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Various stakeholders, such as educators, and policy makers, appeal for diagnostic 

feedback and actionable test results. Lack of diagnostic tests, or sufficient diagnosicity in 

reporting, has encouraged the use of diagnostic classification models (DCMs) for non-

diagnostic tests. One particular context in which fine-grained test results are of utmost 

importance is English language proficiency (ELP) tests. ELP test results are used for 

critical decisions about English learners (ELs), such as classification, and placement in 

instructional programs. 

This study implemented the DCM methodology to the reading domain of a K-12 

ELP test that was taken by 23,942 ELs in grades 6-8, and pursued the viability of DCMs 

for low-stakes, diagnostic feedback. The study adopted a comprehensive methodology 

and elaborate research design by incorporating alternative Q-matrices, various diagnostic 

models, validation strategies for the Q-matrix, and model selection.  

The results revealed that a Q-matrix created by experts was theoretically sound 

and more appropriate for diagnostic results from several aspects. Likewise, a saturated 

model, such as the log linear cognitive diagnostic model (LCDM), yielded a better fit at 

the test level. It was also deemed more suitable as the test items were either consistent 

with a compensatory or conjunctive model. The LCDM proved to be useful for exerting 

limited diagnostic information. Specifically, the mastery probabilities of individual 

attributes could be estimated accurately and consistently. Attributes could be separated to 



  

some extent, which supports the multidimensionality and makes the second language 

(L2) reading construct appropriate for the DCM analysis. Most items presented some 

diagnostic capacity, yet some items were more useful to differentiate masters and non-

masters. The ability estimation was generally consistent across the LCDM and IRT 

models. However, some results, such as the variability of attribute classes, reflected the 

unidimensional structure of the test. Overall, this study contributes to the representation 

of L2 reading construct and has some implications for teaching ELs and test 

development.
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CHAPTER I 
 

INTRODUCTION 
 
 

“… there is no reason to limit the information provided to candidates to a cryptic 
message like, Sorry, you fail!” (Luecht, 2003, p. 24) 

 
Large-scale proficiency testing is mandated by law in the U.S. (i.e., Every Student 

Succeeds Act [ESSA]) and used for accountability purposes as an instrument of 

educational reform (Chalhoub-Deville, 2016). Schools and teachers are held responsible 

for student success and they are given rewards and sanctions through accountability 

testing (Deville & Chalhoub-Deville, 2011). Although testing is primarily used for 

comparability and evaluation (Hartel, 1999; Hartel & Herman, 2005), the major drive 

behind it is to provide valuable information for teaching and student learning (Glaser & 

Nitko, 1970; Hartel, 1999; Shohamy, 1992). Testing mechanisms under accountability 

also require identifying low performing students and promoting effective supports for 

them (Hartel & Herman, 2005). Thus, the ultimate goal is to derive student learning, 

because success can occur as a result of learning. 

Large-scale test results can be meaningful for instructional cycles and learning 

when the information produced is “detailed, relevant, diagnostic, and addresses a variety 

of dimensions rather than being collapsed to a general score” (Shohamy, 1992, p. 515). 

That is, diagnostic information is key for large-scale tests to add the desired value to 

learning and teaching. In this study diagnosis is operationalized based on Luecht’s (2003) 

definitions as “useful feedback information for detecting and evaluating an examinee’s
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strength and weakness” (p.6). Therefore, it has great potential to adapt instruction. The 

appeal for diagnostic information from large-scale testing has been heard for a long time. 

Nichols et al. articulated in 1995 that “Today, many want testing to be an integral part of 

instructional activity, helping to guide teachers and students to the eventual attainment of 

substantive educational goals” (p.1). This interest continues to increase today. Leighton 

and Gierl (2007) argue that educational accountability itself exerts pressure for diagnostic 

results as students are expected to be ready for ambitious knowledge-based workplace. It 

is of utmost importance to uncover students’ strengths and weaknesses to create suitable 

learning opportunities. This argument is legitimate as such demands are manifested in 

recent educational laws. Large-scale tests should incorporate individualized information 

for teachers and principals so that student needs can be diagnosed and addressed (U.S. 

Department of Education, 2004). ESSA (U.S. Congress, 2015) (i.e., previously No Child 

Left Behind – NCLB as substantiated by Huff & Goodman, 2007) states that statewide 

assessments “produce individual student interpretive, descriptive, and diagnostic reports, 

consistent with clause (iii), regarding achievement on such assessments …”(Section 111 

[b][2][B][x]).  

In addition to policymakers, other stakeholders such as test developers (Huff & 

Goodman, 2007) and researchers advocate diagnostic information. For example, Ho 

(2014) as cited by Wolf et al. (2014) proposes to develop more detailed actionable 

reporting for English learners for better educational programming. Furthermore, test users 

demand more detailed test results (Huff & Goodman, 2007; Kunnan & Jang, 2009; Kim 

et al., 2016; Lopez, 2019). For instance, in their survey with K-12 teachers Huff and 
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Goodman (2007) have found out that most teachers (about 75%) value individualized 

information and more than half believe some diagnostic information can be gathered 

from large-scale assessments. It is apparent that educators look for diagnostic information 

to inform their instruction and decisions about their students. However, Huff and 

Goodman remark that teachers’ use of large-scale tests for diagnostic purposes is limited 

due to a variety of reasons. For example, teachers report that test results are usually not 

comprehensive, clear, beneficial, or diagnostic to report students’ strengths or 

weaknesses. Given the legal enforcement and interest from various stakeholders, more 

efforts to yield diagnostic and instructionally relevant results from large-scale tests is 

warranted. 

Problem Statement 

Predominant measurement models such as classical test theory or item response 

theory do no inherently provide the level of detail for teaching and learning (de la Torre, 

2009). The ability (i.e., test construct) is assumed to be unidimensional and continuous in 

these models (de Ayala, 2009). Students are assigned a single score, and this score 

denotes their level of knowledge in relation to the construct (Leighton, 2009). These 

models only meet the accountability objectives (de la Torre & Minchen, 2014) by 

ordering and comparing students, but do not reveal information about students’ 

knowledge or processes in specific areas (de la Torre, 2009; de la Torre et al., 2010; de la 

Torre & Minchen, 2014). When these models are employed, classification decisions or 

information beyond the total score entails separate ad hoc processes. In order to classify 

students, cut scores are needed. The cuts scores are determined through standard setting 
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activities, which involves gathering educators together to define the characteristics of 

different proficiency levels and judging test items. However, proficiency level 

descriptions might also be broad. As the minimal form of diagnostic information, total 

score is split into subscores (de la Torre, 2009; Haberman, 2008; Kunnan & Jang, 2009). 

However, they are generally associated with general content areas or language domains 

as in language assessments (e.g., listening, reading etc.). The subscores might not present 

adequate detail. Hence, they are deemed superficial for a more complete understanding of 

student processes and learning (de la Torre, 2009).  Furthermore, merely splitting the 

overall score does not ensure that subscores provide reliable additional information 

beyond the overall score (Haberman, 2008). Technical standards, policy mandates, and 

researchers urge to confirm the reliability and value of subscores (American Educational 

Research Association [AERA] et al., 2014, Standard 2.3; Haberman, 2008; Sinharay & 

Haberman, 2008; Puhan et al., 2010; Sinharay, 2014; U.S. Department of Education, 

2018), which also requires a study of the subscores through different methodologies (e.g., 

dimensionality, factor analysis, and proportional reduction in mean squared error etc.) 

An Alternative Approach: Diagnostic Classification Models 

 
Diagnostic Classification Models (DCMs, Rupp et al., 2010) (a.k.a., Cognitive 

Diagnosis Models [CDMs]) have emerged as alternative measurement models to purvey 

finer level of information (de la Torre et al., 2010; de la Torre & Minchen, 2014) and 

structurally generate student classifications. They have gained popularity in the past 

decades in light of recent requests (Huff & Goodman, 2007; Liu et al., 2018). DCMs are 

psychometric models that produce classifications based on multiple constructs (Rupp et 
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al., 2010), and they are “probabilistic, confirmatory, multidimensional, latent-variable 

models” (Rupp & Templin, 2011, p. 226). Because they are multidimensional models, 

they allow examining different skills and processes that students engage with. In addition 

to the pedagogical potential, DCMs have great virtue for understanding the test construct 

(Rupp et al., 2010). They also bridge different disciplines including cognitive 

psychology, content domain, psychometrics, and pedagogy (de la Torre et al., 2010; Jang 

et al., 2015; Leighton & Gierl, 2007; Rupp et al., 2010). For example, domain experts 

such as teachers, work with psychometricians and/or researchers to identify the 

underlying traits in a test. Teachers integrate diagnostic information yielded by the 

psychometric model to their instruction. Because DCMs are multidimensional and 

categorical, models (de la Torre, 2009; Rupp et al., 2010), they differ from the prevalent 

psychometric models.  

DCMs are intended for exposing knowledge, abilities, processes, and/or strategies 

underlying the test performance (de la Torre, 2009; Yang & Embretson, 2007). Rather 

than a unidimensional construct, responses to items relate to multiple unobservable 

constructs in DCMs. These components are collectively referred to as attributes in DCM 

terminology (de la Torre et al., 2010; de la Torre & Chiu, 2016; Henson, 2009; Rupp et 

al., 2010). Because attributes are defined at a finer level, a continuous scale is not 

practical (de la Torre & Minchen, 2014), and the scales associated with each attribute are 

categorical. If attributes are assumed to be binary, the model will estimate whether 

students possess attributes or not. It is also possible to have non-binary attributes to 

estimate the degree to which a skill is possessed (Rupp et al., 2010).  
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Each test item measures one or more attributes. The attributes and their relation to 

each item is mapped in a Q-matrix. The model posits whether each item measures the 

specified attributes. Based on the status of each skill (e.g., mastery vs. non-mastery), a 

student is assigned to a class that is called a latent class (de la Torre et al., 2010) or the 

attribute profile (Rupp et al., 2010). Classification is a “multivariate profile” (Rupp & 

Templin, 2011, p. 225) and it indicates a student’s mastery status of each of the multiple 

measured attributes. This integral classification differentiates DCMs from other models.  

DCMs generate more detailed information and have more utility, as a general 

ability is defined at finer levels (i.e., multiple attributes). Attribute level information hints 

areas an individual student needs to attend to, thus serves as a “roadmap” (Templin & 

Hoffman, 2013). Educators can plan instruction and develop materials to help individual 

students, or determine common problems among students at the group level and make 

more efficient use of instructional time and resources in addressing those problematic 

areas (de la Torre, 2009; de la Torre & Minchen, 2014; Liu et al., 2018; Sessoms & 

Henson, 2018). In this way, learning opportunities are maximized. DCMs also yield other 

useful information such as attribute hierarchies and relations which might be helpful to 

develop learning trajectories, and guide curriculum decisions (Templin & Bradshaw, 

2014). 

Early DCM research was concerned with the theoretical aspects and model 

building, while more recent efforts has focused on the accuracy of the models and 

promoting their application (Huebner, 2010). For example, DCM studies are undertaken 

to improve Q-matrices (e.g., Chen, 2017; de la Torre & Chiu, 2016). There have been 
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also efforts to integrate DCMs with other modelling frameworks such as growth 

modelling (Madison, 2019). Given the amount of scholarship, DCMs have reached a 

level of sophistication and maturation and their implementation are considered feasible 

(Sessoms & Henson, 2018). 

It must be noted that DCMs are developed to supplement diagnostic assessments, 

which are based on a cognitive or learning theory (de la Torre & Minchen, 2014). The 

attributes are rooted in these theories and are known a priori. DCMs are used to confirm 

these theories (i.e., confirmatory nature). Yet, given the lack of such assessments (de la 

Torre et al., 2010) and sufficient diagnostic information from currently used assessments, 

DCMs have been implemented for non-diagnostic assessments. Most of these 

applications pertain to constructs such as math and reading in local as well as 

international educational assessments like PISA, and TIMSS. (e.g. Chen & Chen, 2016; 

Lee et al., 2011; Yamaguchi & Okada, 2018). A common area of application for DCMs is 

the second language (L2) ability. Specifically, there has been considerable work applying 

DCMs to L2 admission tests (e.g., the Test of English as a Foreign Language Tests 

[TOEFL]) (e.g., Jang, 2009b; Kim, 2015; von Davier, 2008 etc.). The majority of these 

studies are replications of the same test data (e.g., TOEFL). Some of the admission tests 

used in these studies are not necessarily linked to instruction or curriculum. On the other 

hand, studies investigating DCMs for K-12 language assessments are much needed, yet 

they are scarce. Diagnostic information is relatively more pertinent in a K-12 context 

because there is a search for deriving student success and learning through policy 

initiatives at this level. 



 

 8 

The Study Context 

 

The context of the present study is an English Language Proficiency (ELP) 

assessment administered to K-12 English Learners (ELs) who are not native speakers of 

English. ELs are mandated to participate in state accountability tests by law. However, 

ELs’ performance is typically below their monolingual English speaker peers (Deville & 

Chalhoub-Deville, 2011) which might partially stem from their linguistic limitations 

(Abedi, 2008; Menken, 2008). Therefore, it is of utmost importance to provide detailed 

feedback about ELs’ language development and deficiencies to aid closing the 

achievement gap. It is worth pointing that ELs might catch up or even outperform their 

monolingual peers once they gain full language proficiency (e.g., Jang et al., 2013). The 

educational policy also projects to create equal learning opportunities for this 

subpopulation and attend to their needs (Deville & Chalhoub-Deville, 2011). Below, the 

general characteristic of the population and key challenges they face are fleshed out in 

order to better understand the justification for diagnostic feedback. 

ELs, as designated by law, represent a growing subpopulation in the U.S. 

schooling context. According to 2016 school year data, they constitute roughly five 

million (10%) of the nationwide student population, and in some states (e.g., California, 

Nevada, Texas) they make up 17-20% of the students (NCES, 2019). ELs themselves are 

a heterogenous student body. They belong to various age groups (i.e., young vs. adult), 

have varying levels of L2 proficiency at every grade level, and come from diverse ethnic, 

and cultural backgrounds. ELs are plurilingual and they speak 400 different languages 

(U.S., Department of Education, n.d.). Some ELs might also need special education 
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services (i.e., Individualized Education Plans) due to their disabilities, hence they have 

both EL and student with disabilities designations. In addition to learning subject content 

(e.g., math, science, history etc.) at school, they continue to acquire English.  

Federal law, ESSA (U.S. Congress, 2015) and previously NCLB intends to 

maximize ELs’ inclusion in statewide assessments. In this regard, once a marginalized 

group, ELs are included in tests for accountability purposes and have received more 

attention (Chalhoub-Deville, 2009; Deville & Chalhoub-Deville, 2011, Wolf et al., 2008). 

Educators are also urged to attend ELs and their needs in instruction to enhance learning 

opportunities and their success (Chalhoub-Deville, 2009; Deville & Chalhoub-Deville, 

2011). One assessment ELs are required to participate in is ELP assessments. The law 

mandates states to administer ELP assessments annually (ESSA, 2015, 

Sec.1111(b)(2)(G)) to gauge the language development of ELs and report their progress 

towards the states’ goals. These ELP assessments are required to be based on ELP 

standards addressing different proficiency levels in four language domains (i.e., reading, 

listening, speaking, and writing) which are also aligned with challenging academic 

content standards (ESSA, 2015, Sec.111(b)(1)(F)). Different language use domains such 

as general academic, discipline specific (e.g., math, social sciences), non-academic or 

social are addressed in these assessments (Lopez et al., 2016). The purpose of ELP 

assessments is to ensure that ELs attain appropriate language proficiency. By assuring 

adequate language proficiency, it is desired that ELs have the same opportunities and 

receive quality education as their native peers and therefore can show their true ability 

(Faulkner-Bond & Forte, 2016). 
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The two most ubiquitous uses of ELP assessments are to identify and monitor 

ELs’ proficiency development (Bailey & Carroll, 2015; Wolf et al., 2008a). Scores 

obtained from these assessments are used to classify students as ELs or non-ELs (i.e., 

reclassification after initial administration) (See Wolf et al., 2008b). Results are also the 

indicator of a state’s commitment to support ELs (Bailey & Carroll, 2015). ELP 

assessments serve other uses as well (Faulkner-Bond & Forte, 2016; Kim et al., 2016; 

Wolf et al., 2008a). One such use is the placement of ELs in language instruction 

programs. ELs are entitled to language support services (Faulkner Bond & Forte, 2016; 

Lopez et al., 2016), which aim to promote their language proficiency and facilitate 

transitioning to mainstream academic settings without/with minimal support1. 

Information obtained from ELP assessments also informs individual programming 

decisions such as composition of instructional time (i.e., time spent in mainstream class 

vs. language support programs), intensity of language program, and supports or 

accommodations ELs receive (Bailey & Carroll, 2015; Faulkner-Bond & Forte, 2016, 

Wolf et al., 2008a). For instance, ELs with a very low level of English proficiency might 

spend the majority of their instructional time in language services. Very few ELs can 

actually participate in academic school context without some type of language support. In 

the 2014-2015 school year, 97% of ELs participated in an English instructional program 

(U.S. Department of Education, n.d.). Therefore, language services have an important 

 
1 These programs might differ in content and scope. Such that, while some programs highlight only English 
and focus primarily on academic language, some programs encourage bilingual development of students. 
U.S. Department of Education and U.S. Department of Justice (2015) define four different programs (a) 
ESL/ELD, (b) structured English immersion, (c) transitional bilingual/early exit bilingual, (d) dual 
language/two-way immersion. 
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role to help students in addressing their weaknesses, reaching the desired levels of 

English proficiency, and getting fully prepared for the academic instruction.   

Another frequent use of ELP assessments is reported to be diagnosis (Wolf et al., 

2008a), which is also closely associated with language instruction. To date, there have 

been several efforts investigating diagnostic uses of ELP assessments in specific context 

of K-12 (Kim et al., 2016; Lopez, 2019; Wolf et al., 2008a). In a survey of state practices, 

Wolf et al. (2008a) have observed that although states claim to use ELP assessment for 

diagnosis, score reports lack sufficient diagnostic information that can be valuable for 

instruction. Similarly, in their survey of educators Kim et al. (2016), Lopez (2019) echo 

that educators require more fine-grained and actionable information such as strengths and 

weaknesses of the students to support learning and decision-making in their classrooms. 

However, they report very limited diagnostic usage of the assessments such as focusing 

on a language domain in which students are reported to be less competent. Therefore, 

there is still room to enhance information obtained from ELP assessments. If they allow 

sufficient detail, the ELP results can be actionable, as states and educators are eager to 

make use of such information.  

The desire for diagnostic information in ELP specific context is also justified by 

research. Time spent in support programs influence reclassification or dropout rates (e.g., 

Faulkner-Bond, 2016; Kim, 2011; Menken, 2008; Slama, 2014). In addition to retaining 

EL status over longer periods of time, the assignment of unsuitable services causes 

similar problems. The content coverage or complexity in language services is not equal to 

mainstream classes (Walqui et al., 2010), which might also bring up the opportunity to 
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learn issues. ELs might have limited opportunity to be exposed to high academic 

standards if they are misclassified (Lopez et al., 2016). By the same token, Lopez et al. 

argue that language services not addressing ELs’ needs or not providing optimum 

linguistic and academic support might cause greater risk of disengagement and falling 

behind. The key to provide appropriate supports or place ELs in appropriate programs so 

that they can attain the language proficiency required to transition to mainstream classes 

is to first understand their needs (Abedi, 2010). Appropriate instruction matching to ELs’ 

need will optimize academic success and can be possible with diagnostic feedback and 

fine-grained information. Diagnostic information can also support the design of the 

support programs. However, it must be noted the implication is not transitioning ELs out 

of support programs too quickly. Some students might continue to benefit from additional 

supports. Continuous monitoring of their language proficiency is also necessary because 

they might fall behind even after exiting EL status (Chalhoub-Deville, 2009).  The main 

objective is to provide suitable services for ELs, and diagnostic feedback can enhance the 

quality of services. 

Purpose and Research Questions 

 

The focus of the present study is the application of DCM methodology to a K-12 

ELP assessment, ACCESS for ELLs (Hereafter ACCESS). ACCESS is a large-scale, 

standardized, summative language assessment measuring the social and academic 

language development of over 2 million ELs across 40 states and districts in the U.S., 

every year. In addition to identifying and monitoring the language proficiency of ELs for 

accountability purposes, the test is also used for programming and instructional decisions 
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such as placement to language support programs and creation of new curricula (CAL, 

2017; Kim et al., 2016; WIDA Consortium, n.d.). The test developer also anticipates that 

scores can support decisions at classroom level (i.e., formative purposes). This study aims 

to investigate whether useful diagnostic information can be extracted from the assessment 

to provide more actionable results for educators, and students. It intends to research the 

feasibility of using an alternative modelling approach, DCMs, to demonstrate the extent 

to which nuanced information could be generated. The study is exploratory in nature and 

pursues to produce low stakes diagnostic feedback to aid stakeholders in decision-making 

related to teaching and learning. As the test was developed under a unidimensional 

paradigm (i.e., IRT), and not originally intended to be diagnostic, a reverse engineering, 

also called retrofitting approach (Gierl & Cui, 2008; Liu et al., 2018; Haberman & von 

Davier, 2007), is undertaken in this study. Specifically, the study proposes to identify the 

attributes underlying the assessment. It seeks to identify an appropriate model that could 

output diagnostic information and classifications. The study also intends to evaluate the 

viability of the DCM approach and comparability of DCM-based classification to ability 

under the original framework. The research is framed around the following questions:  

(1) What are key underlying attributes represented in the ACCESS reading 

domain in middle grades for more advanced ELs? 

(2) What DCM fits the data better?  

a. Does a general or specific restricted model better represent all 

items in the test?  
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b. Does a Standard-based or an Expert-defined Q-matrix show better 

fit? 

(3) To what extent is it feasible to obtain diagnostic information using DCM?  

a. What is the diagnostic capacity of the test items?  

b. To what extent can students be appropriately classified using the 

model?  

Significance 

 

Alderson (2010) asserts that the diagnosing L2 learners’ learning and proficiency 

related strengths and weaknesses is “under problematized and under researched” (p. 97). 

The present research means to contribute to this under-researched area by exploring the 

viability of diagnostic feedback through DCMs. Although quite a few examples of DCM 

implementations for language assessment can be found in the literature, employing 

DCMs for K-12 language assessments is scant. Jang et al. (2013; 2015) and Aryadoust 

(2018) have taken some initiative to investigate DCMs at K-12 level. However, Jang et 

al. consider a Canadian literacy test purported to be used for native and non-native 

students. Aryadoust, on the other hand, explores an ELP listening assessment for high 

school students in the Singapore context. To the knowledge of the author, there is a 

dearth of research at this level, specifically in the context of the U.S. The present study 

intends to address this gap by focusing on L2 reading domain within a K-12 English 

proficiency assessment. The diagnostic information also has a stronger motivation in the 

context of the study. The assessment considered is part of a language learning 

curriculum, thus everyday teaching. The assessment results can influence program, 
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placement, and potentially the instructional decisions. Therefore, diagnostic feedback is 

instrumental. The study also contributes to the literature methodologically. The DCM 

methodology in the study presents the most complete approach by incorporating two 

competing Q-matrices, and an empirical Q-matrix validation method, and numerous 

models. The expert panel in the Q-matrix development process also differs from the 

previous research on language assessments by involving the test developer.  

Furthermore, as pointed out by de la Torre (2009) and Yang and Embretson 

(2007) DCMs are mainly concerned with capturing knowledge, skills, or processes that 

learners demonstrate, as well as their patterns and relations. The application of DCMs 

thus requires an elaboration of knowledge, skills, or processes underlying the construct, 

and contributes to construct representation (Leighton & Gierl, 2007; Liu et al., 2018; 

Rupp et al., 2010; Yang & Embretson, 2007). To put it differently, the DCM 

methodology offers a new avenue to shed light on construct and supports construct 

validity. In fact, earlier conceptualizations of construct validity set the precursor for 

diagnostic models. Embretson (1983) reframes construct validation with two parts: (1) 

construct representation, and (2) nomothetic span. Construct representation embraces 

identification of the underlying theoretical mechanisms or attributes of item responses. It 

thus entails decomposing tasks into smaller attributes which might include declarative or 

procedural knowledge, response processes, strategies, standards. In a similar vein, 

Messick (1989) recognizes the substantive aspect that entails the analysis of response 

process to be a core component of construct validity. Despite limitations of retrofitting 

DCMs, item or task decomposition to identify underlying structure can still be valuable 
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as it contributes to our understanding of the construct. In other words, the use of DCMs is 

“theoretically appealing” (Lee & Luna-Bazaldua, 2019, p. 529). In addition, DCMs can 

reveal information that conventional methods do not support. DCMs can answer 

questions like whether attributes characterizing the items show hierarchies or how they 

interact in relation to performance (i.e., compensatory, non-compensatory). Thus, the 

study has great potential to support construct representation of the K-12 ELP assessment. 

Finally, exploring the validity in DCM applications is underexplored and is 

nascent in general. Only a few scholars (Borsboom & Mellenberg, 2007; Sessom & 

Henson, 2018; Yang & Embretson, 2007) discuss what validity and validation constitutes 

in the context of DCMs. Evidence related to external relations or utility of the DCM 

results are often overlooked. Only Jang (2009b), and Jang et al. (2015) explore external 

relations (e.g., self-assessments) and utility. This study explores the relationship between 

attribute profiles and ELs’ proficiency level to understand whether the DCM 

methodology proves to be an acceptable approach. 

Counterarguments and Justification 

 
Retrofitting DCMs has been cautioned due to certain limitations (e.g., Gierl & 

Cui, 2008). Nevertheless, relatively less effort has been devoted to guiding the 

development of diagnostic tests (Henson, 2009) with some exceptions (e.g., Bradshaw et 

al., 2014; Henson & Douglas, 2005; Nichols, 1994). There is a dearth of diagnostic tests 

to support instruction and learning (de la Torre et al., 2010). Diagnostic tests are currently 

developed and used for identification and placement of students with cognitive 

disabilities (Haertel & Herman, 2005). Similarly, the language testing field lacks an 
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applicable theory to build diagnostic assessments and thus they are often neglected (e.g., 

Alderson, 2005; 2007). Only a few general diagnostic language tests exist (Alderson, 

1995, 2007; Alderson et al., 2015, Huhta, 2008; Liu, 2014). Other diagnostic notions in 

assessing language put teachers and classroom assessment at their center (e.g. dynamic 

assessment, learning-oriented assessment, diagnostic competence for teachers), and thus 

frame diagnosis as a teacher competence or responsibility.  

It might be argued that teacher assessments (i.e., also sometimes referred to as 

classroom assessment) are more suitable to diagnose students’ instructional needs. 

Although they are encouraged elsewhere (e.g., U.K., Australia), teacher assessments have 

received some criticism and are overlooked in the U.S. (Stiggins, 2001). The quality of 

teacher assessment and their capacity to yield proper diagnostic information have been 

challenged (Huff & Goodman, 2007). Teachers lack adequate education and assessment 

literacy to create and validate their own tests to diagnose their students’ needs (Alderson, 

2005; Stiggins, 2001; Leighton, 2009). Teachers are not allowed sufficient resources to 

improve their assessment and are rather excused from abiding by the standards applying 

to large-scale testing in the belief that they cannot achieve the same standards (Stiggins, 

2001). For instance, the Standards for Educational and Psychological Testing (AERA et 

al., 2014) that are the most respected professional guidelines for testing practices, appeal 

more to measurement professionals but fall short of providing guidance for teachers 

(Camara & Lane, 2006). Realizing the full impact of teacher assessments, specifically for 

diagnosis, requires shifting and revisiting the current accountability system (Bennett, 

2011). 
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Although large-scale tests are mainly used for summative purposes to document 

students’ proficiency or achievement, there is some belief that diagnostic information can 

be gleaned from these assessments (Bennett, 2011; Kunnan & Jang, 2009). For example, 

large scale language tests have been used for diagnosis “albeit unsystematically” 

(Alderson et al., 1995, p. 12). Bennett (2011) asserts it might possible to exert limited 

diagnostic information from large-scale assessments. DCMs can provide a more 

systematic approach for diagnosis and provide detailed feedback. The dearth of well-

designed reliable diagnostic and/or formative assessment justifies exploring DCMs for 

ELP assessments when coupled with increased interest and belief of the users for this 

purpose. It is worth stressing that although DCMs are promising with respect to provision 

of feedback, the use of such information cannot be promised (Templin & Hoffman, 

2013). Teachers should also have a clear sense of the construct(s) in order to make 

suitable interpretations in relation to the performance (Wolf et al., 2016). Further 

professional training might be needed to support the use of diagnostic feedback. 

In addition, designing diagnostic assessments from the ground up is an arduous 

task not only to due to effort, time, and resources but also the inevitability of abandoning 

the current practices or policies (Alderson, 2005; Bennett, 2011; Leighton & Gierl, 2007; 

Liu et al, 2018). Retrofitting can be acceptable for exploratory and research purposes to 

take advantage of the benefits of the DCM approach (de la Torre & Minchen, 2014). 

Exploring DCMs in a large-scale assessment context might be reasonable before 

allocating resources for true diagnostic assessments (Leighton, 2009; Liu et al., 2018). 
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Some theoretical and empirical evidence supports that language ability and L2 

reading are multi-componential (e.g., Davis, 1968; Grabe, 1991; Hudson, 1996; Lumley, 

1993; Koda, 2007; Munby, 1978; Weir et al., 1990 etc.). For example, several 

frameworks and taxonomies, which lay out the components of language ability or 

reading, exist in the literature (e.g., Bachman & Palmer, 1996; Davis, 1968). The multi-

dimensionality of the language ability and L2 reading has motivated DCM applications 

for language assessments. It might be argued that unidimensional frameworks eliminate 

dimensionality in the test. However, dimensionality is a fuzzy concept (Sijtsma, 2008; 

Thissen, 2016). Instead, “... multidimensionality should be regarded as a continuum…” 

(Blais & Lauirer, 1995, p. 74). Henning (1992) suggests differentiating psychometric 

from psychological (i.e. theoretical) dimensionality. DCMs are based on psychological or 

substantive dimensions (Alderson et al., 2015; Li & Suen, 2013). Language constructs 

such as L2 reading entail complex cognitive processes (Alderson, 2005). Thus, as with 

other human traits, they can be theoretically decomposed into finer attributes (Liu, et al., 

2018). Similarly, the assessment under scrutiny in the study defines different dimensions, 

which is elaborated in the methods section. 

Organization of the Study 

 

In Chapter 1, I have presented the reasons and sources (i.e., stakeholders) of 

interest in diagnostic information from large-scale assessments. I have also provided an 

overview of DCMs that can be used for exploratory purposes to glean diagnostic 

information from these assessments. In addition, the chapter has introduced the specific 

context of the study, ELs and ELP assessments and explained the purpose of the study, its 
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rationale, and how it contributes to the current body of research in this area. In the 

following sections, I focus on DCM applications specifically to language constructs, the 

methodology that was implemented in the present study, and findings from the analysis. 

Chapter 2 begins with how diagnosis is perceived in relation to second language learning 

and assessment. It follows up with an overview of attribute specification, Q-matrix 

construction, the statistical aspect of various DCMs, and the retrofitting approach. I also 

focus on model evaluation in DCMs. This section includes a critical review of the 

suitability of L2 reading construct for DCM applications and research studies that analyze 

language assessment data with DCMs. Chapter 3 details the assessment, as well as data 

for the analysis. It also lays out the analysis for each research question by attending to the 

literature pertinent to these questions. It explains how the attributes and Q-matrix were 

identified, and how the model fit, and the feasibility of DCM application were evaluated 

in the study. Chapter 4 presents the salient findings for each research question. Chapter 5 

synthesizes the results of the study and discusses them in relation to previous studies. 

Finally, this chapter explains the limitations of the present study and identifies some areas 

for future research.
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CHAPTER II 
 

REVIEW OF THE LITERATURE 
 
 

Chapter 1 provided a broad overview of the study. I discussed the interest in 

diagnostic feedback and the grounds for it for a special population, ELs (e.g., to avoid 

disengagement issues). DCMs have been applied to large scale assessments in the 

absence of diagnostics tests for more detailed information. This study purports to 

implement a DCM methodology to a relatively understudied area, a K-12 language 

assessment and is guided by the following research questions: 

(1) What are key underlying attributes represented in the ACCESS reading 

domain in middle grades for more advanced ELs? 

(2) What DCM fits the data better?  

a. Does a general or specific restricted model better represent all 

items in the test?  

b. Does a Standard-based or an Expert-defined Q-matrix show better 

fit? 

(3) To what extent is it feasible to obtain diagnostic information using DCM?  

a. What is the diagnostic capacity of the test items?  

b. To what extent can students be appropriately classified using the 

model?  
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This chapter, Chapter 2, elaborates on the diagnostic methodology and presents 

the literature relevant to different aspects of the study. Specifically, the chapter starts with 

how diagnosis is conceptualized in language testing. It provides an overview of the 

attributes and Q-matrix concepts, and how they are derived. The chapter reviews the 

statistical aspects of DCMs and modelling considerations. Because multiple models were 

considered in the study, the chapter also presents model evaluation in the context of 

DCMs. The retrofitting framework guiding this research is presented next. The chapter 

concludes with a review of dimensionality arguments for L2 reading construct and DCM 

applications to language assessments. 

Diagnosing Language Ability 

 

Diagnosis has been considered an important aspect of language assessments (e.g., 

Shohamy, 1992). However, the theory of diagnosis for L2 learning and testing is 

insufficient (Alderson, 2005; Alderson, 2007; Alderson et al., 2015). As Alderson (2005) 

writes “language testing literature offers very little guidance on how diagnosis might 

appropriately be conducted, what content diagnostics tests might have, what theoretical 

basis they might rest on…” (p. 10). A well-established theory of diagnosis in L2, a 

precise definition of diagnosis, standard diagnostic procedures for L2 language 

assessments (Alderson et al., 2015), as well as example implementations are needed 

(Harding et al., 2015). Diagnosis is broadly referred to as identifying students’ 

weaknesses (Alderson et al., 1995) or both strength and weaknesses to design relevant 

instructional activities (Alderson, 2005; Bachman, 1990; Bachman & Palmer, 2010).  
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Given this broad definition, English learners’ strengths and weaknesses can be 

identified in multiple ways such as through the use of tests, teacher observations or 

assessment. Diagnosis in language assessment has been conceptualized in this direction. 

Some notions such as diagnostic competence for teachers (Edelenbos & Kubanek-

German, 2004), dynamic assessment (Lantolf & Poehner, 2004), and learning oriented 

assessment (Turner & Purpura, 2016) emerged, which focus more on teachers as the 

provider of the diagnostic feedback. For example, in dynamic assessment instruction and 

assessment coexist in the same incident (Anton, 2018). The test/task performance is 

mediated by the teacher who asks questions or give hints (Harding et al., 2015). 

According Harding et al. there have been efforts to simulate the mediation in computer 

testing (e.g., Computerized Assessment of Language Proficiency) by providing 

predefined prompts when students respond incorrectly (e.g., read paragraph X again). 

Learning-oriented assessment is similar in that it focuses on classroom assessment to 

bridge learning and teaching. Teachers make inferences based on their assessments 

regarding skills, knowledge and processes of their learners, and feedback is highlighted in 

this model (Turner & Purpura, 2016). According to the authors the model intersects 

disciplines such as language acquisition, assessment, teacher education, pedagogy, and 

discourse. 

These notions bear certain limitations. For example, there is not a standardized 

assessment design due to diversity of local classroom contexts (Turner & Purpura, 2016). 

The notions also work on the assumption that teachers are assessment literate. The 

success of the diagnostic event is very much dependent on the teacher’s expertise and 
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training in assessment. Teacher assessments have been criticized in the U.S. context 

(Stiggins, 2001). It is believed that they do not have adequate training or assessment 

literacy to develop their own tests and diagnose students’ needs (Alderson, 2005; Huff & 

Goodman, 2007; Leighton, 2009; Stiggins, 2001). It is also difficult to draw comparisons 

across students in a single classroom setting; therefore, even as small-scale assessments 

they might not accommodate individual dynamic assessment for each learner (Poehner & 

Infante, 2016). 

