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 To better bridge research with commercialization, this project sought to develop 

an improved analytical method for the assay of biosurfactants known as surfactins from 

Bacillus subtilis.  We sought to compare levels of production from various strains of B. 

subtilis, including strain 203R, which was isolated from areas prone to oil degraders.  The 

use of Ultra-Performance Liquid Chromatography coupled with High Resolution Mass 

Spectrometry proved beneficial for the selective identification and quantification of 

surfactin lipopeptides.  Surfactins were eluted in under 10 minutes and quantified using 

the total area of generated ions.  Near baseline separation across the envelope gave an 

added layer of identification to the ions responsible for surfactins.  These lipopeptides, 

having similar molecular masses to the iturins, nearly coelute complicating the analysis.  

By coupling retention time with fragmentation pattern, some isoforms could be 

distinguished.  Validation of the method was achieved by obtaining 4 calibration curves 

on different days and applying linear regression analysis.  Strain 203R was shown to be a 

superior producer of surfactins than the previously reported model strain ATCC 21332.      
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CHAPTER I  

INTRODUCTION 

 

A wide range of synthetic surfactants have been created with properties of 

detergency and emulsification that are unparalleled.  While these chemicals possess 

proven performance in many areas, they are unsuitable for use in some pharmaceutical 

and medical applications.  Biosurfactants from microorganisms show continued interest 

as renewable or green alternatives to petroleum based surfactants.  One of the most 

powerful biosurfactant classes known, the surfactins, have shown use in oil recovery, 

bioremediation and as emulsifiers in cosmetic formulations (Fracchia et al., 2012).   

Their use as excipients in formulations allows alterations in solubility and 

absorption of pharmaceuticals, and can also provide dissolution and lubricity.  

Surfactants are also used to alter the flowability of fine particle granular formulations.  In 

the case of bronchodilation, Symbicort® (Astra-Zeneca) utilizes a two component 

bronchodilator system to give extended efficacy to the patient.  For particles to reach the 

bronchioles, they must be small enough and smooth enough to travel in the air to their 

target receptors on smooth muscle (Lewis and Copley, 2011).  Polyethylene glycol (PEG) 

1000 and magnesium stearate are two such preferred surfactants providing the flowability 

and lubricity necessary for bronchodilator formulations (Astra Zeneca, US 8,461,211 

B2).  One of the most well documented examples of naturally produced surfactants is the 

action of pulmonary biosurfactant to effect transfer of oxygen in the alveoli.  These 
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biosurfactants lower the surface tension of the thin aqueous layer in the alveolar lumen to 

facilitate transfer of oxygen to its eventual heme destination (Silverthorn et al., 2009).   

 The lipopeptides comprising surfactin are unique among biosurfactants in that 

they have pronounced ability to lower surface tension in water from 72 to 27 dynes at 20 

μmol/L (Chen et al., 2008).  They are likely the most prominent antibiotic produced 

within the Bacillus genus and have been much studied for their antibacterial, 

antimycoplasma (Vollenbroich et al. 1997), antitumor (Lim et al. 2005), insecticidal and 

even antiviral properties (Das, K. et al. 2006, Vater et al. 2002).   The hydrophobic chain 

moiety of the surfactins is unique since it is incorporated by the non-ribosomal peptide 

synthetases (NRPS) (Stein et al., 2005).  Three genes are required for the biosynthesis of 

surfactins: srfA-A, srfA-B and srfA-C, which in total comprise the srfA operon.  The final 

step to form the macrolactone occurs via the terminal Te domain of srfA-C (Sonenshein 

et al., 2002). This biosynthesis of antibiotics is not uncommon to bacteria and fungi.  

 B. subtilis strains produce a wide spectrum of antibiotics and while no single 

strain possesses all the genes, the antibiotics can be divided into three main classes: the 

lantibiotics, lipopeptide antibiotics and small hydrophilic antifungal peptides.  The 

lantibiotics contain crosslinked structures having disulfide bond(s) which can be the site 

of antibacterial activity via reduction (Stein et al., 2005; Van der Molen et al., 2011).  

Lipopeptide antibiotics are amphiphilic and often cyclic structures which are membrane 

active.  These compounds comprise the surfactins, iturins, fengycins, mycosubtilin and 

bacillomycin.  Examples of small hydrophilic antifungal peptides are bacilysin and  
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rhizocticins (Stein et al., 2005, Leenders, 1999).  Table 1 below summarizes the 

 

structures of all known B. subtilis antibiotics and their genetic biosynthesis. 

