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The ability to sustain attention is a fundamental cognitive process that is required for 

many everyday activities. Current measurement approaches focus on either objective behavioral 

indicators (like reaction time [RT] variability or task accuracy) or subjective self-reports of task-

unrelated thoughts (TUTs) as being suitable assessments for sustained attention. However, both 

types of indicators come with their own unique sources of measurement error, which reduce our 

accuracy in measuring sustained attention ability and weaken the conclusions we can draw from 

their findings. In this integrated dissertation, three papers are presented to argue that the 

covariation between objective and subjective indicators is a more construct-valid way to measure 

the ability to sustain attention than is either indicator type on its own. The results generally 

supported this claim, with some caveats. Theoretical implications, remaining concerns, and 

future directions are discussed to further improve the measurement of sustained attention ability.
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CHAPTER I: INTEGRATIVE INTRODUCTION 

People’s attention occasionally drifts away from what they are currently engaged in, 

which can result in negative real-world consequences, such as driving accidents (Broadbent et 

al., 1982; Reason & Mycielska, 1982; Yanko & Spalek, 2014), as well as professional 

(Hollenbeck et al., 1995; Reason, 1990) and academic difficulties (Lindquist & McLean, 2011; 

Steinmayr et al., 2010). Given the important role that sustained attention plays in such 

fundamental actions, understanding how and why lapses of sustained attention arise is critical for 

preventing such errors from occurring. However, the study of sustained attention has received 

little attention compared to other foundational cognitive abilities like executive functions and 

other aspects of attention (Esterman & Rothlein, 2019; Miyake & Friedman, 2012).  

Contemporary research has identified distinct, yet correlated, empirical outcomes that 

reflect failures of sustained attention. Specifically, reaction time (RT) variability within simple 

tasks and subjects’ reports of task-unrelated thoughts (TUTs) are often used as separate 

indicators of sustained attention failures and (in)abilities. As I discuss below, however, each of 

these indicators has their own unique sources of error that muddy the measurement of sustained 

attention. To remedy this, I argue that the individual-differences covariation of these measures 

may be a more construct valid approach to measuring sustained attention, an approach that the 

field has not yet considered. The goal of the research program presented in this dissertation is to 

investigate and evaluate the construct validity of sustained attention measures. 

The first empirical paper (Welhaf et al., 2020b) examines the association between 

performance and self-report measures of sustained attention by testing the robustness of the 

worst performance rule. The worst performance rule refers to the empirical finding that subjects’ 

cognitive ability is more strongly related to their worst performance, or longest RTs, compared to 
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their best, or even average, performance or RTs. One account of the worst performance rule is 

that subjects’ longest RTs occur, in part, because of momentary lapses of sustained attention 

(Larson & Alderton, 1990; Unsworth et al., 2010). As noted above, failures of sustained attention 

can also be measured via self-reported TUTs. In terms of the worst performance rule, then, we 

would expect to see ability correlations increasing in strength from shortest to longest RTs if the 

ability measure is closely linked to sustained attention, such as TUT rates. However, if the ability 

measure were somewhat less closely linked to sustained attention abilities, such as working 

memory capacity (WMC), we would expect a weaker worst performance rule pattern. Empirical 

Paper 1 also tested the robustness of our findings regarding sustained attention and the worst 

performance rule by using a “mini-multiverse” approach to outlier decisions and definitions. 

Although outlying RTs can be a sign of attention lapses, they can also reflect other processes or 

behaviors unrelated to sustained attention that impact performance on that given trial (e.g., 

momentarily forgetting the appropriate key to press or asking the experimenter questions during 

a task). Decisions on how to handle outlier trials (and subjects) can influence the findings of a 

study, so to increase the transparency of our analyses, we replicated our correlational models 

using different subject- and trial-level outlier-exclusion decisions. 

The second empirical paper assesses the construct validity of sustained attention 

measures, and specifically their individual-differences overlap, from a nomothetic span 

(correlational) approach (Welhaf & Kane, 2022a). It reanalyzes two large-scale, latent variable 

studies where we could derive objective and subjective measures of sustained attention from 

multiple tasks (Kane at al., 2016; Unsworth et al., 2021). In addition to modeling RT variability 

and TUT rates as separate but correlated factors, we also modeled the shared variance in these 

indicators as the general ability to sustain attention. Each study also measured multiple 
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nomological network constructs (e.g., WMC, motivational state, Big 5 personality traits) which 

allowed us to test the convergent and discriminant validity of the general sustained attention 

factor. As in empirical paper 1 (Welhaf et al., 2020b), we also employed a “mini-multiverse” 

analysis to assess the robustness of our findings across varying definitions and treatments of 

trial-level and participant-level outliers.  

The third, and final, empirical paper further assesses the construct validity of sustained 

attention measures, but from a construct representation (experimental) approach (Welhaf & 

Kane, 2022b), by measuring RT variability and TUT rates in tasks of varying sustained attention 

demands. We asked whether experimentally manipulating the sustained attention demands of the 

tasks altered not only mean levels of RT variability and TUT rates, but critically their 

covariation, as well. If the individual-differences overlap in objective and subjective indicators of 

sustained attention is a more construct valid measure of sustained attention, then their correlation 

should be sensitive to theoretically derived manipulations. Specifically, when sustained attention 

demands are maximized, these two indicators should be at least moderately correlated with each 

other because variation in each measure is significantly caused by sustained attention ability. 

However, reducing the sustained attention demand of a task should weaken, if not eliminate, the 

correlation between these indicators because now any remaining between-person variance is 

primarily caused by nuisance factors unique to either indicator (i.e., not sustained attention 

processes or abilities). Collectively, this line of research seeks to extend our understanding and 

improve our measurement of the ability to sustain attention, which can in turn help identify 

individuals who may be especially prone to distraction and potentially reduce the likelihood of 

human error in everyday life.  
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The goal of this integrated dissertation is to present work testing whether the individual-

differences covariation in objective and subjective measures is a construct valid way to measure 

the ability to sustain attention. To do this, I first define and dissociate the current view of 

sustained attention from alternative views. I then provide a brief review of the two construct 

validation approaches that will be used in the empirical papers presented in this integrated 

dissertation—“nomothetic span” and “construct representation” (Embretson, 1983)—along with 

expected outcomes that would support the construct validity of these sustained attention 

measures, and specifically their individual-differences covariation. I then describe the two main 

measurement approaches that have been used in the sustained attention literature—“objective” 

and “subjective” measures—and critically consider some limitations of using either of these 

approaches in isolation for measuring sustained attention ability. I next present correlational and 

experimental evidence from the literature that seems to support using the individual-differences 

covariation in objective and subjective measures to assess sustained attention. Specifically, I 

review studies that suggest some constructs that should be theoretically related to, and 

manipulations that should theoretically affect, the ability to sustain attention. 

Defining Sustained Attention As Attention Consistency 

Before determining the best ways to assess sustained attention, it is important to define 

the construct and differentiate it from associated constructs, such as vigilance, vigilant attention, 

and processing speed (for reviews, see Esterman & Rothlein, 2019; Fortenbaugh et al., 2017). I 

will, therefore: (a) briefly review, and dissociate, other abilities related to sustained attention, (b) 

define sustained attention for the current study, focusing on short-term consistency rather than 

long-duration changes, and (c) discuss why sustained-attention ability is necessary. 
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Historically, research on sustained attention has relied on long-duration vigilance tasks, 

in which subjects watch or listen for rare target events to occur, with vigils typically ranging 

from many tens of minutes to a few hours. Here, the main variable of interest is the “vigilance 

decrement,” or the drop over time in target detection or detection speed (Mackworth, 1950; Lim 

& Dinges, 2008; Parasauraman, 1986; Parasauraman & Davies, 1977). Recent work using 

shorter laboratory tasks has found vigilance decrements at smaller time scales (over the course of 

a few minutes; Dinges & Powell, 1985; Esterman et al., 2013, 2014; Unsworth & Robison, 

2020). Although these long- and short-duration changes in sustained attention are likely related, 

the current review and studies will focus on short-term fluctuations (i.e., over the course of a few 

seconds or minutes), which are more likely to apply broadly to everyday settings and to the 

modest-duration tasks that are common to cognitive psychology research.  

For example, Esterman et al. (2013) found that subjects shifted frequently between two 

attentional states across the duration of a task. Using RT data from a continuous performance 

task, Esterman et al. (2013) identified periods where subjects were “in the zone” or “out of the 

zone,” based on short-term deviations from their average performance (i.e., being “in the zone” 

was defined as periods in which RTs were close to mean levels, whereas being “out of the zone” 

was defined as periods of time where RTs were highly deviant from mean levels). Each period 

lasted only from a few seconds to a minute (see also Esterman, et al., 2014; Rosenberg et al., 

2013, 2015; Weismann et al., 2006).  

Likewise, the contents of conscious thought are dynamic (see James’s [1890] “stream of 

thought”), drifting from being activity-focused to being off-task. Subjects report being off-task 

roughly 30–50% of the time during simple laboratory tasks of modest duration, as well as during 

daily-life activities (e.g., Kane et al., 2016, 2017; Killingsworth & Gilbert, 2010; Unsworth & 
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McMillan, 2013; Unsworth et al., 2021), but with substantial variation around these mean 

estimates. Some subjects reporting very little mind wandering during a task (or day) and others 

reporting being off-task an overwhelming percentage of the time.  

Subjects also show trait-like propensities for TUT-content fluctuation during periods of 

rest (Kucyi, 2018) and within demanding laboratory tasks (Welhaf et al., 2020a; Zanesco, 2020). 

For example, previous research has found that subjects switch between TUT-content categories 

(e.g., endorsing worry at one probe and then fanciful daydreams at the next probe) at different 

rates while performing simple attention tasks (Welhaf et al., 2020a). This variability in TUT-

content stability was also related to individual differences in some cognitive ability and 

personality characteristics.  Thus, subjects not only fluctuate between focusing on their current 

goal and thoughts unrelated to their current task, but they also appear to fluctuate in what they 

are mind wandering about. Understanding how these moment-to-moment fluctuations in 

attention occur can help us better understand how and why lapses arise, and the downstream 

consequences that such sustained attention failures produce.  

For the present program of research, I define sustained attention as the purposeful act of 

maintaining optimal task focus to successfully, and consistently, perform goal-relevant actions. 

Note that this definition emphasizes two critical aspects not captured by all views of sustained 

attention. Specifically, some definitions of sustained attention fail to emphasize the consistency 

(vs. inconsistency) of attention and the optimization of processing for action. Robertson et al. 

(1997), for example, conceptualized sustained attention as “…the ability to self-sustain mindful, 

conscious processing of stimuli whose repetitive, non-arousing qualities, would otherwise lead to 

habituation and distraction by other stimuli” (p. 747; see also descriptions of “vigilant attention;” 

Langner & Eickhoff, 2013; Lim & Dinges, 2008; Robertson & O’Connell, 2010). This view 
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emphasizes the role of stimulus characteristics in engaging attention but does not consider the 

role of sustained attention in preparation for action or response. Likewise, traditional vigilance 

views of sustained attention are concerned with relatively long-range performance trajectories 

over time and often overlook the moment-to-moment (in)consistency of attention. Sustained 

attention (from a vigilance perspective) may thus be defined as, “the ability of organisms to 

maintain their focus of attention and to remain alert to stimuli over prolonged periods of time” 

(Warm et al., 2008, p. 433).  

This vigilance perspective typically measures sustained attention through accuracy or RT 

changes across the duration of the task by examining block-by-block changes. The current 

perspective of sustained attention ability instead focuses on the variation in trial-to-trial 

consistency in response or conscious focus as being more representative of the ability to sustain 

attention. Traditional vigilance tasks like the Mackworth Clock Test (Mackworth, 1948) also 

present a very different goal than do tasks typically used to assess attention consistency. The goal 

in these vigilance tasks is to respond to single targets that appear at random and unpredictable 

(infrequent) times, while tasks frequently used to measure attention consistency require 

responses on (most) every trial. Thus, even though the term “sustained attention” has been used 

to describe different phenomena, there are fundamental differences in the goals and definitions 

between sustained vigilant attention and sustained moment-to-moment attention. This current 

view of sustained attention is more aligned with the notion that “attention consistency” is a 

critical component of the human attention system (Unsworth & Miller, 2021).  

Why is the ability to actively sustain attention, from moment-to-moment, necessary? 

Research suggests that human’s default cognitive state is one of exploration and openness to 

distraction. For example, Klinger (1971; 2009) argued that personal goals become and remain 
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accessible as “current concerns” until they are fulfilled or abandoned. These concerns compete 

for attention while we are engaged in ongoing activities, with environmental cues triggering 

concern-related thoughts into awareness. This sensitivity of attention to current concerns is 

supported by several studies that have subtly primed self- or concern-related information. For 

example, in a dichotic listening paradigm, where streams of information are presented 

simultaneously through different channels, attention is often drawn to the channel where self- or 

concern-related information is presented (Bargh, 1982; Gollwitzer & Bargh, 1996; Klinger, 

1978). Further, evidence from studies using daily thought-sampling techniques shows that people 

spend large portions of their daily lives mind-wandering about their concerns (Kane et al., 2007; 

Klinger & Cox, 1987).  

Relatedly, a prominent theory of mind wandering, the Control Failures × Current 

Concerns view (McVay & Kane, 2010) argues that people experience mind wandering (in part) 

because these off-task, concern-related thoughts are continuously and automatically cued by 

stimuli in their immediate environment. These off-task thoughts may be inhibited or otherwise 

regulated, however, when executive control processes are adequately deployed to prevent access 

of such thoughts to conscious awareness. Subsequent research has supported this notion by 

examining the effects that experimentally cuing subjects’ personal concerns has on TUTs (e.g., 

Kopp et al., 2015; McVay & Kane, 2013; Vannuci et al., 2017). For example, McVay and Kane 

(2013) found that TUT reports were more frequent following triplets of personally relevant, goal-

related words (compared to non-relevant triplets) inserted into a go/no-go task. As will be 

discussed in subsequent sections, however, these cuing manipulations have been used primarily 

for their effects on TUTs, with only minimal interest in objective behavioral changes that should 

also reflect sustained attention failures.  
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Collectively, these findings suggest that attention is easily, and naturally, drawn to 

personally relevant stimuli and information that is not necessarily relevant to the current 

activities we are engaged in. Thus, an active sustained attention ability is needed to counteract 

this default orientation of attention to self- or concern-related information and focus on, and 

successfully perform, the primary task in front of us when it is critical to do so.1  

Two General Approaches to Construct Validation 

Because psychological constructs are unobservable, we must rely on our measures to 

assess how individuals differ on such hypothetical traits, abilities, or tendencies. How well our 

measures capture variation in target constructs is a question of construct validity (Borsboom et 

al., 2004; Cronbach & Meehl, 1955; Embretson, 1983; Strauss & Smith, 2009). The following 

section briefly reviews two schools of thought on construct validity and construct validation: the 

“nomothetic span” (correlational) approach and the “construct representation” (experimental) 

approach (Embretson, 1983). A goal of the current dissertation study is to use both approaches, 

in a complementary fashion, to assess the construct validity of sustained attention measures. 

 

1 Although beyond the scope of the current review, certain brain systems also appear to 
support the necessity of an active sustained attention ability. The locus coeruleus-norepinephrine 
(LC-NE) system fluctuates between modes of exploitation (i.e., optimal performance via task 
focus) and exploration (i.e., openness to task disengagement; Aston-Jones & Cohen, 2005; 
Cohen et al., 2004; Usher et al., 1999). LC-NE activity follows an inverse-U pattern. On the low 
end of the curve, tonic LC firing is weak and associated with hypoarousal and distractibility. At 
the peak of the curve, where both tonic and phasic firing are heightened, goal-directed behavior 
is optimal (i.e., an exploitive state). Here, organisms are most selective in their processing of 
stimuli. At the upper end of the curve, overactive tonic activity results in hyperarousal and 
indiscriminate responding (an exploration state). Sometimes hyperarousal can be good because it 
allows for the organism to seek or unexpectedly gain new information or rewards from the 
environment. However, this state of hyperarousal can hinder specific goal-related actions. There 
is ultimately a trade-off between these two states and the system must adapt to the current 
demands. 
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To evaluate a measure’s construct validity, Cronbach and Meehl (1955) proposed that a 

nomological network for a given measure should be built and tested against data. The network 

should make predictions about how observable measures of the same, versus different, constructs 

relate to each other, how theoretical constructs relate to observed measures, and how scores on 

measures should change across different theoretically relevant contexts. Because the 

nomological network describes relations among constructs and observables, Cronbach and 

Meehl (1955) suggested examinations of correlation matrices, comparisons of groups, 

comparisons across time, and factor analytic approaches as methods for assessing and 

developing the nomological network and evaluating the validity of its measures (for an example 

of a construct-validation method using correlational data, see the multitrait-multimethod matrix; 

Campbell and Fiske, 1959). 

The construct representation (experimental) approach to construct validity focuses, 

instead, on understanding the response processes that cause variation in scores on psychological 

tasks or measures (Embretson, 1983; Strauss & Smith, 2009). Embretson (1983) argued that such 

construct validation should focus on task decomposition, attempting to (a) identify and 

characterize the theoretical mechanisms (i.e., processes, strategies, and knowledge) that cause 

variation in task responses or performance, and then (b) design items or tests from this 

understanding (see also Borsboom et al., 2004). The construct representation approach primarily 

relies on experimental methods and computational models of the cognitive or affective processes 

that cause variation in performance outcomes. These techniques allow for researchers to pinpoint 

different task parameters or processes that can be manipulated across a task to see whether 

performance changes in ways that theory predicts (Embretson & Gorin, 2001).  
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Regarding sustained attention measures, a nomothetic span approach to construct 

validation could take the form of a latent variable study that includes multiple proposed measures 

of sustained attention and of other constructs that should appear within the nomological network. 

Supportive evidence from this approach would be that the proposed measures of sustained 

attention correlate strongly with each other and all load onto a sustained attention latent variable. 

Further, the sustained attention factor should correlate weakly, if at all, with measures that are 

not central to the nomological network (e.g., extraversion; word knowledge), while being 

moderately correlated with theoretically relevant factors (e.g., neuroticism; inhibitory control). 

From a construct representation approach, studies would aim to manipulate task parameters that 

should reduce (or increase) the need for, or success of, sustained attention mechanisms. 

Supportive evidence from the construct representation approach to construct validation would be 

to show that indicators of sustained attention can be impacted by changing aspects of the task 

that theory dictates should be sensitive to sustained attention (e.g., stimulus pacing; performance 

incentives).  

Measuring Attention Consistency 

In the following sections I describe two common approaches the field has used to assess 

sustained attention (in)abilities. I refer to these as objective (performance-based) and subjective 

(self-report based) indicators of attention consistency. Empirical Paper 2 (Welhaf & Kane, 

2022a) provides a more detailed discussion of these indicators and so I only briefly review them 

here.   

Objective Measures of Attention Consistency 

Ideal tasks for assessing sustained attention should require subjects to endogenously 

maintain focus and respond in a timely and consistent manner; failing to do so should result in 



 

  12 

poor task performance. Additionally, tasks should be simple to understand and easy to 

accomplish at the trial level when subjects are paying full attention; that is, they should not 

require complex cognitive processing or place heavy demands on memory or reasoning ability. 

Finally, tasks should not be overly engaging; that is, people should not be so absorbed that the 

task exogenously captures and holds their attention. Variation in performance on tasks that meet 

these criteria should thus be due more to sustained attention than to other constructs.  

Tasks like the psychomotor vigilance task (PVT; Lim & Dinges, 2008; Parasuraman et 

al., 1998), sustained attention to response task (SART; Robertson et al., 1997), metronome 

response task (MRT; Anderson et al., 2020; Laflamme et al., 2018; Seli, Cheyne, et al., 2013), 

continuous temporal expectancy task (CTET; O’Connell et al., 2009), and gradual onset 

continuous performance task (gradCPT; Rosenberg et al., 2013) all meet these criteria. These 

tasks require quick and consistent responding for successful performance, all present simple 

instructions (e.g., “respond when you see X on screen”), and all are repetitive enough that they 

are unlikely to completely engage subjects for their total duration. Table 1 provides brief 

descriptions of each of these tasks, how sustained attention contributes to successful performance 

in each task, and what cognitive processes beyond sustained attention might also influence their 

performance—as no psychological measures are process-pure.  
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Table 1. Descriptions of Commonly Used Sustained Attention Tasks 

Task/Citation Description How is Sustained Attention necessary? Non-Sustained 
Attention influences 

Psychomotor Vigilance 
Task (PVT; Lim & 
Dinges, 2008) 

Simple RT task that presents subjects with a set of 0s on-
screen (like a stopwatch: “00.000”) and requires them to 
respond as quickly as possible when they notice that the 
numbers begin counting up after a variable delay 

Necessary to maintain task 
focus/engagement and intrinsic alertness 
during unpredictable periods between the 
start of the trial and stimulus onset. Failing 
to sustain attention would result in longer 
than normal RT 

Processing speed; 
SOA guessing 
strategy; impulsivity 

Sustained Attention to 
Response Task (SART; 
Robertson et al., 1997) 

A go/no-go task that requires subjects to respond to 
frequently presented items from one category (~89% of the 
trials) and withhold responses to rare targets (~11% of the 
trials) 

High “go” trial frequency can lead to 
mindless, habitual, responding. Sustained 
attention is needed to overcome the 
mindless, and potentially erratic, responding 
and maintain consistency. Rare “no-go” 
trials also require sustained attention in 
order to prevent commission errors that 
might occur because of habitual responding. 

Response inhibition; 
response strategies 
(i.e., speed-accuracy 
tradeoff); processing 
speed; impulsivity; 
knowledge of stimuli 
used in task (i.e., 
knowledge of 
animals and fruits)  

Metronome Response 
Task (MRT; Laflamme 
et al., 2018; Seli et al., 
2013) 

A continuous performance task, in which visual or auditory 
stimuli are presented at a constant rate, that requires 
subjects to respond in synchrony with the presentation of 
the stimuli 

Repetitive presentation of low arousing 
stimuli for extended durations can elicit 
inconsistent responding. Sustained attention 
is needed to maintain consistent responding 
and not mis-time responses to stimuli.  

Familiarity and skill 
with rhythm or 
music; time 
estimation; counting 
strategies  

Continuous Temporal 
Expectancy Task 
(CTET; O’Connell et 
al., 2009) 

Subjects view a series of abstract images that are 
perceptually similar to each other; their goal is to respond 
to rare target stimuli that are presented for longer-than-
usual durations (1000-1200 ms) among frequent non-
targets that are presented briefly (600-800 ms). Attention-
capturing stimulus onsets/offsets are non-diagnostic to 
target detection. 

Sustained attention is needed to focus and 
notice small temporal discrepancies among 
perceptually similar and repetitive stimuli.  

Visual and temporal 
discrimination ability 

Gradual Onset 
Continuous 
Performance Task 
(gradCPT; Rosenberg et 
al., 2013) 

A go/no-go continuous performance task that presents 
subjects with frequent non-target stimuli and infrequent 
targets (similar to the SART). However, in the gradCPT, 
the stimuli gradually fade into one another, eliminating 
stimulus onsets/offsets which can capture attention. 

 

High “go” trial frequency can lead to 
mindless, habitual, responding. Sustained 
attention is needed to overcome the 
mindless, and potentially erratic, responding 
and maintain consistency. Rare “no-go” 
trials also require sustained attention in 
order to prevent commission errors that 
might occur because of habitual responding. 

Visual discrimination 
ability; response 
inhibition; processing 
speed; impulsivity; 
response strategies 
(i.e., speed-accuracy 
tradeoff) 
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Dependent Measures: Reaction Time Variability & Performance Accuracy  

Historically, intra-individual variability in RT was mostly argued to reflect measurement 

error in simple tasks (Fiske & Rice, 1955). Several studies have suggested, however, that RT 

variability reflects an important source of information about subjects’ cognitive state. 

Specifically, trial-to-trial RT variability and the frequency or duration of especially long RTs 

reflect, at least in part, the consistency (or inconsistency) of one’s sustained attention. That is, if 

a subject is effectively sustaining focused attention across trials in a task, then their RTs should 

be similar from trial to trial. Note that this critical aspect of sustained attention is not well 

captured by central-tendency performance measures like mean or median RT, which instead 

better reflect general processing speed. As reviewed in Empirical Paper 2 (Welhaf & Kane 

2022a) there are multiple ways to assess RT variability, all of which reflect behavioral instances 

of sustained attention failures, at least in part.  

The least complex way to assess fluctuations of attention is to simply count the number 

of times that subjects produce relatively long RTs. These instances of “blocks,” (e.g., Bills, 1931, 

1935) or “lapses,” (e.g., Lim & Dinges, 2008) capture sustained attention failures because they 

indicate instances in which subjects are not optimally focused on the task. Likewise, fluctuations 

in sustained attention can be assessed across the whole task by calculating within-subject trial-to-

trial variability in responses using measures like intra-individual standard deviation of RT 

(RTsd), coefficient of variation (CoV) in RT, or Rhythmic Response Times (RRTs). These 

different measures reflect the (in)consistency of responding on a trial-to-trial basis rather than 

simple counts of attention lapses as reflected by blocks or lapses.  

More complex approaches to assessing fluctuations in RT across a task include binning 

subjects’ individual RTs or using distributional models (e.g., the ex-Gaussian model) to fit the 
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full distribution of subjects’ RTs (as exemplified in Empirical Papers 1 and 2 [Welhaf et al., 

2020b; Welhaf & Kane, 2022a]). These approaches produce values that quantify subjects’ 

slowest performing trials against their whole distribution. In the binning procedure, subjects’ 

RTs are rank-ordered from shortest to longest and grouped into quantiles (e.g., shortest/fastest 

20% to longest/slowest 20%), with the slowest quantile(s) partially reflecting sustained attention 

failures. Using the ex-Gaussian modeling approach, the tau parameter (which categorizes the tail 

of the RT distribution, as the mean and SD of its exponential component) is most often used as 

an indicator of sustained attention failures (but see Yamashita et al., 2021 for an argument that 

sigma, the standard deviation of the Gaussian component, better reflects sustained attention).     

As subjects become mindlessly disengaged from a task, they may experience different 

types of errors that may (at least partially) reflect sustained attention failures. For example, 

subjects may respond when no response is required (i.e., a commission error) or fail to respond 

to one or more trials when it is required (i.e., omissions errors or “flat spots”, see Cheyne et al., 

2009; Unsworth et al., 2021). These errors might reflect different types, or severities, of 

sustained attention failures than those captured by RT fluctuations. Thus, it may be useful to 

consider both RT and accuracy-based measures to capture a full range of behavioral sustained 

attention failures (Cheyne et al., 2009; Unsworth et al., 2021). 

Limitations of Objective Indicators of Attention Consistency 

Studies of sustained attention that only use objective performance indicators may be 

tapping into sustained attention failures but may also be capturing measurement error. That is, 

objective indicators of sustained attention can be influenced by nuisance variables that confound 

its measurement. For example, longer-than-normal RTs, or performance errors, can be caused by 

failures of working memory (e.g., momentarily forgetting the stimulus that was just presented) or 
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by subjects looking away between trials which causes them to miss the initiation of a trial or the 

trial completely. As well, as displayed in Table 1, commonly used sustained attention tasks 

require other non-sustained attention process for successful performance (e.g., the SART also 

requires inhibitory control for successful performance; experience with music and rhythms can 

contribute to MRT performance). We therefore cannot rely only on this one type of indicator as a 

process-pure manifestation of sustained attention ability.   

Subjective Indicators of Attention Consistency 

Failures of sustained attention are not limited to errors or fluctuations in performance 

measures. Some sustained-attention failures may be more overt, and perhaps overt enough to be 

easily reported by subjects when asked. Subjective measures of sustained attention aim to 

capture off-task thoughts and everyday attention failures. Below I review different methods of 

assessing subjective indicators of attention consistency and their limitations when used in 

isolation (see Empirical Study 2 [Welhaf & Kane, 2022a], for a more detailed review). 

Diary Methods 

Early studies on sustained attention lapses in daily life required subjects to record 

instances of attentional failures in a diary (Norman, 1981; Reason, 1984, 1990; Reason & 

Mycielska, 1982). While daily diary methods have their strengths (e.g., capturing salient lapses 

and recording rich details of attention failures; Reason & Lucas, 1984; Unsworth et al., 2012; 

Unsworth & McMillan, 2017), they have serious limitations: They rely on both prospective 

memory (remembering to write down any failures that occur) and retrospective memory 

(remembering what failures occurred), as well as meta-awareness (i.e., being aware that a failure 

occurred). Thus, many attention failures may go unreported. 
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Experience Sampling and Thought Probes 

A more direct subjective assessment of sustained attention, both in the lab and in 

everyday life, is through experience-sampling methods. The technique used most frequently in 

the mind-wandering literature is thought probing, which has been used in a variety of tasks and 

contexts (for reviews see Kane, Smeekens, et al., 2021; Smallwood & Schooler, 2015). Studies 

using the thought-probe method will repeatedly and unpredictably interrupt subjects during one 

or more tasks or activities and have them report on the contents of their thoughts in the moment 

immediately preceding the probe appearance as being on-task or off-task (TUT), thus 

minimizing memory and meta-awareness contributions to reports.  

Ample evidence suggests that TUT reports captured by thought probes are reliable and 

valid. TUT rates correlate substantially across tasks and contexts, and in latent variable studies, 

TUT rates from multiple tasks can be modelled as a single latent variable suggesting a trait-like 

propensity to experience TUTs (e.g., Kane et al., 2016; Rummel et al., 2021; Unsworth & 

McMillan, 2014; Unsworth et al., 2021). That is, people who tend to experience TUTs in one 

task (or session of an experiment) do so in other tasks (or sessions). Further, TUT rates are also 

associated with poorer task performance and external indicators of cognitive ability (see the 

Evidence section below for further discussion).   

Limitations of Subjective Indicators of Attention Consistency 

TUT reports are not process-pure indicators of sustained attention failures. First, subjects 

may not be able, or willing, to accurately report on their thoughts. This metacognitive and 

introspective demand may yield erroneous or biased reporting (Hurlburt & Heavy, 2001; Nisbett 

& Wilson, 1977). For example, subjects may feel like they need to report being on-task since an 

experimenter is watching them perform an activity; or subjects may be biased by the framing of 
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the thought probe question (e.g., framing the question as “mind wandering” vs. “being on task”, 

see Weinstein et al., [2018]).  

Second, the frequency of thought probes, themselves, may change how TUTs are 

reported, if not experienced (see Welhaf et al., 2021 and Empirical Paper 3 [Welhaf & Kane, 

2022b] for a discussion of the benefits and drawbacks of frequent probing). In general, more 

frequent probing can lead to lower TUT rates (Seli, Carriere, et al., 2013; Schubert et al., 2019; 

but see Robison et al., 2019), perhaps because they (re)orient attention back to the task. Thus, 

while probes are a useful way to access subjects conscious experience, this method may 

fundamentally alter how subjects’ thoughts unwind during a task.  

Third, thought probes might be biased by reactivity to performance. For example, in the 

SART (and other go/no-go tasks), subjects are often aware of the errors they make, especially on 

no-go trials. Previous work has found that TUT reports are more frequent following no-go errors 

compared to correctly withheld no-go trials (e.g., Kane, Smeekens et al., 2021; Schubert et al., 

2019). This indicates that subjects may sometimes rely on their immediate performance to 

indicate where their thoughts might have been.   

Sustained Attention Measurement Summary  

Objective and subjective indicators provide different approaches to measuring attention 

(in)consistency. Because both have their limitations and independent sources of error, the 

combination of these two should best reflect the construct of sustained attention, independent of 

those sources of error. As such, I argue that the optimal way of capturing people’s general 

sustained attention (in)ability, is to use variance that is common to both objective and subjective 

indicators.   
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Evidence for the Construct Validity of Attention Consistency Measures 

Considerable research has examined relationships that sustained-attention indicators have 

with other theoretically relevant variables (the nomothetic span approach) and how these 

indicators change under different experimental conditions (the construct representation 

approach). Empirical Studies 2 and 3 (Welhaf & Kane, 2022a, 2022b) explain these findings in 

detail and so I review them only briefly below. 

Nomothetic Span (Correlational) Studies 

If attention consistency is best reflected by the covariation in objective and subjective 

indicators, then these two kinds of indicators should correlate moderately with each other. 

Findings at the between- and within-subject level indicate that there is a consistent association 

between objective and subjective indicators of sustained attention. Between-subject analyses 

(e.g., latent variable correlations) indicate moderate correlations between TUT rates and RT 

variability factors of .30–.40 (Kane et al., 2016; Unsworth, 2015; Unsworth et al., 2021; Welhaf 

et al., 2020b), suggesting these factors share some variance without being redundant: Subjects 

who report more off-task thoughts also show more inconsistent responding in simple attention 

and RT tasks.  

Within-subjects analyses present parallel findings. Subjects are more likely to make 

errors and produce more variable RTs on the trials immediately preceding TUT reports 

compared to on-task reports (e.g., Bastian & Sackur, 2013; Kane, Smeekens et al., 2021; McVay 

& Kane, 2009; Schubert et al., 2019; Stawarczyk et al., 2011). RT variability on the trials leading 

up to probes may be the less biased way to examine such within-subject covariation between 

these measures because TUTs following errors might be a result of performance bias rather than 

actual sustained attention failures. That is, subjects are likely unaware of their consistency in 
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responding (measured in fractions of a second) and how it relates to their performance, but they 

often can tell when they have made an error in a task (and may even make audible “oops” 

reactions following errors). In general, though, these RT and accuracy findings present initial 

construct validity evidence that these measures both reflect failures of sustained attention. 

Given that performance and self-report indicators are subject to different non-sustained 

attention confounds, however, it is unsurprising that they are only moderately correlated. The 

lack of a strong correlation between objective and subjective measures of sustained attention is 

important because it suggests that these two indicators are not isomorphic ways of measuring 

sustained attention. Using either approach on its own may lead to incorrect conclusions about the 

ability to sustain attention. That is, studies can’t simply swap out objective measures with 

subjective measures (or vice versa) and still be confident that they are measuring the ability to 

sustain attention. It may therefore be important, if not necessary, to measure sustained attention 

as the individual-differences covariation between these measurement types to make appropriate 

claims regarding sustained attention. 

If there are stable individual differences in the ability to sustain attention, then a next step 

is to figure out who is especially susceptible to its failures. Previous research has identified 

multiple cognitive, contextual-state, and dispositional variables that can help explore this 

question. In terms of cognitive factors, RT variability is consistently related to working memory 

capacity (WMC), attention control (interference control), and processing speed, such that higher-

ability subjects also show more consistent (i.e., less variable) performance (e.g., McVay & Kane, 

2012a; Kane et al., 2016; Schmiedek et al., 2007; Unsworth et al., 2021).2 As for TUT rates, 

 

2 Note that general processing speed, often represented by M RT, and RT variability are 
mathematically confounded. Slower RTs not only contribute to slower overall processing speed 
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again, WMC and attention control appear to be consistent correlates (e.g., McVay & Kane, 

2012b; Kane et al., 2016; Unsworth & McMillan, 2014), but correlations with processing speed 

are less consistent (e.g., Unsworth et al., [2021] found a significant correlation, whereas Welhaf 

et al., [2020b] Empirical Study 1, did not). Collectively then, WMC and attention control 

abilities should be related to general sustained attention, but processing speed may or may not 

be. To better understand how these constructs correlate with sustained attention, one should 

model the individual-differences covariation between objective and subjective indicators as this 

is less influenced by processes unique to either indicator.  

Contextual-state variables also appear to be related to both objective and subjective 

measures of attention consistency. The most frequently examined variables are self-reported 

motivation, alertness, and interest: People who report being more motivated, alert, or interested 

in a task show lower RT variability and report fewer TUTs (e.g., Hollis & Was, 2016; Kawagoe, 

2022; Smith et al., 2022; Soemer & Schiefele, 2019; Unsworth et al., 2021). It is worth noting 

that the correlations between subjective measures of sustained attention with these contextual-

state variables is often stronger than those for objective measures; this may not be surprising 

given that the contextual-state measures also rely on self-report, and so may partially reflect 

measurement-related variance. Thus, seeing how these contextual-state variables correlate with 

the shared variance between objective and subjective measures may give the field a better 

estimate of the actual strength of such correlations with sustained attention ability.  

Finally, dispositional factors, like some personality traits, may also correlate with general 

sustained attention ability. On one hand, people who have higher levels of neuroticism typically 

 

by increasing M RT, but they also increase the spread of the RT distribution which increases RT 
variability. 
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show increased RT variability and TUT rates and so may have poorer sustained attention ability, 

in general (Klein and Robinson, 2019; Robinson & Tamir, 2005; Robison et al., 2017; Unsworth 

et al., 2021). On the other hand, some personality traits like extraversion, conscientiousness, 

agreeableness, and openness, show inconsistent correlations with TUT rates and almost no 

correlation with objective sustained attention indicators. Only certain aspects of personality (e.g., 

neuroticism), then, may be related to general sustained attention ability.  

A limitation that applies to all the previously discussed nomothetic span studies is that the 

correlations in question have looked at objective and subjective measures of sustained attention 

as separate outcomes. My research program has tested whether a more appropriate approach 

would be to see how these measures correlate with the shared variance between objective and 

subjective measures, as this measure would be less influenced by nuisance variables specific to 

either objective or subjective measures.  

Construct Representation (Experimental) Studies 

Below I briefly review relevant research that shows how using theoretically derived 

manipulations alters RT variability or TUT rates in ways that theory predicts. Empirical Study 3 

(Welhaf & Kane, 2022b) provides a more detailed review of these studies and the implications of 

such experimental manipulations on sustained attention measurement.  

One approach to altering the sustained attention demands of a task is to manipulate 

specific task parameters that might be critical, or responsive, to sustained attention, such as 

changing the pacing or expectancy of trials, or changing the response frequency during a task. 

Regarding task pacing, performance on faster-paced tasks (i.e., those with shorter, or more 

predictable or constant, interstimulus intervals) tend to have lower RT variability compared to 

slower-paced, or less predictable, tasks (e.g., Langner & Eickhoff, 2013; Unsworth et al., 2018). 
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The effects of these manipulations on TUT rates are less compelling. Faster paced tasks yield 

lower TUT rates than slower tasks (e.g., Antrobus, 1968; Giambra, 1995; Unsworth & Robison, 

2020), but comparisons of different trial expectancies appear to have no effect on TUT rates 

(Hawkins et al., 2019; Massar et al., 2020).  

Manipulating response or trial-type frequency appears to affect both objective and 

subjective indicators of attention consistency. When tasks require frequent repetitive responding, 

like in the SART, participants can build up a habitual, “mindless” response pattern. To minimize 

the sustained attention demands of such tasks, studies can reduce the response frequency, which 

gives subjects less opportunity to engage in extended periods of mindless, repetitive, responding. 

In go/no-go tasks, for example, increasing the proportion of no-go trials results in faster go RTs 

and increased no-go accuracy (Nieuwenhuis et al., 2003; Young et al., 2018). Note, however, 

that such changes in performance can also be attributed to changes in response strategy (i.e., 

speed-accuracy trade-offs) rather than sustained attention (e.g., Head & Helton, 2014; Mensen et 

al., 2022; Wilson et al., 2016). Of the few studies that have investigated the effect of trial-type 

manipulations on TUT rates (e.g., Giambra, 1995; Smallwood et al., 2007), the findings appear 

to support the idea that giving participants less opportunity to engage in prolonged sequences of 

repetitive work helps them better focus on the task at hand.  

Another way to alter the sustained attention demands of a task is to provide monetary or 

performance incentives. Such incentives may be enough to keep subjects engaged in the current 

task and thus improve sustained attention indicators. This appears to be the case: Compared to 

control conditions, participants who are rewarded for their time and performance tend to show 

less RT variability and better accuracy, as well as lower TUT rates (e.g., Robison, et al., 2021; 

Seli et al., 2019; Smallwood et al., 2007).  
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This previously discussed experimental work provides some support for the construct 

validity of objective and subjective indicators of attention consistency. That is, theoretically 

derived manipulations affect mean levels of objective or subjective measures (or both), as 

predicted. An obvious limitation of these studies, though, is that these manipulations have only 

targeted changes in the mean levels of RT variability and/or TUT rates. If these manipulations 

are tied to sustained attention, then they should also reduce, or eliminate, the correlation between 

objective and subjective indicators, which I argue is a more construct valid way to measure 

sustained attention. Objective and subjective measures should be most strongly correlated in 

tasks with high sustained attention demands, as both variability in both measures is primarily 

caused by sustained attention processes. In contrast, when tasks place lower demands on 

sustained attention, the correlation between objective and subjective indicators should weaken 

because their variation is now primarily caused by non-sustained attention processes that are 

unique to each indicator type. 

Aims 

The goal of my research program is to better understand sustained attention and to 

improve its measurement. More specifically, this line of research builds on existing literature that 

has exclusively looked at objective and subjective indicators of sustained attention as separate, 

but correlated, constructs. Because each of these measurement types is influenced by different 

non-sustained-attention processes, relying solely on one of these indicator types as a primary 

measure of sustained attention may lead to erroneous claims. Rather, using the individual-

differences covariation in these measures should allow for more accurate measurement of the 

ability to sustain attention, as this measure is not influenced by non-sustained-attention factors 

unique to either objective or subjective measures. Further, this individual-differences covariation 
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should be correlated with theoretically relevant constructs and more sensitive to theoretically 

motivated experimental manipulations of demand than should either objective or subjective 

measures alone. By using the strengths of both the nomothetic span and construct representation 

approaches to construct validation, my research program can inform the field on the most 

appropriate way to assess sustained attention ability.  

Empirical Paper 1 (Welhaf et al., 2020b) 

Empirical Paper 1 (Welhaf et al., 2020b) investigated the robustness of the worst 

performance rule, and in doing so, explored the associations between performance and self-

report measures of attention consistency. As noted earlier, the worst performance rule is the 

empirical finding that the correlation between subjects’ ability level and their RTs increases from 

the shortest RTs (fastest/best responses) to the longest RTs (slowest/worst responses). In other 

words, higher- and lower- ability subjects don’t necessarily differ in their fastest, or even 

average, performing trials, but lower-ability subjects are much slower on their slowest trials 

compared to their higher-ability counterparts. One theoretical account of the worst performance 

rule suggests that worst performing trials (i.e., ones with the longest RTs) occur, in part, because 

of lapses of attention (e.g., Larson & Alderton, 1990; Unsworth et al., 2010). On these trials, 

lower-ability subjects are more likely to be momentarily distracted, missing the onset of the trial 

and only regaining focus at the very end of the trial, producing an accurate, but slowed response.  

A recent meta-analysis (Schubert, 2019) argued, instead, that the worst performance rule 

should be renamed the “not-best-performance-rule,” as correlations between cognitive ability 

and RTs increased from fastest, or “best,” RTs, to average RTs, but then remained stable to the 

worst RTs. That is, subjects’ average and worst performance were both equally telling of one’s 

ability level. We tested this claim by reanalyzing a previously published dataset (Kane et al., 
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2016) and assessing the latent variable associations between WMC, TUT rate, and two different 

approaches to fitting RT data (RT binning and ex-Gaussian models).  

We found that the pattern of results described by both the worst performance rule and the 

“not-best-performance-rule” appeared, but it depended on the ability construct. Specifically, 

when using working memory capacity (WMC) as our ability measure, we found patterns of 

results consistent with Schubert’s (2019) claims: Correlations between WMC and RT were 

weakest with subjects “best” performance and stronger with their “average” and “worst” 

performance, but these latter two correlations did not differ. However, when TUT rate was the 

(sustained attention) ability measure, we found traditional worst performance rule patterns: 

Correlations between TUT rates and RTs increased substantially across “best” to “worst” 

performance. These findings suggest a connection between subjects’ slowest trials and their self-

reported mind wandering; because both measures reflect, in part, the ability to sustain attention 

during a task, a common underlying ability may explain variation in both behaviors. However, 

because there are clear methodological differences (i.e., objective task performance vs. 

subjective self-reports), it may be necessary to look at what is common between these measures 

to best capture the ability to sustain attention as an individual-differences construct.   

Empirical Paper 2 (Welhaf & Kane, 2022a) 

Empirical Paper 2 (Welhaf & Kane, 2022a) took a nomothetic span approach to assessing 

the construct validity of sustained attention measures, and specifically the individual-differences 

covariation in objective and subjective indicators. We reanalyzed data from two large-N latent 

variable studies (Kane et al., 2016; Unsworth et al., 2021) that had multiple tasks from which we 

could derive different objective attention consistency indicators. Thought probes also appeared in 

multiple tasks in each study as subjective indicators.  
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We modeled the general ability to sustained attention in two ways: as a bifactor model 

and as a hierarchical model (see Figure 1 for a generic depiction of these models). In the bifactor 

model (panel A), we attempted to simultaneously model the variance common to all objective 

and subjective indicators (i.e., a common sustained attention factor) and the variance unique to 

the objective indicators and unique to the subjective indicators, while accounting for the general 

factor (i.e., residual objective-specific and subjective-specific factors). In the hierarchical model 

(panel B), the general factor was a second-order latent variable that was modeled as the shared 

variance between the first-order objective and subjective latent variables. 
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Figure 1. Proposed sustained attention factor structures 

 

 

Note. Panel A depicts the bifactor model; Panel B depicts the hierarhcial model.  
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We found that the covariation in objective and subjective measures could be modeled 

using both bifactor and hierarchical approaches, indicating that there was an underlying general 

ability to sustain attention that explained variance in these measures. This general factor 

correlated weakly to moderately with theoretically relevant constructs like cognitive ability (e.g., 

WMC, attention control, and processing speed), contextual-state factors (self-reported motivation 

and alertness), and dispositional factors (self-reported cognitive failures and personality traits). 

Critically, the strengths of the associations between the nomological network constructs and the 

general sustained attention factor were as strong, if not stronger, than those with either the 

objective or subjective factors, providing convergent-validity evidence for the general factor. We 

also found evidence for discriminant validity. Specifically, some measures (e.g., 

conscientiousness and agreeableness) correlated with the subjective factor, but not the general 

factor. Thus, these measures might not be associated with general sustained attention but rather 

processes specific to self-reports (e.g., self-reporting biases).  

Taken together, these findings suggest that previous research that has relied on only one 

type of sustained attention indicator may have under- or over-estimated correlations with 

nomological network constructs. Across both re-analyzed datasets, the hierarchical model, 

compared to the bifactor model, appeared to be more robust to different subject- and trial-level 

outlier treatments (see below), and a full bifactor model did not fit the Study 1 data well. We 

therefore argued that the hierarchical approach may be a more construct valid way to assess the 

general ability to sustained attention than either the bifactor approach or the separate objective or 

subjective factors.  

Empirical Papers 1 and 2 also make a methodological contribution beyond understanding 

and improving sustained attention measurement. In both papers, many of the primary dependent 
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measures were RT based. While relatively long RTs are often due to sustained attention failures, 

some may be caused by random behaviors of the subjects (e.g., sneezing, blinking, looking 

around the experiment room). How do we handle such outliers? Many papers don’t report how 

trial-level outliers were treated, and among those that do, there are many different approaches. 

These different decisions can yield different results. To increase the transparency and test the 

robustness of our empirical claims, both Empirical Papers 1 and 2 used a “mini-multiverse” 

approach. Here, we examined how our main findings for each study changed as different, 

commonly employed subject- and trial-level outlier decisions were implemented on the raw data. 

As we note in both papers, the main results largely replicated across each strand of the 

multiverse, suggesting our findings were robust to different data analysis pipeline decisions. 

However, in cases where the findings did not replicate well across different variants, we use this 

as evidence that the approach or model may not be appropriate. 

Empirical Paper 3 (Welhaf & Kane, 2022b) 

Empirical Paper 3 (Welhaf & Kane, 2022b) took a construct representation approach, 

combining experimental with correlational methods to assess the construct validity of sustained 

attention measures. In two large-N studies conducted online, we assessed how theoretically 

derived experimental manipulations of sustained attention demands affected mean levels of RT 

variability and TUT rates in prototypical sustained attention tasks, and most critically, their 

correlation. Specifically, we asked whether implementing manipulations that should theoretically 

reduce the sustained attention demands of a task would result in lower RT variability and TUT 

rates (i.e., traditional experimental effects), and, critically, weaker correlations between these 

two indicators, compared to a task that placed a higher demand on sustained attention. If the 

individual-differences overlap in RT variability and TUT rates is a construct valid measure of 
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sustained attention, then minimizing the demands of sustained attention should weaken this 

correlation because variation in each indicator will primarily be driven by other non-sustained 

attention processes unique to either RT variability or TUT rates. 

The results of both studies indicated that our manipulations had a significant impact on 

mean levels of RT variability and TUT rate: In tasks that minimized the demands on sustained 

attention, both indicators of sustained attention failures were lower than in tasks that placed a 

high demand on sustained attention. However, contrary to predictions, these manipulations did 

not affect the individual-differences overlap in these measures: RT variability and TUT rate were 

significantly and similarly correlated with each other in the demand-maximized and demand-

minimized tasks. Thus, from a construct representation approach, we found only some support 

for the construct validity of these measures. Specifically, our manipulations effectively reduced 

both mean levels of RT variability and TUT rates in both studies, supporting the idea that these 

manipulations are tied to sustained attention. However, in neither study did the correlation 

between RT variability and TUT rates (which, we argue, is a more valid measure of sustained 

attention) change because of these manipulations.  