Standardized tests can overcome some of these limitations and they have been 

used for diagnosing language ability. However, there are few diagnostic tests including 

DIALANG, Diagnostic Language Needs Assessment (DELNA), Diagnostic English 

Tacking Assessment (DELTA) (Alderson, 1995; 2007; Alderson et al., 2015; Huhta, 

2008; Liu, 2014). For example, DIALANG is an internet-based test assessing four 

domains of language in addition to grammar and vocabulary knowledge, and it is used 

generally in European context as it is based on the European framework for learning, 

teaching and assessing languages (i.e., CEFR) (Alderson, 2007). Similarly, DELNA and 

DELTA are developed for diagnosing the needs of English learners at the higher 

education context (Liu, 2014). Their use is also limited to their local contexts. These tests 

tap various subskills such as understanding main ideas, findings specific information, and 

making inferences (See Harding et al., 2015). According to Alderson (2005, 2007) the 

lack of diagnostic assessments stem from insufficient focus, theory or guidelines for L2 

assessment. He also argues that the practical reasons such available resources and 

supports challenge devising such tests. Some researchers like Harding et al. (2015) 
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criticize diagnostic language tests as they tend to isolate skills. In other words, test items 

are designed to measure one specific subskill which they find inappropriate.  

It is also claimed that “virtually any language test has some potential for 

providing diagnostic information” (Bachman, 1990, p. 60). Alderson et al. (1995) also 

support that it is possible to use achievement and proficiency tests for limited diagnosis. 

It has also been a common practice to report domain scores as diagnostic information in 

language assessments (Kunnan & Jang, 2009). Some researchers employed factor 

analytic approaches to evaluate whether it is reasonable to report diagnostic subscores 

from large-scale assessments (e.g., Ina’ami & Koizmi, 2012; Kuriakose, 2011; Sawaki, 

Stricker & Oranje, 2009). Reporting subscores is considered acceptable in these studies 

because the general language ability was subsuming the four domains (i.e., adequate fit 

for bi-factor models). Yet, these subscores are still very broad and inadequate (de la 

Torre, 2009). Diagnostic results should entail micro as well as macro skills (i.e., macro 

skills: domain scores such as reading, listening) (Shohamy, 1992). The rise of new 

methodologies, such as DCMs, have also received attention to extract diagnostic 

information from large-scale language tests (Alderson et al., 2005). Diagnostic feedback 

can be provided in a standardized manner to a larger number of examinees with this 

methodology. 

This study operationalizes diagnosis as “useful feedback information for detecting 

and evaluating an examinee’s strengths and weaknesses” (Luecht, 2003, p. 6) in L2 

reading ability. It aims to derive such information through the use of a standardized test. 

In their outline of the features of diagnosis, Alderson (2005, p. 11) comment that 
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diagnosis of language ability must be “low-stakes or no-stakes” and afford detailed 

feedback for remedial. The purpose of diagnostic information in this context is also to 

provide teachers more actionable results to tailor their instruction, and it is also low-

stakes. 

Attribute Specification, Q-Matrix Development, and Validation 

 

Attributes. DCMs require defining multiple skills or knowledge components for 

a test rather than a broad construct for detailed feedback. These fine level elements 

represent different dimensions of the tests. These dimensions in the DCM context, refer 

to substantive or psychological dimensions (Alderson et al., 2015; Li & Suen, 2013). 

They are also labelled differently such as “latent characteristics, variables, traits, 

processes, skills, or attributes” (Rupp et al., 2010, p. 49) with attribute being considered a 

more inclusive term (de la Torre et al., 2010; de la Torre & Chiu, 2016; Henson, 2009). 

More formally, attributes “characterize test items and they may be interpreted as 

cognitive processes or skills that are required to perform correctly on test items” (Nichols 

et al., 1995, p. 11). Attributes can be specified through alternative methods or a 

combination of methods including expert input, verbal protocols with students (a.k.a., 

cognitive interviews), eye tracking studies, telemetry data including information about 

item response times, or test supports (Rupp et al., 2010). However, the use of these 

methods varies across studies (e.g., how the input from experts is collected), and there are 

not uniform procedures (Kim, 2015). 

In practice, more general concepts or crude attributes are chosen (e.g. fraction, 

mathematic reasoning, vocabulary knowledge) (Nichols et al., 1995; Rupp et al., 2010). 
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On the other hand, Buck et al. (1998) contend that in some fields such as second language 

assessment, more “nuts and bolts” item/task characteristics might be chosen in explaining 

the test performance (p. 436). The specificity of the attributes is known as the grain size 

(Rupp et al., 2010). In fact, decisions about the grain size depend on different factors 

such as relevance, communicative and computational practicality (Nichols et al., 1995; 

Rupp et al., 2010; Gierl et al., 2009). Although it might possible to specify any relevant 

attributes depending the construct and its complexity, attributes should support 

meaningful and useful interpretations (de la Torre & Minchen, 2014; Gierl et al., 2009; 

Rupp et al., 2010). However, reliable estimation of a large number of attributes might be 

a challenge, specifically with respect to attribute profiles (Rupp et al., 2010). Thus, it is 

recommended no to have more than 10 attributes per test (de la Torre & Minchen 2014). 

Yet, DiBello et al. (2007) does not recommend reducing the number of attributes too 

much not to lose diagnostic utility. On the other hand, coarse representations might lead 

to underrepresentation of the construct (Aryadoust, 2018). It is also observed that most 

DCM studies including simulations specify 4 to 8 attributes, and a longer test length is 

required for more attributes (Rupp & Templin, 2008). 15-20 items represent the 

minimum test length for DCM application (de la Torre, 2009). Sessoms and Henson 

(2018) note the range of the number of the attributes is wider for applied studies. Their 

review of a DCM applications to real data reveals that an average of 8 attributes are 

specified with 4 being the minimum and 23 being the maximum number of attributes. 

The authors also indicate that most applied studies have used large sample sizes of 1,000-

2,000 students. In simulation studies, 500 and 1,000 sample size conditions usually 
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represent the lower bound. Madison and Bradshaw (2015) suggest 2,000 respondents are 

“large enough to avoid confounding results with a deficient sample size” (p. 499). 

Kunina-Habenicht et al. (2012) also show that the precision of the item parameters 

estimates in general diagnostic models, especially of the more complex parameters, 

increase with large samples (e.g., 10,000).  However, sample size should also be 

investigated in relation to different grain size conditions. Skaggs et al. (2016) show the 

impact of the level of the grain size (e.g., 1, 4, 6, 8, 10 attributes) for varying sample sizes 

in a simulation study. Their findings demonstrate that 8 attributes at maximum can be 

estimated with success, but a long test (e.g., 115 items) and a large sample is a perquisite 

(>1,000). Having more than 8 attributes leads to convergence problems or an instability 

of the estimates. Bias in estimates is also positively correlated with the number of 

attributes. Alternatively, in the case of a large number of attributes, existing hierarchies 

between attributes might overcome these challenges by simplifying estimation (Rupp et 

al., 2010). Similarly, although there is not an upper limit to the number of attributes per 

item, the complexity of the item increases with the required number of attributes (i.e., 

multidimensionality within an item, Bradshaw et al., 2014). It is also not reasonable for 

an item to measure all attributes theoretically if there are many attributes. Most applied 

research specifies 1- 3 attributes per item (e.g., Kim, 2015; Ravand, 2016). In short, the 

desired grain size, instructional relevance, interpretability, and statistical considerations 

should guide attribute specification (Nichols et al., 1995; Rupp et al., 2010, Gierl et al., 

2009).  
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The Q-Matrix. Each item’s relation to each specified attribute is documented in a 

Q-matrix (Tatsuoka, 1983) to model item responses in a DCM (Rupp et al., 2010). A Q-

matrix is an item by attribute matrix, and analogous to factor structure. Specifically, if an 

item is associated with an attribute, it is coded as 1 and 0 otherwise in the matrix. A Q-

matrix where most items are associated with multiple skills shows a complex structure 

(Madison & Bradshaw, 2015). A Q-matrix is developed with the help of a subject matter 

experts. Experts can involve test developers, teachers, domain experts, researchers, 

psychometricians (Kunina-Habenicht et al., 2012; Madison & Bradshaw, 2015). Buck et 

al. (1998) lay out the steps in this process as: (1) forming an initial draft attribute list, (2) 

coding items for attributes and creating the incidence matrix, (3) employing the model 

and refining the coding (i.e., omitting attributes) iteratively based on results from 

estimation, (4) validating with another form. 

The Q-matrix is central to DCMs as it formalizes the structure of attributes and 

allows confirming this structure (Rupp et al., 2010). In fact, the quality of diagnostic 

inferences is conditional on the quality of and attribute representation (Sawaki et al. 

2009). The design of the Q-matrix ensures the fit and accuracy of the findings (e.g., 

Kunina-Habenicht et al., 2012; Madison & Bradshaw, 2015; Rupp & Templin, 2008). 

Madison and Bradshaw (2015) discuss the design consideration based on their evaluation 

of certain Q-matrix conditions and complexity. They recommend separate attributes at 

least one time, measuring each attribute with others if separation is not possible, and 

combining attributes if they are always jointly measured to increase the accuracy. They 

also caution that increased multidimensionality within an item (Bradshaw et al., 2014) 
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negatively impact estimation capability. However, the authors also acknowledge that 

general models do not enforce isolation of the attributes for indefinability. 

 The composition of the expert panel (i.e., background, careers etc.) is also an 

important consideration in the Q-matrix development because it is a judgmental process. 

Experts indicate their subjective views about the attributes and their association with 

items; therefore, a Q-matrix is not always correctly specified (de la Torre & Minchen, 

2019; Kang et al., 2019). Research supports that misspecification can pose serious issues 

and deteriorate the results. For example, Rupp and Templin (2008) evaluate 

misspecification conditions such as over-specification (replacing 0s to 1s), under-

specification (replacing 1s to 0s), or omitting certain attributes for items with complex 

structure. The findings reveal biased item parameters and reduced classification accuracy 

especially for those with mis-specified attributes. Similarly, Kunina-Habenicht et al. 

(2012) obtain inaccurate classifications when misspecifications occur in the Q-matrix. 

Validation. To minimize the impact of misspecification, some empirical methods 

are established to validate a Q-matrix and correct for misspecifications. When there are 

minor misspecifications, accuracy of attribute probabilities can be retained by correctly 

specified items and their parameters (de la Torre & Chiu, 2016). However, relying on a 

validation method can potentially yield more accurate estimates. Some example methods 

include discrimination index (de la Torre, 2008), an RMSEA based method (Kang et al. 

2019), or a residual-based method (Chen, 2017). Despite the availability of various 

approaches, some of them are restricted to only a particular model (e.g., discrimination 

index and RMSEA method for the DINA model).  
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This study incorporated a method developed by de la Torre and Chiu (2016) as an 

extension of the discrimination index (de la Torre, 2008). The method, which is also 

known as the general discrimination index (the GDI; de la Torre & Minchen, 2019), 

computes the discrimination index (ς2) for each item under the specified model, the 

GDINA or specific sub-models. Thus, unlike other validation methods, the method can 

be used to correct misspecifications with a range of models. The GDI denotes the 

difference in the correct response probabilities of masters and non-masters of the required 

attributes. In other words, it represents the variance of the probabilities between the two 

groups (de la Torre & Minchen, 2019). When the attributes specified for the item are 

correct, then the difference in the probabilities of the two groups should be the maximum. 

According to de la Torre and Chiu (2016), in this method, a GDI is computed for each 

possible attribute combinations for an item and then tested against a criterion value. The 

attribute combination that is larger than the criterion is considered to be the correct 

vector. When multiple correct q-vectors emerge, the simplest one with fewer attributes 

should be selected (de la Torre & Minchen, 2019). The authors have also developed a 

search algorithm to estimate and compare all possible GDIs for all possible q-vectors for 

an item and correct the misspecifications. 

All empirical validation methods require further verification such as theoretical 

evidence. They are practical to correct misspecifications. Yet, the final decision about a 

Q-matrix must also be substantively supported (Jang, 2009a; Liu et al., 2018; Ravand, 

2016). In addition, these methods should be assessed in light of other conditions, such as 

missingness. According to Dai, et al. (2018) imputing missing responses instead of 
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treating them as incorrect result in a better performance for discrimination index. 

According to the authors, high misspecification rates, combined with a large number of 

attributes, might also lead to the poor performance of validation methods.  

DCMs Employed in the Study 

 

According to Rupp and Templin (2011) DCMs “are probabilistic, confirmatory 

multidimensional latent-variable models with a simple or complex structure” (p. 226). 

There are numerous models and estimation algorithms (e.g., rule space methodology, 

attribute hierarchy method). These models very from in several aspects including: 

attribute interactions (i.e., compensatory vs. non-compensatory), the level or information 

they yield (i.e., person, item, attribute), parametrization (i.e., general vs. constrained 

models), or estimation methods (i.e., MCMC, MML) (Rupp et al., 2010). Regarding 

attribute interactions, attributes can be combined in a compensatory and non-

compensatory way to explain test performance. Henson, et al. (2009) elucidate that the 

conditional relationship between attributes and item responses is influenced by mastery 

status of the other attributes in non-compensatory models, but not in compensatory 

models. The authors further divide non-compensatory models as conjunctive and 

disjunctive models. In conjunctive models, the absence of a required attribute lowers the 

correct response probability and cannot be compensated by other attributes, while in 

disjunctive models the mastery of fewer attributes than required might result in high 

correct response probability. It must be noted that the model choices should incorporate 

theoretical considerations (von Davier, 2014) and should be systematic and theoretically 

reasonable. Model comparisons and empirical testing of the constraints can also guide 
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model selection (Henson et al., 2009; Madison & Bradshaw, 2015), especially when 

model decisions cannot be based on theory. 

Before introducing the models that were used for study, I describe the notation. 

Let ! = 1,… , & represent the items; ' = 1,… , ( represent the attributes; ) = 1,… , * 

represent the individuals; + = 1,… , , represent the latent classes. Each items relation to 

attributes is denoted by -!" such that it equals to 1 if the attribute is measured by the item 

and 0 if it is not measured. Similarly, the status of attributes for an individual is 

represented by .#" which equals to 1 for the mastery of an attribute but 0 for the non-

mastery. .$ expresses the attribute profile, mastery status of attributes, for a class. There 

are 2% classes, as the attributes are binary. For instance, when ( = 2	there will be four 

different profiles: (1) having mastered the first attribute only, (2) having mastered the 

second attribute only, (3) having mastered both attributes, or (4) having mastered neither 

of the attributes. The length of - and . equals to ( (de la Torre & Minchen, 2014). As 

shown below, the probability of a correct response in a DCM is yielded by -, ., and item 

parameters (e.g., intercept, main effect etc.). Correctly responding to an item is 

contingent on the attribute profile (i.e., conditional independence; Rupp & Templin, 

2011). Any given model requires at least a moderate test length (e.g., 15-20 items) (de la 

Torre, 2009) and large sample sizes for reliable estimations (e.g. >1000). 

The Log Linear Cognitive Diagnostic Model 

 

The log linear cognitive diagnostic model (LCDM; Henson et al., 2009) is a 

general model for modelling item responses and attribute interactions. It does not require 

specifying attribute interactions a priori and offers a more flexible approach (Henson et 
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al., 2009; Rupp et al., 2010). By using a logit link, the probability of correct response 

involves an intercept, main effects, and interaction parameters (Kunina-Habenicht et al., 

2012; Rupp et al., 2010). This probability is mathematically: 

 

(2#! = 1	|	4$) =
678 	(9&,! +	9!

( 	ℎ	(.$ , -!))

1 + 678 	(9&,! +	9!
( 	ℎ	(.$ , -!))

 (1) 

 
 
As shown in equation 1, the correct response probability is conditional on class, and 

therefore is the same for respondents in the same class (Rupp et al., 2010). 9&,!, the 

intercept is the probability of a correct response for examinees who have not mastered 

any of the attributes. 9!( represents the main effects and their interactions. The 

combinations of main effects and their interactions are expressed by ℎ	(.$ , -!), which is a 

mapping function (Kunina-Habenicht et al., 2012). 9!( 	ℎ	(.$ , -!) is: 

 

9!
( 	ℎ	(.$ , -!) 	= 	<9!,),(")

%

",)
.$"-!" +< < 9!,-,(","!)

%

"!.)

%/)

",)
.$" 	.$"!-!" 	-!"! +⋯ (2) 

 
 
where the first term is the main effect (i.e., represented by the subscript 1). For instance, 

there will be two 9!,),(") if the item measures two attributes. Main affects show the 

increase in the correct response probability for mastering the given attribute (Madison & 

Bradshaw, 2015). The second term is the two-way interaction (i.e., the subscript 2). '' 

denotes the second attribute in this case. Higher order interactions such as three-way 

interactions can also be specified (i.e., “…” in the equation). Similarly, the interaction 

term indicates the increase in the correct response probability for possessing all required 
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attributes (Madison & Bradshaw, 2015). The LCDM is a saturated model as all possible 

effects and interactions are estimated. As a result, it has higher parametrization (Rupp et 

al., 2010). The LCDM also relates to two general models. It is a special case of general 

diagnostic model (GDM) (Rupp et al., 2010; von Davier, 2014b) and equivalent to the 

generalized DINA (G-DINA) with logistic link function, which allows other links 

(identity and log) (de la Torre, 2011; Ma, 2019). 

The main advantage of the LCDM lies in the fact that core models can be 

reformulated with additional constraints on the intercepts and main effects (i.e. 9>) 

(Henson et al., 2009; Rupp et al., 2010). In other words, it subsumes the core models. 

Because the same estimation procedure is applied to submodels (Rupp et al., 2010), 

model and item parameters become common across the models and can be compared. 

New models can also be defined by additional constraints or parameters (Henson et al., 

2009; Rupp et al., 2010). The LCDM might also improve the fit in retrofitting studies as 

it allows the relationship between attributes and the observed outcome to be items 

specific (Rupp et al., 2010). Therefore, it is possible different submodels apply to 

different items rather than one specific model for all items (Rupp & Templin, 2011). 

However, more parsimonious specific models are also desired, and they also ensure 

easier interpretation (Lee & Luna-Bazaldua, 2019). General models, along with specific 

models, are also applied to language constructs possibly due to a lack of comprehensive 

theory about attribute relations, as discussed in the next section. Therefore, five restricted 

models that are also frequently used in retrofitting (i.e., the DINA, R-RUM, DINO, C-
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RUM, HO-DINA) were implemented in the study. Next, I present these models and how 

they are formulated within the LCDM framework. 

Common Restricted Models 

 

The deterministic-input, noisy-and-gate ([DINA], Haertel, 1989; Junker, & 

Sijtsma, 2001) is a conjunctive model that requires the mastery of all attributes specified 

for an item in order for an individual to have a high correct response probability for that 

item. In the DINA, it is assumed that there are two groups of examinees: (1) those who 

have mastered all attributes measured by the item, and (2) those who have not mastered at 

least one of those attributes the item measures (Henson et al., 2009; Rupp e t al., 2010). 

Not mastering a required attribute is the same as missing all (de la Torre & Minchen, 

2014). There are only two probabilities for each item. Given these two groups and the 

probabilistic quality (Rupp et al., 2010), the DINA includes a slip (>!) and a guess (?!) 

parameter. The slip parameter is the probability of an incorrect response when all 

required attributes are mastered, whereas the guess parameter represents the probability 

of a correct response despite non-mastery of at least one of the required attributes 

(Henson et al., 2009). The probability of correct response in the DINA model is 

mathematically defined as: 

 
@(2#! = 1|A#! = (1 − >!)

0"#?!
()/0"#)) (3) 

 
 
where ξij represents the mastery status of the attributes. It equals to 1 when all attributes 

are mastered, and the equation reduces to 1 − >!. In other words, for group 1 which are 

the masters of all attributes, probability of not slipping represent the correct response 
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probability (Rupp et al., 2010). A#! 	equals to 0 when one of the required attributes is not 

mastered, and the equation reduces to ?!. The probability of guessing represents the 

correct response probability for the second, missing at least one attribute, becomes (Rupp 

et al., 2010). 

Because the LCDM defines correct response probability in terms of intercepts, 

main effects and interactions, the DINA model is obtained in the LCDM framework by 

constraining all main effects and lower order interactions to 0 (e.g., 9!,),(") = 	0). Only 

higher order interaction (9!,-,3","!4if there are two attributes) is estimated, and it is 

positive. This higher order interaction is associated with 1 − >! in the regular the DINA 

representation. The intercept 9&! behaves like ?! and represents the probability of a 

correct response without knowing any of the attributes (i.e., as missing one attribute or all 

is the same). 

Despite being the simplest model, the DINA is among the most restricted models 

(de la Torre, 2011; de la Torre & Minchen, 2014; Henson et al., 2009; Rupp et al., 2010). 

Splitting examinees into two groups might be problematic in some situations. First of all, 

the group in which examinees lack something clusters a lot of individuals together. The 

DINA pretends examinees are always in the non-mastery group. In addition, it might be 

useful to differentiate between the attributes that individuals lack. 

A conjunctive model allowing attributes to contribute differently is the non-

compensatory reparametrized unified model ([NC-RUM], Dibello et al., 1995; Hartz, 

2002). This model is repeatedly applied to language assessment data (Stout et al., 2019), 

and is thus the most common model for language constructs. The model has a full and 
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reduced version (aka., R-RUM). Because the reduced model is more prevalent in 

application due to its simplicity (Rupp et al., 2010), it was implemented in this study. 

Known also as the Fusion model, this model relaxes the equality for missing one or all 

attributes and addresses the limitation present in the DINA (Henson et al., 2009; Rupp et 

al., 2010). Because it is a conjunctive model, the correct response probability is lower 

when an attribute is not mastered, however, the probability is different in the absence of 

different attributes. Also, as more attributes are mastered, the correct response probability 

increases substantially. There are two parameters in the model. E∗	is the correct response 

probability for examinees possessing all of the specified attributes. The other parameter 

F∗,	decreases the probability for not possessing a required attribute and behaves as the 

penalty parameter (Rupp et al., 2010). The model includes one penalty parameter per 

measured attribute per item. Equation 4 shows how the correct response probability is 

represented as a function of these parameters: 

 

@(2#! = 1|.#) = E!
∗GF∗!"

6#$()/7"$)
%

",)
 (4) 

 
 
Given an item measures an attribute (-!" = 1) and the attribute is mastered in the class 

(.#" = 1), the probability of a correct response equals to E∗. However, if the required 

attribute is not mastered (.#" = 0), F∗ decreases the probability of a correct response. 

The NC-RUM is the most complex sub-model to represent within the LCDM 

(Henson et al., 2009). As the correct response probability changes with mastery of each 

attribute, Henson et al. have shown that the LCDM can be used to fit the NC-RUM by 
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estimating intercepts and main effects. The main effects are positive, and all interactions 

are defined as a function of these main effects and intercepts. The correct response 

probability increases with the mastery of additional required attributes. However, the 

interaction is greater than just the sum of the main effects (Rupp et al., 2010). This 

increase in mastering additional attributes also captures the penalty concept in the regular 

representation. To put it another way, it is the inverse (Henson et al., 2009). The reader is 

recommended to see the original paper for a detailed description of the interaction term.  

The deterministic-input, noisy-or-gate ([DINO], Templin & Henson, 2006) is 

similar to the DINA, yet it is a disjunctive model. Therefore, mastering any one of the 

required attributes is sufficient for correctly responding to an item. In other words, the 

probability of a correct response is the same for knowing one or more attributes. There 

are two groups of examines (i.e., those who mastered at least one attribute vs. those who 

mastered none) and two parameters (i.e., slip and guess) (Henson et al., 2009). However, 

they are defined differently. In the DINO, the slip is the incorrect response probability if 

at least one of the required attributes is mastered, whereas the guess is the correct 

probability if none of the required attributes is mastered (Rupp et al., 2010). Equation 5 

shows the mathematical representation of the model: 

 
(2#! = 1|H#!) = (1 − >!)

8"#?!
()/8"#) (5) 

 
 
As seen in the equation, the representation of the DINO is almost the same as the DINA 

except for H#! which shows the mastery status of an attribute. This change in the notation 

is due to change in the meaning of the parameters. If H#! = 1 and any one of the 
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attributes is mastered, the equation reduces to 1 − >!. Thus, not slipping denotes the 

correct response probability for the group which mastered one required attribute (Rupp et 

al., 2010). Similarly, if H#! = 0 and all attributes are missed, the equation reduces to ?!.  

In the LCDM, the DINO is modelled by setting the main effects and interactions 

to be equal with different signs. For instance, main effects are positive, and the two-way 

interaction is negative (9!,),(")	 = −9!,-,(","!)). Thus, interaction does not increase the 

correct response probability. In other words, there is no additional advantage of knowing 

both attributes (Henson et al., 2009; Rupp et al., 2010). Interaction terms is associated 

with 1 − >!. Whereas, 9!,& is associated with guess parameter as it represents not 

mastering required attributes but correctly responding. 

The DINO suffers from a similar limitation the DINA does. It does not 

differentiate individuals mastering different attributes endorsed by the item. To account 

for this restriction and allowing attributes to contribute differently (Rupp et al., 2010), the 

compensatory reparametrized unified model ([C-RUM], Hartz, 2002) is used. In the C-

RUM, mastery of one of the required attributes is sufficient for a high correct response 

probability. The correct response probability changes depending on which attribute is 

mastered. However, the probability is not dependent on mastery or non-mastery of an 

additional required attributes (i.e., no equality constraint for main and interaction effects). 

The C-RUM includes an intercept (9!,&) and a slope (9!,),(")) parameters shown in 

equation 6. The intercept represents (9!,&) the correct response probability when no 

required attribute is mastered. The slope (9!,),(")) shows the increase in the correct 

response probability for mastery of an attribute. There is one slope per attribute per item.  
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@(2#! = 1|.#) =
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%
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If an attribute is measured by an item (-#" = 1), and the attribute is mastered 

(.#" = 1), the probability increases. However, if the attribute is not mastered (.#" = 0), 

there is neither contribution nor penalty (Rupp et al., 2010).  

The C-RUM in the LCDM is obtained through constraining interaction terms to 

be 0 (9!,-,3","!4	 = 0). Only the main effects are estimated. In this way, the correct 

response probability is a function of main effects. The C-RUM is conceptually very 

similar to the LCDM (Henson et al., 2009; Rupp et al., 2010).  

The four models described above are used to model the relationship between 

attributes and responses to items. So, they model the probability of a correct response. 

However, it is also possible to model the attribute space. In modelling attribute space, a 

hierarchical attribute structure is assumed. One such model is the higher order DINA 

([HO-DINA], de la Torre & Douglas, 2004). In fact, there are two parts to higher order 

models (Liu et al., 2018). More specifically, for language related constructs such as L2 

reading, it is not uncommon to think a more general continuous trait such as a general 

language ability underlies the attributes (de la Torre & Douglas, 2004). This general 

ability can be thought as the	J	in the IRT. It represents the higher order part in the model. 

This part assumes this common general ability influences the mastery of attributes thus 

models the relationship between them. The second part is actually a specific model. In the 

case of the HO-DINA example, the specific model is the DINA where the relationship 
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between item responses and attributes are modelled using a conjunctive rule described 

above. The representation of the HO-DINA is shown in equation 7: 

 

@(.#"|J#) =
678(9&" + 9"

: J)
1 + 678(9&" + 9"

: J)
 (7) 

 
 
Note that the model is different from the representation of models for response and it 

includes intercept and slope parameters as well as a parameter for general ability. 

Although any specific model can be theoretically defined using the higher order structure, 

the software might be limited to estimate higher order models. In this study, only the HO-

DINA was used. 

The HO-DINA has the potential, especially in the retrofitting context because the 

assessments are designed under a unidimensional framework (de la Torre & Douglas, 

2004; Liu et al., 2018). As mentioned, there might be a general ability subsuming the 

specific attributes. It also addresses the issue of large number of attributes and parameters 

(de la Torre & Douglas, 2004; Bolt, 2019). Bolt also advocates this model as it combines 

classification and ability estimation.  

Model Evaluation in DCMs 

 

Evaluation of the model fit is another crucial step in the DCM approach. 

However, current model fit research for DCMs is scarce (Chen et al., 2013; Hu et al., 

2016; Lei & Li, 2016). Model fit and fit indices are still elusive and the search for the 

best evaluation methods is ongoing (Rupp et al., 2010). 

Current model inspection approaches involve a comparison of a set of models that 

is relative fit, and comparison of the observed versus estimated values to determine the 
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suitability of a specific model for the data, which is absolute fit. Relative fit might help 

eliminating models from further analysis when the correct model is not known based on 

theory, yet it is not adequate by itself as the chosen model might still fit poorly (Rupp et 

al., 2010). There are numerous relative and absolute fit indices, and several researchers 

have investigated the performance of these indices using simulations in the DCM context. 

Akaike’s information criterion (AIC; Akaike, 1974) and Bayesian information 

criterion (BIC, Schwarz, 1976) are frequently used as relative fit indices in model 

evaluation in measurement. They are also applied to DCMs. The logic behind the two 

indices is the same as the number of parameters (p) functions as the correction term for 

Log likelihood (LL), which is obtained from model estimation. K*, = −2LL + 28 and 

M*, = −2LL + 8NO(P). As the number of parameters increases, the correction is bigger. 

BIC takes sample size into consideration in calculating the correction. The lower AIC and 

BIC are the better is the fit. Empirical research shows AIC to outperform and select more 

complex models while BIC picks a reduced model (Hu et al., 2016; Kunina-Habenicht et 

al., 2012; Lei & Li, 2016). However, Chen et al. (2013) mention a better performance for 

BIC and recommend it, although they agree that AIC chooses saturated models. Both 

indices are affected by misspecifications in the Q-matrix and sample size (Kunina-

Habenicht et al., 2012; Lei & Li, 2016). 

Compared to relative fit statistics, a wider variety of absolute fit indices are 

described in the literature. Absolute fit indices are at the item level and usually concerned 

with residuals (Lei & Li, 2016). Some of them entail full information statistics (e.g., 

Q- and R), or summary statistics such as averages, and are characterized as limited 
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information fitness of good statistics (Rupp et al., 2010). Kunina-Habenicht et al. (2012) 

evaluate von Davier’s root mean squared error of approximation (RMSEA) and mean 

absolute difference (MAD; Henson et al., 2008). According to the authors, RMSEA is the 

squared difference of observed and predicted response probabilities and it is weighted by 

the proportion of a class. MAD is similar and represents the average absolute difference 

of those probabilities, but it assumes equal weights. The fit gets better as both indices get 

closer to 0.  The authors articulate sample sizes and the number of attributes significantly 

affect how these indices perform. RMSEA slightly outperforms MAD due to differential 

weights. Very large sample sizes (10,000 and above) increase the power of the indices. 

The indices are also in accordance with relative fit indices. The authors conclude that the 

indices are informative and help identify Q-matrix misspecifications, yet they are still 

limited to the choose the correct model and Q-matrix at the same time. Chen et al. (2013) 

define and compare three other indices: difference between observed and estimated 

“proportion of correct of items (p), Fisher transformed item correlations (r), and log-odds 

ratio (l) of item pairs” (p.126). They conclude the r and l are (i.e., bivariate) are similar 

and better than p (i.e., univariate). Similar to MAD and RMSEA, these indices show poor 

fit when both the model and Q-matrix are mis-specified. They favor saturated models. Hu 

et al. (2016) include both RMSEA and r used in Chen et al. (2013). The performance of 

indices is similarly in their study. They fail to identify a correct model when a Q-matrix 

is mis-specified, with the exception of a saturated model. The authors also warn that 

RMSEA can be misleading for an over-specified Q-matrix. Lei and Li (2016) inspect (1) 

average Q- (Chen & Thissen, 1997), (2) the mean absolute deviation of Q3 (MADQ3; 
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Yen, 1984), (3) the mean absolute deviation item residual covariances (MADres; 

MacDonald & Mok, 1995), and (4) mean absolute deviation of item correlations 

(MADcor; DiBello et al., 2007).  They find average Q- as the most effective index for 

large samples (1,000). MADcor, MADres show good performance too. In summary, 

these studies show that limited information indices are trending and have some potential 

(Lei and Li, 2016; Rupp et al., 2010). Relying on multiple indices may result in more 

sound decisions, although absolute fit indices are more commonly used for Q-matrix 

misspecification. They are also parallel to relative fit indices and can be used jointly for 

more informed model selection (Chen et al., 2013; Kunina-Habenicht et al., 2012; Lei & 

Li, 2016). Among absolute fit indices, bivariate indices perform better (Chen et al., 2013; 

Lei & Li, 2016; Rupp et al., 2010). 

The Retrofitting Framework 

 

Retrofitting is a back-engineering approach. It entails reconsidering an extant test 

in a different paradigm and employ a different statistical tool, a diagnostic model to 

analyze responses (Gierl & Cui, 208; Lee & Luna-Bazaldua, 2019; Roussos et al., 2007). 

Stout et al. (2019) differentiate between retrofitting a test that is intended to be 

multidimensional but not based on a DCM versus one that is designed to be 

unidimensional. The latter describes the approach in this study. Retrofitting has been a 

common practice, to supplement simulation studies (Liu et al., 2018; Sessoms & Henson, 

2018) or stand-alone applications, to explore different aspects of DCMs. Yet, 

implementations show some variations and not all of them adhere to a standard procedure 

(Lee & Luna-Bazaldua, 2019). Liu et al. (2018) describe the stages of the process to 
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guide retrofitting research and increase the success of this “suboptimal” approach (p. 

361). Their suggested framework (Figure 1) also inform this study. In this framework, the 

first step entails getting familiar with test, users, and respondents and obtaining 

information such as design structure, psychometric properties (e.g., dimensionality, item 

parameters, blueprints etc.). Such information appraises the legitimacy of the DCM, can 

inform attributes and model choice. The second step is the attribute specification and 

mapping. However, dimensions of the test might not be readily available, which requires 

a review and decomposition of items to generate them retrospectively (Gierl & Cui, 

2008), and the Q-matrix represent the multiple dimensions (Haberman & von Davier, 

2007). Empirical methods can be undertaken for the Q-matrix validation. Design 

recommendations (e.g., combining, retaining attributes, Liu et al, 2018; Madison & 

Bradshaw, 2015). can also help modifying the Q-matrix. Hartz et al. (2002) recommend 

retaining an attribute in the Q-matrix if it is measured at least by 3 items (in Kim, 2015). 

In terms of the model choice (the third step), a general model, as well as the specific 

models, are endorsed.  The model suitable for the test is selected based on fit statistics. 

Finally, if adequate fit is observed then individual, aggregate, and attribute level results 

can be reported and interpreted (e.g., attribute distribution in the sample, correlation of 

the attributes, etc.). According to Liu et al. (2018), this process is iterative in the sense 

that attributes, their relations, and the model can be updated along the way. 

 
 
 
 
 



 

 47 

Figure 1. The Iterative Retrofitting Framework (Liu et al., 2018, p. 362) 
 

 
 
Limitations of Retrofitting 

 
A principled assessment design would streamline the DCM estimation, (Gierl & 

Cui, 2008; Rupp et al., 2010) and DCMs are actually intended to accompany diagnostic 

assessments. Therefore, retrofitting is considered to impose some limitations. Items that 

hang together are selected for educational tests. As a result, dimensionality would be low 

or absent in these assessments (Haberman & von Davier, 2007; Gierl & Cui, 2008). 