 

 
Table 1.  Summary of B. subtilis Antibiotics.   

Stein, T. Molecular Microbiology (2005) 56(4), 849.  Reproduced with permission, John Wiley 

and Sons and Copyright Clearance Center, April 26, 2018. 
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Traditionally, the ATCC 21332 strain of Bacillus subtilis has been used as the 

model producer of surfactins (Mohammadipour et al., 2009). The discovery of another 

strain, 203R described herein, has shown to yield increased amounts of lipopeptides. 

These lipopeptides and other antibiotics having surface activity can be enriched from 

batch fermentation systems through a process known as foam fractionation, acid 

precipitation or a combination of both (Chen, et al., 2008).  To bridge research with 

commercialization, we sought to develop an improved analytical method for the assay of 

surfactins using Ultra Performance Liquid Chromatography (UPLC) coupled to 

Electrospray Ionization Mass Spectrometry (ESI-MS) with a LTQ Mass Spectrometer 

utilizing Orbitrap Technology.  The goal of this work was to develop and validate the 

new method of surfactin analysis, and to apply it to compare quantity of surfactin 

produced by several strains of B. subtilis. 
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CHAPTER II  

BIOSYNTHESIS 

 

 

NRPS Assembly 

 

Secondary metabolite production in fungi, bacteria and plants utilizes a different 

pathway for the incorporation of amino acids.  In these instances, the central dogma gives 

way to processes largely independent of mRNA.  These secondary metabolites are built 

using large multienzyme complexes such as the polyketide synthases (PKS) or 

nonribosomal peptide synthetase (NRPS) systems.  The range of nonproteinogenic amino 

acids used extends well beyond the canonical essential and nonessential ones.  For this 

reason, they are often referred to as monomers for the NRPS modules.  The primary 

structure of these peptidyl regions is short, from two to about fifty monomers, rarely 

linear and can contain branchings and cycles (Grünewald and Marahiel, 2013).   

Contained within this NRPS complex are repeating domains of condensation, 

adenylation, thiolation, epimerization, termination and cyclization.  Repeating domains 

which give one complete elongation cycle can be grouped and give rise to modules 

(Mootz, et al., 2002).  For the production of surfactins, the srfA operon can be broken 

down into the genes srfA-A, srfA-B and srfA-C to make the groups of modules as shown 

below in figure 1.  The srfA-A gene contains the nucleotides to make the first three 

enzyme modules and so forth (Lee, et al., 2007). 
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Figure 1.  The srfA Operon and Genes for Seven Modules. 

 

 

  

 

 

 

Lipoinitiation and Adenylation 

 

  Two theories abound for the lipidation of monomers both of which involve fatty 

acyl-CoA ligase (FACL) (Baltz et al., 2005).  One proposed scheme involves adenylation 

of the fatty acid from primary metabolism followed by conversion into the energy-rich 

CoA thioester.  This CoA thioester is then recruited to the donor site of the starter 

condensation domain where it is attacked by the nucleophilic nitrogen of the tethered 

amino acid as shown below in figure 2.  Amino acids are not incorporated directly into 

the growing peptide chain.  They must first be adenylated in the adenylation domain to 

impart reactivity toward the terminal sulfhydryl of 4’-phosphopantetheine (4’-PP) 

(Kleinkauf, 1995, Stachelhaus, et al., 1998).  

 

 

 

 

 

 

 

srfA Operon 

srfA-A srfA-B srfA-C 

Modules 1,2 & 3 Modules 4,5 & 6 Module 7 
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Figure 2. Lipoinitiation and Adenylation.  In this proposed mechanism, fatty acids are first 

adenylated and then recruited to the donor site as acyl CoA donor substrates.  Nascent monomers 

attached to the 4’-PP arm can then enter the acceptor site where they can condense with the 

thioester to form the lipidated monomer.  Grünewald and Marahiel, Handbook of Biologically 

Active Peptides, 2013.  
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Peptide Elongation 

 The importance of the peptidyl carrier protein (PCP) or thiolation domain of the 

multi-enzyme complex has led to the “PCP-centered view” of lipopeptide biosynthesis.  