We reflected on these mixed results in multiple ways. First, we discussed that we could 

have been wrong about our sustained attention measurement approach in using the covariation 

between objective and subjective measures. We argued against this, however, noting the 

supportive findings from our nomothetic span study (Empirical paper 2; Welhaf & Kane, 2022a) 

and the clear experimental effects we found on both RT variability and TUT rates. Second, we 

suggest that despite our manipulations working to some degree, they may not have been strong 

enough to reduce the correlation between the indicators. Sustained attention is likely so 

fundamental to nearly any task that it may be extremely difficult, if not impossible, to reduce the 
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shared variance between objective and subjective sustained attention measures enough to see any 

measurable between-person differences. We suggested that future studies should consider 

additional task-demand manipulations (e.g., probe frequency, motivation manipulations, more 

frequent and perhaps longer breaks) and other methodological considerations (e.g., testing in a 

controlled lab setting vs. online to reduce participant distraction) in experimentally testing our 

claim that the covariation between objective and subjective sustained attention measures is a 

more construct valid way to measure the ability to sustain attention.   
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CHAPTER II: WORST PERFORMANCE RULE, OR NOT-BEST PERFORMANCE RULE? 

LATENT-VARIABLE ANALYSES OF WORKING MEMORY CAPACITY, MIND-

WANDERING PROPENSITY, AND REACTION TIME 

Welhaf, M.S., Smeekens, B.A. Meier, M.E., Silvia, P.J., Kwapil, T.R., & Kane, M.J. (2020). The 

worst performance rule, or the not-best performance rule? Latent-variable analyses of working 

memory capacity, mind-wandering propensity, and reaction time. Journal of Intelligence, 8, 25. 

https://www.mdpi.com/2079-3200/8/2/25 

Abstract 

The worst performance rule (WPR) is a robust empirical finding reflecting that people’s 

worst task performance shows numerically stronger correlations with cognitive ability than their 

average or best performance. However, recent meta-analytic work has proposed this be renamed 

the “not-best performance” rule because mean and worst performance seem to predict cognitive 

ability to similar degrees, with both predicting ability better than best performance. We re-

analyzed data from a previously published latent-variable study to test for worst vs. not-best 

performance across a variety of reaction time tasks in relation to two cognitive ability constructs: 

working memory capacity (WMC) and propensity for task-unrelated thought (TUT). Using two 

methods of assessing worst performance—ranked-binning and ex-Gaussian-modeling 

approaches—we found evidence for both worst and not-best performance rules. WMC followed 

the not-best performance rule (correlating equivalently with mean and longest RTs) but TUT 

propensity followed the worst performance rule (correlating more strongly with longest RTs). 

Additionally, we created a mini-multiverse following different outlier exclusion rules to test the 

robustness of our findings; our findings remained stable across the different multiverse iterations. 
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We provisionally conclude that the worst performance rule may only arise in relation to 

cognitive abilities closely linked to (failures of) sustained attention. 

Introduction 

Adults who score higher on intelligence tests also ted to respond faster in simple and 

choice response time (RT) tasks (Doebler & Scheffler 2016; Jensen 1992; Sheppard & Vernon 

2008). However, different parts of the RT distribution are more predictive of cognitive ability: 

The worst performance rule (WPR; Coyle 2003a; Larson & Alderton 1990) describes the 

empirical finding that subjects’ longest RTs (e.g., the slowest 20% of responses) correlate more 

strongly with cognitive ability than do their shortest or their average RTs. The WPR appears in a 

variety of RT tasks (Baumeister & Kellas 1968; Jensen 1982, 1987) and across the lifespan 

(Coyle 2001, 2003b; Fernandez et al. 2014).  

A recent meta-analysis (Schubert 2019) indicated that the WPR is robust: Correlations 

between people’s shortest RTs and intelligence (r = −0.18, [95% CI −0.27, −0.08]) were 

numerically weaker than those between their mean RT and intelligence (r = −0.28 [95% CI 

−0.38, −0.18]) and these were numerically weaker than between their longest RTs and 

intelligence (r = −0.33, [95% CI −0.41, −0.24]). Schubert noted, however, that the meta-analytic 

results suggested a logarithmic rather than linear association between measures of intelligence 

and RT. That is, the change between correlations was greatest between shortest and mean RTs, 

while the change from mean to longest RTs was small. Individual differences in shortest RTs 

were less strongly associated with ability than were both mean and longest RTs. Schubert thus 

suggested that the WPR be renamed the “not-best performance” rule.  

Although the WPR is most often studied in relation to intelligence, related constructs 

show similar trends. Indeed, the WPR is sometimes explained as reflecting fluctuations of 
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working memory (Larson & Alderton 1990; Larson & Saccuzzo 1989) or of focused attention to 

the task (Jensen 1992). Failing to maintain attention during a task may result in especially long 

RTs on those occasional trials where attention is focused elsewhere. People with lower working 

memory capacity (WMC) and lower intelligence are more prone to attentional lapses (Engle & 

Kane 2004; Kane & McVay 2012), and WMC appears to be especially related to subjects’ 

slowest responses (McVay & Kane 2012a; Schmiedek et al. 2007; Unsworth et al. 2010; 

Unsworth et al. 2012; Unsworth et al. 2011; Wiemers & Redick 2018). The attention-control 

account of the WPR (Larson & Alderton 1990; Unsworth et al. 2010) thus proposes that people 

of lower ability are more susceptible to attentional lapses that disrupt goal maintenance in 

working memory than are those of higher ability. 

On one hand, the attention-lapse account of the WPR is consistent with a prominent 

theory of intelligence, Process Overlap Theory (POT), which proposes that cognitive-task 

performance requires the contribution of many domain-specific processes and domain-general 

executive processes (Kovacs & Conway 2016). Central to POT is that, within a cognitive domain 

the overlapping processes may compensate for one another, but between domains they cannot; 

domain-general executive processes may thus act as a bottleneck for item solution when 

executive demands exceed executive ability. According to POT, then, the WPR arises partly 

because people with lower WMC/intelligence do not have the ability to meet the necessary 

executive demands of blocking distractions or sustaining focus on every trial, even though 

domain-specific processes may be up to the task. These occasions result in extremely slow 

responses that produce the WPR. On the other hand, POT does not require that the WPR better 

characterizes performance than does the not-best performance rule. Insofar as other executive 

processes also contribute to task performance, and these other executive processes tend to fail 
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more frequently than rare attentional lapses (or fail with different thresholds), POT can 

accommodate either the WPR or not-best performance rule pattern. Indeed, POT might also 

predict that ability measures that best capture the propensity for occasional sustained attention 

failures should show a WPR pattern whereas ability measures that best capture other executive 

abilities might show a not-best performance rule pattern.   

Two approaches have been used most frequently to quantify worst performance. The 

most common is the ranked-binning procedures, where subjects’ individual RTs are ranked from 

shortest to longest and split into quantiles (e.g., 5 bins, from the shortest 20% of RTs to the 

longest 20%). A second approach models the shape of each subject’s RT distribution. The ex-

Gaussian model, for example, represents a subject’s RT distribution—which is typically 

positively skewed—as a convolution of a Gaussian (normal) and exponential distribution, with 

three parameters: mu, sigma, and tau3. Mu and sigma reflect the mean and standard deviation of 

the Gaussian distribution, respectively, whereas tau represents the mean and standard deviation 

of the exponential component (i.e., the tail of the positively skewed distribution). The parameters 

of the ex-Gaussian model do not reflect isolated cognitive processes (Matzke & Wagenmakers 

2009), but because the tau parameter frequently correlates with normal individual differences in 

WMC more strongly than do the other parameters, some have proposed that tau may sometimes 

reflect failure of goal-maintenance in the form of occasional attentional lapses (McVay & Kane 

2012a; Unsworth et al. 2010, 2011, 2012). 

 

3 The ex-Gaussian model is but of many that adequately fit RT distributions including the 
Wald, Gamma, Weibull, and Lognormal functions (Heathcote, Brown, & Cousineau 2004; 
Matzke & Wagenmakers 2009; Ulrich & Miller 1993; Van Zandt 2000). 
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If failures of attentional focus can explain the WPR, at least in some task contexts, then 

assessing subjects’ thought content during a task should also produce patterns consistent with the 

WPR. During laboratory tasks, as well as in everyday activities, peoples’ thoughts sometimes 

drift from what they are doing to something unrelated, resulting in the phenomenon of 

“daydreaming,” “mind wandering,” or “task-unrelated thoughts” (TUTs; e.g., Christoff & Fox 

2018; McVay & Kane 2010, Randall, Oswald, & Beier 2014; Smallwood & Schooler 2015). 

TUTs are typically assessed via experience sampling, where subjects are interrupted at 

unpredictable times during a task or activity and asked to report on their immediately preceding 

thoughts.  

These probed TUT rates have been validated as predicting performance at both within-

subject and between-subject levels. At the within-subject level, TUT reports are more frequent 

following task errors than correct responses (McVay & Kane 2009; Smallwood & Schooler 

2006; Stawarczyk et al. 2011) and following relatively fast or variable runs of RTs (Bastian & 

Sackur 2013; McVay & Kane 2009, 2012a; Seli et al. 2013); TUT reports also vary with 

assessments of pupil size, an indirect and unobtrusive indicator of arousal and sustained attention 

(e.g., Unsworth & Robison 2016, 2018; Unsworth et al. 2018), and with particular neuroimaging 

signatures (e.g., Arnau et al. 2020; Baldwin et al. 2019; Christoff et al. 2009; Kam & Handy, 

2013) At the between-subjects level, evidence indicates that TUTs reflect, in part, executive 

abilities to sustain attention. For example, individual differences in probed TUT rate are reliable 

across tasks and occasions, indicating a trait-like propensity for off-task thought during 

challenging activities (e.g., Kane et al. 2016; McVay & Kane 2012b; Robison & Unsworth 

2018). Moreover, individuals who frequently report TUTs show worse performance (in accuracy, 

RT variability, or both) on a range of cognitive tasks including reading comprehension (McVay 
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& Kane 2012b; Schooler et al. 2004), working memory (Banks et al. 2016; Kane et al. 2007; 

Mason et al 2007; Mrazek et al. 2012; Unsworth & Robison 2015) and attention-control tasks 

(McVay & Kane 2012a, 2012b; Cheyne et al. 2009; Kane et al. 2016; McVay & Kane 2009, 

2012a; Robison et al. 2017). Individual differences in TUT rate and attention-task performance 

also covary with those in pupil-size variability in cognitive tasks (e.g., Unsworth & Robison, 

2017, 2018). These findings, together, indicate that, although it is a self-report measure, TUT 

rate reflects (at least in part) an ability to sustain attention during challenging tasks.  

Several studies have shown that TUT rates correlate with intrasubject variability in RT 

(i.e., RT standard deviations or coefficients of variation; Bastian & Sackur 2013; McVay & Kane 

2009, 2012a; Seli, Cheyne, & Smilek 2013; Unsworth 2015) but only one study has related TUT 

rates to characteristics of the RT distribution that might be indicative of the WPR. McVay and 

Kane (2012a) found modest correlations between TUT rates and ranked-bin RTs in a long-

duration go/no-go task: Subjects with higher TUT rates had shorter RTs in the fastest bins and 

longer RTs in the slowest bin. From the ranked-bin approach, then, it is unclear whether TUT-

variation follows a pure WPR pattern (go/no-go tasks may be unique in eliciting very fast but 

“mindless” go responses in addition to very slow ones). McVay and Kane also assessed the 

association between TUT rates and ex-Gaussian parameters, which provided evidence for the 

WPR: TUT rate was weakly associated with mu (r = -.18) and not related to sigma (r = -.07), but 

moderately associated with tau (r = .30); subjects who reported more mind wandering during the 

task also had more especially long RTs that were captured by the tau parameter.  

The Present Study 

The primary aim of the current study was to apply the meta-analytic findings of Schubert 

(2019) to a novel dataset, with a relatively large subject sample, across a variety of attention-
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control tasks, and in relation to two individual-differences constructs—WMC and TUT rate. 

While the meta-analysis conducted by Schubert (2019) coherently characterized existing “WPR” 

data, we assessed here whether it would similarly extend to a new, large dataset. Thus, we asked 

whether there is evidence for the traditional WPR or the “not-best” performance rule pattern 

(Schubert 2019)—or, perhaps, both, depending on the predictor construct. To do so, we 

reanalyzed data from a previously published latent-variable study (Kane et al. 2016), focusing on 

a subset of tasks where RT was a primary dependent measure (using only the non-conflict trials 

from those response-conflict tasks, in order to make closer contact with the WPR literature). We 

calculated both ranked-bins and ex-Gaussian parameters and assessed their associations with 

WMC and TUT rates, both at the individual-task level and at the latent-variable level.  

As a secondary aim, we also examined the robustness of our findings to various 

treatments of outlier trials and outlier subjects via a “mini-multiverse” analysis (Silberzahn et al 

2018; Steegen et al 2017). One of the main methodological considerations of the WPR, as 

discussed by Coyle (2003a), is the role of outliers. Given that outliers populate the slowest bins 

and affect the tau parameter, their inclusion or exclusion might substantially alter measurement 

of worst performance, and yet Schubert’s (2019) meta-analysis found little consistency in outlier 

treatment. Here, then, we created different datasets based on different trial-level and subject-

level outlier criteria based on commonly reported methods in the studies included in Schubert; 

we refer to this as a mini-multiverse because we explored a substantial number of reasonable 

combinations of prototypical outlier treatments without exploring the full universe of all possible 

treatments and their combinations (which, in terms of RT outlier criteria, are infinite). 
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Methods and Materials 

Subjects 

Kane et al. (2016) enrolled 545 undergraduates into their study from the University of 

North Carolina at Greensboro, a comprehensive state university (and Minority-Serving 

Institution for African-American students). Of these, 541 completed the first of three 2 hr 

sessions, 492 completed the second, and 472 completed all three. Full-information maximum 

likelihood (ML) estimation was used for missing data (see Kane et al. for details and 

demographics). By comparison, the average sample size of WPR studies included in Schubert 

(2019) meta-analysis was 164 (SD = 182), with only one included study testing more than 400 

subjects (Dutilh et al. 2017). 

Reaction Time (Outcome) Tasks 

We focused our analyses on tasks where RT was the primary dependent measure from 

Kane et al. (2016): The Sustained Attention to Response Task (SART), Number Stroop, Spatial 

Stroop, Arrow Flanker, Letter Flanker, and Circle Flanker tasks. Below we briefly describe each 

task and how their RTs were derived; for analyses reported here, we used only the non-conflict 

trials from each task.  

SART. In this go/no-go task, subjects pressed the space bar for words from one category 

(animals; 89% of trials) but withheld responding to another (vegetables; 11% of trials). Subjects 

completed 675 analyzed trials. RTs were taken from correct responses to “go” (animal) trials.  

Number Stroop. Subjects reported the number of digits presented on each trial while 

ignoring the digits’ identity. Each trial presented 2 to 4 identical digits in a row and subjects 

responded with one of three labeled keys to indicate the number of digits on screen. There were 
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300 total trials, of which 80% were congruent (e.g., 4444) and remaining 20% were incongruent 

(e.g., 2222). Here, we took RTs from correct responses to congruent trials.  

Spatial Stroop. Subjects reported the direction of a centrally presented arrow (“<” vs. 

“>”) via keypress, with the arrow flanked horizontally by 4 distractors. Subjects completed two 

blocks of 96 trials: 24 neutral trials (target arrow presented amid dots), 24 congruent trials (all 

arrows pointing the same direction), 24 stimulus-response incongruent trials (central arrow 

pointing opposite direction of flankers), and 24 stimulus-stimulus incongruent trials (central 

arrow presented amid upward pointing arrows). Here, we used RTs from correct responses to 

both neutral and congruent trials. 

Arrow Flanker. Letter Flanker Subjects reported whether a centrally presented “F” 

appeared normally or backwards via keypress, with that letter flanker horizontally by 6 

distractors. Subjects completed 144 trials: 24 neutral trials (normal or backwards F presented 

amid dots), 48 congruent trials (target and distractor Fs all facing the same direction), 24 

stimulus-response incongruent trials (target facing opposite direction of distractors), and 24 

stimulus-stimulus incongruent trials (target presented amid right- and left- facing Es and Ts tilted 

at 90 and 270 degrees). Here, RTs were derived from correct responses to neutral and congruent 

trials.  

Circle Flanker. Subjects reported whether a target letter was an X or N, via keypress, 

with the target flanked by two distractors. Targets appeared in one of eight possible locations in a 

circle, with distractors appearing to position one either side of the target; all other location were 

occupied by colons. Subjects completed 160 trials: 80 neutral trials (target letter surrounded by 

colons) and 80 stimulus-stimulus conflict trials (target flanked by two different distractors from 

the set H, K, M, V, Y, Z). Here we took RTs from correct responses to neutral trials.  
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Cognitive Predictor Measures 

For a detailed description of the tasks used for the present analyses (as well as non-

analyzed tasks and task order), see Kane et al. (2016). Here we used only two of their cognitive 

constructs as predictors in our statistical models—WMC and TUT rate (i.e., we did not analyze 

performance from attention-constraint or attention-restraint tasks here, other than the neutral and 

congruent RTs described from the tasks above as outcome measures). 

Working Memory Capacity (WMC). In six tasks, subjects briefly maintained items in 

memory while engaging in secondary tasks or mental updating. Four complex span tasks 

presented sequences of verbal or visuospatial items that required immediate serial recall 

(Operation Span, Reading Span, Symmetry Span, Rotation Span); memory items were preceded 

by unrelated processing tasks requiring yes/no responses. Two memory-updating tasks (Running 

Span, Updating Counters) required subjects to maintain an evolving set of stimuli in serial order 

while disregarding previous stimuli. Higher scores indicated more accurate recall. 

Thought Reports of TUT. Thought probes appeared randomly within 5 tasks (45 in 

SART, 20 in Number Stroop, 20 in Arrow Flanker, 12 in Letter Flanker, and 12 in an otherwise-

unanalyzed 2-back task). At each probe, subjects chose among eight presented options that most 

closely matched the content of their immediately preceding thoughts. TUTs were comprised of 

response options 3-8 in Kane et al. (2016): “Everyday Things” (thoughts about normal life 

concerns, goals, and activities); “Current State of Being” (thoughts about one’s physical, 

cognitive, or emotional states); “Personal Worries” (thoughts about current worries); 

“Daydreams” (fantastical, unrealistic thoughts); “External Environment” (thoughts about things 

or events in the immediate environment); “Other.”   



 

  43 

RT Data Cleaning Procedure 

All data were cleaned and aggregated in R (R Core Team, 2017) using the dplyr package 

(Wickham, Francois, Henry, & Muller, 2018). Data from all RT tasks were cleaned in the same 

manner for primary analyses. We first identified and removed error and post-error trials (and, in 

tasks that included thought probes, post-probe trials). In tasks that included conflict trials, we 

removed all conflict trials to focus our analyses on non-conflict trials to remove potential 

interference effects. From the remaining trials, we eliminated likely anticipatory trials (i.e., faster 

than 200 ms). For all primary regression and latent variable models, we next identified trial 

outliers that were outside 3 times the interquartile range (3*IQR) of each individual subjects’ 

mean RT for each task and replaced those trials with values equal to 3*IQR. This procedure 

affected <2% of trials in each task. Following all trial-level treatments and aggregation, RT 

variables were z-scored at the sample level. As we will discuss later, a mini-multiverse analyses 

repeated our primary latent variable analyses across various combinations of trial- and subject-

level outlier decisions (see Mini-Multiverse Results). 

Results 

Data used for all analyses, as well as analysis scripts and output, are available via the 

Open Science Framework (https://osf.io/9qcmx/). For detailed description of data-analysis 

exclusions, scoring of predictor tasks, and treatment of outliers in predictor tasks, please see 

Kane et al. (2016). We modeled the cognitive predictor constructs (WMC and TUTs) identically 

to Kane et al., including any residual correlations among indicators.  

In the following sections, we first report results from the ranked-bin approach. 

Regression analyses provide descriptive evidence of the WPR in each task separately. Our main 

results assess latent-variable models for RT ranked bins and their correlations with WMC and 
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TUTs. We follow these results with latent variable models using ex-Gaussian parameters to 

assess the WPR (via the tau parameter). Lastly, we present a mini-multiverse analysis to explore 

whether varying treatments of outliers influence the robustness of our primary latent-variable 

analyses. 

Ranked Bin Analyses 

Descriptive Statistics and Zero-Order Correlations. Table 2 presents descriptive 

statistics for all ranked-bin measures. M RTs increased substantially across bins for all tasks, and 

standard deviations suggest considerable between-subject variation (also increasing over bins). 

Supplemental Table S1 presents zero-order correlations among the predictor and RT-outcome 

measures. Correlations among RTs from the same bins across different tasks (e.g., SART bin 5, 

arrow flanker bin 5) were modest, suggesting convergent validity among ranked-bin RTs. It thus 

appears that we measured a reasonably trait-like pattern in RT distributions across subjects.  



 

  

Table 2. Descriptive Statistics for Ranked Bin Measures for each reaction time task.  

Variable Mean SD Min Max Skew Kurtosis 
SART Bin1 337 72 213 639 0.726 0.562 
SART Bin2 421 95 237 823 0.506 0.202 
SART Bin3 491 107 258 979 0.265 0.177 
SART Bin4 576 122 279 1048 0.367 1.002 
SART Bin5 781 182 326 1419 0.870 1.412 
Letter Flanker Bin1 437 59 292 627 0.608 0.417 
Letter Flanker Bin2 498 75 339 773 0.651 0.372 
Letter Flanker Bin3 547 91 367 864 0.778 0.574 
Letter Flanker Bin4 611 118 405 1028 0.982 1.157 
Letter Flanker Bin5 778 202 450 1488 1.168 1.467 
Arrow Flanker Bin1 389 37 260 527 0.306 0.486 
Arrow Flanker Bin2 437 45 311 584 0.552 0.195 
Arrow Flanker Bin3 471 53 343 669 0.691 0.476 
Arrow Flanker Bin4 515 67 373 750 0.776 0.536 
Arrow Flanker Bin5 636 113 427 1048 0.949 0.744 
Circle Flanker Bin1 426 46 293 595 0.668 0.930 
Circle Flanker Bin2 489 57 351 699 0.629 0.516 
Circle Flanker Bin3 536 69 389 799 0.776 1.010 
Circle Flanker Bin4 600 96 421 941 1.131 1.794 
Circle Flanker Bin5 768 180 466 1360 1.339 1.938 
Number Stroop Bin1 411 40 309 557 0.590 0.940 
Number Stroop Bin2 478 47 366 658 0.490 0.831 
Number Stroop Bin3 523 53 405 724 0.480 0.687 
Number Stroop Bin4 574 64 441 824 0.648 0.790 
Number Stroop Bin5 716 125 502 1167 1.228 1.799 
Spatial Stroop Bin1 516 95 293 880 1.013 1.507 
Spatial Stroop Bin2 596 118 382 1010 1.151 1.716 
Spatial Stroop Bin3 661 139 410 1133 1.216 1.714 
Spatial Stroop Bin4 751 179 432 1333 1.334 1.900 
Spatial Stroop Bin5 991 307 514 1955 1.408 1.765 

Note. SART = Sustained Attention to Response Task. Bin 1 = subjects’ fastest quintile of RTs; Bin 5 = subjects’ slowest quintile of RT 
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Regression Evidence for the Worst Performance Rule. We first present two sets of 

regression analyses to assess descriptive evidence for either the WPR or the not-best 

performance rule (Schubert 2019) across the RT tasks. The first set of regressions tested whether 

WMC, TUT rates, or both, interacted with RT Quantile Bin to predict RT. The WPR would be 

reflected in associations with WMC and/or TUTs getting stronger across the bins. That is, 

WMC- and TUT-related differences should be largest in subjects’ slowest RT bin (i.e., Bin 5). 

Alternatively, evidence for not-best performance rule would come in the form of associations 

with WMC and/or TUTs increasing across subjects’ fastest and “mean” RT bins (i.e., Bin 1 and 

Bin 2), but the slopes from “mean” to slowest RT bins should look similar. As seen in Table 3 

(under the Model 1 column), across tasks, Bin was a significant predictor of RT (as it should 

have been, by design); RTs were longer at the later than earlier bins. WMC was also a significant 

predictor of RT in all tasks, except the SART. However, all tasks exhibited a significant Bin × 

WMC interaction. Supplemental Figure S1 depicts this interaction for each task. The relation 

between WMC and RT in the SART was unique, in that extremely short RTs, which likely 

reflect habitual “go” responding, were positively related to with WMC. That is, higher-WMC 

subjects’ shortest RTs were longer than lower-WMC subjects’, consistent with prior research 

(McVay & Kane 2009). As can be seen in Supplemental Figure S1, across many of the tasks, the 

beta coefficients numerically increased across the bins. However, across the tasks, the 95% 

confidence intervals tended to overlap across many of the non-fastest bins (e.g., 2 though 5). 

This suggests that subjects’ mean to longest RTs might not be statistically different in their 

association to WMC, perhaps inconsistent with the WPR. In interpreting these patterns, however, 

it is important to note that when RTs are highly correlated across bins (see Supplemental Table 

S1 for correlations) and variability increases across bins, the regression slopes must also increase 
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across bins (Frischkorn et al. 2016). Thus, the slope increases we see across bins might be 

artifacts and not sufficient evidence for the WPR. 



 

  

Table 3. Hierarchical Regressions examining the interaction between Cognitive Predictors and Bin each task in predicting RT 

 Model 1 (WMC) Model 2 (TUTs) 
SART B (SE) ß B (SE) ß 
Bin 104.655 (1.743) 0.759*** 104.655 (1.743) 0.759*** 
WMC -3.677 (7.795) -0.009   
Bin X WMC -20.330 (3.556) -0.169***   
TUT   -5.470 (9.427) -0.011 
Bin X TUT   24.743 (4.299) 0.171*** 
Letter Flanker     
Bin 79.654 (1.857) 0.665*** 79.724 (1.824) 0.759*** 
WMC -31.405 (7.331) -0.089***   
Bin X WMC -9.604 (3.851) -0.090*   
TUT   50.355 (8.434) 0.123*** 
Bin X TUT   20.369 (4.403) 0.165*** 
Arrow Flanker     
Bin 57.324 (1.030) 0.748*** 57.268 (1.044) 0.747*** 
WMC -26.804 (4.547) -0.120***   
Bin X WMC -9.373 (2.115) -0.139*   
TUT   17.039 (5.480) 0.064** 
Bin X TUT   8.411 (2.571) 0.104** 
Circle Flanker     
Bin 80.380 (1.594) 0.714*** 80.441 (1.606) 0.714*** 
WMC -47.011 (6.587) -0.146***   
Bin X WMC -15.938 (3.220) -0.169***   
TUT   46.040 (7.929) 0.119*** 
Bin X TUT   19.843 (3.890) 0.170*** 
Number Stroop     
Bin 70.970 (1.098) 0.795*** 70.998 (1.102) 0.795*** 
WMC -32.507 (5.342) -0.125***   
Bin X WMC -12.222 (2.261) -0.156***   
TUT   32.592 (6.274) 0.107*** 
Bin X TUT   16.167 (2.661) 0.176*** 
Spatial Stroop     
Bin 112.604 (2.980) 0.616*** 112.817 (3.012) 0.618*** 
WMC -59.276 (10.940) -0.113***   
Bin X WMC -21.361 (6.060) -0.139***   
TUT   13.043 (13.129) 0.021 
Bin X TUT   25.725 (7.301) 0.136*** 

Note. SART = Sustained Attention to Response Task. ^ p < .10; * p < .05; ** p < .01; *** p< .001 
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We next ran the same analyses using TUT rates as our ability predictor. As seen in Table 

3 (under the Model 2 column), Bin again predicted RT across the tasks, as it must. TUT rates 

significantly predicted RT in all the tasks except for SART and Spatial Stroop. Of most 

importance, the TUT × Bin interaction was significant across the tasks (Supplemental Figure S2 

visualizes the interaction for each task). Again, we find a unique pattern of results in the SART: 

higher TUT rates were associated with shorter RTs in subjects’ fastest bins (e.g., bin 1 and 2), 

likely reflecting absentminded “go” responding. Consistent across the tasks, though, we found 

that higher TUT rates associated with longer RTs in subjects’ slowest bins (e.g., Bins 3-5). In 

many of the tasks, Bin 5 and Bin 4 had overlapping confidence intervals. However, Bin 5 

confidence intervals often failed to overlap with Bin 3, suggesting that the association between 

TUT rate and RT was strongest for the longest RTs versus the mean RTs. Thus, when using TUT 

rate as our measure of ability, we find stronger descriptive evidence for the WPR than we did for 

WMC.  

In the next set of regression analyses, we investigated the predictive power of RT bins on 

WMC and TUTs. Hierarchical linear regressions tested whether RT bins for the slowest quintiles 

predicted variation in WMC and TUTs after accounting for the fastest RT quintiles. Given the 

strong correlations between adjacent bins in each task (e.g., Bin 1 and Bin 2), we focused these 

and all subsequent analyses on Bin 1, Bin 3, and Bin 5. This approach also parallels Schubert’s 

(2019) focus on “Fast RT” (i.e., Bin 1), “Mean RT” (i.e., Bin 3), and “Slow RT” (i.e., Bin 5).  

If the longest RTs are the ones that are especially related to WMC and TUT (i.e., typical 

WPR findings), then the slowest RT bins should account for unique variance in WMC and TUT 

rate after accounting for subjects’ fastest and mean RT bins. Table 4 shows the results of 

hierarchical regressions on WMC, which suggest that the slower bins do not add much predictive 
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power beyond the faster bins. That is, after adding in Bins 3 and 5 to the models, Bin 1 or Bin 3 

(or both) were the main predictors of WMC, rather than Bin 5. (We note the evidence of 

suppressor effects in many of the final models of each task; Bin 1 negatively predicted WMC in 

the initial models for each task, but that effect sometimes changed sign once the slower bins are 

added into the models). Overall, then, when WMC serves as the outcome, it appears that we have 

better evidence for the not-best performance rule (Schubert, 2019) than for the WPR. 

Table 5 shows the parallel regression analyses for the TUT rate outcome. Here, TUTs 

were solely predicted by the slowest RT bins in several of the tasks. These TUT-related finding 

are more in line with the WPR than with the not-best performance rule. At the task level, then, it 

appears that we find evidence suggestive of either the WPR or the not-best performance rule, 

depending on the cognitive ability being assessed (not-best performance for WMC associations, 

worst performance for TUT rate associations). 



 

  

Table 4. Hierarchical Regressions of WMC regressed on Bins 1, 3, and 5, for each Task 

 Model 1 Model 2 Model 3 
SART B (SE) ß B (SE) ß B (SE) ß 
Bin 1 0.001 (0.000) .159*** 0.003 (0.001) .394*** 0.002 (0.001) .220* 
Bin 3   -0.001 (0.000) -.276*** 0.000 (0.000) .018 
Bin 5     -0.001 (0.000) -.247* 
R2 .025  .047  .079  
DR2   .022  .032  
Letter Flanker       
Bin 1 -0.001 (0.000) -.105* 0.002 (0.001) .244* 0.003 (0.001) .329** 
Bin 3   -0.002 (0.001) -.381*** -0.003 (0.001) -.619*** 
Bin 5     0.000 (0.000) .182^ 
R2 .011  .034  .041  
DR2   .022  .007  
Arrow Flanker       
Bin 1 -0.002 (0.001) -.138** 0.003 (0.001) .217* 0.003 (0.001) .202* 
Bin 3   -0.004 (0.001) -.407*** -0.003 (0.001) -.356* 
Bin 5     -0.000 (0.000) -.041 
R2 .019  .058  .059  
DR2   .039  .001  
Circle Flanker       
Bin 1 -0.002 (0.000) -.230*** 0.001 (0.001) .049 0.001 (0.001) .048 
Bin 3   -0.002 (0.001) -.317*** -0.002 (0.001) -.315* 
Bin 5     -0.000 (0.000) -.002 
R2 .053  .076  .076  
DR2   .023  .000  
Number Stroop       
Bin 1 -0.002 (0.001) -.135** 0.005 (0.001) .410*** 0.006 (0.001) .457*** 
Bin 3   -0.006 (0.001) -.621*** -0.007 (0.001) -.730*** 
Bin 5     0.000 (0.000) .083 
R2 .018  .106  .108  
DR2   .088  .002  
Spatial Stroop       
Bin 1 -0.001 (0.000) -.128** 0.001 (0.001) .149 0.000 (0.001) .092 
Bin 3   -0.001 (0.000) -.300* -0.001 (0.001) -.185 
Bin 5     -0.000 (0.000) -.074 
R2 .016  .030  .031  
DR2   .014  .001  

Note. SART = Sustained Attention to Response Task. ^ p < .10; * p < .05; ** p < .01; *** p< .001
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Table 5. Hierarchical Regressions of TUTs regressed on Bins 1, 3, and 5, for each Task. 

 Model 1 Model 2 Model 3 

SART B 
(SE) ß B (SE) ß B (SE) ß 

Bin 1 -0.001 (0.000) -.210*** -0.003 (0.000) -.453*** -0.002 (0.001) -.291** 
Bin 3   0.001 (0.000) .287*** 0.000 (0.000) .012 
Bin 5     0.001 (0.000) .231*** 
R2 .044  .067  .094  
DR2   .020  .027  
Letter Flanker       
Bin 1 0.001 (0.000) .136** -0.001 (0.001) -.191^ -0.001 (0.001) -.092 
Bin 3   0.002 (0.001) .358** 0.000 (0.001) .080 
Bin 5     0.000 (0.000) .213* 
R2 .019  .039  .048  
DR2   .020  .009  
Arrow Flanker       
Bin 1 0.000 (0.001) .031 -0.003 (0.001) -.241** -0.002 (0.001) -.180^ 
Bin 3   0.002 (0.001) .312*** 0.001 (0.001) .112 
Bin 5     0.001 (0.000) .165 
R2 .001  .024  .029  
DR2   .023  .005  

Circle Flanker B 
(SE) ß B (SE) ß B (SE) ß 

Bin 1 0.001 (0.000) .155*** -0.001 (0.001) -.067 0.000 (0.001)  .031 
Bin 3   0.001 (0.001) .252** -0.000 (0.001) -.018 
Bin 5     0.000 (0.000)  .220* 
R2 .024  .038  .051  
DR2   .014  .013  
Number Stroop       
Bin 1 0.001 (0.00) .089^ -0.003 (0.001) -.295** -0.001 (0.001) -.101 
Bin 3   0.003 (0.001) .437*** -0.000 (0.001) -.020 
Bin 5     0.001 (0.000)    .345*** 
R2 .008  .052  .080  
DR2   .044  .028  
Spatial Stroop       
Bin 1 -0.000 (0.000) -.107* -0.003 (0.001) -.672*** -0.002 (0.001)   -.513*** 
Bin 3   0.002 (0.000) .612*** 0.001 (0.001) .286 
Bin 5     0.000 (0.000)  .209^ 
R2 .011  .068  .075  
DR2   .057  .007  

Note. SART = Sustained Attention to Response Task. ^ p < .10; * p < .05; ** p < .01; *** p < .001.
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Confirmatory Factor Analyses of Ranked Bins. We next assessed how binned RTs 

correlated with our cognitive predictors at the latent variable level. Like the above regression 

models, we included only RT bins 1, 3, and 5 to best parallel Schubert’s (2019) meta-analytic 

findings (and to circumvent problems from extremely strong correlations between adjacent RT 

bins). A measurement model for just RT bins 1, 3, and 5 fit the data well, 𝜒2 /df = 2.40, CFI = 

.977, TLI = .970, RMSEA = .051 [.043-.059], SRMR = .052, indicating consistent individual 

differences in RT bins across our tasks. Even after dropping adjacent bins, however, some of the 

bins were highly correlated with each other, especially the closer bins (φbin1,3 = .94 ; φbin3,5 = .92). 

The correlation between Bin 1 and Bin 5 (φbin1,5 = .76) was still strong, but was numerically 

weaker than those of the closer bins.  

Next, we asked how these factors correlated with WMC and TUT rates. Prior work on the 

WPR would suggest that cognitive abilities should correlate more strongly with the slowest RT 

bins than with the rest of the RT distribution. However, Schubert’s (2019) meta-analysis 

suggested that an individual’s cognitive ability is equally correlated with their mean RT and 

longest RTs, with both correlations stronger than with subjects’ shortest RTs. A confirmatory 

factor analysis with WMC, TUTs, and RT bins (1, 3, 5) fit the data well, 𝜒2/df = 2.03, CFI = 

.964, TLI = .957, RMSEA = .044 [.039-.048], SRMR = .062. Figure 2 presents the full model. 

WMC was significantly negatively correlated with each RT bin. Of most importance, WMC 

appeared to be less strongly correlated with Bin 1 (φ = -.30), than with Bin 3 or Bin 5 (φs = -.40 

and -.41, respectively). To test whether these estimates were statistically different from each 

other, we ran another CFA where the paths from WMC to Bin 1 and Bin 3 were set to be equal. 

Although this model fit the data well, 𝜒2/df = 2.24, CFI = .962, TLI = .956, RMSEA = .048 

[.044-.053], SRMR = .065, it fit significantly worse than the model with all paths freely 
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estimated, 𝜒2diff = 19.99, dfdiff = 1, p < .001. WMC correlated less strongly with Bin 1 RTs than 

with the others, thus demonstrating the not-best performance rule.  

Figure 2. Confirmatory factor analysis of ranked-bin model 

 

Note. WMC = Working memory capacity. TUTs = Task-unrelated thought rate. Path estimates 
are presented in largest size font. 95% Confidence Intervals are presented in brackets. Values in 
the braces below represent the lowest, median, and highest estimate from the mini multiverse 
analysis. For clarity, factor loadings are not presented here; see Supplemental Table S2 for factor 
loadings for all models included in the primary analyses. 

For TUT-rate correlations, in contrast, we find a pattern more consistent with the WPR. 

TUTs were not significantly related to subjects’ fastest RT bin (φ = .09, p > .05), but they were 

to subjects’ middle RT bin (φ = .20, p < .05) and slowest RT bin (φ = .33, p < .01). Here, we 

tested whether fixing the paths from TUTs to Bin 3 and Bin 5 to be equal significantly hurt 

model fit. In fact, fixing these correlations to be equal significantly hurt model fit, 𝜒2diff = 8.49, 

dfdiff = 1, p < .005. Therefore, the pattern of correlations does appear to get stronger across the 

RT bins, consistent with traditional WPR findings. These results complement the task-based 

regression analyses and suggest that evidence for the WPR and not-best-performance rule 

Bin 1

Bin 3

Bin 5

WMC

TUTs

-.18 [-.30, -.05]
{-.18, -.18, -.18}

-.30 [-.42, -.18]
{-.26, -.28, -.30}

-.40 [-.51, -.30]
{-.37, -.39, -.41}

-.41 [-.52, -.30]
{-.39, -.40, -.42}

.09 [-.04, .22]
{.09, .10, .11}

.20 [.07, .32]
{.19, .22, .22}

.33 [.20, .45]
{.30, .34, .37}

.94 [.92, .97]
{.93, .94, .94}

.92 [.90, .95]
{.89, .92 , .95}

.76 [.68, .84]
{.70, .74, .79}
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depend on the cognitive ability construct being measured. Those abilities that are most closely 

tied to attentional lapses (i.e., TUTs) show more consistent evidence for the WPR, whereas those 

less strongly related to lapses (i.e., WMC) tend to show the not-best-performance pattern4.  

Ex-Gaussian Analyses 

Descriptive Statistics and Zero-Order Correlations. As a second methodological 

approach to characterizing RTs (and worst performance), we used ex-Gaussian models to 

estimate three parameters from subjects’ RT distributions for each of the tasks, mu, sigma, and 

tau. We conducted ex-Gaussian modeling with the retimes package (Massidda, 2015). Table 6 

provides the descriptive statistics for the ex-Gaussian parameter estimates for each task. 

Supplemental Table S3 shows the bivariate correlations among the cognitive predictors and ex-

Gaussian parameter estimates. Each parameter appeared to be modestly correlated across tasks, 

suggesting convergent validity, and in most cases each parameter correlated more strongly with 

its counterparts across tasks than with the other parameters across tasks, suggesting discriminant 

validity. Thus, as with RT bins, it appears that we measured trait-like patterns in ex-Gaussian RT 

distributions across subjects. 

 

4 As a secondary approach we attempted to fit latent growth curve models to the ranked 
bin data (Duncan et al 2006; Preacher et al 2008), but we were unable to fit the data with these 
models, likely a result of the high collinearity between the bin factors. 

 



 

  

Table 6. Descriptive Statistics for ex-Gaussian Measures.  

Variable Mean SD Min Max Skew Kurtosis 

SART Mu 447 49 330 646 0.678 0.927 

SART Sigma 49 19 0 119 0.309 0.571 

SART Tau 114 61 1 303 1.263 1.704 

Letter Flanker Mu 376 108 200 871 0.465 0.109 

Letter Flanker Sigma 69 41 0 252 0.758 0.460 

Letter Flanker Tau 144 71 3 386 1.147 1.670 

Arrow Flanker Mu 446 42 356 608 0.446 0.639 

Arrow Flanker Sigma 58 14 22 108 0.523 0.456 

Arrow Flanker Tau 94 42 5 237 1.335 1.801 

Circle Flanker Mu 407 39 309 533 0.506 0.300 

Circle Flanker Sigma 39 15 0 91 0.917 1.366 

Circle Flanker Tau 82 36 3 203 0.968 0.796 

Number Stroop Mu 534 105 329 917 1.046 1.593 

Number Stroop Sigma 58 30 0 167 1.024 1.852 

Number Stroop Tau 165 98 3 486 1.353 1.816 

Spatial Stroop Mu 456 65 310 702 0.645 0.444 

Spatial Stroop Sigma 47 21 0 127 0.730 0.879 

Spatial Stroop Tau 115 64 2 345 1.210 1.851 

Note. SART = Sustained Attention to Response Task.
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Ex-Gaussian Structural Models. We next attempted to model latent variables from the 

ex-Gaussian variables. Model fit was acceptable, 𝜒2 /df = 2.74, CFI = .940, TLI = .920, RMSEA 

= .052 [.044-.059], SRMR = .066. Positive correlations among the ex-Gaussian factors were 

moderate to strong, in line with prior work using this technique (e.g., Schmiedek et al. 2007). We 

next added both WMC and TUTs into the model as a confirmatory factor analysis. This model fit 

the data adequately, 𝜒2/df = 2.15, CFI = .920, TLI = .905, RMSEA = .046 [.042-.051], SRMR = 

.065). As seen in Figure 3, WMC correlated significantly negatively with each parameter 

estimate, not just with tau. These estimates do not follow a worst-performance-rule pattern (i.e., 

the correlation with mu is substantial, and the strongest WMC correlation is with sigma rather 

than tau). We tested whether fixing the paths between WMC and mu and tau significantly hurt 

model fit; it did not, 𝜒2diff = 0.12, dfdiff = 1, p > .05. TUT rates showed a different pattern. TUT 

rate was not significantly correlated with mu (φ = .03) and was weakly associated with sigma (φ 

= .17). Importantly, however, TUT rate was moderately correlated with tau (φ = .40). As we did 

with WMC, we tested whether fixing the paths between TUTs and mu and tau hurt model fit, and 

here it did, 𝜒2diff = 27.64, dfdiff = 1, p < .001. This suggests that subjects who were more prone to 

lapses of attention associated with mind wandering also had more behavioral lapses (i.e., 

especially long RTs) captured by the tau parameter. Thus, it again appears that TUT-rate 

variation shows the worst-performance rule pattern.   
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Figure 3. Confirmatory factor analysis of ex-Gaussian model 

 

Note. WMC = Working Memory Capacity. TUTs = Task-Unrelated Thoughts. Path estimates 
are presented in largest size font. 95% Confidence Intervals are presented in brackets. Values 
in the braces below represent the lowest, median, and highest estimate from the mini 
multiverse analysis. For clarity, factor loadings are not presented here; see Supplemental Table 
S2 for factor loadings for all models included in the primary analyses. 

Mini-Multiverse Analysis of WPR findings 

Researchers that conduct binning and ex-Gaussian analyses of RTs have many degrees of 

freedom in how they treat the data corresponding to the upper limit of the RT distribution. While 

some relatively long RTs may be characteristic of an attentional lapse, it is possible that other, 

perhaps outlying, RTs result from idiosyncratic or unplanned events (e.g., sneezes, looking away 

from the monitor, checking a phone) that aren’t characteristic of a subject’s performance or 

ability. How should the data analyst handle these long or outlying RTs, particularly when WPR-

related phenomena are driven by exactly those longer-than-average RTs? There is no single 

answer. While many WPR studies report some RT outlier treatment, there are almost as many 

treatment variations as there are studies. In just the 23 studies included in Schubert’s (2019) 

Mu

Sigma

Tau

WMC

TUTs

-.18 [-.30, -.05]
{-.18, -.18, -.18}

-.31 [-.43, -.19]
{-.27, -.29, -.33}

-.48 [-.59, -.37]
{-.47, -.49 , -.50}

-.36 [-.48, -.24]
{-.33, -.34, -.36}

.03 [-.09, .15]
{.02, .03, .07}

.17 [.02, .31]
{.14, .17, .21}

.40 [.28, .51]
{.39, .40, .42}

.76 [.63, .89]
{.70, .72, .77}

.61 [.49, .73]
{.49, .54, .71}

.41 [.26, .55]
{.31, .37, .48}
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meta-analysis, 9 papers did not describe any RT outlier treatment and the remaining 14 each had 

different criteria and protocols. Some of these treatments were simple (e.g., removing the slowest 

RT trial), while others were more complex (e.g., an iterative process that removed outlying trials 

until none remained). The most common approach was that of defining a cut-off based on each 

subjects own RT distribution (e.g., Mean RT + 3.5*SD) and discarding trials that were slower 

than this criterion. 

Differences in cutoff values for outlying RTs might alter RT distributions, and their 

correlations with cognitive abilities, across studies. To examine this possibility, we created a 

mini-multiverse of potential datasets based on various outlier cutoff criteria and consequence 

(see Steegen et al. 2017); we describe this as a mini-multiverse because we did not assess every 

possible combination of possible (or plausible) data treatments. The processing of data is an 

active process in which many decisions can be made (e.g., outlier cutoffs). Thus, the raw dataset 

that researchers begin with can ultimately yield different datasets based on different outlier 

decisions (i.e., multiverses). To increase transparency and test the robustness of our main latent-

variable findings, we created variations of the original dataset based on different RT cutoff 

values for outliers (e.g., mean RT + 3*IQR; mean RT + 3.5*SD) and whether trials outside of 

those cutoffs were either (a) removed completely or (b) censored to the cutoff value before 

aggregating. We also created versions that took into account the potential impact of univariate 

outlier subjects after aggregating the data. This univariate outlier rule was based on 3*IQR and 

was used across all multiverse paths. Figure 4 depicts our decisions in creating the multiverse. 

Again, these decisions are not exhaustive, and an infinite set of other cutoffs could be plausibly 

chosen (e.g., Mean RT + 2.5*SD, Mean RT + 2.75*SD, Mean RT + 3*SD, etc.). To foreshadow, 

our findings were impressively consistent across different iterations of the multiverse, suggesting 
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that deviations across our decisions did not affect our outcomes and conclusions. Whether this is 

generally true, at least in studies with large sample sizes that take a latent-variable approach 

across multiple RT indicators, remains to be determined by multiverse analyses of other studies. 

Figure 4. Mini-Multiverse Decision Tree 

 

Note. Solid black boxes represent decisions that were made in every task in every multiverse 
iteration. Dashed black boxes include decisions that were made in some tasks (i.e., those with 
thought probes or conflict trials) in every multiverse iteration. Retain = kept outlier in data set. 
Remove = remove outlier (trial or subject) from data set. Censor = change outlying value to 
specified cut-off. 
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Mini-Multiverse Results 

Supplemental Table S4 presents the latent correlations among WMC, TUT rates, and our 

Bin factors across the various multiverse iterations. These results are visually depicted in Figure 

5. Estimates of these associations are remarkably stable across iterations, with correlations within 

a range of +/- .06. Thus, changing the outlier cutoff for individual trials, cutting, censoring, or 

retaining those outlier trials, and deciding whether or not univariate outliers should be included, 

cut, or censored did not substantively alter the estimates of the relations between our cognitive 

ability factors and RT bins. As in our main analysis reported above, WMC was negatively 

related to each RT Bin, and this pattern reflected the not-best performance rule: WMC showed 

weaker correlations with subjects’ shortest RTs and numerically similar estimates for subjects’ 

mean and longest RTs. As well, the association between TUT rate and the RT bins followed an 

identical pattern to the main analyses: TUT rates were not related to subjects’ shortest RTs, were 

weakly associated with subjects’ mean RTs, but were more strongly related to subjects’ longest 

RTs. Thus, across the mini-multiverse, we see evidence for the WPR only when examining TUT 

propensity as our cognitive ability measure.  
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Figure 5. Mini-Multiverse of Ranked-Bin Correlations 

 

Note. The top panel presents correlations with Working Memory Capacity (WMC). The bottom 
panel presents correlations with rate of Task-Unrelated Thought (TUT). Points reflect the 
correlation with error bars representing the 95% confidence interval (CI) around the estimate. 
Circles represent iterations where outlying trials were defined by interquartile ranges (IQR), 
triangles represent iterations where outlying trials were defined by standard deviations (SDs), 
and xs represent iterations where no criteria were applied to outlying trials. Filled shapes reflect 
iterations where outlying trials were censored to the respective cut-off value before aggregating 
and open shapes reflect iterations where outlying trials were removed before aggregating. Colors 
presented in this Figure match those illustrating the multiverse iterations in Figure 6. Solid CIs 
represent significant correlations, dashed CIs represent non-significant correlations at p = .05.  

