample may have experienced moments of sympathetic 

activation during the instances they experienced these emotions. However, given that we 

examined children’s overall sympathetic responses during the tasks, our results cannot 

speak to whether children’s sympathetic experiences in the moment were related to their 

emotional experiences. As such, future research would be needed to understand whether 

moment-to-moment changes in children’s sympathetic activity may relate to moment-to-

moment changes in certain types of emotional experiences.  

Associations Between Sympathetic and Parasympathetic Functioning 

During Laboratory Challenges 

 The second goal of the study was to examine whether there would be associations 

between sympathetic and parasympathetic responses during certain laboratory challenges. 

It was hypothesized that, in more physiologically arousing or frustrating tasks, increases 

in sympathetic activation (PEP shortening) would be associated with parasympathetic 

inhibition (RSA withdrawal); however, in less challenging or arousing tasks, there would 

be no correlations between children’s sympathetic and parasympathetic responsivity 

scores. In preschool, there was a positive association between sympathetic and 

parasympathetic responsivity during the Tangrams and Locked Box tasks (but not during 

the Go/No-Go and Toy Removal tasks), such that greater sympathetic activation was 

linked with greater parasympathetic inhibition. These findings may suggest that, during 

high intensity tasks or tasks that elicit greater physiological responses, the two branches 

of the ANS work reciprocally. In kindergarten, there was a positive association between 

sympathetic and parasympathetic responsivity only during the Not Sharing and 
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Impossible to Open Gift tasks, but not the Tangrams and the Go/No-Go tasks. The 

findings from kindergarten assessment could suggest that there is a reciprocal association 

between the two ANS branches during the emotional but not the cognitive tasks. Finally, 

in grade 1, there were no associations between sympathetic and parasympathetic 

responsivity scores across any of the challenges. Overall, findings of this study do not 

reveal a consistent pattern regarding when the two branches of the ANS work 

reciprocally.  

 These inconclusive findings are somewhat consistent with what has been reported 

in previous work with children. For example, no associations were found between 

sympathetic and parasympathetic responsivity scores during emotional challenges in 

toddlers (Buss, Goldsmith, & Davidson, 2005), an incentive/motivation task in a sample 

of preschoolers diagnosed with ADHD (Beauchaine et al., 2013), and during several 

challenge tasks in 3-to 8-year olds (Alkon et al., 2003).  However, sympathetic and 

parasympathetic responsivity scores have been shown to be modestly associated during a 

stressful challenge task during which children received negative feedback (Roos et al., 

2017).  In studies with adults, although sympathetic and parasympathetic responsivity 

scores were correlated during a mental arithmetic task (Berntson, Cacioppo, & 

Fieldstone, 1996), no correlations were found during an illusion task (Berntson, 

Cacioppo, & Fieldstone, 1996) or a selective attention task (Guiliano et al. 2017). As 

such, future work may be needed to understand the circumstances that may lead to a 

correlation between the responsivity in these two systems.  
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 There are several possible explanations for the inconsistency in findings. Based 

on the autonomic space model, the sympathetic and parasympathetic branches of the 

ANS work orthogonally and their functioning may lead to 9 distinct modes of autonomic 

control (e.g., coinhibition, coactivation). As such, it is possible that only few laboratory 

challenges elicit a reciprocal pattern of functioning with an increase in sympathetic 

activation and increase in parasympathetic withdrawal. Moreover, it is possible that 

children may experience reciprocal sympathetic activation during certain parts of a 

laboratory challenge. For example, they may experience this pattern of functioning at the 

very beginning of a given task with an effort to mobilize their energy in the task or during 

a part of the task that they find more challenging. It is also possible that some children 

may consistently experience a more reciprocal pattern of functioning in these two 

branches of the ANS, whereas others may not. Finally, given that there were no 

associations between the responsivity scores in grade 1, it is possible that as children may 

tend to experience greater levels of nonreciprocal modes of functioning as they get older. 

As such, more work is needed to understand when and for whom do the two branches 

operate in a reciprocal pattern, such that as one increases the other decreases. 

Development of ANS Functioning in Early Childhood 

Stability in Children’s ANS Functioning in Early Childhood  

The third goal of this study was to examine stability (or instability) and continuity 

(or change) in children’s ANS functioning from preschool to grade 1. With respect to 

stability, stability across different tasks within the same assessment, as well as stability 

within-tasks across time were examined. Within each assessment, there was moderate 
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levels of stability in children’s ANS responsivity across different tasks. This finding was 

consistent for both sympathetic and parasympathetic responses, suggesting that children 

tended to maintain their individual level of response toward distinct tasks relative to 

others. Evidence of moderate stability in children’s responses to distinct challenges may 

also suggest that children’s ANS responses to different challenges are to some extent 

context- or challenge-dependent. 

Baseline sympathetic and parasympathetic ANS activity showed moderate-to-

high stability across early childhood. These findings are consistent with previous research 

showing modest-to-moderate levels of stability in baseline levels of RSA (e.g., Alkon, 

Boyce, Davis, & Eskenazi, 2011; Esposito et al., 2016; Patriquin, Lorenzi, Scarpa, 

Calkins, & Bell, 2015; Perry et al., 2013) and modest-to-moderate levels of stability in 

baseline PEP across early childhood (Alkon et al., 2011; Esposito et al., 2016). Overall, 

evidence of moderate levels of longitudinal stability in baseline sympathetic and 

parasympathetic functioning suggest that these two aspects of ANS functioning begin to 

show trait-like characteristics from around 4 to 6 years of age. 

Moreover, there was modest levels of task-specific stability in children’s 

parasympathetic responsivity scores across time. Specifically, in Tangrams, there was 

modest-to-moderate stability in parasympathetic responsivity from preschool to 

kindergarten, and kindergarten to first grade. In Go/No-Go, there was no stability in 

parasympathetic responsivity from preschool to kindergarten but a modest stability from 

kindergarten to first grade. In emotion tasks, there was modest stability in most tasks 

across time. Specifically, Locked Box parasympathetic responsivity in preschool was 
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associated with parasympathetic responsivity toward the Impossible to Open Gift task but 

not the Not Sharing task in kindergarten. Toy Removal parasympathetic responsivity in 

preschool was associated with parasympathetic responsivity across all kindergarten 

emotion tasks, and parasympathetic responsivity during emotion tasks in kindergarten 

were associated modestly with parasympathetic responsivity during emotion tasks in first 

grade. These findings are consistent with previous findings showing modest levels of 

stability in certain indices of parasympathetic responsivity during early childhood (e.g., 

Calkins & Keane, 2004; Perry et al., 2012). The modest levels of stability in children’s 

parasympathetic responsivity across time may suggest that children tend to develop 

somewhat trait-like patterns of responding to external challenges.   

In contrast to modest levels of stability in parasympathetic responsivity; overall, 

there was no stability in sympathetic responsivity scores across time. This finding is 

consistent with the findings of Alkon et al. (2011) who also did not find stability in 

sympathetic responsivity scores across infancy and early childhood. As such, children’s 

sympathetic ANS responsivity toward challenges may not show trait-like patterns from 

around 4 to 6 years of age. However, it would be important to examine whether there 

would be stability in children’s sympathetic responsivity using other measures such as 

skin conductance that index the functioning of the sympathetic-adrenal system. 

Continuity and Change Children’s ANS Functioning Across Time 

Children’s baseline parasympathetic activity showed an overall increase over 

time. Results from the repeated-measures analyses suggested that there was particularly a 

greater increase from preschool to kindergarten. Evidence for an increase in baseline 
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RSA in early childhood is consistent with previous findings (Perry et al., 2013; Alkon et 

al., 2011). There was between-individual variability in children’s baseline RSA at four 

years (intercept) and how baseline scores changed from preschool to first grade (slope). 

These findings are consistent with previous research conducted during early childhood 

(Perry et al., 2013) and middle childhood (Hinnant et al., 2017).  

Children’s baseline sympathetic activity also showed an overall increase over 

time. Specifically, there was a significant mean-level increase in children’s baseline PEP 

from preschool to kindergarten, and kindergarten to first grade. There was between-

individual variability in baseline PEP in preschool (intercept) but no between-individual 

variability in the trajectories of baseline PEP over time (slope). These findings suggest 

that children’s baseline PEP tended to increase in a similar fashion for most children. A 

non-significant between-individual variability for slope has also been shown in middle 

childhood (Hinnant, Elmore-Staton, & El-Sheikh, 2011).  

Given that only two cognitive tasks (Tangrams and Go/No-Go) were administered 

across all three time-points, ANS responsivity analyses were conducted with these two 

tasks only. For the Tangrams task, there was no evidence of mean-level change in RSA 

responsivity or PEP responsivity across time. One explanation for this finding is the 

Tangrams task likely did not become easier for children as they received puzzles 

increasing in difficulty and compatible with their developmental level, and therefore they 

may have consistently relied on similar levels of sympathetic activation and 

parasympathetic withdrawal to actively engage in the task across all time points.   
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In Go/No-Go, there was no mean-level change in RSA responsivity from 

preschool to kindergarten; however, RSA responsivity decreased from kindergarten to 

first grade. As such, children tended to show lower levels of RSA withdrawal during the 

Go/No-Go task in first grade compared to preschool and kindergarten. This finding is 

partially consistent with the findings of Calkins and Keane (2004) who showed that the 

magnitude of RSA withdrawal decreased from 2 to 4.5 years of age. As such, it may be 

that in less challenging cognitive tasks which may become easier as they grow, children 

rely on lower levels of RSA withdrawal as they get older. On the other hand, PEP 

responsivity towards Go/No-Go decreased from preschool to kindergarten but increased 

from kindergarten to first grade. It is important to note that although PEP responsivity 

decreased from preschool to kindergarten, at both time points there was no significant 

PEP responsivity toward the task. However, in grade 1, children engaged in sympathetic 

activation. The finding that children engage in lower RSA withdrawal but greater 

sympathetic activation in grade 1 is rather surprising. One explanation may be that the 

sympathetic ANS starts to play an important role in not only challenging cognitive tasks 

but also less demanding cognitive tasks. 

Profiles of ANS Functioning in Preschool 

The fourth goal of this study was to test whether there were profiles of children 

with distinct patterns of sympathetic and parasympathetic functioning at 4 years of age, 

and if so, whether these profiles differed with respect to children’s self-regulation 

outcomes in preschool and one year later. Results from the latent profile analyses 

indicated that there were four profiles with qualitatively distinct ANS functioning. These 
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profiles were: (a) buffered profile (moderate ANS responsivity), (b) sensitive profile 

(high ANS responsivity), (c) coinhibition profile, and (d) vigilant profile. 

Buffered Profile (Moderate ANS Responsivity) 

The largest profile that emerged from the profile analysis, referred to as the 

buffered profile, constituted 41% of the sample. Children in this profile showed moderate 

parasympathetic inhibition (RSA withdrawal) across all tasks and a significant but low 

level of sympathetic activation (PEP shortening) only in the Tangrams task but not in the 

other three laboratory tasks. The autonomic responsivity of this profile therefore highly 

resembled the Adaptive Calibration Model’s buffered stress responsivity pattern 

characterized by moderate parasympathetic responsivity and low-to-moderate 

sympathetic responsivity. This profile’s pattern of autonomic functioning can also be 

described as “moderate ANS responsivity” given that the responsivity scores of children 

in this profile fell between the other profiles’ scores. Specifically, the magnitude of 

buffered group’s RSA withdrawal was lower than the sensitive group’s, about the same 

level with the coinhibition group’s, and greater than the vigilant group’s scores in most 

challenges. Likewise, children in this profile showed greater PEP shortening (sympathetic 

activation) than the coinhibition group but smaller PEP shortening than the sensitive and 

the vigilant profiles.  