Nascent amino acids become tethered to the peptidyl carrier protein via the highly 

flexible 4’-PP cofactor.  The transfer of the 4’-PP cofactor to the peptidyl carrier protein 

occurs due to the presence of the sfp gene which encodes for the enzyme 

phosphopantetheinyl transferase (Lee, et al., 2007, Galli, et al. 1994).  This cofactor is 

posttranslationally attached to the PCP via a highly conserved serine residue to give rise 

to the thiolation domain (Grünewald 2013).   In this way, monomers are added to each 

module in an almost assembly-line fashion as shown in figure 3 below.   

 In addition to condensation, adenylation and thiolation; epimerization, N-

methylation and heterocyclization can occur (Kleinkauf, 1990).  In the case of 

epimerization, it has been recognized that formation of d building blocks impart 

resistance to proteases which are l specific (Grünewald, 2013).  The incorporation of a d 

stereoisomer directly has been known to occur but most often proceeds through 

epimerization (Silverman, 2002). 
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Figure 3.  Peptide Elongation.  Each reactive monomer is tethered to the condensation domain 

via the 4’-PP (wavy line).  

 

 

Termination and Cyclization     

  According to the Norine database, macrolactonization and macrolactamization  

account for 64% of all nonribosomally produced peptides.  This final step serves to 

rigidify the lipopeptide and constrain it into a biologically active form.  Research 

performed by Hoefler and colleagues suggests that the cyclized form of surfactin is 

indeed necessary for activity against the bacterial pathogen Streptomyces sp. Mg1 

(Hoefler et al., 2012).  Similarly, the cyclized form of fengycins was shown to be 

absolutely necessary for antifungal activity (Tosco et al., 2015).  In order for cyclization 

to occur, the thioester of the most downstream PCP domain is attacked by the hydroxyl of  
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serine in a catalytic triad of histidine and aspartate.  The resulting peptidyl-O-TE oxoester 

can then undergo attack by an amine or hydroxyl group to complete cyclization and 

release from the thioesterase domain (Grünewald, 2013).   

The exact mechanism by which surfactins are excreted is unknown.  It is believed 

that excretion occurs via diffusion since a transporter has yet to be identified.  Gram 

positive lantibiotic producers such as Bacillus subtilis have ways to obviate the action of 

their own products.  For the lantibiotics, this is accomplished through ATP binding 

cassette (ABC) transporters which move the lantibiotic to the extracellular space.  For 

surfactins, it is believed this is accomplished via the YerP gene.  This gene is an example 

of a RND (resistance, nodulation and cell division) family of multidrug efflux pumps in 

Gram positive bacteria (Stein et al., 2005). 
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CHAPTER III 

  

LIPOPEPTIDE FUNCTION 

 

Regulation of Surfactin Production 
 

The regulation of surfactin biosynthesis is coordinated through signals such as 

 

 starvation, sporulation, genetic competence development and production of degradative 

 

enzymes (Losick et al., 1986; Marahiel et al., 1993).  The depletion of one or more 

 

nutrients such as glucose can induce starvation.  When this occurs some cells can begin 

 

sporulation which releases DNA into the extracellular matrix.  This uptake of exogenous 

 

DNA is termed genetic competence.  Mutational analysis has shown that a gene termed 

 

comS is embedded within the srfA-B gene and is dependent upon the srfA promoter for 

 

expression.  This comS gene is required for genetic competence (Solomon, et al., 1996). 

   

Competence is also dependent upon the buildup of an extracellular peptide encoded by 

 

the comX gene (D’Souza et al., 1994).  In this way, srfA expression is controlled through 

a quorum sensing mechanism.  ComX binds at the cellular membrane to a membrane 

bound histidine kinase comP and the response regulator comA.  ComA 

autophosphorylates and then transfers its phosphate to comA which initiates transcription 

of the srfA operon (Sullivan, 1998; Magnuson, 1994).  
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Quorum Response 

 

 Surfactin production is initiated when cell density reaches sufficient quantities to 

produce the small signal peptide from comX.  The two component regulatory response 

which follows the binding of the comX peptide is a common theme for Gram positive 

bacteria.  Experiments to monitor surfactin production in the 203R strain showed that 

lipopeptide formation was slightly delayed but followed exponential phase of growth 

starting at an optical density of 0.7 as shown in figure 4 below. 