We next examined the impact of mini-multiverse decisions on the associations with the 

ex-Gaussian parameter estimates. Supplemental Table S5 provides the latent variable 

correlations between WMC, TUTs, and the ex-Gaussian parameter estimates across multiverse 

iterations. These results are visually depicted in Figure 6. Again, the range of estimates across 

the multi-verse was small, +/- .07, suggesting high reliability across iterations. The correlations 

between WMC and the ex-Gaussian parameters were consistent with our main analysis presented 
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earlier: WMC was modestly (and equivalently) correlated with mu and tau and more strongly 

correlated with sigma. The patterns for TUT rates were also consistent with our main analysis. 

TUTs were not significantly associated with mu in any iteration of the multi-verse. The 

association with sigma, however, did vary somewhat, and in two cases did not reach significance 

(p > .05). However, given that this estimate was the weakest to begin with, it is not surprising 

that some multiverse paths were not significant. TUT rate’s strong positive correlation with tau 

was consistent across the multiverse. Our multiverse analyses of the ex-Gaussian parameters, 

then, found patterns consistent with both the not-best-performance rule and the WPR, depending 

on our measure of cognitive ability.   
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Figure 6. Mini-Multiverse of ex-Gaussian Correlations 

 

Note. The top panel presents correlations with Working Memory Capacity (WMC). The bottom 
panel presents correlations with rate of Task-Unrelated Thoughts (TUT). Points reflect the 
correlation with error bars representing the 95% confidence interval (CI) around the estimate. 
Circles represent iterations where outlying trials were defined by interquartile ranges (IQR), 
triangles represent iterations where outlying trials were defined by standard deviations (SDs), 
and xs represent iterations where no criteria were applied to outlying trials. Filled shapes reflect 
iterations where outlying trials were censored to the respective cut-off value before aggregating 
and open shapes reflect iterations where outlying trials were removed before aggregating. Colors 
presented in this Figure match those illustrating the multiverse iterations in Figure 6. Solid CIs 
represent significant correlations, dashed CIs represent non-significant correlations at p = .05.  

Discussion 

We reanalyzed data from a large latent-variable study (Kane et al., 2016) to test the 

robustness of the WPR (or the not-best performance rule; Schubert 2019) across a variety of 

demanding attention-control tasks. We used two approaches, ranked RT bins and ex-Gaussian 

estimation, to describe the RT distributions across tasks. In doing so, we assessed latent variables 

and tested their associations with two cognitive ability constructs, WMC and propensity for 
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TUTs. Our primary findings complement both traditional findings of the WPR and recent meta-

analytic claims that cognitive ability is equally predictive of mean and longest RTs, compared to 

shortest RTs (Schubert, 2019). Specifically, WMC showed consistent patterns, at both the task 

level and latent-variable level, of the not-best performance rule: WMC least strongly predicted 

subjects’ shortest RTs, but was more strongly—and equally—correlated with their mean and 

longest RTs; ex-Gaussian analyses showed that WMC correlated at least as strongly with the 

Gaussian parameters of sigma and mu as it did with tau. TUT rate, on the other hand, showed 

trends more consistent with the WPR. TUTs were not related to subjects’ shortest RTs (or the mu 

parameter) and were weakly associated with mean RTs; instead, TUT rate correlated most 

strongly with subjects’ longest RTs (i.e., with both RT Bin 5 and the tau parameter). Thus, our 

results suggest that claims about cognitive ability and worst performance may depend on the 

ability construct in question. Cognitive abilities that are strongly related to attentional lapses and 

sustained attention (i.e., propensity for TUTs as assessed by in-task thought probes) may show 

patterns consistent with the WPR, whereas those that are less strongly related to attentional 

lapses (i.e., WMC) may show the not-best performance rule.  

It is important to note, however, that WMC was not unrelated to long RTs (i.e., Bin 5) or 

tau. In fact, the WMC correlations here were of similar magnitude to those of the TUT rate. 

Instead, WMC correlated with worst and mean performance to a similar degree (and best 

performance to a lesser degree), while TUTs primarily correlated only with worst performance. 

What might contribute to these different patterns? The association with worst performance is 

likely driven in part by attention-control ability, which is central to both WMC and TUT 

propensity. Specifically, the TUT-RT findings are largely supportive of the attentional control 

theory of WPR. Individuals with poor attentional control, and thus higher likelihood of mind-
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wandering, will experience more attentional lapses than those with better control ability. These 

occasional attentional lapses result in occasional extremely long RTs that are reflected in the tail 

of that individuals RT distribution (i.e., tau and the slowest RT bin). However, WMC and TUTs 

are multidetermined constructs, and so combinations of other processes likely also contribute to 

their associations with RT variables. There are likely many cognitive processes (executive and 

otherwise) that are associated with WMC, but not TUTs, that also contribute to average RT—

such as stimulus-response binding (Wilhelm & Oberauer 2006), speed-accuracy trade-off 

(Unsworth & Engle 2008), working memory load (Shahar et al. 2014), encoding ability 

(Unsworth & Spillers 2010), and evidence-accumulation processes (Schmiedek et al. 2007)—and 

variation in these additional processes contribute to the not-best performance rule pattern for 

WMC. Thus, the processes that contribute to performance on fast and average RT trials seem to 

overlap more with WMC processes (and executive processes related to WMC) than with TUT-

related processes (Kovacs & Conway 2017). 

A methodological issue that arises when assessing the WPR (or any RT or performance 

phenomenon in psychological science) is how to treat outlier trials and outlying subjects. As 

noted in the introduction, reporting of such outlier treatment was scarce in the articles included in 

Schubert’s (2019) meta-analysis of the WPR. This is unfortunate. Bakker and Wicherts (2014) 

investigated whether simply reporting the removal of outliers was related to weaker evidence in a 

set of RT studies. Although they found no difference in the strength of evidence between studies 

that did versus did not report outliers, they did find that there were issues in reporting and 

suggested there was a common failure to report exclusions or missing data. Bakker and Wicherts 

argued for greater transparency in reporting of outliers and statistical analyses, and we agree (see 

also Ley et al. 2019 for a discussion on how to identify and handle outliers in a study).  
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To explicitly probe the issue of outlier treatment—which prior WPR studies have not 

considered systematically—we created a mini-multiverse of outlier treatments at both trial and 

subject levels that are common to the literature (including no treatment). We then re-ran our 

primary confirmatory factor analyses across these iterations to investigate whether they altered 

associations between cognitive-ability constructs and aspects of the RT distributions. They did 

not. That is, the results of our primary analyses replicated across multiverse iterations. Thus, in a 

study that collects RTs across multiple tasks per subject, and does so for hundreds of subjects, 

outlier treatment does not significantly affect the assessment of worst performance and 

individual differences therein. Our multiverse findings cannot say whether outlier decisions are 

equally irrelevant to conclusions drawn from smaller-N studies using single tasks. 

We must acknowledge the study’s limitations, however. First, although we analyzed RTs 

from only non-conflict trials from six tasks, all the tasks presented some conflict trials, thus 

creating an “attention control” context; our findings thus might not generalize to simple or choice 

RT tasks without conflict trials included. Second, although our RT tasks created an attention-

control context, they did not impose significant memory demands. Prior work suggests that such 

memory demands (i.e., more choices in choice-RT tasks, or arbitrary response mappings) may 

make the WPR more apparent (Meiran & Shahar 2018; Shahar et al. 2014). For example, 

Rammsayer and Troche (2016) found a stronger link between WPR and psychometric g in 1- and 

2-bit versions of the Hick task, compared to the simpler 0-bit version. More complex tasks, such 

as problem-solving tasks, might also elicit stronger WPR patterns than not-best performance rule 

patterns (Kranzler 1992; Ratcliff, Tahpar, & McKoon 2010); at the same time, the more complex 

a task becomes, the more executive processes may become involved in successful performance, 

which might yield stronger evidence for the not-best performance rule. Whether one finds 
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evidence for the WPR or the not-best performance rule might therefore vary with both the nature 

of the cognitive ability construct and the cognitive demands of the RT tasks. An additional 

limitation of this study is that our assessment of sustained attention ability relied solely on self-

reported TUTs. Although these reports have generally be found to be valid indicators of ones’ 

propensity (and, presumably, ability) to sustain attention, they are not pure indicators of ability. 

Future WPR research should therefore assess performance measures of sustained attention 

ability, such as RT variability, vigilance decrements, or even pupil size, to test whether the WPR 

versus not-best performance rule patterns reported here also obtain with objective rather than 

self-report measures. 
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CHAPTER III: A NOMOTHETIC SPAN APPROACH TO THE CONSTRUCT VALIDITY OF 

SUSTAINED ATTENTION MEASUREMENT: RE-ANALYZING TWO LATENT-

VARIABLE STUDIES OF PERFORMANCE VARIABILITY AND MIND-WANDERING 

SELF-REPORTS 

Abstract 

Sustained attention is frequently assessed using either objective behavioral measures, 

such as reaction-time (RT) variability, or subjective self-report measures, such as rates of task-

unrelated thought (TUT). The current studies examined whether the individual-difference 

covariation in these measures provides a more construct valid assessment of sustained attention 

ability than does either alone. We argue that performance and self-report measures mutually 

validate each other; each measurement approach has its own sources of error, so their shared 

variance should best reflect the sustained attention construct. We reanalyzed two latent-variable 

studies where RT variability and TUTs were measured in multiple tasks (Kane et al., 2016, 

Journal of Experimental Psychology: General, 145, 1017-1048; Unsworth et al., 2021, Journal 

of Experimental Psychology: General, 150, 1303-1331), along with several nomological-network 

constructs to test the convergent and discriminant validity of a general sustained attention factor. 

Confirmatory factor analyses assessing bifactor (preregistered) and hierarchical (non-

preregistered) models, suggested that sustained attention can be modeled as the shared variance 

among objective and subjective measures. This sustained attention factor was related to working 

memory capacity, attention control, processing speed, state motivation and alertness, and self-

reported cognitive failures and positive schizotypy. Multiverse analyses of outlier decisions 

suggested that bifactor models of general sustained attention ability are less robust than 

hierarchical models; exploratory latent profile analyses provided converging evidence that poorer 
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sustained attention was associated with lower scores on many of the constructs of interest. The 

results provide evidence for the general ability to sustain attention and suggestions for improving 

its measurement. 

Introduction 

People sometimes strive to keep their attention directed on their current task and goals 

but do so with varying success. We may neglect to attach a file to an e-mail message, forget to 

stop at the grocery store on the way home from work, or even fail to check our surroundings 

before driving our car in reverse. Everyday observations suggest that some people better sustain 

their attention than do others, showing more consistent performance with fewer behavioral 

lapses, and experiencing fewer instances of their thoughts being captured by personal concerns. 

What might account for these individual differences? 

Despite attentional lapses being partially responsible for real-world errors, the ability to 

sustain attention has been less thoroughly studied by psychologists than have other components 

of attention, such as selective, divided, and switching attention (Esterman & Rothlein, 2019). 

And, despite sustained attention supporting the regulation and control of other cognitive 

processes and behavior, it has been understudied relative to the executive functions of inhibition, 

updating, and switching (Miyake & Friedman, 2012). Research has nonetheless identified 

distinct, yet correlated, empirical measures that reflect sustained attention failures—variability in 

task performance and self-reports of mind wandering—but it has not yet considered that the 

overlap in these measures might be the most valid reflection of sustained attention (in)ability. 

The goal of the current study is to investigate and evaluate the construct validity of sustained 

attention measurement from a nomothetic span, or individual differences, perspective. We 

investigate whether there are stable individual differences in sustained attention failures, as 
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indicated by performance and self-report measures, and if so, ask what other psychological or 

contextual factors might predict them. 

The construct of sustained attention is not new, of course, and several models have 

explored how and why attention fluctuates (for reviews see Esterman & Rothlein, 2019; 

Fortenbaugh, et al., 2017). Traditionally, sustained attention has been viewed—and studied 

empirically—as the ability to maintain performance over many task trials (and many minutes). 

Failures of sustained attention from this view correspond to the so called “vigilance decrement” 

(e.g., Lim & Dinges, 2008; Mackworth, 1950; Parasuraman, 1986). Here, performance—be it 

reaction time or accuracy, usually in detecting rare target signals—worsens as time on task 

increases.  

Our approach to sustained attention focuses instead on the moment-to-moment stability 

of attention, or “attentional consistency” (Unsworth & Miller, 2021), which may be a (partially) 

distinct form of sustained attention from that reflected in the general worsening of performance 

over time (Thomson et al., 2015). Specifically, we define sustained attention as the purposeful 

act of maintaining optimal task focus to successfully, and consistently, perform goal-relevant 

actions.  

Sustained Attention as the Covariation of Objective and Subjective Measures  

The cognitive psychology literature has taken two approaches to measuring attention 

consistency. In the following sections we describe both, which we refer to as objective (based on 

performance data) and subjective (based on self-report data). Each section describes how these 

measures reflect sustained attention (in)ability and their limitations when used in isolation. In 

doing so, we will argue that a combination of objective and subjective indicators, and 
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specifically their shared variance, will provide the most valid assessment of sustained attention 

ability and its individual-differences variation.  

We build this argument on the precedent that in some traditional sustained attention tasks, 

different performance indicators seem to reflect different types or degrees of sustained attention 

failures (Cheyne et al., 2009; Unsworth et al., 2021). For example, Cheyne et al. (2009) found 

that three performance measures  all predicted unique variance in no-go accuracy in a go/no-go 

sustained attention task. Each of these measures also mapped on to three distinct, hypothetical 

attentional states with increasing levels of disengagement. RT variability reflects State 1 (focal 

inattention), which is characterized by brief periods of attentional instability and stimulus 

processing, that produces errors, near misses, and variable performance; anticipations reflect 

State 2 (global inattention), where top-down attention is disengaged from the current task to the 

point where automatic, “mindless” behaviors take over. Finally, omissions reflect State 3 

(behavioral/response disengagement), where subjects’ attention is withdrawn from the task to 

the point where they fail to engage in any task-appropriate responding. Although more 

theoretical and empirical work needs to be done to convincingly establish an inattention or 

disengagement continuum (Tay & Jebb, 2018), modeling the overlap of various measures of 

sustained attention performance (and different methodological approaches) may be a more 

construct valid way of assessing sustained attention ability than relying solely on any one type of 

error-prone measure.  

Objective (Performance-Based) Measures of Attention Consistency  

Reaction Time Variability 

Optimal sustained attention performance can be measured as the magnitude of a subject’s 

RT variability across a task, or as the rate or durations of a subject’s relatively long RTs within a 
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task (Bunce et al., 1993, 2004; West et al., 2002). That is, if a subject is effectively sustaining 

focused attention across a task that makes consistent cognitive demands across trials, then their 

RTs should be similar from trial to trial. RT variability and extremely long RTs reflect how 

consistently (or inconsistently) a subject performs a repetitive task.  

Early work by Bills (1931, 1935) showed that after extended periods of continuous work 

on a task, subjects started to occasionally show very long RTs (e.g., twice the mean; “blocks”), 

which were often followed by more variable or erroneous performance (see also Bertelson & 

Joffe, 1963, Fiske & Rice, 1955; Sanders & Hoogenbroom, 1970). In modern tasks, like the 

psychomotor vigilance task (PVT), subjects must maintain focus for some variable and 

unpredictable duration (typically 1–10 s) before the stimulus numbers begin counting upwards, 

which is the signal for subjects to hit a key to stop the clock. Here, the number of “lapses” (i.e., 

RTs > 500 ms) is frequently used as a dependent measure that represents sustained attention 

(in)ability (e.g., Lim & Dinges, 2008; Unsworth & Robison, 2016). Like blocks, the number of 

lapses reflects variation in sustained attention because they seem to capture instances where 

subjects are not optimally task-focused (i.e., they’re not optimally ready to respond to the target 

digits beginning to count upward).  

Attention consistency is also assessed via trial-to-trial variability in RT in some tasks. 

Here, subjects with better sustained attention should show lower RT variability, with few very 

short or very long RTs. Common approaches to measuring RT variability include intra-

individual standard deviation (RTsd), coefficient of variation (CoV), or Rhythmic Response 

Times (RRTs). RTsd simply takes the standard deviation of RTs across correct trials for each 

subject. CoV expresses an individual’s RTsd as a function of their mean RT (CoV = [SD / M] * 

100). RRTs also reflect consistency of responding but are calculated as the difference between 
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response and stimulus onsets (Laflamme et al., 2018; Seli et al., 2013), so they can be positive 

(responding after the stimulus appears) or negative (responding before the stimulus appears); 

RRTs are often taken across a set number of trials (e.g., 5) to create a moving window of 

response variability calculated across the entire task.5  

Finally, fluctuations in sustained attention can be assessed by fitting a subject’s RTs to a 

distributional model. Ex-Gaussian models, for example, a convolution of a Gaussian (normal) 

and an exponential distribution, provide three parameters: μ and σ represent the mean and 

standard deviation of the Gaussian component, respectively, while τ represents the mean and 

standard deviation of the exponential component (i.e., the tail). In general, τ reflects increased 

variability in RTs in the form longer-than-average RTs and may capture sustained attention 

(in)ability to some degree (although ex-Gaussian parameters are not purely mapped onto any one 

or several psychological processes; Matzke & Wagenmakers, 2009). 

Performance Accuracy 

Accuracy-based measures may also reflect sustained attention lapses, at least in part. In 

the Sustained Attention to Response Task (SART), errors of omission (i.e., not responding to a 

“go” trial) and errors of commission (i.e., erroneously responding to a “no-go” trial) might 

reflect even greater task disengagement than is captured by variable responding (Cheyne et al., 

2009; Unsworth et al., 2021). That is, errors of omission might reflect a complete disengagement 

from the task whereas errors of commission might reflect being captured enough by monotonous 

responding that individuals keep making repetitive responses when they are not supposed to. 

 

5 The heart rate literature provides variability indicators that might be profitably 
considered in sustained-attention research (Pham et al., 2021). Difference-based indices like the 
root mean square of successive difference (RMSSD) capture differences between successive 
intervals and capture short-term variations in heartrate. 



 

  75 

Likewise, during continuous tracking tasks, in which subjects attempt to closely follow an object 

onscreen with a stylus or cursor, subjects may occasionally exhibit “flat spots,” or brief instances 

where they fail to respond to the stimuli (Peiris et al., 2006; Unsworth et al., 2021). 

Limitations of Objective Indicators of Attention Consistency 

Like other cognitive ability measures, objective indicators of attention consistency are not 

process-pure. Longer-than-normal RTs can certainly be caused by attention lapses. But subjects 

can also experience long RTs simply because they are generally slower than other subjects, or 

because they momentarily changed their response strategy (e.g., speed-accuracy trade-offs or 

post-error slowing). Long RTs can also result from involuntary actions (e.g., sneezing or 

yawning) or cases where subjects take intentional “rest breaks” during a trial. Further, task-

specific processes, unrelated to sustained attention, may affect performance variability, 

especially if a task presents trial types with differing cognitive demands (e.g., Stroop tasks or 

Sternberg item-recognition tasks).  

Thus, when assessing attention consistency using solely objective indicators, any one 

performance measure won’t fully capture all types or all instances of disengagement (and it will 

capture extraneous sources of measurement error). Rather, the performance variance that is 

common, or shared, across several of these objective measures should better reflect sustain 

attention abilities. Moreover, combining additional, non-performance indicators of sustained 

attention with performance assessments may provide for still more valid measurement of 

sustained attention, as we discuss below.  

Subjective (Self-Report-Based) Indicators of Attention Consistency 

Objective indicators, like RTsd, may capture relatively subtle fluctuations in sustained 

attention. However, some sustained-attention failures may be more obvious, and perhaps 
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conspicuous enough to be easily reported by subjects when asked. Self-report measures of 

sustained attention aim to capture off-task thought experiences that are characteristic of everyday 

attention failures.  

One commonly used, subjective approach to assessing attention consistency, both in the 

lab and in everyday life, is the thought-probe method. This technique is most frequently used to 

capture subjects’ mind-wandering (or task-unrelated thought; TUT) experiences as they occur, 

and has been used in a variety of tasks and contexts, including attention tasks (e.g., Hutchison et 

al., 2020; Kane et al., 2016; McVay & Kane, 2012a), reading tasks (e.g., Franklin et al., 2014; 

McVay & Kane, 2012b; Unsworth & McMillan, 2014), driving simulations (e.g., Albert et al., 

2018; Baldwin et al., 2017; He et al., 2011), live classroom or virtual learning environments 

(e.g., Hollis & Was, 2016; Kane, Carruth et al., 2021; Wammes, Seli et al., 2016), and in 

everyday life (e.g., Kane et al., 2007; 2017; Killingsworth & Gilbert, 2010; Marcusson-Clavertz 

et al., 2016). Here, subjects are repeatedly and unpredictably interrupted during a task or activity 

and asked to report on the contents of their thoughts in the moment immediately preceding the 

probe appearance. Subjects typically indicate whether they were focused on the task or were 

experiencing TUTs. 

Thought-Probe Methods and Measures  

Various aspects of mind wandering have been investigated using thought-probe methods 

(see Seli et al., 2018; Weinstein, 2018). In some studies, subjects answer a simple “yes/no” 

question about whether they were focused on the task or mind wandering (e.g., Franklin et al., 

2014; Song & Wang, 2012; Szpunar et al., 2013). Other studies present thought-choice menus 

that allow subjects to select among categories or qualities of thoughts, such as thought content 

(e.g., worries, fantastical daydreams), temporal orientation (e.g., past events, future goals), 
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emotional valence (e.g., positive, negative), or intentionality (e.g., deliberate, spontaneous; 

Banks et al., 2016; Smallwood et al., 2009; Stawarczyk et al., 2011; 2013; Unsworth & 

McMillan, 2014). Still others have used Likert scales to rate depth or intensity of mind 

wandering (e.g., Allen et al., 2013; Christoff et al., 2009). Thus, much like there are different 

tasks in which performance variability is measured as objective indicators of sustained attention, 

there are a variety of ways to subjectively assess sustained attention failures that are experienced 

as mind wandering. 

The typical measure derived from thought probes is TUT rate (number of TUT 

reports/number of probes) which estimates the frequency with which subjects are not focusing on 

the task at hand. Subjects report being off-task 30–60% of the time, on average, suggesting that 

TUTs occur frequently across artificial and authentic contexts. As will be discussed in 

subsequent sections, TUTs are associated with poorer task performance, further validating that 

they reflect momentary failures of sustained attention.   

Limitations of Subjective Indicators of Attention Consistency 

Like performance measures of attention consistency, TUT reports come with confounds 

and concerns to consider (Kane, Smeekens et al., 2021). Most obviously, as these self-reports 

rely on introspection, we must consider the potential influence of reporting biases and errors 

(Hurlburt & Heavey, 2001; Nisbett & Wilson, 1977).  

Thought reports to probes might be impacted by the frequency with which probes occur 

in the task. Too frequent probing might provide reminders to stay on task or not give enough 

time for subjects’ minds to wander between probes, whereas too infrequent probing may miss 

instances of mind wandering that occur between probes (Welhaf et al., in press). Only a few 

studies have explicitly examined this possibility and the findings are mixed. Robison et al. 
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(2019) found that more frequent probing (13% vs. 7% of total trials) did not influence TUT rates. 

However, studies by both Seli, Carriere et al. (2013) and Schubert et al. (2019) found that more 

frequent probing (across ranges of 1%–6% of trials) resulted in lower TUT rates, suggesting that 

frequent probes act as on-task reminders or thought-flow disruptors.  

An additional concern about probing during a task is that responses to probes might be 

biased by reactivity to performance. That is, when subjects make an error and a thought probe 

follows that error, subjects may use their performance as evidence for where their thoughts were 

focused. Few studies have examined this possibility (Head & Helton, 2018; Kane, Smeekens et 

al., 2021; Schubert et al., 2019), but they suggest some reactivity in tasks that elicit salient errors 

(e.g., go/no-go tasks). Schubert et al. (2019), for example, found that TUT reports in a SART 

were more frequent following “no-go” compared to “go” trials and that TUT reports were more 

frequent following “no-go” errors compared to correct “no-go” trials.  

Although thought probes vary across studies, recent work suggests that some findings are 

robust across different thought-probe variations. For example, Kane, Smeekens et al. (2021) 

found similarities in M TUT rate, TUT rate reliability across tasks, within-person associations 

between TUTs and go/no-go performance, and between-person associations with theoretically 

relevant constructs (e.g., executive-control ability) across four different probe types. These 

findings provide generally supportive evidence for acceptable construct validity of the thought 

probe method. 

Kane, Smeekens, et al. (2021) also noted some concerns, however, about specific probe 

types (i.e., asking about intentionality or depth of mind wandering). For example, one common 

finding is that “no-go” accuracy in the SART is worse on the trials before TUT reports compared 

to on-task reports. Kane, Smeekens, et al. (2021) replicated this finding but found that it was 
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more pronounced for probes asking about the intentionality or depth of mind wandering (versus 

its content), suggesting that these TUT reports might be especially influenced by reactivity to 

performance. Thus, it’s possible that not all TUT reports equally reflect sustained attention 

failures or are equally affected by sources of measurement error.  

Just as the field should not rely solely on any one objective measure of attention 

consistency in any one task, it also should not rely solely on any one self-report measure from 

any single task. Rather, the variance that is common across subjective indicators from multiple 

contexts and tasks (and perhaps across different types of thought-probes) should yield a more 

accurate sustained attention measure. And, further, as argued previously, variance that is 

common across multiple subjective indicators and multiple objective indicators should provide 

an optimally construct valid assessment of general sustained attention ability. 

Correlations between Objective and Subjective Measures  

Objective and subjective indicators provide starkly different approaches to measuring 

sustained attention abilities. If they are, nonetheless, both influenced by a general sustained 

attention ability, then then they should be consistently correlated. Indeed, at the between-person 

level of analysis, latent variable correlations between RT-variability and TUT-rate factors 

typically range from .30–.50 (Kane et al., 2016; Unsworth, 2015; Unsworth et al., 2021; Welhaf 

et al., 2020; for similar RT variability–TUT correlations in single experimental tasks, see Löffler 

et al., 2021; Stawarczyk et al., 2014; Yamashita et al., 2021). These factors are thus only 

moderately correlated: Subjects who report more off-task thoughts also show more inconsistent 

responding in simple attention and RT tasks, but the association between these measures is not 

strong. Despite this moderate correlation, the shared variance between subjective and objective 
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measures of sustained attention should provide the most construct valid measure of sustained 

attention ability. 

Indeed, we further argue that because of this moderate correlation, using the shared 

objective–subjective variance to measure attention consistency is especially important. These 

factors are not redundant—objective and subjective indicators cannot simply be used 

interchangeably. Performance and self-report measures may not only capture different 

dimensions or depths of sustained attention failures (e.g., Cheyne et al., 2009), but these different 

approaches are also subject to different non-sustained attention confounds, which uniquely 

influence their measurement. Relying on only one type of indicator as the measure of attention 

consistency in a study may lead to incorrect conclusions about how other theoretically relevant 

constructs correlate with sustained attention ability. Instead, using what is common between 

these measures should be a more construct valid way to measure sustained attention than using 

either in isolation: Researchers should assess the covariation between performance and self-

report measures of attention consistency not despite their moderate correlation, but because of it. 

At the within-person level of analysis, one would also expect poorer performance (i.e., 

more errors) and greater RT variability in the moments preceding TUT reports compared to on-

task reports. Indeed, commission errors on the SART, where subjects erroneously press a key on 

“no-go” trials, are more likely to occur prior to TUTs than to on-task reports (e.g., Kane, 

Smeekens et al., 2021; McVay & Kane, 2009, 2012a; Smallwood & Schooler, 2006; Stawarczyk 

et al., 2011). These findings are potentially supportive of construct validity, but also ambiguous, 

because TUT reports that follow errors might be reactively biased by subjects’ knowledge of 

their performance, as noted earlier (Schubert et al., 2019). Because subjects are likely less aware 

of their RT variability on the trials leading up to thought probes, however, examining RTs that 
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precede thought reports should provide a less biased assessment of behavioral correlates of TUT 

experiences. In fact, RTs preceding TUTs are more variable than those preceding on-task reports 

(Bastian & Sackur, 2013; Kane, Smeekens et al., 2021; Seli, Carriere et al., 2013). 

Summary of Sustained Attention Measurement  

Objective measures allow researchers to examine subtle fluctuations in attention (i.e., RT 

variability) or instances of attentional lapses that produce inappropriate responding (i.e., 

commission errors, omission errors, and flat spots), of which subjects are not necessarily 

consciously aware. In contrast, subjective measures (i.e., namely TUT reports) capture instances 

of sustained attention failures that are so apparent to subjects that they can readily report on 

them. These two types of measures frequently correlate with each other at the between- and 

within-subject level, suggesting they may both be impacted by a common underlying ability. At 

the same time, these correlations are of only moderate strength because each may capture 

different degrees of sustained attention failure, and each has independent limitations and sources 

of error. Under these conditions, then, the combination of these two assessment types should best 

reflect the construct of sustained attention, independent of those sources of error. We therefore 

argue that the optimal way of capturing people’s general sustained attention abilities is to 

quantify the individual-differences variance that is common to both objective and subjective 

indicators. 

Evidence for the Construct Validity of Sustained Attention Measures 

Considerable research has examined associations that sustained-attention indicators have 

with other theoretically relevant variables, taking a “nomothetic span” approach to construct 

validation (Cronbach & Meehl, 1955; Embretson, 1983). Studying these theoretically relevant 
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variables, as part of the nomological network, provides evidence for the convergent and 

discriminant validity of attention consistency measures. 

Correlations with Executive Attention Ability 

Executive Attention theory (e.g., Burgoyne & Engle, 2020; Engle & Kane, 2004) argues 

that working memory capacity (WMC) broadly predicts performance on higher-order tasks (e.g., 

language comprehension, reasoning) because it reflects, in part, how effectively people can 

maintain ready access to goal-relevant information in the face of distraction or interference. 

According to this view, lower-WMC subjects have poorer goal-maintenance ability, and so they 

should show more frequent attention lapses compared to higher-WMC subjects. Indeed, WMC 

measures (and related attention-control measures, such as Stroop and antisaccade performance) 

correlate moderately with objective sustained attention measures, like RT variability, across a 

variety of tasks and measurement approaches (Kane et al., 2016; McVay & Kane, 2009, 2012a; 

Schmiedek et al., 2007; Schweizer & Moosbrugger, 2004; Unsworth, 2015; Unsworth et al., 

2010; 2012; 2021). Higher-WMC subjects are less variable in performance than are lower-WMC 

subjects.  

WMC and attention-control abilities are also frequently negatively associated with TUT 

rates in lab tasks (e.g., McVay & Kane, 2012b; Meier, 2019; Rummel & Boywitt, 2014; 

Unsworth & McMillan, 2017; Unsworth et al., 2012, 2021) and in certain everyday-life contexts 

(Kane et al., 2007, 2017). In latent-variable studies that use multiple tasks to test construct-level 

correlations, the association between TUT rate and WMC often yields r =|.20–.30|, whereas 

associations between TUT rate and attention-control performance is stronger, r =|.35–.45|. WMC 

and attention-control abilities reliably predict sustained-attention ability, whether derived from 

objective or subjective measures. At the same time, WMC and attention-control ability appear to 
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predict these different indicators of sustained attention to differing degrees. Thus, the field must 

examine how these constructs correlate with a variable reflecting the shared variance between 

objective and subjective indicators to better understand their relationships with sustained 

attention. 

Correlations with Processing Speed 

An important consideration with any RT measure, including RT variability, is that it may 

capture individual differences in general processing speed rather than the cognitive abilities of 

interest. Regarding sustained attention measurement, individuals may be more prone to 

extremely long or variable RTs because they have an overall slower processing rate. RT 

variability and speed can be highly collinear across experimental conditions and tasks (r ~ .90; 

Jensen, 1987a, 1992; Wagenmakers & Brown, 2007). As well, both mean RT and RT variability 

are influenced by long RTs that might reflect attentional lapses. Thus, it is possible that the 

apparent inability to sustain attention might simply be due to poor processing speed. 

Measures of processing speed and objective indicators of attention consistency correlate 

substantially. For example, Unsworth et al. (2021) operationalized processing speed as subjects’ 

fastest 20% of trials within three attention tasks. A latent variable of objective attention 

consistency indicators (PVT lapses, mouse-tracking flat spots, SART CoV) correlated with the 

speed latent variable (r = .47): Subjects with slower processing also exhibited poorer sustained 

attention. However, speed was also highly correlated with other cognitive ability measures like 

attention control, so structural equation models tested whether speed predicted any unique 

variance in objective attention consistency measures. It did not: After accounting for shared 

variance with other measures (like attention control) processing speed did not significantly 

predict the objective sustained attention latent variable. Attention control (but not WMC) 
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predicted unique variance in objective sustained attention after accounting for shared variance 

among all the predictor constructs, suggesting that attention control, and not speed of processing 

or WMC, might be critical in explaining variation in attention lapses.  

Additionally, latent-variable studies provide mixed evidence regarding correlations 

between processing speed and self-report indicators of attention consistency. Unsworth et al. 

(2021) found that processing speed measures were weakly associated with TUT rates (r = .24), 

whereas Welhaf et al. (2020) did not find a significant association between subjects’ shortest 

RTs and TUT rates (r = .09). Given that processing speed is more strongly related to objective 

than subjective indicators, measuring sustained attention as a latent variable reflecting the 

covariation between objective and subjective measures should best distinguish sustained 

attention ability from processing speed.  

Correlations with Cognitive Self-Report Variables  

People who are more prone to cognitive failures in daily life should also show poorer 

sustained attention in lab tasks. Indeed, scores on retrospective self-report measures of everyday 

attention failures like the Cognitive Failures Questionnaire (CFQ; Broadbent et al., 1982) and 

Attention-Related Cognitive Errors Scale (ARCES; Cheyne et al., 2006) correlate positively with 

both performance measures of sustained attention (e.g., Cheyne et al., 2006; McVay & Kane, 

2009; Smilek et al., 2010, Steinborn et al., 2016) and TUT rates (e.g., McVay & Kane, 2009, 

2013; Smallwood et al., 2004; Unsworth et al., 2021). In general, such self-reported cognitive 

failures appear to be slightly more strongly correlated with subjective measures of attention 

consistency (rs ~ .20) than with objective measures (rs ~ .15). Thus, measuring sustained 

attention as the individual-differences overlap in objective and subjective measures should 
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provide a better estimate of the correlation between sustained attention ability and everyday 

cognitive failures.  

Correlations with Contextual-State Variables    

People who are more motivated or interested in a task should exhibit better sustained 

attention in that task; being more willing to expend effort to focus on the task, or finding it 

rewarding to do so, should allow them to perform more optimally. Indeed, objective measures of 

attention consistency correlate with post-task self-report measures of motivation, interest, and 

arousal, with greater RT variability associated with lower state reports (r = −.65 to −.30; Robison 

& Unsworth, 2018; Seli et al., 2015; Unsworth et al., 2021). As well, subjects who are more 

motivated, interested, or aroused report fewer TUTs across a variety of tasks and activities (r = 

−.60 to −.27; Brosowsky et al., 2020; Hollis & Was, 2016; Kane, Carruth et al., 2021; Robison & 

Unsworth, 2015; 2018; Unsworth & McMillan, 2013, Unsworth et al, 2021; but see Rummel et 

al., 2021). While the ranges of these contextual variable correlations are quite similar, 

correlations with TUTs are often stronger than those with objective measures, perhaps due to 

similar self-report biases at play. Thus, by measuring sustained attention as the overlap in 

objective and subjective measures, we should better assess the relation between sustained 

attention and these contextual factors. 

Correlations with Personality Traits 

Individual differences in certain personality traits may affect or reflect sustained attention 

ability. People who experience high levels of anxiety (i.e., neuroticism), for example, may show 

worse sustained attention ability due to ruminative tendencies or intrusive worries. People who 

are more willing to work toward goals or follow task instructions (i.e., high in conscientiousness 
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or agreeableness), in contrast, may exhibit better sustained attention, perhaps especially in 

mundane tasks.   

In terms of objective indicators of attention consistency, individuals who are high in 

neuroticism tend to show more variable RTs and more frequent lapses in simple tasks (Klein & 

Robinson, 2019; Robinson & Tamir, 2005; Unsworth et al., 2021). Other “big-5” personality 

factors, however, do not appear to be related to performance measures (e.g., Unsworth et al. 

2021). In terms of subjective indicators, correlations are less consistent. Students high in 

neuroticism frequently report more TUTs in the lab (Jackson et al., 2013; Kane, Gross et al., 

2017; Robison et al., 2017; Unsworth et al., 2021), whereas students who are more goal-oriented 

(i.e., high in conscientiousness) report fewer TUTs in some studies (Jackson & Balota, 2012; 

Robison et al., 2020; Unsworth et al., 2021), but not in others (Jackson et al., 2013; Kane, Gross 

et al., 2017). Likewise, students who are more likely to comply with task instructions (i.e., high 

in agreeableness) reported fewer TUTs in one study (Unsworth et al. 2021), but not in another 

(Kane, Gross et al., 2017). Finally, openness to experience often fails to predict TUT rates in the 

lab (Smeekens & Kane, 2016; Unsworth et al. 2021), but does predict TUTs in daily life (Kane, 

Gross et al., 2017). Thus, neuroticism, which is unique in consistently correlating with both 

objective and subjective measures (in the lab, at least), might be related to a general sustained 

attention ability representing their shared variance. 

Nomothetic Span Summary 

Correlational studies provide evidence of convergent validity of attention consistency 

measures. Constructs that should predict sustained attention ability do so: People with (a) better 

cognitive abilities, such as WMC and attention control, (b) higher motivation and interest in 
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performing well, and (c) lower dispositional tendences to experience sustained attention failures, 

all show less variable responding and lower TUT rates in simple tasks.  

Although it is—and should be—rare to find constructs with no association (i.e., a null 

correlation) with attention consistency, given how fundamental sustained attention should be to 

so many domains of performance and experience, relative differences in correlation magnitudes 

can provide evidence for discriminant validity. First, attention control ability (typically measured 

with response-competition or interference-control tasks) frequently correlates more strongly with 

attention consistency measures (RT variability and TUT rate) than does WMC; one possible 

explanation for this difference is that WMC tasks are influenced by processes like memory 

storage or strategy choices that are less relevant to attention regulation. Second, RT variability 

indicators do not share unique variance with processing speed after accounting for other 

cognitive abilities, and TUT rates correlate weakly (if at all) with processing speed, suggesting 

that sustained attention is not simply a speed factor. Third, and lastly, some personality traits, 

such as agreeableness, conscientiousness, extraversion, and openness, are not correlated with 

objective attention consistency measures, but are weakly (and inconsistently) correlated with 

subjective measures, suggesting they may not be related to general sustained attention ability. 

Neuroticism and self-reported cognitive failures, however, correlate with both types of attention 

consistency measures, suggesting they may also be associated with general sustained attention 

ability. 

As previously argued, the modest correlations between objective and subjective 

indications of attention consistency indicates a need to use the covariation between these 

indicators as a more construct valid approach to assessing attention consistency than either 

measure on their own. Our perspective follows from how very different behavioral performance 
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measures and self-report measures are, with each possibly reflecting different degrees of 

attentional disengagement (à la Cheyne et al., 2009) and each affected by unique sources of 

measurement error, both of which drive down their correlation.  

A competing argument, however, is that objective and subjective indicators do not 

correlate strongly enough to indicate convergent validity and so they must instead reflect two 

different constructs (i.e., they provide discriminant validity evidence for one another). At least 

implicit to this argument is that only one of these indicator types is a construct-valid measure of 

attention consistency. We think this argument is not compelling. First, objective and subjective 

indicators of sustained attention consistently correlate with each other at both the within- and the 

between-subject level, suggesting that both reflect, at least partially, a failure to sustain attention. 

Further, each type of indicator correlates with other nomological network constructs in ways in 

which theory would predict. For example, people with higher WMC and attention control 

abilities show better scores on objective and subjective attention consistency measures. 

Likewise, certain dispositional characteristics (e.g., agreeableness) show reliable null 

associations with both indicator types, suggesting that constructs that should not correlate with 

sustained attention  do not, regardless of the indicator used. Proposing that these two types of 

indicators reflect two different constructs implies that one of these two literatures is simply 

wrong about the body of relevant evidence and their claims that their measures (i.e., objective 

performance measures or subjective self-reports) reflect the ability to sustain attention.  

Goals of the Current Studies 

Many studies have investigated the nomological network of sustained attention, or how 

objective and subjective measures correlate with each other or with theoretically relevant 

variables. If these two forms of measurement are both presumed to reflect variation in sustained 
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attention, albeit imperfectly, then their covariation should best reflect the general ability to 

sustain attention: Each indicator of sustained attention may reflect different degrees of attention 

failure and each has its own source of measurement error that may impact attention consistency 

measurement if used on its own, but what they measure in common should reflect the sustained 

attention construct especially well. 

The present studies’ goals were (1) to assess whether there indeed exists a general 

sustained attention construct that reflects the individual-differences overlap in objective and 

subjective measures and, if so, (2) to examine how theoretically relevant constructs like 

cognitive ability (e.g., WMC, attention control, and processing speed), contextual-state variables 

(e.g., task-specific motivation and alertness), and dispositional characteristics (e.g., everyday 

cognitive failures and personality traits) correlate with this common sustained attention factor. 

We reanalyzed data from two large latent-variable studies that had (a) multiple tasks with 

objective performance measures of attention consistency and (b) probed self-report assessments 

of TUTs within multiple tasks (Kane et al., 2016; Unsworth et al., 2021). These datasets allowed 

us to use confirmatory models to test whether there was enough variance shared between the 

objective and subjective measures to model a general factor of sustained attention, and to model 

influences unique to both objective and subjective measures in the form of bifactor models. 

Study 1  

Methods 

We analyzed data from Unsworth et al. (2021), a study on individual differences in 

attention lapses. Details of our preregistration are available on the Open Science Framework 

(https://osf.io/xeu63/). 
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Subjects 

Three hundred fifty-eight subjects from the University of Oregon were individually tested 

in a 2-hour session.  

Tasks and Materials 

Objective Sustained Attention Indicators. For each objective indicator task, we present 

multiple dependent measures that theoretically should reflect variation in sustained attention; we 

describe our preregistered procedures for selecting among these dependent variables for analysis 

below, under “Objective Indicator Variable Selection.” For each task, we first list our a priori 

measure, while also considering different measurement approaches and dependent variables 

across tasks (i.e., not choosing RTsd as the primary measure for all tasks). We set these a priori 

measures as the primary indicator for each task and assessed reliability, distribution 

characteristics, and bivariate correlations of the secondary measures against them; that is, we 

planned to use only the a priori measure for each task if all other measures were redundant with 

it. We preregistered that any measures correlated ≥ .70 would be considered redundant and thus 

would only retain the a priori measure for each task. Non-redundant measures would be retained 

and included in structural models, as they may reflect different types or degrees of sustained 

attention failures. 

Psychomotor Vigilance Task (PVT). Subjects were presented with a row of zeros 

onscreen. After an unpredictable period (from 2–10 s), the zeros began counting-up in 17 ms 

intervals. The goal of the task was to press the spacebar as quickly as possible to stop the 

numbers. The RT was displayed for 1 s to provide feedback. The task lasted for 10 min (roughly 

75 trials). The potential dependent variables derived from this task will be average RT of the 

slowest 20% of trials, number of lapses (RTs > 500 ms), intra-individual standard deviation of all 
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RTs (RTsd), intra-individual median absolute deviation of all RTs (RTmad), and the τ estimate 

from an ex-Gaussian model of all RTs. 

Semantic Sustained Attention to Response Task (SART). Subjects were instructed to 

respond quickly by pressing the spacebar to frequently presented non-target stimuli from one 

category (animals, presented on 89% of trials) while withholding responses to infrequent target 

stimuli from a different category (vegetables, presented on 11% of trials). Stimuli were presented 

for 300 ms followed by a 900 ms mask. There were 315 trials, 35 of which were no-go targets. 

The potential dependent variables derived from this task will be intra-individual RTsd to correct 

“go” trials, intra-individual RTmad to correct “go” trials, omission errors on “go” trials, average 

RT of the slowest 20% of correct “go” trials, RMSSD to correct “go” trials, the τ estimate from 

an ex-Gaussian model using correct “go” trials, and fastest 20% of correct “go” trials.6  

Choice RT (CRT). Subjects responded as quickly as possible to a stimulus (a white cross) 

in one of four horizontally spaced locations onscreen. The cross appeared after a random interval 

(300–550 ms in 50 ms increments) and could not appear in the same location on consecutive 

trials. Subjects indicated the location of the cross by pressing one of four keys on the keyboard 

(F, G, H, J) mapped to the four locations. Subjects completed 15 practice trials and 210 real 

trials. The potential dependent variables derived from this task will be the τ estimate from an ex-

Gaussian model of correct trials, the number of “blocks,” defined as RTs that were twice each 

 

6 The SART presents a unique case for assessing lapses of attention. Namely, because of 
the high frequency of “go” responses that build up habitual, mindless responding, extremely fast 
responses might also be indicative of lapses of sustained attention. Indeed, prior research has 
found that TUT rates in a SART are significantly correlated with the fastest 20% of responses, in 
addition to the slowest; that is, individuals who mind wander more in that SART also have 
shorter “short” RTs along with longer “long” RTs (McVay & Kane, 2012a; Welhaf et al., 2020). 
Thus, the fastest 20% of SART RTs has been included as a possible indicator of sustained 
attention ability. 
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individual’s mean RT (Bills, 1931a, 1931b, 1935; see also Bertleson & Joffe, 1963), intra-

individual RTsd to correct trials, intra-individual RTmad to correct trials, average RT of slowest 

20% of correct trials, and RMSSD to correct trials. 

Continuous Tracking. Subjects saw a small black circle moving against a gray 

background onscreen. The goal was to follow the black circle as closely as possible with the 

mouse cursor. Each block began with a screen saying, “Please focus on the dot,” for 3 s. The 

circle moved in a pseudorandom fashion within a centered 400 × 440 pixel region. The circle 

moved at a constant speed in vertical, horizontal, or diagonal directions. Subjects completed a 30 

s practice block, followed by (in a random order) one 30 s and one 120 s block, and two 60 and 

90 s blocks. The potential dependent variables derived from this task will be tracking distance 

variability (calculated as a moving window average tracking error in pixels of 5 trials), the 

number of flat spots (instances where subjects stopped responding for at least 1.5 s), overall 

average tracking error (i.e., the distance between the cursor and the circle in pixels on each trial 

across each block), and intra-individual standard deviation in tracking error (calculated as the 

standard deviation of the distance, in pixels, between the circle location and the cursor location). 

Tracking distance variability, overall average tracking error, and intra-individual standard 

deviation in tracking error will be calculated at the block level first and then averaged for each 

subject to account for tracking duration differences of each block.7 

 

7 Unsworth et al. (2021) also measured lapses in a whole report working memory task, as 
the number of trials where subjects recalled ≤ 1 item. We did not include this lapses measure 
because some may have reflected working memory failures. Additionally, we did not include 
self-reports of sleep quality, boredom proneness, or mindfulness, the latter due to 
multicollinearity problems (reported in Unsworth et al., 2021). 
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Subjective Sustained Attention Indicators. Subjects responded to thought probes in 

four tasks: the PVT (15 probes), the SART (21 probes), a working memory task (8 probes), and 

Stroop task (12 probes). The probes asked subjects to classify their immediately preceding 

thoughts into one of five categories. Subjects reported via keypress whether their conscious 

experience was: (1) I am totally focused on the current task, (2) I am thinking about my 

performance on the task, (3) I am distracted by sights/sounds/physical sensations, (4) I am 

daydreaming/my mind is wandering about things unrelated to the task, or (5) My mind is blank. 

Consistent with Unsworth et al. (2021), we operationalized TUTs as the proportion of responses 

3–5.  

Working Memory Capacity (WMC) Tasks. Subjects completed three complex span 

tasks of WMC. For each complex span task, subjects completed three practice stages: the first 

provided practice in memorizing small sets of the memoranda for each task (e.g., letters or grid 

locations); the second practice was for processing-only (e.g., math equations, symmetry 

decisions, sentence comprehension). RTs were recorded during this processing only practice for 

each subject. During the real trials, if a processing decision was not made within 2.5 SDs of the 

processing-only mean, that trial was counted as a processing error; the third practice consisted of 

both the memory and processing task combined (as in the real trials). 