Consistent with this finding, two studies have also shown large profiles of 

children showing moderate ANS reactivity. Specifically, Del Guidice et al. showed that 

45% of their sample belonged to a profile characterized by moderate levels of 

sympathetic and parasympathetic responsivity. Likewise, two of the largest stress 
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responsivity profiles demonstrated by Quas et al. (2014) shared similarities with this 

study’s buffered profile. Quas et al. argued that their largest profile, represented by 52-

82% of their sample, showed moderate levels of responsivity across different 

physiological systems, whereas their “parasympathetic-specific responsivity” profile 

represented by 2-36% of their sample, showed RSA withdrawal without demonstrating 

change in other systems. Overall, results from this study suggest that, when responding to 

everyday challenges, the largest proportion of preschoolers experience a moderate degree 

of parasympathetic responsivity (RSA withdrawal) and a low degree of sympathetic 

activation, especially during cognitively challenging tasks. 

Sensitive Profile (High ANS Responsivity) 

The second largest profile, referred to as the sensitive profile, included 30% of the 

children in the sample. Children in this profile demonstrated high levels of 

parasympathetic inhibition (RSA withdrawal) and moderate to high levels of sympathetic 

activation (PEP shortening) across all laboratory challenges. Note that this type of ANS 

functioning corresponds to the “reciprocal sympathetic activation” mode of autonomic 

control described by the autonomic space model. This profile was named after the 

Adaptive Calibration Model’s sensitive stress responsivity pattern, which was theorized 

to also be characterized by high parasympathetic and moderate to high sympathetic 

responsivity (Del Giudice et al., 2012). This profile’s ANS functioning can also be 

described as “high ANS responsivity” because children in this profile showed greater 

RSA withdrawal than the other 3 profile groups and demonstrated greater PEP shortening 

than the buffered and the coinhibition groups across almost all laboratory changes. 
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Consistent with these findings, Del Guidice et al. have found a profile of children, 

represented by 27% of their sample, whose response pattern was moderate-to-high levels 

of sympathetic activation and parasympathetic withdrawal during a star-tracing task. 

Overall, the emergence of this relatively large profile in our community sample suggests 

that, in the actual population, about one third of preschoolers may show moderate to 

strong levels of sympathetic and parasympathetic ANS responsivity toward everyday 

challenges. 

Coinhibition Profile 

The third largest profile, the coinhibition group, constituted about 24% of the 

sample. Children in this profile showed moderate parasympathetic inhibition (RSA 

withdrawal) and low-to-moderate levels of sympathetic inhibition (PEP lengthening) 

across all tasks. This profile is named after the autonomic space model’s coinhibition 

mode of autonomic functioning, which was characterized as inhibition in both branches 

of the ANS. Importantly, children in this profile showed sympathetic inhibition across all 

laboratory challenges, a response pattern unique to this profile only, and showed 

moderate parasympathetic inhibition comparable to the buffered group’s. There is some 

evidence suggesting that coinhibition is a common ANS response pattern in children. For 

example, Alkon et al. (2003) hard-classified children into distinct ANS responsivity 

groups by using cross tabulation of positive and negative RSA and PEP scores and found 

that coinhibition was the largest group in 3 to 8-year-olds (Alkon et al., 2003). Likewise, 

Salomon, Matthews, and Allen (2000) showed that coinhibition was a common response 

pattern in certain tasks such as a social competence interview task. Although researchers 
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that used hard classification techniques found coinhibition as a common ANS response 

pattern in children, recent studies involving latent profile analyses did not identify 

coinhibition as one of the common ANS response patterns (e.g., Del Guidice et al., 2012; 

Quas et al., 2014). One potential reason for why a coinhibition group emerged in this 

study and in the studies that hard-classified children into groups may be that these studies 

all measured children’s ANS functioning via RSA and PEP responsivity scores. As such, 

it is possible that when RSA and PEP responsivity are used as the main indices of ANS 

response patterns, coinhibition emerges as a common response pattern. On the other 

hand, the reason why other studies that included latent profile analysis did not find a 

coinhibition profile may be because different physiological measures were used.  For 

example, Quas et al. submitted baseline and responsivity scores for RSA, PEP, HR, and 

cortisol to latent profile analysis, and received 3 to 6 profiles depending on the sample 

that they have used. On the other hand, Del Guidice et al. submitted baseline and 

responsivity scores for RSA and skin conductance, and found four profiles but only three 

of these profiles matched closely with our findings. As such, it would be important to 

replicate these findings in other community samples by testing whether latent profile 

analysis with RSA and PEP scores yields a coinhibition profile similar to the one that 

emerged in this study and in the studies that used hard-classification.  

Vigilant Profile 

The smallest profile that emerged from the profile analysis was the vigilant 

profile, which constituted only about 4% of the sample. Children in this profile showed 

low baseline parasympathetic activity (baseline RSA), no change or activation in 
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parasympathetic activity from baseline to task (RSA augmentation or no RSA change), 

and high sympathetic activation (PEP shortening). This profile’s ANS characteristics 

were similar to the Adaptive Calibration Model’s vigilant stress responsivity pattern, 

which was characterized as low baseline parasympathetic activity, low-to-moderate 

parasympathetic responsivity, high baseline sympathetic activity, and low-to-moderate 

sympathetic responsivity (Del Giudice et al., 2012). Consistent with this description, the 

vigilant profile in this sample had a baseline RSA score was smaller than the other three 

groups’ and a baseline PEP score that was at least larger than the sympathetically 

inhibited group’s but comparable to the other profiles’ scores. In line with the 

propositions of the Adaptive Calibration Model, children in this profile showed lower 

RSA responsivity compared to other groups in most laboratory challenges and showed 

greater PEP shortening than all other groups.  

Overall, these findings supporting the existence of a vigilant profile are similar to 

the findings of Del Giudice et al. and Kolacz et al. (2016) who also found vigilant 

profiles in their community samples. Specifically, Del Giudice et al. showed that 10% of 

their sample had a vigilant pattern of stress responsivity, characterized by high baseline 

sympathetic activity, high sympathetic activation, and moderate levels of 

parasympathetic activity. Likewise, Kolacz et al. (2016) examined profiles based on 

children’s baseline parasympathetic, sympathetic, and adrenocortical activity, and found 

two vigilant profiles that were both characterized by low baseline parasympathetic 

activity and high sympathetic activity but differed with respect to their basal levels of 

adrenocortical activity. These two profiles together constituted about 39% of their 
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sample. Given that the proportion of the children belonging to the vigilant profile in our 

sample was much smaller than the proportions reported in these previous studies, it is 

important to speculate about the factors that may have contributed to the discrepancy in 

results.  One reason may be related to the differences in the samples. Based on the 

proposition that vigilant stress responsivity patterns develop in families exposed to 

greater levels of stress, it is possible that Del Giudice et al. and Kolacz et al.’s community 

samples involved a larger proportion of families exposed to high levels of stress, which 

may have led to the emergence of a greater proportion of children with vigilant stress 

responsivity patterns. Another possible explanation for the discrepancy in results may be 

related to how stress responsivity was measured. For example, in measuring children’s 

sympathetic ANS functioning, Del Giudice et al. used skin conductance, Kolacz et al. 

used salivary alpha-amylase (sAA), whereas this study used pre-ejection period. As such, 

the use of different measures for measuring sympathetic ANS activity may have led to 

this discrepancy. Given that Kolacz et al. used only baseline measures and found a 

greater proportion of children belonging to the vigilant groups, it is also possible that the 

reason why Del Guidice et al., and this study found smaller vigilant profiles is because 

both studies involved both baseline and responsivity scores. As such, future research 

should examine the circumstances in which a greater proportion of children belong to 

vigilant groups.  

It is also important to note that the Adaptive Calibration Model’s unemotional 

pattern of stress responsivity was not identified in this sample. Although Del Giudice et 

al. (2012) found that 18% of their sample belonged to a profile characterized by the 
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unemotional pattern of stress responsivity, Quas et al. (2014) identified this profile in 

only two out of four of their samples, whereas Kolacz et al. (2016) did not identify this 

profile in their sample. Given that both Kolacz et al. and this study examined profiles in 

young children, one explanation for why these two studies failed to identify this profile 

may be because this profile may not emerge in early childhood but begin to emerge later 

in middle childhood or adolescence. Another explanation may be related to the 

characteristics of the samples. Based on the idea that the type, dose, and chronicity of 

environmental stressors may play a role in the development of stress responsivity 

patterns, samples that include children from diverse backgrounds in terms of exposure to 

stress may detect more profiles and some of these profiles may be harder to capture in 

community samples. Finally, the laboratory challenges in which physiological 

responsivity is assessed or not including responsivity scores as in Kolacz et al.’s study 

may determine the number and type of profiles that emerge from latent profile analysis.  

ANS Profiles and Self-Regulation Outcomes 

 Based on theoretical work suggesting that physiological response patterns may be 

related to self-regulation outcomes, the four profiles that emerged from the latent profile 

analysis were compared with respect to self-regulation outcomes. As such, profiles were 

compared in relation children’s self-regulation outcomes, particularly observed executive 

functions and emotion regulation in preschool, and teacher-report of emotional reactivity 

and behavioral regulation in kindergarten. 
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Consistent with the notion that children with greater ANS responsivity, 

characterized by high parasympathetic withdrawal and sympathetic activation, would be 

sensitive and open to their environments, it has been suggested that children with such 

physiological response patterns would develop better executive functioning, particularly 

in safe environments, likely because greater engagement with stimulating experiences 

would promote the development of children’s executive functioning (Del Giudice et al. 

2012). Thus, it was hypothesized that children with a sensitive ANS response pattern 

would show better executive functioning compared to the buffered group. Consistent with 

this speculation, results suggested that children in the sensitive profile had better 

executive functions than children in the buffered and the vigilant groups.  

These findings are consistent with previous research that has linked greater RSA 

withdrawal with positive self-regulation outcomes such as better attention and regulation 

in community samples (Blair, 2003; Calkins, 1997; Suess et al., 1994), but inconsistent 

with previous findings showing that moderate but not high levels of vagal withdrawal 

relate to better response inhibition performance in young children (Marcovitch et al., 

2010) or results from a recent metaanalysis that failed to find an association between 

RSA withdrawal and child executive functioning or effortful control (Holzman & 

Bridgett, 2017). However, it is important to note that there are many differences between 

the current study’s design and analytic approach, and the other studies. First, the previous 

studies listed have only focused on RSA withdrawal but did not examine sympathetic and 

parasympathetic systems together. Second, a vast majority of these studies examined the 

linear relations between RSA withdrawal and executive functioning (see Marcovitch et 
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al. for an exception), whereas this study examined profiles. Third, this study examined 

responsivity towards multiple laboratory measures, whereas the other studies have either 

used composite scores of RSA responsivity or RSA responsivity toward a single 

challenge. As such, these findings provide support for the idea a sensitive profile of 

children, who show relatively higher sympathetic activation and high parasympathetic to 

multiple laboratory tasks, show relatively better executive functioning than particularly 

the buffered and the vigilant groups.  