When a substantive theory is lacking, decisions about attributes and their relations might 

be arbitrary (Haberman & von Davier, 2007). Attributes might be too coarse, and the Q-

matrix might show a low variability (Deonovic et al., 2019). On the other hand, they 

might be too sophisticated and cause identifiability or convergence problems (Deonovic 
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et al., 2019; Gierl & Cui, 2008; Lee & Luna-Bazaldua, 2019). In addition, when attributes 

are highly correlated, it might not be useful to report them separately (Haberman & von 

Davier, 2007). Additional test items or variables might be required to ensure the accuracy 

of classifications (Deonovic et al., 2019). In short, the fit of the model or items is not 

promised, and can be weak (Gierl & Cui, 2008; Rupp et al., 2010). Some of these 

problems can be overcome by using empirical approaches, as in a Q-matrix validation. 

Retrofitting can be considered a proxy to obtain diagnostic information. When it is 

possible to use a diagnostic test, DCMs can produce low stakes feedback to support 

learning and construct validation (Liu et al., 2018). There are also example studies (e.g., 

Jang, 2009b; Jang et al., 2013; Kim, 2015 etc.) in which DCMs provided some useful 

results. These cases are detailed later in this chapter when DCM applications to language 

assessments are discussed. 

Second Language Reading and Divisibility Arguments 

 

Bachman (1990), and Bachman and Palmer (1996, 2010), define language ability 

to consist of language knowledge and strategic competence (i.e. metacognitive 

strategies). Language use occurs as a dynamic interplay between the two components 

(Phakiti, 2003), and is influenced by other factors (e.g., personal, affective, topical etc.). 

In addition, language knowledge is represented by different components: organizational 

(e.g., knowledge of vocabulary, syntax, phonology, cohesion, rhetoric etc.) and pragmatic 

knowledge (e.g., functional and sociolinguistics which are further broken to smaller 

elements) in their framework. An assessment can incorporate specific elements or a 

combination of them (Bachman & Palmer, 2010). This prevalent model supports that 
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language construct can be broken down to components. Bachman and Palmer (2010) also 

perceive four language skills (i.e., reading, writing, listening, speaking) as “the 

contextualized realization” of language ability (p. 56). Therefore, the model is regarded 

suitable to explain the L2 reading process especially due to the inclusion of knowledge 

components as well as strategies (Kim, 2015; Phakiti, 2003; Weir, 2005). However, 

skills-based conceptualization of language ability is also predominant (Buck, 2001), 

which encouraged investigation of specific language skills including L2 reading (e.g., 

speaking in Sawaki, 2007; reading and listening in Song, 2008)  

Nevertheless, L2 reading research is not an easy task (Hudson, 1996; Koda, 

2012). As Hudson (1996) argues, the difficulty partially stems from the feature of the 

construct, which entails latent and inferred processes (Hudson, 1996). There are opposing 

views regarding L2 reading, its divisibility and components (Alderson, 2000). The debate 

around its attributes is ongoing (Weir, 2005). Some scholars postulate specific attributes 

cannot be specified, or separated (e.g., Alderson 1990a, Alderson, 1990b; Alderson & 

Lukami, 1989; Rost, 1993). For instance, Rost (1993), by using a factor analysis 

approach, proposes a general reading factor to account for most of the variance in the test 

performance. Similarly, relying on expert opinion, Alderson and Lukami (1989) and 

Alderson (1990a, 1990b) conclude specific attributes that reading items measure, or a 

hierarchy for skills (i.e., low vs. high order), cannot be fully determined. However, these 

studies have been subject to methodological criticism (e.g., composition of panel, 

operationalization of the hierarchy, factor analysis etc.) (e.g., Mathews, 1990; Weir et al., 

1990). The unitary perspective of the reading construct is also found improper. It would 
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suggest how the reading is assessed is insignificant (e.g., focus on grammar vs. 

inferencing) (Urquhart & Weir, 1998), or identifying reading related problems is not 

possible (Koda, 2007). Alderson (2000) explains that this standpoint might also lead to 

the underrepresentation of the construct because there is a risk that some components are 

ignored. 

Reading as a multicomponent construct is also well received by researchers (e.g., 

Davis, 1968; Grabe, 1991; 2009; Hudson, 1996; Koda, 2007, 2012; Lumley, 1993; 

Munby, 1978; Urquart & Weir, 1998; Weir 2005). Reading includes several subskills 

(Koda, 2007; 2012) as well as strategies (Weir, 2005) and thus it is a multidimensional 

construct. Similarly, Hudson (1996) describes reading as the interplay between processes, 

knowledge, and abilities such as lexical, syntactical knowledge, as well as a higher order 

of processes and strategies. Several skill lists and taxonomies have emerged (Alderson & 

Lukami, 1989), and some like Munby’s taxonomy has been influential in language testing 

(Alderson & Lukami, 1989; Mathews, 1990).  For example, Davis (1968) specifies eight 

reading skills (e.g., recalling/inferring word meaning, making inferences, understanding 

explicit content, weaving ideas, recognizing purpose etc.). He also develops a test using 

these skills and concludes reading is not indivisible based on his uniqueness analysis. 

Munby (1978) proposes eighteen skills including understanding explicit/implicit 

information, skimming, scanning, understanding cohesion, etc. (as cited in Alderson & 

Lukami, 1989; Alderson, 2000). Similarly, Grabe (1991) asserts researchers associate L2 

reading with six different components at minimum (i.e., recognition, vocabulary and 

structural knowledge, formal discourse knowledge, content knowledge, synthesis and 
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evaluation skills, and metacognitive knowledge). However, taxonomies are also criticized 

for not being inclusive (Hedgcock & Ferris, 2009), including overlapping skills 

(Alderson, 2000; Hedgcock & Ferris, 2009; Macmillan, 2016; Weir et al., 1990), being 

arbitrary (Mathews, 1990), or divergent from each other (Hedgcock & Ferris, 2009). In 

addition to the acceptance of the divisibility at the theoretical level, some researchers 

have undertaken empirical analyses to uncover reading skills or confirm their separation. 

Lumley (1993) reports a successful attribute specification and ordering by domain 

experts, which converged with the statistical difficulty of the items. Some studies do 

confirm some distinction is possible between comprehension of explicit and implicit 

meanings through factor analysis (Kim, 2009; Song, 2008). Rule space methodology 

have also been applied to L2 reading, and a large number of attributes are identified in 

large-scale tests (e.g., Buck et al., 1997). Finally, verbal protocols, eye tracking studies, 

and self-reports are employed to uncover strategies in reading processes (e.g., Anderson, 

et al., 1991; Brunfaut & McCray, 2015; Cohen & Upton, 2006). 

Despite the lack of consensus on the divisibility or the specific attributes that 

characterize L2 reading, the divisibility notion is powerful (Alderson, 2000; Lumley, 

1993). It is also a sensible approach (Harding et al., 2015) for several reasons. According 

to Grabe (1991) “reading components perspective is an appropriate research direction to 

the extent that such an approach leads to important insights into the reading process” (p. 

382). Similarly, Weir et al. (1990) argue that efforts to justify skill identifiability are 

critical and contribute to the understanding of the construct and test development. Despite 

the uncertainty of the components, they are deemed useful and practical for teachers and 
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testers (Lumley, 1993). In fact, they are acknowledged in teaching and can be possibly 

incorporated into testing (Weir, 2005). L2 reading needs to be decomposed to distinguish 

it from other skills, especially if it is reported separately (Urquhart & Weir, 1998; Weir, 

2005). Measuring skills and strategies is unavoidable (Weir, 2005). Profiling attributes to 

uncover weakness, rather than overlooking them, is seen as a reasonable resolution until a 

consensus is reached about the divisibility (Urquhart & Weir, 1998). However, 

establishing more descriptive and comprehensive diagnosis theories or models for L2 is 

necessary to elucidate the complex and multicomponent reading construct (Alderson et 

al., 2015). In addition, insights about the interactions between the attributes and 

hierarchical structure is critical (Hedgcock & Ferris, 2009; Urquhart & Weir, 1998; Weir, 

2005). Specifically, rather than presuming hierarchies they should be explored 

empirically (Hedgcock & Ferris, 2009).  

With respect to the interaction between skills, some researchers (e.g., Bernhardt, 

2005) suggest a more compensatory relationship. However, Bernhardt identifies three 

dimensions for L2 reading: L1 literacy, L2 ability, and unexplained variance including 

cognitive skills, strategies, and motivational factors. As seen, an important aspect such as 

cognitive skills are lumped together. There is still much to be discovered about the 

relationships of reading attributes including hierarchy and skill dependencies (Weir, 

2005). DCMs not only enable identifying attribute interactions and profiling but also 

overcome the limitations of the earlier methodologies. For instance, expert view can be 

confirmed by the statistical evidence. According to Jang (2017) “Traditional 

psychometric approaches often fail to identify multiple skills separately. Common factor 
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analytic approaches are inappropriate for identifying highly correlated skills… (p. 10)”. 

Traditional dimensionality analyses might also fail to support substantive dimensions that 

might be evident in content analysis or expert judgement (Li & Suen, 2013). 

Applications of DCMs to Language Assessments 

 

The earliest DCM application to language assessments can be traced back to the 

implementation of rule space methodology (i.e., antecedent of DCMs) to large-scale 

English proficiency tests such as the TOEFL or the Test of English for International 

Communication (TOEIC) (e.g., Buck et al., 1997; Buck & Tatsuoka, 1998). The 

motivation for all of the very early applications has been to gain more insights into the 

language constructs, specifically listening and reading via a new methodology, due to 

inconclusive findings and limitations presented by earlier traditional, factor analytic 

approaches (Buck et al., 1997). However, large number of attributes (e.g. 16 attributes, 8 

interaction terms) have emerged in these studies. Yet, the early attempts are claimed to be 

successful (i.e., attributes explained above 95% of variance), and support their capacity 

for deconstructing L2 domains into smaller attributes in order to understand their impact 

on learner performance for diagnostic purposes (Lee & Sawaki, 2009). More recent DCM 

applications for language construct fall into three broad classes: (1) the Q-matrix 

development and validation, (2) exploration of DCMs and its feasibility for providing 

diagnostic feedback, and (3) model comparison. Key variables of these studies are 

provided in Appendix A. 
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Q-Matrix Studies 

 

There are few studies detailing the specific procedures (i.e., statistical and 

qualitative) for the Q-matrix development for language assessments (Jang 2009a; Li & 

Suen, 2013; Sawaki et al., 2009). While Jang (2009a) focuses on the TOEFL iBT 

reading, Sawaki et al. (2009) add the TOEFL iBT listening to their Fusion model 

analysis. All of these studies incorporate Q-matrix validation just based on the Fusion 

model parameters (e.g., combining skills, fixing item parameters). Sawaki et al. (2009) 

present a rudimentary approach for the Q-matrix development and included broader 

attributes (i.e., 4 for each domain). In their initial attribute specification, they reviewed 

test specifications, test development frameworks, the relevant literature (i.e., on subskills 

of reading and listening constructs), and completed task analyses. The authors claim an 

acceptable fit for the final Q-matrix, based on consistency of classifications and item 

parameters.  

Jang (2009a) develops a more inclusive approach and draws from multiple 

sources to identify the initial set of attributes such as a review of the literature for reading 

taxonomies, test blueprints and frameworks, classical item and dimensionality analysis, 

as well as textual analysis (e.g., word frequency, text length, rhetorical structure, etc.). 

Moreover, she incorporates think-aloud protocols to capture the actual skills and 

processes used by the test takers, and seeks to confirm the attributes emerged with subject 

experts. Jang specifies nine attributes and asserts most examinees (90%) have been 

correctly classified by the model. However, the Fusion analysis also show some items are 

not discriminating (r* > 0.8). She concludes attributes might be highly correlated for these 
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items. Based on the verbal protocols, she mentions that L2 academic reading construct 

incorporates both compensatory and some non-compensatory attribute associations and 

draws attention to a more flexible modelling approach. 

Li and Suen (2013) study underlying subskills of the reading domain of Michigan 

English Language Assessment Battery (MELAB). They have also conducted verbal 

protocols with students to verify the initial set of skills and included expert opinion to 

create the Q-matrix. In cases of discrepancies between the two sources, the authors rely 

on the student data, as it is a more reliable indicator of the actual reading processes. Li 

and Suen also compare the initial and revised Q-matrices and conclude that they yield the 

same findings (i.e., acceptable fit). However, like Jang Li and Suen report poor diagnostic 

capacity for certain items on the test.  

Clearly, these studies differ to some extent with respect to the scope of empirical 

evidence involved in constructing the Q-matrix or attributes. Initial skill identification is 

grounded in literature, reading taxonomies, and an expert view in all studies. Jang 

(2009a) and Li and Suen (2013) incorporate different sources (e.g., verbal protocols) to 

arrive at a more reliable Q-matrix. The composition of the panel is worth mentioning. 

Involving qualified experts about skill processes and their development is a critical factor 

for successful implementation (Rupp et al., 2010). The expert panels in these studies 

consist of graduate students, except for Sawaki et al., which can be attributed to the ease 

of access to this population. However, involving various, more experienced experts, 

specifically the test/content developer as in Sawaki et al. or teachers, is important due to 

their increased familiarity with the items or the test taker population. Another important 
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characteristic of the Q-matrix is the specificity of the attributes identified. Although all of 

the studies focus on similar constructs and Sawaki et al. (2009) and Jang (2009a) use 

exactly the same test, the number and scope of attributes varied. For instance, while word 

knowledge is common to both Jang and Sawaki et al., Jang differentiates between context 

dependent and independent word knowledge. Likewise, Jang considers syntax knowledge 

to be a part of the reading comprehension, whereas Sawaki et al. do not represent a 

similar attribute in their Q-matrix. This variation might be expected, as reading 

comprehension is complex, yet different skills associated with the same test imply the 

importance of multiple pieces of evidence. However, it is apparent that there is 

uncertainty with respect to granularity of attributes. As stressed by Rupp et al. (2010) and 

others, appropriate grain size should be aligned with the purposes of diagnostic 

information, theory, and estimation requirements. These studies show there are variations 

how specific procedures are applied. As substantiated by Jang, it is an arduous and 

complex task to identify meaningful attributes and develop the Q-matrix.  

Example Methodology and Feasibility Studies 

 

The next line of studies demonstrates the application of a specific DCM for 

language assessments and explore the feasibility. Therefore, they entail the evaluation of 

the model and some of them also involve Q-matrix construction. von Davier (2008) 

illustrates the use of the general diagnostic model (GDM) for the TOEFL iBT reading 

and listening domains. He also compares the GDM to a unidimensional and two 

dimensional IRT models to evaluate the suitability of the GDM. The Q-matrices have 

been created by consulting experts and no further validation is undertaken. In order to 
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experiment whether reading and listening can be treated as a single comprehension 

domain, the author employs joint calibrations of these skills. Joint calibrations include a 

unidimensional model, a two-dimensional model, and the GDM. Overall, two 

dimensional IRT is observed to perform better than the GDM based on relative fit (i.e., -

2log likelihood), yet when skill mastery probabilities are compared to IRT J estimates, 

three of the four skills are highly correlated with J (0.85-0.95). One skill which deviates 

from the trend is a prerequisite for another skill, meaning a hierarchical relationship 

exists.  

Jang (2009b) applies the Fusion model to LanguEdge (i.e. TOEFL preparation 

courseware). The justification for DCM has a sound basis in this study as LanguEdge 

serves as a teaching and learning tool. Jang also uses self-assessment surveys to probe 

into the relationship between reading profiles and an examinee’s self-efficacy with their 

reading ability. She fits the model twice, and between two applications the instruction 

continues. What makes this study exceptional is the quest for the utility evidence. Jang 

creates diagnostic report cards for examinees and their instructors. With both groups, she 

conducts pre- and post- surveys/interviews inquiring about their perceptions of the 

reports (i.e., elements in the reports) and/or the extent to which these reports are useful 

for learning or teaching. In assessing the model, Jang examines parameter estimates (i.e., 

difficulty, discrimination), MADcor, correct classification rates and concludes the model 

fit overall is reasonable (e.g., MADcor < 0.05). The mastery status of most students is 

determined. Mastery probabilities and observed total scores are also positively correlated 

(0.94), and most items but not all show reasonable diagnostic capacity. In the second 
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application Jang notes positive changes in attribute status for almost half of the students. 

However, students’ self-assessments are moderately or weakly correlated with the 

attribute mastery probabilities. Most students have a positive attitude towards their report 

cards and believe they are helpful and informative, to some extent. However, the reports 

have created some confusion, such as the meaning of being a master of a skill but not 

getting a perfect score. Jang also mentions the utility of information hinges upon 

congruity between teachers’ opinion about student performance and statistical results.  

Kim (2015) also undertakes a Fusion analysis for a local college level L2 reading 

test. Unlike other studies, the Q-matrix for this study identifies a combination of 

cognitive strategies (e.g., skimming) and linguistic components (e.g., lexical and cohesive 

meaning). Kim includes more attributes than other studies (i.e., 10), which rely on 

language ability models (i.e., Bachman & Palmer, 1996; Purpura, 2004) and literature on 

L2 reading construct. Similar to Jang, Kim evaluates the item parameters, classification 

consistency, and observed and predicted estimates. She also analyzes skill mastery 

profiles at different proficiency levels (e.g., beginner, intermediate), which yields 

important findings. According to Kim, there is variation with respect to mastery status at 

different levels. Overall, Kim’s study reveals an acceptable fit (MADcor < 0.05). Yet, 

about half of the items poorly differentiate between masters and non-masters (< 0.40). 

Conversely, examinees classifications are consistent 88% of the time. Despite Kim’s 

motivation to investigate pedagogical usefulness for different stakeholders, she does not 

dig into the utility aspect. However, specifically, the analysis of attribute mastery across 



 

 59 

different proficiency levels support DCMs can offer valuable information with respect to 

learning paths for different subgroups. 

In a similar local, high-stakes, L2 proficiency test context, Ravand (2016) 

showcases an application of the G-DINA. In specifying the attributes, the author works 

with domain experts and students taking the exam previously to extract the skills. The Q-

matrix is also revised with the GDI method. In judging model fit, Ravand uses several fit 

indices (i.e., MADcor, RMSEA, MADres, SQ-) and classification consistency and 

accuracy. Therefore, the evaluation of the model fit is more extensive than the other 

methodological examples. The author finds model fit and classifications acceptable (e.g., 

fit indices < 0.05, classification accuracy and consistency are 0.81 and 0.73 respectively). 

Yet, the variability of classes is limited, and two flat classes are apparent. The correlation 

between attributes are also high for some attributes (i.e., 0.78-0.95). Ravand evaluates the 

models at the item level and finds both compensatory and non-compensatory 

relationships apply to items. He attributes the altering skill relationships to different 

factors such as attribute difficulty, content area, and cognitive intensity of the skills.  

Kim (2011) and Xie (2017) diverge from other studies as they successfully initiate 

the R-RUM for an L2 writing domain. Rather than using the writing prompts as the 

starting point for the skill specification, Kim (2011) has developed a writing rubric and 

identified the subskills by focusing on the raters’ cognitive processes while rating the 

writing prompts. For the R-RUM application, 2 essays of 120 students graded 

dichotomously based on the checklist are used. This study is a relatively small-scale 

research compared to others. Overall, the author mentions good fit. However, 34% of the 
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descriptors (i.e., with the majority being related to grammar) lack diagnostic power which 

might have stemmed from misspecifications in the Q-matrix. Nevertheless, the author 

notes variation in the attribute profiles and evidence for test-retest reliability (i.e., similar 

proportion of masters for all skills across two forms except for mechanics attribute). Xie 

(2017) uses the same checklist and the R-RUM for another small scale (N = 472) local 

writing test to replicate the results. However, unlike Kim, Xie employs three-facet Rasch 

for rater reliability and finds significant rater severity. Rater severity is not unexpected, 

because some raters have graded over 70 essays. The Q-matrix has been slightly revised 

based on statistical evidence and the results between initial and revised matrix are 

compared. The revised Q-matrix outperforms the original matrix (i.e., greater 

discrimination for items). The fit based on observed and estimated estimates is reported 

reasonable.  

Methodological examples for L2 proficiency at K-12 context is limited. Jang et al. 

(2013) is one of the few examples. The authors explore reading development of more 

than 10,000 students using a literacy test (i.e., reading, writing and, grammar). The 

authors specifically focus on immigrant and Canadian born L2 speakers and scrutinize 

the impact of the length of residence and home language on reading skill mastery, which 

is estimated employing the R-RUM. An expert team of graduate students have created the 

Q-matrix by analyzing items, which is refined with statistical findings from the R-RUM. 

The closeness of observed and estimated parameters and high correct classification rate 

(0.83- 0.98) are considered evidence for model accuracy. The results reveal that length of 

residence and reading achievement are related. The authors discuss, despite that native 
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students outperform their peers, multilingual students reach similar performance levels 

within 5 years. However, they acknowledge time itself cannot be a sufficient to explain 

performance as students vary with respect skill development patterns. This study also 

shows given good fit; DCM can be insightful to explain learning trajectories for various 

subgroups of L2 speakers. 

In another study Jang, et al. (2015) explore the utility of the diagnostic 

information in the K-12 context. The authors consider factors such as reading profiles, 

self-efficacy, and goal orientation, and whether these factors agree with attribute profiles. 

The authors also collect feedback about the diagnostic reports. The study involves parents 

in the evaluation of the diagnostic information. The authors make use of the same 

assessment described above with a very small sample (N = 44) and obtain the profiles 

from the R-RUM. The result indicate with some scaffolding students are able to 

understand reports. Also, students who are oriented to master reading skills are more 

interested in diagnostic information. The authors find, the relationship between self-

assessments and skill mastery was conflicting such that students with low mastery 

overrate ability. The pattern is switched for students with high mastery probabilities. The 

parents find the reports informative and even some have initiated a discussion with their 

child and sought further action to help them. Some parents also desire to get guidance 

about how to help their kids.  

The major limitation in these methodological studies is the choice of a model. Six 

out of eight studies employ the non-compensatory RUM models, but not justify is their 

choice enough. Only Kim (2011) and Xie (2017) mention that the R-RUM is suitable 
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given its prevalent use. However, the justification is not comprehensive enough. The 

choice of the RUM models might be closely associated with the accessibility of computer 

programs. These studies also verify the validity of DCM applications is nascent in 

general. Utility, relations to external variables, are overlooked. Only Jang (2009b), Jang 

et al. (2015) explore external relations (e.g., self-assessments) and utility. However, 

exploration of the use of diagnostic information might reveal intriguing findings. For 

instance, it is shown that diagnostic information can be confusing for students or 

conflicting for teachers.  

Model Comparison Studies 

 

Emergence of computer programs and frameworks allowing to fit multiple models 

(e.g. the CDM package and the LCDM/GDINA framework) have led to several model 

comparison studies. In addition to being concerned with the best model to represent 

language assessments, the studies contribute to insights about the attribute associations 

(i.e., compensatory or non-compensatory). These studies also merit attention for 

incorporating and exemplifying several model fit indices. 

Lee and Sawaki (2009) evaluate the performance of the GDM, latent class 

analysis (LCA), and the Fusion model using the same Q-matrix and assessment from 

Sawaki et al. (2009). They inspect RMSEA, distribution of masters and non-masters for 

separability, examinee proportions in each profile under each model, and classification 

consistency across two forms (i.e., test-retest reliability). In the study Fusion model yields 

better fit based on RMSEA. Three models perform similarly with respect to other criteria. 

For instance, except for one skill in both reading and listening domains, distribution of 
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mastery probabilities is similar. However, the variability of profiles is low across all three 

models with the majority of the examinees being assigned to two profiles. The authors 

also find the classification under GDM to be more consistent and moderate relationship 

between the forms except for organizing and synthesis reading skills. The general ability 

is also moderately correlated with attributes under models. They suggest that, despite 

being designed to be parallel, form might not necessarily tap the same subskills in the Q-

matrix. In conclusion, all models yield similar results in the study.  

Yi (2017) also fits four models (i.e., the DINA, DINO, NIDO, C-RUM) within 

the LCDM framework using the same data and Q-matrix as Lee and Sawaki. The model 

evaluation includes analysis of RMSEA, AIC and BIC. All models show good fit based 

on RMSEA (< 0.05) yet, the NIDO produces the highest RMSEA. The C-RUM exhibits 

the best fit based on AIC and BIC. Again, the NIDO is the worst fitting model based on 

relative fit. Yi concludes L2 comprehension skills to involve compensatory relationship. 

He points out that the relationship between subskills is another important consideration in 

test construction and validation. Therefore, he emphasizes that test developers should 

consider skill relationship during item design. 

Li et al. (2016) implement the GDINA framework to select an appropriate model 

for MELAB. Four specific models, the DINA, DINO, ACDM, and R-RUM are also 

compared. The study is more comprehensive and involves comparison of classification 

results, relative fit, as well as absolute fit. More specifically, Li et al. (2016) analyze the 

examinees proportions across skill profiles, like Lee and Sawaki (2009), and report -2LL, 

AIC, BIC, MADcor, MADRES, and SQ-. Overall, the ACDM and R-RUM show 
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comparable fit with the LCDM based on the relative and absolute fit indices. The DINA 

and DINO underperform. Skill profiles are also comparable among the LCDM, ACDM, 

and R-RUM while DINA and DINO show some divergence. The authors conclude 

ACDM as a more parsimonious model to be more appropriate and claim evidence for 

compensatory nature of reading attributes.  

Another model comparison study of L2 reading within GDINA framework is 

Ravand and Robitzsch (2018). The authors investigate the performance of six models 

(i.e., the G-DINA, DINA, DINO, R-RUM, and ACDM) for a local high-stakes reading 

test. The Q-matrix is adopted from Ravand (2016). Overall, the G-DINA outperforms the 

other models, and the C-RUM is the second-best fitting model. Yet, the authors express 

the R-RUM and ACDM show comparable fit to the G-DINA with respect to absolute and 

relative fit and proportion of examinees across skill profiles. The DINA and DINO show 

more divergence. In conclusion, the authors suggest that compensatory and non-

compensatory models perform equally given a large sample size (N = 21,642). Therefore, 

the authors advocate an item-level model specification. 

Aryadoust (2018) also works with a local high-stakes test, yet at K-12 level. 

Diagnostic information carries more significance as the author mentisons mock tests are 

part of the teaching curriculum. The study is oriented to understand the nature of listening 

comprehension comparing five models: the DINA, DINO, HO-DINA, G-DINA, and R-

RUM. It is also the smallest scale study (N = 205) for model comparisons. The Q-matrix 

for the study is developed by reviewing test frameworks, conducting verbal protocols 

with examinees, and innovatively incorporating an eye-tracking study. The subskills 
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include test-taking strategies, in addition to listening skills, which distinguishes it from 

previous studies. The Q-matrix is not revised iteratively in this study. This study also 

relies on comparison of absolute and relative fit indices. The best fit is displayed by the 

R-RUM. The G-DINA is also a comparable model. The DINO underperforms in 

comparison to other models. However, based on tetrachoric correlations, some attributes 

seem to correlate above 0.80 (i.e., high correlation). Also, 67% of the examinees are 

assigned into the profile where all skills are mastered.  

The model comparison studies show that the LCDM/GDINA ascend to be 

trending frameworks. Mixed conclusions with respect to model choice corroborate the 

utility of more generalized frameworks. Specifically, for a complex construct such as 

language, a general framework allows item specific models (e.g., Ravand, 2016; Ravand-

Robitzsch, 2018). Yet, it is important to indicate the rationale for the selection of the 

constrained models is not laid out well in some studies. Moreover, analog models have 

not been employed in some instances.  

The findings of model comparisons are not conclusive in these studies, either. In 

general, RUM models have been found to perform similar to general models. Also, the 

DINA and DINO fit worse, which supports their restricted nature (e.g., Henson et al., 

2009). Except for Li et al. (2016), researcher advocate both compensatory and non-

compensatory models for reading comprehension. However, these conclusions might be 

ambitious and should be verified in future studies.  
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Summary 

 

The studies discussed here provide insights about the language construct and 

illustrate the feasibility of new modelling avenues. They bear similarities and differences 

and present important implications. All of these applications are retrofitting. Except for 

two, the studies reviewed deal with receptive language constructs, such as grammar, 

listening, and reading. Sessoms and Henson (2018) also note that 39% of DCM 

implementations after 2009 are concerned with L1 or L2 reading constructs. It can thus 

be inferred that receptive skills are easier to deconstruct into subskills. Despite some 

variation, there are also common skills across studies for the same construct (e.g., main 

idea, inference, vocabulary, and syntax for reading construct). The studies also show 

variation with respect to the number of attributes (i.e., range of 3-10), hinting at the 

uncertainty of the attributes raised by some researchers (e.g., Alderson, 2000; Lumley, 

1993). Although Jang (2009b) stresses the importance of blending different sources in Q-

matrix construction, working with domain experts and task analysis is the most common 

approach. One limitation voiced by Alderson (2010) is the lack of documentation for the 

specific procedures in deconstructing items. The empirical Q-matrix validation methods 

have not been adopted in these studies with the exception of Ravand (2016), which might 

have a high potential to overcome mis-specification issues. Additionally, the authors 

claim mixed findings with respect to the nature of attribute relationships, signifying the 

need for more research to shed light on L2 reading. As echoed by Stout et al. (2019) 

Fusion model has been used in study after study yet, general models are preferred in more 

recent studies. Conclusions about model choices should be treated cautiously and should 
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not be oversimplified. As substantiated by Ravand (2016) and Ravand and Robitzsch 

(2018), the correct model might interact with item features. The studies also show the 

validity of the DCM methodology is an underexplored area. Evidence for relations to 

external variables and utility are scarce. Utility aspects can clarify some issues like grain 

size. How diagnostic information is perceived and used by different stakeholders are thus 

important questions to address. Finally, except for a few studies (Aryadoust, 2018; Jang 

et al., 2013; 2015), the context of the studies is for standardized assessments in higher 

education. However, none of the studies are concerned with English Language 

Proficiency (ELP) assessments for young learners. 
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CHAPTER III 
 

METHODOLOGY 
 
 

The previous two chapters provided the background information for the study. 

Chapter 1 described the appeal for diagnostic information from large-scale tests and the 

use of DCMs with these tests due to a lack of diagnostic assessments and skepticism 

about other methods (e.g., teacher assessments). Chapter 1 also introduced the study 

context, ELs and ELP assessments. Diagnostic feedback might better allow attending to 

ELs’ needs and enhance learning opportunities for this population who show 

performance gaps. Chapter 2 reviewed the notion of diagnosis in language assessments 

and different arguments about L2 reading construct. Despite the interest, the field lacks a 

theory or systematic methods for diagnostic language testing. Chapter 2 also detailed 

different aspects of a DCM methodology. In a DCM study, first, attributes are specified 

and coded for test items which are then modelled along with item responses by using a 

general (e.g., LCDM) or a constrained model (e.g., DINA, C-RUM etc.). If multiple 

models are used, they are compared using relative and absolute fit indices. Chapter 2 also 

delved into the research studies using language assessments, most which pertained to 

comprehension constructs and college level proficiency tests. This chapter, Chapter 3, 

focuses on how the DCM methodology was implemented in the present study. The 

chapter is structured in four parts. First, the purpose of the study along with the research 

questions are reviewed. Subsequently, a detailed account of the data is presented. This
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 includes information about the assessment, the test form that was used in the study, and 

the participants that the form was administered to. In the third part, specific procedures 

and analyses to address each of the research questions are detailed.  

Purpose and Research Questions 

The purpose of this study is to explore the utility of the DCM methodology to 

obtain diagnostic information from a large-scale, K-12, ELP assessment. For this 

purpose, the diagnostic methodology was applied to the reading domain of Assessing 

Comprehension and Communication in English State-to-State for ELs (ACCESS) in the 

study. By implementing an alternative measurement framework, the study intends to 

illustrate the extent to which the DCM framework can offer more detailed, actionable 

results to test users including ELs and their teachers for ACCESS reading domain. It 

must be acknowledged that a different measurement framework, IRT, informed the 

development of the test. Therefore, the study employed a retrofitting approach for 

exploratory reasons. It adopted the steps in the retrofitting framework presented in 

Chapter 2. The study does not intend to suggest replacing the current measurement 

framework for the test, but rather pursue low-stakes feedback with the DCM 

methodology that can aid everyday instructional settings. Informed by this purpose, the 

study proposes to identify the attributes a suitable diagnostic model for the reading 

domain. The study also aims to evaluate the selected model for the viability of the 

methodology by focusing on item, person, and attribute estimates, as well as comparisons 

between the DCM based classifications and ELs’ proficiency estimated under the original 

framework (i.e., IRT). The following research questions guide the study: 
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(1) What are key underlying attributes represented in the ACCESS reading 

domain in middle grades for more advanced ELs? 

(2) What DCM fits the data better?  

a. Does a general or specific restricted model better represent all 

items in the test?  

b. Does a Standard-based or an Expert-defined Q-matrix show better 

fit? 

(3) To what extent is it feasible to obtain diagnostic information using DCM?  

a. What is the diagnostic capacity of the test items?  

b. To what extent can students be appropriately classified using the 

model? 

Assessment: ACCESS 

ACCESS is an annual, large-scale, standardized language proficiency assessment 

for K-12 ELs. It is a widely used instrument in the U.S., given that it is administered to 

over 2 million ELs across 39 states every year. The test has paper and online versions. 

While some states only offer paper ACCESS (e.g., Florida), others administer the online 

test, which is multi-stage adaptive. States can also choose to offer both. For the purposes 

of this study, paper ACCESS was used. The test is a product of the World Class 

Instructional Design and Instruction (WIDA), a multi-state consortium based in the 

University of Wisconsin-Madison, and the Center for Applied Linguistics (CAL). The 

two organizations are responsible for the design, development, technical quality, and 

validation of the assessment. 
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The stakes attached to ACCESS are fairly high as the test is primarily used for 

decisions related to proficiency development and planning (Fox & Fairbairn, 2011). As 

noted by Fox and Fairbairn, each EL student continues to take ACCESS until they 

become proficient depending on their states’ criteria. The test can also be used for 

different purposes as claimed by the test developer, such as;  program and curricular 

decisions (e.g., placement in support programs, curriculum development), instructional 

planning and classroom assessment (e.g., scaffolding students, determining domains to 

focus on) (CAL, 2017; Kim et al., 2016; WIDA Consortium, 2019; WIDA, n.d.). 

Specially, to foster the link between the test and instruction, the test is linked to the 

instructional resources (Fox & Fairbairn, 2011) (e.g., standards, can-do descriptors). 

Therefore, the results of ACCESS potentially influence teaching/learning decisions, and 

diagnostic feedback can be deemed valuable. In addition, diagnostic information can 

support the interpretation of scores and contribute to the validity of inferences made 

about an EL’s proficiency. However, validity of the diagnostic information itself should 

be ensured before such endeavors are undertaken. 

ACCESS is designed to measure social, instructional, and academic English 

proficiency (Bauman et al., 2007; CAL, 2017; Wolf et al., 2008a). It aims evaluate ELs’ 

proficiency, and their language competence in the classroom and school context, 

especially in their interactions with content, peers, and teachers (WIDA Consortium, 

2019). Although it incorporates the social dimension, it is within the context of the school 

environment. It incorporates all four language domains: listening, reading, speaking and 

writing. Each domain is tested separately. This study focused solely on the reading 



 

 72 

domain. The reading construct is operationalized as “process, understand, interpret, and 

evaluate written language, symbols, and text with understanding and fluency” (WIDA 

Consortium, 2007, p.11). It thus entails comprehension of texts related to academic 

content or classroom/school setting. I chose to delve into the reading domain because as a 

receptive domain, reading is given more weight to estimate the overall score (i.e., reading 

and writing account for 35% each, speaking and listening 15%) by the test developer 

(CAL, 2017; WIDA Consortium, 2020.).  Thus, between the two comprehension skills, it 

is given slightly more importance. Reading is also acknowledged to be crucial skill for 

academic development of L2 learners (Grabe, 1991). DCMs are also frequently applied to 

L2 reading construct given the belief for its divisibility (e.g., Davis, 1968; Grabe, 1991; 

Weir et al., 1990 etc.). For this reason, it is possible to draw comparisons across the 

studies. 