Operation Span. Subjects verified whether math operations were true or false while 

trying to remember a set of letters. After each math operation, a letter was presented for 1 s, and 

then the next math operation was presented. At the end of the set, subjects were asked to recall 

the letters from the set by clicking the letters onscreen in the presented serial order. Subjects 

were granted credit only if the item letters were recalled in the correct serial position. Set sizes 
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ranged from 3 to 7 items and each set size was presented twice (for a max score of 50). Higher 

scores reflected better recall. 

Symmetry Span. Subjects verified whether an abstract image presented in an 8 × 8 matrix 

was symmetrical along the vertical axis. Following the verification, they were presented with a 

red square for 650 ms in a 4 × 4 grid for memory. At the end of each set, subjects recalled the 

location of each red square presented; subjects earned credit for items recalled in correct serial 

position. Set sizes ranged from 2 to 5 items and each set size was presented twice (for a max 

score of 28). Higher scores reflected better recall. 

Reading Span. Subjects decided whether sentences made sense or not while 

remembering a set of letters. Sentences were made nonsensical by altering one word. After 

deciding whether a sentence made sense, subjects saw the to-be-remembered letter for 1 s. After 

the final letter of the set, subjects recalled the set; subjects earned credit for items recalled in 

correct serial position. Set sizes ranged from 3 to 7 items, and each set size was presented twice 

(for a max score of 50). Higher scores reflected better recall. 

Attention Control Tasks. Subjects completed three tasks measuring attention control.  

Antisaccade. Subjects completed 60 trials in which they were told to direct their focus 

away from a flashing cue (a white flashing “=”) to identify a masked letter (B, P, or R) presented 

briefly to the opposite side of the screen. The flashing cue and target letter location were 12.7 cm 

to the left or right of central fixation. The target stimuli appeared onscreen for 100 ms and then 

were masked (by an H for 50 ms then an 8, which remained onscreen until response). Subjects 

pressed the corresponding key on the numeric keyboard (4, 5, and 6 were used for B, P, and R, 

respectively) to identify the target letter. Before completing the antisaccade trials, subjects 

completed 10 response-mapping trials and 10 prosaccade trials (where the flashing cue and letter 
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appeared on the same side). The dependent variable was the proportion of correct antisaccade 

trials. 

Cued Visual Search. Subjects decided whether a target F located in a 5 × 5 array of 25 

letters (comprised of distractors including forward and backward Es and rotated Ts) was either 

normal facing (by pressing the “/” key) or mirror-reversed (by pressing the “Z” key). Subjects 

first completed 8 response-mapping trials. On each trial, subjects received a central arrow cue 

(500 ms) indicating which two or four possible locations (of eight) the target F could appear in. 

Following the cue, a blank screen (50 ms) appeared before the 5 × 5 grid of 25 possible locations 

appeared as dots for 1500 ms, followed by another 50 ms blank screen. Finally, the array of 25 

letters was shown, at which time subjects responded to the target F (the array was shown until 

response, but no longer than 4000 ms). Other Fs also appeared in uncued, nontarget locations as 

distractors, and so to respond correctly, subjects must selectively maintain focus on the cued 

locations. Subjects completed 8 practice trials followed by 80 scored trials. Cue type, target 

direction and location were all randomly and equally presented during the scored trial block. The 

dependent measure was mean RT for correct responses. 

Stroop. Subjects were presented with a color word (red, green, or, blue) in one of three 

different font colors (red, green, or blue). The goal of the task was to indicate the font color as 

quickly and accurately as possible via key press (1 = red, 2 = green, 3 = blue). Subjects 

completed 15 response-mapping practice trials and 6 practice trials of the real task. Subjects then 

completed 100 scored trials (67 congruent trials [e.g., the word “red” was presented in red font 

color]; 33 incongruent trials [e.g., the word “green” presented in blue font color]). The dependent 

measure was the Stroop RT effect (correct incongruent RT – correct congruent RT). 
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Processing Speed. As in Unsworth et al. (2021), we assessed processing speed in three 

tasks where RT was one of the primary measures recorded (the PVT, Stroop, and CRT). In these 

tasks, RTs were ranked from fastest to slowest and the fastest 20% of trials were used as 

indicators. Here, however, in addition to using RT for the fastest 20% of trials, processing speed 

will also be calculated using the μ parameter from the ex-Gaussian model from the SART, PVT, 

Stroop, and CRT (reflecting the mean of the Gaussian component). Additionally, median RT of 

the 10 prosaccade practice trials in the antisaccade task will also be used as a measure of 

processing speed. Selection of processing speed measures from each task for analyses followed a 

similar approach to the selection of objective sustained attention measures (see “Objective 

Sustained Attention Dependent Variables Selection Procedure”).  

Cognitive Failures Questionnaire – Memory and Attention Lapses (CFQ-MAL). 

Subjects responded to 40 questionnaire items about their everyday memory and attention lapses. 

Subjects indicated via keypress that they experienced such failures on the following scale: 1) 

never, 2) rarely, 3) once in a while, 4) often, 5) very often. The dependent variable was an item 

sum score. 

Non-Cognitive Predictor Measures.  Subjects completed the following self-report 

scales. 

Motivation and Alertness. Following the completion of four tasks (PVT, CRT, 

continuous tracking, and antisaccade) subjects responded to one question each about their 

motivation and alertness on a 1–6 scale (higher scores meaning more motivated or alert). 

Specifically, they were asked “How motivated were you to perform well on the task?” and “How 

alert do you feel right now?”  
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Big Five Inventory (BFI). Subjects completed a 44-item version of the Big Five 

personality inventory. Extraversion was assessed by eight items, agreeableness by nine, 

conscientiousness by nine, neuroticism by eight, and openness by 10. Each item asked the 

subject to respond based on how well it described them using a 5-point scale (1 = disagree 

strongly, 5 agree strongly). The dependent variable was the average rating across items for each 

factor. 

Procedures 

After providing informed consent, subjects completed the cognitive battery in the 

following order: operation span, symmetry span, reading span, antisaccade, cued visual search, 

PVT, Stroop, SART, choice RT, continuous tracking, and whole report visual WM. Following 

completion of the cognitive tasks, subjects completed questionnaire measures in the following 

order: BFI, Boredom Proneness Scale, CFQ-MAL, Mindful Attention Awareness Scale, and self-

reported sleep quality and quantity. 

Results 

Below we report the results of our preregistered analyses and note where we deviated 

from the preregistered plan. Data and Rmarkdown files for all analyses are available on the Open 

Science Framework (https://osf.io/xeu63/). 

Data Analysis Exclusions 

Consistent with Unsworth et al. (2021), we excluded the same subject data from the 

psychomotor vigilance (n = 2), Stroop (n = 1), and Choice RT tasks (n = 1) for having extremely 

long M RTs in each task (in the PVT, one subject had M RT > 1200 ms and one had M RT > 18 

s; for Stroop, the subject had M RT > 2400 ms; for the Choice RT task, the subject had M RT > 

1200 ms). Also following Unsworth et al. (2021), we dropped 16 subjects’ data from the SART 
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for having > 50% omission errors. Prior to calculating any of the DVs for the current study, we 

calculated “go” trial accuracy for the remaining subjects and identified 3 who had “go” trial 

accuracy < 70%. We therefore deviated from Unsworth et al. (2021) and deviated from our 

preregistration by excluding SART data from these subjects, too, as such low accuracy might 

indicate a failure to understand or comply with task instructions, rather than failures of sustained 

attention. As preregistered (but deviating from Unsworth et al., 2021), we also dropped subjects’ 

TUT data from a task if their performance data were dropped from that probed task. Finally, and 

although not preregistered (and not specified in Unsworth et al., 2021), we also dropped Choice 

RT task data from two subjects with 0% accuracy, indicating they did not follow or understand 

task instructions. 

RT Cleaning Procedures  

In tasks where RT was the primary measure of interest (e.g., objective attention 

consistency tasks and processing speed tasks), we implemented a preregistered multistep 

procedure for trial-level cleaning. First, we identified and removed RTs for error and post-error 

trials (and, in tasks that included thought probes, post-probe trials). Next, we removed RTs for 

trials that were likely anticipations (i.e., RTs < 200 ms). From the remaining trials, we next 

calculated for each subject, in each task, a value equal to their Median RT + 3*IQR. Any trials 

outside of this value were replaced with this value. Details on the average number of trials 

cleaned in each task can be found in Supplemental Table S6.  

Finally, we calculated the number of usable trials each subject had following our RT 

cleaning protocol. As preregistered, we dropped task data for subjects who did not have at least 

40 trials and thus could not reliably contribute to our primary measures of interest. This resulted 

in 6 additional subjects’ data being dropped for the PVT only.   
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Selection of Objective and Processing Speed Indicators  

After trial-level cleaning, we calculated all possible DVs of interest for each task. As 

preregistered, for each DV, we used the Median + 3*IQR rule that we had applied to trial-level 

data to censor outlying subjects (replacing outlying subjects’ data with a value equal to the 

Median + 3*IQR for each DV). Supplemental Tables S7 and S8 presents the descriptive statistics 

for each possible DV, for each task, as well as the number of subjects censored for each measure. 

Note that many of the measures originally used in Unsworth et al. (2021) had potentially 

problematic skewness and kurtosis, but after our trial- and subject-level cleaning procedures, 

these values were acceptable for all potential dependent measures.  

As preregistered, our first step in selecting which DVs from each task to include in our 

structural models focused on examining the univariate distributions for possible issues of 

skewness and kurtosis. Per the guidelines suggested by Kline (2011), problematic skew was 

identified as > 3.0 and problematic kurtosis was identified as > 10.0. No variables were removed 

from consideration for problematic distributions.  

We next examined the reliability of the measures. Consistent with Unsworth et al. (2021), 

we calculated split-half reliability for each measure where applicable. (Note that in the PVT and 

Stroop, splitting the task resulted in < 40 trials in each grouping, which prohibited reliable 

estimation of ex-Gaussian models; we thus do not report reliability for PVT τ, PVT μ, or Stroop 

μ). We preregistered that any measures with poor split-half reliability (< .50) would not be 

considered for models, but no variables needed to be removed from consideration for poor 

reliability.  

We next examined within-task bivariate correlations to see whether any measure 

combinations provided non-redundant information with the a priori measure (preregistered 
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criterion for redundancy: r ≥ .70). As seen in Supplemental Table S9, many proposed measures 

were redundant. For the PVT, CRT, and Continuous Tracking Task, we retained only the a priori 

measure (M RT of the slowest 20% for the PVT, τ for the CRT, and the Tracking Variability 

measure for Continuous Tracking). For the SART, however, correlations suggested that several 

measures reflected differing degrees or types of sustained attention failures (Cheyne et al., 2009; 

Unsworth et al., 2021). Thus, by our selection criteria, we would retain not only SART RTsd (a 

priori), but also τ, M RT from the fastest 20% of trials, and Omissions. We had not expected to 

find evidence for four nonredundant measures from the SART, particularly while finding no 

additional non-a priori measures from the other tasks. To avoid oversaturating the objective 

sustained attention latent variable with SART measures—with four SART indicators but only 

one indicator each from the other tasks—we retained only SART RTsd, τ, and Omissions for all 

structural models (deviating from preregistration).8  

For processing speed, our proposed measures showed good split-half reliability and 

distributional characteristics. To diversify speed-factor indicators (and prevent overlap with other 

DVs for other factors), we selected the following: μ from the PVT, M RT of the fastest 20% of 

trials for the CRT and the Stroop, and median RT of the Prosaccade practice trials; this deviated 

from the preregistration, which indicated using M RT of the fastest 20% of trials for the PVT. 

Supplemental Table S10 provides the bivariate correlations among the possible speed of 

processing measures for each task. (Note that we also deviated from preregistration by not 

including SART μ, given the large number of SART indicators we included as objective 

 

8 We dropped the fastest 20% variable rather than other SART measures as it correlated 
only weakly with RTsd and Omissions (rs < .20). RTsd, τ, and Omissions all correlated with 
each other at r ≥ .25.  
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sustained attention indicators and given its poor zero-order correlations with the other processing 

speed measures.) 

Multivariate Outliers  

As preregistered, once we established our primary indicators, we checked for multivariate 

outliers in the final dataset. To do this, we used the Routliers package (Leys et al., 2019) to 

calculate Mahalanobis distance for each observation. This analysis indicated there were 11 

multivariate outliers in the dataset (~3% of subjects). These subjects’ data were removed case-

wise before conducting structural modeling.   

Descriptive Statistics and Correlations for Final Dataset  

Table 7 provides descriptive statistics for the final dataset; Table 8 reports bivariate 

correlations among all measures of interest. Consistent with Unsworth et al. (2021), measures 

from the same putative construct (e.g., WMC, Attention Control, Motivation) all correlated more 

strongly with each other than with measures of other constructs. Importantly, our newly selected 

objective attention consistency indicators also showed evidence of convergent validity (median 

|r| = .30), suggesting that subjects who showed more variable responding in one task also tended 

to do so in other tasks.   

  



 

  

Table 7. Descriptive statistics for Study 1 measures 
Construct/Measure Mean SD Min Max Skew Kurtosis N 
Objective Sustained Attention        
PVT Bin 5 455.01 94.34 307.08 789.01 1.35 2.34 333 
SART RTsd 132.35 48.48 44.07 299.83 1.09 1.80 322 
SART Omissions 18.48 14.23 0.00 70.00 1.36 2.17 322 
SART Tau 100.64 67.60 0.00 328.59 0.95 1.23 322 
CRT Tau 90.06 36.29 26.32 229.52 1.22 2.11 335 
Continuous Tracking Variability 1.14 0.41 0.24 2.56 0.70 0.62 322 
Subjective Sustained Attention        
PVT TUTs 0.43 0.29 0.00 1.00 0.23 -0.92 333 
SART TUTs 0.44 0.33 0.00 1.00 0.24 -1.19 322 
WRWM TUTs 0.53 0.37 0.00 1.00 -0.12 -1.43 271 
Stroop TUTs 0.21 0.28 0.00 1.00 1.42 1.01 341 
Working Memory Capacity        
OPERSPAN 38.00 8.04 10.00 50.00 -0.70 0.11 345 
READSPAN 37.41 8.48 1.00 50.00 -1.04 1.36 346 
SYMSPAN 18.85 5.19 2.00 28.00 -0.48 -0.12 346 
Attention Control        
Antisaccade Accuracy 0.60 0.15 0.25 0.93 0.03 -0.60 337 
Cued Visual Search RT 1276.70 290.03 596.24 2316.29 0.64 0.42 344 
Stroop RT 147.81 97.70 -224.04 509.78 0.60 1.13 341 
Processing Speed        
PVT Mu 286.22 28.01 227.26 380.01 0.61 0.09 333 
CRT Bin 1 293.81 35.52 227.19 434.92 1.03 1.48 335 
Stroop Bin 1 437.86 63.46 304.45 675.58 0.93 1.35 340 
Prosaccade M RT 703.05 240.33 305.50 1628.00 1.04 1.54 311 
Alertness        
PVT 3.30 1.28 1.00 6.00 0.13 -0.55 341 
CRT 3.31 1.33 1.00 6.00 0.08 -0.71 338 
Continuous Tracking 2.31 1.43 1.00 6.00 0.79 -0.48 314 
Antisaccade 3.64 1.29 1.00 6.00 -0.01 -0.78 337 
Motivation        
PVT 4.00 1.31 1.00 6.00 -0.40 -0.53 341 
CRT 4.03 1.37 1.00 6.00 -0.54 -0.35 338 
Continuous Tracking 2.70 1.60 1.00 6.00 0.39 -1.16 314 
Antisaccade 4.00 1.35 1.00 6.00 -0.39 -0.61 337 
Dispositional Measures        
Openness 3.57 0.578 1.80 4.90 -0.12 -0.10 274 
Conscientiousness 3.61 0.63 1.22 4.89 -0.49 0.47 274 
Extraversion 3.22 0.87 1.14 4.57 -0.38 -0.80 274 
Agreeableness 3.92 0.64 1.67 5.00 -0.68 0.57 274 
Neuroticism 3.16 0.86 1.00 5.00 -0.00 -0.76 274 
Cognitive Failures 111.01 26.16 52.00 191.00 0.26 -0.17 274 

Note. PVT = Psychomotor Vigilance Task. SART = Sustained Attention to Response Task. CRT = Choice Reaction Time Task. WRWM = Whole-Report Working 
Memory Task. TUTs = Rate of Task-Unrelated Thoughts in specified task. OPERSPAN = Operation Span. READSPAN = Reading Span. SYMSPAN = Symmetry Span. Bin 5 = 
Mean RT of Slowest 20% of correct trials. RTsd = intra-individual RT variability. Bin 1 = Mean RT of Fastest 20% of correct trials.   
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Measurement Models of Sustained Attention  

As preregistered, our first set of analyses attempted to simply replicate the latent variable 

correlation between objective and subjective indicators of sustained attention reported by 

Unsworth et al. (2021). We first tested a 2-factor sustained attention model with separate latent 

variables for objective (i.e., RT variability and omissions) and subjective (i.e., TUT reports) 

indicators; these latent variables were allowed to correlate. As seen in Table 9, the model 

adequately fit the data. Although not preregistered, we included residual correlations among any 

performance and TUT indicators from the same task (e.g., PVT Slowest 20% with PVT TUTs); a 

model without these residuals did not adequately fit the data and we retained these residual 

correlations for all subsequent models. Our measures and analysis conceptually replicated the 

lapse–TUT correlation in Unsworth et al. (2021), although this relationship was slightly weaker 

here (r = .32 vs .44 in the original study; see Table 10 for factor loadings).9 Again, this 

moderate—but not strong—correlation confirms that these two indicator types of sustained 

attention are not redundant. Instead, as we’ve argued, each indicator type may reflect different 

degrees of disengagement and each is likely influenced by non-sustained attention processes that 

are unique to that measurement type, so modeling the shared variance among the indicators may 

provide a more construct valid measure of sustained attention than either objective or subjective 

measures alone. 

  

 

9 Although not preregistered, we also tested whether a single factor Sustained Attention 
model fit the data, by specifying a model with all the objective and subjective indicators loaded 
onto a single latent variable. This model fit the data poorly, χ2(28) = 237.438, CFI = .745, TLI = 
.590, RMSEA [90% CI] = .147 [.130-.165], SRMR = .117. A chi-square differences test also 
indicated that the two-factor model fit significantly better than the one-factor model (Δ χ2 (1) = 
183.08, p < .001). 



 

  

Table 8. Fit statistics for latent variable models for Study 1 

Model χ2 (df) χ2 /df CFI TLI RMSEA [90% CI] SRMR 
Measurement Models       

2-Factor 54.362 (27) 2.01 .967 .944 .054 [.033-.075] .042 
True Bifactor -- -- -- -- -- -- 
Bifactor Subjective-Residual 51.369 (24) 2.14 .967 .937 .058 [.036-.079] .040 
Bifactor Objective-Residual 44.357 (22) 2.02 .973 .944 .054 [.031-.077] .035 
Hierarchical Model  54.362 (27) 2.01 .967 .944 .054 [.033-.075] .042 

Confirmatory Factor Analyses        
2-Factor 760.400 (442) 1.72 .907 .882 .046 [.040-.051] .055 
True Bifactor -- -- -- -- -- -- 
Bifactor Subjective-Residual 757.589 (439) 1.73 .907 .881 .046 [.040-.051] .055 
Bifactor Objective-Residual 748.092 (437) 1.71 .909 .883 .045 [.040-.051] .054 
Full Hierarchical  850.309 (453) 1.88 .884 .856 .050 [.045-.056] .067 
Reduced Predictor Hierarchical  324.822 (190) 1.71 .914 .886 .045 [.037-.054] .057 
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Our next preregistered measurement model was a bifactor model, which attempted to 

account for common variance across all the objective and subjective indicators of sustained 

attention ability, while also modeling residual shared variance that was unique to each indicator 

type. Unfortunately, there were signs of misfit (e.g., warnings of negative error variances), so we 

could not successfully fit a full bifactor model.  

As preregistered, then, we next attempted to fit separate bifactor models where each had 

only one residual factor modeled (e.g., a common sustained attention factor plus a residual 

objective-indicator factor, with no residual TUT factor). As seen in Table 9, each of these models 

adequately fit the data. Table 10 presents the factor loadings for each model. In the Subjective-

Residual model, all indicators aside from one (TUT rate from the WM task) significantly loaded 

onto the general Sustained Attention factor, although the TUT-rate loadings were weak. 

Additionally, there was enough remaining shared variance in TUT reports to successfully model 

a Subjective-Residual factor. In the Objective-Residual model, many of the indicators 

significantly loaded onto the general Sustained Attention variable, but none of the objective 

SART indicators did, and all performance indicator loadings were weak. After accounting for 

general sustained attention ability, there was still enough shared variance left over to successfully 

model an objective residual latent variable. Thus, in these two separate models, we were able to 

assess general sustained attention ability as the individual-differences overlap among objective 

and subjective measures.   

  



 

  

Table 9. Standardized factor loadings (and standard errors) for latent variable measurement models for Study 1 

Construct and Measure Model Name 
 Two Factor  

Measurement 
Bifactor Sub-Res 

Measurement 
Bifactor Obj-Res  

Measurement 
Hierarchical 
Measurement 

Working Memory Capacity     
OPERSPAN     
READSPAN     
SYMSPAN     

Attention Control     
Antisaccade     
Cued Visual Search     
Stroop      

Processing Speed     
CRT Bin 1     
PVT μ     
Stroop Bin 1     
Prosaccade M RT     

Alertness     
PVT     
CRT     
Continuous Tracking     
Antisaccade     

Motivation     
PVT     
CRT     
Continuous Tracking     
Antisaccade     

General Sustained Attention     
PVT Bin 5  .62 (.05) .24 (.06)  
SART RTSD  .46 (.06) .06 (.07)  
SART Omissions  .49 (.06) .05 (.07)  
SART τ   .37 (.06) .11 (.07)  
CRT τ  .58 (.05) .18 (.06)  
Continuous Tracking Variability  .66 (.05) .28 (.06)  
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Table 9 (continued). Standardized factor loadings (and standard errors) for latent variable measurement models for Study 1 
Construct and Measure Model Name 

 Two Factor 
Measurement 

Bifactor Sub-Res 
Measurement 

Bifactor Obj-Res 
Measurement 

Hierarchical  
Measurement 

PVT TUTs  .17 (.07) .64 (.05)  
SART TUTs  .28 (.07) .74 (.04)  
WRWM TUTs  .14 (.07) .65 (.04)  
Stroop TUTs  .24 (.06) .67 (.04)  

Objective/Objectiveresid     
PVT Bin 5 .62 (.05)  .57 (.05) .62 (.05) 
SART RTSD .46 (.06)  .48 (.06) .46 (.06) 
SART Omissions .48 (.06)  .51 (.06) .48 (.06) 
SART τ  .37 (.06)  .36 (.07) .37 (.06) 
CRT τ  .58 (.05)  .54 (.05) .58 (.05) 
Continuous Tracking Variability .66 (.05)  .60 (.05) .66 (.05) 

Subjective/Subjectiveresid     
PVT TUTs .61 (.05) .59 (.05)  .61 (.05) 
SART TUTs .76 (.04) .70 (.05)  .76 (.04) 
WRWM TUTs .66 (.05) .66 (.05)  .66 (.05) 
Stroop TUTs .67 (.04) .62 (.05)  .67 (.04) 

Note. Bifactor Sub-Res = bifactor model with a subjective-indicator residual factor; Bifactor Obj-Res = bifactor model with an 
objective-indicator residual factor; OPERSPAN = operation span; READSPAN = reading span; SYMMSPAN = symmetry span; PVT Bin 1 
= Mean RT of the fastest 20% of trials in the PVT; PVT Bin 5 = Mean RT of the slowest 20% of trials in the PVT; SART RTSD = 
intrasubject standard deviation in RT from SART; PVT = Psychomotor Vigilance Task; SART = Sustained Attention to Response Task. 
CRT = Choice Reaction Time Task; WRWM = Whole Report Working Memory task; TUTs = TUT rate from task 
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It is worth emphasizing, however, that the loadings on the general factor were heavily 

favored by the “absent-residual” factor in each model. That is, in the Subjective-Residual model, 

the general factor reflected mostly variance from the objective indicators, and in the Objective-

Residual model, the general factor mostly reflected variance from the subjective indicators. This 

imbalance of factor-loading weights will likely impact correlations between the “general” 

sustained attention factor and other constructs (see below), and they suggest that these reduced 

bifactor models might inadequately describe the data, despite reasonable global fit indices 

(Bornovalova et al., 2020). 

Confirmatory Factor Analyses of Individual Differences in Sustained Attention  

Our next set of preregistered analyses assessed the correlations between our nomological-

net predictor constructs with our sustained attention factors. While our focus was on the bifactor 

models, we first present the correlations between our predictors and the 2-factor sustained 

attention model to attempt replication of the correlations from Unsworth et al. (2021). A model 

with latent variables for WMC, Attention Control, Speed of Processing, Motivation, Alertness, 

and manifest variables for openness, conscientiousness, extraversion, agreeableness, neuroticism, 

and cognitive failures adequately fit the data (Table 9) and all predictor indicators loaded onto 

their respective constructs (see Table 11; as in Unsworth et al. [2021], we fixed the loadings of 

the dispositional manifest variables equal to one). We note, however, that the TLI for this model, 

and for all subsequent structural models that included predictor constructs, was just below the 

minimum cut-off for adequate fit. We therefore interpret these CFA models with some caution 

and discuss implications of these findings in the Study 1 Discussion. 

  



 

  

Table 10. Standardized factor loadings (and standard errors) for latent variable confirmatory factor analysis (CFA) models for Study 1 

Construct and Measure Model Name 
 Two Factor  

CFA 
Bifactor Sub-Res 

CFA 
Bifactor Obj-Res 

CFA 
Hierarchical  

CFA 
Working Memory Capacity     

OPERSPAN .71 (.05) .71 (.05) .71 (.05) .71 (.05) 
READSPAN .64 (.05) .64 (.05) .64 (.05) .65 (.05) 
SYMSPAN .62 (.05) .62 (.05) .62 (.05) .61 (.05) 

Attention Control     
Antisaccade .55 (.05) .55 (.05) .55 (.05)  
Cued Visual Search -.56 (.05) -.56 (.05) -.56 (.05)  
Stroop  -.18 (.06) -.18 (.06) -.18 (.06)  

Processing Speed     
CRT Bin 1 .68 (.04) .68 (.04) .68 (.04) .67 (.05) 
PVT μ .47 (.05) .47 (.05) .47 (.05) .46 (.05) 
Stroop Bin 1 .82 (.04) .82 (.04) .82 (.04) .85 (.04) 
Prosaccade M RT .27 (.06) .27 (.06) .27 (.06) .23 (.06) 

Alertness     
PVT .84 (.03) .84 (.03) .84 (.03)  
CRT .68 (.04) .68 (.04) .68 (.04)  
Continuous Tracking .55 (.04) .55 (.04) .55 (.04)  
Antisaccade .58 (.04) .58 (.04) .58 (.04)  

Motivation     
PVT .82 (.03) .82 (.03) .82 (.03)  
CRT .68 (.04) .68 (.04) .68 (.04)  
Continuous Tracking .53 (.04) .53 (.04) .53 (.04)  
Antisaccade .55 (.05) .55 (.05) .55 (.05)  

General Sustained Attention     
PVT Bin 5  .65 (.04) .29 (.06)  
SART RTSD  .46 (.06) .06 (.06)  
SART Omissions  .46 (.06) .05 (.06)  
SART τ   .36 (.06) .11 (.06)  
CRT τ   .59 (.05) .17 (.06)  
Continuous Tracking Variability  .65 (.04) .26 (.06)  
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Table 10 (Continued). Standardized factor loadings (and standard errors) for latent variable confirmatory factor analysis (CFA) models 
for Study 1 

Construct and Measure Model Name 
 Two Factor  

CFA 
Bifactor Sub-Res 

CFA 
Bifactor Obj-Res 

CFA 
Hierarchical  

CFA 
PVT TUTs  .25 (.06) .74 (.04)  
SART TUTs  .23 (.06) .65 (.06)  
WRWM TUTs  .12 (.07) .61 (.05)  
Stroop TUTs  .25 (.06) .66 (.04)  

Objective/Objectiveresid     
PVT Bin 5 .65 (.04)  .58 (.05) .62 (.05) 
SART RTSD .47 (.05)  .48 (.06) .41 (.05) 
SART Omissions .46 (.05)  .48 (.05) .48 (.06) 
SART τ  .37 (.06)  .35 (.06) .32 (.06) 
CRT τ  .59 (.05)  .56 (.05) .60 (.05) 
Continuous Tracking Variability .65 (.04)  .59 (.05) .64 (.05) 

Subjective/Subjectiveresid     
PVT TUTs .73 (.04) .68 (.04)  .63 (.04) 
SART TUTs .67 (.04) .64 (.04)  .75 (.04) 
WRWM TUTs .61 (.05) .61 (.05)  .65 (.05) 
Stroop TUTs .67 (.04) .61 (.04)  .70 (.04) 

Note. Bifactor Sub-Res = bifactor model with a subjective-indicator residual factor; Bifactor Obj-Res = bifactor model with an 
objective-indicator residual factor; OPERSPAN = operation span; READSPAN = reading span; SYMMSPAN = symmetry span; PVT 
Bin 1 = Mean RT of the fastest 20% of trials in the PVT; PVT Bin 5 = Mean RT of the slowest 20% of trials in the PVT; SART RTSD 
= intrasubject standard deviation in RT from SART; PVT = Psychomotor Vigilance Task; SART = Sustained Attention to Response 
Task. CRT = Choice Reaction Time Task; WRWM = Whole Report Working Memory task; TUTs = TUT rate from task. 
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Although not preregistered, we also included residual correlations between PVT μ with 

other PVT measures in all models that included processing speed indicators, following from a 

post-hoc residual correlation added in Unsworth et al. (2021). Table 12 displays correlations with 

the two sustained-attention factors. In general, we replicated the correlations reported in 

Unsworth et al. (2021), even after changing the data-processing pipeline and some indicators. 

For example, the objective factor correlated strongly with attention control, (r = −.86 vs. r = −.69 

in Unsworth et al., 2021) and processing speed (r = .51 vs. r = .47. in Unsworth et al., 2021), and 

the subjective factor correlated strongly with alertness (r = −.78 vs. −.78 in Unsworth et al., 

2021) and motivation (r = −.67 vs. −.65 in Unsworth et al., 2021).  

  



 

  

Table 11. Latent variable correlations from Study 1 two-factor model  

Construct/Measure 1 
 
2 

 
3 

 
4 

 
5 6 7 8 9 

 
10 

 
11 

 
12 

1) Objective Sustained Attention             
2) Subjective Sustained Attention .33            
3) WMC -.39 -.18           
4) Attention Control -.86 -.24 .50          
5) Processing Speed .51 .18 -.33 -.67         
6) Alertness -.47 -.78 .19 .42 -.17        
7) Motivation -.52 -.64 .21 .33 -.14 .77       
8) Openness -.06 -.09 .01 -.01 -.05 .15 .04      
9) Conscientiousness .02 -.22 -.07 -.02 .04 .14 .14 -.04     
10) Extraversion .13 -.01 -.02 .02 -.00 .05 .03 .15 .10    
11) Agreeableness .04 -.18 .00 -.07 .02 .19 .13 -.01 .25 .11   
12) Neuroticism .12 .21 -.18 -.25 .06 -.13 -.08 -.03 -.19 -.26 -.32  
13) Cognitive Failures .15 .21 -.01 -.09 -.04 -.12 -.08 .01 -.40 -.05 -.19 .40 

Note. WMC = Working Memory Capacity 
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We next ran two separate nomological-network CFAs with each of the reduced bifactor 

models. We first report results for the Subjective-Residual-only model, and then from the 

Objective-Residual-only model. In each model, we allowed correlations among the predictor 

variables to be estimated, and they were consistent across the models and similar to those 

presented in the two-factor CFA model (exact correlations among predictors in these models can 

be found in Supplemental Table S11).  

The Subjective-Residual-Only model is presented in Figure 7 (for clarity, Table 10 

presents individual indicators and their factor loadings). Several correlations appeared consistent 

with our predictions. First, individual differences in WMC and attention control ability both were 

negatively correlated with general sustained attention (in)ability, with a stronger correlation for 

attention control. That is, subjects with greater WMC and attention control showed fewer 

sustained attention failures. As well, subjects with slower processing speed exhibited poorer 

sustained attention. Finally, subjects who reported higher motivation and alertness also showed 

fewer sustained attention failures.  
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Figure 7. Confirmatory factor analysis of the Subjective-Residual Model 

 

Note. WMC = Working Memory Capacity. Standardized path estimates are presented. For 
clarity, factor loadings are not presented here; see Table 5 for factor loadings for all models 
included in the primary analyses. 

In terms of dispositional constructs, only self-reported cognitive failures significantly 

(but weakly) correlated with general sustained attention (in)ability: Subjects who reported having 

more daily memory and attention failures also showed poorer sustained attention in the lab. None 

of the personality measures significantly correlated with the general sustained attention factor. 

Finally, only the self-report measures (motivation, alertness, agreeableness, neuroticism, and 

cognitive failures) correlated with the subjective-residual factor. These correlations are perhaps 

unsurprising, as the subjective-residual factor likely captures some variance related to self-

assessments and self-beliefs, self-reporting biases, and socially desirable responding that might 

also influence responding to the contextual and dispositional self-rating measures. 
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Figure 8. Confirmatory factor analysis of the Objective-Residual Model 

 

Note. WMC = Working Memory Capacity. Standardized path estimates are presented. For 
clarity, factor loadings are not presented here; see Table 5 for factor loadings for all models 
included in the primary analyses. 

The Objective-Residual Model is displayed in Figure 8. Here, the cognitive individual-

differences variables again correlated with general sustained attention ability, albeit more 

weakly. Self-reported alertness and motivation again strongly correlated with general sustained 

attention. Lastly, conscientiousness, agreeableness, neuroticism, and cognitive failures all 

correlated significantly (but modestly) with general sustained attention ability, most in the 

hypothesized directions: Higher conscientiousness and agreeableness were related to better 

sustained attention, while higher neuroticism and greater cognitive failures were related to worse 

sustained attention ability. Correlations with the objective-residual factor were limited to our 

cognitive and contextual variables; none of the dispositional variables correlated significantly 

with the objective-residual factor.  
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In general, the correlations across these two separate models appear to follow the trends 

of the two-factor model. When general sustained attention ability is captured primarily by 

objective indicators (i.e., when the bifactor model includes a subjective residual factor), 

associations with cognitive and contextual variables are more aligned with predictions. On the 

other hand, when general sustained attention ability is primarily captured by variance in 

subjective indicators (i.e., when the bifactor model includes an objective residual factor), 

associations with contextual and dispositional variables are more in line with predictions. We 

will return to the complexities of interpreting the general factors from these reduced bifactor 

models below.10  

Exploratory Hierarchical Model of Sustained Attention  

Because we had to conduct the bifactor models as separate reduced models (each with a 

different residual factor), the “general” factor did not clearly represent a general sustained 

attention (in)ability. This could be seen in the factor loadings of each model. Specifically, the 

general factor was primarily a reflection of objective measures in the subjective-residual model, 

and a primary reflection of subjective measures in the objective-residual model, suggesting that 

the reduced bifactor models did not adequately describe the data (Bornovalova et al., 2020). 

Thus, this imbalance in the loadings on the general factor impacted the correlations with the 

constructs within the nomological network.  

 

10 As a preregistered exploratory set of analyses, we also investigated what the objective-
residual factor might reflect. However, the results here were especially complicated by the need 
to use the reduced bifactor model with a general factor biased toward the TUT indicators. Our 
original hypothesis was that the objective-residual factor might primarily represents processing 
speed, given that many of the contributing indicators are RT based. Or, that it may reflect 
strategy choice in sustained attention tasks (i.e., speed-accuracy trade-off). Although the reduced 
bifactor structure of the model prevented us from drawing clear conclusions, we present the 
results of these preregistered analyses in Supplemental Tables S13 and S14. 
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To remedy this, we ran an exploratory (non-preregistered) hierarchical model to 

represent the general factor. Our intention was to see whether a second-order sustained attention 

factor that was equally loaded by first-order objective and subjective latent variables would 

provide some clarity about the associations between the general sustained attention factor and 

other constructs. We first ran a measurement model with general sustained attention ability as a 

second-order factor (with first-order factors loaded by the objective and subjective indicators), 

rather than a first-order general factor across the individual indicators. In order to identify a 

hierarchical model with only two first-order factors, we set the unstandardized paths of both the 

objective and subjective factors to 1 (Kline, 2011). This hierarchical model adequately fit the 

data (Table 9). Again, all individual indicators loaded onto their respective first-order latent 

variables (see Table 10). Additionally, the first-order latent variables were both predicted by a 

second-order sustained attention latent variable (Objective β = .73, Subjective β = .44). Note, 

however, that the residual variances for the first-order factors were large (Objective ζ = .46, 

Subjective ζ = .81). Despite the model fitting the data well, there was still variance that could not 

be explained in each first-order factor by the higher-order factor (as expected from the two-factor 

model showing only a moderate correlation between objective and subjective factors). 

We next ran a CFA including the individual-differences constructs of interest to assess 

their correlations with the general sustained attention factor. When including all constructs of 

interest in the model, the data did not provide adequate fit (see Table 9). Inspection of the model 

summary indicated that the paths from attention control, alertness, and motivation to the general 

sustained attention factor were all |r| > 1.0. We thus ran a second model without these 

nomological network constructs included. Model fit was improved and consistent with our 
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previous models (although the TLI was still slightly below threshold). We again allowed the 

predictor constructs to correlate (see Supplemental Table S12).  

As seen in Figure 9, WMC and processing speed both significantly correlated with the 

general sustained attention factor: Individuals with better WMC and faster processing speed 

showed fewer sustained attention failures. Only two dispositional variables showed significant 

(but modest) correlations with the general sustained attention variable: Individuals high in 

neuroticism and those who report more everyday attention and memory failures had more 

sustained attention failures. Given the exploratory nature of the measurement model, and the 

selectivity of this nomological-network model, we interpret the results with caution. Future work 

should consider this hierarchical structure of sustained attention as a possible model (as we will 

do in Study 2) and preregister analyses to investigate such associations.   
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Figure 9. Confirmatory factor analysis of the reduced hierarchical model 

 

Note WMC = Working Memory Capacity. Standardized path estimates are presented. For clarity, 

factor loadings are not presented here; see Table 5 for factor loadings for all models included in 

the primary analyses. 

Mini-Multiverse Analyses  

Extremely long RTs may reflect occasional lapses of sustained attention (and will 

necessarily increase variability in RTs when aggregated at the subject level). It is also possible, 

however, that these RTs might sometimes result from behaviors or events completely unrelated 

to failures of sustained attention (e.g., sneezing, or intentionally looking away to check the time). 

Thus, researchers face the challenging question of how to handle especially long RTs. 

Researcher degrees of freedom for treating outlying RTs are infinite, and so there is no single 

answer.  

Choices about the cutoff values and consequences for outlying RTs (and subjects) can 

alter RT distributions and bias estimates of RT measures and their correlations with other 
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performance variables. To investigate the robustness of our findings, then, we next conducted a 

preregistered mini-multiverse analysis (Steegen et al., 2017; see also specification curve analysis, 

Simonsohn et al., 2015). Our previous work (Welhaf et al., 2020) has found that in a large-scale 

dataset with many hundreds of subjects and multiple tasks per construct (i.e., the Kane et al. 

[2016] dataset examined in present Study 2), decisions about outlying RT treatments and 

outlying subject treatments yielded negligible changes in estimates for correlations between 

latent variables for sustained-attention lapses and cognitive ability.  

For the current study’s primary analyses above, we based RT outlier decisions on a cutoff 

value equal to each subject’s median RT + 3*IQR (for each task). Here, however, for each 

subject, and each task, we created different datasets that either (a) retained outlying RTs, (b) 

censored outlying RTs to the cutoff value, or (c) cut outlying RTs. We also extended this process 

to univariate outlier subjects after aggregating the objective sustained attention measures (i.e., 

retained outlying subjects, censored outlying subjects’ scores to the cutoff value, or dropped 

outlying subjects’ data).  

We focused our analyses on the Subjective-Residual bifactor, Objective-Residual 

bifactor, and hierarchical structural models, as these models provided estimates of general 

sustained attention ability. The results are visually depicted in Supplemental Figure S3, where 

it’s clear that the findings were robust to varying outlier treatments. For the Subjective-Residual 

bifactor model, many of the cognitive, contextual, and dispositional correlations with the general 

sustained attention factor were significant and all correlations were within .06 of the primary 

model correlations. There was some variability in significance in the correlations between the 

general sustained attention factor, neuroticism, and self-reported cognitive failures. All 
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correlations with the subjective residual followed the pattern of the primary models and were all 

within .10 of the primary correlation. 

For the Objective-Residual bifactor Model, all correlations with the sustained attention 

general factor again followed the primary model results. Correlations with the general factor 

were even more stable, with all iterations within .03 of the primary model estimates. For the 

objective residual factor, correlations were overall more variable, but still within .06 of the 

primary estimates, and largely consistent in terms of significance. The only difference in 

significance occurred with one path for each extraversion and cognitive failures with the 

objective residual factor.  

Finally, for the hierarchical model, we dropped the attention control, alertness, and 

motivation constructs (as in the primary analyses), and the remaining correlations were largely 

consistent, but variability across the models was more apparent. Most correlations were within 

.10 of the primary model estimates. The largest inconsistencies in significance were isolated to 

associations with neuroticism, which was significantly correlated with the second-order 

sustained attention factor in half of the iterations. Overall, the results of our mini-multiverse 

analyses largely indicate that associations between our predictor variables and sustained attention 

factors were robust to outlier-definition and outlier-treatment criteria. 

Discussion 

Our reanalysis of Unsworth et al. (2021) provided preliminary evidence for the construct 

validity of objective and subjective sustained attention measures, and their covariation. First, 

objective measures of attention consistency showed high levels of within-task redundancy, with 

most potential indicators correlating with each other above r = .70. Second, our chosen objective 

and subjective indicators of attention consistency all loaded onto their respective latent variables, 
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which were moderately correlated with each other (r = .33). This objective–subjective correlation 

indicated the potential for modeling a common sustained attention factor, an ostensibly superior 

way to validly assess the sustained attention construct.    

We attempted to fit a full bifactor model to the data but were unsuccessful. Alternative 

bifactor models that separately modeled the individual residual factors did fit the data. These 

reduced models allowed us to examine the associations between both a common sustained 

attention factor and the residual factors, with other constructs in the nomological network. 

Results from CFAs were somewhat in line with our predictions: Individual differences in 

cognitive ability (e.g., WMC, attention control, and processing speed) were significantly 

correlated with the common factor, such that individuals with better abilities showed better 

sustained attention. Individual differences in contextual factors (e.g., self-reported alertness and 

motivation) also correlated with the common factor, with higher levels of each being associated 

with better sustained attention. Finally, dispositional characteristics provided some evidence for 

convergent and discriminant validity of the general sustained attention factor. Specifically, as 

predicted, cognitive failures consistently correlated with the common sustained attention factor 

in each model indicating convergent validity. Openness and extraversion, in contrast, were 

consistently uncorrelated with the general factor, suggesting some evidence for discriminant 

validity. Correlations with other personality traits such as agreeableness, conscientiousness, and 

neuroticism were inconsistent across models and future work should is needed to determine how 

these variables fit in the nomological network of sustained attention measures.  

In each alternative bifactor model, we also examined associations with the residual 

factors. As hypothesized, the cognitive ability factors did not correlate with the subjective 

residual (which might capture processes like self-beliefs and socially desirable responding), but 
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they did with the objective residual (which might reflect constructs like processing speed or 

strategy choice/implementation). The contextual self-report factors of alertness and motivation 

correlated with both the subjective and objective residual factors, but more strongly with the 

subjective. Finally, many trait-dispositional factors correlated with the subjective residual, which 

is unsurprising given they rely on similar self-report methods and might both be influenced by 

response biases and beliefs. Dispositional factors did not correlate with the objective residual.  

Given that the full bifactor model (with separate residual factors for both the objective 

and subjective indicators) did not converge, we could not adequately assess the common 

sustained attention factor. Each reduced bifactor model had a concerning degree of bias that 

muddied our interpretation of the correlations with the general factor (see Bornovalova et al., 

2020). Specifically, in the subjective-residual model, the general factor was heavily weighted by 

objective indicators. Thus, to better investigate the general sustained attention factor, we 

conducted a series of exploratory (non-preregistered) analyses using a hierarchical sustained 

attention model. Here, our intention was to see whether a second-order factor that had equally 

loading first-order objective and subjective factors could clarify any associations between a 

general sustained attention ability and other constructs.  

The second-order factor significantly correlated with WMC and processing speed (a 

model with attention control and the contextual factors yielded correlations > 1.0) and with 

neuroticism and cognitive failures, which suggests some consistency across the models and with 

the literature (e.g., Kane et al., 2016; Unsworth et al., 2021). Future research should consider this 

hierarchical model as a worthy approach to assessing individual differences in general sustained 

attention ability, especially given the potential challenges of fitting bifactor models with both 

objective and subjective indicators residuals.  
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We must highlight some areas of concern for the current study. Despite the measurement 

models adequately fitting the data, none of the structural bifactor models that included predictor 

constructs fit adequately across all indices (i.e., TLI values were slightly below conventional cut-

offs). As well, because our exploratory hierarchical model had only two first-order factors (one 

for performance indicators and one for TUT rates), we had to constrain their unstandardized 

loadings onto the general factor to be equal to allow an identified model. All our CFA models 

exploring the nomological network of sustained attention should therefore be interpreted with 

caution until replications can support their conclusions. With that said, the results of Study 1 are 

largely robust to different outlier treatments and so we have confidence that the models can 

provide some preliminary evidence of the structure of sustained attention ability.  

Study 2 

Study 1 provided preliminary evidence for the construct validity of a general sustained 

attention construct measured across objective and subjective indicators. However, concerns 

about measurement and fit of the structural models warrant caution in interpreting the results. 

Study 2 therefore serves as a conceptual replication using an independent dataset (Kane et al., 

2016) to see whether: (a) the proposed bifactor structure of attention consistency measures can 

be modeled, and (b) sustained-attention factors correlate with theoretically relevant constructs.  

Study 2 assessed, in addition to WMC, a new construct—positive schizotypy—to further 

investigate convergent and discriminant validity. Prior work has demonstrated that positive 

schizotypy, reflecting the proneness to have unusual beliefs and perceptual experiences (and a 

risk factor for schizophrenia and related disorders), is related to both objective and subjective 

indicators of attention consistency. Specifically, subjects with higher positive schizotypy scores 

(from self-report questionnaires) show more variable RTs in basic attention tasks (Kane et al. 
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2016; Schmidt-Hansen & Honey, 2009) as well as higher TUT rates (Kane et al. 2016), than do 

those with lower scores. Thus, positive schizotypy should be negatively correlated with an 

assessment of general sustained attention ability.  

Methods 

Below we describe the general procedure and materials from Kane et al. (2016). We 

provide detailed descriptions of the tasks and measures selected for the current study in their 

respective sections.  

Subjects 

Kane et al. (2016) enrolled 545 undergraduates into their study from the University of 

North Carolina at Greensboro. Of these, 541 completed the first of three 2-hr sessions, 492 

completed the second, and 472 completed all three. Full-information maximum likelihood (ML) 

estimation was used for missing data (see Kane et al., 2016, for details and sample 

demographics). 

Materials 

Objective Attention Consistency. As in Study 1, for each objective indicator task, we 

assessed multiple dependent measures that theoretically should reflect variation in sustained 

attention. We focus the present analyses on tasks where RT was the primary outcome in Kane et 

al. (2016). Our procedure for picking a primary indicator for each task was identical to that for 

Study 1. Again, we list the possible dependent measures for each task with the a priori measure 

listed first. For many of the tasks in Study 2, however, there was no measure that has 

traditionally been used to reflect sustained attention (aside from the SART), so we tried to 

balance RTsd, τ, and slowest 20% of trials across the tasks such that each was the primary 
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indicator for at least one of the “attention restraint” tasks (i.e., SART and Stroop-like tasks), and 

one was the primary measure among the “attention constraint” tasks (i.e., flanker tasks). 

Semantic SART. In this go/no-go task, subjects pressed the space bar for words from one 

category (animals; 89% of trials) but withheld responding to words from another category 

(vegetables; 11% of trials). Stimuli were presented for 300 ms followed by a 1500 ms mask. 

There were 675 trials, 75 of which were no-go targets. The potential dependent variables derived 

from this task were intra-individual RTsd, intra-individual RTmad, omission errors, mean RT of 

the slowest 20% of trials, mean RT of the fastest 20% of trials, the τ estimate from an ex-

Gaussian model, and RMSSD, all for correct “go” trials.  

Number Stroop. Subjects reported the number of digits presented on each trial while 

ignoring the digits’ identity. Each trial presented 2 to 4 identical digits in a row and subjects 

responded with one of three labeled keys to indicate the number of digits on screen. There were 

300 total trials: 240 were congruent (e.g., “333”) and 60 were incongruent (e.g., “222”). The 

potential dependent variables derived from this task were the τ estimate from an ex-Gaussian 

model, RTsd, RTmad, and mean RT of the slowest 20% of trials, all for correct congruent trials. 