 The buffered (moderate ANS responsivity) profile showed lower levels of 

emotional reactivity than the sensitive (high ANS responsivity) profile, and showed better 

behavioral regulation than the sensitive, coinhibition, and vigilant groups. These findings 

suggest that children with moderate level of ANS responsivity, characterized by moderate 

vagal withdrawal and sympathetic activation in only a cognitively demanding challenge, 

may show relatively lower levels of emotional reactivity (as compared to children with 

high ANS responsivity) and better behavioral regulation than children with other ANS 

profiles. Given that the laboratory challenges used in this study are relatively low 

intensity stressors that children can often experience in their everyday life, these results 

suggest that a pattern of moderate levels of ANS responsivity toward low intensity 

everyday challenges may be coined by low emotional reactivity and optimal behavioral 

regulation.  The groups’ observed emotion regulation scores did not differ.  
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Strengths and Limitations 

 The current study had several strengths. First, although most research on 

children’s autonomic nervous system functioning focused only on parasympathetic 

functioning, this study examined both parasympathetic and sympathetic ANS functioning 

in early childhood. As such, the design of the study was advantageous for investigating 

basic yet under-investigated questions regarding children’s sympathetic ANS functioning 

such as normative sympathetic responses toward laboratory challenges, within-person 

stability in sympathetic responses toward different challenges, between-person stability in 

sympathetic responses across time, and/or continuity and change in sympathetic response 

across time. Moreover, examining parasympathetic and sympathetic ANS responses 

toward laboratory challenges within the same study allowed us to evaluate how these two 

systems respond to different laboratory challenges. For example, this design was 

advantageous for examining questions such as whether certain challenges (e.g., 

Tangrams) lead to both more heightened sympathetic and parasympathetic responses 

relative to other challenges (e.g, Go/No-Go) or whether they lead to only heightened 

responses in one branch only. A second important strength of this study was that, as part 

of the fourth goal, individual differences in the way the two branches of the ANS work 

together were examined via latent profile analyses. This line of investigation is especially 

important for understanding individual differences in ANS functioning as a whole and 

their implications for adaptive functioning. A third important strength of the study was 

that children’s ANS responses were examined across multiple laboratory challenges, 

which helped examine the context-dependent nature of ANS functioning. Moreover, the 
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longitudinal nature of the study made it possible to examine whether laboratory 

challenges elicited similar responses over time, and whether there was stability and 

continuity over time.  

 Despite these strengths, this study also had notable limitations. An important 

limitation was that although 2 of the laboratory challenges (i.e., Tangrams & Go/No-Go) 

were administered across all three assessments, different emotional challenges were 

administered at each assessment. The rationale behind this decision was that children 

could potentially remember important components of the emotional challenges and 

therefore not become frustrated the second or third time they encountered the challenge. 

For example, if the Locked Box task was used at each time point, children may have 

remembered that “none of the keys work” and that the experimenter forgot to give the 

right key to the child. Alternatively, only a subset of children, perhaps with better 

memory, could remember these tasks and not get as upset or frustrated as the other 

participants, which likely would have introduced an important confound (i.e., child 

cognitive ability/memory) to the design. Although using different emotional challenges 

likely prevented such potential problems from arising, this aspect of the study’s design 

did not allow for examining questions related to the longitudinal stability and/or change 

in physiological responses toward these challenges. In terms of the type of emotional 

challenges examined, it is also important to note that none of the laboratory challenges 

were specifically designed to elicit fear responses and therefore normative ANS 

responses toward fear-eliciting tasks were not examined.  
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A second limitation was that, compared to studies conducted with older children 

and adults, it is likely that there was greater missing data in physiological variables, 

specifically in pre-ejection period (see S1 for missing data patterns). An important 

proportion of missing data in PEP was due to movement or sticker-connection artifact. 

This is partly because the locations of the stickers (i.e., belly, back) used in the 

calculation of this measure are more prone to artifact due to movement. As such, given 

that missing data may increase the error in our results, replication of this study’s findings 

on children’s sympathetic responsivity would be necessary. 

A third limitation of this study was that, although certain theoretical propositions 

were used to understand the types of ANS responses different laboratory challenges 

would elicit, some of these propositions were not tested directly. For example, although 

the proposition that greater cognitive effort would lead to greater sympathetic activation 

was used to formulate hypotheses regarding which tasks would lead to greater 

sympathetic activation, this hypothesis was not tested directly given that tasks were not 

objectively compared with respect to how much cognitive effort they demanded. 

Likewise, although physiological responses to distinct emotional challenges were 

compared, questions related to why certain tasks elicited greater physiological responses 

were not investigated. Therefore, in future research, it would be important to examine 

questions such as whether experiencing certain emotions such as anger or sadness would 

be associated with specific patterns of ANS responses in developmental populations. 
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Finally, a fourth limitation was that profiles of autonomic nervous system 

functioning was only investigated using data from the preschool assessment. As such, it 

would be important to examine profiles of ANS functioning at other time points such as 

in kindergarten and first grade. This line of investigation would be critical for 

understanding whether similar profiles emerge across time, what proportion of the 

children remain in the same profile, and what factors may play a role in children’s 

transition from one profile to another. In doing such analyses, it would be important to 

examine children’s ANS responses during nearly equivalent challenges across different 

time points so that differences in the profiles (e.g., size of the profile, mean of the 

indicators) can be attributable to developmental or contextual changes rather than 

changes in the laboratory challenges.  

Implications for Theory, Methods, and Application 

 The current study has several implications for theoretical work on children’s ANS 

functioning. One major implication is related to understanding the role of different 

stressors or external challenges in children’s ANS responses. First, findings from this 

study suggested that children’s normative or group-level ANS responses to challenges 

depend largely on the laboratory challenge but not simply on whether the challenge is 

considered as a “cognitive” or “emotional” challenge. For example, results showed that 

overall children’s normative responses to two cognitively demanding challenges differed 

systematically in magnitude and/or type of response (e.g., sympathetic activation vs. no 

change in sympathetic ANS activity). Likewise, there were mean-level differences in 

children’s responses to certain emotionally demanding challenges. Finally, although 
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sympathetic activation was a unique normative response to the Tangrams task and 

sympathetic inhibition appeared to be a unique normative response toward emotional 

tasks involving injustice; there were many emotional and cognitive challenges that 

elicited ANS responses similar in magnitude. Based on these findings, it is reasonable to 

argue that although there may be systematic differences in the ANS responses based on 

the intensity of the task, how much effort is demanded, and/or the type of coping 

response required (e.g., active coping vs. passive coping); there are no simplistic patterns 

of physiological differences across emotional and cognitive tasks. As such, it may not be 

reasonable to assume that “emotionally demanding” and “cognitively demanding” 

challenges index or mark distinct psychological processes or behaviors.  

Second, results suggested that there was only moderate stability in individuals’ 

ANS responses toward different challenges within the same assessment (i.e., intra-

individual stability across challenges), suggesting that the intensity of the same child’s 

physiological response relative to others may differ across tasks. For example, there may 

be individuals who experience relatively more heightened ANS responses toward 

frustrating challenges than fear-eliciting challenges, and vice versa, and such responses 

may be specifically related to externalizing problems rather than internalizing problems. 

As such, an important future direction for research may be understanding which children 

experience more heightened ANS responses toward certain challenges relative to other 

challenges and whether individuals’ “context-specific” physiological responses or 

sensitivity toward certain challenges may have implications for adaptive functioning.  
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Finally, a third important implication for understanding ANS responses toward 

different challenges is related to the conceptualization of profiles of ANS functioning. 

This study is likely the first study that examined children’s ANS profiles by including 

physiological responses toward different stressors as indicators. As such, this strategy 

allowed for the emergence of profiles of children whose physiological responses differed 

based on the laboratory challenge. For example, children in the buffered profile showed 

sympathetic activation during the cognitively challenging Tangrams task but not the other 

tasks. Likewise, children in the vigilant profile tended to experience no change in 

parasympathetic activity during 2 tasks but experience parasympathetic augmentation in 

other tasks. As such, these findings suggest that rather than conceptualizing individual 

differences in terms of those who experience “sympathetic activation” and those who do 

not, there likely are subgroups of children who show distinct patterns of physiological 

responses toward different tasks. These findings likely highlight the importance of 

considering children’s responses toward multiple challenges rather than a single 

challenge.  

 Another set of implications of this study are related to the differential findings on 

parasympathetic and sympathetic ANS functioning. Findings suggested that although 

children, on average, experienced parasympathetic inhibition across all laboratory 

challenges at all assessments, they experienced sympathetic responsivity (inhibition or 

activation) only during certain challenges. These findings are consistent with Polyvagal 

Theory’s proposition that individuals mostly rely on the phylogenetically newer 

myelinated vagal system’s functioning (e.g., RSA withdrawal) in their everyday lives; 
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however, recruit the phylogenetically older sympathetic system only when the myelinated 

vagal system’s response is insufficient (Porges, 2011). However, another explanation for 

these findings may be methodological. It may be that sympathetic responses as measured 

with PEP may show lower levels of deviation from baseline scores during the challenges; 

however, these findings may not accurately reflect how the sympathetic-adrenal system 

responds to these challenges. As such, it would be important to examine sympathetic 

responses to challenges via other measures such as skin conductance and also to compare 

whether sympathetic responses as measured via different measures (e.g., skin 

conductance vs. PEP) show similarities. Likewise, given that there was no stability in 

PEP responsivity over time, it would be important to examine the longitudinal stability of 

sympathetic responsivity as measured via skin conductance measures. 

 The findings of this study may also have important implications for theoretical 

work on the relations between ANS functioning and self-regulation, as well as prevention 

and intervention strategies guided by this line of research. First, the emergence of distinct 

profiles of ANS functioning highlight the importance of understanding how individuals 

vary with respect to the functioning of the sympathetic and parasympathetic branches of 

ANS. Moreover, findings showing that these ANS profiles differ with respect to major 

self-regulation outcomes suggest that the pattern in which these two ANS systems work 

within the same child may be related to certain self-regulatory behaviors. Although 

results of this study suggest that certain ANS profiles may be associated with better or 

worse self-regulation outcomes, there are important questions that remain to be answered. 

One question concerns the causal relation between ANS-specific stress physiology and 
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self-regulation. Specifically, do certain patterns of ANS functioning support or hinder 

children’s ability to engage in better self-regulation in the moment? Alternatively, does 

the way in which children regulate themselves result in certain patterns of ANS 

responses? Given that findings of this study suggested that children with distinct ANS 

profiles at age 4 differed with respect teacher-report of self-regulation outcomes at age 5, 

one can argue that patterns of ANS functioning may reflect trait-like characteristics that 

predict or contribute to future self-regulatory outcomes. However, it is also possible that 

the ways in which one regulates his/her emotions, attention, and thoughts may also play a 

role in how the ANS systems respond to challenges over time. For example, a child’s 

cognitive appraisal of very challenging tasks as “very easy” may play a role in that 

child’s experience of mild-to-moderate ANS responsivity; whereas another child’s 

cognitive appraisal of very easy tasks as “very challenging” may lead that child to 

experience high levels of sympathetic activation and parasympathetic withdrawal. As 

such, psychological processes such as how a challenge is perceived or successful 

behavioral responses such as “looking away from the source of distress” may also affect 

children’s ANS responses during challenges.  

Based on this argument, in future work, it would be important to conduct studies 

aimed towards understanding the causal relations between patterns of ANS functioning 

and self-regulation. Specifically, one line of research can investigate the longitudinal 

relations between patterns of ANS functioning and specific self-regulation outcomes with 

the aim to understand whether certain patterns of ANS functioning lead to changes in 

self-regulation over time or whether certain self-regulatory behaviors predict changes in 
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ANS functioning over time. Another line of investigation can be devoted to 

understanding the dynamic relations among ANS responses and processes related to self-

regulation in the moment. The rationale behind this question is that changes in the 

patterns of ANS functioning in the moment may contribute to the changes in processes 

related to self-regulation, or vice versa. As such, the dynamic relations among children’s 

physiological and behavioral responses during a challenge can be studied as a 

longitudinal process using time-series data. This approach may be a more direct way of 

understanding the relations among the homeostatic functions of the ANS and processes 

related to self-regulation.  