ACCESS is also a standards-based assessment, and each domain in ACCESS is 

linked to the WIDA standards: (1) social and instructional language, (2) the language of 

language arts, (3) the language of mathematics, (4) the language of science, and (5) the 

language of social studies. While the first standard expresses ELs’ ability to 

“communicate for social and instructional purposes” in the academic environment, the 

remaining standards are related to ELs’ competence to “communicate information, ideas, 

and concepts necessary for academic success” in each of the corresponding subject area 

(WIDA Consortium, 2012, p. 4). Each ACCESS test item measures ELs’ ability to use 

English for communication in relation one of the standards. As can be realized from the 
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standards, the test underscores academic English and communication (Bauman et al., 

2007; WIDA Consortium, 2014).  

With the belief that authentic contexts increase learning opportunities (WIDA 

Consortium, 2012)., a thematic approach is undertaken when writing test items (Fox & 

Fairbairn, 2011). In other words, items and tasks are written around different themes in 

relation to each standard, which are also aligned with standards of other content areas 

(WIDA, 2012). Some example themes that are illustrated by WIDA Consortium (2007, 

2012) include classroom activities, assignments, instructions, research, school life and 

behavior for social instructional language; narration, main ideas, literature, peer editing, 

biographies for language of arts; decimals, lines, fractions, algebra, data interpretation 

for math; ecosystems, climate, solar system, life cycles for science; globalization, maps, 

agriculture, democracy, maps, government for social studies. It must be highlighted that 

the purpose of ACCESS is not to measure the ELs’ knowledge with respect to these 

topics (Bauman et al., 2007). Themes just provide a context to realize language 

objectives. The focus is on an EL’s knowledge of language and their language use. 

In the K-12 context, research indicates that English language learning is assumed 

to be a process that spans over multiple years and language use to be affected by age and 

maturity (WIDA Consortium, 2014). ELs enter the school system with varying levels of 

English proficiency. Grade level does not correspond to English proficiency. Put 

differently, an EL in higher grade levels can still have lower English proficiency. 

Therefore, for every grade cluster, tests have to cover a wide range of proficiency levels. 

The same test cannot be used for different grade levels because of varying degrees of 
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maturity, and content requisites. Given this assumption, separate test forms are developed 

for specific grade clusters. There are six different clusters (i.e., vertical dimension): 

Kindergarten, Grade 1, Grades 2-3, Grades 4-5, Grades 6-8, and Grades 9-12. In addition, 

forms in each grade cluster are broken down into tiers which differ with respect to their 

difficulty (i.e., beginning: A, intermediate: B, advanced: C) (WIDA Consortium, 2019). 

The purpose of the tiered system is to give ELs a better testing experience by delivering 

them a form that is more appropriate for their level. Tier decisions for the paper tests are 

made by educators and benchmark tests if available (e.g., WIDA Model).  

In order to describe an EL’s performance on the test, a scale score and a 

proficiency level is reported for each domain. These domain scores are combined with 

different weights to report several composite scores (e.g., overall, literacy, oral, 

comprehension scores). Item difficulty is taken into consideration in estimating scale 

scores and scales differ across domains. Proficiency levels, whether domain or 

composite, are estimated using scale scores. There are 6 proficiency levels (i.e., Entering, 

Beginning, Developing, Expanding, Bridging and Reaching) associated with different 

descriptors at each level. The descriptions relate to three dimensions: vocabulary use as 

the word dimension, language forms and convention as the sentence dimension, and 

linguistic complexity as the discourse dimension (WIDA Consortium, 2012). Proficiency 

level scale score correspondence varies across domains as well as grades because the 

language ELs are exposed to and are required to produce are not the same across grades. 

Proficiency levels allow connecting test performance with performance definition of the 
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standards and can-do descriptors. For more information about the scores, the reader is 

recommended to see WIDA score guide (WIDA Consortium, 2020). 

ACCESS shows complex design features (Fox & Fairbairn, 2011). It embeds 

multiple levels (e.g., grades, clusters) and involves various dimensions (e.g., domains, 

standards, language functions). Overall, the ACCESS system has been documented to 

have good psychometric properties (Bauman, 2007; Bunch, 2011; Fox & Fairbairn, 

2011). In addition, the quality of the system is assured through rigorous validity studies, 

and continuous test reviews (Wolf et al., 2008). 

Test Form Used in the Study 

 

As stated above, this study focused on ACCESS reading domain. Because test 

items vary in each grade cluster and tier (i.e., form), one cluster and one tier were chosen 

for the manageability of the study because even test forms targeting the same level might 

differ with respect to the underlying skills they measure (Lee & Sawaki 2009). 

This study utilized Grade 6-8, tier C form. A middle grade cluster was chosen as 

ELs are exposed to more elaborate language that might present richer attributes and 

attribute interactions at this level. For instance, test items in Grade 1 tend to measure 

more picture-word associations or would demand processing a few sentences as students 

are just developing their literacy skills. Furthermore, in middle grades, diagnostic 

feedback has more utility. ELs in the middle grades still have several more years of 

education in front of them and can benefit from diagnostic information unlike high school 

ELs who are closer to exiting the school system sooner. In addition, upper elementary 

grades have received less attention in reading and literacy research (Koda, 2007). A more 
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advanced tier was preferred for the study for similar reasons. According to WIDA 

Consortium (2019), tier A forms are designed for beginner ELs who have just joined the 

U.S. school system and have zero or very limited English background. Thus, the range of 

proficiency was potentially very narrow among these students. On the other hand, tiers B 

and C target ELs with developing or expanding proficiency. These ELs have been 

gaining language proficiency for some time yet, they might still lack some necessary 

skills to be deemed fully proficient. Therefore, proficiency variance was expected to be 

greater for the B and C forms, which is desired for a test to show better diagnostic 

capacity. 

The test form that was used for the study included 27 items. The test length was 

appropriate given de la Torre’s (2009) recommendation of minimum 15-20 items for the 

DCM analysis. There were also practice items preceding the actual questions. Practice 

items served to warm up students for the domain. They were not part of the scoring. Full 

practice sets for the reading or other domains are not available. The test developer would 

like to guard against teaching to the test by not releasing a full form (Fox & Fairbairn, 

2011). Given the confidentiality of the items and copyright issues, I was not able to 

present the actual items here. Sample reading items can be found on test developer’s 

website.  

A total of nine themes were included in the form. Three items were associated 

with each theme or topic. The length of the text ELs need to process differed for each 

item. Some items related to the same topic were based on a common longer reading text, 

commonly referred as testlets (Wainer & Kiely, 1987). These reading testlets were 
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roughly 210-270 words. Other items were tied to shorter, individual reading paragraphs 

ranging between 50 and 130 words. Paragraphs within the same theme were related but 

each item required processing the individual paragraph independently. With respect to the 

structure, texts included in this form were descriptive. They also included descriptions of 

a process or cycle or problem-solution relations. Graphical elements such as shapes, 

pictures accompanied the items. All items were in multiple choice format with four 

options. They required a single correct response and are scored dichotomously. Missing 

responses were coded as incorrect. 

 
Table 1. Types and Length of the Texts Used in the Study 
 
Item number Text type Length 
1-3 Instructional text 272 words 
4-6 Newspaper story 250 words 
7, 8, 9,10, 11, 12, 13, 14, 15, 16, 
17, 18, 19, 20, 21, 25, 26, 27 

Short content-related 
paragraphs 

50 – 130 words 

16-18 Manual 209 words 
22-24 Textbook excerpt 219 words 

 

 

Test-taker Sample 

 

The data for the study came from 2017-2018 administration of ACCESS Paper. A 

total of 23,944 Grade 6-8 ELs responded to the reading form C that was used for the 

analysis in the study. 2 students were removed from the analysis because they were 

reported to be in grades 4-5. Item responses of 23,942 ELs were used in the study. 42% 

of the ELs taking the test were enrolled in grade 6, 31% were enrolled in grade 7, and 

27% were enrolled in grade 8 by the time they took the test. 976 unique schools used the 

specific form in the study. It was surmised that not all of the schools using the paper form 
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were low socio-economic schools and delivered the paper format for this reason. 

Although state information was not included in the data set for confidentiality, it is 

known that some states like Florida administer only paper ACCESS to their ELs. So, the 

ELs were not necessarily low-performing students and variability was expected with 

respect to performance. 

 
Table 2. Demographic Characteristics of the Test-takers 
 
 Grade 6 Grade 7 Grade 8 Overall 
N 10,099 

(42%) 
7,425 
(31%) 

6,418 
(27%) 

23,942 

Gender     
Female 4,652 

(19.4%) 
3,383 
(14.1%) 

2,995 
(12.5%) 

11,031 
(46%) 

Male 5,413 
(22.6%) 

4,038 
(16.8%) 

3,417 
(14.3%) 

12,869 
(53.7%) 

Ethnicity      
Hispanic 8,074 

(33.7%) 
5,879 
(24.6%) 

5,127 
(21.4%) 

19,082 
(79.7%) 

African-
American 

1,261 
(5.3%) 

916 
(3.8%) 

762 
(3.2%) 

2,939 
(12.3%) 

Asian 394 
(1.6%) 

300 
(1.3%) 

240 
(1%) 

934 
(3.9%) 

Native American 482 
(2%) 

452 
(1.9%) 

451 
(1.9%) 

1,385 
(5.8%) 

 
 
Table 2 above summarizes the demographic characteristics of the ELs in each 

grade. It must be noted that gender percentages do not add up to 100% because this 

information was not reported for some students. In addition, some students might have 

belonged to multi-ethnic families and they selected more than one ethnicity 

characterization to describe themselves. Among all ELs taking the form C, 46% were 

female and 53.7% were male students. The ethnicity distribution shows that majority of 
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the ELs taking the form were Hispanic (i.e., 79.7%). African American ELs constituted 

the second biggest sub-group with 12.3%. All of these ELs were also participating in EL 

support programs. Except for newcomer students, all students were in these programs for 

more than a year, with an average time of 4 years. Few students reported that they were 

benefitting from these services more than 10 years which might be attributed to a 

miscoding issue.  

Procedures and Analyses 

 

Research Question 1 

 

The initial step in a DCM study is the specification of the attributes and 

developing a Q-matrix. The first research question thus pertained to attributes in the 

ACCESS reading domain, and the specific procedures to identify and code the attributes 

that are necessary to respond to each test item. As presented in Chapter 2 and mentioned 

by Rupp et al. (2010), various methods from task decomposition to eye-tracking are used 

when defining the attributes in an assessment. In this process, different sets of attributes 

or Q-matrices might emerge (Sawaki et al., 2009), especially in a retrofitting context. In 

this study, two sets of attributes and two Q-matrices were developed using different 

approaches. Because this is a retrofitting study and actual attributes are not known, it is 

judicious to define attributes in alternative ways in search of the most feasible solution to 

explain performance. The two matrices to be described next were compared based on the 

model fit indices (i.e., refer to procedures for the second research question). Because 

multiple models (i.e., 6) were considered in the study, the Q-matrix and model 
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combination that showed a better fit was adopted for the remaining analyses. This 

involved 12 comparisons (6 models for each Q-matrix). 

Development of the Standards-based Q-matrix 
 

Buck and Tatsuoka (1998) show that a variety of components including task 

features, knowledge components, skills, strategies, processes, or anything that might 

influence performance, can be represented as attributes.  According to Li and Suen 

(2013) test specifications, if available, can be used as a starting point for the Q-matrix 

development, as a practical and reasonable strategy (e.g., Chen & Chen, 2016; Xu & von 

Davier, 2008). In this respect, test standards can function in the same way. Test items 

were designed to measure the five standards described in the preceding section. These 

standards represent ability to use English in five areas (i.e., social-instructional, math, 

language of arts, science, and social sciences) and represented a dimension, or in other 

words an attribute in the study. However, standards are coarsely described, and they do 

not indicate what specific knowledge components or processes students apply when 

responding to an item. In addition to the standards, each reading item was developed to 

measure one of the three “key uses of language”: recount, explain, or argue. These key 

uses depict the processes ELs engage with in responding to items. For instance, an 

“argue” function is associated with identifying evidence or differentiating facts from 

opinions. Along with the standards, key uses of language were specified as attributes for 

a more nuanced explanation of test performance. Students are not likely to engage with 

an item by isolating use from the targeted standard (i.e., content area language). It is 

exactly the interaction of the standard and key language use that students have to consider 
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when attempting to respond to questions. Another reason to combine the standards and 

key uses was the structure of the Q-matrix. Each item was associated with one standard 

and one key use. To put it differently, using only standards or key uses would result in a 

simple structure. Although it is possible to implement DCMs to data with simple 

structure, it causes information loss (Rupp & Templin, 2011). According to Rupp and 

Templin, the model resembles a multidimensional factor analysis or IRT as 

“multidimensional continua are merely discretized” (p. 230-231). More complex 

structure also yields intriguing information such as interdependence of attributes given 

item responses. However, the authors argue that DCMs with simple structure may still be 

desired due to the classification mechanism. A simple structure may also be more 

appropriate (i.e., what seems to fit the data best) especially given how the test is 

constructed. 

The standard-item associations were readily available in the blueprints for the test 

form. Unfortunately, the key use-item relationships were not included in these blueprints 

or presented elsewhere for the form used in the study. For this reason, the researcher 

mapped each key use to the items. The grade and domain-specific definitions and 

examples of key uses (Table 3), as well as the item specifications were used in this 

process. More specifically, item specifications (i.e., blueprints) laid out model 

performance indicators, which describe the item/task features and language functions 

needed for the item. The researcher matched key uses to the items based on these 

descriptions. Item content was also reviewed to confirm the decisions, because in some 

cases the item itself did not align with the blueprint specification. The researcher also 
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documented the rationale for the coding of each item in detail. Because this was a 

subjective process to some degree, the researcher worked with two experts from the test 

developer team who were familiar with the standards and key uses to verify the matching. 

Researcher’s coding along with the rationale for key use choices, and detailed definition 

and examples of key uses were provided to the experts. They each indicated their 

agreement with key use-item associations, and provided short descriptions when they 

disagreed along with their choice. The researcher then reviewed all input and coded a key 

use for an item if at least two experts agreed on it.  

 
Table 3. Definitions of the Key Uses of Language (WIDA Consortium, 2016, pp. 2-9) 
 
Key Use Definition Reading Processes include: 
Recount To display knowledge or 

narrate experiences or event 
Identifying/sequencing topic sentences, 
main ideas, details, conclusions, 
summaries; matching details of content-
related topics to main ideas, summarizing 
text absent judgements, evaluating how a 
central event is introduced/elaborated 

Explain To clarify the “why or the 
“how” of ideas, actions, or 
phenomena 

Sequencing events based on cause and 
effect, highlighting evidence that points 
how systems function, sorting elements of 
genre, comparing and contrasting 
information, identifying factors that 
contribute to phenomena 

Argue To persuade by making 
claims supported by 
evidence 

Identifying/evaluating evidence to support 
analysis, classifying pros and cons of 
claims, developing a stance, distinguishing 
among facts, judgements, speculation 

 
 

In addition to reflecting what the test developer intends to measure, standards and 

key uses could be more easily interpreted by teachers due to their familiarity with these 

dimensions (i.e., tied to instructional design and materials). However, it was anticipated 
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this Q-matrix might pose certain estimation challenges (i.e., time intensive) due to having 

a large number of attributes (i.e., 5 standards + 3 key uses and a total of 8). Example 

processes in the key uses also demonstrated that it was possible to define more traditional 

reading attributes for the items (i.e., identifying main idea, inference). 

Development of the Expert-defined2 Q-matrix 
 

Exploring several competing Q-matrices can be informative although they 

represent different theoretical assumptions (Kunina-Habenicht et al., 2012). Jang (2009a) 

also recommends including different Q-matrices to evaluate the completeness of the Q-

matrix. Similarly, Kang et al. (2010) suggest comparing Q-matrices developed with 

different approaches. Reid et al. (2018) provide a standards-defined and expert-defined 

approaches to Q-matrix creation. An examination of the performance descriptions also 

supported the plausibility of creating another Q-matrix, by breaking down reading using 

conventional reading processes or subskills (see examples below). Yet, these skills were 

not prespecified or there was a list of attributes to work with. 

• Locate main ideas about behaviors (WIDA Consortium, 2012, p. 80) 

• Infer results of adhering or not adhering to behavioral expectations (WIDA 

Consortium, 2012, p. 80) 

• Draw conclusions about resources or agricultural products (WIDA Consortium, 

2012, p. 34) 

Postulating the attributes and identifying the Q-matrix demands input from 

domain experts that might include, teachers, researchers, test developers, or measurement 

 
2 The term is first used by Reid et al. (2018). 
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experts (Kunina-Habenicht et al., 2012; Madison & Bradshaw, 2015). For the sake of this 

study, a group of domain and measurement experts including experts from the test 

developer were convened. 

Subject Matter Experts. A team of seven experts contributed to the development 

of the second Q-matrix. Unlike the common trend of inclusion of mostly graduate 

students for accessibility reasons, this research also brought the test developer on board. 

Test developer involvement was particularly insightful due to their close acquaintance 

with the content of the test. Before describing the process, a brief background of each 

subject matter expert (SME) is provided.  

SME 1 is a professor of educational measurement. Serving on advisory boards of 

various testing programs, the SME has considerable experience in test design and 

development. The SME has also managed the development of an ELP test for 

accountability purposes and is quite knowledgeable about the context of the study and 

population. SME 2 and 3 are graduate students specializing in language testing. Both 

SMEs have undergraduate and/or graduate degrees in linguistics/applied linguistics. The 

two SMEs are also quite familiar with the DCM methodology and have experienced 

teaching English as a foreign language (< 4 years).  

The rest of the SMEs (SME 4 - 7) are from the test developer team who are 

responsible for design, development, review (including content), and validation of the 

ACCESS system. They have been previously engaged in the development of other high 

stakes ELP tests as well. All of the SMEs from the test developer also have a graduate 

degree in a related field such as English, applied linguistics, and language testing. They 



 

 85 

have had several years of experience in teaching English as a foreign language. One of 

them also has a sound grasp of DCMs and the Q-matrix development. 

 
Table 4. Background Characteristics of the SMEs 
 
 SME 

1 
SME 

2 
SME 

3 
SME 

4 
SME 

5 
SME 

6 
SME 

7 
Native speaker  Ö  Ö  Ö Ö 
Degree in Applied 
Linguistics or Language 
Testing 

Ö Ö Ö Ö Ö Ö  

Teaching Experience Ö Ö Ö Ö Ö Ö Ö 
Test Development 
Experience 

Ö   Ö  Ö Ö 

Familiarity with DCMs  Ö Ö  Ö   
Familiarity with test 
content 

   Ö Ö Ö Ö 

 
 

The Process. Content analysis can be used to draft the initial list of attributes 

(e.g., Sawaki et al., 2009; Jang et al., 2013), and it requires an analysis of the content of 

the items and decomposing them in order to extract the skills and process. Specifically, 

experts solve items and specify the skills each item is associated with by answering “what 

skills and/or processes are required in order for a learner to answer this question 

correctly?” (Sawaki et al., 2009, p. 196). 

Three of the SMEs (i.e., SME 1, 2, and 3) were engaged with the task analysis to 

establish attributes for the second Q-matrix. This process involved both individual and 

group work. In this process SME 3, who was the researcher in this study, conducted a 

literature review of common L2 reading attributes. Several theoretical reading 

taxonomies, empirical studies about reading skills, including DCM studies, were 

explored to exemplify common reading skills (See Appendix A, C). Th example list 
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served as a helpful document in the item content analysis process. In an introductory 

meeting, SME 3 explained the purpose of the study, introduced the attribute and Q-matrix 

concepts, as well as the assessment to the other two SMEs. They reviewed the example 

skills SME 3 obtained from the literature and test materials. SMEs were reminded that, 

the example skills were meant to give an idea about the possible reading attributes; 

however, other attributes might emerge based on the task analysis. SMEs also discussed 

the steps in the development process. Then, three SMEs worked on example items 

together to start deriving the attributes defining items. The purpose here was to ensure 

everybody shares a common understanding of the task. SMEs completed the analysis of 

the actual test items individually. The group met again to review the attributes each SME 

elicited. They went over each item to discuss attributes they defined and shared their 

interpretations of the attributes. A consensus among SMEs was sought to finalize the 

attribute list. Following this meeting SME 3 wrote definitions of each attribute and 

coding considerations based on their discussion and shared it with other SMEs. Each 

SME separately coded each item again for each of the attributes. A final meeting was 

held to discuss if revisions for the attributes, definitions, or coding considerations were 

necessary. SMEs compared the Q-matrices and discussed any discrepancies, along with 

their rationale. It was decided that one of the attributes could be broken down to ensure 

more specificity. Other attributes were considered sufficient. There was general 

consensus on most item-attribute associations. Because a new attribute was added, the 

group agreed to match the items with the attributes for one last time. 
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After the initial conceptualization of attributes were finalized, SMEs from the test 

developer team were involved in the process to code the Q-matrix. There was a total of 7 

SMEs for the Q-matrix coding. All SMEs were provided with descriptions, coding 

examples, and other materials (e.g., test items, an attribute list, item and distractor 

analysis). SMEs were also asked to indicate the attributes that they believe were missing 

in the list that might be associated with items. They were also requested to provide their 

rationale for the choice of specific attributes for each item. This information was sought 

to understand their matching and resolve potential disagreement among experts. In 

addition, all SMEs rated their confidence for their attribute coding for each item on a 

scale from 1 to 5 (i.e., 1 indicating not confident and 5 indicating very confident). The 

researcher verified with each SME that the task was clear. Communication with SMEs 

was conducted via email.  

Once the researcher received all the Q-matrices, they were compared to build the 

final Q-matrix. An attribute was coded for the item if it was selected by 4 or more SMEs 

(i.e., among 7 SMEs). There was not substantial disagreement and experts’ and 

descriptions for the coding was adequate to make corrections. 

Empirical Validation. The expert developed Q-matrix was empirically validated 

using de la Torre and Chiu’s (2016) the general discrimination index (GDI). To reiterate, 

in this method the attribute combination that yields the highest difference in the correct 

response probabilities of masters and non-masters is defined to be the correct q-vector for 

a specific item. The proportion of variance is estimated for each combination of the 

attributes and compared against a criterion value. When multiple attribute combinations 
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yield high variance, the simplest q-vector is chosen. Ma & de la Torre (2020) 

incorporated the method to the GDINA package which was used for the purposes of the 

validation in this study. Pure statistical revision is not encouraged because changes might 

be due to chance (Ravand, 2016). Thorough understanding of attributes and items is 

necessary (Jang, 2009a). Substantive knowledge should be incorporated to determine if 

the recommendations suggested by the empirical method are sound. Experts’ coding, 

their written rationale and item specifications (i.e., blueprint) were relied on to make the 

final decisions about the attributes in this study. Furthermore, in order to explore whether 

the modifications are due to chance, the sample was divided into two as training sample 

and validation sample. The empirical validation was conducted with the training sample 

and it was explored whether the modifications hold for the validation sample (refer to the 

procedures for research question 2). 

Research Question 2 

 The second research question was concerned with the identification of the best 

fitting DCM (a general vs. specific model) and Q-matrix for the data. Because an 

established theory for model selection (von Davier, 2014) is currently missing for 

language constructs (e.g., Alderson, 2005, 2007; Alderson et al., 2015), a set of different 

models were included in the study. The review of DCM comparison studies for L2 

reading supported this decision. The evaluation of models presented mixed findings (i.e., 

Chapter 2, comparable performance for compensatory and non-compensatory models). 

The approach to incorporate various models is also a common practice and recommended 

in the retrofitting framework. A general model, the LCDM, along with five restricted 
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models (i.e., the DINA, DINO, R-RUM3, C-RUM, HO-DINA) were fit to the data using 

the CDM package (George et al., 2016) in R software (R Core Team, 2014). Especially 

the LCDM might be appropriate given inconclusive findings about how attributes affect 

performance as general models do not impose a priori rules for attribute dependencies 

with relationship to the probability of correct response. Response processes are 

complicated, more so for complex constructs such as reading (Alderson, 2000). Two 

attributes might contribute differently to performance for two different items (Ma et al., 

2016). Yet, considering the parsimony and simplicity of interpretations (Lee & Luna-

Bazaldua, 2019; Ma et al., 2016), the restricted models were involved. These models 

were selected from the most commonly implemented DCMs in general and for language 

assessments. 

Because multiple models and samples (i.e., training and validation) were 

considered, relative and absolute fit indices were combined to evaluate model fit and to 

identify a suitable DCM. The combination of absolute and relative fit indices was also 

congruent with the literature (e.g., Kunina-Habenicht et al., 2012; Li et al., 2015; Liu et 

al., 2018 etc.). The previous research (e.g., Chen et al., 2013; Lei & Li, 2016) showed 

their performance might vary across studies. Hence, it was more reasonable to include 

multiple indices from both groups of indices rather than relying on one index. These 

included the most widely used indices in previous studies.  

With respect to relative fit AIC and BIC were reported for each model. A smaller 

value indicates the best fitting model for both AIC and BIC. Additionally, because the 

 
3 It is the reduced non-compensatory RUM. 
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restricted models are nested models within the LCDM, likelihood ratio tests were used to 

evaluate whether more parsimonious restricted models fit significantly better than the 

saturated LCDM (e.g., Liu et al., 2018). The likelihood ratio test can be expressed as the 

comparison between the likelihood (-2LL) of the two models. Because it has an 

approximate χ2 distribution with k degrees of freedom (i.e., difference in the number of 

model parameters), the difference was tested for significance. A significant test result 

shows a better fit for the saturated model. 

Although absolute fit indices are recommended for misidentification in Q-

matrices comparing them across models can contribute to model selection decisions (e.g., 

Kunina-Habenicht et al., 2012; Li et al., 2016). They were also needed for the study to 

compare fit of the training and validation samples. Six absolute fit indices presented in 

Table 5 were used in the study. In addition to being common indices, previous studies 

reported an acceptable to good performance for the selected indices for the study (Lei & 

Li, 2016; Li et al., 2016). Generally, as these indices approach zero, the fit improves 

(Kunina-Habenicht et al., 2012; Ravand, 2016). Some researchers also report or use cut-

offs (Table 5) for acceptable fit that were also adopted for the study. 

In addition, the following criteria (Rupp et al., 2010, p. 165) were also referred to 

for the item-level model selection because a general model was included in the study. 

• DINA: zero main effects, positive interactions 

• NC-RUM: positive main effects, positive interactions 

• DINO: positive main effects, negative interactions 

• C-RUM: positive main effects, zero interactions 
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Table 5. Absolute Fit Indices and the Criteria  
 
Index Explanation Cut-off 
Average RMSEA 
(von Davier, 
2005) 

The root mean square error of 
approximation that is the comparison of 
observed and estimated response 
probabilities (Kunina-Habenicht et al., 
2012). The average RMSEA for each 
model is reported for model evaluation 
purposes. 

< 0.05 (Kunina-
Habenicht et al., 2012; 
Lei & Li, 2016; Ravand, 
2016) 
 

MADcor 
(Dibello et al., 
2007; Henson et 
al., 2009) 

The mean absolute difference of 
correlations that is the comparison of 
observed and estimated item correlations 
across items pairs 

< 0.05 (Dibello et al., 
2007; Jang, 2009b; Li et 
al., 2016; Liu et al., 
2018, Ravand, 2016; 
Ravand & Robitzsch, 
2018)  
=<0.06 Henson et al., 
2009; Lei & Li, 2016) 

MADres 
(McDonald & 
Mok, 1995) 

The mean absolute difference of item 
residual covariances 
 

<0.05 (Ravand, 2016; 
Lei & Li, 2016) 

SRMSR, 
(Maydeu-
Olivares, 2013, 
Maydeu-Olivares 
& Joe, 2014) 

The standardized root mean square 
residuals that represents the comparison 
between observed and estimated 
correlations. More precisely it is the 
squared root of the mean of the squared 
difference between observed and 
expected correlations across item pairs 

< 0.05 (Maydeu-
Olivares, 2013; Maydeu-
Olivares & Joe, 2014; 
Liu et al., 2018; Ravand 
& Robitzsch, 2018). 

MADQ3 
(Yen, 1984) 

Mean absolute difference of Q3 values. 
Q3 shows the Pearson correlation of the 
item residuals (Christensen et al., 2017) 

<0.05 (Liu et al., 2018; 
Lei & Li, 2016; Ravand, 
2016; Ravand & 
Robitzsch, 2018) 

!"2 (Chen & 
Thissen, 1997) 

A χ2 test based on the comparison 
between the observed and expected 
response frequencies across item pairs. 
The maximum χ2  of all item pairs is 
reported. If the maximum difference is 
large and significant, dependency is 
present. 

Non-significant (Rupp et 
al., 2010) 

Note. Some authors (Li et al. (2016); Lei & Li, 2016) suggest definite criteria are not available. The smaller 
the difference between what is observed in the data and what is estimated by the model, the better the fit is. 
The cut-off values denote what the studies used, suggested or found based on their analysis of data. 
 
 

For the selection process, after the Expert-defined Q-matrix was validated with 

the calibration sample using the GDI, six models were fit and compared using both group 
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of indices. Treating the best fitting model and the validated Q-matrix as the final model 

and Q-matrix, they were applied to the validation sample. The fit between the training 

and validation samples were compared using absolute fit indices. The validation sample 

was expected to fit reasonably well as the training sample to ensure the modifications 

based on the empirical validation were not capitalizing on chance, or the model was not 

overfitting the data. Because the empirical validation was not undertaken for the 

Standards-based Q-matrix, six models were fit only to the validation sample. The best 

fitting model for the Standards-based Q-matrix was also selected based on absolute and 

relative fit indices. As a final step, the final model for the Standards-based Q-matrix was 

compared against the final model for the Expert-defined Q-matrix using all indices to 

select the Q-matrix for the study. 

Research Question 3 

 

The final research question was concerned with the viability of diagnostic 

information after the best fitting DCM was identified. Under this research question, the 

characteristics of item, person, and attribute estimates were scrutinized. The goal here 

was to understand whether the items presented diagnostic information, and whether 

student classifications and attribute patterns were acceptable.  

With respect to the items, the probabilities of correctly responding to each item 

were examined closely. Specifically, it was expected that the correct response probability 

is low for students who do not possess any of the attributes specified for an item. In other 

words, it indicates that students do not guess but master attributes to answer a specific 

question. For high quality items, main effects and/or interactions should be high as they 
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indicate how much they relate to the items, or indicate potential problems such as misfit 

or misspecification (Templin & Hoffman, 2013). Another important measure for high 

diagnostic capacity items that was used in the study was discrimination power. Rupp et 

al. (2010) define discrimination in the DCM context as the degree to which items 

distinguish between two examinees groups (1) those who know more attributes and (2) 

those who know fewer attributes. They broadly represent discrimination index as T# =

8;< − 8;= where the 8;< is the correct response probability for the first group who has 

higher ability, and 8;= is the correct response probability the second group who has lower 

ability. The authors suggest that this global index can be applied by taking the difference 

in the correct response probabilities of examinees who mastered all required attributes 

(8;<) and who mastered none of the required attributes (8;=). Thus, the index simply 

denotes the deviance between correct responsibility of the two groups. The authors note 

T# is large for items with high discriminating power. However, this is a crude measure. 

The authors also acknowledge that the index overlooks other categories and only 

considers two groups. However, it can still be useful and provides “a general benchmark” 

for item quality (Rupp et al., 2010, p. 282). Therefore, it was adopted for the study. In 

addition to the correct response probabilities and discrimination, item fit was evaluated 

based on RMSEA which is an item specific fit measure. To reiterate, RMSEA values 

provide a comparison of the predicted and observed probabilities (Kunina-Habenicht et 

al., 2012). Generally, items with an RMSEA value lower than 0.05 is assumed to show a 

good fit (Table 5). The RMSEA for each item were presented for fit information. Using 

this criterion, it was explored whether or not there were particular misfitting items.  
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In addition, diagnostic capacity is desired, person estimates such as classifications 

(i.e., latent classes) and attribute estimates should demonstrate certain characteristics to 

determine interpretations based on DCMs are acceptable. Several estimates or measures 

were included for this purpose. Class probabilities which denote that the probability of 

observing a specific class in the population were reported. In addition to this, the 

proportion of ELs in each latent class were estimated. Class probability and proportions 

should show some variability for a successful DCM application. In other words, students 

should not be clumped together in certain classes. For instance, if a majority of the 

students are assigned to two classes where none of the attributes vs. all of the attributes 

are mastered respectively, it can be inferred that attributes are correlated, and the test 

follows a unidimensional structure (Lee & Sawaki, 2009). Therefore, rather than 

decomposing reading to smaller attributes for diagnostic feedback, it would be more 

reasonable to represent it as a broad construct. Moreover, student classifications were 

explored for consistency and accuracy to provide useful and effective provisions to the 

students. Cui et al. (2012) and Wang et al. (2015) developed consistency and accuracy 

indices for the DCM context that were used in the study. Classification consistency index 

(Pc) denotes the probability of consistent classification to a latent class for a student from 

a random draw if the same or parallel test is administered again. Classification accuracy 

index (Pa), on the other hand, expresses the probability of accurate classification to the 

correct latent class for a student from a random draw. Wang et al. applied these notions to 

attribute level. These indices were helpful when understanding whether classifications 

were acceptable or not. Cui et al. recommend evaluating the fit of the model before using 
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the measures. Additionally, based on simulations they observed that indices get higher 

with items with a high discrimination power, attributes with more dependencies, and a 

smaller number of attributes. Cui et al. also suggest 0.7-0.8 for acceptable consistency 

and accuracy (as cited in Ravand, 2016; Ravand & Robitzsch, 2018). Both of these 

measures were obtained from CDM package. 

In relation to the attributes, average probabilities of mastering each attribute (i.e., 

difficulty), the proportions of students mastering each attribute, and correlations between 

attributes were estimated and reported. Attribute difficulties reveal important information 

about the characteristics of the population. Attribute mastery probabilities were 

scrutinized whether they were reasonable (Dibello et al., 2007). For instance, the 

probability of attaining inference type skills was expected to be lower than the probability 

of understanding the main idea due to the complexity of the former. In order to estimate 

the proportion of students who mastered an attribute, certain cuts are needed. Rupp et al. 

(2010) suggest probabilities around 0.5 are not certain, meaning information might not be 

adequate. A probability higher than 0.5, on the other hand, will be an indication of the 

mastery. Jang (2009b) applied 0.4 as the upper bound for non-mastery and 0.6 as the 

lower bound for the mastery. Thus, for students with a probability range of 0.4-0.6 (i.e., 

uncertainty region), attribute status cannot be determined. This criterion was applied in 

the study to explore whether the proportion of students in the uncertainty region was 

small, which might hint that the test was useful to determine mastery status of the 

majority of the students (e.g., Jang, 2009b). The distribution of individual attributes was 

also checked to confirm whether the majority of the students could be successfully 
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classified (e.g., Lee & Sawaki, 2009). Furthermore, correlations between attributes were 

analyzed to understand whether it was reasonable to break down the reading construct to 

the attributes (Templin & Hoffman, 2013). Although some level of correlation was 

expected between the attributes, if the attribute correlations are fairly high, it would not 

be practical to represent reading as a multidimensional construct. According to Kunina-

Habenicht et al. (2012), correlations between subscores and subdomains in educational 

tests range between 0.5 and 0.8. Sessoms and Henson (2018) imply tetrachoric 

correlations among attributes exceeding 0.9 are high and an indication of non-distinctive 

attributes. 

Finally, the viability of DCM was revealed by comparing how results obtained 

from DCM related to results obtained under the test’s original measurement framework 

(i.e., IRT) (e.g., Liu et al., 2018). It was expected that student classifications from both 

methodologies were congruent with each other. If DCM classifications diverge to a great 

degree, it would not be meaningful to provide information obtained from DCM for 

instructional use. In particular, the dataset included ELs’ proficiency levels estimated 

under Rasch model. The distribution of proficiency levels across masters and non-masters 

of each attribute, as well as for each latent class, were reported for this purpose. Also, 

ELs’ ability under the original framework (J) was estimated. For each latent class and 

individual attributes, J distribution was reported for the relationship between 

classes/mastery and ability under the unidimensional model. It was hypothesized that an 

EL’s proficiency level and J was higher for masters than non-masters and their ability 

increased as students master more attributes.
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CHAPTER IV 
 

RESULTS 
 
 

 Given the continuous interest in diagnostic information and the use of DCMs for 

large-scale assessments to address these demands (Chapter 1), this study undertook a 

DCM methodology for a K-12 language assessment for low-stakes diagnostic feedback. 