Spatial Stroop. Subjects reported the relative position of a word to an asterisk (left, right, 

above, below), with the word and asterisk both presented to the left or right, or above or below, 

fixation; subjects ignored both the identity of the word (“LEFT,” “RIGHT,” “ABOVE,” 

“BELOW”) and absolute location of the word and asterisk on-screen. Subjects responded to the 

relative position of the word to the asterisk by pressing the corresponding arrow on the numeric 

keypad arrow keys. Subjects completed a total of 120 trials: 60 presenting words congruent for 

absolute and relative location, 30 presenting words congruent for absolute location but 

incongruent for relative location, and 30 presenting words incongruent both for absolute and 



 

  127 

relative location. Here, the potential dependent variables derived from this task were mean RT of 

the slowest 20% of trials, RTsd, RTmad, and the τ estimate from an ex-Gaussian model, all for 

correct responses to trials where words were congruent for both absolute and relative position. 

Arrow Flanker. Subjects reported the direction of a centrally presented arrow (“<” vs. 

“>”) via keypress, with the arrow flanked horizontally by 4 distractors. Subjects completed two 

blocks of 96 trials: 24 neutral trials (target arrow presented amid dots), 24 congruent trials (all 

arrows pointing the same direction), 24 stimulus-response incongruent trials (central arrow 

pointing opposite direction of flankers), and 24 stimulus-stimulus incongruent trials (central 

arrow presented amid upward-pointing arrows). Here, the potential dependent variables derived 

from this task were mean RT of the slowest 20% of trials, RTsd, RTmad, and the τ estimate from 

an ex-Gaussian model, all for correct responses to both neutral and congruent trials. 

Letter Flanker. Subjects reported whether a centrally presented “F” appeared normally or 

backwards via keypress, with that letter flanker horizontally by 6 distractors. Subjects completed 

144 trials: 24 neutral trials (normal or backwards F presented amid dots), 48 congruent trials 

(target and distractor Fs all facing the same direction), 24 stimulus-response incongruent trials 

(target facing opposite direction of distractors), and 24 stimulus-stimulus incongruent trials 

(target presented amid right- and left- facing Es and Ts tilted at 90 and 270 degrees). Here, the 

potential dependent variables derived from this task were RTsd, RTmad, mean RT of the slowest 

20% of trials, and the τ estimate from an ex-Gaussian model, all for correct responses to neutral 

and congruent trials.  

Circle Flanker. Subjects reported whether a target letter was an X or N, via keypress, 

with the target flanked by two distractors. Targets appeared in one of eight possible locations in a 

circle, with distractors appearing on either side of the target; all other locations were occupied by 
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colons. Subjects completed 160 trials: 80 neutral trials (target letter surrounded by colons) and 

80 conflict trials (target flanked by two different distractors from the set H, K, M, V, Y, Z). Here, 

the potential dependent variables derived from this task were the τ estimate from an ex-Gaussian 

model, RTsd, RTmad, and mean RT of the slowest 20% of trials, all using correct responses to 

neutral trials. 

Subjective Attention Consistency Measures. Thought probes were randomly presented 

in 5 tasks (45 in SART, 20 in Number Stroop, 20 in Arrow Flanker, 12 in Letter Flanker, and 12 

in an otherwise-unanalyzed 2-back task). Each probe presented subjects with eight categories of 

thoughts they might have just experienced. Subjects selected their options by pressing the 

number on the keyboard that most closely matched the content of their immediately preceding 

thoughts. The options were: 1) “The task” (thoughts about the stimuli or responses); 2) “Task 

experience/performance” (thoughts about how one was performing on the task); 3) “Everyday 

things” (thoughts about normal life concerns, goals, and activities); 4) “Current state of being” 

(thoughts about one’s physical, cognitive, or emotional states); 5) “Personal worries” (thoughts 

about current worries); 6) “Daydreams” (fantastical, unrealistic thoughts); 7) “External 

environment” (thoughts about task-unrelated things or events in the immediate environment); 8) 

“Other.” TUTs were assessed as the proportion of responses with options 3-8, as in Kane et al. 

(2016). 

WMC Tasks. Subjects completed four complex span tasks and two updating tasks. As in 

Study 1, for each complex span task, subjects completed three practice stages: the first provided 

practice in memorizing small sets of the memoranda (e.g., letters, grid, or arrow locations); the 

second practice was for processing-only (e.g., math equations, symmetry decisions, sentence 

comprehension, letter direction). RTs were recorded during this processing only practice for each 
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subject. During the real trials, if a processing decision was not made within 2.5 SDs of the 

processing-only mean, that trial was counted as a processing error; the third practice consisted of 

both the memory and processing task combined (as in the real trials). 

Operation Span. Same as Study 1. Here, however, the set sizes of 3 to 7 were presented 

three times in a random order rather than twice (max score of 75).  

Reading Span. Same as Study 1. Here, however, the set sizes of 2 to 6 were presented 

three times in a random order rather than twice (max score of 60). 

Symmetry Span. Same as Study 1. Here, however, the set sizes of 2 to 5 were presented 

three times in a random order rather than twice (max score of 42). 

Rotation Span. Subjects were presented with random sequences of large and small 

arrows to remember, radiating from a center location in one of 8 possible directions. Between 

presentation of each arrow, a rotated letter (F, G, J, or R) was presented facing its normal 

direction or mirror-reversed (50% of the time) and subjects had to verify its direction. At the end 

of the set, subjects recalled the arrows from the set by clicking the location onscreen in the 

presented serial order. Subjects were granted credit only if the arrow was recalled in the correct 

serial position. Set sizes ranged from 2–5 items; each set size was presented three times (for a 

max score of 42). Higher scores reflected better recall. 

Running Span. Subjects were presented with a sequence of letters and were asked to 

recall only the final 3–7 letters from the trial. Trials were unpredictably 0, 1, or 2 items longer 

than the set size (e.g., set size 5 had list lengths of 5, 6, and 7 items in the task). Each trial started 

with a number to indicate the set size (i.e., the number of items to be recalled at the end of the 

list). At the end of the list, all 12 possible letters appeared on-screen along with the 

corresponding set size and subjects selected via mouse-click the appropriate letters from the set 
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(in serial position). Subjects completed 15 total trials. Credit was granted for items that were 

recalled in the correct serial position (for a max of 75). Higher scores reflected better recall. 

Updating Counters. Subjects recalled the numerical values presented in boxes, some of 

which were updated from their original values. Each trial began with 3–5 boxes presented 

horizontally on-screen. There were three phases for each trial: (1) the learning phase, where a 

digit (1 thru 9) was presented in a random order in each box; (2) the updating phase, where 2–6 

of the box values were changed by presenting a simple addition or subtraction (e.g., +4; −1; 

updates ranged from −7 to +7). Updates appeared randomly and some boxes could have been 

updated multiple times, or not at all; (3) the recall phase, where subjects were tasked with 

recalling the final updated value for each box (cued in a random order). Set sizes of 3–5 boxes 

were crossed with the number of updates (2–6) yielding a total of 15 trials. Credit was granted 

for correct answers and the score was proportion correct (out of 60). Higher scores reflected 

better recall. 

Positive Schizotypy. Positive schizotypy was assessed using two of the Wisconsin 

Schizotypy Scales (WSS; Chapman & Chapman, 1983)—the Perceptual Aberration scale and 

Magical Ideation scale—and the Referential Thinking subscale of the Schizotypal Personality 

Questionnaire (Raine, 1991). Subjects saw each item on-screen individually and responded via 

mouse-click if the item was true for them (scored as 1) or false (scored as 0). After appropriate 

reverse-scoring, items were summed for each scale where higher scores indicated more 

endorsement of the schizotypic belief or experience. (Note that in Kane et al. [2016], Social 

Anhedonia item parcels were also included [as cross-loadings] in the positive schizotypy factor; 

however, their factor loadings were weak [<.30] and, as expected, they loaded more strongly on 

the negative schizotypy factor, and so they will not be included for the current analyses.)  
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Results 

We again report our preregistered analyses and results and note where we deviated from 

the preregistered plan. Data and Rmarkdown files for all analyses are available on the Open 

Science Framework (https://osf.io/xeu63/). 

Data Analysis Exclusions 

Prior to calculating any of the primary DVs for the current study, we calculated “go” trial 

accuracy for the SART and identified 6 subjects who had “go” trial accuracy < 70%. Consistent 

with Study 1, we deviated from our preregistration and excluded SART data from these subjects, 

as such low accuracy might indicate a failure to understand or comply with task instructions, 

rather than failures of sustained attention.  

RT Cleaning Procedures  

We implemented the same preregistered multi-step procedure for trial-level cleaning as 

Study 1. First, we identified and removed RTs for error and post-error trials (and post-probe 

trials in tasks that included thought probes). Next, we removed RTs for trials that were likely 

anticipations (i.e., RTs < 200 ms). From the remaining trials, we next calculated for each subject, 

in each task, a value equal to their median RT + 3*IQR. Any trials outside of this value were 

replaced with this value. Supplemental Table S15 reports the relevant descriptive information for 

the trial-level cleaning (e.g., mean number of trials outlying trials replaced per task). Finally, we 

calculated the number of usable trials each subject had following our RT cleaning protocol. As 

preregistered, we dropped task data from subjects who did not have at least 40 trials and thus 

could not reliably contribute to our primary measures of interest. This resulted in dropping data 

from 2 subjects in the Spatial Stroop task and 6 in the Arrow flanker task. 
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Selection of Objective Indicators  

We followed the same procedures for selecting objective attention consistency indicators 

as in Study 1. Supplemental Table S15 presents the descriptive statistics for each possible DV, 

for each task, as well as the number of subjects whose data were censored for each potential 

measure.  

No variables were removed from consideration for problematic distributions (skew > 3.0 

or kurtosis > 10.0). We next examined split-half reliability to remove any unreliable indicators 

(i.e., < .50). No variables were removed for poor reliability. As in Study 1, we next examined the 

within-task bivariate correlations to see whether any combination of measures provided non-

redundant information with the a priori measure for each task. As seen in Supplemental Table 

S16, many of the proposed measures indicated a high level of redundancy (rs > .70) within each 

task, for the Number Stroop, Spatial Stroop, Arrow flanker, Letter flanker, and Circle flanker 

tasks. Because of this, we selected only the a priori measure for each of these tasks as the 

performance indicator of sustained attention. However, as in Study 1, we found evidence in the 

SART that some of the potential indicators were not redundant with one another. Specifically, 

RTsd (the a priori measure) and Omissions were non-redundantly correlated (r = .51), so we 

retained both. 

Multivariate Outliers  

As preregistered, once we established primary indicators, we again checked for 

multivariate outliers in the final dataset using the Routliers package (Leys et al., 2019) to 

calculate Mahalanobis distance for each observation in the dataset. This analysis indicated there 

were 10 multivariate outliers in the dataset (~2% of the subjects). These subjects were removed 

case-wise before any structural modelling was conducted.  
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Descriptive Statistics and Correlations for Final Dataset  

Table 12 provides the descriptive statistics for the final dataset of Study 2. Supplemental 

Table 16 provides the bivariate correlations of all measures of interest. Consistent with Kane et 

al. (2016), measures from the same proposed construct (e.g., WMC, Positive Schizotypy, TUT 

rates) all correlated more strongly with each other than with measures of other constructs. 

Importantly, and consistent with Study 1, our newly selected objective attention consistency 

indicators also correlated moderately with each other (median |r| = .30) suggesting that subjects 

who showed variable responding in one task also tended to do so in other tasks. 

  



 

  

Table 12. Descriptive statistics for Study 2 measures 

Construct/Measure Mean SD Min Max Skew Kurtosis N 
Objective Sustained Attention        

SART RTsd 159.30 58.75 36.64 361.34 1.20 1.73 510 
SART Omissions 22.96 24.86 0.00 94.00 1.43 1.14 510 
Number Stroop τ  91.14 39.74 14.96 220.92 1.31 1.65 458 
Spatial Stroop Bin 5 974.20 289.51 511.50 1857.01 1.34 1.55 446 
Arrow Flanker Bin 5 630.31 111.51 426.90 1011.21 0.92 0.67 464 
Letter Flanker RTsd 121.79 54.88 40.56 307.44 1.21 1.37 452 
Circle Flanker τ  113.31 58.01 0.00 284.81 1.16 1.37 458 

Subjective Sustained Attention        
SART TUTs 0.51 0.24 0.00 1.00 -0.04 -0.81 510 
Number Stroop TUTs 0.43 0.29 0.00 1.00 0.38 -0.90 458 
Arrow Flanker TUTs 0.49 0.30 0.00 1.00 0.11 -1.07 464 
Letter Flanker TUTs 0.58 0.26 0.00 1.00 -0.47 -0.54 452 
N-Back TUTs 0.42 0.31 0.00 1.00 0.31 -1.09 451 

Working Memory Capacity        
OPERSPAN 0.00 1.00 -3.54 1.70 -0.75 0.31 465 
READSPAN 0.00 1.00 -2.77 2.27 -0.23 -0.44 413 
SYMSPAN 0.01 0.99 -3.22 2.01 -0.37 -0.17 457 
ROTSPAN 0.02 0.97 -3.19 2.10 -0.48 -0.09 377 
RUNNSPAN 0.00 0.99 -2.72 2.84 0.22 -0.10 452 
COUNTERS -0.01 0.99 -2.04 3.24 0.55 0.17 470 

Positive Schizotypy        
PERCABER 6.37 4.96 0.00 31.00 1.55 3.43 523 
MAGIDEA 11.43 5.57 0.00 28.00 0.24 -0.52 523 
REFTHINK 3.35 2.06 0.00 7.00 0.09 -1.03 469 
Note. WMC scores are z-scores. SART = Sustained Attention to Response Task. TUTs = Rate of Task-Unrelated Thoughts in specified task. 

OPERSPAN = Operation Span. READSPAN = Reading Span. SYMSPAN = Symmetry Span. ROTSPAN = Rotation Span. RUNNSPAN = Running Span. 
COUNTERS = Updating Counters task. PERCABER = Perceptual Aberration Total score. MAGIDEA = Magical Ideation Total Score. REFTHINKING = 
Referential Thinking score. Bin 5 = Mean RT of Slowest 20% of correct trials. RTsd = intra-individual RT variability. Bin 1 = Mean RT of Fastest 20% of 
correct trials.  
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Measurement Models of Sustained Attention  

As preregistered, our first set of analyses attempted to conceptually replicate the latent 

variable correlation between performance and self-report indicators of attention consistency from 

Study 1. We first tested a 2-factor model with latent variables for objective (i.e., RT variability) 

and subjective (i.e., TUT reports) measures; these latent variables were allowed to correlate. 

Consistent with Study 1 (but not preregistered for either study), we included within-task residual 

correlations between the TUT rate and performance indicator from the same task (e.g., Number 

Stroop τ with Number Stroop TUTs). We retained these residual correlations for all subsequent 

models. As seen in Table 13, the model fit the data adequately. Moreover, the latent variables for 

objective and subjective attention consistency measures again correlated moderately, as in Study 

1 (r = .38, here, and r = .32 in Study 1; see Supplemental Table S17 for factor loadings).11 Again, 

this moderate correlation suggests that while these two types of sustained attention measures 

share some variance, they are not redundant. Modeling the shared variance among the indicators 

should provide a more construct valid measure of sustained attention, free from measurement 

error specific to either indicator type. 

  

 

11 Although not preregistered, we tested whether a single factor Sustained Attention 
model fit the data, as we did in Study 1. To do so, we specified a model where all the objective 
and subjective indicators loaded onto a single latent variable. This model did not adequately fit 
the data, χ2 (46) = 317.381, CFI = .825, TLI = .749, RMSEA [90% CI] = .106 [.095-.117], 
SRMR = .101. A chi-square differences test also indicated that the two-factor model was a 
significantly better fitting model (Δ χ2 (1) = 208.17, p < .001). 

 



 

  

Table 13. Fit statistics for latent variable models for Study 2 

Model χ2 (df) χ2 /df CFI TLI RMSEA [90% CI] SRMR 
Measurement Models       

2-Factor 109.213 (45) 2.43 .959 .939 .052 [.040-.065] .042 
Bifactor   66.444 (34) 1.95 .979 .959 .043 [.027-.058] .028 
Hierarchical  109.213 (45) 2.43 .959 .939 .052 [.040-.065] .042 

Confirmatory Factor Analysis        
2-Factor 453.284 (253) 1.79 .951 .941 .039 [.033-.044] .053 
Bifactor 403.998 (240) 1.68 .959 .949 .036 [.030-.042] .049 
Hierarchical  460.799 (255) 1.81 .949 .940 .039 [.033-.045] .056 
Limited AC Bifactor 417.746 (242) 1.73 .955 .945 .037 [.031-.042] .052 
Limited AC Hierarchical 454.008 (256) 1.77 .949 .941 .038 [.032-.044] .056 

Note. AC = Attention Control 
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Our next preregistered measurement model was a bifactor model, which attempted to 

model common sustained-attention variance across all the objective and subjective indicators, as 

well as residual variance unique to each indicator type. Unlike Study 1, this full bifactor model 

provided an adequate fit to the data (see Table 13). All indicators loaded significantly onto the 

general sustained attention factor (although the loadings were mostly stronger for the objective 

than subjective indicators) and there was also enough shared variance among the measures to 

model both an objective and subjective residual factor (see Supplemental Table S17 for factor 

loadings).  

Preregistered Confirmatory Factor Analyses of Individual Differences in Sustained 

Attention  

Our next set of preregistered analyses assessed the correlations between our nomological-

network constructs with our different sustained attention models. Although our focus was the 

bifactor model, we first present the correlations between our predictors and the two-factor 

sustained attention (failures) model. A model with latent variables for WMC and positive 

schizotypy adequately fit the data (Table 13) and all indicators loaded onto their respective 

factors (Supplemental Table S17). WMC correlated negatively with the objective (r = −.42) and 

subjective factors (r = −.19): Subjects with higher WMC exhibited fewer performance lapses and 

TUT reports. In contrast, positive schizotypy correlated positively with both the objective (r = 

.16) and subjective factors (r = .21): Individuals who endorsed more positive schizotypy 

experiences exhibited more performance lapses and more TUT reports. WMC did not correlate 

with positive schizotypy (r = −.04). 
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Figure 10. Confirmatory factor analysis of the bifactor model of sustained attention 

(failures) for Study 2 

 

Note. WMC = Working Memory Capacity. Standardized path estimates are presented. For 
clarity, factor loadings are not presented here; see Table 17 for factor loadings for all models 
included in the primary analyses. 
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Table 14. Standardized factor loadings (and standard errors) for Limited Attention 
Control latent variable models for Study 2 

Construct and Measure Model Names 
 Bifactor CFA Hierarchical CFA 

Working Memory Capacity   
OPERSPAN .62 (.04) .62 (.04) 
READSPAN .50 (.05) .50 (.05) 
SYMSPAN .62 (.05) .62 (.05) 
ROTSPAN .52 (.06) .52 (.06) 
RUNSPAN .58 (.04) .58 (.04) 
COUNTERS .63 (.04) .62 (.04) 

Positive Schizotypy   
PERCABER1 .60 (.03) .60 (.03) 
PERCABER2 .58 (.03) .58 (.03) 
PERCABER3 .64 (.03) .64 (.03) 
MAGIDEA1 .84 (.03) .85 (.03) 
MAGIDEA2 .83 (.03) .83 (.03) 
MAGIDEA3 .72 (.04) .72 (.04) 
REFTHINK .66 (.03) .66 (.03) 

Attention Control   
SART d’ -.45 (.04) -.46 (.04) 
Antisaccade Letters .77 (.03) .77 (.03) 
Antisaccade Arrows .76 (.04) .76 (.04) 

General Sustained Attention   
Number Stroop τ    .69 (.10)  
Spatial Stroop Bin 5 .25 (.12)  
Arrow Flanker Bin 5 .37 (.12)  
Letter Flanker RTSD .40 (.11)  
Circle Flanker τ  .63 (.09)  
Number Stroop TUTs  .41 (.08)  
Arrow Flanker TUTs .30 (.07)  
Letter Flanker TUTs .22 (.07)  
N-Back TUTs .27 (.06)  

Objective/Objectiveresid   
Number Stroop τ  .20 (.16) .61 (.04) 
Spatial Stroop Bin 5 .50 (.09) .51 (.04) 
Arrow Flanker Bin 5 .64 (.09) .67 (.04) 
Letter Flanker RTSD .47 (.11) .62 (.04) 
Circle Flanker τ  .32 (.13) .68 (.04) 

Subjective/Subjectiveresid   
Number Stroop TUTS  .62 (.07) .74 (.05) 
Arrow Flanker TUTS .61 (.07) .68 (.05) 
Letter Flanker TUTS .45 (.06) .50 (.05) 
N-Back TUTS .56 (.06) .63 (.05) 

Note. OPERSPAN = operation span; READSPAN = reading span; SYMMSPAN = symmetry span; 
ROTASPAN = rotation span; RUNNSPAN = running span; COUNTERS = updating counters; SART RTSD = 
intrasubject standard deviation in RT from SART; Letter Flanker RTSD = intrasubject standard deviation in 
RT from Letter Flanker; PERCABER1 = perceptual aberration scale (parcel 1); PERCABER2 = perceptual 
aberration scale (parcel 2); PERCABER3 = perceptual aberration scale (parcel 3); MAGIDEA1 = magical 
ideation scale (parcel 1); MAGIDEA2 = magical ideation scale (parcel 2); MAGIDEA3 = magical ideation 
scale (parcel 3); REFTHINK = referential thinking subscale from the Schizotypal Personality Questionnaire 
(SPQ), SART = Sustained Attention to Response Task. TUTs = TUT rate from task.  
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To assess whether our predictor constructs correlated with a general factor of sustained 

attention failures, we next ran a CFA with the bifactor model of sustained attention. As seen in 

Figure 10, both WMC and positive schizotypy significantly correlated with the general sustained 

attention factor in predicted directions: Subjects with higher WMC and those who reported lower 

positive schizotypy ratings had fewer sustained attention failures. Neither WMC nor positive 

schizotypy were correlated with the objective-residual factor. However, there was a weak 

positive association between positive schizotypy and the subjective-residual factor (WMC did 

not correlate with this factor).  

Exploratory Hierarchical Model of Sustained Attention 

As a final exploratory model, following from Study 1, we modeled sustained attention 

(failures) as a second-order factor above the first-order objective- and subjective-indicator 

factors. We again set the unstandardized paths of the objective and subjective factors to 1 to 

yield an identified model. The measurement model showed acceptable fit (see Table 15), with 

both the objective (β = .68) and subjective (β = .57) factors loading significantly onto the second-

order sustained attention factor. Again, we note that the variances on the first-order factors were 

large, suggesting there was still unexplained variance in the model (Objective ζ = .57, Subjective 

ζ = .67), as expected given the moderate correlation between objective and subjective factors. 

We next ran a CFA including WMC and positive schizotypy and the model adequately fit 

the data (Table 15). As seen in Figure 11, both WMC and positive schizotypy significantly 

correlated with the second-order sustained attention factor, with similar magnitudes to those with 

the general factor from the bifactor model, although they were a bit larger here (the WMC path 

was also of nearly identical magnitude here to that from Study 1 [−.47]): Higher WMC was 
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again related to fewer sustained attention failures whereas higher positive schizotypy scores were 

again related to more sustained attention failures.  

Figure 11. Confirmatory factor analysis of the hierarchical model of sustained attention 

(failures) for Study 2 

 

Note. WMC = Working Memory Capacity. Standardized path estimates are presented. For 
clarity, factor loadings are not presented here; see Table 17 for factor loadings for all models 
included in the primary analyses. 

Exploratory CFAs Including A Narrow “Attention Control” Factor  

A limitation of our preregistered structural models is that they left us unable to address 

questions about the potential associations between general sustained attention and other factors 

of attention control. Recall that Study 1 found that in the hierarchical model, attention control 

correlated > 1.0 with the sustained attention factor, which caused issues with the model overall 

led us to drop that factor (along with the motivation and alertness factors) in our reduced 

hierarchical model. Although the original study on which Study 2 is based (Kane et al., 2016) 

included separate latent factors for “attention restraint” (response-inhibition-type tasks) and 
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“attention constraint” (flanker distractor-control tasks), here we included indicators from most of 

these tasks (using their congruent and or neutral-baseline conditions) to model our attention 

consistency performance factor. As an exploratory, non-preregistered approach to the question, 

however, we modeled an attention control factor using the two antisaccade tasks and the SART 

dʹ measure (reflecting part of the “restraint” factor from Kane et al., 2016), and we removed all 

SART indicators (RTsd, omissions, TUT rate) from the sustained attention factors. Our 

measurements of attention control and sustained attention constructs were thus independent. 

Otherwise, the models matched those represented in Figures 10 and 11, including WMC, positive 

schizotypy, and either the bifactor or hierarchical model of sustained attention. 

Both the bifactor and hierarchical models again fit the data well (see Table 15 for fit 

statistics and Table 17 for factor loadings). In the bifactor model, attention control (failures) was 

moderately correlated with the general sustained attention factor (r = .31), the objective-residual 

factor (r = .38), and, in contrast to WMC, also with the subjective-residual factor (r = .22). In the 

hierarchical model, attention control (failures) was strongly, but non-redundantly, correlated with 

the second-order sustained attention factor (r = .71). Thus, in both cases, individuals with poorer 

attention control also showed worse sustained attention ability. Unlike Study 1, then, here we 

were provisionally able to dissociate sustained attention from attention control, which suggests 

these may be distinct forms of general executive attentional ability. 

Mini-Multiverse Analyses 

The Study 2 mini-multiverse analyses focused on the preregistered bifactor model and the 

exploratory hierarchical model of sustained attention (without including the exploratory attention 

control factor, as modeling this factor required removing all SART indicators from the sustained 

attention models). Our multiverse decisions on outlying RTs and outlying subjects were identical 
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to those for Study 1. Details of the results are presented in Supplemental Figure S4, and we 

summarize them here. 

We conducted a series of CFAs on the bifactor model that also included WMC and 

positive schizotypy constructs. These iterations resulted in only five of the nine models 

converging. Although discouraging, these results might not be too surprising given the general 

instability of bifactor models (e.g., Eid et al., 2017, 2018). Of the models that converged, the 

resulting correlations were generally consistent with the primary model estimates: WMC was 

negatively associated with the general sustained attention factor and positive schizotypy was 

positively associated with the general factor. Further, WMC was not associated with the 

objective residual (aside from one iteration) and was not associated with the subjective residual 

in any iteration. Positive schizotypy was not associated with the objective residual in any 

iteration and was positively associated with the subjective residual in all but one iteration. Thus, 

despite some of the iterations failing to converge, those that did converge presented a reasonably 

consistent pattern of results. We suggest that the bifactor model is still a promising way to 

measure individual differences in sustained attention, as the individual-differences overlap in 

objective (performance) and subjective (self-report) attention consistency measures. At the same 

time, both Study 1 and Study 2 indicated that bifactor models including both theoretically 

desirable residual factors (objective and subjective) do not always fit the data adequately and 

they are not as robust as other models to variation in outlier definitions and treatments. 

For the hierarchical model, associations between WMC and positive schizotypy with the 

second-order sustained attention factor were remarkably consistent across all multiverse 

iterations. Estimates of the correlation between the second-order factor with WMC were within 

.03 of the primary correlation and estimates of the correlation with positive schizotypy were 
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within .02 of the primary correlation. As in Study 1, the hierarchical model appears to be a more 

robust model of general sustained attention than the bifactor model. Thus, if one is simply 

interested in capturing general sustained attention ability, and less so about the residual or 

separate first-order factors, then the hierarchical model provides a suitable assessment. We do 

note again, however, that we did not preregister our exploration of the hierarchical model and so 

we suggest further independent replication of its fit to sustained attention data and its correlations 

with other constructs. It is, of course, encouraging that the hierarchical model results were 

similar across both Studies 1 and 2. 

Exploratory Latent Profile Analyses of Sustained Attention Subgroup Variation for 

Studies 1 and 2 

The latent variable analyses from each study indicated that some of the correlations 

between the general sustained attention factor and nomological network constructs were different 

from the correlations with either objective-only or subjective-only factors in the 2-factor model. 

We interpret these differences as indicating that the shared variance between objective and 

subjective measures is a most construct valid measure of sustained attention, free from indicator-

type-specific measurement error. However, the bifactor and hierarchical CFAs present some 

limitations. Namely, the reduced bifactor models from Study 1 produced biased factor loadings 

on the general sustained attention factor and the hierarchal models in both studies had large error 

variances on the first-order factors, indicating considerable unexplained variance. Both 

limitations likely influenced the correlations with the nomological network constructs. 

To address these limitations, and to conceptually replicate the correlational findings, we 

asked whether there were different groups of subjects who varied on the objective and subjective 

sustained attention factors. And if so, we asked whether these different groups also differed at 
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the mean level on other nomological network constructs. To examine these questions, in a non-

preregistered set of analyses, we submitted the subjects’ factor scores for the objective and 

subjective latent factors, derived from the 2-factor measurement model from each study, to a 

series of latent profile analyses (LPAs). LPAs identify latent classes or mixtures of subject 

profiles from continuous input variables (Gibson, 1959; Oberski, 2016).  

The first step of each LPA was to identify which number of profiles best fit the data from 

the objective and subjective measures. A priori, we expected that 4 profiles might provide the 

most theoretically interesting solution: (a) subjects who were high on both objective and 

subjective measures (i.e., poor general sustained attention); (b) subjects who were high on only 

objective measures; (c) subjects who were high on only subjective measures, and; (d) subjects 

who were low on objective and subjective measures. We conducted the LPAs using the tidyLPA 

package (Rosenberg et al., 2018). For each study, we compared fit indices for models between 3 

and 5 profiles. We compared models using multiple fit indices, including Akaike Information 

Criteria (AIC), Bayesian Information Criteria (BIC), and Sample Size Adjusted BIC (SABIC), 

with lower values indicating better fitting models. We also considered the p-values of the 

Bootstrapped Likelihood Ratio Test (BLRT) which compared a model with k classes to a model 

with k-1 classes. Significant p-values of the BLRT indicated the model with k classes better fit 

the data. Model fits for both studies are presented in Table 15.  
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Table 15. Fit statistics for each LPA in each study 

Model AIC BIC SABIC BLRT p 
Study 1     

3 Profiles 954.86 993.33 961.60 0.010 
4 Profiles 958.51 1008.52 967.28 0.495 
5 Profiles 938.59 1000.13 949.38 0.010 

Study 2     
3 Profiles 1287.71 1330.46 1298.71 0.010 
4 Profiles 1289.88 1345.45 1304.19 0.317 
5 Profiles 1284.50 1352.90 1302.11 0.030 

 

The LPAs suggested a 5-profile model for Study 1 and a 3-profile model for Study 2. The 

5-profile model of Study 1 indicated three subgroups with extremely small sample sizes (ns = 

16–20) and two larger subgroups, which makes drawing conclusions and interpreting the profiles 

difficult (Lubke & Neale, 2006; Spurk et al., 2020). We therefore opted to use the 3-profile 

model, as it was the preferred model for Study 2 (which had a larger sample size) and was more 

parsimonious (note also that the 3-profile model was the next-best fitting model for Study 1). For 

both Studies 1 and 2, the 3 sub-groups had similar profiles. Group 1 had higher objective and 

subjective factor scores (and so poor general sustained attention). Group 2 had moderate 

sustained attention ability across objective and subjective measures (with Group 2 in Study 2 

having slightly higher subjective scores compared to their objective scores), and Group 3 had 

lower objective and subjective scores (and so generally better sustained attention).  

We next compared the three profile groups on the nomological-network constructs 

included in each study (see Table 16). The comparisons largely follow our latent variable 

analyses, particularly those involving the general sustained attention factors: Individuals with 

poorer sustained attention abilities (i.e., Group 1) had lower scores on many of the nomological-

network constructs compared to those with moderate and good sustained attention, particularly 

WMC, attention control, processing speed, motivation, and alertness. 



 

  

Table 16. Means (standard deviations) and omnibus ANOVA results for each group defined by LPA for Study 1 and Study 2. 

Study 1 Measures Group 1  
(N = 18) 

Group 2  
(N = 120) 

Group 3  
(N = 206) 

F ηp2 

Objective 1.03 (0.22) 0.27 (0.18) -0.24 (0.19) 578.36*** 0.772 
Subjective 0.64 (0.75) 0.31 (0.67) -0.24 (0.55) 41.35*** 0.195 
WMC -0.32 (0.65) -0.21 (0.58) 0.15 (0.58) 17.34*** 0.092 
Attention Control -0.53 (0.42) -0.19 (0.36) 0.16 (0.39) 49.08*** 0.222 
Processing Speed 0.68 (0.71) 0.13 (0.60) -0.14 (0.52) 22.99*** 0.118 
Motivation -0.65 (0.82) -0.33 (0.72) 0.25 (0.66) 35.99*** 0.173 
Alertness -0.57 (0.61) -0.31 (0.60) 0.23 (0.67) 35.24*** 0.170 
Openness 0.02 (0.38) -0.33 (0.72) 0.02 (0.55) 0.49 0.003 
Conscientiousness -0.04 (0.38) -0.04 (0.48) 0.00 (0.62) 0.06 0.000 
Extraversion 0.18 (0.52) 0.00 (0.71) -0.02 (0.83) 0.51 0.003 
Agreeableness 0.06 (0.50) -0.05 (0.63) 0.02 (0.55) 0.77 0.004 
Neuroticism 0.04 (0.73) 0.16 (0.76) -0.10 (0.76) 4.53* 0.026 
Cognitive Failures 0.11 (0.94) 0.20 (0.85) -0.12 (0.89) 5.21** 0.029 
Study 2 Measures Group 1  

(N = 45) 
Group 2  
(N = 205) 

Group 3  
(N = 277) 

  

Objective 1.03 (0.28) 0.15 (0.29) -0.27 (0.25) 508.03*** 0.660 
Subjective 0.46 (0.41) 0.38 (0.35) -0.35 (0.33) 311.07*** 0.543 
WMC -0.27 (0.48) -0.08 (0.56) 0.10 (0.58) 11.70*** 0.043 
Positive Schizotypy 0.26 (1.13) 0.17 (1.12) -0.16 (1.07) 6.68** 0.025 

Note. WMC = Working Memory Capacity. ^ p  < .10; * p < .05; ** p < .01; *** p < .001 
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Discussion  

Study 2 provided additional evidence for the construct validity of general sustained 

attention factors that reflect the shared individual-differences variance in performance variability 

and self-reported TUTs. Using an independent dataset from that in Study 1 (Kane et al., 2016), 

we captured the proposed full bifactor structure of sustained attention failures, as well as the 

hierarchical structure explored in Study 1. We also assessed the associations of the general 

sustained attention factors (from the bifactor and hierarchical models) with WMC and positive 

schizotypy. Consistent with Study 1, WMC correlated negatively with the general sustained 

attention (failures) factor with a moderate effect size (≈ −.40 to −.50), despite correlating only 

weakly with the subjective sustained attention factor from the 2-factor model (−.19): Higher-

WMC subjects exhibited better sustained attention ability than did lower-WMC subjects. WMC 

was not associated with the objective or subjective residual factors from the bifactor model.  

The preregistered Study 2 analyses included positive schizotypy, which we predicted to 

correlate weakly positively with the general (failures) factor and the subjective residual factor 

(but not with the objective residual). These predictions were largely confirmed. Positive 

schizotypy was weakly to moderately related to general sustained attention (in)ability in the 

bifactor and hierarchical models (≈ .20–.30). Positive schizotypy was also (weakly) positively 

related to the subjective residual factor in the bifactor model (.13), suggesting these subjects 

might also have general reporting biases or self-beliefs that guide their answers to self-report 

questions about their thoughts or behaviors.  

Our non-preregistered analyses featuring a reduced attention control factor also provided 

additional validity evidence that we were unable to examine in Study 1. In the bifactor model, 

the attention control factor (comprised of antisaccade-arrows errors, antisaccade-letters errors, 
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and SART dʹ) was moderately correlated with the sustained attention factor (.31) indicating that 

poor attention control was related to worse sustained attention. This was also true in the 

hierarchal model, where the correlation between attention control and sustained attention was 

stronger (.71). Note that in the 2-factor model of Study 1, attention control was strongly 

correlated with the objective sustained attention factor (r = −.86), which at first glance, would 

suggest that these two constructs may be isomorphic. However, the results from Study 2 suggest 

that sustained attention and attention control are not redundant.12  

We conducted a multiverse analysis like that of Study 1 to assess the robustness of our 

primary CFA results. The results provided some confirmatory evidence for the robustness of the 

results but also raised some concerns. Specifically, only half of the multiverse iterations for the 

bifactor model converged. This suggests that the full bifactor model is not robust to different 

outlier treatments. These multiverse results, combined with the nonconvergence of the full 

bifactor model in Study 1, suggest that the bifactor model may not be robust enough to be a 

broadly useful approach to assessing general sustained attention ability.  

Again, the exploratory (non-preregistered) hierarchical model of sustained attention 

appeared more robust to different outlier decisions, as the model converged in every iteration. 

All estimates of the correlations between WMC and positive schizotypy with the second-order 

sustained attention factor were consistent across the iterations. Despite not being preregistered, 

the consistency across the multiverse, and across Studies 1 and 2, suggests that the hierarchical 

model of sustained attention may be the most useful approach for researchers interested in 

 

12 We are unsure why the attention control × sustained attention correlation differed so 
much between the bifactor and hierarchical models in Study 2. A closer look at the confidence 
intervals (CI) suggests that the hierarchical model may have provided a better estimate, as the CI 
was smaller than in the bifactor model (Hierarchical CI = [.56, .85]; Bifactor CI = [.09, .53]). 
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examining general sustained attention ability as the individual-differences covariation between 

objective and subjective indicators. We argue that it is important to measure sustained attention 

using both subjective and objective indicators, given the possibility of their tapping different 

degrees of disengagement, as well their independent sources of measurement error, and that this 

hierarchal approach can provide some insight on the nomological network of general sustained 

attention (in)ability. 

Finally, in exploratory (non-preregistered) latent profile analyses, we found additional 

convergent evidence for the validity of our covariation measurement approach and the general 

sustained attention factor. Specifically, we found that a group with generally poor sustained 

attention profile (i.e., lower scores on both objective and subjective factors) had the lowest levels 

on all the nomological networks. A group with moderate scores on the objective and subjective 

factor appeared to have scores in the middle on all the nomological network constructs. Finally, 

the group with the best objective and subjective scores (and so better sustained attention) had 

generally better scores on the nomological network constructs as well. These results then parallel 

our correlational analyses and support this idea of the covariation between objective and 

subjective indicators being a viable—if not optimal—approach to assessing sustained attention.  

General Discussion 

The present studies examined the construct validity of sustained attention measures in 

two independent datasets (Kane et al., 2016; Unsworth et al., 2021). The primary goals of each 

study were to: (1) test whether the individual-differences covariation between objective and 

subjective measures of attention consistency provided a construct valid assessment of general 

sustained attention ability and; (2) examine how several cognitive, contextual, and dispositional 

nomological network constructs were associated with sustained attention ability to assess 
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convergent and discriminant validity of the general sustained attention factor. As a secondary 

goal, for each study we also conducted a “mini-multiverse” analysis on each dataset to assess the 

robustness of our findings against different trial-level and subject-level outlier decisions. 

Regarding our first goal, the results suggested that objective and subjective sustained 

attention indicators share variance and thus load onto a common sustained attention factor. 

Although we could not successfully model a full bifactor structure in Study 1, we were able to fit 

reduced bifactor models that separately captured unique variance to each indicator type. In Study 

2, moreover, we were able to fit a full bifactor model to the sustained attention data. These 

bifactor models presented some problems, however. In Study 1, the reduced bifactor models 

yielded general factors that were each dominated by the non-residual-factor indicators, which 

biased the measurement of the general factor toward either the objective or the subjective 

measures; in Study 2, the full bifactor model was not robust to different outlier definitions and 

decisions in the mini-multiverse, as some models did not converge across multiverse iterations. 

The bifactor approach may not be broadly viable, then, for assessing general sustained attention 

ability.  

In both studies, however, we fit an exploratory (i.e., non-preregistered) hierarchical 

structure, which modeled general sustained attention as a higher-order factor over the objective-

indicator and subjective-indicator latent variables (with only two first-order factors, however, 

these models required constraining the unstandardized loadings of the objective and subjective 

factors onto the second order sustained attention factor). This hierarchical approach allowed us to 

model the individual-differences overlap in objective and subjective indicators as a general 

sustained attention ability. Unlike the bifactor models, the hierarchical model adequately fit the 

data in both Studies 1 and 2 and it was robust across multiverse iterations. 
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Regarding our second goal, the results suggested an interesting pattern of convergent and 

discriminant validity of the common sustained attention factor. First, individual differences in 

cognitive ability (i.e., WMC and processing speed) correlated moderately to strongly with the 

common factor in hypothesized ways: Subjects with better cognitive abilities showed better 

sustained attention. Second, individual difference in contextual variables such as self-reported 

motivation and alertness also correlated strongly with the common sustained attention factor: 

Individuals who reported being more motivated and alert during the cognitive tasks also showed 

better sustained attention. Finally, dispositional characteristics provided evidence of both 

convergent and discriminant validity: Self-reported everyday cognitive failures and positive 

schizotypy symptoms consistently (if moderately) correlated with the common sustained 

attention factor, indicating that individuals who report or exhibit more of these behaviors and 

experiences also demonstrate poorer sustained attention. Although big-five personality traits like 

neuroticism, conscientiousness, and agreeableness correlated with the common factor in some 

models, but not in others, extraversion and openness did not significantly correlate with the 

common factor in any model. 

In exploratory (non-preregistered) analyses, we were able to also assess how a (reduced) 

attention control factor, derived from response-conflict tasks, correlated with sustained attention 

ability. Individual differences in attention control correlated moderately to strongly with the 

general sustained attention factor, providing more evidence for convergent validity. Further, the 

attention control correlations provided additional evidence for discriminant validity. Specifically, 

the general sustained attention factor correlated more strongly with attention control (in both 

bifactor and hierarchical models) than with WMC. WMC tasks involve processes like memory 

retrieval and strategy choices that aren’t necessary in attention tasks, which may contribute to the 
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weaker WMC correlation. Given the exploratory nature of this analysis, we suggest that future 

research attempt to replicate the findings and further explore the dissociation between attention 

control (as captured by response- or distractor-conflict tasks) and sustained attention. 

General Sustained Attention Ability as the Covariation between Objective and Subjective 

Indicators  

The results of the current study suggest that objective and subjective indicators of 

attention consistency are moderately correlated with each other, replicating prior work (e.g., 

Kane et al., 2016; Unsworth, 2015; Unsworth et al. 2021; Welhaf et al., 2020). Moreover, the 

present study argues that this covariation indicates the presence of a common underlying factor 

of sustained attention ability that is psychologically meaningful. That is, individual differences in 

a general sustained attention ability can partly explain RT variability and mind-wandering 

propensity during simple cognitive tasks. The current results extend prior work that has 

investigated these measures (e.g., RT variability/performance and TUTs) as separate but related 

constructs (or as objective sustained attention measures providing validation for subjective 

measures). This covariation approach is important because objective and subjective measures of 

sustained attention use two very different methods to assess the same proposed ability. Because 

each of these measurement types may capture different degrees of disengagement (à la Cheyne et 

al., 2009), and each is influenced by different non-sustained attention processes, relying on either 

type of measurement as the sole reflection of sustained attention may lead to improper 

conclusions about how the ability to sustain attention relates to other psychological constructs.  

At the task level, many potential objective indicators of sustained attention are redundant 

with one another. In both studies, correlations among the individual measurement types (e.g., 

RTsd, τ, slowest RTs) were high in nearly all tasks. This suggests that for many of the sustained 
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attention tasks used in the literature, researchers may use any of several indicators to objectively 

measure sustained attention. However, in the SART, different indicators might be picking up on 

different degrees of sustained attention failures, as we found that multiple indicators shared some 

variance, but were not redundant. Specifically, we found that RTsd, a commonly used measure 

from the SART, showed moderate bivariate correlations (rs = .30–.69) with omission errors 

(both in Study 1 and 2), and with τ (in Study 1). Thus, these different SART indicators may 

capture sustained-attention failures ranging from subtle fluctuations across the task and 

occasional long RTs, to instances of more complete attentional disengagement (Cheyne et al., 

2009; Unsworth et al., 2021).   

The Sustained Attention Factor: Construct Validity and Measurement Recommendations 

Our proposed model of sustained attention was a bifactor structure in which common 

variance across the objective and subjective measurement factors could be captured by a general 

factor, and residual variance unique to each indicator type could be modeled as orthogonal 

measurement-specific factors. While this was our preregistered and theoretical starting point, the 

bifactor approach turned out to be inappropriate in Study 1 and not robust to varied outlier 

treatments in Study 2. We therefore provisionally recommend against taking a bifactor approach 

for measuring general sustained attention ability.  

Instead, when researchers are primarily interested in the general factor of sustained 

attention, a worthy alternative appears to be a hierarchical model. The hierarchical models from 

Studies 1 and 2 suggest that general sustained attention ability can be robustly modeled as a 

higher-order factor representing the variance shared between objective-indicator and subjective-

indicator factors. In both studies, this model provided adequate fit and stood up well to various 

outlier treatment decisions in our mini-multiverse analyses. Thus, although not preregistered, we 
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argue that this approach can allow researchers to assess individual differences in general 

sustained attention ability.  

With caveats about both bifactor and hierarchical models in mind (see additional 

discussion of limitations below), the present results speak to the construct validity of the general 

sustained attention factor. We focus this discussion on the hierarchical models of Study 1 and 

Study 2 and the full bifactor model in Study 2, as they provided the most unbiased estimates of 

the general factor. 

First, many correlations with the general factor were slightly stronger than those with the 

separate objective-measure or subjective-measure factor. Specifically, WMC correlated strongly 

with the objective factor and weakly with subjective factor in both studies, as is common in the 

literature (Kane et al., 2016; Unsworth, 2015; Unsworth et al., 2021). WMC correlated 

substantially, however, with the general factor of sustained attention across models (rs = .40–

.50). By typically focusing on only objective or subjective indicators, then, prior work may have 

misestimated the associations between these cognitive ability measures and the ability to sustain 

attention. If TUT rates reflect a study’s only measure of sustained attention, researchers may 

interpret the association between WMC and sustained attention abilities to be weak. Using the 

overlap in objective and subjective indicators, in contrast, provides evidence that the link 

between WMC and sustained attention is rather strong, and perhaps even stronger than 

associations with either indicator on their own. 

This was also the case for processing speed, with much stronger correlations with the 

objective than subjective measures. The correlation with the common factor, however, was 

strong (r = −.59), and stronger than with either method-specific correlation. Thus, processing 

speed may be more tied to general sustained attention ability than previous work has shown, 
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especially given the previously mixed results (Unsworth et al., 2021; Welhaf et al., 2020). At the 

same time, when sustained attention is defined as a general factor derived from both TUT rates 

and performance variability, it cannot be simply reduced to a processing speed construct. When 

sustained attention is instead only defined by RT variability measures, however, the close link 

between M RT and RT variability makes it difficult to differentiate sustained attention ability 

from processing speed. 

Sustained attention correlations with dispositional measures provided the clearest 

evidence of discriminant validity. In Study 1, conscientiousness and agreeableness both 

correlated with the subjective factor (they did not correlate with the objective factor). However, 

both variables had weak-to-null, correlations with the general factor in the hierarchical model, 

suggesting that these traits are not related to general sustained attention ability. Again, if a study 

used only TUT rates to measure sustained attention, it might erroneously infer a robust 

association. By using the individual-differences covariation in objective and subjective measures, 

however, the present evidence suggests a lack of a relationship. Further, neuroticism correlated 

modestly with the subjective factor and nonsignificantly with the objective factor, but it 

correlated with the general sustained attention factor as strongly as it had with the subjective 

factor, suggesting a relationship with general sustained ability that goes beyond potential self-

report biases. Finally, self-reported cognitive failures and positive schizotypy both correlated 

more strongly with the common factor than with either the individual objective or subjective 

factors, again suggesting associations that reflect more than shared method variance. Using the 

shared variance between objective and subjective indicators as a measure of sustained attention, 

then, correlations with some trait factors appear to be reliable. Future research should aim to 

replicate sustained attention × personality relationships and consider other dispositional factors 
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that may inform the nomological network of sustained attention measures, such as daily stress, 

rumination-proneness, trait anxiety, and ADHD-related symptoms.  

Our correlational evidence was conceptually replicated in the LPAs conducted for each 

study. Here, we found that a 3-profile model could identify specific subgroups in each dataset. 

When comparing these groups on the nomological network constructs, those with poor sustained 

attention ability also had lower cognitive and contextual scores compared to those with moderate 

and good sustained attention ability. In general, modeling sustained attention as the individual-

differences covariation between objective and subjective indicators provides us with a more 

construct valid assessment of sustained attention.  

Limitations and Constraints on Generalizability 

While the current study has several strengths—such as preregistered analyses of two 

independent, large-scale, latent-variable studies with different samples of subjects and of tasks—

there are limitations worth noting. First, as previously mentioned, a full bifactor model did not 

adequately fit the Study 1 data, and reduced bifactor models that separately modeled residual 

objective- and subjective-indicator factors yielded biased general factors. In Study 2, the full 

bifactor model converged, but did not hold up well across different outlier treatment decisions. 