 
Figure 4.  Surfactin Production over 24 Hours.   

 

 

 

 

 

 

 

 

 

 

 

 

For Gram negative bacteria, quorum sensing induces a N-acylhomoserine lactone (an 

autoinducer) to bind to a transcriptional activator to control expression of genes.  Quorum 

sensing is common to bacteria and can control the production of virulence factors,  
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biosurfactant production, secondary metabolites, transfer of genetic material as well as 

swarming (Sullivan, 1998). 

  

Swarming and Motility 

 Motility in bacteria can be used to avoid antimicrobial substances as well as gain 

access to nutrients.  There are three recognized forms of movement for Bacillus subtilis: 

sliding, swimming and swarming.  Hyperflagellation of vegetative cells is the most 

recognized stage of differentiation for B. subtilis and is necessary for swarming.  In the 

planktonic state, B. subtilis is able to swim as single cells through aqueous medium. If the 

medium is sufficiently viscous to support B. subtilis, hyperflagellated cells align closely 

along their long axis and join to form rafts and move across the surface via swarming 

(Fraser, et al., 1999; Liu, et al., 2018).  Experiments by Kinsinger have shown the 

necessity of surfactin and K
+
 ion in motility of B. subtilis.  In this case, cells from the 

leading edge of dendritic growth did not show the presence of flagella when Ryu stained 

(Heimbrook, et al., 1989) and the mechanism of movement was determined as sliding 

instead of swarming (Kinsinger, et al., 2003).  

 

Other Functions 

 

As previously mentioned, the antiviral, antitumor, hemolytic and antibacterial 

properties of surfactin are believed to stem from its ability to perturb lipid membranes 

and viral envelopes.  Particularly in Gram positive organisms, where the cell wall is 

simpler, this is perceived as a defense mechanism. The disruption of lipid membranes, as 

determined via POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) 
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liposomes, was found to begin at a surfactin concentration of 2 µM (Heerklotz and 

Seelig, 2007).  

Furthermore, the very nature of lipopeptides gives them an inherent ability to 

increase the surface area of hydrophobic water-insoluble growth substrates.  In this way 

the bioavailability of nutrients is increased.  Finally, the connection between attachment 

and detachment from surfaces and production of surfactin cannot be underestimated 

(Rosenberg and Ron, 1999).  B. subtilis biofilm formation is dependent on the early 

sporulation gene product SpoOA and transcription factors σ
H
 and AbrB (Stein, 2005;  

Marahiel, 1993; Hamon and Lazazzera, 2001).  In 2004 it was shown that colonization 

around plant roots and the subsequent biofilm formation were connected with surfactin 

production (Bais et al., 2004)
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CHAPTER IV  

METHODS 

 

Discovery of the Organism 

 

In order to find superior surfactin producing strains without using genetic 

modification, soil samples were taken from areas prone to oil degraders (Vater et al., 

2002). Samples were heat treated in a sand bath at 80°C in order to kill vegetative cells 

and leave only the spore forming Bacilli.  Gram sized aliquots were taken and cultured in 

media enriched with yeast extract and optimized for growth of Bacillus subtilis via the 

Taguchi method (Wei et al., 2007).  Aliquots of seed culture were transferred to fresh 

broth to reduce the soil content for spread plating.  Upon regrowth, samples were serial 

diluted on agar containing 5% sheeps blood.  Surfactin producing strains were 

determined by measuring radii of β-hemolysis (Mulligan et al., 1989) as the ones shown 

in figure 5 below.  
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Figure 5.  Isolates from Various Locations in Buck Swamp, Goldsboro, NC. 

 

 
 

 

Promising colonies were subjected to 16S-rRNA sequencing for identification (Pyoung Il 

et al., 2010).  

Solvent Systems for UPLC and Sample Preparation 

 

The dissolution of the cyclic heptapeptide surfactin presented many difficulties.  In 

 

order to minimize sample matrix effects, the optimal sample solvent is one that is 

 

identical to the mobile phase, however this solvent fails to dissolve surfactin efficiently. 