The study aimed to respond to the following research questions: 

(1) What are key underlying attributes represented in the ACCESS reading 

domain in middle grades for more advanced ELs? 

(2) What DCM fits the data better?  

a. Does a general or specific restricted model better represent all 

items in the test?  

b. Does a Standard-based or an Expert-defined Q-matrix show better 

fit? 

(3) To what extent is it feasible to obtain diagnostic information using DCM?  

a. What is the diagnostic capacity of the test items?  

b. To what extent can students be appropriately classified using the 

model? 

In Chapter 2 different phases of DCM methodology from, Q-matrix development, 

model selection and evaluation were reviewed. The study incorporated two Q-matrices 

(i.e., based on the standards vs. expert input), several models (e.g., LCDM, DINA, DINO,
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R-RUM, C-RUM, HO-DINA), and validation strategies for Q-matrix and model 

selection. The feasibility of the application was evaluated form several aspects such as 

accuracy and consistency of classes and attribute mastery as well as properties of the 

attributes and the items. This chapter focuses on the findings from the DCM 

implementation. It is divided into four main sections. It starts with a summary of classical 

item and test analysis. The second section elaborates on the two Q-matrices employed in 

the study. The third section presents comparisons among several models and the two Q-

matrices for the final model and Q-matrix selection. The fourth section evaluates the final 

model for the viability of using the DCM by describing item parameter estimates, item 

discrimination index, class probabilities and proportions, attribute correlations, accuracy 

and consistency of the profile, and individual attributes. The chapter ends by discussing 

the relationship of these findings to the test’s original framework. 

Classical Item and Test Statistics 

 

In order to establish a basic understanding of the test and the items, overall 

performance based on raw scores, as well as CTT statistics, were examined first. The 

mean reading score was 13.9 out of 27 points with a standard deviation of 4.83. Raw 

scores were normally distributed and the majority of the ELs showed an average 

performance (Histogram in Appendix F, Figure 1). Cronbach’s alpha that is the internal 

consistency index for the test (Crocker & Algina, 2008) was 0.77. Alpha shows the 

degree to which items are interrelated, which is required for unidimensionality (Schmitt, 

1996). The fact that items were not perfectly interrelated was desired for the study as the 

objective was to divide the reading construct into several attributes.  
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Table 6. Test Descriptive Statistics and Reliability 
 

N Mean sd Min. Max. Skew. Kurt. Alpha SEM 
23, 942 13.854 4.834 0 27 0.169 2.491 0.768 2.33 

Note. sd = standard deviation, Skew = Skewness, Kurt = Kurtosis, Alpha = Cronbach’s Alpha, SEM = 
Standard Error of Measurement 
 

 
Table 7. Summary of the CTT Item Statistics  
 
 Mean sd Median Minimum Maximum 

p-value 0.513 0.160 0.529 0.274 0.749 
point biseral 0.289 0.082 0.274 0.111 0.427 

 
 

With respect to the item statistics, p-value (item difficulty index) and point 

biserial (item discrimination index) were computed and a distractor analysis was 

conducted using the CTT package (Willse, 2018). The summary of the item statistics is 

presented in Table 7 and the full statistics can be found in Appendix F (Table 1). The 

average difficulty of the items was 0.51. None of the items were too easy as the 

maximum p-value was 0.75 (Item 12). Seven items (9, 15, 17, 18, 23, 26, and 27) were 

relatively hard as 35% or fewer ELs correctly responded to these items. Items 17 and 18 

were the hardest items of the test with a p-value of 0.27 and 0.28, respectively. The point 

biserial value of the items ranged from 0.11 to 0.43, with an average of 0.29. Bachman 

(2004) considers point biserial of 0.30 and above, while Henning (1987) is less 

conservative and recommends at least 0.25 for well discriminating items on a language 

test. In this respect, there were several poor discriminating items such as 9, 10, and 27 

with point biserial values less than 0.20. 

The difficulty of the items was also examined across the five standards as shown 

in Figure 2. To reiterate, standards represent the ability to use English in social 
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instructional settings and in relation four content areas: language of arts, math, science 

and social studies. Items related with social instructional language were easier than 

others. The spread of the items was wider for the other four subject areas, and they 

included both easy and hard items. Items covering social studies and math were relatively 

harder, on average, compared to other areas.  

 
Figure 2. Item Difficulty across the Five Standards  
 

 
Note. LoLA= Language related with language arts, LoMA= Language related with math, LoSC= Language 
related with science, LoSI= Social instructional language, LoSS= Language related with social studies. Red 
dots represent the means. 
 
 

Attributes and Q-matrices 

 

The Standards-based Q-Matrix 

 

Two alternative Q-matrices were developed for this study in search of an optimal 

Q-matrix fitting the data. The first Q-matrix, referred to as the Standard-based Q-matrix, 

consisted of two broad dimensions. The standards and key uses of language that the test 

was built to measure were treated as the attributes. The standard for each question that 

pertains one of the five areas listed above were extracted from the test blueprints and 
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coded in the Q-matrix. Because such linking was missing for the key uses, the researcher 

(SME 3) mapped the key uses to items which was then reviewed by the two SMEs (SME 

4 & 6) from the test developer team. In brief, the key uses were operationalized as: 

• Recount: identifying, retelling, or summarizing details  

• Explain: understanding processes/cycles, relationship between concepts/ideas, 

consequences 

• Argue: understanding judgements, hypotheses, claims, or evidence 

The ratings of all three SMEs are presented in Table 8. As evident from the table, 

there was almost perfect agreement among SMEs. There were only differences with 

respect to four items. SME 4 and SME 3 associated item 7 and item 16 with Explain. 

Because the other two raters agreed that the item was related with Recount, the final 

coding for these items was Recount. SME 6 specified additional attributes for two items. 

The rater mentioned some students may also benefit from Recount and Argue in 

answering items 10 and 26, respectively. Other SMEs mapped a single key use to items, 

which was maintained for this study. The two SMEs from the test developer team also 

commented that the researcher’s key use-item mapping was reasonable and justifiable. 

Therefore, the Standard-based Q-matrix was finalized as shown in Table 9.  

In the final matrix, except for the Social Instructional Language, all other 

attributes in the standards dimension were associated with six items. Only the three items 

were related with the Social Instructional Language in the form. For the key use 

dimension, Recount was measured 10 times, Explain 13 times, and Argue only 4 times. 

Each attribute from the standards dimension were measured together with an attribute 



 

 102 

from the key use dimension except for Recount-Science, Explain-Social and Instructional 

Language, Argue-Math. This was expected as Argument is about opinions, while math 

items were concerned with reading passages about math concepts. Similarly, Science 

items were about reading passages related to cycles or hypotheses that aligned better with 

either the Explain or Argue attributes. 

 
Table 8. The Mapping of the Key Uses to Test Items  
 

 

Note. Bold indicates the rating was different than other SMEs. An example for the complete mapping for 
the Standards-based matrix could not be provided in the study because it included actual descriptions from 
the blueprints, which are confidential information. 

Items SME 3 SME 4 SME 6 
1 Recount Recount Recount 
2 Recount Recount Recount 
3 Argue Argue Argue 
4 Recount Recount Recount 
5 Recount Recount Recount 
6 Argue Argue Argue 
7 Recount Explain Recount 
8 Explain Explain Explain 
9 Recount Recount Recount 
10 Explain Explain Explain, Recount 
11 Explain Explain Explain 
12 Explain Explain Explain 
13 Recount Recount Recount 
14 Explain Explain Explain 
15 Argue Argue Argue 
16 Explain Recount Recount 
17 Explain Explain Explain 
18 Explain Explain Explain 
19 Recount Recount Recount 
20 Explain Explain Explain 
21 Explain Explain Explain 
22 Explain Explain Explain 
23 Explain Explain Explain 
24 Argue Argue Argue 
25 Recount Recount Recount 
26 Explain Explain Explain, Argue 
27 Explain Explain Explain 
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Table 9. The Final Q-matrix Based on the Standards and Key Uses 
 

 Attributes 

Items LoSI LoMA LoLA LoSC LoSS Recount Explain Argue 
1 1 0 0 0 0 1 0 0 
2 1 0 0 0 0 1 0 0 
3 1 0 0 0 0 0 0 1 
4 0 0 1 0 0 1 0 0 
5 0 0 1 0 0 1 0 0 
6 0 0 1 0 0 0 0 1 
7 0 1 0 0 0 1 0 0 
8 0 1 0 0 0 0 1 0 
9 0 1 0 0 0 1 0 0 
10 0 0 0 1 0 0 1 0 
11 0 0 0 1 0 0 1 0 
12 0 0 0 1 0 0 1 0 
13 0 0 0 0 1 1 0 0 
14 0 0 0 0 1 0 1 0 
15 0 0 0 0 1 0 0 1 
16 0 0 1 0 0 1 0 0 
17 0 0 1 0 0 0 1 0 
18 0 0 1 0 0 0 1 0 
19 0 1 0 0 0 1 0 0 
20 0 1 0 0 0 0 1 0 
21 0 1 0 0 0 0 1 0 
22 0 0 0 1 0 0 1 0 
23 0 0 0 1 0 0 1 0 
24 0 0 0 1 0 0 0 1 
25 0 0 0 0 1 1 0 0 
26 0 0 0 0 1 0 1 0 
27 0 0 0 0 1 0 1 0 

Note. LoSI= Social instructional language, LoMA= Language related with math, LoLA= Language related 
with language arts, LoSC= Language related with science, LoSS= Language related with social studies 

 

 

Table 10. The Number of Items per Attribute in the Standards-based Q-matrix 
 
  Standards Dimension  
  LoSI LoMA LoLA LoSC LoSS Total 
Key Use 
Dimension 

Recount 2 3 3 - 2 10 
Explain - 3 2 5 3 13 
Argue 1 - 1 1 1 4 

 Total 3 6 6 6 6  
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The Expert-defined Q-Matrix 

 

The Expert-defined Q-matrix was developed by two groups of SMEs. Three 

SMEs (SME 1, 2, & 3) established the attributes necessary to complete the items on the 

test, after which all SMEs, including the four working for the test developer, matched 

attributes to items. After reviewing the list of common L2 reading attributes and content 

of the items, there was a consensus that the items on the test aligned with the attributes in 

other DCM studies for reading construct. A total of seven attributes emerged (Table 11). 

 
Table 11. Attributes in the Expert-defined Q-matrix 
 
Attribute  Explanation4 
Vocabulary 
(VOC) 

Understanding the key words/phrases in the text dependent or 
independent of the context. The attribute also entails recognition and 
knowledge of synonyms, antonyms, and the association between 
similar words in the text and answer choices (i.e., paraphrase). 

Cultural and 
Conceptual 
References 
(CUL) 
 

Understanding the idea of concept. The attribute is closely related 
with the vocabulary attribute, but it requires knowledge of the 
“extended meanings”. Just knowing the meaning of the words might 
not be adequate and it might require understanding at a conceptual 
level. Some concepts might be rooted in the culture and may be 
unfamiliar to a student from a different culture (e.g., community 
service, leadership training) (Bachman, 1990, p.97). 

Grammar 
(GRM) 

Understanding and processing complex sentences (e.g., relative 
clauses), and compound clauses including numerous grammatical and 
cohesive devices such as conjunctions. The attribute involves 
recognizing pronoun references. 

Explicit 
Information and 
Details  
(EXP) 

Deriving and comprehending explicit important information and 
details from the text. The attribute involves scanning the text and 
finding the details, and/or matching (i.e., answer choice and sentence 
in the text). 

Inference  
(INF) 

Comprehending information by making inferences. The information 
is implicit or overtly stated in the text. For example, the attribute 
requires connecting information in the text with an example situation. 

 
4 When describing the attributes, the definitions in Jang (2009a), Li and Suen (2013), and Sawaki et al. 
(2009) were benefited due to the similarity of the attributes. 
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Summary and 
Synthesis 
(SUM) 

Connecting and integrating information across adjacent sentences or 
parts of the text (e.g., paragraphs, charts). The attribute entails 
summarizing, understanding the gist of the paragraphs, or 
interpreting rhetorical relations (e.g., problem-solution). 

Sequences and 
Processes  
(SEQ) 

Understanding sequential language, steps or order in a process or 
cycle. Information presented includes description of a sequence/steps 
and/or sequential language (e.g., first, second, eventually) that needs 
to be processed for a correct response. 

 
 
Attribute l, Vocabulary, is related with understanding the key words and phrases, 

as well as recognizing synonyms and paraphrase. Because vocabulary knowledge might 

superficially apply to most items on a language test, EL’s grade and proficiency level 

would determine selecting the attribute for an item. The attribute was intended 

specifically for items requiring knowledge of difficult, content-specific, technical 

vocabulary. Attribute 2, Cultural and Conceptual References, is tightly connected with 

Vocabulary. However, it involves an understanding of the extended meaning of some 

concepts which might be culture specific. This attribute relates to Bachman’s (1990) 

sociolinguistic competence (i.e., cultural references and figures of speech). For example, 

a student might understand the individual words in “community service”, which might 

not be adequate. Being familiar with the phrase at the conceptual level is essential. Also, 

community service is commonly practiced in the U.S., however, it might be unfamiliar to 

some newcomer ELs in whose country this practice is not widespread. Attribute 3, 

Grammar, entails processing compound sentences. This includes understanding pronoun 

references, conjunctions and other cohesive elements. Like the Vocabulary attribute, 

Grammar might be applicable to most items because baseline Grammar knowledge is 

necessary to comprehend texts. This attribute is considered when extracting meaning 
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from sentence structure is deemed necessary. Attribute 4, Explicit Information and 

Details involves deriving specific details from the text and comprehending explicit 

information. It requires scanning the text for transparent details and matching it with the 

correct answer. Attribute 5, Inference, requires understanding implicit information and 

making inferences. Given the grade level of ELs, inferences can be low level. For 

example, students might need to associate the information with an example situation. 

What distinguishes this attribute from the previous one is the transparency of the 

information. Attribute 6, Summary, represents integrating information from adjacent 

sentences or different parts of the text (i.e., across paragraphs or cells of a chart), to make 

meaning. In some situations, this attribute requires understanding the gist, summary, or 

rhetorical relations. Finally, Attribute 7, Sequences and Processes, is related to 

understanding the description of processes, cycles, and sequential language. 

The seven attributes previously stated were deemed sufficient to represent the 

items on the test, as SMEs did not raise concerns for the attributes presented to them or 

suggest any additional attributes. One exception was for Cultural and Conceptual 

References. Two of the SMEs pointed that this attribute would apply to very few items 

and the test did not rely on culture-specific background knowledge. SME 2 also raised 

the point about its similarity to idiomatic language that is part of vocabulary knowledge. 

As a native speaker, they also mentioned judging whether concepts are culture-specific 

was arduous. The remaining attributes concurred with the skill and task descriptions in 

the blueprints. In the blueprints, vocabulary requirement ranged from general to 

specialized, technical vocabulary for items. In a similar vein, some items and their 
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reading stimuli were prescribed to include simple sentences and modifiers, while others 

contain complex sentences with multiple clauses, and a variety of modifiers. Other 

attributes also appeared directly or indirectly in the item specifications as also aligned 

with performance descriptions (WIDA Consortium, 2012). For example, items were 

related with identifying, inferring, interpreting, predicting, summarizing, sequencing 

characteristics, or details from the reading texts. It is worth noting that three SMEs did 

not see the blueprint descriptions while specifying the attributes and they were used by 

the researcher to confirm the attributes ad hoc. 

After attributes were fleshed out, all SMEs reviewed items and coded attributes 

for items to come up with a Q-matrix. They also provided their rationale and confidence 

in their rating of each item. An example Q-matrix can be found in the Appendix E. To 

begin with, SMEs were confident in their item-attribute rating (4 out of 5 on average). 

This can hint at the robustness, as well as clarity of attributes and the overall task. It was 

observed that SMEs were less certain about their coding when an additional attribute 

needed to be defined for an item. Variability in their rating confidence was greater for 

items measuring language of math. SMEs were also less assured when coding items 

related to language of social studies and math (Appendix F, Figure 2). 

 
Table. 12. Confidence Ratings for Attribute-Item Mapping 
 
 SME 1 SME 2 SME 3 SME 4 SME 5 SME 6 SME 7 Items 
Mean 4.22 4.04 3.48 4.22 3.56 4.00 4.63 4.02 
sd 0.89 0.85 1.25 0.80 0.93 0.48 0.56 0.35 
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Table 13 shows the mapping of attributes among 7 SMEs. Each cell indicates the 

number of SMEs selecting an attribute for an item. As the table illustrates, 5 or more 

SMEs selected the same attribute for an item in most cases. When an additional attribute 

is needed, four of the SMES also agreed on the additional attributes. Some variability 

occurred, as anticipated, due to the complexity of the reading construct. Attributes being 

specified by four or more raters were included in the initial Q-matrix (Table 14). It must 

be noted that SMEs’ ratings had been modified when necessary, based on the descriptions 

for their coding. Mainly, if an SME explicitly stated they hesitated to select the attribute, 

their rating was updated to 0. If the description of a rationale for selecting attributes 

contradicted with the selection (i.e., or the attribute was missing despite being 

mentioned), the rating was corrected as well. For instance, SME 4 expressed that the stem 

of Item 12 was worded as synthesis, yet it was actually testing the understanding of a 

specific sentence. Nevertheless, the SME still marked summary for the item, which was 

corrected to reflect Explicit Information. These modifications did not change the initial 

Q-matrix, except for 3 items. Vocabulary was added to Item 7 (i.e., originally marked by 

3 SMEs) because SME 6 and 7 mentioned the attribute in their description. Being less 

conservative about attributes was preferred, at this stage, as the Q-matrix would be 

validated. On the other hand, this attribute was deleted from Item 21 as one of the SMEs 

aroused doubt selecting it. Finally, for Item 25, SME 4’s selection was updated to 

Summary from Explicit Information because the rater commented that the stem requires 

understanding the whole paragraph. This change was also supported by the blueprint, as 

the item was depicted as the summary of a situation. Furthermore, Conceptual and 
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Cultural references were excluded from the matrix. It was associated with only two items. 

SME’s rationale for selecting this attribute also varied. Hartz et al. (2002) recommends 

keeping an attribute associated with at least 3 items (in Kim, 2015, p. 237). Even if it was 

related with more items, it could be merged with Vocabulary, because they always 

occurred together. 

 
Table 13. Attribute-Item Mapping for the Expert-defined Q-matrix 
 
Items VOC CUL GRM EXP INF SUM SEQ 

1 2 0 1 5 1 2 1 
2 0 0 1 6 4 0 0 
3 7 0 1 6 1 1 0 
4 0 0 3 7 0 0 1 
5 4 4 0 2 0 7 0 
6 6 3 0 6 1 0 1 
7 5* 1 1 7 1 0 0 
8 0 0 0 5 3 1 5 

9 1 0 4 5 1 3 5 

10 1 0 2 3 0 0 7 

11 3 0 0 2 4 5 0 
12 4 0 0 7 0 2 0 
13 6 0 4 2 2 1 0 
14 0 0 0 1 0 6 1 
15 4 0 4 2 7 0 0 
16 1 1 0 7 0 0 7 

17 2 2 0 2 0 5 6 

18 1 0 0 4 6 4 0 
19 0 1 0 6 0 1 0 
20 0 0 2 5 1 1 6 

21 3* 0 0 3 4 4 0 
22 0 0 0 7 1 1 4 

23 4 0 0 5 0 4 0 
24 1 1 0 2 7 2 0 
25 6 4 0 2 1 4* 0 
26 6 3 2 3 2 2 0 
27 6 2 0 2 5 2 0 

Note. * denotes the refined items based on SME explanations. Attributes selected by 4+ raters are bolded. 
VOC= Vocabulary, CUL= Cultural/Conceptual References, GRM= Grammar, EXP= Explicit Information 
and Details, INF= Inference, SUM= Summary, SEQ= Sequences and Process. 
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Table 14. The Initial Expert-defined Q-matrix 
 
Items VOC GRM EXP INF SUM SEQ 

1 0 0 1 0 0 0 
2 0 0 1 1 0 0 
3 1 0 1 0 0 0 
4 0 0 1 0 0 0 
5 1 0 0 0 1 0 
6 1 0 1 0 0 0 
7 1 0 1 0 0 0 
8 0 0 1 0 0 1 
9 0 1 1 0 0 1 
10 0 0 0 0 0 1 
11 0 0 0 1 1 0 
12 1 0 1 0 0 0 
13 1 1 0 0 0 0 
14 0 0 0 0 1 0 
15 1 1 0 1 0 0 
16 0 0 1 0 0 1 
17 0 0 0 0 1 1 
18 0 0 1 1 1 0 
19 0 0 1 0 0 0 
20 0 0 1 0 0 1 
21 0 0 0 1 1 0 
22 0 0 1 0 0 1 
23 1 0 1 0 1 0 
24 0 0 0 1 0 0 
25 1 0 0 0 1 0 
26 1 0 0 0 0 0 
27 1 0 0 1 0 0 

Total 11 3 15 7 8 7 
Note. VOC= Vocabulary, GRM= Grammar, EXP= Explicit Information and Details, INF= Inference, 
SUM= Summary, SEQ= Sequences and Process. 
 
 

The initial Q-matrix was finalized as shown in Table 14. It comprised of six 

attributes. Grammar was the least frequent attribute (i.e., 3 items), while Vocabulary and 

Explicit Information were the most frequent attributes. 7 items had a simple structure, 

meaning they were associated with a single attribute. Except for Grammar, all attributes 

were measured alone at least one time. The remaining twenty items were complex. They 
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were related with two attributes except for Items 9, 15, 18, and 23, which were associated 

with 3 attributes. The attributes were coupled with each other at least one time, except 

Vocabulary-Sequences and Inference-Sequences. In summary, the structure of the initial 

Q-matrix was fair despite that attributes were retrofitted. 

Agreement Rate among SMEs for the Expert-defined Q-matrix Coding 
 

Due to the participation of multiple raters in the coding of the Expert-defined Q-

matrix, the variability and similarity of their ratings was examined. Fleiss et al. (2003) 

suggest that when there is sufficient agreement among raters, their ratings reflect the 

actual dimensions. On the other hand, substantial disagreement would render findings 

undependable. Fleiss Kappa, which is an interrater agreement index for categorical 

ratings among multiple raters, is used for this purpose. It is analogous to interclass 

correlation coefficient, which is used for the ratings on the continuous scale. Landis and 

Koch (1977) provide six categories for agreement rate shown in Table 15.  

The agreement rate for the individual attributes ranged between 0.22 and 0.66, 

meaning there was fair to substantial agreement. There was more variability with respect 

to the selection of Grammar and Extracting Explicit Information, yet raters substantially 

agreed on Sequencing. The variability was projected as the SME group was large and no 

overall group discussion was held. Kappa was also computed for the SME 1, 2, 3 who 

established the attributes and discussed their mapping twice. There was substantial 

agreement among the three of them for all attributes except for Extracting Explicit 

Information and Summary, for which they moderately agreed on.  These findings 

demonstrate that they most likely benefited from their small group discussion. On the 
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other hand, the agreement rate among the test developer group was much lower 

(Appendix F, Table 2).  

 
Table 15. Attribute-level Agreement Rate among SMEs  
 

 All SMEs (N= 7) SME 1, 2, 3 
 Fleiss Kappa z statistic p-value Fleiss Kappa z statistic p-value 

VOC 0.381 9.074 0 0.604 5.44 0 
GRM 0.216 5.151 0 0.777 6.99 0 
EXP 0.234 5.564 0 0.54 4.858 0 
INF 0.416 9.914 0 0.673 6.053 0 

SUM 0.287 6.832 0 0.533 4.794 0 
SEQ 0.664 15.817 0 0.871 7.843 0 

Average 0.366 - - 0.666 - - 
Note. <0.00 = Poor, < 0.20 = Slight, 0.21- 0.40 = Fair, 0.41 - 0.60 = Moderate, 0.61-0.80 = Substantial, 
0.81 -.1.00 = Perfect (Landis & Koch, 1977, p. 165). VOC= Vocabulary, GRM= Grammar, EXP= Explicit 
Information and Details, INF= Inference, SUM= Summary, SEQ= Sequences and Process. 
 

 
Empirical Validation and the Final Expert-defined Q-matrix 
 

Upon creating the initial Expert-defined Q-matrix, it was validated with the GDI 

method. However, to ensure the modifications were not due to chance, the sample was 

divided into two equal samples as training and validation (N = 11, 971 for each). The 

GDI, as well as the model selection, was carried out with the training sample. The 

validated Q-matrix and the final model was then applied to the validation sample to 

gauge whether the changes and selected model would hold5. The training and validation 

samples were obtained by random sampling. Figure 3 shows they were similar to each 

other with respect to score distributions. 

 

 
5 Additionally, the replication approach was tested. When the GDI was applied to the validation sample, the 
changes recommended were the same as the training sample, further supporting the recommendations were 
not due to chance. 
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Figure 3. Raw Score Distribution for the Training and Validation Samples 
 

 
 
 

The GDI method helps identifying the simplest q-vector that yields the highest 

variance between the non-masters and masters of the attributes. de la Torre and Chen 

(2016) recommends the selected q-vector to account 95% of the variance between 

masters and non-masters (U = 0.95). In a simulation study, the authors report that it can 

correct 74% of the mis-specified q-vectors for the GDINA model. At the attribute level, 

the success of the correction was 80%, which is a fairly high proportion. However, 

Nájera et al. (2019) caution against the choice of U, as it might itself lead to 

misspecifications during validation. Their simulation study shows the number of items 

and attributes, sample size, and item discrimination interact with the method. Hence, 

default U might not be suitable for shorter tests, poor discriminating items, small samples, 

or large number of attributes or combination of these conditions. For conditions similar to 

those in this study (i.e., J = 30-60, N > 2000, low item discrimination) an U = 0.85 is 
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recommended. In the light of their findings, both the default and recommended U was 

applied in this study. When using U = 0.85 the changes were consistent with the default 

but there were additional changes for four items (Appendix F, Figure 3). Nevertheless, 

those additional changes were not theoretically applicable and not considered for the 

study. Below, results for the default U	are presented. Modifications were recommended 

for items 10, 15, 18, and 23. In one instance, the q-vector had been underspecified (Item 

10), whereas the other cases were overspecification (i.e., more attributes than necessary 

were defined).  

Mesa plots developed by de la Torre and Ma (as cited in Ma, 2019) to accompany 

the method are displayed in Figure 4. In these plots, PVAF (y axis) was plotted for 

different attribute combinations on the x-axis, which is ordered (i.e., PVAF increases as 

more attributes are added) (Ma, 2019; Nájera et al., 2019). The original q-vector specified 

by the experts was marked with a red dot on the plot.  

For instance, for Item 15, 3 attributes were specified initially (i.e. Attribute 1, 2, 

4). Among these Attribute 2 was relevant but not enough, as there was a noticeable leap 

when Attribute 1 was also specified. However, adding Attribute 4 did not add above and 

beyond, and the plateau effect was evident. Thus, specifying Attribute 4 might not be 

necessary and the GDI suggested omitting it. A similar pattern is apparent for Item 18 

and 23. As depicted in the graphs for both items, specifying Attribute 3 did not contribute 

to PVAF much. For Item 18, Attributes 4 and 5, and for Item 23, Attributes 1 and 5 met 

PVAF > 0.95 and two attributes were sufficient. A different pattern emerged for Item 10. 
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Attribute 6 was defined for the item primarily. However, adding Attribute 3 would 

increase PVAF by 0.11 points and was tenable based on the GDI.  

 
Figure 4. Mesa Plots of the Four Items Flagged by the GDI 
 

  

  
 
 
Because GDI is a statistical method, it is possible to create a plausible Q-matrix 

based on statistical evidence, which might not be necessarily tenable, from the theoretical 
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perspective. Therefore, the content of the items, their blueprint descriptions as well as 

experts’ initial ratings and rationale, were reviewed again to determine the plausibility of 

the suggestions.  

Of the recommended changes, only two were applicable. For Item 15, deleting 

Attribute 4 (Inference) was not reasonable because all SMEs matched it to the item. The 

item blueprint also evinced that the item was designed to assess inferencing skill. For 

Item 10, it was not plausible to add Attribute 3 (Explicit Information) as the attribute 

would be specious. 3 SMEs perceived it could be associated with the item. However, the 

item required understanding of the whole process rather than specific details of the 

process. The blueprint description also confirmed the decision (i.e., sequence sentences). 

On the other hand, omission of Explicit Information from Item 18 and 23 could be 

supported. For Item 18, SME 6 marked both Explicit Information and Summary and their 

explanation was inferring details by synthesizing information. This explanation shows 

they recognized the information is across parts of the text and not just related to one 

specific detail. SME 7, who also marked the item as Explicit Information, alluded to 

synthesis in the description. They hinted that ELs need to connect information in different 

parts of the chart. The item blueprint also implied Inference and Summary only (i.e. 

prediction and summary). Likewise, the same SMEs reasoned Item 23 requires synthesis 

as ELs need to locate multiple sentences and connect them to arrive at the correct 

solution for the item. This description voids their selection of Explicit Information. In the 

blueprint, Item 23 was described as being related to part of a large process, which 

conveys that ELs need to comprehend the whole process.  
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Table 16. The Final Expert-defined Q-matrix after Validation 
 
Items VOC GRM EXP INF SUM SEQ 

1 0 0 1 0 0 0 
2 0 0 1 1 0 0 
3 1 0 1 0 0 0 
4 0 0 1 0 0 0 
5 1 0 0 0 1 0 
6 1 0 1 0 0 0 
7 1 0 1 0 0 0 
8 0 0 1 0 0 1 
9 0 1 1 0 0 1 
10 0 0 0 0 0 1 
11 0 0 0 1 1 0 
12 1 0 1 0 0 0 
13 1 1 0 0 0 0 
14 0 0 0 0 1 0 
15 1 1 0 1 0 0 
16 0 0 1 0 0 1 
17 0 0 0 0 1 1 
*18 0 0 0 1 1 0 
19 0 0 1 0 0 0 
20 0 0 1 0 0 1 
21 0 0 0 1 1 0 
22 0 0 1 0 0 1 
*23 1 0 0 0 1 0 
24 0 0 0 1 0 0 
25 1 0 0 0 1 0 
26 1 0 0 0 0 0 
27 1 0 0 1 0 0 

Total 11 3 13 7 8 7 
Note. * denotes the refined items based on the GDI. VOC= Vocabulary, GRM= Grammar, EXP= Explicit 
Information and Details, INF= Inference, SUM= Summary, SEQ= Sequences and Process. 
 
 

After applying the two changes (Items 18, 23) also supported by substantive 

evidence (i.e., expert rationale and blueprint descriptions), the GDI was applied again to 

the data.  However, it did not suggest further recommendations beyond the modifications 

in the first step. Thus, the Q-matrix was finalized as presented in Table 16. The 

composition was very similar to the initial Q-matrix that was previously depicted. After 
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the changes were made, Explicit Information was measured by 13 items instead of 15. 

Different from the initial Q-matrix, only 2 items instead of 4 items, were associated with 

3 attributes. 

The Model and Q-matrix Selection 

 

Comparison of Models for the Expert-defined Q-matrix 

 

After the Q-matrix was refined, based on the GDI with the training sample, the 

saturated model, the LCDM, and five specific models were fit to the training sample for 

model selection. The specific models were also fit within the LCDM framework (i.e., 

placing constraints on the general model). A caveat about the CDM package should be 

noted. The monotonicity constraint that ensures a higher probability for mastery of the 

additional attributes was specified for all models but the R-RUM. Setting the constraint, a 

model fits with a logit link. The CDM package fits the R-RUM through ACDM such that 

link function is log. The constraint for the R-RUM overwrites the link function and the 

model becomes the C-RUM (i.e., also fit through ACDM, link = logit). Therefore, the 

monotonic constraint was omitted for this model. 

Relative fit statistics (Table 17) demonstrated that log likelihood (LL) and AIC 

were the lowest for the LCDM, which signifies a better fit. The C-RUM had the second 

lowest LL and AIC followed by the R-RUM. On the contrary, the C-RUM outperformed 

the LCDM and the R-RUM respectively, based on BIC, and CAIC. Namely, LL and AIC 

favored the LCDM and BIC and CAIC selected the C-RUM as the best fitting model. 

This shifting pattern was not unforeseen. Previous studies show that AIC picks up more 

complex models like the LCDM and GDINA, whereas BIC and CAIC select more 
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constrained models as the true model (e.g., Chen et al, 2016; Henson et al., 2009; 

Kunina-Habenicht et al., 2012; Lei & Li, 2016). One reason for this was the larger 

penalty by BIC for more parameters (Kunina-Habenicht et al., 2012). Additionally, when 

a specific model fits as well as the saturated model, it might suggest that the specific 

model can be partly correct because it is the true model for some of the items (Chen et al., 

2013). Relative fit indices also showed that the DINA, the DINO or the HO-DINA fit 

comparatively worse. Another sign for poor fit for the DINA, the DINO and the HO-

DINA models were the number of items at the monotonicity boundary. 20 out of 27 items 

were at the boundary which implies that correct response probabilities were lower for 

mastering additional attributes for these items. Yet, there were no items at the boundary 

when the C-RUM and the R-RUM were fit. 5 items were also at the boundary in the 

LCDM. When these items were reviewed, they were all non-compensatory items, which 

absolved the concern. 

Specific models were compared against the LCDM due to their nested nature 

(Table 18). Although the C-RUM was an acceptable model using BIC and CAIC, the 

LCDM fit significantly better than the C-RUM and all other constrained models. 

 
Table 17. Relative Fit Indices for the Expert-defined Q-matrix 
 

 Npar. -2LL AIC BIC CAIC 
LCDM 124 -195802.26 391852.511 392768.901 392892.901 
R-RUM 98 -195956.43 392108.859 392833.102 392931.102 
C-RUM 98 -195910.85 392017.697 392741.94 392839.94 

DINO 76 -196688.1 393528.199 394089.857 394165.857 
DINA 76 -196702.84 393557.671 394119.33 394195.33 
HO-DINA 66 -196894.37 393920.734 394408.49 394474.49 
Note. Results are based on the training sample. Npar = number of parameters. Bold cells indicate the lower 
value which signifies the better model fit. 
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Table 18. The Likelihood Ratio Tests for the Expert-defined Q-matrix 
 
Model 1 Model 2 Q- df p 

LCDM 
 

R-RUM 154.174 26 <.00001 
C-RUM 108.593 26 <.00001 
DINO 885.844 48 <.00001 
DINA 900.580 48 <.00001 

Note. Results are based on the training sample. 
 
 

Table 19. Absolute Fit Indices for the Expert-defined Q-matrix  
 

 SQ- MADcor SRMSR MADres MADQ3 RMSEA 
LCDM 121.345 0.0167 0.0231 0.3749 0.0215 0.021 

R-RUM 137.8477 0.0183 0.0248 0.41 0.02 0.02 
C-RUM 131.182 0.0174 0.0238 0.39 0.0212 0.021 
DINO 143.8516 0.022 0.0281 0.4943 0.0176 0.023 
DINA 130.5527 0.0224 0.0287 0.5029 0.0178 0.022 
HO-DINA 167.935 0.0243 0.0311 0.5524 0.018 0.02 
Note. Note. Results are based on the training sample.  Mχ2 = Maximum χ2 among item pairs. For all other 
indices <0.05 shows good fit. 