Our initially preferred model, then, may not be the most appropriate assessment of general 

sustained attention ability.  

As well, the CFA models in Study 1 to assess the nomological network did not all meet 

the minimum recommendation for adequate fit, with TLI < .90. We therefore suggest some 

caution in interpreting these models as there may be some misfit. At the same time, the model 

fits were consistent with a model using FIML presented in the Appendix of Unsworth et al. 

(2021) and they were consistent across different outlier decision criteria in our mini-multiverse 
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analysis, which gives us some confidence in their robustness (they were also conceptually 

replicated in our exploratory latent profile analyses). Given these potential concerns with the 

Study 1 bifactor models, we emphasize again that our exploratory (non-preregistered) 

hierarchical model fit the data well in both studies and withstood different outlier treatments.  

However, we should note that our hierarchical models, themselves, have limitations. 

Because we were only able to use two first-order latent variables as indicators of the second-

order general factor, we had to constrain the unstandardized loadings of the objective and 

subjective first-order factors to be equal for the model to be identified (Kline, 2011). As well, the 

variances of the first-order factors were large, indicating considerable unexplained variance in 

the first-order measurement factors not accounted for by the general factor. It may therefore be 

useful to include other first-order factors in the hierarchical model to better identify the general 

factor. One possibility is to design future studies to model two correlated objective-measure 

factors (i.e., RT-based and accuracy-based factors) and two correlated subjective-measure factors 

(i.e., TUT-rate factors derived from two different probe types). Or, as we discuss below, study 

designs could include another sustained attention indicator types in the model (e.g., pupillary 

responses). Broadening the first-order factors may improve measurement of the general sustained 

attention factor. 

Because the present study reanalyzed existing data, we had no control over task selection. 

Although some of the most common tasks were used in one or both studies (e.g., the PVT, 

SART, and CRT), there are other tasks that might be more suitable for measuring sustained 

attention in future latent-variable studies, because they more purely tap into sustained attention 

processes than those that might be heavily influenced by additional cognitive processes (e.g., 

conflict tasks like the Stroop and flanker tasks). For example, the metronome response task (Seli, 
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Cheyne et al., 2013), continuous temporal expectancy task (O’Connell et al., 2009), and gradual 

onset continuous performance task (Rosenberg et al., 2013) have all been used in studies of 

sustained attention (mostly for their performance measures, but some have also included thought 

probes to measure TUTs).  

Although the present work focuses on overt behavioral measures (i.e., performance 

measures and subjective self-reports), recent research has also identified pupil diameter, and its 

fluctuations, as potential physiological indicators of sustained attention processes and abilities 

(Unsworth & Robison, 2017a, 2017b). Pupil dilations may be indirectly related to locus 

coeruleus-norepinephrine system functioning (Aston-Jones & Cohen, 2005; Rajkowski et al., 

1994; but see Megemont et al., 2022), which is linked to overall physiological arousal and 

attention. Most relevant to our current operationalization of sustained attention, fluctuations in 

pupillary responses may also (imperfectly) reflect moment-to-moment consistency of sustained 

attention (Hutchinson et al., 2020; Unsworth & Robison, 2017a). Indeed, fluctuations in pupil 

measures correlate moderately with both objective and subjective measures of sustained attention 

(Murphy et al., 2011; Unsworth et al., 2020; Unsworth & Robison, 2017b; 2017c; van den Brink 

et al., 2016). Pupillary responses may therefore serve as another indicator of sustained attention 

in bifactor or hierarchical models. Our fundamental argument is that future research should 

consider a methodological triangulation approach (Denzin, 1970) to assessing sustained 

attention. Here, the individual difference covariation between objective performance measures, 

subjective self-reports, and physiological indicators of attention consistency may be used to best 

capture the general ability to sustain attention. 

Finally, the two datasets analyzed here relied on student samples. It is possible that this 

factor structure differs, or is even inadequate, with clinical or older adult samples. Older adults 
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shower greater RT variability (consistent with theories of age-related declines in executive 

attentional control), but often show lower TUT rates, compared to younger adults (see Bunce et 

al., 2004; Hultsch et al., 2002; Jackson & Balota, 2012; Jordano & Touron, 2017). One 

possibility is that there are processes, independent of sustained attention, that selectively 

influence one of these sustained attention indicators in older adults. For example, older adults 

traditionally have slower processing speed compared to younger adults (Salthouse, 1996), and 

processing speed is strongly correlated with RT variability. This might contribute to why older 

adults show poorer sustained attention as indicated by objective measures, but it does not explain 

why older adults show reduced TUT rates. To overcome this ambiguity, it might be necessary to 

examine the covariation between objective and subjective measures to better understand how 

attention consistency changes with age. Future work should consider the implications of aging on 

the current factor structure of sustained attention.  

Conclusions 

Sustained attention is an understudied individual-differences construct, given its 

important contributions to successful performance of many laboratory tasks and everyday 

activities. The results of the current reanalyses suggest that individual differences in sustained 

attention, as measured by the shared variance across objective (performance) and subjective 

(self-report) indicators of attention consistency, can provide a more construct valid measurement 

of sustained attention than either of these methods separately. Individuals with higher WMC, 

better attention control, and faster speed of processing showed better sustained attention. Further, 

contextual factors were strong correlates of sustained attention: Subjects who reported being 

more alert and motivated also had better sustained attention in the context of challenging lab 

tasks. Finally, sustained attention failures were selectively, and more weakly, related to some 



 

  161 

dispositional factors: Subjects who reported higher levels of neuroticism, more frequent 

everyday cognitive failures, and higher positive schizotypy scores had poorer sustained attention 

in challenging lab tasks.  

In general, hierarchical models of sustained attention may be a suitable approach for 

researchers interested in estimating general sustained attention ability, given concerns about 

measurement and robustness of bifactor models. These results expand on previous literature by 

suggesting an improved way for measuring sustained attention in two ways. First, objective and 

subjective measures of sustained attention may capture different attentional states along a 

continuum of disengagement (Cheyne et al., 2009) and each measurement type has its own 

unique sources of measurement error. So, relying solely on one of these types of measurement 

approaches can lead to biased, improper conclusions about their relationship with nomological 

network constructs. Second, some constructs’ correlations might be stronger with a general 

sustained attention factor than with either objective or subjective factor alone, which suggests a 

possible underestimation of the link between sustained attention and other factors in its 

nomological network in prior research.  
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CHAPTER IV: A COMBINED EXPERIMENTAL–CORRELATIONAL APPROACH TO THE 

CONSTRUCT VALIDITY OF  PERFORMANCE-BASED AND SELF-REPORT-BASED 

MEASURES OF SUSTAINED ATTENTION 

Abstract 

The ability to sustain attention is often measured with either objective performance 

indicators, like within-person RT variability, or subjective self-reports, like mind wandering 

propensity. A more construct valid approach, however, may be to assess the covariation in these 

performance and self-report measures, given that each of these is influenced by different sources 

of measurement error. If the correlation between performance-variability and self-report 

measures reflects the sustained attention construct, then task manipulations aimed at reducing the 

sustained attention demands of tasks should reduce the correlation between them (in addition to 

reducing mean levels of variability and mind wandering). The current study investigated this 

claim with a combined experimental-correlation approach. In two experiments (Ns ~ 1500 each), 

participants completed tasks that either maximized or minimized the demand for sustained 

attention. Our demand manipulations successfully reduced the mean levels of sustained attention 

failures in both the objective and subjective measures, in both experiments. In neither 

experiment, however, did the covariation between these measures change as a function of the 

sustained attention demands of the tasks. We can therefore claim only minimal support for the 

construct validity of our measurement approach to sustained attention. 

Introduction 

Sustained attention, from an attention consistency perspective (Unsworth & Miller, 

2021), reflects “the purposeful act of maintaining optimal task focus to successfully, and 

consistently, perform goal-relevant actions” (Welhaf & Kane, 2022), and is a crucial ability for 



 

  163 

many everyday behaviors and tasks. Laboratory investigations into failures of sustained attention 

indicate that such lapses can manifest in multiple ways. The two most common methods for 

assessing them are intra-individual variability in task performance and probed self-reports of 

task-unrelated thoughts (TUTs). Each of these measures are multi-determined and are influenced 

by separate factors unrelated to sustained attention, however, and so neither alone should be 

relied on to measure sustained attention ability (Welhaf & Kane, 2022). Instead, we argue that 

the individual-differences covariation in these measures should be the most construct valid 

reflection of sustained attention (in)ability.  

The goal of the current study is to investigate and evaluate the construct validity of 

sustained attention measurement using a combined experimental–correlational approach. We aim 

to harness the strengths of both the construct representation approach (i.e., experimental) and 

nomothetic span approach (i.e., individual-differences) to construct validation (e.g., Borsboom et 

al., 2004; Cronbach & Meehl, 1955; Embretson, 1983). More specifically, we will investigate 

whether individual differences in sustained attention failures, as indicated by the covariation in 

objective (i.e., task performance) and subjective (i.e., self-reported mind wandering) measures, 

are reduced through theoretically driven experimental manipulations of sustained attention 

demands. That is, when tasks make significant sustained attention demands, objective and 

subjective attention consistency measures should be more strongly correlated because variation 

in each outcome is caused more by sustained attention processes than by other nuisance 

variables. When tasks make little demand on sustained attention, however, these correlations 

should weaken because individual variation in the measures is caused more by other (non-

sustained-attention) processes, which are unique to either RT variability or TUT rate. 
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Sustained Attention as the Covariation between Objective and Subjective Measures 

The cognitive psychology literature has primarily measured sustained attention abilities 

in one of two ways. The first has relied on (“objective”) performance measures, like 

intraindividual reaction time (RT) variability, or particular error types committed, during simple 

lab tasks. The second approach has relied on (“subjective”) probed self-reports of task-unrelated 

thought (TUT) during ongoing tasks or activities.  

Performance measures, like RT variability, capture subtle fluctuations in participants’ 

response readiness and their consequent frequency of relatively long RTs. Errors of commission 

(i.e., responding when a non-response is required) and errors of omission (i.e., not responding 

when a response is required) may also capture sustained attention failures that reflect mindless 

responding or more complete disengagement from the task. When participants maintain optimal 

sustained attention, they should exhibit greater consistency in their responding, fewer instances 

of relatively long RTs, and fewer performance errors. Likewise, reports of TUTs reflect 

sustained attention failures that participants subjectively experience and can verbalize, or at least 

can report on when asked. TUT reports are often correlated with poor task performance in the 

moment, and TUT rates are often correlated with overall task performance, suggesting that TUTs 

reflect, at least in part, momentary lapses of sustained attention. 

Nomothetic Span Evidence for Construct Validity 

Between-subject analyses from latent-variable studies have found that performance-based 

and self-report-based measures of attention consistency correlate moderately positively (r ~ .30–

.40; Kane et al., 2016; Unsworth 2015; Unsworth et al., 2021; Welhaf & Kane, 2022; Welhaf et 

al., 2020): Participants who show more variable responding also report more TUTs. Further, 

within-subject analyses indicate more variable RTs on task trials leading up to TUT reports 
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compared to on-task reports (e.g., Bastian & Sackur, 2013; Kane, Smeekens et al., 2021; Seli, 

Cheyne, et al., 2013). These findings suggest that there may be a common ability, or collection 

of cognitive processes, that contributes to each kind of measure.  

We have previously examined this individual-differences overlap between performance 

and self-report measures as a construct-valid way to assess sustained attention ability (Welhaf & 

Kane, 2022). Taking a nomothetic span (i.e., individual-differences) approach to construct 

validation (Cronbach & Meehl, 1959; Embretson, 1983), we reanalyzed two large-N data sets 

(Kane et al., 2016; Unsworth et al. 2021) that included multiple tasks from which we could 

derive performance indicators of sustained attention, and multiple tasks including thought probes 

from which we could calculate TUT rates. Each of these studies also included multiple 

nomological-network constructs, such as working memory capacity (WMC), attention control, 

processing speed, self-reported motivation and alertness, and multiple dispositional factors like 

the Big-5 personality traits and positive schizotypy.  

In each dataset, we found that latent variables of objective and subjective sustained 

attention correlated moderately (rs = .32 and .38). This shared variance in objective and 

subjective indicators could be modeled as a general sustained attention factor (with both bifactor 

and hierarchical structures). Moreover, we argued that the moderate—rather than strong—

correlation between objective and subjective factors indicates that each is significantly affected 

by distinct, non-sustained-attention processes, and so using their overlap should be especially 

important to validly capturing the sustained attention construct. 

To evaluate the construct validity of this general sustained attention factor, we compared 

its pattern of correlations with the nomological network constructs to those with the individual 

objective and subjective factors from the two-factor sustained attention model. These 
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comparisons provided evidence for both convergent and discriminant validity of the general 

factor. In terms of convergent validity, WMC, processing speed, self-reported neuroticism, 

everyday cognitive failures, and positive schizotypy experiences were all correlated with the 

general sustained attention factor. Critically, these constructs correlated as strongly, if not more 

strongly, with the general factor than they did with either the individual objective-measure or 

subjective-measure factor. As for discriminant validity, self-reported agreeableness and 

conscientiousness were both weakly and non-significantly correlated with the general factor, 

even though they were significantly correlated with the subjective-measure factor in the two-

factor model. These findings suggested that the individual-differences covariation in objective 

and subjective sustained attention measures may be the most construct-valid method to assess 

sustained attention ability.  

 Our initial evidence for the construct validity of sustained attention measures was 

correlational, as our investigation took a purely nomothetic-span (individual-differences) 

approach. The construct representation approach to construct validity, in contrast, calls for 

researchers to examine the psychological processes that cause response variation in sustained 

attention measures, often via experiment (Borsboom et al., 2004; Embretson, 1983). From this 

perspective, the measurement question becomes focused on the task parameters that might be 

manipulated to cause changes in both RT variability and TUT rates. The present study marries 

the construct-representation (experimental) and nomothetic span (correlational) approaches to 

further ask whether experimental manipulations of tasks’ sustained attention demands can also 

change the covariation in RT variability and TUT rates, and thus our measurement of general 

sustained attention ability.  
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Construct Representation Evidence for Construct Validity 

Our pursuit of construct representation evidence for the validity of attention consistency 

measures is not entirely new. Previous experimental research has examined how task 

manipulations, such as changes in task parameters (e.g., stimulus pacing), or situational contexts 

(e.g., providing performance incentives), alter RT variability or TUT rates during simple 

laboratory attention tasks.  

Manipulations of Stimulus Pacing and Expectancy 

Successfully sustaining attention requires being optimally ready to appropriately respond, 

but not all actions can be performed at predictable moments. One way to alter the task demand 

for sustained attention, then, is to manipulate stimulus expectancy via inter-stimulus intervals 

(ISIs). Faster-paced tasks (i.e., shorter ISIs) may minimize demands on sustained attention and 

improve performance because they exogenously scaffold participants' attention to the task (De 

Jong et al., 1999; Langner & Eickhoff, 2013; Shaw et al., 2012). Indeed, more fast-paced 

attention tasks, with shorter ISIs, elicit faster and less variable responding (Massar et al., 2020; 

Unsworth et al., 2018). Most studies of task pacing also show similar effects on TUT rates, with 

faster-paced tasks producing lower TUT rates compared to slower-paced tasks (Antrobus, 1968; 

Giambra, 1995; Grodsky & Giambra, 1991; Smallwood et al., 2008; Teasdale et al., 1993; 

Unsworth & Robison, 2020). Faster-paced tasks may therefore reduce sustained attention 

demands enough to change the individual-differences overlap between objective and subjective 

measures. 

Expectancies can also be manipulated by varying or fixing the interstimulus interval (ISI) 

across a task. Predictable tasks (i.e., those with a fixed ISI) make less demand on sustained 

attention because participants know when each trial will begin, or when each response should be 
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initiated. Indeed, RT variability on predictable tasks is typically reduced compared to that on 

tasks that vary the ISI from trial-to-trial (Langner & Eickhoff, 2013; Massar et al., 2020; Shaw et 

al., 2012; Unsworth et al., 2018). For example, Unsworth and Robison (2020; Exp. 2) compared 

performance on the psychomotor vigilance task (PVT) with a fixed 2 s ISI versus the standard 

PVT with ISIs that varied across trials from 1–10 s. The fixed condition produced not only faster 

RTs, but also fewer “lapses” (i.e., RTs > 500ms) and a smaller tail of the RT distribution, both of 

which may reflect momentary failures of sustained attention. 

The effects of trial expectancy on TUTs are less clear than those on performance 

indicators. Massar et al. (2020, Exp. 2) varied whether participants received a mostly short-ISI 

PVT, or a mostly long-ISI PVT, both of which presented thought probes. Participants, here, had 

some expectancy of the trial onset, but with some uncertainty. TUT rates were similar across 

conditions, whereas performance measures of sustained attention differed as expected. A similar 

pattern of null TUT-report results was reported by Hawkins et al. (2019; Experiment 2), who 

fixed or randomly varied the ISI during a sustained attention to response task (SART; a go/no-go 

task) that also presented periodic thought probes. Mean TUT ratings were nearly identical (Mfixed 

= 2.70 vs. Mrandom = 2.58 on a 1 – 5 scale). Thus, whereas stimulus pacing appears to reliably 

affect both objective and subjective sustained attention indicators, trial expectancy might only 

impact objective measures. To better understand how these task parameters relate to the 

sustained attention construct, rather than to the process-impure measures of either RT variability 

or TUT reports, it is necessary to investigate how they influence the covariation between 

measures of RT variability and TUT rates. 
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Manipulations of Trial Type Frequency 

Go/no-go tasks that use high go-trial frequency, like the SART and gradual-onset 

continuous performance task (gradCPT; Rosenberg et al., 2013), require sustained attention for 

consistent and accurate responding on repetitive go trials (in addition to appropriately 

withholding responses to no-go trials). Failing to sustain attention will result in habitual and 

sometimes mindless (and thus inconsistent) responding to go trials. Changing the frequency of 

specific trial types can thus reduce the demand on sustained attention by minimizing the time 

participants engage in repetitive responding. For example, in go/no-go tasks that had go-trial 

frequencies ranging from 20–80%, go-trial mean RTs were longer, and no-go accuracy was 

higher, as go-trial frequency decreased (Bedi et al., 2022; Jones et al., 2002; Nieuwenhuis et al., 

2003; Young et al., 2018; but see Wessel, 2016). Objective indicators of attention consistency 

improved, then, as participants were given less opportunity to engage in long periods of mindless 

responding.  

However, in versions of go/no-go tasks that alter trial-type frequency, performance 

changes might not always be due to changes in sustained attention demands, but rather to 

changes in response strategy (e.g., speed-accuracy trade-off; Dang et al., 2018; Head & Helton, 

2014; Helton, 2009; Helton et al., 2010; Mensen et al., 2022; or response biases, Bedi et al., 

2022). Wilson et al. (2016) replicated prior findings that, as no-go-trial frequency decreased, 

commission errors on no-go trials increased. They argued, however, that if this trend were due to 

failures of sustained attention, it should be reflected also in increased TUT reports (which was 

assessed in a post-task questionnaire). In fact, TUT frequency ratings decreased rather than 

increased as no-go frequency decreased. Wilson et al. (2016) therefore argued that these 

manipulations of SART performance reflected speed-accuracy trade-offs rather than sustained 
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attention changes (Peebles & Bothell, 2004; Wilson et al., 2015). Future work on this question 

should use thought probes to measure TUTs in the moment, rather than relying on potentially 

problematic retrospective reports of mind wandering (Kane, Smeekens et al. 2021).  

Only a few other studies have investigated the effect of trial-type manipulations on TUT 

rates. In a vigilance task that altered response frequency (10% or 30% of trials required 

responses), participants reported fewer TUTs in the 30% condition (i.e., in the condition that had 

more “no-go” trials; Giambra, 1995), in line with the hypothesis that requiring participants to 

engage in moderately frequent responding keeps them engaged in the task and gives them less 

opportunity to mind-wander. Similarly, in a go/no-go task that manipulated the presentation of 

no-go frequency to 20% or 40%, participants exhibited fewer TUTs in the 40% no-go condition 

(Smallwood et al., 2007). Manipulations of trial-type frequency appear to provide generally 

positive evidence for the construct validity of sustained attention measures, although they may 

also affect non-sustained-attention processes and we have concerns about the retrospective 

ratings of Wilson et al. (2016) that may muddy the overall conclusion.  

Manipulations of Motivational State 

Motivation manipulations should change how individuals use or engage their sustained 

attention abilities during a task. Participants’ ability (and willingness) to sustain attention should 

improve, at least momentarily, by experimentally increasing their motivation levels or engaging 

their interest. In fact, manipulations of motivational state significantly improve objective 

performance measures of attention consistency (e.g., Chiew & Braver, 2013; Esterman et al., 

2014; Locke & Braver, 2008; Tomporowski & Tinsley, 1996). Seli et al. (2019), for example, 

had participants complete a metronome response task (MRT). During the MRT, participants try 

to press a key in sync with the presentation of an auditory or visual stimulus over an extended 
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period. Sustained attention is required for participants to maintain maximally consistent 

responding over the course of many minutes. Seli et al. (2019) found that motivating 

participants, by telling them they could leave the experimental session early for good 

performance, resulted in less variable and more accurate MRT performance compared to a 

control condition.  

Robison et al. (2021) manipulated a variety of motivation-related variables (providing 

specific goals or feedback, or telling participants they could leave early) while participants 

completed the psychomotor vigilance task (PVT), which requires participants to press a key to 

stop a counter, much like a stopwatch. The PVT taxes sustained attention by presenting a 

variable—and often long—waiting period for the onset of the counter. If attention momentarily 

wanes during the waiting period, participants will miss the start of the counter and produce a 

longer-than-normal RT. Robison et al. (2021; see also Unsworth et al., 2022) found that many of 

the motivation conditions significantly improved the behavioral indicators of attention 

consistency (e.g., reducing RT for the slowest 20% of trials) versus control conditions.  

TUT rates also change with experimental manipulations of motivation. Specifically, 

compared to control conditions, monetary rewards or time-based incentives elicit lower TUT 

rates in a variety of tasks, including in the Seli et al. (2019) and Robison et al. (2021) studies 

described above (see also Antrobus et al., 1966; Smallwood et al., 2007; Unsworth et al., 2022). 

Collectively, then, inducing motivation or providing incentives are promising manipulations of 

both objective and subjective attention consistency measures. 

Evidence Summary 

Many of the reviewed experimental studies demonstrate that manipulating the demands 

on sustained attention produces predicted changes in both objective and subjective indicators of 
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attention consistency. Specifically, manipulations of stimulus pacing and participants’ 

motivational state provide strong evidence that changes in the need for sustained attention can 

alter RT variability and TUT rates. Manipulations of trial-type frequency provide more mixed 

evidence. We note, however, that many of the reviewed studies focused mainly on one aspect of 

measuring sustained attention, either with objective (performance variability) or subjective (TUT 

self-report) indicators. A possible—and potentially promising—way forward is to assess how 

experimental manipulations impact the individual-differences covariation in subjective and 

objective measures of sustained attention. 

Goals and Hypotheses 

The present studies used a combined experimental–correlational approach to examine 

whether manipulations of theoretically relevant task parameters would reduce the association 

between objective and subjective measures of attention consistency. Whereas the prior literature 

has relied on changes in either objective or subjective measures as indication of construct 

validity, we further asked whether experimental manipulations also alter the covariation of these 

measures, which is arguably a more construct valid way to measure sustained attention ability 

than is either measurement approach alone (Welhaf & Kane, 2022). This combined approach 

draws on the strengths of both the nomothetic span (i.e., individual-differences) and construct 

representation (i.e., experimental) approaches to construct validation. 

Our primary, preregistered hypotheses were as follows: (a) For both Studies 1 and 2, if 

minimizing sustained-attention demands reduces the individual-differences overlap between 

objective and subjective attention consistency indicators—because variation in each is now more 

influenced by extraneous processes and abilities—then it should weaken the correlations 

between objective (RT variability) and subjective (TUT rate) indicators, compared to 
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maximizing sustained-attention demands; (b) For Study 1 only, minimizing the need for 

sustained attention should also weaken the association between RT variability measures across 

tasks. That is, the between-task correlation between RT variability measures should be 

significantly stronger between two maximized-demand conditions than between a maximized- 

and minimized-sustained attention conditions. If sustained attention demands are effectively 

reduced, then any remaining correlation between RT variability measures must reflect individual 

differences in non-sustained-attention processes that also contribute to RT variability, like speed 

of processing or response strategies (e.g., speed-accuracy trade-offs); (c) For Study 1 only, 

minimizing the need for sustained attention should also weaken the between-task correlation 

between TUT rates. That is, the correlation between probed TUT rates should be significantly 

stronger between the two maximized-demand conditions than between a maximized- and 

minimized-sustained attention conditions. If sustained attention demands are effectively reduced, 

any remaining correlation between TUT rates must reflect individual differences in non-

sustained attention processes that also contribute to TUT reports (i.e., reporting biases or demand 

characteristics). 

Study 1 

Study 1 examined whether experimentally reducing the sustained attention demands in 

three prototypical sustained attention tasks also reduces the correlations between objective (i.e., 

RT variability) and subjective (i.e., TUT rates) measures from these tasks versus their standard 

versions that maximize demand (“Standard” and “Maximized-SA” tasks). Reducing sustained 

attention demands should similarly affect the correlations among the performance measures from 

the tasks and among the TUT rates from the tasks. That is, minimizing the need for sustained 

attention in those tasks (“Minimized-SA” tasks) should reduce the proportion of individual-
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differences variance attributed to sustained attention ability—thus weakening any correlations 

driven by sustained attention processes and abilities—and increase the contributions of non-

sustained-attention-related processes to the variance. 

To test this hypothesis, we had each subject complete three different prototypical 

sustained attention tasks (for more details see the Tasks section below) that varied in sustained 

attention demand. As the COVID-19 pandemic forced data collection to occur online, we 

prioritized using within-subject manipulations so that any between-subject variation in 

environmental events or other contextual effects would not contribute to the comparisons of 

interest. Further, using multiple tasks (rather than one repeated task, e.g., three versions of the 

PVT) allowed for greater generalizability of our conclusions; it also minimized concerns about 

vigilance decrements across successive versions of the same task or any development of 

strategies that might occur due to extended practice of the same task. 

Methods 

We report our sample size justification and data exclusion criteria, as well as all measures 

and manipulations included in the study (Simmons et al., 2012).  

Participants 

As stated in our preregistration, we aimed to collect data from 1500 participants via the 

recruitment site Prolific Academic (https://www.prolific.co). We based this sample size on 

several calculations. First, we conducted a power analysis in G*power for differences between 

dependent correlations with a common index. For a one-tailed test, alpha of .05, and the 

correlations of interest being .30 (Maximized-SA × Standard) versus .20 (Minimized-SA × 

Standard), with the remaining correlation (Maximized-SA × Minimized-SA) of .20, we would 

have just under 95% power to detect the difference between correlations with N = 1500. Second, 
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to achieve a 95% CI around a r = .30 correlation with a lower bound above .25 (for Maximized-

SA × Standard), and around a r = .20 correlation with an upper bound below .25 (for Minimized-

SA × Standard), requires 1420 participants. Finally, with a sample of 1500, we would be able to 

interpret correlations of .30 (Maximized-SA × Standard) and .25 (Minimized-SA × Standard) as 

statistically equivalent via a Two One-Sided Tests equivalence test for dependent overlapping 

correlations (per formulas in Counsell & Cribble, 2014).  

Some participants (age restriction 18–40 years) were recruited via Prolific Academic; 

eligibility required living in the U.S., U.K., Ireland, Canada, New Zealand, or Australia, 

reporting English as a first language, earning at least a high school degree or its equivalent, and 

having a ≥ 95% study approval rating. Participants were paid $7.13 for the 45-min study.  

Other participants were recruited from UNCG (age restriction 18–35 years), via the 

introductory psychology research pool. Participants had to indicate English was their first 

language. They were awarded partial credit towards an introductory psychology research-

participation requirement. 

Apparatus and Materials 

All tasks and questionnaires were programmed in Gorilla (https://gorilla.sc). The 

experiment can be accessed via Gorilla’s Open Materials 

(https://app.gorilla.sc/openmaterials/388985). Participants were required to complete the study 

on a laptop or desktop computer to ensure accurate recording of response times (Anwyl-Irvine et 

al., 2019, 2020).   

Tasks 
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Below we describe the two groups of tasks used in the current study (See Table 17 for 

task order in each counterbalancing condition; for details, see Procedure), which varied in 

sustained-attention demand.  

  



 

  

Table 17. Task order by counterbalancing condition for Studies 1 and 2. 

Study 1      
Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Condition 6 

PVTmin SARTmin vMRTmin vMRTmax PVTmax SARTmax 
SARTstand vMRTstand PVTstand SARTstand vMRTstand PVTstand 
vMRTmax PVTmax SARTmax PVTmin SARTmin vMRTmin 
Study 2      

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Condition 6 
PVTmin SARTmin vMRTmin vMRTmax PVTmax SARTmax 

vMRTmax PVTmax SARTmax PVTmin SARTmin vMRTmin 
Note. For Study 1, the top row indicates participants’ first task, the second row their second task, and the bottom row their third task. 
For Study 2, the top row indicates the participants’ first task, and the bottom row is their second task min = minimized task; stand = 
standard task; max = maximized task; PVT = Psychomotor Vigilance Task; SART = Sustained Attention to Response Task; vMRT = 
visual Metronome Response Task. In Study 1, italicized tasks were followed by DSSQ items.  
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Standard/Maximized Sustained Attention Tasks. The standard and maximized 

versions were identical to each other. They were designed to induce significant sustained 

attention demands by requiring participants to maintain focus over extended, and sometimes 

unpredictable, periods of time to the presentation of repetitive stimuli that, in some cases, 

promoted habitual responding. Failure to sustain attention in these task versions would result in 

more erroneous and more variable performance. Although our standard and maximized tasks 

were formally the same, for purposes of all analyses we defined the standard task as the second 

task in the sequence, and the maximized task as either the first or third task in the sequence, 

depending on the order condition (where the maximized task is presented first, the minimized 

task is presented last, and vice versa). 

Sustained Attention to Response Task (SART). In this go/no-go task, participants were 

instructed to press the space bar for words from a target category (animals; 90% of total trials) 

while withholding responses to another (crops, i.e., fruits/vegetables; 10% of total trials). 

Participants first completed 10 practice trials by responding to boy’s names and withholding 

responses to girls’ names. The real task began with 16 unanalyzed buffer trials. Each stimulus 

word was presented for 272 ms, followed by a mask (XXXXXXXXXX) which was presented 

for 1224 ms. Participants were instructed to press the spacebar during either the word or the 

mask.  

After being presented with task instructions, participants answered a quiz question about 

the SART: “When performing this task, which words should you NOT press any key for?” with 

the following response options, 1) animal names, 2) girl names, 3) crop names, 4) boy names. 

Participants pressed the number key corresponding to the correct answer (Option 3). If 

participants answered the questions incorrectly, they were reminded of the task instructions and 
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then were able to answer the question again to continue. Participants completed this instruction 

quiz for whichever version of the SART they completed (SA-Maximized, Standard, or SA-

Minimized). 

Participants completed 480 trials divided into four seamless blocks of 120. In each block, 

stimuli were comprised of 36 animal names (i.e., “go” trials) and 4 fruit/vegetable names (i.e., 

“no-go” trials). Each stimulus was pseudorandomly presented 3 times, thus each block contained 

a total of 108 “go” animal stimuli and 12 “no-go” crop stimuli. Each block contained a new set 

of stimulus words. Each block of 120 response trials and 6 probe trials was randomized and 

presented to all participants in the same order. The dependent measure for the SART was the 

within-subject standard deviation (SD) of RTs to correct “go” (animal) trials.   

Psychomotor Vigilance Task (PVT). On each trial of this task, participants saw a set of 

zeros (oo.ooo) in the center of a white screen. Unpredictably (at SOAs from 1000–10000 ms, in 

1000-ms increments), the zeros began counting upward in milliseconds. Participants were 

required to press the spacebar as soon as they noticed the numbers were counting upward to stop 

them. The numbers then stopped and were displayed for RT feedback.  

Participants completed 5 practice trials; the real task began with 6 unanalyzed buffer 

trials (SOAs = 1000, 2000, 5000, 6000, 9000, 10000 ms). Participants completed two seamless 

blocks of 45 trials for a total of 90 trials (9 at each SOA). Eighty of these trials were performance 

trials in which to zeros began counting-up after the SOA. The other 10 “yoked” trials served as 

thought probe trials, where the probe appeared at the completion of the SOA, rather than the 

digits counting up (see Thought Probes section below). Each block of 40 response trials and 5 

probe trials was separately randomized and presented to all participants in the same order (the 
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only randomization constraint was that probe trials could not appear within 3 trials of another 

probe). SOAs were allowed to repeat on consecutive trials.  

If participants pressed the spacebar before the numbers started counting upward, they 

were presented with an error message (“Do not press the spacebar before the numbers start!”). 

These anticipation error trials were repeated at the end of the last block of the task. The primary 

DV for all PVTs was the mean RT of the slowest 20% of trials.13  

Visual Metronome Response Task (vMRT). In this task, participants were presented with 

the regular onset and offset of a black square in the center of a white screen. The goal for this 

task was to respond in synchrony with the onset of the black square by pressing the spacebar. 

Each trial began with a blank screen presented for 650 ms, followed by the black square 

presented for 150 ms, then another blank screen presented for 500 ms (Laflamme et al., 2018). 

Thus, from the subject’s perspective, a single trial lasted 1300 ms (with 1150 ms intervals 

between squares).  

Participants first completed a practice block of 20 trials. For the real trials, participants 

first completed 6 unanalyzed buffer trials followed by 420 trials divided into 12 seamless blocks. 

Each block of 35 response trials and one probe trial was individually randomized and presented 

to all participants in the same order. Probe trials appeared immediately following the 500 ms 

 

13 We preregistered also calculating a second commonly used DV in the PVT, the number 
of lapses (i.e., RTs > 500ms; Lim & Dinges, 2008) and using the variable with the better 
measurement characteristics. Both DVs showed similar split-half reliabilities (Slowest 20% 
Cronbach α = .98; Lapses Cronbach α = .96). Note this split-half method reflects a deviation 
from the preregistered reliability assessment, but it is consistent with how we and others have 
investigated reliability in the PVT (e.g., Unsworth et al., 2021; Welhaf & Kane, 2022). We 
therefore focus our primary analyses with the mean RT of Slowest 20% of trials as the primary 
DV (as we have done in previous research with the PVT; Welhaf & Kane, 2022). We report 
parallel results with lapses as the DV in Supplemental Tables S19 and S20. 
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blank screen of the previous trial. The dependent measure for this task is variability in the 

rhythmic response time (RRT). RRTs are calculated as the difference between response and 

stimulus onset (Laflamme et al., 2018; Seli, Cheyne, et al., 2013) and can be positive 

(responding after the stimulus appears) or negative (responding before the stimulus appears); 

consistent with prior studies, we calculated overall mean RRT variability using a moving 

window of the current and previous four trials across all trials of the task and then took the log of 

that value (see also Seli, Jonker et al., 2015).  

Minimized (“min”) Sustained Attention Tasks. In the demand-minimized versions of 

the tasks, we aimed to decrease sustained attention demands by including task breaks occupied 

by a separate task and altering stimulus presentation rates or target frequency (or both).  

Continuous Temporal Expectancy Task (CTET; O’Connell et al., 2009). The CTET 

was used as a brief break activity between trial blocks in the minimized sustained attention tasks, 

to reduce the vigilance demands of those tasks. Participants viewed a stream of abstract, 

geometric images. Most stimuli (non-targets) appeared onscreen for a brief duration (600 ms); 

occasionally, target stimuli were presented for a longer duration (1200 ms). Participants reported 

these infrequent targets by pressing the spacebar.  

Participants first saw a brief example of what the short- and long-duration images looked 

like and then completed 20 practice trials (5 of each image, with each image once as a target). 

Participants completed one block (60 trials; 6 targets) of the CTET at the following times in the 

minimized tasks: PVT—after the first 30 and 60 trials (2 blocks of CTET); vMRT—after every 

144 trials, aside from the last (2 blocks of CTET); SART—after every 120 trials, aside from the 

last (3 blocks of CTET). Stimuli were randomized and presented to all participants in the same 

order, with the only constraints being the same image could not repeat immediately and targets 
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had to occur at least 4 trials apart. Each image appeared as a target three times across all CTET 

blocks in the PVTmin and vMRTmin tasks and three or four times in the SARTmin. 

SARTmin. Participants responded to animal names while withholding responses to crop 

(fruit and vegetable) names. The ratio of go to no-go trials was shifted to 65/35% (from 90/10%), 

thus increasing no-go target probability to support participants’ focus on the task (e.g., 

Smallwood et al., 2007; Wilson et al., 2016). Participants completed 4 blocks of 120 trials, with 

26 unique animals and 14 unique crops per block. Within each block, each stimulus appeared 3 

times. Each block of 120 response trials (including 6 probed trials) was separately randomized 

and presented to all participants in the same order. 

As a second method to reduce active sustained-attention demands, we also increased 

stimulus presentation rate. Each stimulus word was again presented for 272 ms but the mask was 

reduced from 1224 to 935 ms.  

Participants completed 10 practice trials responding to boy’s names and withholding 

responses to girls’ names. The real trials began with 10 unanalyzed buffer “go” trials. To account 

for potential post-restart RT costs after each CTET block (e.g., Gopher et al., 2000), we included 

2 unanalyzed buffer “go” trials at the start of every post-CTET block (6 total). 

PVTmin. The critical manipulation to reduce sustained-attention demands (in addition to 

interpolating blocks with CTET) was reducing the SOAs and their range; the distribution of 

SOAs was shifted to 2100–3000 ms (in 100-ms intervals; vs. 1000–10000 ms in 

maximized/standard tasks). As in the maximized and standard tasks, participants completed 90 

trials (9 at each SOA); 80 were performance trials and 10 were probe trials; SOAs could repeat 

on consecutive trials. Each block of 40 response trials and 5 probe trials was individually 

randomized and presented to all participants in the same order.  
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If participants pressed the spacebar before the numbers started counting upward, they 

were presented with an error message (“Do not press the spacebar before the numbers start!”). 

These anticipation error trials were repeated at the end of the last block of the task. 

To match the standard PVT and account for restart RT costs after the CTET breaks, we 

included six unanalyzed buffer trials, two at the beginning of the task, and two following each 

CTET break. 

vMRTmin. The critical manipulation to reduce sustained attention demands (in addition to 

interpolating blocks with the CTET) was speeding the target presentation rate. Each trial in this 

minimized version was reduced from 1300 ms to 800 ms. Each trial began with a 400 ms blank 

screen, followed by 150 ms presentation of the black square, and ending with another 250 ms 

blank screen. Participants again completed 420 trials across 12 blocks. Each block of 35 response 

trials and one probe trial was separately randomized and presented to all participants in the same 

order. To match the standard vMRT and account for restart RT costs after the CTET breaks, we 

included six unanalyzed buffer trials, two at the beginning of the task, and two following each 

break; CTET blocks followed every 144 critical vMRT trials (every 4 blocks). The dependent 

measure for this task is the RRT variance, calculated in the same way as in the 

standard/maximized version of the task.   

Thought Probes 

In each task, participants occasionally reported on their immediately preceding thoughts 

by responding to unpredictably presented probes. Before beginning the tasks, participants read 

the following instructions about responding to each probe:  

During this study’s tasks, we will occasionally ask what you were just 

thinking about. It’s normal to sometimes lose focus during computer tasks. 
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We want to know what you think about. The task will sometimes stop to 

ask what you were just thinking about, in the instant before we asked. You 

will see a thought-choice menu. Please take stock of what your thoughts 

just were and choose the closest description.  

Participants then saw the thought-choice menu, which asked, “What were you just 

thinking about?” and had participants “Please press a number on the keyboard” that 

represented their thoughts. Instructions then provided descriptions of the 6 probe 

response options: 1. the task / task performance, thinking about the computer task, or 

about how well (or poorly) you are doing on it; 2. everyday things / personal worries, 

thoughts were about normal, routine things you did recently or that you'll be doing later, 

or about big or small life concerns or worries; 3. current state of being, thinking about 

your state of mind or feelings, such as thinking about being sleepy, cheerful, hungry, 

curious, or bored; 4. daydreams / fantasies, fantasies or thoughts disconnected from 

reality, like thoughts about flying, or being at the beach; 5. external environment, 

thinking about something in your environment, other than this task, like sights or sounds 

in the room; 6. Other, only if thoughts don’t fit the other options. During the tasks, 

thought-probe screens only included the above italicized labels. The TUT dependent 

measure was the proportion of probe responses 2 to 6. 

SART-TUT. Probes followed six no-go trials in each block, for 24 probes total.  

PVT-TUT. Probes appeared once after each SOA delay, for 10 probes total. In the 

maximized and standard tasks, the first block presented probes after SOAs of 2000, 4000, 6000, 

8000, and 10000 ms, whereas the second block presented probes after SOAs of 1000, 3000, 

5000, 7000, and 9000 ms. In the minimized task, the first block presented probes after SOAs of 
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2200, 2400, 2600, 2800, and 30000 ms, whereas the second block presented probes after SOAs 

of 2100, 2300, 2500, 2700, and 2900 ms. 

vMRT-TUT. Within each block, participants were presented with one thought probe, for 

a total of 12 probes.  

Questionnaires 

Task Motivation (Dundee State Stress Questionnaire; DSSQ). Following completion 

of the maximized and standard sustained attention tasks, participants completed a shortened, 7-

item version of the DSSQ–Motivation subscale (Matthews et al., 2002). Examples of items 

included, “I was eager to do well,” “I didn’t really care about my performance,” and “I would 

have rather spent my time doing something else other than this task.” All items were presented 

on the screen at the same time and each item was rated on a Likert scale with the following 

options: 1) Not at all, 2) A little bit, 3) Somewhat, 4) Very much, 5) Extremely. Note that only the 

italicized response options appeared on-screen during the DSSQ, numeric values were used for 

analyses. Participants responded via mouse-click to each item. Each presentation of the DSSQ 

contained the same motivation items. The score on the DSSQ was the sum of the item ratings, 

after appropriate reverse-scoring. 

Within each of the two DSSQ presentations, we added a negatively worded version of 

one item (“I would have rather spent my time doing something else other than this task,” was 

reworded to, “I would have rather spent my time doing this task than almost any other task.”) 

One of these two contradictory items was presented at the beginning (i.e., item 1) and one at the 

end (i.e., item 7) of the DSSQ. These items were used both as scored DSSQ items and as an 

attention check to assess consistency in responding to the questionnaire items.   
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Post-Study Questionnaires. Following completion of all tasks, participants answered 

several questions about their experiences during the study. As an open-ended “bot” check item, 

we asked participants to describe which task in the study they found the most challenging. Next, 

participants answered Likert-scale questions about how noisy their immediate environment was 

while completing the study (i.e., How noisy (people, music, TV) was your immediate 

environment while completing this study? Not at all noisy, Slightly noisy, Moderately noisy, 

Extremely noisy) and how distracted they were by their immediate environment (i.e., How 

distracted were you by things in your immediate environment while completing the study? Not at 

all distracted, slightly distracted, moderately distracted, extremely distracted). We also asked 

participants about their media multitasking frequencies during the study (i.e., During this study, 

how often did you interact with: phone (calls or texts); email or social media; video games); 

each of the three multitasking questions was rated on the same scale: Never, Some of the time, 

Most of the time, All of the time. Finally, participants reported on their sleepiness at the 

beginning of the study (i.e., How sleepy were you at the beginning of this study? Not at all 

sleepy, Slightly sleepy, Moderately sleepy, Extremely sleepy). 

Procedures 

To best sample from the different geographic locations we selected, time slots on Prolific 

were posted at different times throughout the day. Specifically, we typically posted slots ranging 

from 7:00 am (EST) to 9:00 pm (EST), with the hope that earlier time slots would capture 

European participants and later timeslots would capture participants from Australia/New 

Zealand. Upon accepting the study on Prolific, subjects were directed to Gorilla to complete the 

experiment. 
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Participants first provided informed consent and then answered two unrelated “botcha” 

questions to flag potential bots. If participants failed both questions they were directed out of the 

study (this did not occur for any participants). Participants then completed a demographics 

questionnaire, then they read the initial study and thought-probe instructions. At the end of the 

initial study instructions and learning about the thought probe details, participants were asked a 

single comprehension question regarding the thought-probe screens to ensure they were paying 

attention to the instruction. Specifically, the question asked, “When responding to questions 

about your thoughts, what time frame should you report your thoughts from? ” with the 

following response options: 1) Since the very beginning of the task, 2) The moment right before 

the thought menu appeared, 3) Over the last 30-60 seconds , 4) Since the last time a thought-

menu appeared. Participants pressed the key corresponding to the correct answer (Option 2). If 

participants failed this question, they were shown a separate screen that told them they were 

wrong and were reminded to reminded of the appropriate time frame. After reviewing this 

information, participants were given another chance to answer. 

Following these initial instructions, participants were randomly assigned to one of six 

experimental (counterbalancing) conditions (Table 17). Participants were assigned sequentially 

to each condition until each condition had a participant and then the assignment started over 

again (i.e., the first participant was assigned to Condition 1, the second to Condition 2… the 

seventh participant was then assigned to Condition 1, etc). In each condition, participants 

completed one “maximized,” one “standard,” and one “minimized” sustained attention task; for 

each participant, one of these tasks was the SART, one was the PVT, and one was the vMRT. As 

noted above, the maximized and standard versions of all tasks were identical, but the task we 

identified as “standard” was always presented as the second of the three tasks; the maximized 
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and minimized appeared as the first or third tasks, across counterbalancing orders (for 3 orders, 

the maximized appeared first, and for 3 orders, the maximized appeared last).  

As noted in the description of the DSSQ above, participants completed motivation items 

following completion of each of the two standard/maximized tasks regardless of condition. 

Finally, participants completed the post-experiment questionnaire.  

Preregistered Data Analysis Exclusions 

We report the number of participants with data exclusions in the Results section. 

Participants were dropped case-wise from all analyses if they either: (a) responded “extremely” 

to two of the three post-experiment questions regarding their subjective state or immediate 

environment (i.e., noisy, distracted, and/or sleepy); or (b) responded to any of the media-

multitasking questions with “Most of the time” or “All of the time”.  

We dropped DSSQ questionnaire data (but not performance or TUT data) if participants 

failed to respond appropriately to the consistency items (“I would have rather spent my time 

doing something else other than this task;” “I would have rather spent my time doing this task 

than almost any other task”). Both items were reported on the same scale (e.g., not at all, a little 

bit, somewhat, very much, extremely). After reverse-scoring the negatively worded item, we 

dropped DSSQ data for participants who did not respond within one response option on both 

items.  

Preregistered RT Cleaning Procedures 

Before scoring the main DV in each sustained attention task, we removed trials following 

thought probes. Additionally, in both versions of the SART, we removed post-error trials and 

trials that were faster than 200 ms (which reflect anticipatory responses). In the vMRTs, we 

removed trials following omissions. Also consistent with prior work using an auditory version of 
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the MRT, we removed all data for participants who had >15% omission errors (Seli, Cheyne et 

al., 2013). For the PVTs, we removed trials that were faster than 200 ms.  

Following these exclusions, we calculated, for each subject for each task, their Median 

RT and a cutoff value equivalent to 3*IQR (for the MRT, this cutoff was created before 

calculation of the RRT at the individual trial-level). Values exceeding this threshold were 

replaced with values equivalent to the threshold, as they represented excessively slow responses 

that were likely not caused by failures of sustained attention (e.g., sneezing, blinking, stretching). 

Upon calculating the main DV for each task, participants whose value was outside 3*IQR 

of the sample were censored to a value equal to the 3*IQR value. 

Non-Preregistered Thought-Probe Exclusions 

Although we did not preregister data exclusions based on thought-probe RTs, upon 

preliminary data screening, we found that some participants spent a surprisingly long time on 

thought probes (much longer than laboratory participants do, in our extensive experience). We 

were concerned that these participants were likely not continuously participating in the task; 

instead, they were likely using the probes as opportunities to take breaks. In these instances, 

participants’ sustained attention performance and abilities were likely not adequately measured 

in one sitting; they may have forgotten task instructions or may have only restarted tasks when 

they were feeling refreshed. We therefore deviated from the preregistered data exclusion plan by 

screening for probe RT before calculating any performance measures.  

The probe RT screening procedures were as follows: (1) remove all data from any subject 

who had a probe RT (in any task) longer than 5 min; (2) for remaining participants, calculate the 

number of probes (in each task) with RTs > 15 s and set those probe responses as missing data; 

(3) for each subject and each task, calculate the number of remaining valid probes; (4) remove 
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participants’ data case-wise if they did not have at least 6 valid probes in each task. The criterion 

of 6 probes per task was decided based on a reanalysis of prior lab-based studies where we 

examined how many probes were needed to reliably estimate individual differences in TUT rate 

across multiple probed tasks (Welhaf et al., 2022); those analyses suggested that in a large-scale 

study with multiple probed tasks, reliabilities, factor loadings and correlations with common 

individual difference predictors like working memory capacity stabilized when estimating a TUT 

latent variable with just 6–8 probes.  