 

A solvent system was designed that would dissolve purified surfactin and yet mimic the 

 

culture broth matrix.  This system was found to be 95% ethanol containing 5% culture 

 
matrix containing only the sodium and potassium phosphates diluted to 25% original 

concentration.  For the method validation, a 500 ppm stock solution of surfactin standard 

(Sigma-Aldrich) was made and diluted arithmetically in half to a concentration of 0.9735 

ppb.  Samples were ran from lowest to highest concentration with triple injections and a 
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wash between each concentration to prevent sample carryover.  A total of 4 calibration 

curves were performed on different days and averaged to a final curve. Mass tolerance 

for the selected ion chromatograms of each parent ion was set to ±5 ppm. The best 

chromatography was found utilizing an Accucore C30 column, 150 X 2.1 mm, 2.6µm 

particles held at 30ºC.  Solvent conditions for the UPLC are given below in Table 2.  

 
Table 2.  Reversed Phase UPLC Ramp Program. 

A: H2O with 0.1% Formic Acid 

B: ACN with 0.1% Formic Acid 

Time Flow %A %B 

0.0 0.3 40 60 

0.5 0.3 40 60 

2.0 0.3 20 80 

10.0 0.3 11 89 

10.5 0.3 0 100 

10.75 0.3 0 100 

11.0 0.3 40 60 

 

The preparation of samples was accomplished by dilution in ethanol and spin filtered to 

an anticipated concentration within the linear dynamic range.  

  

Electrospray Ionization Conditions 
 

High Resolution Mass spectrometry was accomplished via a Thermo LTQ Mass 

Spectrometer utilizing Orbitrap technology.  Mass calibration was achieved using a 

positive ion calibration mix containing caffeine, the small peptide MRFA and Ultramark 

1621 at a B ring distance from the capillary transfer tube.  Acidic conditions were chosen 

in our reversed phase method to facilitate retention within the column. The sheath gas  

 



18  

was heated for introduction of ions from the source at a distance C from the capillary  

transfer tube.  Values for the tune file are listed in Table 3 below. 

 

 
Table 3.  Tune File Conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Surfactin Production in Various Strains 

 

 In order to further establish the 203R strain as a prominent producer of surfactins,  

 

multiple strains of Bacillus subtilis: 21332, NRRL B-558, NRRL NRS-1270, NRRL B- 

 

3383, 168 and 6633, and one Pseudomonas aeruginosa strain 17934 were cultured in the  

 

same way.  These cultures were grown from cryostock in identical media, temperature 

 

and aeration.  Samples were cultured for 24 hours and frozen until evaluated for  

 

lipopeptide content. 

Capillary Temp. 350°C 

Sheath Gas Flow 35 

Aux Gas Flow 30 

Source Voltage 3.70 kV 

Capillary Voltage 44.00 V 

Tube Lens 135.00 V 



19  

CHAPTER V 

RESULTS AND DISCUSSION 

 

UPLC Separation 

  

 Several UPLC columns were used to improve the resolution of surfactin homologs 

and isoforms: Waters Acquity UPLC BEH Amide, 130Å, 1.7 μm, 2.1 X 150 mm (data not 

shown), Agilent Zorbax Bonus RP C18 Amide, 2.1 X 150 mm, 1.8 µm and Waters Acquity 

BEH C18, 2.1 X 150 mm, 1.7 µm.  Although the amide columns had higher anticipation to 

separate the cyclic lipopeptides of interest, the presence of the lipopeptide chain appeared 

to dominate the separation mechanism and thus a reverse phase separation mode was 

used.  Methanol failed to elute the surfactins from the Zorbax Bonus RP Amide phase and 

thus ethanol was chosen for the separation.  A second reason for the use of ethanol was 

its’ lower viscosity than isopropyl alcohol and thus reduced back pressure.  Likewise, 

analytes were separated under acidic conditions and acetonitrile was found to yield a 

superior separation over methanol and ethanol as shown in figure 6 below.   
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Figure 6.  UPLC Column Optimization.  A:  Chromatogram obtained using Zorbax Bonus RP, 

C18 amide and ethanol solvent ramp.  B: Chromatogram obtained using Waters Acquity BEH C18 

phase and acetonitrile solvent ramp.   
 

 
 

 

Distinguishing between the A and C isoforms of surfactins presented a challenge. 