 
 
Absolute fit indices did not provide any counter evidence. Differences across 

models were not dramatic and all models almost fit equally well. MADres values were 

higher, which might be attributed to the design of the test. Some items were based on the 

same text in the test or they were related to the same topic. Thus, there were some 

dependencies among the items that MADres was picking up on. In other words, residual 

dependency was high based on MADres. Similarly, despite that maximum Q- is expected 

to be non-significant (Rupp et al., 2010), it was significant across all models. It was 

speculated that there were misfitting item pairs. However, Q- tests are sensitive to sample 

size. A very large sample (N = 11,971) was used in this application. According to Rupp 

et al. (2010), extremely small p-values are anticipated because the statistic is susceptible 
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to even small differences between observed and expected frequencies, which also 

explains the significance in this application. The authors also indicate Q- can be relevant 

to determine dependency rate. When the item pairs with large Q- were examined the 

majority of them were based on the same reading text or they were related to the same 

topic. Some item pairs with a large Q- also contained a problematic item (i.e. Item 9).  

In brief, three of the bivariate absolute fit indices (except for MADres) and 

average RMSEA were below 0.05 and were acceptable. Because the LCDM showed a 

slightly better performance than others based on relative fit, it was specified as the final 

model for the Expert-defined Q-matrix. 

The LCDM was then fit to the validation sample. The comparison of absolute fit 

indices obtained from the validation sample against the training sample proved that the 

model was still acceptable (Table 20). The patterns across the samples were similar, and 

overall, the fit with the validation sample was deemed to be adequate. The item parameter 

estimates across the two samples were also compared (Figure 5). On average, there were 

small deviations. Intercepts and main effect coefficients were more comparable than the 

two way and three-way interactions. Item mastery probabilities showed minimal 

deviations across the two samples. The average of mean absolute deviation of item 

mastery probabilities across all items was 0.023 (sd = 0.024) with a minimum of 0 and 

maximum of 0.161. In brief, the differences were negligible, and it was concluded that 

the changes in the Q-matrix and the final model would hold for the validation sample. 

 
 
 



 

 122 

Figure 5. Comparison of Item Parameters between the Training and Validation Samples 
for the Expert-defined Q-matrix 
 

 
 
 
Table 20. Comparison of Absolute Fit Indices between the Training and Validation 
Samples for the Expert-defined Q-matrix 
 

 LCDM Absolute Fit Indices  
 SQ-  MADcor SRMSR MADres MADQ3 RMSEA 

Training Sample 121.345  0.0167 0.0231 0.3749 0.0215 0.021 
Validation Sample 129.163  0.0175 0.0237 0.3916 0.0234 0.023 
 
 
Comparison of Models for the Standards-based Q-matrix 

 
Because the Standards-based matrix was not statistically validated, the model fit 

analysis just based on the validation sample is presented here. It must be noted that model 

fit results on the training sample was comparable (Appendix F, Table 3) and that the final 

model fit both samples adequately.  
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Like the Expert-defined Q-matrix, the LCDM fit better than all models based on 

log likelihood and AIC. The C-RUM overperformed according to BIC and CAIC. The 

DINA and the HO-DINA were the worst fitting models among all. Likelihood ratio tests 

supported that the LCDM was significantly better than all constrained models (Table 22). 

 
Table 21. Relative Fit Indices for the Standards-based Q-matrix  
  

Npars -2LL AIC BIC CAIC 
LCDM 145 -195658.4 391606.701 392678.286 392823.286 
R-RUM 118 -195748.1 391732.211 392604.259 392722.259 
C-RUM 118 -195720.5 391677.093 392549.141 392667.141 

DINO 91 -196885.4 393952.759 394625.271 394716.271 
DINA 91 -196909.4 394000.693 394673.205 394764.205 

HO-DINA 70 -197200.0 394539.954 395057.271 395127.271 
Note. Results are based on the validation sample. Bold denotes lower values thus better fit. 
 

 
Table 22. The Likelihood Ratio Tests for the Standards-based Q-matrix 
 

Model 1 Model 2 Q- df p 
LCDM 

 
R-RUM 89.7 27 <.00001 
C-RUM 62.1 27 .000139 
DINO 1227 54 <.00001 
DINA 1251 54 <.00001 

Note. Results are based on the validation sample. 
 
 

A similar pattern to the Expert-defined matrix was observed for the absolute fit 

results as well (Table 23). All models fit reasonably well based on MADcor, SRMSR, 

MADQ3, and average RMSEA. MADres was higher and maximum Q- was significant. 

Absolute fit indices did not present a clear division. Based on these results, the LCDM 

was specified as the final model also for the Standards-based matrix. 
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Table 23. Absolute Fit Indices for the Standards-based Q-matrix  
 
 SQ- p MADcor SRMSR MADres MADQ3 Mean RMSEA 
LCDM 75.290 0 0.0123 0.0157 0.2808 0.0239 0.016 
R-RUM 41.124 0 0.0119 0.0159 0.2685 0.0230 0.011 

C-RUM 57.054 0 0.0120 0.0159 0.2698 0.0245 0.014 
DINO 81.366 0 0.021 0.0269 0.4706 0.0188 0.025 
DINA 83.642 0 0.021 0.0274 0.4713 0.0183 0.025 
HO-DINA 196.666 0 0.025 0.0318 0.5809 0.0176 0.037 

Note. Results are based on the validation sample. Bold denotes lower values. 
 
 

Comparison of the Expert-defined and Standards-based Q-matrices 

 
All fit indices obtained from the LCDM estimation for the Standards-based and 

Expert-defined Q-matrices (i.e., with the validation sample) were evaluated to determine 

the most favorable Q-matrix (Table 24). The Standards-based Q-matrix fit slightly better 

than the Expert-defined Q-matrix. Relative fit indices were lower for the Standards-based 

matrix than the Expert-defined matrix. It must be highlighted that more attributes were 

associated with the Standards-based matrix and the model included more parameters. In 

addition, both matrices were acceptable based on absolute fit. However, upon examining 

the associations among the attributes of the Standards-based Q-matrix (Table 25), it was 

determined that the Expert-defined Q-matrix was more suitable. 

 
Table 24. Comparison between the Expert-defined and Standards-based Q-matrices  
 

 Standards-based Q-matrix Expert-defined Q-matrix 
Relative Fit   

-LL -195658.4 -196322.85 
AIC 391606.701 392893.709 
BIC 392678.286 393810.099 

Absolute Fit   
SQ- 75.290 129.163 
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MADcor 0.012 0.018 
SRMSR 0.016 0.024 
MADres 0.281 0.392 
MADQ3 0.024 0.023 

Mean RMESEA 0.016 0.023 
 
 

Table 25. Tetrachoric Correlations among Attributes Obtained from the LCDM with the 
Standards-based Q-matrix 
 

 LoSI LoMA LoLA LoSC LoSS Recount Explain 
LoMA 0.751       
LoLA 0.867 0.795      
LoSC 0.798 0.877 0.738     
LoSS 0.768 0.895 0.957 0.846    
Recount 0.053 -0.066 0.234 0.135 0.168   
Explain 0.163 -0.088 0.336 0.052 0.222 0.999  

Argue 0.006 -0.033 0.179 0.082 0.129 0.981 0.981 

Note. Correlations higher than 0.90 are bolded. The proportion of masters for Recount, Explain and Argue 
was 47%, 41%, 46%. LoSS and LoLA were mastered by 37% and 52% respectively. LoSI: Social 
instructional language, LoMA: Language related with math, LoLA: Language related with language arts, 
LoSC: Language related with science, LoSS: Language related with social studies 

 

Correlations among the attributes related to the standards were high, with a range 

of 0.75-0.96 (Table 25). On the other hand, the key uses dimension was slightly 

correlated or not correlated with the standards dimension at all. The tetrachoric 

correlations ranged between -0.07 and 0.34. The highest correlation was between 

Explain, Recount and language related to language of arts, and Explain and language of 

social studies. However, even those were weak correlations. This was not surprising, as 

standards represent language related to the subject areas, while key uses signify language 

functions students need to respond correctly. To give an example, knowing math 

language does not suggest the student should master arguments as well. However, despite 

some degree of differentiation among the standards, key uses were perfectly correlated 
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(0.98-0.99). The proportion of masters for key uses were also similar. 47% of ELs 

mastered Recount, 41% mastered Explain, and 46% mastered Argue. The high 

correlations and similar proportions of masters suggest that attributes in the key use 

dimension are highly associated with each other. If an EL masters Explain, the function 

that is associated with understanding the relation between ideas, processes, and 

consequences, then they are also masters of Recount (understanding summary and 

details) and Argue (understanding arguments and judgements). This finding suggests that 

key uses or language functions cannot be separated from each other, or represented as 

separate attributes due to high associations. This pattern was also reflected in the class 

proportions. More than half of the students were classified in the profile where none of 

the attributes (20%), just the standards (13%), just the key uses (12%), or all attributes 

were mastered (11%). However, merging the key uses and representing them as a single 

attribute was not possible. It would reduce the Standards-based Q-matrix to a simple 

structure with the standards dimension only. Given the indivisibility of key uses in the 

Standards-based Q-matrix and relatively large number of profiles (i.e., 256 distinct 

classes) that is not practical for reporting, the Expert-defined Q-matrix was adapted as the 

final Q-matrix. 

Evaluation of the LCDM for the Quality of Diagnostic Information 

 

Findings Related to Items 

 

As the LCDM showed reasonable fit with the Expert-defined Q-matrix, various 

model parameters and statistics were explored next. Table 26 presents the intercept, main 

effect, and interaction coefficients associated with each item. Table 27 gives essentially 
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the same information by transforming the coefficients to the probabilities. In particular, it 

reveals the probability of correct response for non-masters and masters of each attribute 

and the interactions. 

Low intercept but high main effect or interaction coefficients (i.e. low 

probabilities for non-masters and high probabilities for masters of the attributes) are 

desired to suggest masters of the attributes correctly respond to the items rather than non-

masters. This also reflects the degree of association between the item and the specified 

attributes (Templin & Hoffman, 2013). The intercept coefficients ranged between -1.64 

and 0.49 with a mean of -0.70. Most of the intercepts were low. The average probability 

of correct response for non-masters was 0.34. It was slightly higher than 0.25, which is 

the guessing probability for an item with 4 options.  

There were some items with slightly higher coefficients that yielded a higher 

correct response probability for the non-masters. Specifically, for Item 10, despite not 

mastering Sequences the probability that an EL gets the item right was estimated to be 

0.60. Similarly, non-masters of Vocabulary and Explicit information still had a 0.55 

probability to correctly respond to Item 12. The review of the classical item statistics for 

these items showed they were the easiest items on the test (p-values = 0.70, 0.75 

respectively) and that Item 10 was poorly discriminating between high and low 

performers. Furthermore, the content review of these items showed an EL with high 

science knowledge could answer the items right without even reading the text. These 

items were tapping the same standard, language of science and were accompanied by a 

diagram. Specifically, for Item 10, even a low performing EL could possibly eliminate 
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two of the distractors by looking at the diagram, which partially explains the high 

intercept.  

The probabilities for Items 1, 3, 4, 7, 11, 16, 19 varied between 0.45 - 0.49 for 

non-masters of the required attributes. These items were also comparatively easier items 

than other items on the test. The extent to which the probabilities drift from 0.25 (i.e., 

guessing) might imply that ELs were able to eliminate one to two distractors. The 

distractor analysis also supported that there was at least one distractor that was not as 

reasonable as the others, and attracted to a very small proportion of ELs. The 

characteristic of item 7, 11 and 19 were also similar to Item 10 and 12. Item 11 was 

related with items 10 and 12. The diagram might have cued the answer for some students. 

Similarly, ELs with high math knowledge would not need the reading stimulus to respond 

item 7 and 19 correctly, which was also noted by two of the SMEs. The correct response 

probability for the non-masters for the remaining items was within a range of 0.16 – 0.35. 

Both the main effect and interaction coefficients were generally large. On 

average, the correct response probability for masters of the all required attributes across 

all items was 0.75. There were some easy and hard items. For example, the main effect 

for Item 4, which measures Explicit Information was estimated to be 2.88, yielding a 

correct response probability of 0.94 for an EL mastering the attribute. Similarly, by 

knowing Summary an EL has a correct response probability of 0.82 for Item 14 

(9)= 2.254). Both of these items were simple items. Item 13 had a main effect of 2.55 for 

Vocabulary and 2.93 for Grammar. Knowing these two attributes, an EL has 0.71 and 
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0.78 probability of correct response. By knowing both attributes, an EL almost always 

gets the item right (0.96).  

However, there were some exceptional items, like Items 2 and 9, for which the 

main effects or interactions were small (9!,) or 9!,-< 0.50).	Item 9 was one of the most 

complex items on the test. An EL mastering one of the attributes has a 25 – 26 % 

probability of a correct answer (i.e., equal to guessing). Knowing all attributes increases 

the probability only to 0.48. Thus, even with knowing all three attributes, the correct 

response probability was still low, and the item was hard. This item also had a low p-

value (0.34) and point biserial (0.11), and it was called out by several SMEs for being 

confusing. Although being less helpful to determine an EL’s classification, there was still 

26% difference between not knowing or knowing of the attributes.  

Similarly, Items 17, 23, 26, and 27 yielded correct response probabilities lower 

than 0.60 for masters of all required attributes. They were difficult items, even for the 

masters. These items also had low p-values and low point biserial, similar to Item 9. 

Knowing the attributes contributed to the correct response probability but at a lesser 

degree. It is also recognized that Sequence for Item 8 and Inference for Items 15 and 27 

were at the monotonicity boundary. The fact that knowing these attributes, in addition to 

others, increased the probability (i.e., non-compensatory relationship) and deemed this 

result admissible. 

 



 

 

Table 26. Item Parameter Estimates Obtained from the LCDM with the Expert-defined Q-matrix  
 
Item Intercept (!!,#) Main Effect (!!,$(&)) Interaction (!!,((&,&`), …) 

  VOC GRM EXP INF SUM SEQ 2-way 3-way 
1 -0.024   1.403      
2 -0.608   0.503 0.470   0.461  
3 -0.123 0.989  1.022    -0.475  
4 -0.131   2.884      
5 -0.449 1.516    1.684  -0.321  
6 -0.890 0.651  1.176    0.429  
7 -0.126 0.899  1.320    -0.025  
8 -1.111   0.619   -0.201 1.384  
9 -1.272  0.190 0.306   0.301  0.447 
10 0.494      1.388   
11 -0.107    1.778 1.096  -0.283  
12 0.186 1.465  1.304    0.326  
13 -1.641 2.552 2.930     -0.432  
14 -0.742     2.254    
15 -1.097 0.031 0.390  -0.036    0.779 
16 -0.211   1.707   1.340 0.423  
17 -1.590     0.550 0.385 1.016  
18 -1.606    0.055 0.400  1.736  
19 -0.178   2.171      
20 -0.740   0.832   0.855 -0.040  
21 -0.981    0.340 0.320  0.879  
22 -0.648   0.941   1.211 0.016  
23 -1.280 1.062    0.094  0.423  
24 -0.946    1.577     
25 -0.635 1.567    0.897  0.299  
26 -1.427 1.428        
27 -1.086 -0.003   -0.113   1.075  

Note. VOC= Vocabulary, GRM= Grammar, EXP= Explicit Information and Details, INF= Inference, SUM= Summary, SEQ= Sequences and Processes.
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Table 27. Correct Response Probabilities for the Masters and Non-masters of the Attributes Obtained from the LCDM  
 
Item Non-masters Masters 
  VOC GRM EXP INF SUM SEQ 2-way  3-way 
1 0.494    0.799           
2 0.353   0.474 0.466   0.695  
3 0.469 0.704  0.711    0.804  
4 0.467   0.94      
5 0.39 0.744    0.775  0.919  
6 0.291 0.441  0.571    0.797  
7 0.468 0.684  0.767    0.888  
8 0.248   0.379   0.212 0.666  
9 0.219  0.253 0.276   0.275  0.477 
10 0.621          0.868    
11 0.473      0.842  0.729    0.923  
12 0.546 0.839  0.816    0.964  
13 0.162 0.713 0.784     0.968  
14 0.323     0.819    
15 0.25 0.256 0.33  0.244    0.632 
16 0.447   0.817   0.756 0.963  
17 0.169     0.261 0.231 0.589  
18 0.167    0.175 0.231  0.642  
19 0.456   0.88      
20 0.323    0.523      0.529  0.712  
21 0.273      0.345  0.34    0.636  
22 0.343   0.573   0.637 0.821  
23 0.218 0.446    0.234  0.574  
24 0.28     0.653        
25 0.346 0.717    0.565  0.894  
26 0.194  0.5       
27 0.252  0.252   0.232  0.468  
Note. VOC= Vocabulary, GRM= Grammar, EXP= Explicit Information and Details, INF= Inference, SUM= Summary, SEQ= Sequences and Process. 
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Item coefficients were also reviewed to understand the relationships among 

attributes, that is, how attributes interact with each other as they relate to the correct 

response probability. As seen in Table 26 (i.e., main effect and interaction parameters), 

compensatory and conjunctive relationships coexisted in the test, which aligns with fit 

results presented earlier (i.e., comparable performance of the C-RUM and R-RUM to the 

LCDM). Among the 20 items with complex structure, half were consistent with 

conjunctive structure (i.e., Items 2, 6, 8 ,9, 15, 17, 18, 21, 23, and 27), particularly the R-

RUM (i.e., positive main effect and interactions), except for Items 15 and 27, which were 

more similar to the DINA (i.e., zero main effect and positive interactions). Two of these 

items (8 and 17) are presented in Figure 6. Apparently, there was a noticeable increase 

for the mastery of the both attributes. On the other hand, the remaining items were more 

consistent with a compensatory model like the C-RUM, with interaction terms close to 0, 

and positive main effects. So, there was only a slight increase for the mastery of both 

attributes (See Figure 6 for Items 5 and 25 as an example).  

Wald’s procedure (de la Torre & Lee, 2013) to compare whether the constraint 

model fit better than the saturated model at the item level was also applied. Results 

(Appendix F, Table 4) displayed that for twelve of the items the constrained model fit 

better at the item level, and eight of these items converged with the C-RUM, the 

remaining items converged with the DINA or R-RUM.6  

 
 

6 Item specific model could not be fit because the CDM package does not allow the R-RUM and the C-
RUM to be fit at the same time along with monotonic constraints. The constraint is specified for the whole 
estimation and not item specific. The constraint is required for the identifiability of the LCDM (Henson et 
al., 2009). Wald’s procedure was conducted using the GDINA package. CDM package only allows 
comparing LCDM, ACDM and DINA. 
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Figure 6. Item Response Functions for the Selected Items 
 
  

   

 
 
Fit of the individual items and their discrimination capacity is shown in Table 28. 

The discrimination index (DI) for these items that is essentially the absolute difference of 

the probabilities of the non-masters and the masters of required attributes. The average DI 

was 0.42. Jang (2009b) and Kim (2015) considered 0.40 as large, while Nájera et al. 

(2019) proposed 0.60 and higher for discrimination. Given Jang and Kim’s criteria, test 

items can be considered as having acceptable discrimination capacity. Item 13 produces 

the largest difference between masters and non-masters, with 0.81. The probability of 

masters was also 50-55% higher for Items 5, 6, 14, 16, and 25, and 40-48% higher for 

Item 8 Item 5 

Item 17 Item 25 

A00= -1.11 
A10= .62 
A01= -.20 
A11 = 1.38  

A00= -1.59 
A10= 0.55 
A01= .39 
A11 = 1.02  

A00= -.45 
A10= 1.52 
A01= 1.68 
A11 = -.32  

A00= -.64 
A10= 1.57 
A01= .90 
A11 = .30  
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Items 4, 7, 8, 11, 12, 17, 18, 19, 20, and 22. For the remaining items, masters differed 

with respect to their performance from non-masters at a lesser degree (< 0.40). The 

difference was especially less discernable for Items 9,10, and 27 (i.e. DI = 0.22-0.25) 

which also had low point biserial values. All items below 0.40 criterion were also either 

the easiest or the hardest items on the test.  

When individual RMSEA values were reviewed all of them were smaller than 

0.05. However, it must be noted that Item 9 had the largest RMSEA (0.05) and was on 

the borderline.  

In summary, item estimates demonstrate that the specified attributes were 

associated with items and, overall, the majority of the items can be useful for diagnostic 

information, to some extent, as they were within the acceptable ranges. There were some 

items not performing as well as others and they might be more limited to separate masters 

and non-masters.  

 
Figure 7. Correct Response Probabilities of the Masters and Non-masters  
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Table 28. Item Fit and Discrimination Statistics 
 
Item RMSEA DI 
1 0.036 0.305 
2 0.013 0.343 
3 0.018 0.335 
4 0.036 0.473 
5 0.032 0.530 
6 0.017 0.506 
7 0.015 0.419 
8 0.012 0.418 
9 0.049 0.258 
10 0.042 0.247 
11 0.016 0.450 
12 0.016 0.417 
13 0.008 0.806 
14 0.042 0.497 
15 0.028 0.381 
16 0.019 0.516 
17 0.011 0.420 
18 0.007 0.475 
19 0.046 0.424 
20 0.011 0.389 
21 0.012 0.363 
22 0.008 0.477 
23 0.016 0.357 
24 0.028 0.373 
25 0.024 0.547 
26 0.031 0.307 
27 0.029 0.216 
Mean 0.023 0.417 
Note. RMSEA is an item fit measure. DI= Discrimination Index (i.e. difference in the probability 
of masters and non-masters of all required attributes for the item). 
 
 
Findings Related to Person Estimates and Latent Classes 

 

Latent classes were scrutinized in an effort to understand the quality of 

classifications. There were 64 classes (i.e. 26) that ELs can be assigned to, and Table 29 

shows 23 of the most frequent classes. Class probability denotes the probability that the 

profile can be observed, and the expected frequency is the proportion of the students in a 
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class. For instance, 26% of the ELs were most likely to be classified in the class where 

none of the attributes are mastered. On the other hand, the profile that requires the 

mastery of all attributes had a probability of 0.16. That is 42% of the ELs were either the 

masters or non-masters of all attributes. It is not unexpected for these classes to emerge as 

the most frequent profiles, especially when DCM is retrofitted, which might signal 

unidimensionality. For a successful application, some variability is expected. Although 

these two classes were dense, and some classes were sparse or had no students, there 

some limited variability. It must also be noted that the number of profiles was still large, 

as there were many attributes. Specifically, about 9% of ELs were likely to be in the 

profile where only Grammar is mastered. Likewise, the profiles including Grammar-

Explicit Information, and Vocabulary-Inference-Sequences were each likely to be 

mastered by 4% of ELs. ELs who mastered Grammar-Syntax-Summary also formed a 

large cluster with the probability of 0.18. 

The probability of latent classes can also provide valuable information for 

attribute development. For example, there were almost no students mastering only 

Inference or Summary skills, hinting that these skills develop later than others or they co-

occur with other skills. For instance, a large proportion of students were likely to acquire 

Summary after Grammar and Explicit Details were attained. This is reasonable, as 

Summary requires processing sentences rather than details located in a single sentence 

and understanding relations between the sentences. Likewise, Inference emerged with 

other skills such as Vocabulary-Sequences or Vocabulary-Explicit information. 
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Table 29. The Probabilities and Proportions of Latent Classes  
 

Profile Probability Expected Frequency 
000000 0.26 3076.78 
010000 0.09 1103.07 
000001 0.02 228.90 
001000 0.02 183.85 
100000 0.01 155.38 
101000 0.02 174.16 
011000 0.04 479.23 
010001 0.02 230.44 
100001 0.02 200.41 
011010 0.18 2119.03 
100101 0.04 452.97 
101100 0.03 301.75 
101010 0.01 111.76 
011100 0.01 107.07 
010101 0.01 67.16 
101101 0.01 162.24 
111010 0.01 141.54 
011011 0.01 122.98 
101111 0.02 215.68 
111011 0.01 142.41 
011111 0.01 85.41 
111111 0.16 1855.48 

Note. Less frequent classes (< 50 ELs) were omitted due to space limitations. Attribute order Vocabulary, 
Grammar, Explicit Information and Details, Inference, Summary, Sequences and Processes 
 
 
Figure 8. The Proportion of the Most Frequent Classes 
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The accuracy and consistency of these classifications were also estimated to 

determine whether it would be appropriate to use the class (i.e., pattern) information as 

well as the individual attributes (Table 30). When prior information, how ELs performed 

on the test, was used both accuracy and consistency improved specifically for the pattern 

level. However, for a standardized test, the maximum likelihood (MML) method might 

be preferred over using prior information (i.e., MAP), as it represents actual behavior. 

With respect to the overall pattern, an EL’s class was accurately estimated 26% of the 

time, whereas they were consistently classified into a class 11% of the time. These 

indices are related to each other, such that consistency (Pc) is equal to or smaller than 

accuracy (Pa) (Wyse & Hoa, 2012 in Wang et al., 2015). Despite being greater than 

random chance, the pattern level accuracy and consistency was not high, even when prior 

information was used. However, this was not surprising due to the large number of 

attributes, lower discrimination, short tests, or moderate to high associations that 

compromise both indices. Although 0.70-0.80 range is considered as acceptable, Cui et 

al. (2012) report Pa as 0.44 and Pc as 0.25 for 5 moderately correlated attributes that are 

associated with 20 low discriminating items. For the same conditions, Wang et al. (2015) 

estimate Pa as 0.20 and Pc as 0.09. Therefore, the results were consistent with earlier 

findings. In contrast, the probability of accurately and consistently determining students’ 

mastery of the individual attributes was, overall, adequate. Pa for the individual attributes 

ranged between 0.72 and 0.86, which was adequate. The consistency of the Sequences, 

Inference and Grammar was slightly lower (i.e., 0.61, 0.63, 0.64), which was also the 

case for some attributes in Wang’s (2015) study for the described conditions. MAP 
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estimates for both classification and accuracy were higher and within the expected ranges 

for the individual attributes. 

 
Table 30. Classification Accuracy and Consistency of the Overall Profile and Individual 
Attributes 
 
 MAP MLE 
 Pc Pa Pa Pc 
Pattern 0.580 0.535 0.256 0.110 
VOC 0.854 0.810 0.804 0.709 
GRM 0.793 0.735 0.739 0.640 
EXP 0.898 0.833 0.861 0.767 
INF 0.863 0.820 0.745 0.627 
SUM 0.864 0.807 0.790 0.680 
SEQ 0.833 0.818 0.719 0.606 

Note. Pattern denotes the accuracy and consistency at the class level. MAP= Maximum a posterior, MLE = 
Maximum likelihood estimation. Pa= accuracy, Pc = consistency. VOC= Vocabulary, GRM= Grammar, 
EXP= Explicit Information and Details, INF= Inference, SUM= Summary, SEQ= Sequences and Process. 
 
 
Findings Related to Attributes 

 

Diagnostic feedback regarding individual attributes can be considered more useful 

than the profile information based on above results. The individual attributes were further 

examined to uncover their distribution, difficulty, and associations with other attributes. 

Table 31 demonstrates the attribute mastery status of ELs. They were based on posterior 

probabilities of individual attributes. As suggested by Jang (2009b), probabilities below 

0.40 denote non-mastery, 0.40-0.60 range denotes uncertainty, and above 0.60 represents 

mastery. Ideally, the proportion of the students with uncertain mastery status should be 

low, and the probabilities should be closer to 0 or 1 (Lee & Sawaki, 2009) to make 

confident conclusions about the attribute status. The students with uncertain status are 

likely to benefit from additional support for the given attribute. However, when many 
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students rest in this region, it would suggest that the precision of the information might be 

compromised for a large group of students. 

In this case, a majority of ELs could successfully be identified as masters or non-

masters (i.e., 88-95%). The largest undetermined category emerged for Grammar, which 

is also apparent from the distribution of the probabilities in Figure 9 (i.e., the second 

histogram in the first row). Although most students were still closer to 0-1, there were 

quite a few ELs with probabilities of 0.50 and 0.60., unlike the other attributes producing 

more U-shaped distributions. 

 
Figure 9. The Distribution of Posterior Probabilities for Individual Attributes 
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Table 31. Attribute Mastery Status  
 
Attributes Non-masters Undetermined Masters 
VOC 7751 (0.647) 988 (0.083) 3232 (0.270) 
GRM 4224 (0.353) 1386 (0.116) 6361 (0.531) 
EXP 5202 (0.435) 637 (0.053) 6132 (0.512) 
INF 8458 (0.707) 933 (0.078) 2580 (0.216) 
SUM 6558 (0.548) 905 (0.076) 4508 (0.377) 
SEQ 8206 (0.685) 1144 (0.096) 2621 (0.219) 

Note. The numbers in the parenthesis indicate the proportion of the students. VOC= Vocabulary, GRM= 
Grammar, EXP= Explicit Information and Details, INF= Inference, SUM= Summary, SEQ= Sequences and 
Process. 
 
 

The average of the posterior probabilities that conveys the difficulty of the skills 

also conformed with the expectations regarding the population. Figure 10 presents the 

probability of non-mastery or mastery of skills across all examinees. The attributes show 

varying difficulties, as anticipated. The level of difficulty associated with each attribute 

was also reasonable. Particularly, Grammar was the easiest attribute with a probability of 

0.55, meaning most ELs can understand compound sentences and references. Explicit 

Details were likewise mastered by 53% of ELs and comparatively easier than other 

attributes. Note that this attribute entails understanding details that is transparent and (i.e. 

in some cases verbatim in the text and the answer choice). Summary was more difficult, 

with a probability of 0.41, because it involves integrating information across multiple 

sentences and parts of the text, and sometimes understanding the main idea of a whole 

paragraph. Vocabulary, with a probability of 0.34, was a difficult attribute as it was 

related to knowing more abstract, content specific words and synonyms, as well as 

Sequences, which has a probability of 0.32. Finally, Inference was the hardest attribute of 

the test, and only 29% of the ELs were likely to master it. Inference is a more abstract 
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skill, as it is related to understating implicit information and making predictions 

justifying its difficulty. 

 
Figure 10. Average Posterior Probabilities of Individual Attributes 
 

 
Note. VOC= Vocabulary, GRM= Grammar, EXP= Explicit Information and Details, INF= Inference, 
SUM= Summary, SEQ= Sequences and Process. 
 
 

The skill probabilities were compared across the grades to uncover possible 

patterns. On average, 6th graders had the lowest probabilities, and 8th graders had the 

highest probabilities (Figure 11). Overall, this confirms that language ability improves 

over time. The patterns of the skills were consistent across grades, except for Grammar, 

which was easier than all the other attributes for only 6th Graders. Figure 12 shows that 

grade level differences were more distinct with respect to some attributes. For example, 

the variability (i.e., also the range) of mastering Inference was smaller among 6th graders. 

ELs’ development of this abstract attribute might be more evident over time. It must be 

recalled that ELs enter the school system with varying proficiency. Thus, there were ELs 

in the 6th grade still having a high probability for the mastery of Inference and other 

attributes. 
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Figure 11. Posterior Probabilities of the Attributes across Grades 
 

 
Note. Sample size for the grade 6, 7 and 8 are 5,088, 3,636 and 3,247 respectively. VOC= Vocabulary, 
GRM= Grammar, EXP= Explicit Information and Details, INF= Inference, SUM= Summary, SEQ= 
Sequences and Process. 
 

 

Figure 12. The Distribution of the Posterior Probabilities of the Attributes within Grades 
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Associations among the attributes (Table 32) showed some variation (i.e., -0.01-

0.99), yet the majority of the correlations provided some evidence for the viability of 

deconstructing the L2 reading construct. The different proportions of masters for the 

attributes also support the divisibility. The association between Vocabulary and Grammar 

was 0, meaning that understanding complex sentences does not necessarily mean an EL 

has knowledge of content-specific words or can recognize synonyms. Although Explicit 

Information is related to both of these attributes, it can be separated from them to some 

extent. It is also reasonable to assume that an EL should understand vocabulary and 

sentence structure to identify details in the text. Correlation between Inference and 

Vocabulary was 0.93 and it was high. Note that these attributes were among the most 

difficult. When an EL masters Inference, he/she presumably masters vocabulary. In 

addition, both skills relied less on direct information in the text. Inference was not highly 

correlated with other skills thus it might be possible to differentiate it. Summary was 

perfectly correlated with Explicit Information. Its association with Grammar was also 

high (0.87). As mentioned before, both Summary and Explicit Information rely on 

understanding the information in the text, yet Summary involves understanding groups of 

sentences. It is prudent to expect ELs who have mastered Summary to master Explicit 

Information. The skill necessitates recognizing sentence relations and references, which 

also explains its somewhat high association with Grammar. Summary was moderately 

correlated with the remaining skills, implying its distinctiveness. Sequences was highly 

related with Vocabulary (0.88) and Inference (0.90) but associated less with other skills. 

Some of these high correlations also explain the poor fit of the Higher order model. 
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Table 32. Tetrachoric Correlations among the Attributes in the Expert-defined Q-matrix 
 

 VOC GRM EXP INF SUM 
GRM -0.013     
EXP 0.588 0.766    
INF 0.932 0.209 0.616   

SUM 0.498 0.865 0.986 0.494  
SEQ 0.876 0.239 0.338 0.900 0.492 

Note. Correlations greater than 0.90 (bolded) are considered highly correlated (Sessoms & Henson, 2018). 
0.80-0.90 range is considered typical (Madison & Bradshaw, 2015). VOC= Vocabulary, GRM= Grammar, 
EXP= Explicit Information and Details, INF= Inference, SUM= Summary, SEQ= Sequences and Process. 
 
 
Relation to the Original Framework: IRT 

 

Finally, posterior probabilities of the attribute mastery and final classifications 

were compared to the ability estimates and proficiency classification obtained from the 

original framework to further inspect DCM’s viability. ELs’ overall reading ability !, 

increased as they mastered more attributes (Figure 13). However, for some students not 

mastering any attributes, ! can be as high as those mastering two attributes. This might 

be an effect of less diagnostic items which decreased the precision of attribute 

probabilities. A more detailed graph that shows ! against the specific classes (i.e., 

ordered according to number of attributes mastered) was included. Figure 14 

substantiates that Grammar knowledge develops earlier, because for ELs just mastering 

this attribute, ! is relatively low. Whereas, Explicit Information might be acquired later 

as ! increases for masters of this attribute. Another example can be Vocabulary-Explicit 

Information-Inference that develops slightly later than Grammar-Explicit Information-

Summary as the average ability is higher for the former. When such conclusions are 

made, one must consider the accuracy of profiles. It is not surprising to see some 

divergence for less accurate attributes. 
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Figure 13. The Distribution of ! for the Mastery of the Different Number of Attributes 
 

 
 
 
Figure 14. The Distribution of ! for the Most Frequent Attribute Profiles 
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Figure 15 also shows ! distribution for the masters and non-masters of each 

attribute. Masters have a higher ! than non-masters and differences in the distribution of 

mastery probabilities between the groups is clear. A multiple regression analysis (i.e., 

posterior probabilities were treated as the predictors) also displayed that all attributes 

significantly predict !	and all together they explain 88% of the variability (R2 = 0.88) 

(Appendix F, Table 5).  

 
Figure 15. The Distribution of ! across the Different Mastery Status of the Individual 
Attributes 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
Note. Correlations between !	and the posterior probabilities of each attribute are VOC= 0.84, GRM= 0.66, 
EXP= 0.81, INF= 0.85, SUM= 0.83, SEQ= 0.82. 
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Students’ DCM-based classifications were also compared to PL classification 

which was reported by the test developer. There were 6 PLs with more students achieving 

PL 2 or PL 3 (i.e., a total of 64%). PLs were grouped together, as shown in Table 33 (i.e., 

Beginner, Intermediate, Advanced), to simplify the comparisons. The posterior 

probabilities for each attribute across three groups were significantly different, and three 

groups varied with respect to mastery of the attributes (ANOVA results in Appendix F, 

Table 6). As seen in Figure 17, Advanced ELs’ posterior probabilities were the highest, 

whereas as beginner ELs’ probabilities were the lowest on average. Advanced ELs also 

had a higher probability to master all skills (i.e. average probability > 0.80). In other 

words, they are likely to master all skills. An opposite pattern emerged for beginners. 