 This study is perhaps one of the first studies that showed that the way in which the 

two branches of ANS work have implications for self-regulation outcomes. The findings 

of this study, as well as this line of investigation in general, may have important 

implications for prevention and intervention work. For example, this line of work can 

ultimately help develop strategies for identifying children whose patterns of ANS 

functioning may not be conducive to the development of adaptive self-regulation 

outcomes. For example, if future research demonstrates that children with a vigilant 

profile characterized by a dominant sympathetic ANS response to challenges experience 

emotional dysfunction and behavioral problems, it would be important to understand the 

contextual (e.g., lack of neighborhood safety) or familial factors (e.g., abuse) that lead to 

the emergence of this type of physiological functioning. As such, if future research 

identifies severe contextual stress as a main factor for the development of a vigilant ANS 

profile, then perhaps measuring children’s stress physiology may become a clinical 
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method for identifying children who are experiencing such contextual stress. Likewise, 

monitoring changes in children’s stress physiology can also help examine the progress 

made by prevention and intervention strategies.  

On a different note, it is also important to emphasize that although certain patterns 

of ANS functioning may be associated with difficulties with self-regulation or behavioral 

problems, they may still serve adaptive purposes. For example, in very dangerous 

contexts, children with a vigilant ANS profile may be able to detect and escape from life 

threatening circumstances. Therefore, working towards altering children’s stress 

physiology instead of changing the circumstances that lead children to develop such 

stress patterns may do more harm than good as such practices would take away children’s 

survival strategies. Therefore, in future work, it would be important to examine the 

adaptive purposes of distinct profiles of ANS functioning. However, given that what may 

be adaptive in the short term may not be adaptive in the long term, it is also important to 

understand the role of ANS functioning both for short-term and long-term outcomes. 

Although certain patterns of ANS functioning may help escape from threats in everyday 

life, they may also lead to serious health problems in the long term. Overall, it would be 

important to understand the role of ANS functioning both for short-term and long-term 

outcomes to guide prevention and intervention strategies aimed towards improving 

children’s adaptive functioning. 

Overall, this study was conducted to examine children’s sympathetic and 

parasympathetic ANS functioning during emotionally and cognitively demanding 

challenges from preschool to first grade, and to test the relations between profiles of ANS 
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functioning and self-regulation outcomes. Findings highlight the importance of 

understanding the “context-dependent” nature of ANS functioning. In particular, results 

suggested that there were systematic differences in children’s group-level ANS responses 

toward distinct laboratory challenges. Likewise, there was only moderate within-person 

stability in children’s responses toward distinct challenges, suggesting that the same 

individual may respond differently to distinct challenges. As such, it would be important 

to understand whether a pattern of heightened ANS responsivity toward only certain 

challenges (e.g. frustrating challenge) but not others (e.g., fear-related challenge) may be 

associated with certain self-regulation outcomes. Results also suggested that, from 

preschool to grade 1, there was a group-level increase in baseline RSA and PEP but no 

clear pattern of change in RSA and PEP responsivity. It would be important to 

understand the implications of the longitudinal increases in baseline levels of ANS 

functioning. Finally, results provided support for the idea that there are profiles of 

children with distinct patterns of ANS functioning and that children in these profiles may 

differ with respect to self-regulation outcomes. Examining profiles of ANS functioning 

across different populations including clinical populations and/or children exposed to 

greater contextual stress would help understand whether the profiles identified in this 

study are more or less common in other populations. Moreover, it would be important to 

understand the familial or contextual factors that may lead to the emergence of different 

profiles, and to further examine the intricate relations among distinct patterns of ANS 

functioning and processes related to self-regulation.    



 

 
 

138

REFERENCES 

Alkon, A., Boyce, W. T., Davis, N. V., & Eskenazi, B. (2011). Developmental Changes 

in Autonomic Nervous System Resting and Reactivity Measures in Latino Children 

from 6 to 60 Months of Age. Journal of Developmental & Behavioral Pediatrics, 32, 

668–677.  

Alkon, A., Goldstein, L. H., Smider, N., Essex, M. J., Kupfer, D. J., Boyce, W. T., … 

Steinberg, L. (2003). Developmental and contextual influences on autonomic 

reactivity in young children. Developmental Psychobiology, 42, 64–78.  

Beauchaine, T. P., Gatzke-Kopp, L., Neuhaus, E., Chipman, J., Reid, M. J., & Webster-

Stratton, C. (2013). Sympathetic-and parasympathetic-linked cardiac function and 

prediction of externalizing behavior, emotion regulation, and prosocial behavior 

among preschoolers treated for ADHD. Journal of Consulting and Clinical 

Psychology, 81, 481. 

Beauchaine, T. (2001). Vagal tone, development, and Gray’s motivational theory: 

Toward an integrated model of autonomic nervous system functioning in 

psychopathology. Development and Psychopathology, 13, 183–214.  

Beauchaine, T. P. (2012). Physiological markers of emotion and behavior dysregulation 

in externalizing psychopathology. Monographs of the Society for Research in Child 

Development, 77, 79–86



 

 
 

139

Beauchaine, T. P., Gatzke-Kopp, L., & Mead, H. K. (2007). Polyvagal Theory and 

developmental psychopathology: Emotion dysregulation and conduct problems 

from preschool to adolescence. Biological Psychology, 74(2), 174–184.  

Berntson, G. G., Cacioppo, J. T., & Fieldstone, A. (1996). Illusions, arithmetic, and the 

bidirectional modulation of vagal control of the heart. Biological Psychology, 44, 1–

17.  

Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1991). Autonomic determinism: the 

modes of autonomic control, the doctrine of autonomic space, and the laws of 

autonomic constraint. Psychological Review, 98, 459–487.  

Best, J., & Miller, P. (2010). A developmental perspective on executive function. Child 

Development, 81, 1641–1660. 

Blandon, A. Y., Calkins, S. D., Keane, S. P., & O’Brien, M. (2008). Individual 

differences in trajectories of emotion regulation processes: the effects of maternal 

depressive symptomatology and children’s physiological regulation. Developmental 

Psychology, 44, 1110–1123.  

Bornstein, M. H., & Suess, P. E. (2000). Child and mother cardiac vagal tone: Continuity, 

stability, and concordance across the first 5 years. Developmental Psychology, 36(1), 

54–65. http://doi.org/10.1037//0012-1649.36.1.54 

Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary-

developmental theory of the origins and functions of stress reactivity. Development 

and Psychopathology, 17, 271–301.  

 



 

 
 

140

Boyce, W. T., Quas, J., Alkon, A., Smider, N. A., Essex, M. J., Kupfer, D. J., … 

Steinberg, L. (2001). Autonomic reactivity and psychopathology in middle 

childhood. British Journal of Psychiatry, 179, 144–150.  

Brehm, J. W., & Self, E. A. (1989). The intensity of motivation. Annual Review of 

Psychology, 40, 109–131.  

Bubier, J. L., Drabick, D. A. G., & Breiner, T. (2009). Autonomic functioning moderates 

the relations between contextual factors and externalizing behaviors among inner-

city children. Journal of Family Psychology, 23, 500–510.  

Bull, R., Espy, K. A., & Wiebe, S. a. (2008). Short-term memory, working memory, and 

executive functioning in preschoolers: longitudinal predictors of mathematical 

achievement at age 7 years. Developmental Neuropsychology, 33, 205–28.  

Buss, K. A., Goldsmith, H. H., & Davidson, R. J. (2005). Cardiac reactivity is associated 

with changes in negative emotion in 24-month-olds. Developmental Psychobiology, 

46, 118–132.  

Calkins, S. D., Graziano, P. a, & Keane, S. P. (2007). Cardiac vagal regulation 

differentiates among children at risk for behavior problems. Biological Psychology, 

74(2), 144–53.  

Calkins, S. D., & Hill, A. (2007). Caregiver influences on emerging emotion regulation: 

Biological and environmental transactions in early development. In The Handbook 

of Emotion Regulation (pp. 229–248).  

 

 



 

 
 

141

Calkins, S. D., & Keane, S. P. (2004). Cardiac vagal regulation across the preschool 

period: stability, continuity, and implications for childhood adjustment. 

Developmental Psychobiology, 45, 101–12.  

Caputi, M., Lecce, S., Pagnin, A., & Banerjee, R. (2012). Longitudinal effects of theory 

of mind on later peer relations: The role of prosocial behavior. Developmental 

Psychology, 48, 257–70.  

Carthy, T., Horesh, N., Apter, A., & Gross, J. J. (2010). Patterns of emotional reactivity 

and regulation in children with anxiety disorders. Journal of Psychopathology and 

Behavioral Assessment, 32, 23–36.  

Cicchetti, D., & Rogosch, F. A. (2001). The impact of child maltreatment and 

psychopathology on neuroendocrine functioning. Development and 

Psychopathology, 13, 783–804.  

Del Giudice, M., Ellis, B. J., & Shirtcliff, E. a. (2011). The Adaptive Calibration Model 

of stress responsivity. Neuroscience and Biobehavioral Reviews, 35(7), 1562–92.  

Del Giudice, M., Hinnant, J. B., Ellis, B. J., & El-Sheikh, M. (2012). Adaptive patterns of 

stress responsivity: a preliminary investigation. Developmental Psychology, 48, 

775–90.  

Devine, R. T., & Hughes, C. (2014). Relations Between False Belief Understanding and 

Executive Function in Early Childhood: A Meta-Analysis. Child Development, 

85(5), 1777–1794.  

Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–68.  

 



 

 
 

142

Doussard-Roosevelt, J. a, Montgomery, L. A., & Porges, S. W. (2003). Short-term 

stability of physiological measures in kindergarten children: respiratory sinus 

arrhythmia, heart period, and cortisol. Developmental Psychobiology, 43, 230–42.  

Eisenberg, N., Fabes, R. A., & Murphy, B. C. (1996). Parents’ reactions to children’s 

negative emotions: relations to children’s social competence and comforting 

behavior. Child Development, 67, 2227–2247.  

Eisenberg, N., Fabes, R. A., & Spinrad, T. L. (2006). Prosocial Development. In 

Handbook of child psychology: Vol. 3, Social, emotional, and personality 

development (6th ed.). (pp. 646–718).  

Eisenberg, N., Sulik, M. J., Spinrad, T. L., Edwards, A., Eggum, N. D., Liew, J., … Hart, 

D. (2012). Differential susceptibility and the early development of aggression: 

Interactive effects of respiratory sinus arrhythmia and environmental quality. 

Developmental Psychology, 48, 755–768.  

El-Sheikh, M., & Erath, S. A. (2011). Family conflict, autonomic nervous system 

functioning, and child adaptation: State of the science and future directions. 

Development and Psychopathology, 23, 703–721.  

Ellis, B. J., Jackson, J. J., & Boyce, W. T. (2006). The stress response systems: 

Universality and adaptive individual differences. Developmental Review, 26, 175–

212.  

Esposito, E. A., Koss, K. J., Donzella, B., & Gunnar, M. R. (2016). Early deprivation and 

autonomic nervous system functioning in post-institutionalized children. 

Developmental Psychobiology, 58, 328–340.  



 

 
 

143

Fernald, L. C. H., Burke, H. M., & Gunnar, M. R. (2008). Salivary cortisol levels in 

children of low-income women with high depressive symptomatology. Development 

and Psychopathology, 20.  

Fortunato, C. K., Gatzke-Kopp, L. M., & Ram, N. (2013). Associations between 

respiratory sinus arrhythmia reactivity and internalizing and externalizing symptoms 

are emotion specific. Cognitive, Affective, & Behavioral Neuroscience, 13, 238–251.  

Friedman, N. P., Miyake, A., Young, S. E., Defries, J. C., Corley, R. P., & Hewitt, J. K. 