Results 

Below we report the results of our preregistered analyses and note where we deviated 

from the preregistered plan. All data aggregation and analyses were performed in R (R core 

team, 2020) using tidyverse (Wickham, 2019). ANOVAs were performed using the afex package 

(Singmann et al., 2020). Data visualizations were created using ggplot2 (Wickham, 2016). Meta-

analyses were conducted using the meta package (Balduzzi, Rücker & Scwarzer, 2019). Data and 

Rmarkdown files for all analyses are available on the Open Science Framework 

(https://osf.io/rm735/). 

Exclusions Based on Preregistered Criteria and Thought Probe RTs 

As detailed in the preregistration, we dropped data casewise from 23 participants for 

failing to provide a reasonable open-ended response to the post-study question about the most 

challenging task (e.g., “nothing,” “idk,” “3”). We dropped all data from an additional 24 

participants for not passing the media-multitasking or subjective-state checks at the end of the 

study. Finally, we dropped all data from 35 participants for having > 15% omission errors in the 

vMRT. Although not preregistered for Study 1 (preregistered only for the subsequent Study 2), 

we dropped data from an additional 44 participants for having SART “go” trial accuracy below 
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70% (as in Welhaf & Kane, 2022), as this might indicate failure to understand or comply with 

task instructions. 

Although not preregistered for Study 1, we dropped all data from 82 participants based on 

our post-hoc concerns described above regarding invalid thought probe responses, given long 

probe RTs (we were otherwise blinded to the performance and thought-report responses for these 

participants): 58 participants had at least one thought probe RT of ≥ 5 min; an additional 24 

participants did not have enough valid thought probes in each task after we screened out all 

probe responses with RTs > 15 seconds. Finally, we excluded DSSQ data (while retaining all 

performance and TUT report data) from 726 subjects for failing the consistency items. Given this 

large number of excluded participants, we will also report exploratory analyses that retain these 

participants.  

Final Sample Demographics  

After implementing the above exclusions, our final sample consisted of 1470 participants. 

Of the final sample, 53.8% self-identified as female, 44.9% self-identified as male, and 1.3% 

self-identified non-binary or gender-nonconforming. Mean age was 26.7 years (SD = 6.4; 1 not 

reporting). The self-identified racial breakdown of our final sample was 69% White/European 

descent, 10% Black/African descent, 6% Multiracial, 6% South Asian descent, 6% East Asian 

descent, 3% Hispanic or Latino/Latina, 1% Middle-Eastern, Arab, or North African, and <1% 

Native Hawaiian or Pacific Islander, or Native American or Alaskan Native. Finally, the Prolific 

participants (n = 1278) showed a range of educational attainment: 28% had a high school 

diploma or A-level certificate, 12% earned a technical or community college degree, 42% earned 

an undergraduate degree, 17% earned a graduate degree, and 2% earned a doctorate (all 192 

participants recruited from UNCG were undergraduates).  
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Experimental Effects of Sustained Attention Demand and Task Order  

Supplemental Table S18 presents the descriptive statistics (before standardization) for RT 

variability measures and TUTs for each task, in each condition. All conditions had at least 240 

participants with usable performance and TUT-rate data (Condition 1 = 249, Condition 2 = 241, 

Condition 3 = 246, Condition 4 = 246, Condition 5 = 242, Condition 6 = 246). Before assessing 

whether our manipulations of sustained attention demand altered the correlations between RT 

variability and TUTs, we first tested whether RT variability or TUT rates were impacted at an 

experimental level (these analyses were not preregistered). As the RT variability measures from 

each task were on different scales (e.g., milliseconds vs. log-transformed variance), we first z-

scored the RT measures within each task (e.g., SART RTsd was z-scored across all SART task 

versions and orders). Lower z-scores reflected better performance (i.e., less RT variability and 

lower TUT rates).  

RT Variability. The results of a 3 (Demand: Maximized vs. Standard vs. Minimized) × 2 

(Order: Maximized First vs. Minimized First) ANOVA (with Greenhouse-Geisser correction for 

within-subject comparisons) on RT variability indicated a significant effect of Demand, F(1.99, 

2927.12) = 212.31, p < .001, ηp2 = .126, but no significant effect of Order, F(1, 1468) = 0.19, p = 

.661, ηp2 < .001. However, these main effects were qualified by a significant (but small) Demand 

× Order interaction, F(1.99, 2927.12) = 14.39, p < .001, ηp2 = .010. These results are visually 

depicted in Figure 12.  
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Figure 12. Raincloud plots (Allen et al., 2021) depicting z-scored RT variability between 
Demand conditions by Order, collapsed across all sustained-attention tasks for Study 1 

 

Note. Dots represent individual subject means in each condition. The closed black dots represent 
group-level mean estimates for each demand level. Error bars are 95% confidence intervals. 

We followed up this significant interaction with separate one-way ANOVAs within each 

Order condition. Of most importance, the effect of Demand was significant in each: Maximized 

First, F(1.93, 1424.91) = 69.11, p < .001, ηp2 = .086, and Minimized First, F(1.96, 1438.05) = 

160.18, p < .001, ηp2 = .179. Pairwise contrasts further specified where performance differences 

occurred: When the maximized task appeared first, there was no difference in performance 

between the maximized (M = 0.11) and standard task (M = 0.16), t(733) = -1.200, p = .231, 

Cohen’s d [95% CI] = -.04 [-.12, .03]; however, performance was significantly worse in the 

standard than in the minimized task (M = -0.29), t(733) = 10.238, p < .001, d = .38 [.30, .45], and 

performance was significantly worse in the maximized than in the minimized task, t(733) = 

10.425, p < .001, d = .38 [.31, .46]. 

When the minimized task appeared first, performance on the maximized task (M = 0.30) 

was significantly worse than in the standard task (M = 0.13) and the minimized task (M = -0.40): 

Maximized – Standard, t(735) = 4.172, p < .001, d = .15 [.08, .23]; Maximized – Minimized, 
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t(735) = 16.354, p < .001), d = .60 [.52, .68]. The standard task also yielded significantly worse 

performance than did the minimized task, t(735) = 13.977, p < .001, d = .52 [.44, .59]. In general, 

then, our manipulation of demand significantly reduced RT variability across the demand levels, 

with maximized and standard tasks eliciting greater RT variability compared to the minimized 

task.  

TUTs. We next conducted the same non-preregistered analyses on TUT rates. A 3 

(Demand: Maximized vs. Standard vs. Minimized) × 2 (Order: Maximized First vs. Minimized 

First) ANOVA (with Greenhouse-Geisser correction for within-subject comparisons) indicated a 

significant effect of Demand, F(1.99, 2916.42) = 139.62, p < .001, ηp2 = .087, and a significant 

effect of Order, F(1.99, 2916.42) = 5.56, p = .019, ηp2 = .004. Again, these main effects were 

qualified by a significant (but small) Demand × Order interaction, F(1.99, 2916.42) = 6.17, p = 

.002, ηp2 = .004. These results are visually depicted in Figure 13.  
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Figure 13. Raincloud plots depicting differences in z-scored TUT rates between Demand 
conditions by Order, collapsed across all sustained attention tasks. 

 

Note. Dots represent individual subject means in each condition. The closed black dots 
represent group-level mean estimates for each demand level. Error bars are 95% confidence 
intervals. 

We again followed up this interaction with one-way ANOVAs in each Order condition. 

There was again a significant effect of Demand in each: Maximized First, F(1.99, 1460.46) = 

94.92, p < .001, ηp2 = .115, and Minimized First, F(1.95, 1436.85) = 48.92, p < .001, ηp2 = .062. 

Pairwise contrasts further specified where differences in TUTs occurred: When the maximized 

task appeared first, there was a significant difference in TUT rates between the maximized (M = 

0.13) and standard task (M = 0.05), t(733) = 2.390, p = .017, d = .09 [.02, .16]. However, TUT 

rates were higher in the standard than in the minimized task (M = -0.33), t(733) = 10.600, p < 

.001, d = .39 [.32, .47], as well as being higher in the maximized than in the minimized task, 

t(733) = 12.591, p < .001, d = .46 [.39, .54].  

When the minimized task appeared first, there was again no significant difference in TUT 

rates between the maximized (M = 0.14) and standard task (M = 0.15), t(735) = -0.295, p = .768, 

d = -.01 [-.08,  .06]. However, TUT rates were significantly higher in the standard than in the 

minimized tasks (M = -0.15), t(735) = 9.460, p < .001, d = .35 [.27, .42] and higher in the 
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maximized than in the minimized task, t(735) = 8.073, p < .001, d = .30 [.22, .37]. In general, 

then, our manipulation of demand reduced TUT rates, as it did RT variability. 

Does manipulating sustained attention demands alter the correlations between RT 

variability and TUT rates? 

Our next set of analyses focused on the study’s main question: If the individual-

differences covariation in RT variability and TUT rate is a construct-valid measure of sustained 

attention, then by reducing the sustained attention demands in a task (making performance more 

reliant on non-sustained attention processes), we should reduce the correlation between RT 

variability and TUT rates.  

Figure 14. Scatterplot depicting the correlation between z-scored RT variability and z-
scored TUT rates in the Maximized and Minimized Tasks for Study 1. 

 

Note. Shaded areas represent the confidence interval around the regression line for each group. 

As preregistered, we first correlated RT variability scores with TUT rates collapsed 

across all the maximized tasks and collapsed across all the minimized tasks. Figure 14 shows the 

scatter plots of these associations. First, RT variability and TUT rate were significantly, although 
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weakly, correlated in both demand levels: Maximized r(1468) = .17 [95% CI: .12, .22], p < .001, 

Minimized r(1468) = .13 [.08, .18], p < .001.  

Next, as preregistered, we compared these correlations using Steiger’s test for non-

overlapping correlations (one-tailed). The correlation in the maximized condition was not 

significantly larger than that in the minimized condition, z = 1.191, p = .117. Thus, our 

manipulations aimed at reducing the need for sustained attention in the minimized tasks did not 

significantly reduce the individual-differences overlap in the two proposed measures of attention 

consistency (despite eliciting the medium-sized experimental effects described above). 

As a second preregistered approach to investigating the covariation of objective and 

subjective sustained attention measures, we conducted an internal meta-analysis to get an 

alternative estimate of the performance–TUT rate correlation across the conditions (see Figure 

15). Consistent with the bivariate correlations collapsed across conditions (presented above), the 

meta-analytic correlations indicated no difference in the objective–subjective correlations 

between the maximized (or standard) and minimized conditions. Specifically, the correlation 

from a random effects model for the maximized condition was r = .18 [.10, .26] and for the 

minimized condition was r = .19 [.08, .29]. 
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Figure 15. Condition-specific correlations and meta-analytic estimates of the 
Performance × TUT rate correlation for each demand level for Study 1. 

 

Note. Grey squares represent the correlation estimate for each counterbalancing condition (see 
Table  for descriptions), blue diamonds represent the meta-analytic estimate for each demand 
level across the conditions and the overall meta-analytic estimate across Demand conditions. 
Error bars are the 95% CI around the correlation. 

Does manipulating sustained attention demands alter the correlations between RT 

variability measures? 

Our next set of analyses focused on whether experimental manipulations of demand 

affected the associations between RT variability measures across demand levels. In tasks that 

require sustained attention for optimal performance (i.e., the maximized and standard tasks) the 

correlation between performance measures should be stronger than when these measures are 
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taken from tasks requiring different levels of sustained attention (i.e., the standard and minimized 

tasks). As preregistered, we assessed whether the correlation between the maximized and 

standard tasks was statistically stronger than that between the standard and minimized tasks. 

Figure 5 displays the scatter plots for these comparisons of interest.  

Figure 16. Scatterplot depicting the correlation between z-scored RT variability between 
the Demand conditions  for Study 1 

 

Note. Shaded areas represent the confidence interval around the regression line for each 
correlation. 

As expected, RT variability was strongly correlated between the maximized and standard 

tasks, r(1468) = .40 [.36, .44], p < .001. RT variability also correlated moderately and 

significantly across the standard and minimized tasks, r(1468) = .28 [.23, .33], p < .001. We next 

tested whether these two correlations were statistically different from one another. They were. 

Results of a one-tailed Williams’ test of overlapping dependent correlations showed that the 

correlations between the maximized and standard conditions was significantly stronger than that 

of the standard and maximized conditions, t(1467) = 4.226, p < .001. Thus, our experimental 
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manipulation of sustained attention demand did appear to weaken the association between RT 

variability measures.14  

 As a secondary preregistered approach, we conducted an internal meta-analysis of the 

performance correlations (see Figure 17). Consistent with the bivariate correlations collapsed 

across conditions, results from a random effects model indicated that the performance overlap 

was numerically stronger between the maximized and standard conditions (r = .43 [.36, .50]) 

compared to the standard and minimized conditions (r = .35 [.30, .40]).  

 

14 As a secondary analysis we preregistered to examine these performance × performance 
correlations within each condition and conduct Williams’ t tests within each condition. The 
results of these individual tests are presented in Supplemental Table S21 for completeness, but 
they are also easily seen in the corresponding meta-analysis. 
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Figure 17. Condition-specific correlations and meta-analytic estimates of the 
Performance × Performance correlation for each demand level for Study 1 

 

Note. Grey squares represent the correlation estimate for each counterbalancing condition (see 
Table 17 for descriptions), blue diamonds represent the meta-analytic estimate for each 
demand level across the conditions and the overall meta-analytic effect across Demand 
conditions. Error bars are the 95% CI around the correlation. 

Does changing sustained attention demands alter the correlations between TUT rates? 

We repeated the same analyses reported above, but here testing whether the experimental 

manipulations of demand altered the relationship between TUT rates across the different demand 

levels (for scatterplots, see Figure 17). Again, our preregistered hypothesis was that the 

correlation between TUT rates in the maximized and standard conditions would be stronger than 

that in the standard and minimized conditions. We employed the same analytic procedure as 

described above.  
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Figure 18. Scatterplot depicting the correlation between z-scored TUT rates between the 
Demand conditions (maximized and minimized each correlated with the standard) for 
Study 1. 

 

Note. Shaded areas represent the confidence interval around the regression line for each 
correlation. 

TUT rates were strongly correlated between the maximized and standard conditions, 

r(1468) = .55 [.51, .58], p < .001, but also between the standard and minimized conditions, 

r(1468) = .55 [.51, .58], p < .001. A one-tailed Williams’ test indicated that these two 

correlations were not statistically different, t(1467) = 0.00, p = .500.15 As preregistered, we next 

conducted an equivalence test to see whether these two correlations were statistically equivalent, 

with equivalence bounds at +0.05 and −0.05 around the maximized × standard correlation 

(Counsell & Cribbie, 2015; Lakens, 2017). The results of the equivalence test were in line with 

the above findings indicating the correlations were statistically equivalent, t(2937) = 3.378, p < 

 

15 As a secondary analysis we preregistered to examine these TUT × TUT correlations 
within each individual condition and conduct Williams’ t tests within each condition. The results 
of these individual tests are presented in Supplemental Table S22 for completeness, but they are 
also easily seen in the meta-analysis. 
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.001. Thus, our experimental manipulation of sustained attention demand had no effect on the 

correlations between TUT rates. We return to this point in the discussion of Study 1. 

Figure 19. Condition-specific correlations and meta-analytic estimates of the TUT rate × 
TUT rate correlation for each demand level for Study 1. 

 

Note. Grey squares represent the correlation estimate for each counterbalancing condition (see 
Table 17 for descriptions), blue diamonds represent the meta-analytic estimate for each 
demand level across the conditions and the overall meta-analytic estimate across Demand 
conditions. Error bars are the 95% CI around the correlation. 

Again, as a second preregistered analysis, we conducted an internal meta-analysis across 

conditions (see Figure 18). Consistent with the bivariate correlations collapsed across conditions, 

results from a random effects model suggested that the TUT correlations between maximized 



 

  204 

and standard conditions, r = .57 [.50, .63], was nearly identical to that between standard and 

minimized conditions, r = .56 [.46, .64].  

Secondary Analyses of Motivation 

Previous research has found modest to strong correlations between self-reported 

motivation and both objective and subjective measures of attention consistency (e.g., Unsworth 

& Robison, 2020; Unsworth et al., 2021). In these preregistered secondary analyses, we 

examined self-reported motivation correlations with RT variability and TUT rates from the 

maximized and standard tasks (where motivation was reported). Note that we preregistered to 

assess whether changing the sustained attention demands might change correlations with 

motivation. However, we ultimately did not include the DSSQ in the design for the minimized 

tasks because the DSSQ asked about motivation in the previous “task;” we reasoned that, 

because each minimized task included the CTET as a “break” task between each minimized-task 

block, this might have confused participants as to what the target “task” was (i.e., the focal 

sustained attention task or the interpolated CTET). We therefore could only examine correlations 

between DSSQ scores and the maximized and standard task measures, deviating from our 

preregistration.  

Self-reported motivation was weakly correlated with RT variability in the maximized 

condition, r(763) = −.17 [−.23, −.10], and standard condition, r(763) = −.17 [−.24, −.10]: 

Participants who reported higher levels of motivation also showed less RT variability in both 

tasks. Self-reported motivation was more strongly correlated with TUTs in both the maximized, 

r(763) = −.40 [−.46, −.34], and standard tasks, r(763) = −.40 [−.46, −.37]: More motivated 

participants reported fewer TUTs. Although not preregistered, we tested whether the correlations 

within in each condition were significantly stronger between participants’ motivation score and 
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their performance or their TUT rates. To do so, we ran two Williams’ tests of dependent 

correlations. In the maximized condition, the motivation × TUT correlation was significantly 

stronger than the motivation × RT variability correlation, t(760) = 5.404, p < .001. This was also 

true in the standard condition, t(760) = 5.427, p < .001.  Thus, in task contexts that require 

optimal sustained attention to perform well (i.e., the maximized and standard tasks) self-reported 

motivation was related to both objective and subjective indicators of attention consistency, but 

more strongly to the latter (see also Welhaf & Kane, 2022).16  

Discussion 

Study 1 produced several key findings. On one hand, implementing theoretically driven 

experimental manipulations of task parameters to minimize sustained attention demands 

significantly reduced mean levels of both RT variability and TUT rates. These significant mean 

changes, in both types of measures that are thought to assess sustained attention ability 

(performance and self-report), provide construct-representation evidence for their construct 

validity. On the other hand, these manipulations of sustained attention demand did not 

significantly reduce the correlation between objective and subjective measures of attention 

 

16 Although we preregistered dropping participants who failed the attention check in the 
DSSQ, we did not anticipate having to drop nearly half of the sample. This may have indicated 
that subjects failed to understand the reverse-scored item which caused them to answer 
inappropriately. As a non-preregistered exploratory analysis, we reconducted the correlations 
using DSSQ data from all subjects who were included in the final dataset (N = 1443; note that 
some participants had missing data on one of the DSSQ measures and so we only looked at 
participants who had both DSSQ scores). The correlations with RT variability and TUT rates 
were nearly identical as those reported for the reduced sample. Specifically, motivation scores 
correlated weakly with RT variability in the maximized and standard conditions: Maximized 
r(1441) = −.17 [−.22, −.12], p < .001; Standard r(1441) = −.14 [−.19, −.09], p < .001. Motivation 
scores also strongly correlated with TUT rates in both conditions: Maximized r(1441) = −.38 
[−.43, −.34], p < .001; Standard r(1441) = −.38 [−.42, −.33], p < .001. As with the reduced 
sample, the correlations were stronger with TUT rate than with RT variability in both conditions: 
Maximized t(1438) = 6.640, p < .001; Standard t(1438) = 8.036, p < .001. 



 

  206 

consistency in the minimized tasks, which is at odds with our primary predictions and with our 

previous nomothetic span findings (Welhaf & Kane, 2022).  

The lack of reduction in the correlation between objective and subjective indicators of 

sustained attention, despite the significant (and medium-sized) experimental effects, presents an 

interesting puzzle. Why might mean rates of our indicators have changed but not the individual-

differences overlap between them? One possibility is that our manipulations simply weren’t 

strong enough to impact the correlation between our measures (i.e., the relative standing of 

individual participants on each measure). For example, our inclusion of periodic “breaks” in the 

minimized task with the interpolated CTET may have had a counterproductive effect and made 

the minimized tasks more similar to the maximized/standard tasks. We intended the CTET to 

break up the monotony and repetitive demands of the focal sustained attention task, with hopes 

that switching between the tasks would provide an attentional refresh when participants returned 

to the primary task. However, the CTET is, itself, a sustained attention task, having been used in 

previous studies of the vigilance decrement over long-duration vigils (Irrmischer et al., 2017; 

O’Connell et al., 2009). Thus, rather than giving participants a sufficient break in the minimized 

task, we may have simply switched where their sustained-attention processes were directed. 

Even though the minimized-task breaks forced the participants to momentarily switch goals 

(between the focal task and CTET), then, we may have kept them in a context of continuous 

attentional work. Thus, providing participants with a true break period may be necessary to 

effectively reduce sustained attention demands in prototypical sustained attention tasks. 

Alternatively, our manipulations clearly “worked” to some degree, as both RT variability 

and TUT rates dropped significantly in the demand-minimized tasks, but perhaps these 

manipulations affected all participants similarly. That is, we may have simply shifted all 
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participants’ RT variability and TUT rates down but roughly preserved their rank order. This 

might have occurred because some other, non-sustained-attention variable that is correlated with 

sustained attention ability was unaffected by the demand manipulations. For example, basic 

processing speed appears to be correlated to general sustained attention ability (Welhaf & Kane, 

2022)—that is, to the shared variance between objective and subjective measures—and so, even 

if the demand-minimized tasks reduced the contribution of sustained-attention ability to the 

individual-differences variation within each measure, the residual contribution of processing 

speed may have preserved the correlation between RT variability and TUT rate. We address 

some of these possibilities in Study 2 and return to this issue in the General Discussion. 

It is worth noting briefly that our secondary analyses using PVT lapses as the primary 

dependent measure for that task (rather than RT for the slowest 20% of trials), reported in 

Supplemental Table S19, appeared to provide more supportive evidence for construct validity. 

That is, the simple bivariate correlations between RT variability and TUT rates in the maximized 

PVT conditions were statistically larger than those in the minimized conditions. However, the 

meta-analytic approach, which included measures across all tasks, was consistent with the 

analyses reported in the main text—there was no difference in the correlations between the 

maximized and minimized conditions. As such, we focus on Slowest 20% as the primary 

measure in the PVT for Study 2, as we preregistered, and to maintain consistency with other 

studies investigating sustained attention in the PVT (e.g., Robison & Brewer, 2021; Robison et 

al., 2021; Unsworth et al., 2021; Welhaf & Kane, 2022).  

Study 2 

Our Study 1 manipulations of theoretically relevant task parameters yielded experimental 

reductions in both RT variability and TUTs, but there was no measurable effect on the 
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individual-differences covariation between these measures. Thus, from a construct representation 

approach, we found only limited support for the construct validity of sustained attention 

measures. As noted above, however, some of the design features of Study 1 may have prevented 

a significant enough reduction in sustained attention demands in the minimized tasks.  

Inserting the CTET as a break task may not have reduced sustained attention demands in 

the focal tasks, but instead simply switched the target for participants' sustained attention 

deployment. We therefore replaced the CTET breaks with true “rest breaks” during the 

minimized tasks in Study 2. Moreover, to reduce the overall vigilance demand of the entire 

procedure, we also removed the “standard” demand tasks, leaving participants to complete only a 

maximized and a minimized task. Finally, we attempted to further reduce the sustained attention 

demand in the minimized SART and PVT by making them slightly faster (as detailed below). 

Methods 

We report our sample size justification and data exclusion criteria, as well as all measures 

and manipulations included in the study (Simmons et al., 2012).  

Participants 

As preregistered, we again aimed for a sample of 1500 participants. Also as in Study 1, 

we collected data from both Prolific Academic and the UNCG undergraduate subject pools. 

We based this sample size on several calculations. First, we conducted a power analysis 

in G*power for differences between dependent correlations with no overlap. For a one-tailed 

test, alpha of .05, and the correlations of interest being .30 (SA-Maximized RTsd × SA-

Maximized TUT) versus .20 (SA-Minimized RTsd × SA-Minimized TUTs), and using the 

correlations from Study 1 for the remaining nonoverlapping correlations, we would have just 

under 94% power to detect the difference between correlations with N = 1500. Second, to 
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achieve a 95% CI around a r = .30 correlation with a lower bound above .25 (for SA-Maximized 

× SA-Maximized correlations), and around a r = .20 correlation with an upper bound below .25 

(for SA-Minimized × SA-Minimized correlations), requires at least 1420 participants.  

Screening of participants from Prolific and UNCG followed the same protocol as Study 1 

(with the same inclusion/exclusion criteria; in addition, participants who participated in Study 1 

were not eligible to participate in Study 2). Prolific participants were paid $4.75 for participating 

in the 30-min study and UNCG students were awarded partial credit toward a research-

participation course requirement. 

Across both recruitment platforms, we collected data from 1750 participants. Due to an 

error in a screener on Prolific, we collected data from roughly 175 participants over the age of 

40. To retain as much data as possible, we therefore extended the upper limit of our age range 

from 40 to 45, deviating from our preregistration. This resulted in removing data from 143 

participants before any analyses were conducted (i.e., we were blinded to the performance and 

responses from the retained participants between ages 40 and 45). We used our preregistered 

data screening procedures on the remaining 1607 participants.   

Apparatus and Materials 

All tasks were programmed as in Study 1, using Gorilla. The experiment for Study 2 can 

be found on Gorilla’s Open Materials site (https://app.gorilla.sc/openmaterials/389050). Again, 

participants were required to complete the study on a laptop or desktop to ensure accurate 

recording of RTs. 

Tasks 

The tasks used for Study 2 were nearly identical to those used in Study 1. Therefore, we 

only describe the changes made (see Table 17 for task order in each counterbalancing condition).   
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Maximized (“max”) Sustained Attention Tasks. The maximized versions of the SART, 

PVT, and vMRT were identical to Study 1.  

Minimized (“min”) Sustained Attention Tasks. The main (and consistent) change 

across all minimized tasks was that we replaced the CTET “break task” with a true break period, 

in which participants were allowed to rest briefly and reset their focus. Participants took 15 s 

breaks at predetermined intervals in each task, described below. After 10 s of each break period, 

a 5 s countdown timer appeared onscreen and participants were instructed that the task was about 

to resume. 

SARTmin. Beyond rest breaks, the additional change to this task was a reduction of the 

mask duration to 765 ms (from 935 ms in Study 1). Breaks occurred following probes, as these 

are natural break points in the task. We aimed to have breaks occur roughly in the middle of each 

block and at the end of the block, so they occurred after either the third or fourth probe of each 

block and the sixth probe of each block (which also ended the block). In total, then, the SART 

presented 7 breaks (vs. 3 CTET breaks in Study 1). To account for potential post-restart RT costs 

after each break period, we included 2 unanalyzed buffer “go” trials when the task resumed (14 

total). 

PVTmin. The main change from Study 1, beyond the rest breaks, was reducing the 

possible SOA range by 1000 ms compared to Study 1, to 1100–2000 ms (still in 100-ms 

intervals). Task breaks were inserted following every 15 trials, for 5 breaks total (vs. 2 CTET 

breaks in Study 1). To match the maximized PVT and account for restart RT costs after breaks, 

we included 12 unanalyzed buffer trials, two at the beginning of the task, and two following each 

break. 
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vMRTmin. Rest breaks were the only change from Study 1. Break periods followed every 

two blocks, with 5 breaks total (vs. 2 CTET breaks in Study 1). To match the maximized vMRT 

and account for restart RT costs after the breaks, we included 12 unanalyzed buffer trials, two at 

the beginning of the task, and two following each break. 

Thought Probes 

We used the identical probe wording and response options as Study 1 and TUTs were 

again scored as the proportion of probes selecting options 2-6. In contrast to Study 1, participants 

had 10 s select their response to the thought probe, after which the probe disappeared, and the 

response was counted as missing (Study 2 instructions warned participants of this time limit). As 

preregistered for Study 2, participants with more than 4 missing probes in any one task were 

dropped from analyses.  

Post-Study Questionnaires  

We used the same post-study questionnaire as in Study 1 to screen participants who were 

distracted by their surroundings, in a sub-optimal subjective state, or a potential bot. 

Procedures 

The procedures for Study 2 were nearly identical to those of Study 1. Participants 

provided informed consent and answered the two unrelated questions from Study 1 to screen out 

potential bots. Next, participants completed the demographics survey and read through the 

general study and thought-probe instructions (in Study 2, the demographics survey added a 

forced-choice question for the participants’ country of residence, from the list of eligible 

countries via Prolific screening); following these instructions, they answered the same quiz 

question as in Study 1 to proceed. Participants were then randomly assigned to one of the six 

experimental (counterbalancing) conditions as in Study 1. In each condition, participants 
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completed one “maximized” and one “minimized” sustained attention task and, as in Study 1, for 

three condition orders the maximized task appeared first and for the other three the maximized 

task appeared second. Finally, participants completed the post-experiment questionnaire. 

Data Analysis Exclusions 

As preregistered, we screened participants for multiple indicators of inattention or 

misunderstanding task instructions. First, as previously noted, we dropped data from 143 

participants who reported being older than 45. Next, we dropped data from 65 participants who 

failed to respond to enough task trials (using the same criteria from Study 1: < 70% “go” trial 

accuracy in the SART or > 15% omission rate in the vMRT), or missed > 4 thought probes 

within a task. We next dropped data from 18 participants because they either: (a) responded 

“extremely” to two of the three post-experiment questions regarding their subjective state or 

immediate environment (i.e., noisy, distracted, and/or sleepy); or (b) responded to any of the 

media-multitasking questions with “Most of the time” or “All of the time.” Finally, we dropped 

data from 21 participants who provided an inappropriate written response to the open-ended 

question about the “most challenging” task in the study. We retained data from 1502 participants.  

Results 

Below we report the results of our preregistered analyses and note where we deviated 

from the preregistered plan. All data aggregation and analyses used the same packages listed for 

Study 1. Data and Rmarkdown files for all analyses are available on the Open Science 

Framework (https://osf.io/kmqbs/). 

Final Sample Demographics 

Of the retained 1502 participants, 45.1% self-identified as female, 52.1% self-identified 

as male, and 2.7% self-identified non-binary or gender-nonconforming. The mean age of the full 
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sample was 27.4 years (SD = 7.4). The self-identified racial breakdown of our final sample was 

68% White/European descent, 11% Black/African descent, 7% Multiracial, 4% South Asian 

descent, 4% East Asian descent, 4% Hispanic or Latino/Latina, 1% Middle-Eastern, Arab, or 

North African descent, and <1% Native Hawaiian or Pacific Islander or Native American or 

Alaskan Native descent. Finally, Prolific participants (n = 1207) showed a range of educational 

attainment: 31% had a high school diploma or A-level certificate, 11% earned a technical or 

community college degree, 41% earned an undergraduate degree, 15% earned a graduate degree, 

and 1% earned a doctorate; the 295 UNCG participants were all undergraduates. Prolific 

participants indicated the following countries of residence: 49.1% UK, 41.3% US, 7.1% Canada, 

1.4% Ireland, 0.9% Australia, 0.2% New Zealand. 

Experimental Effects of Sustained Attention Demand and Task Order  

As preregistered, we first examined whether our experimental manipulations had any 

effect on measures of RT variability or TUT rates. Again, to make performance measures 

comparable across the tasks, we z-scored performance collapsed across all levels 

(maximized/minimized; first/last) within each task. Supplemental Table S23 presents the raw 

descriptive statistics for RT variability and TUT rates in each task, for each condition. 

RT Variability. The results of a 2 (Demand: Maximized vs. Minimized) × 2 (Order: 

Maximized First vs. Minimized First) ANOVA (with Greenhouse-Geisser correction for within-

subject comparisons) on RT variability indicated a significant effect of Demand, F(1, 1500) = 

359.60, p < .001, ηp2 = .193, but no significant effect of Order, F(1, 1500) = 1.42, p = .234, ηp2 < 

.001, and a significant (but small) Demand × Order interaction, F(1, 1500) = 4.69, p = .031, ηp2 = 

.003. Figure 19 visually presents these results. 
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Figure 20. Raincloud plots depicting Demand-condition differences in z-scored RT 
variability by task Order, collapsed across all sustained attention tasks for Study 2 

 

Note. Dots represent individual subject means in each condition. The closed black dots 
represent group-level mean estimates for each demand level. Error bars are 95% confidence 
intervals. 

To follow up the significant interaction, we conducted paired t-tests separately for each 

Order condition. When the maximized task appeared first, RT variability was significantly lower 

for the minimized versus the maximized task, t(749) = 12.354, p < .001, d = 0.45 [0.38, 0.53]. 

The same was true when the minimized task appeared first, t(751) = 14.41, p < .001, d = 0.53 

[0.45, 0.60]. Although significant in both orders, the effect of Demand was larger when the 

minimized task appeared first. 
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Figure 21. Raincloud plots depicting Demand-condition differences in z-scored TUT 
rates by task Order, collapsed across all sustained attention tasks for Study 2 

 

Note. Dots represent individual subject means in each condition. The closed black dots 
represent group-level mean estimates for each demand level. Error bars are 95% confidence 
intervals. 

TUT Rates. We conducted the same 2 (Demand: Maximized vs. Minimized) × 2 (Order: 

Maximized First vs. Minimized First) ANOVA on TUT rates (see Figure 20). The results 

indicated a significant effect of Demand, F(1, 1500) = 256.00, p < .001, ηp2 = .146, no significant 

effect of Order, F(1, 1500) = 1.20, p = .273, ηp2 < .001, but a significant (but small) Demand × 

Order interaction, F(1, 1500) = 12.16, p < .001, ηp2 = .008.  

We then conducted paired t-tests separately for each order condition. When the 

maximized task came first, TUT rates were significantly lower for the minimized than 

maximized task, t(749) = 14.057, p < .001, d = 0.51 [0.44, 0.59]. When the minimized task 

appeared first, TUT rates were again significantly lower for the minimized task, t(751) = 8.681, p 

< .001, d = 0.32 [0.24, 0.39]. Although significant in both orders, Demand effects were larger 

when the maximized task appeared first. 
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Does Manipulating Sustained Attention Demands Alter the Correlation Between RT 

Variability and TUT Rates? 

If the individual-differences covariation between RT variability and TUT rates provides a 

construct valid assessment of sustained attention ability, then reducing the sustained attention 

demands should reduce the amount of overlap in these indicators compared to a condition where 

sustained attention is necessary to perform optimally. As in Study 1, we again tested whether this 

overlap (i.e., the correlation between RT variability and TUTs) was significantly weaker in the 

minimized than in the maximized condition.  

Figure 22. Scatterplot depicting the correlation between z-scored RT variability 
performance and z-scored TUT rates in the Maximized and Minimized Tasks for Study 
2. 

 

Note. Shaded areas represent the confidence interval around the regression line for each group. 

As preregistered, we first correlated RT variability scores with TUT rates for the 

maximized tasks and for the minimized tasks (see Figure 21). RT variability and TUT rate were 

significantly, although weakly, correlated in both demand levels: Maximized r(1500) = .16 [95% 

CI .11, .21], p < .001, Minimized r(1500) = .15 [.10, .20], p < .001. Participants who were more 

variable in their responding during the task also tended to report more TUTs. Next, as 
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preregistered, we compared these correlations using Steiger’s test for non-overlapping 

correlations (one-tailed). The correlation in the maximized condition was not significantly larger 

than that in the minimized condition, z = 0.316, p = .376. Thus, our manipulations aimed at 

reducing the need for sustained attention in the minimized tasks did not reduce the shared 

variance between the performance-based and self-report measures of sustained attention. 

Figure 23. Condition-specific correlations and meta-analytic estimates of the 
Performance × TUT correlation for each demand level for Study 2. 

 

Note. Grey squares represent the correlation estimate for each condition, blue diamonds 
represent the meta-analytic estimate for each demand level across the conditions and the 
overall meta-analytic estimate across the Demand conditions. Error bars are the 95% CI 
around the correlation. 

As a second preregistered approach to investigating this overlap, we conducted an 

internal meta-analysis to get an alternative estimate of the correlations across the conditions (see 

Figure 22). The results of a random effects meta-analysis indicated that the meta-analytic 

correlation in the maximized conditions was again weak, r = .14 [.03, .25], with a slightly 

stronger correlation in the minimized conditions, r = .20 [.07, .33] (although their confidence 

intervals overlapped). These results are largely consistent with the bivariate correlations reported 
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above, as well as with the results of Study 1. Our manipulations in the minimized tasks did not 

reduce the sustained attention demands enough to reduce the correlation between RT variability 

and TUTs. 

Combined-Study Exploratory Analyses of Experimental Effects 

Although there were clear experimental effects of our demand manipulations in both 

studies, it is unclear whether the additional changes we made in Study 2 to the minimized tasks 

(i.e., replacing the CTET with break periods, increasing the task pacing in the SART and PVT) 

further reduced sustained attention demands, as intended. We investigated this via a series of 

exploratory (non-preregistered) analyses combining data from both Study 1 and Study 2. 

Specifically, we pooled task data from each condition where the maximized or minimized task 

was presented first in each study (to avoid order effects).  

Performance measures. We present the results for raw performance variability measures 

for each task below. 

SART. A 2 (Study: Study 1 vs. Study 2) × 2 (Demand: Maximized vs. Minimized) 

ANOVA on SART RTsd did not indicate a significant main effect of Study, F(1, 982) = 3.27, p 

= .071, ηp2 = .003, or an interaction, F(1, 982) = 0.64, p = .424, ηp2 < .001. However, there was a 

significant main effect of Demand, F(1, 982) = 85.14, p < .001, ηp2 = .080.  

As displayed in Figure 23, across the studies, SART RTsd was higher in the Maximized 

(M = 143) compared to the minimized task (M = 116). As expected, SART RTsd was nearly 

identical in the Maximized tasks across studies (Study 1 M = 144; Study 2 M = 141, t(982) = 

0.715, p = .475). SART RTsd in the Minimized tasks was numerically, but not significantly, 

lower in Study 2 (M = 112) than in Study 1 (M = 120), t(982) = 1.841, p = .066. Thus, in the 
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SART, our changes to the Study 2 did not significantly reduce the sustained attention demands 

beyond those initially made in Study 1. 

Figure 24. Raincloud plots depicting Study differences in SART intrasubject RTsd 
means × Demand 

 

Note. Dots represent individual subject means in each Study and condition. The closed black 
dots represent group-level mean estimates for each Study. Error bars are 95% confidence 
intervals. Max = maximized sustained attention demand; Min = minimized sustained attention 
demand. 

PVT. We next conducted the same 2 (Study) × 2 (Demand) ANOVA in the PVT Slowest 

20% outcome. The ANOVA indicated a nonsignificant effect of Study, F(1, 987) = 3.54, p = 

.060, ηp2 = .004 a significant effect of Demand, F(1, 987) = 402.43, p < .001, ηp2 = .290, and no 

significant interaction, F(1, 987) = 1.29, p = .255, ηp2 = .001.  
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Figure 25. Raincloud plots depicting Study differences in PVT Slowest 20% RT means × 
Demand 

 

Note. Dots represent individual subject means in each Study and condition. The closed black 
dots represent group-level mean estimates for each Study. Error bars are 95% confidence 
intervals. Max = maximized sustained attention demand; Min = minimized sustained attention 
demand. 

As displayed in Figure 24, participants, on average, had longer “long” RTs in the PVT in 

the maximized condition across studies (M = 625) compared to the minimized condition (M = 

421), t(987) = 20.061, p < .001. Surprisingly, performance in the two maximized tasks differed 

across the studies (Study 1 M = 640 vs Study 2 M = 609; t(987) = 2.115, p = .035), but the 

minimized tasks did not differ (Study 1 M = 425 vs. Study 2 M = 418; t(987) = 0.531, p = .595). 

Thus, as in the SART, our Study 2 PVT manipulations did not successfully reduce the sustained 

attention beyond those in Study 1.  

MRT. Finally, we ran the same 2 (Study) × 2 (Demand) ANOVA on MRT RRT scores. 

The ANOVA did not indicate an effect of Experiment, F(1, 991) = 3.05, p = .081, ηp2 = .003 or 

Demand, F(1, 991) = 0.48, p = .487, ηp2 = .487. However, there was a significant Study × 

Demand interaction, F(1, 991) = 6.43, p = .011, ηp2 = .006.  
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Figure 26. Raincloud plots depicting Study differences in MRT RRT means × Demand 

 

Note. The closed black dots represent group-level mean estimates for each Study. Error bars 
are 95% confidence intervals. RRT = rhythmic response time; Max = maximized sustained 
attention demand; Min = minimized sustained attention demand. 

As shown in Figure 25, RRT in the maximized tasks decreased significantly from Study 1 

(M = 8.74) to Study 2 (M = 8.57), t(991) = 3.043, p = .002. However, contrary to expectation and 

intention, there was not a significant decrease in the minimized tasks between Study 1 (M = 8.61) 

and Study 2 (M = 8.64), t(991) = -0.555, p = .5789. Thus, again, we appear to have not reduced 

the sustained attention demands in Study 2 beyond those of Study 1 in the minimized MRT.  

TUT rates. In parallel to the performance analyses, we next investigated whether our 

additional changes to the minimized tasks in Study 2 further reduced TUT rates beyond the 

manipulations implemented in the minimized tasks in Study 1. Here we again pooled raw TUT 

rate data from the maximized and minimized tasks when they appeared first in the condition 

order. We present results for each task separately below. 

SART TUTs. A 2 (Study) × 2 (Demand) ANOVA indicated a significant effect of Study, 

F(1, 982) = 5.37, p = .021, ηp2 = .005, and a significant effect of Demand, F(1, 982) = 17.64, p < 

.001, ηp2 = .018, with no significant interaction, F(1, 982) = 2.49, p = .115, ηp2 = .003. 
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Figure 27. Raincloud plots depicting Study differences in SART TUT rates × Demand 

 

Note. Dots represent individual subject means in each Study and condition. The closed black 
dots represent group-level mean estimates for each Study. Error bars are 95% confidence 
intervals. Max = maximized sustained attention demand; Min = minimized sustained attention 
demand. 

As shown in Figure 26, TUT rates in the maximized SARTs were similar across the 

studies (Study 1 M = .30, Study 2 M = .30; t(982) = 0.523, p = .601). However, in the minimized 

tasks, TUTs significantly decreased from Study 1 (M = .26) to Study 2 (M = .21), t(982) = 2.750, 

p = .006. Thus, in the self-report dependent measure (but not the objective performance measure) 

the changes we made to the minimized task in Study 2 did appear to further reduce the sustained 

attention demands from the minimized task of Study 1.  

PVT TUTs. A 2 (Study) × 2 (Demand) ANOVA on PVT TUT rate indicated no 

significant effect of Study, F(1, 987) = 0.28, p = .597, ηp2 < .001, but a significant effect of 

Demand, F(1, 987) = 40.17, p < .001, ηp2 = .039. There was no significant interaction, F(1, 987) 

= 1.50, p = .222, ηp2 = .002. 
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Figure 28. Raincloud plots depicting Study differences in PVT TUT rates × Demand 

 

Note. Dots represent individual subject means in each Study and condition. The closed black 
dots represent group-level mean estimates for each Study. Error bars are 95% confidence 
intervals. Max = maximized sustained attention demand; Min = minimized sustained attention 
demand. 

As shown in Figure 27, TUT rates in the PVT were higher, but similar, in the maximized 

condition (Study 1 M = .44, Study 2 M = .46, t(987) = -0.486, p = .627), compared to those in the 

minimized tasks, which also did not differ from each other (Study 1 M = .36, Study 2 M = .33, 

t(987) = 1.251, p = .211). Thus, our additional changes to the minimized PVT in Study 2 did not 

yield further reduction in TUT rates beyond those implemented in Study 1.  

MRT TUTs. A 2 (Study) × 2 (Demand) ANOVA on MRT TUT rates indicated no effect 

of Experiment, F(1, 991) = 1.87, p = .172, ηp2 = .002, but a significant effect of Demand, F(1, 

991) = 24.30, p < .001, ηp2 = .024, and no significant interaction, F(1, 991) = 2.66, p = .103, ηp2 = 

.003. 
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Figure 29. Raincloud plots depicting Study differences in MRT TUT rates × Demand 

 

Note. Dots represent individual subject means in each Study and condition. The closed black 
dots represent group-level mean estimates for each Study. Error bars are 95% confidence 
intervals. Max = maximized sustained attention demand; Min = minimized sustained attention 
demand. 

As seen in Figure 28, TUTs in the maximized MRT were not statistically different from 

each other (Study 1 M = .49, Study 2 M = .48, t(991) = 0.188, p = .851). TUT rates in the 

minimized version were lower (Study 1 M = .38, Study 2 M = .43), but they were higher in Study 

2 than in Study 1, t(991) = -2.108, p = .035. Thus, our additional manipulations to the minimized 

MRT in Study 2 appear to have had the inverse effect on TUT rates, compared to the minimized 

MRT in Study 1.  

In sum, none of the individual sustained attention tasks in Study 2 produced lower 

performance variability than did those in Study 1, and only one of three tasks produced lower 

TUT rates in Study 2 than in Study 1. Our additional manipulations of sustained attention 

demand in Study 2 were thus unsuccessful. 
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Discussion 

Study 2 attempted to conceptually replicate Study 1 after further reducing the sustained 

attention demands of the minimized tasks, to assess the evidence for the construct validity of 

performance and self-report sustained attention measures. The results largely replicated Study 1. 

Our experimental manipulations again had their intended effects: Participants showed less RT 

variability and reported fewer TUTs in the minimized than in the maximized conditions. 

However, our “enhanced” manipulations of demand again failed to reduce the sustained attention 

contributions to the minimized tasks enough to weaken the correlation between RT variability 

and TUT rates (they also did not produce larger experimental effects than did our original Study 

1 manipulations). The results of Study 2 again provide only limited construct-representation 

evidence that the individual-differences overlap between objective and subjective measures 

provides a construct valid way to measure general sustained attention ability. 

One possible reason that the additional manipulations in Study 2 did not reduce the 

covariation between objective and subjective attention consistency measures is that, as noted 

above, they did not actually affect the outcome measures any further than did those in Study 1. 

Comparing outcomes for the individual maximized and minimized tasks (presented first in each 

participant’s task order) indicated that our additional manipulations did not generally change RT 

variability or TUT rates from Study 1 to Study 2. Thus, while both Study 1 and Study 2 

demonstrated that it is possible to reduce mean levels of sustained attention indicators somewhat, 

it may be extremely difficult to reduce the sustained attention demands substantially, and 

substantially enough to diminish the contributions of sustained attention processes to between-

person variation. We return to this point in the General Discussion. 
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General Discussion 

The current studies tested whether theoretically driven, experimental manipulations of 

task parameters linked to sustained attention demands could reduce the correlation between 

objective and subjective indicators of attention consistency, thereby providing support for their 

covariation as a construct valid measure (Welhaf & Kane, 2022). The results from these two 

large-N studies provide only limited construct validation evidence. On one hand, both measures 

were similarly impacted by our manipulations at the mean level; that is, in exploratory analyses, 

RT variability and TUT rates both decreased significantly in versions of the tasks that were 

designed to minimize their sustained attention demands. On the other hand, these experimental 

manipulations failed to reduce the correlation between these measures, which we have argued is 

a more construct-valid way to assess sustained attention ability than is either performance-based 

or self-report-based measurement alone (Welhaf & Kane, 2022).  

Prior research has generally found that experimental manipulations aimed at reducing 

sustained attention demands lead to lower RT variability or TUT rates (e.g., Giambra, 1995; 

Langner & Eickhoff, 2013; Seli et al., 2019; Unsworth & Robison, 2020). Nonetheless, both 

performance- and self-report-based indicators of attention consistency are independently affected 

by psychological processes and cognitive abilities beyond sustained attention (e.g., processing 

speed, meta-awareness, self-report biases). The results of previous studies that have examined 

these measurement types separately may therefore have landed on incomplete conclusions about 

how these manipulations relate to general sustained attention processes or ability. The present 

study addressed this by examining whether the individual-differences overlap between RT 

variability and TUT rates changed as a function of the sustained attention demands of the task. It 
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did not: In neither study did our manipulations significantly reduce the correlation between RT 

variability and TUT rates. 

Were We Wrong About Sustained Attention Measurement?  

Why, despite conventionally medium-sized experimental effects, were we unable to 

reduce the correlation between RT variability and TUT rates? It is possible that we were simply 

wrong about the covariation between RT variability and TUT rates as a construct valid way to 

measure sustained attention ability: Perhaps either measurement type alone is as valid a sustained 

attention measure as is their covariation. We don’t yet favor this possibility.  

First, there are numerous construct-specific nuisance variables that contribute to RT 

variability and TUT rates that are not related to sustained attention ability. For example, changes 

in response strategies (i.e., speed-accuracy trade-offs) influence RT variability, but they should 

not influence TUT reports. Likewise, self-report biases that influence participants when 

answering questions about their conscious experiences will contribute to TUT rates to some 

degree, but they should not influence RT variability. Using the individual-differences overlap in 

these two indicator types should therefore provide a measure of sustained attention that is less 

contaminated by these sources of measurement error. Second, the construct validity evidence 

from the nomothetic span approach (Welhaf & Kane, 2022) has indicated that the shared 

variance in these measures can be modelled as a higher-order factor and this general factor 

differentially correlated with nomological-network constructs when compared to either RT-

variability-specific or TUT-rate-specific latent variables. Third, the experimental effects on mean 

RT variability and TUT rate found in the present study’s exploratory analyses also suggest that 

these measures are similarly impacted by theoretically derived manipulations that should impact 
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sustained attention measurement. Taken together, these findings are suggestive that both measure 

types, but especially their covariation, may be valid indicators of sustained attention ability.   