These findings were aligned with the expectations. Figure 16 presents the distribution of 

probabilities for individual skills across different proficiency groups. Beginner and 

Advanced ELs’ mastery probabilities for individual attributes were less spread compared 

to intermediate ELs who were the middle group. Distribution of individual mastery 

probabilities was clearly distinguishable, with majority of beginner ELs at the low end 

and advanced ELs at the high end. The proficiency of ELs in each profile was also 

examined (Table 34). Results mostly converged across two classifications. In line with 

the expectations, the majority of ELs in the profile where no attributes were mastered 

were the beginner ELs. There were no advanced ELs in this profile. Likewise, it was the 

beginners who mastered Grammar by itself. Intermediate ELs generally mastered 2-3 

skills. The profile where all attributes were mastered consisted mostly of Advanced ELs, 

but surprisingly some Intermediate ELs, which might imply the importance of the 
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accuracy of the overall profile. These results exhibit that two frameworks yielded 

comparable ability estimates, providing further evidence for the viability of DCM. 

 
Table 33. The Number of ELs across Different PLs 
 
 Beginner 

(33%) 
 Intermediate 

(47%) 
 Advanced 

(20%) 
PL 1 2   3 4  5 6 
N 293 3687  4013 1600  1565 813 

 
 
Figure 16. The Distribution of the Posterior Probabilities of the Attributes within each PL 
 

 
Note. VOC= Vocabulary, GRM= Grammar, EXP= Explicit Information and Details, INF= Inference, 
SUM= Summary, SEQ= Sequences and Process. 



 

 150 

Figure 17. Posterior Probabilities of the Attributes across PLs 
 

 
Note. VOC= Vocabulary, GRM= Grammar, EXP= Explicit Information and Details, INF= Inference, 
SUM= Summary, SEQ= Sequences and Process. 
 
 
Table 34. The proportion of ELs with Different PLs across Different Attribute Profiles 
 
Class Beginner Intermediate Advanced 
000000 2593 799 0 
010000 1069 450 0 
001000 13 68 0 
100000 11 33 0 
011000 52 195 4 
010001 23 39 0 
100001 12 41 0 
101000 2 62 1 
100101 23 447 28 
011010 178 2728 264 
101100 3 170 41 
010101 0 10 0 
011100   1 22 1 
101010   0 4 1 
101101 0 41 35 
111010 0 15 4 
101110 0 1 0 
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011011 0 11 3 
101111 0 23 47 
111011 0 13 13 
011111 0 2 7 
111110 0 1 0 
111111 0 438 1929 

 
 
Table 35. Posterior Probabilities and Characteristics of the Selected Students 
 

ID Background Characteristics  Posterior Probabilities 
Grade Time 

in 
ELP 

PL Raw 
Score 

 VOC GRM EXP INF SUM SEQ 

207846 6 6 2 8  0.023 0.677 0.143 0.011 0.013 0.261 
216053 6 7 2 8  0.001 0.167 0.004 0.009 0.001 0.535 
215100 6 7 3 12  0.080 0.721 0.095 0.335 0.030 0.666 
75803 7 3 3 12  0.024 0.878 0.652 0.013 0.500 0.170 
8414 7 2 4 17  0.200 0.929 0.981 0.103 0.955 0.112 
8473 6 1 5 17  0.920 0.075 0.908 0.633 0.145 0.155 
99 7 7 4 18  0.84 0.24 0.90 0.73 0.20 0.19 
262 8 10 4 18  0.476 0.857 0.999 0.402 0.941 0.403 

20239 6 2 6 22  0.997 0.451 0.995 0.976 0.556 0.867 
19113 8 2 6 22  0.957 0.890 0.999 0.906 0.985 0.936 

 
 

In summary, the application of the LCDM to ACCESS reading was useful from 

some aspects. The majority of the items could differentiate between masters and non-

masters, to some extent. Performance on the items could be associated with the mastery 

of the attributes, which could be accurately and consistently estimated. There were some 

aspects that picked up on the unidimensional structure of the test, such as the variability 

of latent classes. Despite the limitations, DCM could still be reasonable to provide some 

low-stakes diagnostic information. Table 35 exemplifies how information obtained from 

DCM can be useful. The table presents probabilities of individual attribute for selected 

students. Despite obtaining the same score, individual students have different patterns for 

the mastery for the attributes. For example, a 6th grade student with ID 20239 who got the 
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majority of the items right on the test, has a high probability of mastering four of the 

attributes and the status cannot be determined for Grammar and Summary attributes. On 

the contrary, an 8th grade student with ID 19113 has a high probability of mastering all 

attributes. They were both in the support services for two years. However, between the 

first two students with a score of 8, student 207846 might be a master of only Grammar, 

while student 216053 is probably master of none of the skills. They were both in support 

programs for 6-7 years. It must be noted that the response patterns of these students 

should be scrutinized because the diagnostic capacity of the items these students correctly 

responded is influential on mastery probabilities (Jang, 2009b). Had the items been more 

diagnostic, the results might have looked different. Nevertheless, this information might 

still be helpful to provide support for individual students
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CHAPTER V 
 

DISCUSSION 
 
 

This study showcased an implementation of a complete DCM methodology for 

the reading domain of a large-scale K-12 ELP test, and explored the viability of the 

methodology. The study was intended to answer the research questions: 

(1) What are key underlying attributes represented in the ACCESS reading 

domain in middle grades for more advanced ELs? 

(2) What DCM fits the data better?  

a. Does a general or specific restricted model better represent all 

items in the test?  

b. Does a Standard-based or an Expert-defined Q-matrix show better 

fit? 

(3) To what extent is it feasible to obtain diagnostic information using DCM?  

a. What is the diagnostic capacity of the test items?  

b. To what extent can students be appropriately classified using the 

model? 

This chapter provides a summary and synthesis of the major findings. The chapter starts 

with the summary of the research. In addressing the research questions, findings related 

to the (1) attribute specification, (2) Q-matrix development and selection, (3) model 

choice, (4) final model item, person and attribute statistics are discussed, especially in 
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relation to the previous studies. Methodological considerations, as well as theoretical and 

practical implications, are woven into the discussion. The chapter concludes by 

considering the limitations of the study and directions for future research. 

Summary of the Study 
 

Despite the pressing demands and needs for diagnostic information in education 

(e.g., ESSA, 2015; Huff & Goodman, 2007; Lopez et al., 2019), there is a lack of 

diagnostic assessments (de la Torre et al., 2010) or sufficient diagnosticity in current 

reporting practices (e.g., Wolf et al., 2018). This gap led researchers to employ DCMs as 

for non-diagnostic assessments, in the interest producing diagnostic feedback. In line 

with this trend, the current study undertook the DCM methodology for ACCESS, an 

academic ELP assessment at K-12 level. If diagnostic feedback about ELs’ language 

development could be generated, it would be extremely valuable for ELs (Wolf et al., 

2016), who historically underperformed as emphasized by various researchers (e.g., 

Deville & Chalhoub-Deville, 2011). The reading domain for the middle graders (i.e., 6-8) 

was selected for the implementation as it is considered a relatively more important 

academic skill (Grabe, 1991) and given more weight for calculating ELs score. A test 

form with 27 multiple choice items, which was administered to 23,942 ELs, was used in 

the study. The contribution of the study was two-fold as it revealed useful information 

about (1) the representation of the L2 reading construct and its attributes, and (2) the 

extent and quality of diagnostic information using these components. The study explored 

the dimensions of the reading relying on the test standards and through content analysis. 

It established relevant attributes, and examined the nature of the relationship among them 
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through various models. With respect to the viability, item parameters and their 

diagnosticity were evaluated. ELs’ knowledge of each attribute (i.e., probability of 

mastery), overall profile (aka., classification), and average attribute mastery (i.e., 

difficulty of attributes) were generated. The accuracy, consistency, and plausibility of 

attribute probabilities and overall profile were evaluated to determine the instructional 

use. Finally, ELs’ competence level yielded by the DCM and the original framework, 

IRT, were compared to provide further evidence for the appropriateness of the 

methodology, which uncovered important developmental patterns for L2 reading. It must 

be highlighted that the study was methodologically robust as it considered alternative Q-

matrices, a statistical Q-matrix validation method, and a more recent modelling 

framework. The study reveals similar findings with prior research and conceptualizations 

of L2 reading. Yet, some of the findings are different due to the population studied. All 

these aspects are discussed in depth in the following sections.  

Summary of the Findings and Implications 
 
Attributes Underlying ACCESS Reading Domain 
 

This study incorporated two alternative Q-matrices. There were 6 attributes in the 

final Expert-defined Q-matrix, which were Vocabulary, Grammar, Explicit Information 

and Details, Inference, Summary, and Sequences. The sample size (N = 23,942) was 

large enough to recover 64 classes (i.e., 26). The grain size can also be regarded as being 

proper, when the number of attributes in similar studies (i.e., 3-10) is taken into 

consideration. The attributes identified for the test also aligned with the definition of the 

academic L2 reading construct. In addition to the knowledge of vocabulary and grammar 
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that are deemed necessary for reading comprehension (e.g., Grabe, 1991; Koda, 2007), 

the attributes were related to language functions. Indeed, K-12 academic language is 

operationalized as language functions by some language researchers (Wolf & Faulkner-

Bond, 2016) such as sequencing, summarizing, inferencing, synthesizing, retelling, 

describing (e.g., Sato, 2007 in Frantz et al., 2014, p. 442). The attributes specified were 

also connected with the process of reading. For example, Koda (2007) suggests that 

reading comprehension involves drawing information from the text, and processing it by 

integrating, synthesizing, and using prior knowledge. The attributes were also akin to the 

attributes in some earlier DCM studies concerned with the college level L2 reading 

construct (e.g., Li & Suen, 2014; Sawaki et al. 2009). However, despite sharing similar 

processes, the complexity of the attributes varies at different levels. For instance, while 

an inference was associated with low-level predictions and implicit meanings in this test, 

it required drawing from background knowledge to arrive at conclusions at a college 

level test, similar to MELAB (Li & Suen, 2013). The fact that 3 independent SMEs 

specified attributes that corresponded to the definition of the construct in the literature 

implies that reading construct was well represented in this form. Moreover, the attributes 

defined by the experts matched with the task specifications of the test developer, which 

provides further evidence to their vigor.  

It is also worth pointing that because vocabulary and syntax are critical for 

comprehension (Grabe, 1991; Harding et al. 2015; Koda 2007), they might relate to all 

items on a reading test. This concern was also raised by two SMEs, who later 

acknowledged that vocabulary and grammar were more relevant to specific items on the 
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form, or that some items required more than baseline grammar and vocabulary 

knowledge. The item blueprints confirmed that some items differed, with respect to the 

requirement of these dimensions (e.g., understanding of complex sentence structure, 

technical vocabulary etc.). It is also suggested that K-12 academic English is 

characterized by complex structures, embedded sentences, various phrases, conjunctions, 

etc. (Frantz et al., 2014). Fostering awareness of academic language is regarded as being 

effective. Gee (2008) contends that students not only benefit from being presented a 

wealth of activities and examples of academic language, but also from drawing their 

focus on these features in a comprehensible manner. Giving feedback on how ELs 

performed on these attributes could initiate such awareness. Thus, the two attributes were 

kept in the study. However, it might still be difficult to elicit these attributes when a test 

is not intended to test them (Sawaki et al., 2009). In short, the usefulness of the attributes 

was also considered when selecting them, and because they are consistent with the L2 

reading process and academic language, the attributes specified in this study can be 

helpful for teachers. 

The attributes in the Standards-based matrix were informed by the standards of 

the test developer, which describe language use to communicate in academic context and 

content areas, and key uses that describe language functions (i.e., recall, explain, argue). 

Despite having more dimensions, the attributes themselves were more broadly defined, 

an expected issue debated by some researchers (Li & Suen, 2013; Leighton & Gierl, 

2007). The standards themselves fall short of laying specific aspects of language, and 

carry the risk that they might be simply interpreted as vocabulary requirement for the 
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content area in diagnostic reporting.  In fact, Frantz et al. (2014) point that educators 

associate academic language with subject related vocabulary, which is just one aspect of 

it. For this reason, key uses of language were incorporated to add a little more specificity. 

However, key uses also collapsed some functions together and were broader than expert-

defined attributes. For example, Recall was associated with identifying details and 

summarizing. However, the attributes in the Standard-based matrix have the advantage of 

being familiar to the potential users of the diagnostic information. 

Q-matrix Development and Choice: Standards-based vs. Expert-defined Q-matrix 
 

SMEs were overall assured in their mapping of the attributes. There was a 

consensus for the majority of the items (i.e., agreement among 5+ raters). Their selection 

diverged somewhat, especially for a second attribute. The rater agreement results also 

showed a fair amount of agreement among SMEs that is also consistent with previous 

research (e.g., 0.31- 0.38 among 4-5 raters in Jang, 2009a; Li & Suen, 2013; Kim, 2015). 

It must be noted that the SME group was larger (7 SMEs) in this study. Jang (2009a) 

comments that agreement rate is conditional on the size of the panel, number of items, 

and attributes. I also observed that there was almost perfect agreement for the Standards-

based matrix because 3 SMEs only mapped items to 3 attributes. The study also hints that 

the agreement rate can be increased with training and discussion. The 3 SMEs who 

specified attributes had small group meetings and there was substantial agreement among 

them. Weir et al. (1990) argue that for the sake of consistency of decisions about reading 

skills, experienced experts from testers and linguists should be selected. The SME panel 

in the study was unique in such that experts from the test developer were involved, and 
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all SMEs had expertise in language testing as well as content (i.e., English as a second 

language). For this reason, they were provided with statistical information for the items 

and distractors. The group was tacitly relying on such information when selecting 

attributes. For example, SME 2 explained he decided to select vocabulary for an item 

because the most picked distractor showed technical vocabulary was creating confusion 

for ELs. Thus, statistical information might be helpful for correct specification of the Q-

matrix in retrofitting studies.  

When attributes are identified retrospectively, it is challenging to meet the ideal 

Q-matrix conditions, such as ensuring that they are separated and also combined 

(Madison & Bradshaw, 2015). The sparsity of the attributes is another issue, which 

undermines the accuracy of classifications (Deonovic et al., 2019; Jang, 2009a). For the 

Expert-defined Q-matrix, the least measured attribute was Grammar (3 items), and it was 

not separated from other attributes. Therefore, results regarding grammar should be 

treated cautiously. Liu et al. (2018) alternatively recommends maintaining such attributes 

for the completeness of the Q-matrix but disregard them in interpretation. The rest of the 

attributes were associated with 7-13 items. All attributes were measured together, except 

for Sequences with Vocabulary and Inference. Despite that some of the desired 

conditions were met for the Expert-defined Q-matrix, results can still be improved in the 

future if the proportion of attributes can be balanced. For instance, more items were 

associated with identifying details. It must be confirmed whether this was intentional or 

consistent with coverage of the skill.  
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On the other hand, the structure of the Standards-based matrix was less desirable 

because it compiled two simple structure dimensions together. However, despite this 

property, it showed a better fit than the Expert-defined Q-matrix, which was also contrary 

to the expectation. The Standards-based matrix included more attributes and model 

parameters, which might account for the better fit. Nevertheless, the Expert-defined Q-

matrix was selected as the final matrix for the study, because the attributes related to the 

key use dimension in the Standards-based matrix were perfectly correlated and similar 

proportion of ELs achieved the attributes. In their comparison of Standards-based vs. 

Expert-defined matrix Reid et al. (2018) also found better performance for the latter. 

However, the study findings should not be interpreted as the attributes in the Standards-

based matrix are less related to the items or are not germane to performance of the ELs. 

The Expert-defined Q-matrix can be more suitable for diagnostic information (i.e., better 

differentiation of the attributes) and feasible for reporting (i.e., 64 vs. 256 classes). 

Another aspect that differentiated the study was the statistical Q-matrix 

validation. Diagnostic modelling progressed, with respect to the Q-matrix validation as 

several methods have emerged. The study also employed an elaborate design and cross 

validated modifications for integrity. The method proposed changes for 4 items, and 3 of 

them were overspecification issues. Previous studies also reported overspecification as an 

issue, albeit for more items (e.g., 8 items in Kim, 2015; 7 items in Ravand, 2016). 

Language experts might tend to add more skills than miss them. However, 

overspecification might be an easier issue to resolve (Jang, 2009a). 
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 Fewer modifications do not speak to a perfectly specified Q-matrix. Some 

misspecification might still be present within, which the empirical approach did not 

catch. The true Q-matrix is not known since the attributes were retrofitted. The final Q-

matrix was the most optimal to account for 95% of the variance between the masters and 

non-masters of the attributes. It must be acknowledged that when the cut-off point was 

changed, 7 modifications were proposed by the method. However, the additional 

suggestions were not applicable. The Q-matrix validation is not only an iterative process, 

but also entails a holistic approach, as seen in selection of the cut off point (i.e., knowing 

discrimination power of the items). Moreover, statistical validation does not assess the 

theoretical grounds and compels substantive verification to complement it (Jang2009a). 

In this study, the experts’ rationale for the attribute mapping and item specifications, 

were incorporated.  

In summary, as highlighted by Koda (2007, 2012) and Hudson (1996) L2 reading 

research and defining attributes is an arduous undertaking. According to Sawaki et al. 

(2009) L2 reading maintains its obscurity and not all the aspects are fully understood. For 

this reason, authors note that separate processes might result in different attributes, 

definitions, and Q-matrices. The process obliges blending information from different 

sources (Jang, 2009a) as well as a good composition of experts, familiarity with the test 

and rounds of discussion. Considering the specificity, the divisibility of the attributes and 

practicality of reporting the Expert-defined Q-matrix was more appropriate for this study.  
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Model Choice: A General vs. a Constraint Model  
 

Due to the lack of a theory for attributes (Alderson, 2005; 2007) the study applied 

the LCDM framework and fit a general and several constrained models. The LCDM was 

determined to better represent the Standards-based and Expert-defined Q-matrices at the 

juncture of relative and absolute fit indices, and likelihood ratio tests. However, the C-

RUM and R-RUM were comparable models; some of the indices even picked these 

constrained models. Some prior DCM applications (e.g., Lee & Sawaki, 2009; Ravand, 

2016) also confirm similar performance of compensatory and conjunctive models for L2 

reading. It was reasoned that these models might be applying to different items on the test 

(Jang, 2009a; Chen et al., 2013; Ravand, 2016), therefore, they are “partially correct” at 

the test level (Chen et al., 2013, p. 136). On the other hand, the DINA, as a conjunctive 

model, and the DINO, a disjunctive model, underperformed in the study, which also 

corresponds with previous studies (e.g., Li et al., 2016; Ravand & Robitzsch, 2018; Yi, 

2017). These two models employ constraints across attributes (Rupp et al., 2010), 

meaning, the contribution is fixed. Therefore, as more restricted models (e.g., Henson et 

al., 2009), they are also less suitable for the L2 reading. Similarly, the HO-DINA was an 

inferior model, which might be attributed to the high associations among some attributes 

(e.g., key uses dimension in the Standards-based Q-matrix).  

The LCDM’s flexibility to permit different sub-models for items is also favorable 

to better understand the cognitive processes (Henson et al., 2009). Specific models not 

only ensure easier interpretation (Lee & Luna-Bazaldua, 2019), but also improved fit 

(Rupp et al. 2010). Potential item level models in this study were determined by 
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examining item parameters and also empirically tested (de la Torre & Lee, 2013). In line 

with the fit results, the C-RUM and R-RUM each aligned with 10 items, and for 12 of 

these items, sub-models were statically better than the LCDM. However, item-level 

modelling could not be carried out due to the limitations of the software. The close 

examination of each item manifested that compensatory or conjunctive relations might be 

contingent on the type and complexity of the skills, as well as item/task characteristics, 

which was also stressed by Ravand (2016). For example, all Inference items picked a 

conjunctive model, meaning an EL will have a lower correct response probability if this 

more abstract attribute is not mastered. Jang (2009a) also observed students cannot make 

up this skill by relying on other comprehension skills in her cognitive surveys. One 

exception was Item 11. A diagram accompanied this item and presumably cued the 

correct answer for some students. This item also required lower level inference. 

Similarly, Summary and Sequences that are also more complex attributes had a 

conjunctive relationship. On the contrary, Explicit Information and Sequences, and the 

combination of Vocabulary with all other attributes (i.e., except Inference) showed a 

compensatory relationship. Namely, despite the non-mastery of the attribute, an EL could 

still have a high correct response probability. Two items departed from this pattern (Items 

6 & 23) because they required knowledge of multiple words and synonyms. As a result, 

when the complexity of Vocabulary knowledge increased, the high probability was 

conditional on mastery of the attribute. There were sufficient complex items in the study 

(i.e., 20 items out of 27). However, there is a need to balance attribute combinations 

before drawing final conclusions about skills associations. Yet, item specific models are 
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still useful and can be inspected for plausibility (i.e., intended or not). They can facilitate 

improvement for item design and writing. Dubious item level models can draw attention 

to the aspects of the cognitive processes that are not fully grasped (Henson et al., 2009). 

The performance of relative and absolute fit indices used in conjunction for model 

selection in this study aroused several important implications. The study supports earlier 

findings that relative fit indices are prone to model complexity, and that AIC and BIC are 

not always consistent with each other (Henson et al., 2009; Li et al., 2016; Lei & Li, 

2016; Kunina-Habenicht et al., 2012; Yi, 2017). When this happens, likelihood ratio tests 

can be employed (e.g., Liu et al., 2018). However, note that saturated models are highly 

parameterized. Item level models can also be examined to verify the final model 

selections.  Several researchers also recommended absolute fit indices for complementary 

evidence for model selection (Lei & Li, 2016; Kunina-Habenicht et al., 2012). In this 

study, absolute fit indices converged with relative fit results and did not show counter 

evidence. However, they were less useful by themselves in line with earlier research (e.g., 

Kunina-Habenicht et al., 2012), because they did not show much variation across models. 

Among them MADcor, SRMSR, MADQ3, RMSEA values were below the cut offs. This 

shows that some absolute fit indices might also be less suitable depending on the data 

features. In the study, #$! was picking up even small deviations due to a large sample. 

Likewise, MADres was apparently large, similar to in some other studies, including 

testlet based items (Li et al., 2016; Liu et al., 2018; Ravand & Robitzsch, 2018). 

Therefore, the performance of this index should be investigated in other contexts where 

there may be less dependencies potentially due to a common stimulus. Also, as stated 
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previously, when alternative Q-matrices are employed, relative fit indices might not be 

insufficient, and a more holistic model inspection is necessary.  

In short, the LCDM fit the data reasonably and the study also substantiated that 

some model indices perform better than others. 

Feasibility: Diagnostic Capacity of the Items 
 

Inspection of the item parameters was considered equally important with model 

fit, as it indicates item performance for diagnostic purposes (DiBello et al., 2007). 

Consistently low parameters for a specific skill bring the existence of the attribute into 

question (Templin & Hoffman, 2013). In this application, the LCDM generally yielded 

large item parameters. There were 3 exceptional items (Items 2, 9, 15) with small main 

effect and interaction parameters (< 0.77). These items were associated with different 

skills, and their blueprint specifications also matched with the Q-matrix specifications 

(i.e., no potential misspecification). 2 items were the most complex items of the test, each 

having 3 attributes. Henson et al. (2009) recommend further exploration of the LCDM for 

complex Q-matrices and suggested that item parameter outcomes might vary for a large 

number of attributes. Item parameters were actually larger for simple items on the test.  

Item response probabilities revealed the average correct responsibility was 0.34 

for non-masters and 0.75 for masters. Getting items right, despite lacking the attribute, 

was slightly higher than guessing the items (i.e., 4 options). For about a third of the items, 

the correct response probability for non-masters was between 0.45 and 0.60 (i.e., except 

for two items where the probability was 0.45-0.50). Q-matrix misspecifications, item 

misfit, or item facility might foster larger probabilities for non-masters (Templin & 
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Hoffman, 2013). These items with large intercepts in the test shared some common 

characteristics, such as high p-values or implausible distractors. It is possible that ELs 

were able to rule out some distractors. Eliminating distractors was not considered as an 

attribute in the study, hypothesizing that it might apply to all items. Some SMEs also 

expressed the strategy might be more relevant to some items. It could prove helpful in the 

future to explore the attribute, in order to capture aspects of item performance that were 

missed. Previous research has found that language learners make strategic use of 

distractors (e.g., Li & Suen., 2013). However, generalizing test taking strategies might be 

more difficult and require additional information such as verbal protocols. It is also a 

method effect and highlights the importance of writing good distractors. The content 

review of these items exhibits that ELs’ knowledge of content might have played a role in 

their performance as well. Some of the items might have been easy for ELs with low 

English but high content proficiency, which was also articulated by some SMEs. Topic 

knowledge is shown to influence test performance but is distinguished from language 

knowledge in eminent language assessment frameworks (e.g., Bachman & Palmer, 1996; 

2010). However, the context of the present study is quite distinct, where language 

proficiency is assessed within content areas (Brynes, 2008). Therefore, distinguishing 

content and language knowledge in this context remains a challenge in test development 

(Römhield et al., 2011; Llosa, 2017). Although this boundary might be unnecessary in 

instruction, it should be established and maintained in the assessment context for clear 

constructs (Frantz et al., 2014). Based on content review, it is speculated that the 

distinction might not have been retained for some items and affected the probability of 
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correct response for non-masters. The analysis of domain-specific (content related)) and 

domain-general (language related) factors for ACCESS also substantiates this prediction. 

Römhield et al. (2011) report that for high proficiency test forms of ACCESS, such as the 

one used in this study, domain-specific knowledge is more notable and thus affects the 

performance more than domain-general knowledge, especially in middle grades. If 

content knowledge is to affect performance in reading, the performance of ELs cannot be 

fully captured with a single standard Q-matrix. Alternative ways to factor in such 

information might be necessary. However, item probabilities for non-masters were still 

lower when compared to previous retrofitting research (e.g., 0.47 in Kim, 2015; above 

0.40 for half of the items in Li & Suen, 2013).  

There were also some hard items (< 0.57) even for the masters. These items were 

complex except for one (Items 9, 23, 26, and 27) and were also associated with more 

demanding skills such as Inference, Summary, and Sequences. The low probabilities even 

for the masters brings misspecification or underspecified attributes to mind. However, the 

specified attributes were consistent with item specifications. For the simple item, adding 

a skill did not substantially improve the probability. These items were also the most 

difficult, but the least discriminating based on classical analysis, a condition also 

observed by Jang (2009b).  

Item discrimination capacity of the items can also show the viability the DCM 

(DiBello, 2007). The average discrimination was 0.42, and approximately two third of the 

items more clearly separated the two groups. Earlier retrofitting studies also reported a 

difference of 40-45% between the two groups (Jang, 2009b; Kim, 2015; Li & Suen, 
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2013). In Kim half of the items, and in Jang 32% of the items did not differentiate the 

master and non-master equally well.  In Jang, those items had either very low or high 

item facility. Similarly, in this study, items with low diagnosticity were easier or more 

difficult than others, and some of them also had low point biserial estimates. As already 

alluded, those items not performing well also had poor classical item statistics. This 

implies that, in addition to task features, test characteristics seem to influence diagnostic 

capacity and performance of the DCM. As Jang (2009b) stressed, varying item facility 

that is essential to order students on a continuous scale in standardized tests might not be 

ideal to maintain the desired diagnosticity. She suggests, item difficulty in diagnostic 

framework should derive from cognitive complexity. Variation among the items tapping 

the same attributes is also undesired (Liu et al., 2018). Poor diagnostic items do not 

contribute much to diagnostic information, yet the majority of the items can be useful to 

determine attribute mastery to some extent. The DCM analysis might also be rendered 

useful for item and test development (Templin & Hoffman, 2013) in this context, even 

though it is not used for diagnostic reporting. Q-matrix specifications mostly matched the 

test developer’s item specifications, and analyses can be used to figure to what degree the 

intended skills are assessed by the items. 

Feasibility: Appropriateness of Student Classifications 
 

Characteristics of the profiles yielded important findings about the strength of the 

DCM. Of 64 classes, a large number of ELs (42%) were likely to be in a profile where 

none of the skills or all of the skills are mastered, with the former almost doubling the 

latter. This means that there were fewer proficient ELs. This was consistent with the 
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characteristics of the test takers, as 20% were high ability and 33% were low ability ELs. 

Those mastering all skills, or all skills but one, made up 20%. When students form 

compact clusters (aka, flat profiles), it is suspected that the attributes are highly correlated 

(i.e., unidimensional) (Lee & Sawaki, 2009; Rupp et al., 2010). Previous DCM 

implementations for the L2 reading construct also resulted in dense, flat classes (53-75 

%) (e.g., Jang et al., 2013; Lee & Sawaki, 2009; Li et al., 2016). Although the original 

framework of the test pointed to some issues for classification, as with the items, some 

limited classes had fair proportion of ELs, especially for those where 1- 3 attributes were 

mastered (e.g., Grammar: 9%, Grammar-Explicit Information-Summary:18%). It must be 

noted that variability might be dependent on the number of attributes and classes. 

An accurate and consistent estimation of the classification is also vital for 

diagnostic skill inference (DiBello et al., 2007), which is assessed via accuracy and 

consistency indices in the study (Pa and Pc). At the class level, accuracy and consistency 

were lower (0.25 and 0.11 based on MLE), and making use of the attribute pattern was 

less suitable. Attribute level accuracy and classification were deemed acceptable. The 

developers of the indices acknowledge that the impact of different conditions, such as the 

complexity of a Q-matrix, on the consistency and accuracy. The magnitude of the indices 

in this study was consistent with the developer’s anticipation for similar conditions. 

Moreover, the findings reveal that as the number of items associated with an attribute 

increases, the consistency and accuracy improves. For example, there were 3 items 

related to Grammar which had slightly lower accuracy and consistency. Nevertheless, 



 

 170 

individual skill classifications were more trustworthy, and they might be more practical 

for teacher use.  

There is also a need to evaluate the performance of these indices in real data 

applications for language constructs. The range of indices in Ravand and Robitzsch’s 

(2018) study with 5 attributes were close to this study. However, in two other studies for 

L2 reading, the pattern of Pa and Pc were reversed, which hindered the interpretability and 

comparability of the results.  

Feasibility: Properties of the Attributes 
 

In addition to holding higher accuracy and consistency, the six attributes 

separated masters and non-masters mostly. On average, only about 8% of the ELs fell 

into the uncertainty category. Jang (2009b) also report 6-15% uncategorized students in 

her application. In other words, a decision about the attribute mastery could be reached 

for the majority of students. Grammar was less stable because, as mentioned, there were 

fewer items related to this attribute. Tatsuoka argues the stability of the probabilities 

increases as a function of the increasing number of items for a given attribute (in Svetina 

et al., 2011). In this regard, the disproportionate attributes reveal shortcomings from 

several aspects. 

The proportion of masters and non-masters (i.e., attribute difficulty) should also 

conform to substantive expectations (DiBello, 2007), and deviations could imply 

problems with the Q-matrix (i.e., misspecification). The L2 reading construct consists of 

skills with different levels (Harding et al., 2015), hence, the difficulty of the attributes is 

expected to vary. According to Grabe (2009) and Grabe and Stoller (2002), lexical and 
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knowledge, and semantic understanding of sentences are lower level skills, while 

understanding the gist/summary, interpreting information, inferencing, and using 

background knowledge are the higher order skills. The order of the skills (i.e., easy to 

difficult) in the study was Grammar, Explicit Information, Summary, Vocabulary, 

Sequences, and Inference. The difficulty of the skills aligned with previous reading 

research, as syntax (e.g., Jang et al., 2013; Ravand, 2016; Svetina et al., 2011) and 

finding information (e.g., Jang et al., 2013; Kim, 2015; Lumley, 1993; Svetina et al., 

2011) were comparatively easier than other skills. For instance, in her RSM analysis, 

Svetina et al. reported moderate difficulty for grammar (0.40). Similarly, more than half 

of the ELs mastered the attribute in the study. Explicit Information pertained to sentence 

or local level understanding, thus was easier than summary, which required global 

understanding of the texts or paragraphs. Several studies (e.g., Kim, 2015; Jang et al., 

2013) also reported summary as a more difficult skill. According to Pressley (2002) 

summary, or understanding main ideas entails vocabulary, syntactic, and discourse 

knowledge, as well as comprehension strategies (as cited in Grabe, 2009), thus it is more 

complex. The most difficult attribute was Inference, as in other studies (e.g., Baghaei & 

Ravand, 2015; Jang et al., 2013; Kim, 2015; Ravand, 2016). Hammadou (1991) and Long 

et al. (1996) also assert that low performers fail to infer or cannot infer to the same extent 

with high performers. According to Mecartty (1998) inferencing varies in degree as 

simple and complex inferences. The attribute was associated with low level inferences in 

this study. Yet, it still entailed drawing from less transparent information and applying 

information to new situations. Thus, Inference was more demanding. Unlike the previous 
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studies (e.g., Jang, 2009a; Kim, 2015; Svetina et al., 2011), vocabulary was difficult to 

master. The EL population is diverse, with respect to age and background, and they vary 

in their L2 comprehension behaviors and strategies (Koda, 2007). The population in this 

study was quite different, as the participants were younger ELs at the K-12 level, rather 

than college-level ELs. Thus, content related technical vocabulary might have been more 

challenging and abstract for the younger population. Compared to college level students, 

K-12 ELs are at early stages of their vocabulary development. According to Koda, the L2 

reading difficulties ELs experience at different stages, and their L2 development, might 

vary. Weir et al. (1990) also note that it might still be difficult to achieve lower order 

skills. However, skill development across grades was as expected and mastery 

probabilities increased with the grade level. 8th graders were more likely to master skills 

than 6th graders in general, which supported the developmental nature of language ability. 

As DCMs are suitable for multidimensional constructs, attributes should also 

fulfill the separability from each other. Otherwise, a student’s mastery of an attribute is 

dependent on other attributes (Lee & Sawaki, 2009). The correlation among attributes 

supports that it is possible to separate them to some degree. Of 15 correlations, 4 were 

weak (0.-0.40), 6 were moderate (0.50- 0.76), 5 were strong (>0.87), and of those only 

two were above 0.90. In earlier DCM research for the L2 reading construct, higher 

associations were a common problem (e.g., 0.70-0.90). Correlations higher than 0.90 can 

be concerning for divisibility (Sessoms & Henson, 2018). The highest correlations were 

between Vocabulary-Inferences, Vocabulary-Sequences, and Summary-Explicit 

Information. Overall, these attributes showed moderate correlations with other attributes, 
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so they can be differentiated to some extent. The high association between Summary and 

Explicit Information was straightforward, as they relate to deriving transparent 

information from different levels of the text (local vs. global). It is reasonable to assume 

that those ELs’ who are successful at understanding global meanings can also understand 

local information. Also, the slightly higher relation between Summary-Syntax were 

apparent in other studies (e.g., 0.74 in Svenita et al., 2011). As mentioned earlier, 

summary entails various skills and strategies, and grammar can be a means for global 

comprehension (Grabe, 2009; Pressley, 2002). Some of the other correlations, such as the 

weak correlation between Vocabulary-Grammar and moderate correlation between 

Explicit Details-Grammar, were consistent with other studies (e.g., Zhang, 2012). In 

short, the study found some statistical evidence that the L2 reading may be multi-

componential.  