(2008). Individual differences in executive functions are almost entirely genetic in 

origin. Journal of Experimental Psychology. General, 137, 201–225.  

Gillie, B. L., Vasey, M. W., & Thayer, J. F. (2014). Heart rate variability predicts control 

over memory retrieval. Psychological Science, 25(December 2013), 458–65.  

Gilliom, M., & Shaw, D. S. (2004). Codevelopment of externalizing and internalizing 

problems in early childhood. Development and Psychopathology, 16(2), 313–333.  

Giuliano, R. J., Karns, C. M., Bell, T. A., Petersen, S., Skowron, E. A., Neville, H. J., & 

Pakulak, E. (2017). Parasympathetic and sympathetic activity are associated with 

individual differences in neural indices of selective attention in adults. bioRxiv, 

173377. 

Graziano, P. A., Reavis, R. D., Keane, S. P., & Calkins, S. D. (2007). The Role of 

Emotion Regulation and Children’s Early Academic Success. Journal of School 

Psychology, 45, 3–19.  

Graziano, P., & Derefinko, K. (2013). Cardiac vagal control and children’s adaptive 

functioning: A meta-analysis. Biological Psychology, 94, 22–37.  



 

 
 

144

Gunnar, M., & Quevedo, K. (2007). The neurobiology of stress and development. Annual 

Review of Psychology, 58, 145–73.  

Gunnar, M. R., Frenn, K., Wewerka, S. S., & Van Ryzin, M. J. (2009). Moderate versus 

severe early life stress: Associations with stress reactivity and regulation in 10-12-

year-old children. Psychoneuroendocrinology, 34, 62–75.  

Hastings, P. D., Zahn-Waxler, C., & McShane, K. (2006). We are, by nature, moral 

creatures: Biological bases of concern for others. Handbook of Moral Development, 

(November 2015), 483–516. 

Hinnant, J. B., & El-Sheikh, M. (2009). Children’s externalizing and internalizing 

symptoms over time: The role of individual differences in patterns of RSA 

responding. Journal of Abnormal Child Psychology, 37(8), 1049–1061.  

Holzman, J. B., & Bridgett, D. J. (2017). Heart rate variability indices as bio-markers of 

top-down self-regulatory mechanisms: A meta-analytic review. Neuroscience and 

Biobehavioral Reviews.  

Hovland, A., Pallesen, S., Hammar, Å., Hansen, A. L., Thayer, J. F., Tarvainen, M. P., & 

Nordhus, I. H. (2012). The relationships among heart rate variability, executive 

functions, and clinical variables in patients with panic disorder. International 

Journal of Psychophysiology, 86, 269–275.  

Hughes, C., Ensor, R., Wilson, A., & Graham, A. (2010). Tracking executive function 

across the transition to school: a latent variable approach. Developmental 

Neuropsychology, 35, 20–36.  

 



 

 
 

145

Huizinga, M., Dolan, C. V., & van der Molen, M. W. (2006). Age-related change in 

executive function: Developmental trends and a latent variable analysis. 

Neuropsychologia, 44, 2017–2036.  

Johnsen, B. H., Thayer, J. F., Laberg, J. C., Wormnes, B., Raadal, M., Skaret, E., … 

Berg, E. (2003). Attentional and physiological characteristics of patients with dental 

anxiety. Journal of Anxiety Disorders, 17, 75–87.  

Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2013). Principles of Neural Science. 

Neurology (Vol. 4).  

Kim, S., Nordling, J. K., Yoon, J. E., Boldt, L. J., & Kochanska, G. (2013). Effortful 

control in “hot” and “cool” tasks differentially predicts children’s behavior problems 

and academic performance. Journal of Abnormal Child Psychology, 41, 43–56.  

Kogan, A., Gruber, J., Shallcross, A. J., Ford, B. Q., & Mauss, I. B. (2013). Too much of 

a good thing? Cardiac vagal tone’s nonlinear relationship with well-being. Emotion, 

13, 599–604.  

Kolacz, J., Holochwost, S. J., Gariépy, J. L., & Mills-Koonce, W. R. (2016). Patterns of 

joint parasympathetic, sympathetic, and adrenocortical activity and their associations 

with temperament in early childhood. Developmental Psychobiology, 58, 990–1001.  

Kreibig, S. D. (2010). Autonomic nervous system activity in emotion: A review. 

Biological Psychology, 84, 394–421.  

 

 

 



 

 
 

146

Lahat, A., Todd, R. M., Mahy, C. E. V., Lau, K., & Zelazo, P. D. (2009). 

Neurophysiological correlates of executive function: a comparison of European-

canadian and chinese-canadian 5-year-old children. Frontiers in Human 

Neuroscience, 3, 72.  

Leerkes, E. M., Blankson, A. N., O’Brien, M., Calkins, S. D., & Marcovitch, S. (2011). 

The relation of maternal emotional and cognitive support during problem solving to 

pre-academic skills in preschoolers. Infant and Child Development, 20, 353–370.  

Lehto, J. (1996). Are executive function tests dependent on working memory capacity? 

The Quarterly Journal of Experimental Psychology Section A, 49, 29–50.  

Linnemeyer, S. A., & Porges, S. W. (1986). Recognition memory and cardiac vagal tone 

in 6-month-old infants. Infant Behavior and Development, 9(1), 43–56.  

Marcovitch, S., Leigh, J., Calkins, S. D., Leerks, E. M., O’Brien, M., & Blankson, A. N. 

(2010). Moderate vagal withdrawal in 3.5-year-old children is associated with 

optimal performance on executive function tasks. Developmental Psychobiology, 

52(6), 603–608.  

Markovits, H., Roy, R., Denko, P., & Benenson, J. (2003). Behavioural rules underlying 

learning to share: Effects of development and context. International Journal of 

Behavioral Development, 27, 116–121.  

Masten, A. S., Roisman, G. I., Long, J. D., Burt, K. B., Obradovic, J., Riley, J. R., … 

Tellegen, A. (2005). Developmental cascades: linking academic achievement and 

externalizing and internalizing symptoms over 20 years. Developmental Psychology, 

41(5), 733–46.  



 

 
 

147

Masten,  A. S., Herbers, J. E., Desjardins, C. D., Cutuli, J. J., McCormick, C. M., 

Sapienza, J. K., … Zelazo, P. D. (2012). Executive Function Skills and School 

Success in Young Children Experiencing Homelessness. Educational Researcher, 

41, 375–384.  

Mauss, I. B., & Robinson, M. D. (2009). Measures of emotion: A review. Cognition and 

Emotion, 23(2), 209–237.  

Miller, J. G., Kahle, S., & Hastings, P. D. (2016). Moderate Baseline Vagal Tone Predicts 

Greater Prosociality in Children. Developmental Psychology, 53(2), 274–289.  

Miner, J. L., & Clarke-Stewart, K. A. (2008). Trajectories of externalizing behavior from 

age 2 to age 9: relations with gender, temperament, ethnicity, parenting, and rater. 

Developmental Psychology, 44(3), 771–786.  

Miyake,  A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. 

D. (2000). The unity and diversity of executive functions and their contributions to 

complex “Frontal Lobe” tasks: a latent variable analysis. Cognitive Psychology, 41, 

49–100.  

Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H., … 

Caspi, A. (2011). A gradient of childhood self-control predicts health, wealth, and 

public safety. Proceedings of the National Academy of Sciences of the United States 

of America, 108(7), 2693–2698.  

Monroe, S. M., & Simons, A. D. (1991). Diathesis-stress theories in the context of life 

stress research: Implications for the depressive disorders. Psychological Bulletin, 

110, 406–425.  



 

 
 

148

Moore, C., Barresi, J., & Thompson, C. (1998). The Cognitive Basis of Future-oriented 

Prosocial Behavior. Social Development, 7(2), 198–218. 

http://doi.org/10.1111/1467-9507.00062 

Morris, N., & Jones, D. M. (1990). Memory updating in working memory: The role of 

the central executive. British Journal of Psychology, 81(2), 111-121. 

Morrison, F. J., Ponitz, C. C., & McClelland, M. (2010). Self-Regulation and Academic 

Achievement in the Transition to School. In The Developing human brain: 

Development at the intersection of emotion and cognition (pp. 203–224).  

Nater, U. M., & Rohleder, N. (2009). Salivary alpha-amylase as a non-invasive 

biomarker for the sympathetic nervous system: Current state of research. 

Psychoneuroendocrinology, 34(4), 486–496. 

Nunan, D., Sandercock, G. R. H., & Brodie, D. A. (2010). A quantitative systematic 

review of normal values for short-term heart rate variability in healthy adults. PACE 

- Pacing and Clinical Electrophysiology, 33(11), 1407–1417. 

Obradović, J. (2012). How can the study of physiological reactivity contribute to our 

understanding of adversity and resilience processes in development? Development 

and Psychopathology, 24(2), 371–87. 

Obradović, J., Bush, N. R., Stamperdahl, J., Adler, N. E., & Boyce, W. T. (2010). 

Biological sensitivity to context: the interactive effects of stress reactivity and 

family adversity on socioemotional behavior and school readiness. Child 

Development, 81(1), 270–89.  

 



 

 
 

149

Oosterman, M., De Schipper, J. C., Fisher, P., Dozier, M., & Schuengel, C. (2010). 

Autonomic reactivity in relation to attachment and early adversity among foster 

children. Development and Psychopathology, 22(1), 109–118. 

Patriquin, M. A., Lorenzi, J., Scarpa, A., Calkins, S. D., & Bell, M. A. (2015). Broad 

implications for respiratory sinus arrhythmia development: Associations with 

childhood symptoms of psychopathology in a community sample. Developmental 

Psychobiology, 57(1), 120–130.  

Perry, N. B., Calkins, S. D., & Bell, M. A. (2016). Indirect Effects of Maternal 

Sensitivity on Infant Emotion Regulation Behaviors: The Role of Vagal Withdrawal. 

Infancy, 21, 128–153.  

Perry, N. B., Calkins, S. D., Nelson, J. A.., Leerkes, E. M., & Marcovitch, S. (2012). 

Mothers’ responses to children’s negative emotions and child emotion regulation: 

The moderating role of vagal suppression. Developmental Psychobiology, 54, 503–

513.  

Perry, N. B., Nelson, J. a, Swingler, M. M., Leerkes, E. M., Calkins, S. D., Marcovitch, 

S., & O’Brien, M. (2012). The relation between maternal emotional support and 

child physiological regulation across the preschool years. Developmental 

Psychobiology.  

Perry, N. B., Nelson, J. a, Swingler, M. M., Leerkes, E. M., Calkins, S. D., Marcovitch, 

S., & O’Brien, M. (2013). The relation between maternal emotional support and 

child physiological regulation across the preschool years. Developmental 

Psychobiology, 55, 382–94.  



 

 
 

150

Porges, S. W. (1995). Orienting in a defensive world: Mammalian modifications of our 

evolutionary heritage. A polyvagal theory. Psychophysiology, 32, 301–318.  

Quas, J. A, Yim, I. S., Oberlander, T. F., Nordstokke, D., Essex, M. J., Armstrong, J. M., 

… Boyce, W. T. (2014). The symphonic structure of childhood stress reactivity: 

Patterns of sympathetic, parasympathetic, and adrenocortical responses to 

psychological challenge. Development and Psychopathology, 1–20.  

Quigley, K. S., & Stifter, C. a. (2006). A comparative validation of sympathetic reactivity 

in children and adults. Psychophysiology, 43, 357–365.  

Obrist, P. A. (1981). Cardiovascular psychophysiology: A perspective. New York: 

Plenum.  

Porges, S. W. (1995). Orienting in a defensive world: Mammalian modifications of our 

evolutionary heritage. A polyvagal theory. Psychophysiology, 32, 301–318.  