Since these two isoforms vary only at the seventh amino acid residues, which are leucine 

and isoleucine, they are isobaric.  Surfactin B varies with a valine residue at the seventh 

position and is more easily separated on the basis of its hydrophobic chain length owing 

to the reverse phase conditions.  We were able to obtain near baseline resolution for the A 

and C isoforms through C14.  Figure 7 below shows the total ion chromatogram. 
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Figure 7. Base Peak of Total Ion Chromatogram. TIC obtained using Accucore C30 phase and 

acidic water/acetonitrile solvent ramp: Peak A: C12-Isoform A, B: C12-Isoform C: C13-Isoform A, 

D: C13-Isoform C, E: C14-Isoform A, F: C14-Isoform C, G: C14-Isoform B, H: C15-Isoform A, I: 

C15-Isoform C, J: C15-Isoform B, K: C16-Isoform B. 
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Masses and Fragmentation 

 

The use of sodium and potassium phosphates in the culture matrix created both 

adducts in the source and must be taken into consideration for the quantification of total 

surfactins.  Table 4 below lists the ions present and upon closer examination shows a 

repeating pattern of masses for the valine isoform with the addition of a methylene group 

for the next higher homolog.  

 
Table 4. Ions used in Quantification of Total Surfactins. 

 

 
 

 

  To distinguish the valine isoform from the surfactins A and C, fragmentation of 

the precursor masses was performed.  The difference of a single methylene unit in valine 

created a fragment with m/z 671.86 versus cleavage at the same positions for the surfactin 

A and C isoforms which yielded m/z 685.88 (Pecci et al., 2010).  Figure 8 shows the 

994.6414 precursor ions and their resulting MS-MS spectra for each retention time.  
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Figure 8. Extracted Ion Chromatogram.  The 994.6414 precursor ion and resulting 

fragmentation. A:  All ions of m/z 994.6414 eluting over the given time range.  B:    

Fragmentation pattern of the ions at retension time 7.80 minutes.  C:  Fragmentation pattern  

of the ions at retension time 8.81 minutes.    

 

 
 

 

Method Validation for Surfactin Quantification 

 

An analysis of the log-log curves for each calibration curve revealed that linearity 

deviated below 0.1246 ppm and above 250 ppm.  The final averaged calibration curve is 

shown in Figure 9. 
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Figure 9.  Average of Four Calibration Curves.  

 

 
 

 

Applying linear regression analysis gave a correlation coefficient of 0.995 as 

shown in Table 5 below. 
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Table 5. Linear Regression Parameters. 

 

Validation Parameter Result 

Correlation coefficient 0.995 

Standard error 6.58 x 108 

y-intercept 6.20 x 108 ± 4.5 x 108 

Slope of regression line 7.94 x 107 ± 3.4 x 106 

Number of data points 5 

Range 15.9 - 255 ppm 

Limit of Detection (LOD)a 8.0 ppm 

Limit of Quantification (LOQ)b 16 ppm 
 

a. LOD defined as the lowest concentration which gave a total ion signal three times greater  

than the noise. 

b. LOQ defined as the lowest concentration which gave a residual of 15% or less.  

  

 

When determining residuals, the low concentrations extended from 15 to 2100%.  All 

concentrations below 15% residuals were truncated (Junio, et al., 2013) yielding a 

calibration curve with a range through one order of magnitude.  This small linear 

dynamic range is likely due to further saturation at the upper limit and poor repeatability 

for the ion areas at low concentrations.  Table 6 shows the accuracy and precision for the 

validated method. 
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Table 6. Accuracy and Precision. 

   

Theoretical 
Conc. (ppm) 

Measured 
Conc. (ppm) 

Residualsa 
(%) 

Repeatabilityb 
(%) 

Intermediate 
Precisionc (%) 

15.95 13.49 -15 5.7 2.9 

31.9 22.32 3.4 12 3.1 

63.8 73.80 16 10 2.0 

127.6 137.1 7.5 0.23 3.2 

255.2 248.1 -2.8 4.4 0.84 

 
a.  Residuals were calculated as follows: (measured concentration-theoretical concentration)/ 

     theoretical concentration x 100. 

b.  Repeatability is expressed as the % relative standard deviation for back calculated surfactin 

     concentrations determined by triplicate analyses conducted on a single day. 

c.  Intermediate precision is expressed as the % relative standard deviation of the four back- 

     calculated surfactin concentrations (each an average of triplicate measurements determined  

     on four separate days).  