Finally, ability estimation under IRT was congruent with DCM person estimates 

despite different assumption of the models. The agreement between the models provided 

further support for DCM’s feasibility. Moreover, the comparison was beneficial to 

understand the development of reading attributes. ELs’ ability tended to increase as they 

mastered more attributes. Thus, more proficient ELs mastered more skills. For individual 

attributes, a master’s ability was clearly higher than a non-master’s. The posterior 

probabilities had high correlation with ability, except for Grammar (i.e., moderate 

correlation). The association between ! and individual attributes was also higher than 

previous retrofitting studies for the L2 reading (moderate association in Lee & Sawaki, 

2009; Svetina et al., 2011 and 0.45-0.95 in von Davier, 2008). The divergence of 
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grammar from other attributes was striking; and it was also observed that some advanced 

and intermediate learners were missing this relatively easier skill. Brunfaut and McCray 

(2015) found that some higher proficiency L2 readers (e.g., B1 level) focus on higher 

order skills more than lower order skills. For example, although they have the capacity 

for syntactic parsing, they do not rely on this skill and do not use it, which results in their 

failure to comprehend the text and answer the items correctly. This might explain why 

more able students seem to be non-masters of grammar. Likewise, the PL examination 

also supported that the majority of the beginners consistently had lower attribute 

probabilities, whereas advanced ELs were likely to master all attributes. 65% of Beginner 

ELs were in a class where none of the attributes were mastered and 25% only mastered 

Grammar. Advanced ELs generally mastered 4-6 attributes (82%), and Intermediate ELs 

mastered 2-3 attributes. However, there were some irregular patterns. Some ELs’ overall 

ability, who had mastered none of the skills, had a ! estimate, which is as high as those 

who mastered 2 skills. When compared to a PL analysis, they were suspected to be 15% 

of intermediate ELs who were classified as non-masters of any attributes. Similarly, 8% 

of them were in the class where all attributes were mastered. These irregular patterns 

might have sourced from the low diagnostic capacity of the items and thus their mastery 

probabilities were estimated less precisely (Jang, 2009b). As suggested by Deonovic et 

al. (2019), supplemental information is useful to evaluate accuracy of the findings. 

With respect to the developmental patterns, the results imply that grammar is 

attained earlier. When ELs reach an intermediate level their probability to master 

extracting details and summarizing increases substantially. Simultaneously, the students 
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still need to improve their vocabulary and inferencing skills, but those skills are mastered 

at later stages. However, it must be noted that some ELs have different patterns of skill 

probabilities Jang et al. (2013) showed that some ELs do not acquire the reading skills in 

order of hierarchical difficulty. For example, in this study, there were some beginner ELs 

who were better at summary. Thus, strong hierarchical assumptions might be difficult for 

language constructs. Also, lower order skills sometimes develop at the same with higher 

order skills (Harding et al., 2015). Yet, probing into these patterns might be beneficial to 

plan learning and teaching activities. 

Limitations and Future Research Directions 
 

The DCM implementation has proven to be useful to some extent for the reading 

domain of ACCESS. Nevertheless, the study is not without limitations. Future research 

can address some of these limitations or explore the aspects that the study was not 

concerned with for a better understanding of L2 reading and its development. 

Although the instrument used in this study was informed by evidence-based 

assessment design, it was not developed to be a diagnostic assessment. Therefore, some 

aspects of the implementation which were covered in this chapter suffered from the 

limitations of retrofitting DCMs to a non-diagnostic assessment. However, the study did 

not intend to endorse DCM methodology as a substitute to IRT. The intent was to 

generate low-stakes feedback in the absence of a diagnostic assessment and to take 

advantage of the available resources to enhance supports for ELs’ reading development 

that is critical for their academic learning (Koda, 2007). 
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The scope of the study was limited to the analysis of the reading domain for 

middle grades and only one form, which targeted more proficient ELs. The fact that the 

DCM was viable to some extent and yielded some useful information in this context does 

not suggest that it will function in the same way for others. Therefore, results do not 

necessarily generalize to other grades and reading forms of the test. It would be time and 

resource intensive to incorporate multiple forms and grades, especially from the point of 

Q-matrix development. Future LCDM implementations, especially for other grades, is 

encouraged for generalizations about the diagnostic quality of the ACCESS system and 

reading construct. As described previously, Römhild et al. (2011) found domain-specific 

knowledge to be a stronger factor for middle grade, high-proficiency ELs. It is 

hypothesized in this study that such factors reduce the diagnostic capacity of some items. 

Yet, for lower grades, domain specific knowledge was trivial (Römhild et al., 2011). 

Thus, it will be relevant to explore the LCDM and diagnostic capacity in different grades. 

Moreover, focusing on forms with varying proficiency levels for the same grade can be 

informative for construct representation. The DCM methodology can be used to 

understand whether different forms tap into similar processes and the extent to which 

they relate to the intended attributes.  

Another limitation of the study was training and group discussion in the Q-matrix 

development process, which could potentially increase the consistency among the experts 

and help in refining the Q-matrix. However, the schedule and workload of SMEs did not 

allow large group meeting. In addition, there was no training session for test developer 

group for the Q-matrix coding. This limitation was intended to be mitigated by providing 
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detailed attribute definitions, instructions, and examples. However, future research should 

establish group meetings whenever possible. Asking for a written rationale, at minimum, 

can be beneficial. In addition, despite not being asked to, some SMEs indicated their 

thoughts about the nature of interactions among attributes underlying an item, which 

converged with the LCDM estimation. Rather than just coding, other input, such as 

contribution of attributes, their interactions can be requested from all SMEs in the future 

studies and compared with statistical analysis. 

Future implementation can benefit from verifying or refining the Q-matrix by 

other sources of information. Experts, as a more able group, might not capture all 

processes that students engage with (Li & Suen, 2013). Matthew (1990) also argues that 

skills and strategies employed by learners might vary, and they “interrelate differently” 

for learners (p. 515). Input from ELs, in the form of cognitive surveys, can help verify the 

attributes specified in the study. Such input can also reveal the existence of other 

strategies like distractor elimination brought up by some SMEs. Cognitive surveys can 

also uncover the influence of content knowledge, whether reading processes vary 

depending on the level of content knowledge and Q-matrices should be specified 

differently. Due to the absence of such information, the current study worked on the 

assumption that processes are the same across all ELs. Another group of stakeholders that 

can provide beneficial input for the Q-matrix in future studies are the teachers. They 

observe the reading processes of students every day and can provide valuable insights for 

the types of the skills they use. Involvement of teachers can also increase their 
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understanding of the construct and improve their interpretations of the results (Wolf et 

al., 2016). 

This study treated ELs as one homogenous group. However, ELs represent a 

heterogonous group of students, as they come from different cultural and ethnic 

backgrounds and speak various languages. Numerous factors play a role in development 

of the L2 reading (Koda, 2012). According to Chalhoub-Deville (2009) “Viewing ELL 

students as a homogenous group masks important differences with regard to ELLs’ 

language development…” (p. 287). Jang et al. (2013), using the Fusion model, uncover 

important developmental patterns of immigrant and non-immigrant students. Chalhoub-

Deville also contends L1 and L2 literacy, length of residence in home and immigrated 

countries are critical variables to understand ELs and meet their needs. In the current 

study, only grade level and PLs were focused to provide very limited information about 

developmental patterns. Future research should evaluate the impact of other factors, such 

as time in language support programs, and first language on classification results, and 

attribute mastery. Such analysis can be helpful for learning trajectories and curriculum 

planning.  

Feedback related with students learning and process in particular is considered 

critical (Harding et al., 2015). Yet the utility of the diagnostic information should not 

only be assumed, and it should be explored. Pedagogic action is separate from quality of 

the diagnostic information. Availability of feedback does not ensure its use. The users, 

such as teachers and students, can gauge the level of utility (Templin & Hoffman, 2013). 

This study was limited to evaluating the DCM methodology and did not delve into the 
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use aspect. Thus, future research should consider generating report cards and collect input 

from teachers and students about different aspects of the information, such as skill 

specificity, appropriateness for teaching/learning purposes, and clarity. Previous research 

with college-level ELs and their teachers manifest that information can be confusing for 

some students or contradict teacher perceptions (Jang, 2009b). There is also need to 

evaluate K-12 teachers’ and ELs’ perceptions in this regard, specifically to understand 

whether teachers interpret the information accurately, or there is a need for professional 

development to avoid misinterpretations (e.g., mastery of attributes suggest competency 

in content area). It must be ensured that results are actionable but do not encourage 

unintended uses or lead to unintended consequences.  

There are also methodological aspects that future studies can embed to improve 

the results. This study incorporated one statistical Q-matrix validation approach to ensure 

the quality of the Q-matrix. Although the method is claimed to identify most of the 

misspecification, there is not a way to assess the performance of this method, nor are 

there still misspecifications in the Q-matrix with a single approach. Other methods exist 

in the literature, and thus, future research can consider multiple Q-matrix validation 

approaches and compare them. Despite the fact that the data included some missing 

responses, no imputation strategy was undertaken in the study. Research suggests that 

missingness can negatively affect the Q-matrix recovery (Dai et al., 2018). Future 

research might consider data imputation techniques and investigate whether diagnosticity 

is improved.  
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Future research can also investigate the utility of other absolute fit indices, as two 

of the absolute fit indices in this study failed to be informative, given the data features. 

There are other bivariate fit indices proposed to work well (e.g., Fisher transformed of 

item pair correlations (r), and log-odds ratio (l) of item pairs, see Chen et al., 2013). 

Future research is recommended to compare their performance.  

The current study also used a large sample (N=23,942) and employed cross 

validation, with training and validation samples which showed the model holds. Future 

research can test the stability of the models estimates with smaller samples, if DCMs are 

intended to be used by individual schools or districts. 

A comparison of the DCM mastery probabilities with IRT ability estimates and 

PLs pointed to some divergence. It was speculated that divergence might have stemmed 

from low diagnostic items. However, some fit might have also occurred due to 

individuals. A final possible future research area can be incorporating person fit indices 

(e.g., Liu et al., 2009). The proportion of aberrant students can also hint to the viability of 

the methodology, as it indicates misclassification (Liu et al., 2018). 

Conclusion 
 

In this study, the suitability of ACCESS reading for diagnostic information was 

explored using a multidimensional methodology, the DCM. Such undertaking might be 

beneficial for low stakes purposes, but it was not without limitations. Specifically, the 

information yielded by the mastery probabilities were estimated with acceptable accuracy 

and were consistent with ELs’ reported proficiency levels. Therefore, DCMs can be 

informative, to some extent, to uncover ELs’ reading related problems and understand the 
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development of reading skills for planning learning activities. By better proportioning the 

attributes, increasing the diagnostic capacity of the items, and especially by further 

reducing the impact of content specific knowledge, and creating distinguishing 

distractors, the quality of the information could be potentially increased. Aside from 

insights about ELs’ reading performance and their instructional utility, this study 

provided critical information about the construct itself, and thus can be helpful for test 

design and development and construct representation (Liu et al., 2018; Rupp et al., 2010; 

Svetina et al., 2011). The study provided further evidence for the L2 reading 

representation, its divisibility, and the difficulty of the attributes. The attributes should be 

attended in test design at the very least not to underrepresent the construct (Alderson, 

2000). 
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APPENDIX A 
 

DCM STUDIES USING LANGUAGE ASSESSMENTS 
 
 

 Test Domain Model N Q-matrix  Attributes Model evaluation 
Buck et 
al. (1997) 

TOEIC Reading 
(J = 35) 

Rule 
Space 

5,000 • Literature Review 
• Teaching-testing 

Experience 
• Observation of 

Test-taking 

15 primary attributes and 14 
interactions 

NA 

Henson & 
Templin 
(2007) 

ECPE Grammar 
(J = 30) 

NC-
RUM 
DINA 

2,922 • Exploratory Factor 
Analysis 

• Literature Review 

(1) Morpho-syntactic 
Knowledge 

(2) Cohesive Knowledge 
(3) Lexical Knowledge 

NA 

von 
Davier 
(2008) 

TOEFL 
iBT 

Reading 
(J = 40) 
Listening 
(J = 34)  

GDM 
GPCM 

3,139 • SME Judgement Reading 
(1) Word Meaning 
(2) Specific Information 
(3) Connecting Information 
(4) Synthesize and Organize 
Listening 
(1) General Information 
(2) Specific Information 
(3) Pragmatic & Text Structure 
(4) Inference & Connections 

Test-rest reliability 
across forms, relative fit 
(-2LL), comparison of 
IRT and GDM estimates 
etc. 

Jang 
(2009a) 

LanguEdge  Reading 
(J = 37) 

Fusion NA • Literature Review 
• Blueprint Analysis 
• Text Analysis 
• Statistical Item 

Analysis 
• Dimensionality 

Analysis 
• Think-aloud 

Protocols 
• SME Judgement 

(1) Context-dependent Vocab. 
(2) Context-independent Vocab. 
(3) Syntactic, Semantic Links 
(4) Explicit Information 
(5) Implicit Information 
(6) Inferencing 
(7) Summarizing 
(8) Mapping Contrasting Ideas 

into Framework 

Absolute fit such as 
comparison of observed 
and predict parameters, 
classification 
consistencies etc. 

203 
202 



 

 

Jang 
(2009b) 

LanguEdge Reading 
(J = 39) 
 

Fusion 2,703 • Same as Jang 
(2009a) 

Same as Jang (2009a) Convergence of MCMC, 
MADcor, classification 
consistency, distribution 
of skill profiles etc. 

Sawaki et 
al. (2009) 

TOEFL 
iBT 

Listening  
(J = 34) 
Reading 
(J = 40) 

Fusion 6,000 • SME Judgment 
• Literature Review 
• Test Framework 

Review 

Reading 
(1) Word Meaning 
(2) Specific Information 
(3) Connecting Information 
(4) Synthesizing & Organizing 
Listening 
(1) Understanding General 

Information 
(2) Understanding Specific 

Information 
(3) Understanding Text 

Structure & Speaker 
Intention 

(4) Connecting Ideas 

Comparison between 
observed and predicted 
parameters, classification 
consistencies etc. 

Lee & 
Sawaki 
(2009) 

TOEFL 
iBT 

Listening  
(J = 34) 
Reading 
(J = 40) 

GDM 
Fusion 
LCA 

3,139 • Adapted from 
Sawaki et al. 
(2009) 

 Skill classification 
consistency, test-retest 
reliability across forms, 
distribution of skill 
mastery probabilities, 
comparison of 
examinees classified into 
profiles, RMSEA for 
item correlations etc. 

Kim 
(2011) 

TOEFL 
iBT 

Writing  
(1 task) 

R-RUM 480 • Verbal Protocols  
• SME Judgement 

(1) Content Fulfilment 
(2) Organizational 

Effectiveness 
(3) Grammatical Knowledge 
(4) Vocabulary Use 
(5) Mechanics 

 

Similar to Jang(2009b) 

 

203 
 



 

 

Jang et al. 
(2013) 

K-12 
Literacy 
Test  

Reading 
Writing 
(J = 40) 

R-RUM 18, 059 • Content/task 
Analysis with 
SMEs 

(1) Textually-implicit Info 
(2) Textually-explicit Info 
(3) Inferencing 
(4) Grammar Knowledge 
(5) Summarizing Main Ideas 
(6) Vocabulary 

Similar to Jang (2009b) 

Li & Suen 
(2013) 

MELAB Reading  
(J = 20) 

Fusion 2,019 • Literature Review 
• Think-aloud 

Protocols 
• SME Judgment 

(1) Vocabulary 
(2) Syntax 
(3) Extracting Explicit Info 
(4) Understanding Implicit Info 

Similar to Jang(2009b) 

Jang et al. 
(2015) 

K-12 
Literacy 
test 

Reading 
Writing 
(J = 40) 

R-RUM 44 • Adapted from 
Jang et al. (2013) 

 NA 

Kim 
(2015) 

University 
developed 
ESL 
Placement 
Test 

Reading 
(J = 30) 

Fusion 1,982 • Literature Review 
• Construct 

Framework/ 
Model 

• SME Judgement 

(1) Lexical Meaning 
(2) Cohesive Meaning 
(3) Sentence Meaning 
(4) Paragraph Meaning 
(5) Pragmatic Meaning 
(6) Identifying Word Meaning 
(7) Finding Information 
(8) Skimming 
(9) Summarizing 
(10) Inferencing 

Similar to Jang (2009b) 

Li et al. 
(2016) 

MELAB Reading  
(J = 20) 

G-DINA 
DINO 
ACDM 
DINA 
R-RUM 
 
 

2,019 • Adopted from Li 
& Suen (2013) 

 -2LL 
AIC 
BIC 
!"!  
MADcor 
MADres 

Ravand 
(2016) 

General 
English test 
of National 
University 
Exam 

Reading 
(J = 20) 

G-DINA 10,000 • SEM judgement 
• GDI 

(1) Detail 
(2) Inference 
(3) Main Idea 
(4) Syntax 
(5) Vocabulary 

!"!  
MADcor 
MADRES 
MADQ3 
RMSEA 

 

204 
 



 

 

Yi 
(2017a) 

ECPE Grammar 
(J = 30) 

LCDM 
DINA 
DINO 
NIDO 
C-RUM 

2,922 • Adapted from 
Henson & 
Templin (2007) 

 AIC 
BIC 
Adjusted BIC 
Item-correlation RMSEs 
Distribution of attributes 

Yi 
(2017b) 

TOEFL Listening  
(J = 34) 
Reading 
(J = 39) 
 

DINA 
DINO 
NIDO 
C-RUM 

3,139 • Adapted from 
Sawaki et al. 
(2009) 

 AIC 
BIC 
Item-correlation RMSEs 

Xie 
(2017) 

University 
developed 
placement 
test 

Writing 
(1 task) 

R-RUM 472 • Adapted from Kim 
(2011) 

 Similar Jang (200b) 

Aryadoust 
(2018) 

Singapore-
Cambridge 
General 
Certificate 
Education 

Listening 
(J = 32) 

DINA 
G-DINA 
DINO 
HO-
DINA 
R-RUM 

205 • Literature review 
• Think-aloud 

Protocol 
• Eye-tracking 

(1) Eliminating Inaccurate 
Information 

(2) Paraphrasing 
(3) Making Pragmatic 

Inferences  
(4) Using Word knowledge for 

Inferences 
(5) Making Inferences 
(6) Understanding Surface 

Information 
(7) Understanding contradiction 
(8) Making Anaphoric Moves  
(9) Catching Surface Details 

AIC 
BIC 
CAIC 
!"!  
MADcor 
MADQ3 
SRMSR 

Ravand & 
Robitzsch 
(2018) 

General 
English test 
of National 
University 
Exam 

Reading 
(J = 20) 

G-DINA 
DINA 
DINO 
ACDM 
R-RUM 

21,642 • Adapted from 
Ravand (2016) 

 AIC 
BIC 
!"!  
MADcor 
MADRES 
SRMSR 
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APPENDIX C 
 

EXAMPLE L2 READING SKILLS, PROCESSES, AND STRATEGIES 
 
 

Skill, Process, Strategy Labels and Examples Sources 
Word Meaning/Vocabulary Knowledge 
Examples: remembering words, understanding less 
frequent words, matching words and definitions, 
guessing/inferencing, deducing from context, identifying 
meaning of words, finding equivalent words, interpreting 
words  

Alderson & Lukami (1989), Buck et al. 
(1998), Davis (1968), DELNA, DELTA, 
Grabe (1991), Kim (2015), Lumley 
(1993), Munby (1978), Phakiti, (2003), 
Rost (1993)   

Grammar/Syntactical/Syntax/Structure Knowledge 
Examples: understanding complex structures, processing 
negation 

Buck et al. (1998), Grabe (1991), 
Lumley (1993), Rost (1993), Phakiti, 
(2003) 

Understanding Explicit Information,  
Identifying/Locating Information 

Alderson & Lukami (1989), Davis 
(1968), Lumley (1993), Munby (1978), 
Phakiti, (2003) 

Understanding Implicit Information Munby (1978), Phakiti, (2003) 
Drawing Inferences/Conclusions/Reasoning, Making 
Inferences, Inferencing, Understanding Inferred Meaning, 
Interpreting by Going Outside the Text, Using 
Background knowledge 

Alderson & Lukami (1989), Davis 
(1968), DIALANG, DELNA, DELTA, 
Grabe (1991), Kim (2015), Lumley, 
1993), Munby (1978), Phakiti, (2003), 
Rost (1993) 

Identifying/ Understanding Main Ideas/Points, 
Summarizing Main Idea/Topic 

DIALANG, Kim (2015), Munby (1978), 
Phakiti, (2003),  

Distinguishing Main Points from Details Davis (1968), DELNA, Lumley (1993), 
Munby (1978), Phakiti, (2003) 

Identifying/Finding/Understanding Specific 
Information/Details, Understanding Supporting Details 
Example: extracting relevant information 

DIALANG, DELNA, DELTA, Kim 
(2015), Munby (1978), Phakiti (2003), 
Urquhart & Weir (1998) 

Connecting Ideas/Important Details/Sentences, Concepts, 
Ideas, Reading to Integrate  

Buck et al. (1998), Davis (1968), Kim 
(2015) 

Skimming Kim (2015), Munby (1978) 
Scanning for Specific Information Kim (2015), Munby (1978), Urquhart & 

Weir (1998) 
Distinguishing Facts from Opinion, 
Interpreting/Recognizing Attitude/Purpose 

Davis (1968), DELNA, DELTA, Phakiti 
(2003) 

Summarizing, Synthesizing/Evaluating, Surveying, 
Understanding Gist 
Example: extracting salient details 

Alderson & Lukami (1989), Grabe 
(1991), Lumley (1993), Munby (1978), 
Phakiti (2003) 

Identifying General Information Phakiti (2003) 
Paraphrasing Kim (2015) 
Pragmatic Meaning 
Example: contextual, sociolinguistic, sociocultural 

Kim (2015) 

Semantic Meaning 
Example: meaning of words, paragraphs, sentences 

Kim (2015) 

Locating Causes and Effects, Sequences, Contrasts/ 
Analyzing Elements in a Process 

DELNA, Lumley (1993) 
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Organizing Information in Other Ways 
Example: map, diagram, chart 

DELNA 

Understanding Concepts, Discourse 
Structure/Markers/Cohesion 
Example: understanding cause, results, organization of 
the text 

Grabe (1991), Munby (1978) 

Interpretation 
Example: significance of information, relationships 

Alderson & Lukami (1989) 

Note: DIALANG, The Diagnostic English Language Needs Assessment (DELNA), The Diagnostic English 
Language Tracking Assessment (DELTA) are diagnostic language tests used at the higher education level. 
The skills for these tests were obtained from Harding et al. (2015). Munby’s list is obtained from Alderson 
& Lukami (1989) and Alderson (2000). This list is not a comprehensive list. The intent was to familiarize 
experts with reading skills, labels and examples. 
  



 

 

APPENDIX D 
 

ATTRIBUTES AND CODING EXPLANATIONS 
 
 

Attribute  Explanation Additional Coding Considerations 
 
Vocabulary 
 (VOC) 

 
Understanding the key words/phrases in the text dependent or 
independent of the context. The attribute also entails recognition 
and knowledge of synonyms, antonyms, and the association 
between similar words in the text and answer choices (i.e., 
paraphrase). 
 

 
Note that vocabulary knowledge is necessary for correct 
response respond but consider students’ grade level when 
selecting this attribute (e.g., if it is a very easy word, given 
students’ grade level, you may not want to code the item for 
this attribute) 

 
Cultural 
Conceptual 
References  
(CUL) 
 

 
Understanding the idea of concept. The attribute is closely related 
with the vocabulary attribute, but it requires knowledge of the 
“extended meanings”. Just knowing the meaning of the words 
might not be adequate and it might require understanding at a 
conceptual level. Some concepts might be rooted in the culture 
and may be unfamiliar to a student from a different culture (e.g., 
community service, leadership training). (Bachman, 1990, p.97) 
 

 
Consider this attribute when the questions require 
understanding specific concepts some of which might be 
culture specific. Although students might know individual 
words/phrases, for a complete understanding, it is necessary to 
understand nuances. 
 
 

 
Grammar 
 (GRM) 

 
Understanding and processing complex sentences (e.g., relative 
clauses), and compound clauses including numerous grammatical 
and cohesive devices such as conjunctions. The attribute involves 
recognizing pronoun references. 

 
Consider this attribute when extracting meaning from structure 
is necessary to respond correctly. Some sentences may be 
compound or complex that students need to process, or require 
them to recognize pronoun references, conjunctions etc. to 
understand the meaning and correctly respond. 
 

 
Explicit 
Information 
and Details  
(EXP) 
 

 
Deriving and comprehending explicit important information and 
details from the text. The attribute involves scanning the text and 
finding the details, and/or matching (i.e., answer choice and 
sentence in the text). 

 
Note that specific information or details necessary for correct 
response is transparent in the text, and sometimes verbatim. 
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Inference  
(INF) 

 
Comprehending information by making inferences. The 
information is implicit or overtly stated in the text. For example, 
the attribute requires connecting information in the text with an 
example situation. 
 

 
Note that details necessary for correct answer is less 
transparent but overtly stated in the text. Student is required to 
make some sort of inference but given the level of the students, 
it might be low level inference in some cases. 

 
Summary 
and 
Synthesis  
(SUM) 

 
Connecting and integrating information in adjacent sentences or 
parts of the text (e.g., paragraphs, charts). The attribute entails 
summarizing, understanding the gist of the paragraphs, or 
interpreting rhetorical relations (e.g., problem-solution). 
 

 
Note that information that is necessary for correct answer is 
stated in different sentences, paragraphs or cells of a chart. It 
might also require summary/synthesis of the information. 

 
Sequences 
and 
Processes  
(SEQ) 
 

 
Understanding sequential language, steps or order in a process or 
cycle. Information presented includes description of a 
sequence/steps and/or sequential language (e.g., first, second, 
eventually) that needs to be processed for a correct response. 
 

 
Information includes description of a sequence/steps and/or 
sequential language (e.g., first, second, eventually) that 
students need to process and understand for correct response. 
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APPENDIX E 
 

AN EXAMPLE EXPERT-DEFINED Q-MATRIX 
 
 

 VOC GRM EXP INF SUM SEQ CUL Notes/Rationale CONF 
Q1 0 0 1 0 0 0 0 Definitely extracting info, but I was also torn about including vocab and even 

inferencing. I ultimately decided that the first paragraph did not have any 
challenging crucial vocab. I kind of think an inference is involved, but no one 
else thought so, so I’ll acquiesce. 

3 

Q2 0 0 1 1 0 0 0 Student has to extract definition of X and see if each example matches the 
definition (inference) 

4 

Q3 1 
 

0 1 0 0 0 0 Higher level vocab in the final paragraph, of which the key is essentially a 
paraphrase, so extracting info 

5 

Q4 0 1 1 0 0 0 0 The answer is in the text in the form “After A, B”, so students must know that 
this grammar structure is implying a causal relationship between A and B 

5 
 

Q5 1 0 0 0 1 0 1 Must know or infer the meaning of X and the key is a summary of a longer 
sentence in the text. 

4 
 

Q6 1 0 1 0 0 0 1 Students might need to understand the meaning of X, which could be somewhat 
culturally-specific 

3 
 

Q7 0 0 1 0 0 0 0 Need to extract definition of X, might also need to synthesize info from the 
visual 

3 
 

Q8 0 0 1 1 0 1 0 Students have to extract a rule about a process and apply it to a new situation 3 
 

Q9 0 1 1 0 0 1 0 Must extract what the string represents, which requires parsing some grammar 
and understanding the process of X 
 

4 
 

Q10 0 0 1 0 0 1 0 I’m very conflicted about this one. Seems like examinee might need to 
know/extract the science vocab, which is related to a sequence, and pick the 
answer that summarizes the sequence. But then the item facility is quite high, 
so it seems unlikely that 3~4 attributes are all necessary. 

2 

Q11 1 
 

0 0 1 0 0 0 Although the more complex vocab does not seem strictly necessary to answer 
correctly, the science vocab could create confusion/distraction (most-picked 
distractor is about antennae). Also have to interpret meanings related to 
increase/decrease and infer based on descriptions of X 
 

4 
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Q12 1 
 

0 1 0 0 0 0 Some advanced vocab but key is fairly similar to answer in the text 5 

Q13 
 

1 1 1 0 0 0 0 Vocab and syntax (negation, demonstrative adj). I am not as sure about 
extracting info, but it seems like they might need to search the text for an 
indication of uniqueness 

3 

Q14  
0 

0 0 0 1 0 0 I think just synthesis/summarizing would work, because the entire stimulus is 
about X, so the task is not so much selecting information from the text as 
deciding which option is an accurate summary. 

4 

Q15  
1 

1 0 1 0 0 0 Conditional and relative clauses, and inference that if X happens. The low p-
value seems consistent with multiple attributes 

5 

Q16 0 0 1 0 0 1 0 Have to extract information from a sequence 4 
Q17 0 0 1 0 1 1 0 I’m not sure about extracting information. The question asks for summarization 

of a process, so the other two attributes seem more straightforward. Also, the p-
value is extremely low, suggesting that multiple attributes might be needed 

4 
 

Q18 0 0 0 1 1 0 0 Have to synthesize information from two parts of the table in the text and infer 
the implications for an example scenario 

5 
 

Q19 0 0 1 0 0 0 0 The key is copied almost verbatim from the text 5 
 

Q20 0 1 1 0 0 1 0 Need to understand the process of X and extract a specific step. Also have to 
interpret the meaning of X from syntax. The low p-value is consistent with 
multiple attributes required. 

4 
 

Note. Only 20 items are presented. Conf denotes confidence with the selected attributes. 
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APPENDIX F 
 

ADDITIONAL TABLES AND FIGURES 
 
 

Figure 1. Distribution of Raw Scores 
 
 

 
 
 
Figure 2. Distribution of Confidence Ratings across Content Areas 
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Table 1. Item and Distractor Statistics 
 

Item 
# 

p pbis option 
prop. 

Item 
# 

p pbis option 
prop. 

Item 
# 

p p.bis option 
prop. 

1 0.66 0.27 1 0.17 10 0.70 0.19 1 0.13 19 0.68 0.38 1 0.09 
   2 0.66    2 0.70    2 0.14 
   3 0.07    3 0.01    3 0.68 
   4 0.09    4 0.15    4 0.07 
2 0.48 0.24 1 0.30 11 0.65 0.33 1 0.06 20 0.49 0.26 1 0.14 
   2 0.17    2 0.11    2 0.49 
   3 0.48    3 0.65    3 0.24 
   4 0.05    4 0.18    4 0.10 
3 0.64 0.25 1 0.20 12 0.75 0.35 1 0.06 21 0.36 0.21 1 0.17 
   2 0.06    2 0.08    2 0.28 
   3 0.09    3 0.75    3 0.36 
   4 0.64    4 0.10    4 0.16 
4 0.72 0.41 1 0.11 13 0.63 0.43 1 0.14 22 0.55 0.30 1 0.55 
   2 0.72    2 0.10    2 0.22 
   3 0.10    3 0.12    3 0.13 
   4 0.06    4 0.63    4 0.06 
5 0.63 0.38 1 0.63 14 0.53 0.38 1 0.11 23 0.32 0.23 1 0.32 
   2 0.15    2 0.17    2 0.28 
   3 0.09    3 0.53    3 0.12 
   4 0.14    4 0.17    4 0.24 
6 0.51 0.35 1 0.13 15 0.35 0.20 1 0.12 24 0.39 0.26 1 0.13 
   2 0.26    2 0.35    2 0.18 
   3 0.51    3 0.37    3 0.39 
   4 0.10    4 0.15    4 0.26 
7 0.68 0.32 1 0.66 16 0.71 0.38 1 0.15 25 0.56 0.38 1 0.12 
   2 0.20    2 0.71    2 0.56 
   3 0.10    3 0.05    3 0.18 
   4 0.01    4 0.07    4 0.10 
8 0.38 0.28 1 0.23 17 0.28 0.27 1 0.24 26 0.30 0.23 1 0.30 
   2 0.17    2 0.28    2 0.18 
   3 0.38    3 0.18    3 0.33 
   4 0.22    4 0.28    4 0.15 
9 0.34 0.11 1 0.36 18 0.27 0.29 1 0.38 27 0.31 0.15 1 0.31 
   2 0.34    2 0.16    2 0.26 
   3 0.16    3 0.27    3 0.25 
   4 0.14    4 0.16    4 0.24 
Note. p = p-value, pbis = point biserial, option prop. = proportion of students choosing an option. Bold 
denotes the key. 
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Table 2. Agreement Rate among Test Developer SME Group 
 

 Test Developer Group 
 Fleiss Kappa z statistic p-value 

VOC 0.306 3.889 0.000 
GRM 0.010 0.127 0.899 
EXP 0.195 2.479 0.013 
INF 0.286 3.637 0.000 
SUM 0.247 3.141 0.02 
SEQ 0.576 7.337 0.000 
 
 
Table 3. Fit Indices for Standards-based Q-matrix (Calibration Sample) 
 

 Npars -2LL AIC BIC CAIC 
LCDM 145 -195289.1 390868.157 391939.742 392084.742 
RRUM 118 -195308.7 390853.38 391725.429 391843.429 
CRUM 118 - 195305.2 390846.367 391718.416 391836.416 
DINO 91 -196501.6 393185.224 393857.736 393948.736 
DINA 91 -196474.4 393130.767 393803.279 393894.279 
HO-DINA 70 -196789.8 393719.519 394236.836 394306.836 
 
 
Table 3 Cont. Fit Indices for Standards-based Q-matrix (Calibration Sample) 
 

 M!! p MADcor SRMSR MADres MADQ3 
LCDM 110.063 0 0.012 0.016 0.279 0.024 
RRUM 56.3455 0 0.012 0.016 0.271 0.023 
CRUM 54.0475 0 0.012 0.016 0.277 0.024 
DINO 80.0818 0 0.021 0.027 0.476 0.019 
DINA 73.0098 0 0.021 0.027 0.471 0.018 
HO-DINA 211.5088 0 0.026 0.032 0.589 0.018 
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Table 4. Wald’s Test for Item Level Model Selection 
 
Item Model Wald 

Statistic 
p-value 

2 R-RUM 1.333 0.248 
3* C-RUM 6.200 0.013 
5 C-RUM 2.346 0.126 
6 R-RUM 1.107 0.293 
7 C-RUM 0.048 0.827 
8* R-RUM 15.82 0.000 
9 R-RUM 2.82 0.588 
11* C-RUM 3.884 0.049 
12 C-RUM 1.592 0.207 
13 C-RUM 0.894 0.344 
15* R-RUM 9.941 0.041 
16 C-RUM 3.666 0.056 
17* R-RUM 10.419 0.001 
18* R-RUM 31.077 0.000 
20 C-RUM 0.234 0.629 
21* R-RUM 13.213 0.000 
22 C-RUM 0.078 0.78 
23* R-RUM 4.112 0.043 
25 C-RUM 1.140 0.286 
27 DINA 0.227 0.893 

Note. Items 1, 4, 10, 14, 19, 24, 26 are simple items and excluded from the table. * denotes a non-
significant result meaning the LCDM would be a statistically better choice. 
 
 
Table 5. Multiple Regression Results 
 
 Estimate SE t value p-value 
Intercept -0.78815 0.00531 -148.442 2.00E-16 
VOC 0.23036 0.01985 11.606 2.00E-16 
GRM 0.17767 0.01332 13.343 2.00E-16 
EXP 0.57303 0.01625 35.265 2.00E-16 
INF 0.36523 0.02338 15.624 2.00E-16 
SUM 0.1605 0.01741 9.218 2.00E-16 
SEQ 0.64571 0.02252 28.671 2.00E-16 

Note. Dependent variable= !,	R2 = 0. 881, F-statistic = 1.47E+00  
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Table 6. One-way ANOVA Results 
 
  df Sum Sq Mean Sq F p 
VOC PL 2 959.1 479.5 10342 < 0.001 

Residuals 11968 554.9 0.0   
GRM PL 2 470.2 235.11 3640 < 0.001 

Residuals 11968 773.1 0.06   
EXP PL 2 1326.6 663.3 9814 < 0.001 

Residuals 11968 808.9 0.1   
INF PL 2 885.7 442.8 11886 < 0.001 

Residuals 11968 445.9 0.0   
SUM PL 2 1125.1 562.5 9041 < 0.001 

Residuals 11968 744.7 0.1   
SEQ PL 2 758.0 379 9721  

Residuals 11968 466.6 0.0  < 0.001 
 
 
 