Porges, S. W. (2003). The Polyvagal Theory: Phylogenetic contributions to social 

behavior. Physiology and Behavior, 79, 503–513.  

Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74, 116–143.  

Porges, S.W. (2011). The polyvagal theory: Neurophysiological foundations of emotions, 

attachment, communication, and self-regulation. New York, NY: W. W. Norton 

& Company. 

Ramsay, D. S., & Woods, S. C. (2014). Clarifying the roles of homeostasis and allostasis 

in physiological regulation. Psychological Review, 121(2), 225–247.  

Raver, C. C., & Zigler, E. F. (1997). New perspectives on Head Start social competence: 

An untapped dimension in evaluating Head Start’s success. Early Childhood 



 

 
 

151

Research Quarterly, 12, 363–385.  

Richter, M., Friedrich, A., & Gendolla, G. H. (2008). Task difficulty effects on cardiac 

activity. Psychophysiology, 45(5), 869–875.  

Roos, L. E., Giuliano, R. J., Beauchamp, K. G., Gunnar, M., Amidon, B., & Fisher, P. A. 

(2017). Validation of autonomic and endocrine reactivity to a laboratory stressor in 

young children. Psychoneuroendocrinology, 77, 51–55. 

http://doi.org/10.1016/j.psyneuen.2016.11.023 

Rose-Krasnor, L. (1997). The nature of social competence: A theoretical review. Social 

Development. 

Russo, S. J., Murrough, J. W., Han, M.-H., Charney, D. S., & Nestler, E. J. (2012). 

Neurobiology of resilience. Nature Neuroscience, 15(11), 1475–1484. 

Saul, J. P. (1990). Beat-To-Beat Variations of Heart Rate Reflect Modulation of Cardiac 

Autonomic Outflow. Physiology, 5(1), 32–37. 

Sinha, R., Lovallo, W. R., & Parsons, O. A. (1992). Cardiovascular differentiation of 

emotions. Psychosomatic Medicine, 54(4), 422–435.  

Smith, R., Thayer, J. F., Khalsa, S. S., & Lane, R. D. (2017). The hierarchical basis of 

neurovisceral integration. Neuroscience and Biobehavioral Reviews.  

Staton, L., El-Sheikh, M., & Buckhalt, J. a. (2009). Respiratory sinus arrhythmia and 

cognitive functioning in children. Developmental Psychobiology, 51, 249–258.  

Suess, P. E., Porges, S. W., & Plude, D. J. (1994). Cardiac vagal tone and sustained 

attention in school-age children. Psychophysiology, 31, 17–22.  

 



 

 
 

152

Thayer, J. F., Hansen, A. L., Saus-Rose, E., & Johnsen, B. H. (2009). Heart rate 

variability, prefrontal neural function, and cognitive performance: The neurovisceral 

integration perspective on self-regulation, adaptation, and health. Annals of 

Behavioral Medicine, 37(2), 141–153. 

Thayer, J. F., & Lane, R. D. (2000). A model of neurovisceral integration in emotion 

regulation and dysregulation. Journal of Affective Disorders, 61(3), 201–16.  

Thompson, C., Barresi, J., & Moore, C. (1997). The development of future-oriented 

prudence and altruism in preschoolers. Cognitive Development, 12(1997), 199–212.  

Ulrich-Lai, Y. M., & Herman, J. P. (2009). Neural regulation of endocrine and autonomic 

stress responses. Nature Reviews. Neuroscience, 10(juNe), 397–409.  

van der Sluis, S., de Jong, P. F., & van der Leij, A. (2007). Executive functioning in 

children, and its relations with reasoning, reading, and arithmetic. Intelligence, 35, 

427–449.  

Willoughby, M. T., Wirth, R. J., & Blair, C. B. (2012). Executive function in early 

childhood: Longitudinal measurement invariance and developmental change. 

Psychological Assessment, 24(2), 418–431.  

Wright, R. A., & Kirby, L. D. (2001). Effort determination of cardiovascular response: 

An integrative analysis with applications in social psychology. Advances in 

Experimental Social Psychology.  

Zelazo, P. D., & Cunningham, W. A.. (2007). Executive Function: Mechanisms 

Underlying Emotion Regulation. Handbook of Emotion Regulation, 135–158. 



 

 
 

153

APPENDIX A 

TABLES AND FIGURES 

Table 1. Descriptive Information for Mean RSA  

    N Min Max Mean SD Skew SE Kurtosis SE 

Preschool          

 Baseline 259 3.65 9.56 7.21 1.11 -.32 .15 .00 .30 

 Tangrams 256 3.48 9.27 6.27 1.17 .04 .15 -.22 .30 

 Go/No-Go 249 3.66 9.54 6.83 1.06 -.18 .15 -.12 .31 

 Locked Box 250 3.26 9.63 6.17 1.14 .14 .15 .01 .31 

 Toy Removal 244 3.69 9.55 6.84 1.13 .07 .16 -.36 .31 

Kindergarten          

 Baseline 233 4.07 9.87 7.35 1.05 -.15 .16 .05 .32 

 Tangrams 231 2.44 9.39 6.44 1.17 -.08 .16 .11 .32 

 Go/No-Go 225 3.66 9.26 6.95 1.02 -.14 .16 -.19 .32 

 Not Sharing 227 4.37 9.91 6.89 1.11 .22 .16 -.25 .32 

 Impossible Gift 224 3.39 9.29 5.96 1.18 .23 .16 .04 .32 

Grade 1          

 Baseline 229 4.83 10.15 7.36 .98 .06 .16 -.18 .32 

 Tangrams 228 4.07 9.64 6.47 1.10 .28 .16 -.43 .32 

 Go/No-Go 223 4.40 9.97 7.10 .95 .09 .16 -.07 .32 

 Puzzle Box 226 4.00 9.82 6.52 1.05 .28 .16 .11 .32 

 Broken Toy 224 4.35 9.88 6.87 1.04 .15 .16 -.18 .32 
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 Table 2. Descriptive Information for RSA Responsivity 

    N Min Max Mean SD Skew SE Kurtosis SE 

Preschool          

 Tangrams 256 -.75 2.74 .93 .57 -.09 .15 .48 .30 

 Go/No-Go 247 -.99 2.00 .36 .48 .20 .16 .53 .31 

 Locked Box 250 -.99 3.34 1.05 .71 .04 .15 .07 .31 

 Toy Removal 244 -1.26 2.04 .39 .61 .04 .16 .44 .31 

Kindergarten          

 Tangrams 231 -.71 2.74 .91 .60 .09 .16 .16 .32 

 Go/No-Go 225 -.99 2.00 .39 .52 .09 .16 .36 .32 

 Not Sharing 227 -1.34 2.53 .46 .64 .08 .16 -.10 .32 

 Impossible Gift 221 -1.68 4.20 1.37 .94 .03 .16 .51 .33 

Grade 1          

 Tangrams 228 -.60 2.67 .89 .63 .26 .16 .03 .32 

 Go/No-Go 223 -1.25 2.50 .26 .53 .01 .16 1.38 .32 

 Puzzle Box 225 -.63 2.47 .84 .69 .03 .16 -.40 .32 

 Broken Toy 223 -1.16 2.49 .50 .67 .31 .16 .20 .32 
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 Table 3. Descriptive Information for Mean PEP  

    N Min Max Mean SD Skew SE Kurtosis SE 

Preschool          

 Baseline 233 71.63 107.50 91.14 6.43 -.15 .16 -.12 .32 

 Tangrams 222 75.00 105.79 90.67 6.09 -.07 .16 -.12 .33 

 Go/No-Go 224 74.31 107.25 90.87 6.25 -.09 .16 -.28 .32 

 Locked Box 221 75.25 107.63 90.87 6.59 -.03 .16 -.20 .33 

 Toy Removal 216 75.25 111.75 91.71 6.57 .11 .17 -.04 .33 

Kindergarten          

 Baseline 219 73.50 112.63 92.67 6.72 -.23 .16 .44 .33 

 Tangrams 210 66.35 108.37 92.09 6.68 -.50 .17 .87 .33 

 Go/No-Go 207 75.50 108.25 92.56 6.15 -.23 .17 .29 .34 

 Not Sharing 206 71.00 111.00 93.00 7.09 -.14 .17 .47 .34 

 Impossible Gift 195 67.50 118.00 92.50 7.47 -.17 .17 .99 .35 

Grade 1          

 Baseline 217 71.25 108.25 93.70 6.74 -.52 .17 .70 .33 

 Tangrams 211 73.00 106.33 92.75 6.52 -.37 .17 .19 .33 

 Go/No-Go 206 77.38 107.00 92.47 6.20 -.07 .17 -.43 .34 

 Puzzle Box 206 78.71 110.00 93.41 6.37 .08 .17 -.33 .34 

 Broken Toy 202 77.00 109.25 93.29 6.72 -.08 .17 -.33 .34 
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Table 4. Descriptive Information for PEP Responsivity 

    N Min Max Mean SD Skew SE Kurtosis SE 

Preschool          

 Tangrams 217 -5.82 9.43 .65 2.28 .56 .17 1.95 .33 

 Go/No-Go 215 -7.50 8.13 .04 2.50 .05 .17 .73 .33 

 Locked Box 216 -7.50 9.50 .17 3.06 .15 .17 .25 .33 

 Toy Removal 208 -9.88 9.50 -.47 3.08 .06 .17 .80 .34 

Kindergarten          

 Tangrams 209 -7.85 7.36 .40 2.40 -.02 .17 .75 .34 

 Go/No-Go 203 -9.63 7.00 -.36 2.91 -.39 .17 .76 .34 

 Not Sharing 203 -11.53 8.00 -.61 3.60 -.12 .17 .62 .34 

 Impossible Gift 191 -12.13 12.50 .08 4.62 .12 .18 .10 .35 

Grade 1          

 Tangrams 210 -8.75 10.53 .89 2.91 -.03 .17 1.39 .33 

 Go/No-Go 205 -8.00 12.29 1.15 3.49 .17 .17 .20 .34 

 Puzzle Box 205 -11.13 13.25 .17 3.91 .24 .17 .72 .34 

 Broken Toy 199 -12.25 12.50 .13 4.28 .08 .17 .76 .34 
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Table 5. Fixed Effect Coefficients from the Random Intercept HLM Models  
Examining Task RSA in Relation to Baseline RSA  

  Fixed Effect Coefficient SE p 

Model 1: Preschool    

 Intercept (baseline) 7.21 0.07 <0.001 

 Cognitive 1: Tangrams -0.94 0.04 <0.001 

 Cognitive 2: Go/No-Go -0.38 0.04 <0.001 

 Emotional 1: Locked Box -1.05 0.04 <0.001 

 Emotional 2: Toy Removal -0.39 0.04 <0.001 

Model 2: Kindergarten    

 Intercept (baseline) 7.35 0.07 <0.001 

 Cognitive 1: Tangrams -0.91 0.05 <0.001 

 Cognitive 2: Go/No-Go -0.39 0.05 <0.001 

 Emotional 1: Not Sharing -0.46 0.05 <0.001 

 Emotional 2: Gift -1.39 0.05 <0.001 

Model 3: Grade 1    

 Intercept (baseline) 7.36 0.07 <0.001 

 Cognitive 1: Tangrams -0.89 0.04 <0.001 

 Cognitive 2: Go/No-Go -0.27 0.04 <0.001 

 Emotional 1: Puzzle Box -0.85 0.04 <0.001 

  Emotional 2: Broken Toy -0.50 0.04 <0.001 
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Table 6. Fixed Effect Estimates from the Random Intercept HLM Models  
Examining Task PEP in Relation to Baseline PEP  