 

Production of Surfactins in Various Strains 

 

 Many strains of B. subtilis and other species contain the genes for antibiotic 

production. We sought to further investigate multiple B. subtilis strains from the USDA 

as well as one P. aeruginosa strain for surfactin production.  B. subtilis 168 was used as a 

potential negative control because of its years of laboratory cultivation and use as a 

model Bacillus strain.  This original Marburg 168 strain was reportedly exposed to X-

rays in the 1940s and does not produce lipopeptides or polyketides (Burkholder and 

Giles, 1947; Stein, T. 2005; Kinsinger, R. 2003).  It has also been documented that a 

frameshift mutation in the sfp gene of strain 168 resulted in an inactive form of PPan 

transferase and thus the 4’-PP arm cannot be transferred to the thiolation domain (Mootz 

et al, 2001).  Results for the various strains are shown below in figure 10. 
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Figure 10.  Surfactin Production across Multiple Strains of B. subtilis. 

  

 
 

 

Although Pseudomonas aeruginosa 17934, NRRL B-558 and B. subtilis 168 did not  

produce surfactin above the limit of quantification (16 ppm), ions corresponding to the 

 

masses and retension times of surfactin were detected in the culture media for these 

organisms.  Their total area sums remained below the limit of detection, as defined by the 

method validation, and even several orders of magnitude below the y-intercept value for 

the calibration curve.  Consistent with published literature, the previous model strain 

ATCC 21332, produced detectable surfactins of 425 ppm (Mohammadipour et al., 2009). 
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 CHAPTER VI 

 

CONCLUSION 

 

 

 The solubility of purified surfactin is very limited when compared to being 

synthesized by the organism and excreted in situ into the culture broth matrix.  This 

limited solubility makes it impossible to dissolve the analytical standard, which was 

purified by acid precipitation, in the starting mobile phase or culture matrix.  To 

ameliorate this, a suitable solvent system was created to mimic the ions found in the 

actual culture matrix.  Since actual samples from a batch process would contain a 

disproportionate amount of sodium and potassium ions compared to the calibration 

standards, all possible ions were summed in the calibration and culture samples to give an 

equal weighting to both.      

 Prior literature suggested using reversed phase chromatography utilizing C18 

phases for separation of surfactins.  Our method involving an Accucore C30 column 

improved resolution of the surfactin envelope particularly throughout the C14 chain 

lengths.  When coupling the UPLC retention times with the fragmentation pattern of the 

precursor ions, it was possible to discriminate the A and C isoforms from the surfactin B 

isoform.  This gave an added layer of identification to surfactin peaks and helped prevent 

misidentification if other identical masses are present.   

 Four calibration curves collected on different days with each concentration in 

triplicate gave good repeatability, within the linear dynamic range, with a correlation 
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coefficient of 0.995.  Although breakdown of linearity was clearly identified from the 

log-log transformations, other factors obligated the linear dynamic range to be further 

truncated.  Upon analysis of the % residuals it became apparent that at concentrations less 

than 16 ppm quantification was not possible.  Even though surfactins could easily be 

detected at concentrations of 2 ppm and less, our chosen definition for LOD of signal to 

noise ratio of 3:1 meant a LOD of 8 ppm was set. 

 The 203R strain of Bacillus subtilis was originally screened for surfactin 

production based on clearing zones of β-hemolysis.  Using mass spectrometry enabled a 

quantitative way of further establishing this strain as a superior producer of surfactins as 

compared to other B. subtilis strains evaluated.  Although UPLC coupled to HRMS is a 

far superior method for quantifying surfactins than gravimetric or surface tension 

methods, the inherent similarity between different classes of biosurfactants can produce 

situations of coelution.  In our case, the iturins also contain the same range of fatty acyl 

chains and a seven-membered cyclic heptapeptide but are joined through lactam 

cyclization.  Since the mode of UPLC separation was reversed phase, the iturins coeluted 

within the surfactin envelope.  The iturin class of lipopeptides produced several ions of 

similar mass but not within the 5ppm mass tolerance set for the surfactin quantification.  

For this reason, the HRMS application coupled with an improved separation before the 

MS interface allowed differentiation between surfactins and iturins as well as the 

surfactin valine isoform from the A and C forms. 
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                                                           APPENDIX A 

  

SUPPLEMENTARY DATA 

 

 
               Figure 11. Glucose Depletion throughout Culture. 

 

 