   Coefficient SE p 

Model 4: Preschool    

 Intercept (baseline) 91.10 0.41 <0.001 

 Cognitive 1: Tangrams -0.61 0.17 <0.001 

 Cognitive 2: Go/No-Go -0.10 0.17 0.562 

 Emotional 1: Locked Box -0.22 0.17 0.213 

 Emotional 2: Toy Removal 0.46 0.17 0.009 

Model 5: Kindergarten    

 Intercept (baseline) 92.57 0.46 <0.001 

 Cognitive 1: Tangrams -0.45 0.23 0.052 

 Cognitive 2: Go/No-Go 0.25 0.23 0.279 

 Emotional 1: Not Sharing 0.59 0.23 0.010 

 Emotional 2: Impossible Gift -0.17 0.23 0.481 

Model 6: Grade 1    

 Intercept (baseline) 93.65 0.45 <0.001 

 Cognitive 1: Tangrams -0.95 0.24 <0.001 

 Cognitive 2: Go/No-Go -1.06 0.24 <0.001 

 Emotional 1: Puzzle Box -0.07 0.24 0.784 

  Emotional 2: Broken Toy -0.22 0.24 0.359 
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 Table 7. Correlations between RSA and PEP Responsivity  
during Laboratory Challenges in Preschool 

    1 2 3 4 5 6 7 8 9 
1. Tangrams RSA Change -         
2. Go/No-Go RSA Change .61** -        
3. Emotion Tasks RSA Change .69** .58** -       
4. Locked Box RSA Change .70** .51** .87** -      
5. Toy Removal RSA Change .49** .49** .87** .48** -     
6. Tangrams PEP Change .15* -.04 .13 .15* .10 -    
7. Go/No-Go PEP Change -.01 .05 -.03 .05 -.08 .52** -   
8. Emotion Tasks RSA Change .11 .06 .15* .23** .06 .64** .74** -  
9. Locked Box PEP Change .07 .09 .16* .26** .06 .63** .71** .92** - 

10. Toy Removal PEP Change .13 .02 .15* .22** .05 .52** .63** .91** .65** 
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Table 8. Correlations between RSA and PEP Responsivity  
during Laboratory Challenges in Kindergarten 

    1 2 3 4 5 6 7 8 9 

1. Tangrams RSA Change -         

2. Go/No-Go RSA Change .60** -        

3. Emotion Tasks RSA Change .49** .56** -       

4. Not Sharing RSA Change .42** .40** .84** -      

5. Impossible Gift RSA Change .57** .51** .62** .541** -     

6. Tangrams PEP Change -.03 -.05 -.04 .04 -.12 -    

7. Go/No-Go PEP Change -.03 .13 .15* .15* .00 .54** -   

8. Emotion Tasks PEP Change .04 .07 .23** .23** .03 .50** .62** -  

9. Not Sharing PEP Change .07 .08 .23** .18** .10 .38** .53** .87** - 

10. Impossible Gift PEP Change -.04 .05 .20** .22** -.05 .50** .58** .86** .47** 
Note. *p < .05, **p <.01. 
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 Table 9. Correlations between RSA and PEP Responsivity  
during Laboratory Challenges in Grade 1 

    1 2 3 4 5 6 7 8 9 
1. Tangrams RSA Change -         
2. Go/No-Go RSA Change .54** -        
3. Emotion Tasks RSA Change .68** .63** -       
4. Puzzle Box RSA Change .69** .56** .90** -      
5. Broken Toy RSA Change .53** .58** .90** .61** -     
6. Tangrams PEP Change .03 .06 .07 .08 .05 -    
7. Go/No-Go PEP Change .02 .04 .10 .11 .07 .64** -   
8. Emotion Tasks PEP Change -.06 .02 .05 .06 .04 .66** .73** -  
9. Puzzle Box PEP Change -.01 .00 .07 .10 .03 .67** .69** .94** - 

10. Broken Toy PEP Change -.09 -.01 .03 .03 .02 .58** .68** .94** .74** 
Note. *p < .05, **p <.01. 
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Table 10. Stability in RSA Responsivity Over Time 

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1. Baseline P –                 

2. Baseline K .66** –                

3. Baseline G1 .56** .66** –               

4. Tangrams P .15* .09 .14* –              

5. Tangrams K -.12 .08 .12 .32** –             

6. Tangrams G1 -.15* -.09 .13 .31** .46** –            

7. Go/No-Go P .34** .08 .14* .57** .14* .09 –           

8. Go/No-Go K .05 .31** .18** .09 .60** .21** .11 –          

9. Go/No-Go G1 -.02 .05 .32** .06 .16* .56** .13 .26** –         

10. Emotion Tasks P .28** .14* .21** .69** .21** .20** .52** .06 -.02 –        

11. Emotion Tasks K .14* .33** .21** .21** .49** .25** .18** .56** .11 .25** –       

12. Emotion Tasks G1 -.05 .02 .27** .26** .30** .68** .11 .14* .64** .21** .30** –      

13. Locked Box P .25** .12 .16* .70** .18** .15* .48** .04 -.03 .88** .19** .17* –     

14. Toy Removal P .24** .08 .21** .49** .16* .18* .47** .08 .04 .84** .21** .16* .48** –    

15. Not Sharing K .09 .22** .08 .12 .42** .15* .12 .54** .05 .15* .85** .21** .08 .20** –   

16. Gift K .16* .33** .28** .23** .42** .25** .19** .40** .13 .28** .84** .29** .24** .16* .42** –  

17. Puzzle Box G1 -.05 .01 .24** .30** .33** .69** .17* .17* .57** .24** .31** .90** .21** .17* .21** .30** – 

18. Broken Toy G1 -.05 .03 .25** .16* .22** .53** .53** .04 .60** .12 .24** .89** .08 .11 .20** .22** .61** 

Note. *p < .05, **p <.01. 
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Table 11. Stability in PEP Responsivity Over Time 

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1. Baseline P –                 

2. Baseline K .56** –                

3. Baseline G1 .57** .49** –               

4. Tangrams P .21** .00 .05 –              

5. Tangrams K .13 .23** .22** .12 –             

6. Tangrams G1 -.06 -.03 .24** -.04 .26** –            

7. GNG P .23** .06 .08 .52** .15 .08 –           

8. GNG K .17* .36** .07 .05 .54** .16* .10 –          

9. GNG G1 -.07 -.04 .30** -.16* .19* .64** -.04 .07 –         

10. Emotion tasks P .20** -.01 .07 .64** .16* .10 .74** .15 .00 –        

11. Emotion tasks K .04 .18* -.04 -.05 .50** .12 .01 .62** .01 .10 –       

12. Emotion tasks G1 -.08 -.13 .28** -.03 .14 .66** .03 -.01 .73** .07 .12 –      

13. Locked Box P .18** -.01 .12 .63** .23** .15 .71** .15 .02 .92** .14 .14 –     

14. Toy Removal P .16* .01 .07 .52** .05 .05 .63** .12 .00 .92** .06 .02 .65** –    

15. Not Sharing K .05 .15* -.06 -.08 .38** .06 -.04 .53** .01 .05 .87** .13 .11 .00 –   

16. Gift K .05 .17* .01 -.04 .50** .16* .02 .58** .02 .11 .86** .07 .14 .06 .47** –  

17. Puzzle Box G1 -.06 -.13 .27** .00 .16* .67** .05 .03 .69** .07 .10 .93** .14 .01 .12 .09 – 

18. Broken Toy G1 -.08 -.12 .26** -.03 .16* .58** .02 -.01 .68** .08 .07 .94** .14 .04 .08 .04 .74** 

Note. *p < .05, **p <.01. 
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Table 12. Linear Growth Modeling Analyses for Baseline RSA and Baseline PEP  

    Unstandardized Standardized   

   Coefficient SE Coefficient SE p 

Model 1: Baseline RSA      

Intercept      

 Mean  7.22 .07 7.55 .54 .000 

 Variance .92 .13     –     – .000 

Slope      

 Mean .09 .03 .27 .11 .004 

 Variance .11 .05     –      – .021 

Covariance      

  Intercept x Slope -.16 .06 -.49 .09 .011 

Model 2: Baseline PEP           

Intercept      

 Mean  91.12 .39 18.57 1.12 .000 

 Variance 24.09 2.90    –   – .000 

Slope      

 Mean 1.29 .21 .27 .11 .004 

 Variance .00 .00   –   – NS 

Covariance      

  Intercept x Slope    –   –   –   –   – 
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Table 13. Fit Statistics for the Latent Profile Models 

Profiles Entropy AIC BIC Adj BIC 

Lo-Mendell-Rubin 

Adjusted LRT Test 

2 profiles .71 8036.75 8147.13 8048.85 p = .002 

3 profiles .73 7902.31 8051.86 7918.70 p = .160 

4 profiles .80 7788.54 7977.26 7809.23 p = .023 

5 profiles .82 7742.55 7970.44 7767.53 p = .290 
 
Note. AIC =Akaike Information Criterion, BIC = Bayesian Information Criterion, Adj BIC = Adjusted BIC, LRT = Likelihood 
Ratio Test. Bold indicates that the profile was selected. 
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Table 14. Model Estimates from the Latent Profile Analysis 

    

 Sensitive  

(High Responsivity)   

Buffered  

(Moderate 

Responsivity)   Coinhibition   

 Vigilant  

(Sympathetic 

Activation) 

  n = 77; 30%  n = 109, 41%  n = 63, 24%  n = 11, 4% 

    Estimate SE p   Estimate SE p   Estimate SE p   Estimate SE p 

Parasympathetic                

 Baseline RSA 7.44 .12 .00  7.18 .13 .00  7.29 .15 .00  5.50 .30 .00 

 Tangrams RSA-c 1.40 .09 .00  .67 .09 .00  .97 .08 .00  .01 .21 .96 

 Go/No-Go RSA-c .69 .09 .00  .19 .05 .00  .38 .06 .00  -.44 .12 .00 

 Locked Box RSA-c 1.68 .09 .00  .73 .13 .00  .98 .09 .00  -.04 .22 .86 

 Toy Removal RSA-c .75 .09 .00  .18 .07 .01  .44 .09 .00  -.46 .24 .05 

Sympathetic                

 Baseline PEP 91.40 .81 .00  91.66 .69 .00  89.29 1.09 .00  96.85 2.36 .00 

 Tangrams PEP-c 1.91 .37 .00  .57 .19 .00  -1.31 .45 .00  5.81 1.19 .00 

 Go/No-Go PEP-c 1.61 .39 .00  .34 .22 .13  -2.73 .35 .00  4.58 1.12 .00 

 Locked Box PEP-c 2.48 .46 .00  .28 .32 .38  -3.17 .35 .00  6.26 .97 .00 

  Toy Removal PEP-c 1.70 .36 .00   -.28 .34 .42   -3.75 .47 .00   3.60 1.54 .02 
N = 260. RSA-c indicates RSA change or RSA responsivity. PEP-c indicates PEP change or PEP responsivity.  
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Table 15. Descriptive Information for Child Self-Regulation Outcomes 

  N Min Max Mean SD Skew SE Kurtosis SE 

Executive Functions P 277 -1.45 1.69 -.01 .73 .02 .15 -1.02 .29 

Observed Emotion Regulation P 274 -2.55 1.48 .00 .91 -.67 .15 -.33 .29 

Emotional Reactivity K 220 1.00 3.60 1.49 .48 1.69 .16 3.35 .33 

Behavioral Regulation K 220 -3.14 .99 .00 .93 -1.27 .16 .99 .33 
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(a)  

 
(b) 

 

Figure 1. Results from the Analyses Comparing the Magnitude of the Fixed Effects  
Reflecting ANS Responsivity Toward Challenges in Preschool. Asterisks (*)  
indicate the significance level of the chi-square tests comparing fixed effects.  
*p < .05, **p <.01. Fixed effects were reversed such that positive RSA responsivity  
scores reflect RSA withdrawal, and positive PEP responsivity scores reflect PEP  
shortening/sympathetic activation. Error bars represent standard errors of the fixed effects. 
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(a) 

 
(b) 

 

Figure 2. Results from the Analyses Comparing the Magnitude of the Fixed Effects  
Reflecting ANS Responsivity Toward Challenges in Kindergarten. Asterisks (*)  
indicate the significance level of the chi-square tests comparing fixed effects.  
*p < .05, **p <.01. Fixed effects were reversed such that positive RSA  
responsivity scores reflect RSA withdrawal, and positive PEP responsivity  
scores reflect PEP shortening/sympathetic activation. Error bars represent  
standard errors of the fixed effects. 
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(a)  

 
(b)  

 

Figure 3. Results from the Analyses Comparing the Magnitude of the Fixed Effects  
Reflecting ANS Responsivity Toward Challenges in Grade 1. Asterisks (*)  
indicate the significance level of the chi-square tests comparing fixed effects.  
*p < .05, **p <.01. Fixed effects were reversed such that positive RSA  
responsivity scores reflect RSA withdrawal, and positive PEP responsivity  
scores reflect PEP shortening/sympathetic activation. Error bars represent  
standard errors of the fixed effects. 

.00

.10

.20

.30

.40

.50

.60

.70

.80

.90

1.00

R
S

A
 R

es
po

ns
iv

it
y

Grade 1 Laboratory Challenges
Tangrams Go/No-Go Puzzle Box Broken Toy

**

**

**

****

NS

-.40

-.20

.00

.20

.40

.60

.80

1.00

1.20

1.40

P
E

P 
R

es
po

ns
iv

it
y

Grade 1 Laboratory Challenges

Tangrams Go/No-Go Puzzle Box Broken Toy

**

**

**

**NS NS



 

171 
 

 

Figure 4. Executive Functions Scores Across the ANS Profiles. Error bars represent 
standard error of the mean. Asterisks (*) indicate the significance level of the paired-wise 
t-test differences in executive functions. †p <.10, *p < .05, **p <.01, ***p <.001. 
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Figure 5. Teacher-report of Emotional Reactivity Scores Across the ANS Profiles. Error 
bars represent standard error of the mean. Asterisks (*) indicate the significance level of 
the paired-wise t-test differences in emotional reactivity. †p <.10, *p < .05, **p <.01, 
***p < .001. 
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Figure 6. Teacher-report of Behavioral Regulation Scores Across the ANS Profiles. Error 
bars represent standard error of the mean. Asterisks (*) indicate the significance level of 
the paired-wise t-test differences in emotional reactivity. †p <.10, *p < .05, **p <.01, 
***p < .001. 
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APPENDIX B 

SUPPLEMENTAL MATERIALS ON MISSING DATA 

Available RSA Data in Preschool 

 
Among the 278 children who participated in the preschool visit, 259 had available 

RSA data. Reasons for missing data included child or caregiver refusal for the child to 
wear the heart rate equipment (n=12), equipment malfunctions (n=3), sticker 
placement/connection problems (n=3), and experimenter errors (n=2).  

Baseline RSA. All participants with available RSA data (n=259) had at least 1-
minute of artifact-free baseline RSA data. 

Tangrams RSA. 256 had RSA data for the tangrams task. Reasons for missing 
data included removal or problems with stickers (n=3). 

Go/No-Go RSA. For the Go/No-Go task, missing data was examined for each of 
the 4 blocks separately. If participants were missing more than half of the segments in a 
block (e.g., missing 3 out of 4), their data for that block was excluded. If children were 
missing more than 2 out of 4 blocks, their RSA data for this laboratory challenge was 
excluded. The rationale behind these criteria was that children who missed more than half 
the duration of the block/task likely do not have enough data to make their experience 
comparable to children who had most of their segments. Based on these criteria, 247 
participants had available data for this laboratory challenge. Reasons for missing data 
included removal or problems with stickers (n=5), child did not play more than 2 blocks 
(n=5), no computer tasks due to equipment problem (n=1), and data lost to artifact (n=1).  

Locked Box RSA. 250 children had RSA data for the locked box task. Reasons 
for missing data included removal or problems with stickers (n=7) and lost to artifact 
(n=2).  

Toy Removal RSA. 244 children had RSA data for the toy removal task. Reasons 
for missing data included removal or problems with stickers (n=6), artifact (n=4), or child 
did not do the toy removal task (n=5).  
 

Available RSA Data in Kindergarten 

 
Among the 249 participants who came in for the kindergarten visit, 233 had RSA 

data. Reasons for missing data included the child or caregiver refusal to wear the heart 
rate equipment (n=13) and sticker placement or equipment problem (n=3).  

Baseline RSA. 233 participants had at least 1-minute of baseline RSA data. All 
children had complete RSA data from the statue task. 5 participants had RSA data only 
from the statue but not the fish task. Reasons for missing fish RSA data included 
experimenter error (n=2), equipment malfunction (n=2), and movement artifact (n=1).   
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Tangrams RSA. Among the 233 participants who had RSA data, 231 had RSA 
data from the tangrams task. Reasons for missing data included sticker-related problems 
(n=2). 

GNG RSA. 225 had RSA data for block 1 of the Go/No Go task. Reasons for 
missing data included removal of stickers (n=6), child did not play 2 levels (n=1), and 
equipment problem (n=1). 

Not Sharing. 227 had RSA data for the frustration episode of the Not Sharing 
task. Reasons for missing data included removal or problems with stickers (n=6). 

Impossible to Open Gift.  221 participants had RSA data for the frustration 
episode of the Not Sharing task. Reasons for missing data included removal of stickers 
(n=6), equipment problem (n=1), data lost to artifact (n=2), and having only 1 good 
segment (n=3). 
 

Available RSA Data in Grade 1 

 

Among the 240 participants who came in for grade 1 visit, 230 had RSA data. 
Reasons for missing data included the child or caregiver refusal to wear the heart rate 
equipment (n=9) and an equipment-related problem (n=1).  
 Baseline RSA. Among the 230 participants who had available RSA data, 229 had 
at least 1-minute of artifact-free baseline RSA data. The reason for missing baseline RSA 
data was sticker placement/connection problem. 

Tangrams RSA. Among the 230 participants who had available RSA data, 228 
had RSA data from the tangrams task. Reasons for missing data included sticker-related 
problems (n=2). 

Go/No-Go RSA. 223 participants had RSA responsivity data the Go/No-Go task. 
Reasons for missing data included removal of stickers (n=4), child did not have baseline 
RSA (n=1), child did not do the task (n=1), and data lost to sticker problems or artifact 
(n=1). 

Puzzle Box. 225 had RSA responsivity data for the frustration episode of the 
Puzzle Box task. Reasons for missing data included removal of stickers (n=4) and child 
did not have baseline RSA (n=1).  

Broken Toy. 223 had RSA data for the frustration episode of the Broken Toy 
task. Reasons for missing data included removal of stickers (n=4), child did not have 
baseline RSA (n=1), and lost data to artifact (n=2).  
 

Available PEP Data in Preschool 

 

Among the 278 children who participated in the preschool visit, 241 had available 
PEP data. Reasons for missing data included the child or caregiver refusal to wear the 
heart rate equipment (n=12), sticker placement/connection problems (n=20), equipment 
malfunctions (n=3), and experimenter errors (n=2).  



 

176 
 

Baseline. Among the 241 participants, 233 had at least 1-minute of artifact-free 
baseline data. Baseline PEP data was missing mostly due to child sitting position or 
leaning, and/or sticker connection problems. 

Tangrams. Among the 241 participants who had PEP data, 217 had PEP change 
data for the tangrams training. Reasons for missing data included sticker-related problems 
(n=10), lost to artifact (n=4), not having good baseline (n=8), and lot to artifact (n=2).  

Go/No-Go. 215 participants had PEP responsivity data for the Go/No-Go task.  
Reasons for missing data included equipment malfunction (n=2), sticker-related problems 
(n=12), lost to movement artifact (n=6), and child played less than 2 levels (n= 6).  

Locked Box. 216 participants had PEP change data for the locked box task. 
Reasons for missing data included sticker-related problems (n=16), no good baseline 
(n=8), and lost to artifact (n=1).  

Toy Removal. Among the 241 participants who had PEP data, 208 had PEP 
responsivity data for the toy removal task. Reasons for missing data included child did 
not do task (n=5), sticker-related problems (n=15), movement artifact (n=4), no good 
baseline (n=8), and lost to artifact (n=1). 
 

Available PEP Data in Kindergarten 

 

Among the 249 participants who came in for the kindergarten visit, 222 had 
available PEP data. Reasons for missing data included the child or caregiver refusal to 
wear the heart rate equipment (N=13) and sticker placement or equipment problem 
(N=14).  

Baseline. Among the 222 participants, 219 had at least 1-minute of baseline PEP 
data. Reasons for missing baseline PEP data included child leaning (n=1), child not 
still/fidgety (n=1), and sticker problem (n=1). 

Tangrams. Among the 222 participants who had PEP data, 209 had PEP 
responsivity data from the tangrams task. Reasons for missing data included artifact 
(n=4), sticker-related problems (n=7), not having good baseline (n=2). 

Go/No-Go. 203 participants had PEP responsivity data for the Go/No-Go task. 
Reasons for missing data included sticker-related problems (n=13), equipment problem 
(n=1), data lost to artifact (n=2), no good baseline (n=2), and child completed less than 
half of the task (n=1).  

Not Sharing. Among the 222 participants who had PEP data, 203 had PEP data 
for the frustration episode of the Not Sharing task. Reasons for missing data included 
sticker-related problems (n=12), equipment problem (n=1), artifact or bad physiological 
data (n=3), no good baseline (n=2), and an outlier (n=1). 

Impossible Gift. Among the 222 participants who had PEP data, 193 had PEP 
data for the frustration episode of the Not Sharing task. Reasons for missing data 
included sticker-related problems (n=11), equipment problem (n=2), lost to artifact (n=6), 
no good baseline (n=2), and having only 1 usable segment (n=8). 
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Available PEP Data in Grade 1 

 

Among the 240 participants who came in for the first-grade visit, 218 had PEP 
data. Reasons for missing data included the child or caregiver refusal to wear the heart 
rate equipment (n=9), equipment-related problem (n=1), and sticker placement or 
connection problems (n=12).  

Baseline. Among the 218 participants who had available PEP data, 217 had at 
least 1-minute of artifact-free baseline PEP data. The reason for missing baseline PEP 
data was sticker connection problem. The participant who does not have good baseline 
data have Mean PEP scores but not PEP change scores. 

Tangrams. Among the 218 participants who had available PEP data, 210 had 
good PEP data from the tangrams training task. Reasons for missing data included 
sticker-related problems (n=5), child did not have baseline (n=1), and outliers (n=2).  

Go/No-Go. 205 participants had PEP data for the Go/No Go task. Reasons for 
missing data included removal of stickers (n=6), child did not have baseline PEP (n=1), 
artifact and sticker connection problems (n=5), and child did not complete the task (n=1). 

Puzzle Box. 205 participants had PEP data for the frustration episode of the 
Puzzle Box task. Reasons for missing data included removal of stickers (n=4), sticker 
placement/connection problems (n=5), child did not have baseline PEP (n=1), and lost to 
artifact (n=3). 

Broken Toy. 199 participants had PEP data for the frustration episode of the 
Broken Toy task. Reasons for missing data included removal of stickers (n=4), sticker 
connection/placement problems (n=8), child did not have baseline PEP (n=1), and lost 
data to artifact (n=3) and excluded outlier (n=3). 