Were Our Manipulations of Sustained Attention Demand Ineffective? 

If we take a “Lakatosian-defense” posture (Meehl, 1990) and for now act as though this 

covariation approach has merit, what do we make of the current findings? Which of our auxiliary 

hypotheses or assumptions that drove the design of our study might need reconsideration or 

revision? One possibility is that sustained attention, perhaps even more than other executive or 

attention-control processes (Engle, 2002; Engle & Kane, 2004), is fundamental to nearly any task 

that requires more than a few seconds of active engagement. If so, it will be extremely difficult 

to reduce the sustained attention demands enough in any task to substantially reduce the 

between-person variation in attention consistency measures.  

Potential Problems 

Perhaps, then, we can only create significant reductions in the RT variability–TUT rate 

association by using tasks that feature our demand-reducing manipulations but are also 

exceedingly brief. The potential cost of using brief tasks to minimize sustained attention 

demands, however, is that it may also reduce the reliability of the tasks for use in individual-

differences research: Shortening tasks reduces the overall number of trials available for accurate 

assessment of RT variability and TUT rates.  

A second possibility is that measuring and manipulating sustained attention in an online 

setting cannot produce the necessary effect sizes to reduce correlations between performance 

variation and TUT rates. Although the COVID-19 pandemic forced us to conduct this study 

online, we attempted to minimize threats to internal validity by focusing our analyses on 

comparing correlations across within-subjects conditions, and by asking participants about their 
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immediate environments and dropping data from those who acknowledged significant distraction 

during the study. With that said, our Prolific and UNCG participants may have completed this 

study in non-ideal settings that were moderately distracting (or, at least, more distracting than a 

typical laboratory). 

We dropped data, as preregistered, from participants indicating an “extreme” level of 

noise or distraction, but 59% of retained participants across both studies indicated that their 

surrounding environment was at least slightly noisy or distracting. As well, 12% of retained 

participants self-reported occasionally multi-tasking on their phone or email during the study, but 

again we screened out only those participants who self-reported media multi-tasking “most of the 

time,” or “all of the time.” Of course, by having participants self-report on these environmental 

factors, we also had to trust that their ratings were accurate and truthful; we may have 

underestimated environmental distraction and multitasking in our sample if participants were 

concerned that admitting to distraction might put their compensation in jeopardy.  

Potential Solutions 

It is possible that the correlation between RT variability and TUTs can be substantially 

reduced, but our manipulations simply weren’t strong enough to do so. In Study 2, for example, 

we implemented periodic rest breaks, rather than having participants switch to an alternative 

task, as in Study 1. Perhaps these task switches or rest breaks were too short to have their 

intended effect. Previous research has found that task rest breaks (e.g., Helton & Russell, 2015, 

2017), or switching between primary and secondary tasks (e.g., Ariga & Lleras, 2011; Ralph et 

al., 2017), can reduce the vigilance decrement that occurs over long tasks, at least briefly. These 

studies have typically provided participants with a single break or task switch lasting from just 

under 2 min (Helton & Russell, 2015, 2017) up to roughly 8 min (Ralph et al., 2017). In Study 1, 
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our task switches lasted about 1 min; in Study 2, we fixed the more frequent rest breaks to 15 s. 

Although we used more frequent switches and breaks than in prior work, the total switch and 

break time may not have been enough across the minimized tasks to effectively reduce their 

sustained attention demands.  

The literature suggests two additional manipulations that we did not use in the current 

study that might further reduce the sustained attention demands of a task: the frequency of 

thought probes and heightened motivational states. We have previously argued that using fewer 

thought probes can reduce the number of task interruptions and the possibility of reactivity to 

probes (Welhaf et al., 2021). More frequent probing may therefore reduce sustained attention 

demands in simple tasks. First, participants will only be engaged in the primary task for short 

periods before they are given a probe, and so probes may serve as additional task breaks. Second, 

probes can serve as reminders for participants to keep their thoughts focused on the task and so 

may help scaffold participants’ sustained attention processes (see, e.g., Robison et al., 2019; 

Schubert et al., 2020; Seli, Carriere, et al., 2013). Increased probe frequency might therefore 

reduce the sustained attention demands enough to show measurable changes in mean levels of 

RT variability or TUT rates, and importantly in their covariation. 

Participants’ self-reported motivation is often related to both objective and subjective 

indicators of sustained attention, with higher motivation associated with lower RT variability and 

TUT rates (e.g., Unsworth et al., 2021); self-reported motivation also correlates with the shared 

variance between objective and subjective indicators of sustained attention (Welhaf & Kane, 

2022). Additionally, as noted earlier, experimental manipulations of motivation appear to reduce 

RT variability and TUT rates compared to control conditions (e.g., Esterman et al., 2014; 

Robison et al., 2021; Seli et al., 2019; Unsworth et al., 2022). These findings are suggestive, 
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then, that manipulations of motivation, either through monetary incentives or achievable 

performance goals, may affect the covariation between objective and subjective measures of 

sustained attention. 

Finally, while we focused on implementing manipulations to minimize the sustained 

attention demands of some of the tasks, we did not consider the possibility of boosting the 

demands in our “maximized” tasks. While these tasks did challenge sustained attention, it may 

be necessary to both minimize and maximize the demands of tasks to see any substantial 

difference in the correlations. For example, we could have made our maximized tasks more 

difficult by requiring less frequent responding (in the SART and MRT) or increasing the length, 

or variability, of the SOAs in the PVT, which should make these tasks more demanding on 

sustained attention.  

We therefore encourage future experimental work on sustained attention measurement to 

consider the covariation of performance variability and TUT rates as a construct valid 

assessment. Moreover, we recommend that researchers test such claims in controlled laboratory 

settings and by manipulating a number of variables simultaneously to reduce, and also increase, 

the sustained attention demands of prototypical tasks.  

A Potential Constraint on Generalizability 

 It is important to note that our perspective on sustained attention differs from some 

traditional operationalizations. Historically, the measurement of sustained attention has focused 

on the need to maintain focus over many trials (and over many minutes) of a single task. Failures 

of sustained attention from this approach are reflected in worsening performance over time, the 

so-called “vigilance decrement” (e.g., Lim & Dinges, 2008; Mackworth, 1950; Parasuraman, 

1986). Our view and measurement approach to “attentional consistency” (see Esterman & 
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Rothlein, 2019; Unsworth & Miller, 2021) has instead focused on the moment-to-moment ability 

to maintain attention focus and consistency within tasks of short-to-moderate duration. We leave 

it to future work, then, to consider the extent to which our claims and findings apply to the 

vigilance decrement as an indicator of sustained attention. 

Conclusions 

We have previously argued that the individual-differences overlap in objective and 

subjective measures is a more construct-valid way to measure sustained attention ability than is 

using either indicator in isolation (Welhaf & Kane, 2022). The results of the current study 

suggest that each of these indicator types is separately, and similarly, affected by theoretically 

derived manipulations to reduce sustained attention demands. Contrary to predictions, however, 

the covariation between these measures was not. Thus, we found only limited construct-

representation evidence for the construct validity of measuring sustained attention as the 

covariation between performance-variability and self-report measures. We speculate that 

sustained attention processes and abilities may be so fundamental to any given task that it may be 

exceedingly difficult to find experimental manipulations that substantially reduce their 

correlation, especially in an online setting.  
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CHAPTER V: INTEGRATIVE DISCUSSION 

The goal of this integrated dissertation was to present a program of research aimed at 

evaluating the construct validity of sustained attention measures, and critically, their individual 

differences covariation as a construct-valid approach to measuring sustained attention ability. 

The literature has traditionally used two approaches to assessing moment-to-moment fluctuations 

in sustained attention, or “attention consistency” (Unsworth & Miller, 2021): objective 

performance measures and subjective self-reports of task-unrelated thoughts (TUTs). Studies 

typically investigate how these two forms of sustained attention correlate with each other (e.g., 

RT variability–TUT-rate correlations) or with other theoretically relevant variables (e.g., WMC–

TUT rate). Some studies have even used one approach to validate the other, that is, objective 

performance measures to validate subjective self-reports of mind wandering (e.g., Bastian & 

Sackur, 2013; Kane, Smeekens, et al., 2021; McVay & Kane, 2009, 2012a). Each of these 

measures, however, has their own unique sources of error which reduce our ability to accurately 

capture variation in the sustained attention construct.  

This dissertation presents a set of studies that first provide evidence that objective and 

subjective measures of attention consistency may be influenced by a common underlying ability, 

and then tests this measurement approach in the contexts of two construct validation strategies: 

nomothetic span (correlational) and construct representation (experimental). Below, I discuss the 

implications that this work has for our measurement of sustained attention ability and next steps 

on how to further improve its measurement. Throughout, I discuss some of the limitations of the 

included empirical papers. 

Implications for Sustained Attention Measurement 

The current dissertation defines sustained attention as the purposeful act of maintaining 

optimal task focus to successfully, and consistently, perform goal-relevant actions. In this view, 
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sustained attention ability has traditionally been measured using either objective performance 

measures (like RT variability or task accuracy), or subjective self-reports (like rates of mind 

wandering) during simple lab tasks over the course of a seconds to a few minutes. This attention 

consistency approach holds that trial-by-trial fluctuations in RT, performance accuracy, and 

conscious focus are indicative of sustained attention ability. This attention consistency approach 

differs from the vigilance approach to sustained attention, which requires subjects to respond to 

rare, unpredictable, targets, over many tens of minutes, and is primarily concerned with 

performance decrements (in accuracy or RT) over the entirety of a task.  

While the objective and subjective measures described above likely reflect variation in 

sustained attention ability to some degree—and perhaps to different degrees (Cheyne et al., 

2009)—they also reflect non-sustained attention processes. For example, objective indicators are 

also impacted by processes like general processing speed and speed-accuracy trade-offs. 

Subjective indicators are impacted by things like response biases and reactivity to task 

performance. Thus, studies using either indicator type on its own are not assessing sustained 

attention in a process-pure manner. To overcome this, the current empirical papers argue that 

looking at the individual-differences covariation in these indicators as a more construct-valid 

way to measure attention consistency than is either type on its own. The results of the papers 

provided general support for this claim.  

In the first empirical paper (Welhaf et al., 2020b), evidence for the worst performance 

rule appeared when TUT rates were used a measure of cognitive (i.e., sustained attention) ability: 

The correlation between RTs and TUT rates increased from subjects’ fastest to slowest RTs. This 

was not the case when WMC was used as the ability measure, with correlations being of similar 

magnitude for both average and worst performance (and weakest with best performance). From 
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an attention control perspective (Larson & Alderton, 1990; Unsworth et al., 2010), subjects’ 

worst performing (or slowest) trials and their TUT reports are both partial reflections of 

momentary failures of sustained attention. If this perspective is accurate, then both indicators 

should be explained by a common underlying ability.  

The second empirical paper (Welhaf & Kane, 2022a) explicitly tested this measurement 

approach by reanalyzing two large-N datasets (Kane et al., 2016; Unsworth et al., 2021) both of 

which included multiple tasks to derive objective performance measures and probed mind 

wandering. Here, we found that the individual-differences covariation in objective and subjective 

could be modeled with a hierarchical structure. Critically, this higher-order factor showed a 

unique pattern of correlations with nomological network constructs. In some cases, the 

nomological network constructs (e.g., WMC, processing speed, positive schizotypy) correlated 

numerically more strongly with the higher-order factor than they did with both the individual 

objective and subjective factors. In other cases, the nomological network constructs correlated 

more strongly with the higher-order factor than they did with either the individual objective or 

subjective factor (e.g., neuroticism and self-reported cognitive failures were similarly correlated 

with TUT rate factor and the higher-order factor, and less strongly with the objective factor). 

These correlations provided evidence for convergent validity of the higher-order factor and 

suggest that previous correlations may have been underestimated when only relying on one of 

the indicator types as a measure of attention consistency. The higher-order factor did not 

correlate with measures of agreeableness or conscientiousness, however, even though both 

measures correlated with the individual TUT rate factor. This discriminant validity evidence also 

suggests that by only using TUT rates as an indicator of sustained attention, previous findings 

may not extend to a general sustained attention ability, but rather they may have been driven by 
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processes shared only between subjective indicators and personality measures (e.g., self-report 

biases).  

Empirical paper 3 (Welhaf & Kane, 2022b) expanded on the proposed measurement 

approach in the context of two experimental studies, in which we tested whether the individual-

differences covariation between objective and subjective indicators of attention consistency was 

reduced by implementing a series of theoretically derived manipulations to minimize the 

sustained attention demands of prototypical tasks. While these manipulations did reduce mean 

levels of RT variability and TUTs rates in the demand-minimized tasks (in exploratory analyses), 

the correlation between these measures remained unchanged (in our primary analyses). Thus, we 

only found partial support for the construct validity of our sustained attention measurement 

approach.  

Across the presented program of dissertation research, the results suggest general support 

for the covariation approach in measuring sustained attention. Empirical Papers 1 and 2 provide 

support for the hypothesis that there is an underlying ability explaining variation in objective and 

subjective indicators of attention consistency. Empirical Paper 2 further showed that this general 

ability could be modeled through the covariation of objective and subjective measures. Finally, 

Empirical Paper 3 showed that both indicator types could be impacted by theoretically derived 

manipulations. As discussed below, however, there are still some outstanding questions and 

concerns that future research needs to address. 

Challenges for Measuring Sustained Attention 

The current studies focused on two main types of indicators of sustained attention: 

objective performance measures and subjective self-reports of mind wandering. While these two 

indicator types have traditionally been the main ways of assessing attention consistency, the 
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results of the current dissertation studies indicate some challenges when using only these 

indicators. Below I discuss these issues and propose some solutions that future measurement 

work could adopt.   

Strengthening the Correlation between Objective and Subjective Indicators 

The current studies found that objective and subjective indicators of attention consistency 

were only modestly correlated with each other (rs = .20–.40). We have argued that, despite a 

common sustained attention ability partially explaining variation in both measures, measurement 

error drives these correlations down. Are there alternative ways of assessing objective or 

subjective measures that might strengthen this association that might be useful for between-

subject analyses?  

First, our objective factor was derived from a mixture of indicators that captured not only 

performance errors, but measures of variable RTs (e.g., intra-individual RTsd) and long RTs 

(e.g., tau and Slowest 20%). We have argued that these dependent measures reflect attention 

consistency to some degree, but it is possible that variable RT measures are somewhat different 

than long RT measures, and by using this mixture we reduced the covariation among measures of 

the objective factor. Indeed, recent research has found that variable RTs, captured by the sigma 

component of the ex-Gaussian model (rather than long RTs captured by the tau component) were 

better at distinguishing subjects between “optimal” and “suboptimal” brain states associated with 

sustained attention (Yamashita et al., 2021). This variance component also correlated strongly 

with self-reported mind wandering, while the long RT component correlated less strongly (rho = 

.56 vs. .37, p = .0502; but note n = 29). Although other work has found TUT rates to correlate 

more strongly with tau than with sigma (McVay & Kane, 2012a; Welhaf et al., 2020), future 

research should explore using measures that more closely reflect variable RTs (i.e., RTsd and 
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sigma) as objective indicators of sustained attention rather than, or in addition to, measures that 

capture especially long RTs (e.g., tau or Slowest 20%).  

The present studies relied on RTs taken across entire tasks, but doing so might reduce the 

correlation between RT variability and TUTs because it combines periods of optimal (ceiling-

level) and suboptimal sustained attention. An alternative approach may be to only use trials that 

occur before TUTs (e.g., 10 trials preceding TUT reports). As previously discussed, trials 

preceding TUT reports show more variable RTs and more errors compared to on-task reports 

(e.g., Bastian & Sackur, 2013; Kane, Smeekens et al., 2021). By analogy to the worst-

performance rule, measuring RT variability at its most extreme, and when supported by thought 

off-task thought reports, may be a more construct-valid way to assess attention consistency via 

performance, because it isolates those moments that are most reflective of sustained attention 

ability. That is, it’s possible that these pre-TUT trials are more reflective of a subjects’ sustained 

attention ability than is RT variability across an entire task (which includes RT variability 

preceding on-task reports).  

The methods used by Esterman and colleagues (e.g., Esterman et al., 2013; Fortenbaugh 

et al., 2018; Rosenberg et al., 2013) might provide a still more sophisticated approach. Here, 

trial-to-trial variation in RT is modeled within-subject using a variance time course, in which 

RTs are identified as being above or below a subjects mean RT. The variance time course is then 

smoothed by integrating information from some number of surrounding trials (e.g., 20 trials); 

this temporal choice in smoothing is based on previous work showing that attentional 

fluctuations occur on the order of 16–20 s (De Martino et al., 2008). After all RTs for each run 

are smoothed, low-versus high-variability periods are defined using a median split, yielding 

periods of “in the zone” versus “out of the zone” performance. Previous work using this 
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approach has found that “out of the zone” periods are associated with poorer accuracy and 

greater RT variability (i.e., not simply stable periods of extremely fast or slow RTs; Rosenberg et 

al., 2013) compared to periods of “in the zone” performance. Thus, the variance time course 

analysis is useful for identifying two potentially distinct attention states.  

Future studies, then, could use the variance time course approach and pull performance 

measures (i.e., errors and RTs) from “out of the zone” periods as an individual differences 

measure. Much like using RTs on the trials preceding TUTs (rather than on-task or complete task 

data), the data from these “out of the one” periods may be more reflective of sustained attention 

ability as they eliminate the influence of measurement error from “in the zone” periods. Thus, 

this approach may be a more construct-valid way for capturing attention consistency in 

continuous performance tasks like the SART or gradCPT.17  

Improving the Hierarchical Model of Sustained Attention 

While the hierarchical model fit the data well in both studies in Empirical Paper 2, it does 

present some limitations in its current form. Specifically, by having only two first-order factors, 

we had to set these paths to be equal to appropriately identify the model. Thus, future research 

should consider additional ways to measure attention consistency to enhance the first-order 

structure of the hierarchical model. As discussed in Empirical Paper 2 (Welhaf & Kane, 2022a), 

changes in pupil dilation provide another potential way to assess sustained attention. Variation in 

pupil size is proposed to be an indirect measure of locus coeruleus-norepinephrine (LC-NE) 

 

17 This discussion focuses on ways to improve the validity of assessments of in-the-
moment RTsd by using periods that only occur before TUTs or during “out of the zone” periods. 
An additional approach, which might help improve TUT rate validity, is to only count TUT 
reports toward TUT rates if they also follow periods of relatively high RT variability (e.g., 
greater than the subject’s median RTsd). Here, then, one would only use TUT reports where 
there was also corresponding behavioral evidence of the subject’s attention being off task. 
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functioning, which is import for regulating arousal based on current attentional demands (Cohen 

et al., 2004). Critically, for the current proposed measurement approach, individual differences in 

pupil size variation (both pre-trial variability and variability in task-evoked pupillary responses 

[TEPRs]) correlate with objective and subjective measures of attention consistency.  

Unsworth & Robison (2017a), for example, reported a modest negative correlation 

between pupil size variability (a latent factor reflecting shared variance between pre-trial and 

TEPR variability) and TUT rates (r = .23), suggesting that people who had more variable pupil 

size were also more likely to mind wander in simple attention tasks. Note that the correlation 

between mean baseline pupil and TUTs was nonsignificant, suggesting that pupil instability, and 

not average size, is likely a more indicative measure of attentional consistency. Likewise, 

Unsworth et al. (2020) found similar negative correlations between pre-trial pupil variability and 

the slowest 20% of trials and TUT rates in the PVT (rs = –.30 and –.22, respectively). Future 

studies of attention consistency measurement should therefore consider adding pupil measures 

alongside objective performance and subjective self-report measures. Doing so would add a third 

first-order factor to the hierarchical sustained attention model. That is, the hierarchical model 

would now model the individual-differences covariation between objective, subjective, and 

physiological indicators of attention consistency, which may help identify the hierarchical model 

proposed in Empirical Paper 2 without fixing paths to be equal (Welhaf & Kane, 2022a). 

As discussed in the Integrated Introduction, objective indicators of attention consistency 

can be RT- or accuracy-based. In Empirical Paper 2 (Welhaf & Kane, 2022a), our objective 

factor was primarily RT-based, but some of our measures were accuracy based (e.g., SART 

omissions). A possible way forward for studies using only objective and subjective indicators 

could be to split the objective factor into separate accuracy- and RT-based factors (obviously 
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requiring enough tasks from which to draw these). Studies would then also be able to build 

factors that more closely reflect the separate attentional states described by Cheyne et al. (2009; 

see also Unsworth et al., 2021): A state of focal inattention (State 1) characterized by brief 

periods of high instability of attention corresponding to increased errors, near misses, and 

variable responding, a state of global inattention (State 2) where automatic, “mindless,” 

responding and processing overrides top-down control resulting in anticipatory responses, and a 

final state of behavioral disengagement (State 3) where subjects’ attention is so withdrawn from 

the task that they completely fail to respond, resulting in errors of omission.  

Likewise, future studies could use different thought-probe menus in different tasks to 

assess TUT propensity more broadly. Mind wandering studies have asked about a variety of 

dimensions of TUTs, including temporal orientation (e.g., Stawarczyk et al., 2011; 2013), 

emotional valence (e.g., Banks et al., 2016), and content descriptors (e.g., daydreams vs. 

personal worries; e.g., Kane et al., 2016; McVay & Kane, 2012b). Using a few different probe 

types across tasks, and creating different latent variables for each probe type, could again allow 

for a larger number of first-order sustained attention factors to allow the higher-order factor to be 

identified.  

Limitations and Future Directions 

Below I discuss some future lines of work in both the nomothetic span and the construct 

representation approaches that would add to the current set of studies and improve the field’s 

evaluation of the construct validity of sustained attention measures. 

Nomothetic Span Considerations  

One limitation of the nomothetic span studies presented here (e.g., Empirical Papers 1 

and 2) is that we were limited to what nomological network associations we could examine. That 
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is, because we relied on previously collected data, we could only analyze associations with the 

collected constructs. In future work, however, several other nomological network constructs (and 

additional nomothetic span approaches [e.g., group comparisons]) might provide further 

construct validity evidence for the proposed covariation approach to assessing sustained 

attention.  

Attention Control 

One question that remains from the current studies is how “attention control” and 

sustained attention abilities are related. More specifically, is the ability to sustain attention 

simply another way of describing, and measuring, a specific component of attention control 

abilities? Theories of executive attentional control propose two primary dimensions, typically 

referred to as goal maintenance and competition resolution (e.g., Engle & Kane, 2004), or 

proactive and reactive control processes (e.g., Braver et al., 2007). Goal maintenance is often 

defined as one’s ability to activate and maintain task goals in the presence of (and in advance of) 

conflict (e.g., Kane & Engle, 2003). Likewise, proactive control is proposed to reflect how “goal 

relevant information is actively maintained in a sustained (emphasis added) manner, before the 

occurrence of cognitive demanding events, to optimally bias attention, perception and action 

systems in a goal-driven manner” (Braver, 2012, p. 106).  

People with better goal maintenance/proactive control ability perform better on tasks 

because they can better activate and maintain task goals ahead of expected conflict. However, 

goals are not always strongly maintained over the course of a task, or even during the full course 

a single task trial, which may lead to errors or relatively long, or variable, RTs (e.g., Meier & 

Kane, 2017; Meier et al., 2018; Unsworth & Robison, 2020). Thus, momentary failures of goal 

maintenance/proactive control and failures of sustained attention are identical to one another. 
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This might explain why we were unable to examine the relationship between attention control 

and sustained attention in Empirical Paper 2 (Welhaf & Kane, 2022a). Recall that in Study 1, the 

attention control factor, which was mainly comprised of goal-maintenance type tasks (e.g, 

antisaccade, Stroop), correlated > 1.0 with the second-order sustained attention factor and led to 

model misfit and estimation issues forcing us to drop it from the CFA. Thus, it’s possible that 

when an attention control factor is defined primarily by tasks that heavily require goal 

maintenance, it will be impossible to dissociate attention control from sustained attention 

constructs. 

Attention consistency and goal maintenance might be indistinguishable due to their 

linked neural pathways. Consistency of attention is proposed to be regulated by the locus-

coeruleus norepinephrine system (LC-NE). The LC has widespread projections to other areas of 

the brain including the fronto-parietal network (FPN) which has a been linked to goal-

maintenance and proactive control abilities (e.g., Szabadi, 2013). The LC also has major inputs 

from the prefrontal cortex suggesting a bidirectional connection between LC-NE and FPN 

(Rajkowski et al., 2000). Indeed, some have recently argued that attention control (goal 

maintenance) errors can be explained by dysregulation of LC-NE functioning (manifesting in 

moment-to-moment fluctuations in attention consistency) and downstream fluctuations in the 

FPN activity (i.e., goal-maintenance failures; Unsworth & Robison, 2017). Thus, LC activity can 

determine moment-to-moment task activity levels by biasing FPN activity, which leads to 

accurate, and consistent, task performance.  

What then could future work do to examine the link between goal maintenance/proactive 

control and attention consistency? One interesting approach would be to design a battery of tasks 

in which attention control was exclusively assessed in tasks that place a high demand on goal 
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maintenance/proactive control to regulate conflict (e.g., antisaccade, high-congruency Stroop, 

AX-CPT) while modeling attention consistency from tasks that present little conflict (e.g., PVT, 

MRT, simple RT and low-choice RT tasks). If goal-maintenance and sustained attention abilities 

are two sides of the same coin, then even when making the tasks as independent as possible, we 

might expect a strong, if not perfect, correlation between these factors. However, if these two 

factors were to correlate less strongly (i.e., < .70), this might suggest that there is some 

possibility of dissociating goal maintenance and sustained attention abilities. 

An alternative or additional approach would be to look for discriminant validity evidence 

between attention consistency and the response competition/reactive control components of 

attention control (rather than proactive control; Braver, 2012; Kane & Engle, 2003). These 

components of attention control can be thought of as “late-selection” mechanisms that are 

brought online only after conflict has been recognized or when no predictive information is 

available and needs to be corrected just-in-time to avoid an incorrect response (Braver, 2012). 

Based on prior work of reactive control, future studies could model a competition 

resolution/reactive control factor from flanker conflict tasks, a mostly incongruent Stroop task, 

and AX-CPT tasks with reactive strategy instructions (Cooper et al., 2017; Gonthier et al., 2016; 

Kane and Engle, 2003). I would propose that this competition resolution/reactive control factor 

would be still somewhat correlated with sustained attention ability because there is still a 

requirement for consistent task focus for successful completion of the task, but much less so than 

a goal maintenance/proactive control factor.   

The Role of Motivation in Sustained Attention 

Empirical Paper 2 (Welhaf & Kane, 2022a) attempted to investigate the individual 

differences link between self-reported motivation and sustained attention ability. However, we 
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found that self-reported task motivation was too strongly correlated with the higher-order 

sustained attention ability (i.e., > 1.0), leading to severe misfit of the model. I do not think that 

motivation and attentional consistency are isomorphic constructs, however. First, the zero-order 

correlations indicated only a modest to moderate relationship between task-specific motivation 

and attention consistency indicators. For example, motivation in the PVT correlated with PVT 

slowest 20% and TUTs with rs = –.36 and –.46, respectively, and Choice RT and Continuous 

Tracking Motivation correlated modestly with objective indicators from those tasks (rs = –.21 

and–.28, respectively). Thus, at the task level, motivation cannot fully explain attention 

consistency.  

Recent work in the cognitive control literature has emphasized that performance is not 

only determined by one’s ability (or capacity) but also by one’s motivation (e.g., Braver et al., 

2014; Shenhav et al., 2017; 2021). This interplay between cognition and motivation is also likely 

important for understanding attention consistency. The current dissertation has argued that 

sustained attention is an ability that is important for successfully completing a range of tasks, 

with some people having a better or worse ability than others. However, it could be that 

sustained attention ability is largely similar for everyone, but how well someone implements this 

ability is determined by how motivated they are to perform. Like other forms of cognitive 

control, engaging sustained attention comes with costs (e.g., a depletion of cognitive resources, 

or increased levels of stress, boredom, and general mental workload; see Thomson et al., 2015; 

Warm et al., 2008). With the appropriate benefits, however, one may be more willing to sustain 

attention to meet the demands of a given task. Indeed, recent work has argued that individuals 

balance exerting cognitive effort (i.e., engaging in sustained goal-directed thought) with 

disengaging (i.e., mind wandering) or resting from the current task (Kool & Botvinick, 2013, 
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2014; Sripada, 2018) and that variability in task performance may reflect a combination of 

cognitive ability and cognitive motivation (Westbrook et al., 2013).  

How then can we begin to understand the relationship between motivation and attention 

consistency? Recent research using discounting paradigms have investigated whether there is a 

domain-general construct of cognitive motivation by examining how costs impact decision-

making (Crawford et al., 2022; see also Westbrook et al., 2013). For example, a “cognitive effort 

discounting” paradigm has been used to investigate how participants make decisions between 

participating in high-effort tasks that payout a high reward versus low-effort tasks for less 

reward. Using this paradigm, participants make a series of choices until a level of subjective 

equivalence is reached (i.e., a point where low-effort and high-effort choices are equally 

rewarding). Researchers can vary how demanding the high-effort task is which can lead to more 

rewarding, but more costly (effortful) decisions. This might be a useful approach to better assess 

how willing people are to engage in sustained attention as a cognitively demanding activity, 

rather than simply asking about subjects’ motivation to perform. For example, future studies 

could examine whether people who find more subjective costs in engaging in cognitively 

effortful tasks show less attentional consistency via objective and subjective indicators. 

ADHD Symptoms 

Attention-hyperactivity deficit disorder (ADHD) is defined by three clusters of symptoms 

including inattention, hyperactivity, and impulsivity (American Psychiatric Association, 2013). 

A frequent observation about individuals with ADHD is that they are “consistently inconsistent” 

(Karalunas, 2010). Indeed, the most prominent symptoms associated with the inattention cluster 

are poor sustained attention and distractibility. While usually investigated in children, some 
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studies have investigated how ADHD-related sustained attention deficits play out into young 

adulthood.  

First, with respect to objective measures of attention consistency, adults with diagnosed 

ADHD show greater RT variability compared to typically developing adults (g = 0.46; Kofler et 

al., 2013; Shahar et al., 2016). Additionally, children with ADHD, compared to controls, appear 

to show a clear periodicity of long RTs, with relatively long RTs manifesting roughly every 20 s, 

suggesting that lapses of attention occur in cycles (Castellanos et al., 2005; Vaurio et al., 2009).  

Further, self-reported ADHD symptoms correlate with a latent variable measure of RT 

variability (r = .23; Brydges et al., 2021; see also Keith et al., 2017). Thus, individuals with 

greater self-reported, or diagnosed, attention problems tend to show poorer sustained attention 

performance in simple attention tasks than those with fewer self-reported symptoms or healthy 

controls.  

Second, individuals who self-report more (or more severe) ADHD symptoms also report 

more TUTs during basic attention tasks than do those with fewer self-reported symptoms or 

healthy controls (e.g., Franklin et al., 2017; McVay & Kane, 2013; Meier, 2021; but see Kane, 

Smeekens et al., 2021). Collectively, self-reported ADHD symptoms appear to be related to both 

objective and subjective indicators of sustained attention, separately (rs ≈ .15–.25 and .25–.35, 

respectively), and should thus be correlated with their covariation (i.e., with a common sustained 

attention factor). If ADHD symptoms are truly related to general sustained attention ability, then 

I would predict that the correlation between these two factors would be stronger than the 

correlation between ADHD symptoms and both objective and subjective indicators (i.e., a 

correlation ≈ .25 with the general factor). Much like how the correlations with other self-report 

measures (e.g., neuroticism, cognitive failures, positive schizotypy) in the current nomothetic 
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span studies appear to average out when looking at the correlation with the higher-order 

sustained attention factor, I would expect self-reported ADHD symptoms to follow the same 

pattern.  

Learning and Memory 

The ability to maintain consistent focus during a task should be related to how well 

people learn new information from it. That is, being consistently focused should allow people 

better to encode information as it is being encountered; failing to sustain attention (i.e., thinking 

about task-unrelated topics) should predict poorer learning. Indeed, previous research has found 

that both objective and subjective measures of attention consistency predict learning in a variety 

of tasks and contexts (for a review, see Blondé et al., 2022). For example, deBettencourt et al. 

(2018) had subjects complete a go/no-go task using indoor vs. outdoor images followed by a 

surprise recognition memory test. Sustained attention was indexed as the average RT on the three 

trials preceding the test item during the go/no-go test. The findings indicated that slower pre-test 

item RTs predicted better performance, suggesting that better in-the-moment sustained attention 

allowed for better encoding of the items (see also Smallwood et al., 2006).18  

Between-subject findings parallel those of deBettencourt et al. (2018): Creating a latent 

“attention” factor using pupil variability, commission errors, and RT variability from a gradCPT 

task (a go/no-go task with gradual rather than abrupt stimulus transitions), Madore et al., (2020) 

 

18 deBettencourt et al.’s (2018) measurement of sustained attention does raise some 
concerns. Although others have argued that faster responses during continuous performance 
tasks are associated with attentional lapses, as these reflects short periods of mindless, habitual, 
responding, rather than careful processing of stimulus characteristics (Robertson et al., 1997), 
pre-target M RT might reflect changes in in-the-moment strategy instead of sustained attention 
engagement. As such, I don’t agree that this is a suitable measure of in-the-moment attention 
consistency and instead would suggest using variability in RT as an improved measurement 
approach.  
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found a strong negative correlation with performance on episodic memory tasks (r = –0.52). This 

“attention” factor loosely resembles how sustained attention was (and could be) assessed in the 

current nomological network studies and suggests that better sustained attention should be 

related to better learning and memory performance.   

Likewise, TUT rates during encoding predict poorer learning performance, such that 

people who mind wander more during the encoding period also tend to recall less at test. This 

pattern of results has been found in a range of contexts, including traditional lab memory tasks 

(rs ≈ –.15 to –.35; e.g., Garlitch & Wahlheim, 2020; Miller & Unsworth, 2021; Thomson et al., 

2014; Xu & Metcalfe, 2016), in more naturalistic tasks like video-lecture learning (rs ≈ –.30 to –

.50; e.g., Hollis & Was, 2016; Jing et al., 2016; Kane et al., 2017; Welhaf et al., 2022), and in 

live classroom settings (rs ≈ –.15 to –.20; e.g., Kane, Carruth, et al., 2021; Wammes, Seli et al., 

2016). Collectively, then, both objective and subjective indicators of attention consistency are 

related to individual differences in learning ability. I would therefore predict that a higher-order 

sustained attention factor would correlate moderately with learning ability (r ≈ –.35 to –.45). 

Negative Affect 

Emotions can impact memories, perception, and other goal-directed behaviors (Forgas, 

2008). It should not be surprising, then, that negative emotional states likely impact attentional 

consistency, with more negative affect leading to more variable performance and more frequent 

TUTs. Two possible reasons for this are that: (a) changes in affect may reduce the attentional 

resources that one can devote to a task or, (b) negative emotional states capture attention to a 

greater degree which disrupts ongoing task performance (Jefferies et al., 2008; Lazarus, 1999; 

Olivers & Nieuwnhuis, 2005). Further, previous research has argued that stress-induced TUTs 

may require top-down suppression to reduce their impact on the primary task (Klein & Boals, 
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2001; see also Wegner, 1994). In this view, a more negative emotional state should be related to 

greater RT variability and increased TUT rates, and thus poorer general sustained attention 

ability.  

Negative affect predicts objective measures of attention consistency at both within- and 

between-subject levels. At the within-subject level, Sliwinski et al. (2006) reported that on days 

where subjects reported feeling more stressed (compared to days with little to no stress), they 

also had an increase in relatively long RTs in a 2-back task. As well, subjects who underwent a 

negative mood induction (compared to a positive or neutral induction) showed greater RT 

variability following the induction (Irrmischer et al., 2018). Between-subject analyses also 

suggest that trait negative emotionality predicts sustained attention failures in simple lab tasks: 

People who report higher levels of depression or trait negative affect make more errors in 

sustained attention tasks (Farrin et al., 2003; Mrazek et al., 2012) and have more variable RTs 

(Ode et al., 2011, Studies 3 and 4).  

The link between mood state and TUTs (i.e., subjective measures of attention 

consistency) has also been well established at the within- and between-subject levels. For 

example, inducing negative affect in the lab leads to increased TUT rates (e.g., Marcusson-

Clavertz et al., 2020; Smallwood et al., 2009; Smallwood & O’Connor, 2011; Stawarczyk et al., 

2013). As well, in daily life studies of mind wandering, subjects report increased levels of 

negative affect during times of mind wandering versus on-task thinking (e.g., Kane et al., 2007, 

2017; Killingsworth & Gilbert, 2010; Poerio et al., 2013; Song & Wang, 2012). At the between-

subject level, self-reported negative affect correlates with TUT rate in simple attention and 

working memory tasks, with higher levels of negative affect predicting greater TUT rate (e.g., 

Banks & Welhaf, 2022; Robison et al., 2020; Ruby et al., 2013). Collectively, then, negative 
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affect may be negatively related to the general ability to sustain attention, such that people with 

higher trait levels of negative mood also show poorer attention consistency. 

Healthy Aging 

Healthy aging is associated with declines in multiple cognitive processes, including 

processing speed, inhibitory control, and general executive control (e.g., Braver & West, 2008; 

Hasher & Zacks, 1988; Salthouse, 1996). Theories of cognitive aging might therefore predict that 

sustained attention ability should also worsen with age. However, the literature appears to be 

mixed: Some studies find that RT variability tends to increase with adult age (e.g., Der & Deary, 

2006; Hultsch et al., 2002; Robison et al., 2022; West et al., 2002), whereas others report 

equivalent or even reduced levels of RT variability in older versus younger adults (Moran et al., 

2021; Nicosia & Balota, 2021; Waugh et al., 1973). The link between mind wandering and aging 

is more one-sided—and surprising: Older adults report fewer TUTs during lab tasks compared to 

younger adults (meta-analytic estimate g  = –.89, Jordão et al., 2019), and report fewer mind 

wandering experiences in everyday life (Maillet et al., 2018), suggesting that older adults may 

not experience more sustained attention failures.  

What might explain why the trajectories of objective and subjective indicators of 

sustained attention in older adults appear to go in opposite directions? A hallmark finding in the 

cognitive aging literature is that older adults generally have slower processing speed compared to 

younger adults (Salthouse, 1996). Given the strong correlation between mean RT (which is often 

used as an indicator for processing speed) and RT variability, it is not surprising that older adults 

often show greater RT variability compared to younger adults. When attention consistency is 

measured by objective indicators, then, it might be picking up on age-related differences in, or 

effects of, processing speed, rather than actual sustained attention differences.  
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Alternatively, or in addition, older adults might intentionally slow down during 

laboratory tasks to ensure more accurate performance. That is, in tasks that rely on both speed 

and accuracy, older adults might favor accuracy over speed (Vallesi et al., 2021). This intentional 

slowing should also selectively contribute to RT variability but not TUT rate. Thus, because 

processing speed and speed-accuracy trade-offs selectively impact RT variability (with no 

impact on TUT rates), any studies of attention consistency in older adults that relies only on 

objective indicators may not present accurate conclusions about the effects of aging on attention 

consistency. Rather, I suggest that it is necessary to look at the covariation between objective and 

subjective indicators of attention consistency, as this measure is not influenced by processes that 

selectively influence either objective or subjective indicators.  

Discriminant Validity Evidence 

If sustained attention is a fundamental process for the regulation of thought and behavior, 

it may be difficult to find constructs that are unrelated (i.e., r = 0.00) to measures of attention 

consistency. However, there may be some constructs that are relatively weakly associated with 

attention consistency, providing evidence for discriminant validity. Empirical Paper 2 (Welhaf & 

Kane, 2022a) presented some initial evidence for discriminant validity of the higher-order 

sustained attention factor: Correlations with certain personality traits such as agreeableness and 

conscientiousness were nonsignificant with the higher-order factor despite correlating weakly 

with the individual subjective factor. Replicating this pattern (i.e., null correlations with the 

higher-order factor despite significant correlations with one of the first-order factors) would be 

useful in confirming this discriminant validity evidence. 

While sustained attention appears to be related to WMC, it may be more weakly 

correlated with short-term memory (STM) measures. “Simple” STM tasks do not have a strong 
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executive attention requirement, as do traditional “complex span” measures of WMC (e.g., Engle 

et al., 1999; Kane et al., 2004; Unsworth & Engle, 2007). Thus, STM is more reflective of simple 

storage (and less of executive control), whereas measures of WMC are more reflective of 

executive control abilities (and less of simple storage). Attention consistency might therefore 

have weaker associations with STM ability than with WMC. No studies that I’m aware of have 

yet investigated how RT variability or mind wandering relate to STM.  

Previous research has indicated that attention is critical to creative cognition. For 

example, the controlled attention theory of creativity (e.g., Beaty et al., 2014; Benedek et al., 

2012) argues that focused attention can allow for better memory search and generating more 

novel ideas (e.g., Gilhooly et al., 2007, Nusbaum & Silvia, 2011; Zabelina et al., 2016). Other 

work has also argued, in contrast, that a lack of attention (i.e., mind wandering) may support 

creative cognition. Here, mind wandering supports unconscious associative thinking which 

allows for spreading activation and subsequent generation of more creative ideas, perhaps 

especially during periods of incubation, where individuals are not fixated on a problem (e.g., 

Baird et al., 2012).  

The ability to maintain consistent focus (i.e., sustain attention) may be useful in 

supporting creative thinking, but the current evidence is mixed. Generating creative ideas 

appears to sometimes correlate positively with mind wandering propensity, with people who are 

more prone to mind wandering generating more creative ideas (e.g., Gable et al., 2019). In 

contrast, measures of creativity are sometimes weakly negatively correlated with TUT rate (Frith 

et al., 2021; Hao et al., 2015; Murray et al., 2021) or produce null associations (Smeekens & 

Kane, 2016; Steindorf et al., 2021). There also appear to be no studies explicitly linking 

objective indicators of attention consistency with measures of creativity or divergent thinking. 
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Frith et al. (2021) included SART intra-individual RT variability as an indicator in their attention 

control factor, but zero-order correlations between SART RTsd and creativity ratings were 

weakly negative (rs  –.25 to –.10), indicating that greater variability was related to poorer 

divergent thinking. Given the mixed empirical results regarding TUTs and creativity, and the 

lack of studies examining RT variability and creativity, future work should consider exploring 

the creativity–attention consistency connection as evidence for discriminant validity of the 

higher-order sustained attention factor. 

Considerations for Future Construct Representation Studies 

While the nomothetic span studies focused on correlational evidence for the construct 

validity of sustained attention measures, the construct representation studies presented in 

Empirical Paper 3 took an experimental approach (combined with individual differences) to 

understand and identify the cognitive processes that cause variation in task performance. We 

hypothesized that minimizing the sustained attention demands by implementing theoretically 

derived manipulations would reduce (or even eliminate) the covariation between objective and 

subjective indicators of attention consistency. However, in both studies, this hypothesis was not 

supported: We found no significant decrease in the correlation between objective and subjective 

indicators in the minimized tasks, despite medium-sized experimental reductions in mean levels 

of RT variability and TUT rates. Empirical Paper 3 discusses some possible explanations for 

why we failed to find a weaker correlation in the minimized conditions and so I will only briefly 

revisit them here. Subsequently, I will discuss additional methods that might be used to not only 

further minimize sustained attention demands for “minimized” tasks, but also to maximize 

demands for “maximized” tasks, in order to sufficiently impact the covariation between objective 

and subjective measures of attention consistency.  



 

  255 

Methods to Further Minimize Sustained Attention Demands 

A promising manipulation to reduce the sustained attention demands of a task is 

increasing subjects’ motivational state. Under highly motivating conditions, subjects show 

improved objective performance measures (e.g., lower RT variability and fewer errors) and 

subjective measures (e.g., fewer TUT reports). Providing subjects with attainable goals (e.g., 

Esterman et al., 2014; Seli et al., 2019) or instructions to increase their effort (e.g., Unsworth et 

al., 2022), or giving them rewards or feedback on their performance (e.g., Massar et al., 2016, 

2019; Robison et al., 2021), or combinations of these, should further facilitate subjects remaining 

focused for the duration of the task. To maximize these motivational effects, it may be necessary 

to provide such feedback or incentives relatively frequently (even on a trial-by-trial basis) if we 

are interested in reducing trial-to-trial variability due to sustained attention lapses. That is, more 

frequent rewards or goal reminders may be necessary for improving sustained attention as 

currently defined (see Hood & Hutchinson, 2021, for an example of frequent goal reminders 

improving Stroop task performance).  

Altering the frequency of thought probes may be another way to exogenously redirect 

subjects’ attention back to the task. First, more frequent probing will provide subjects with 

additional task breaks. That is, subjects only must maintain their optimal focus for a brief time, 

before getting another break in the task occurs and allows them to reset. These shortened 

durations of task engagement may minimize lapses by not allowing enough time between probes 

for subjects’ minds to wander or for falling into repetitive, mindless responding. Additionally, 

probes, themselves, may remind subjects that they need to keep their thoughts on task, and so 

more frequent probing will increase the frequency of those “stay on task” reminders.  
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Whereas some studies have found that frequent probing reduces TUT rates in a task (e.g., 

Greve & Was, 2022; Seli, Carriere et al., 2013; Schubert et al., 2019; but see Robinson et al., 

2019), evidence for the impact of thought probe frequency on objective measures of sustained 

attention is less clear. If increasing the frequency of thought probes impacts the underlying 

mechanisms of sustained attention, then we would expect to find that both indicators, and 

importantly their covariation, are similarly impacted. However, if thought probe frequency only 

alters the likelihood of reporting TUTs, as found by Seli, Carriere et al. (2013), then it might not 

be a strong enough manipulation to impact sustained attention generally. To see whether thought 

probe frequency affects attention consistency, future research should consider how frequent 

versus infrequent probing changes the covariation between objective and subjective indicators.   

Another way to redirect attention back towards a task may be through providing subjects 

with periodic alerting or warning signals of upcoming critical task events. For example, using the 

SART, some studies have found that providing reliable (compared to unreliable) warning cues 

about upcoming important task events (i.e., rare no-go trials) reduced commissions errors and 

produced faster RTs (Dang et al., 2022; Finkbeiner et al., 2015; Helton et al., 2011). Likewise, in 

the PVT, warning tones (both reliable and unreliable) could be added toward the end of each ISI 

to see whether such manipulations reduce lapses or long RTs as well as TUTs. If warning signals 

can serve as a temporary reminder that a critical trial is upcoming or that a trial is about to start, 

then we would expect to see reduced RT variability and TUT rates (and critically their 

covariation) in the warning signal task compared to the control task.   

Methods to Maximize Sustained Attention Demands 

The methodological approach used in the construct representation studies (Empirical 

Paper 3) focused exclusively on trying to minimize the sustained attention demands of 
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prototypical tasks. However, our “maximized” tasks—reflecting the standard implementations of 

prototypical sustained attention asks—may not have actually maximized their sustained attention 

demand. As discussed briefly in Empirical Paper 3, to create demand-maximized tasks, we could 

have implemented the opposing manipulations used in the minimized tasks (e.g., requiring more 

frequent responding in the SART by reducing no-go trials, increasing time between trials in the 

MRT, increasing the length, or variability, of SOAs in the PVT). Future studies should consider 

minimizing and maximizing sustained attention demands within a study to see such effects. 

Below I suggest some additional methods for maximizing demands.  

As previously discussed, manipulations of emotional state appear to affect both objective 

(Irrmischer et al., 2018) and subjective (Marcusson-Clavertz et al., 2020; Smallwood et al., 2009; 

Smallwood & O’Connor, 2011; Stawarczyk et al., 2013) indicators of attention consistency. 

Specifically, under negative mood manipulations (i.e., inducing sadness or stress/anxiety) 

subjects show more variable and erroneous responding and greater TUT rates compared to 

control conditions. Future work, then, could use similar mood manipulations before sustained 

attention tasks to compare how the covariation between objective and subjective indicators 

changes compared to control condition.  

As an extension of manipulating affect, cuing subjects’ personal concerns may be another 

approach to maximize sustained attention demands. Cuing of personal concerns should increase 

the demands on sustained attention (compared to low- or non-cued condition) because such 

concerns should create greater interference with task goals. Indeed, previous lab work had found 

that cuing subjects with their personal goals or concerns (compared to non-goal related cues) can 

increase TUT rates (e.g., Kopp et al., 2015; McVay & Kane, 2013; Vannucci et al., 2017). These 

cuing manipulations have primarily been used in the context of mind wandering research, but 
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one study (McVay & Kane, 2013) reported null effects on objective sustained attention 

indicators. Across four experiments, McVay & Kane (2013) found no significant difference on 

SART no-go accuracy for personal-goal cues (M = .45) vs. other-goal cues (M = .44). Thus, 

cuing of subjects’ goals might be enough to alter subjects’ TUTs but not their performance. 

However, it is possible that the effect of cuing subjects’ goals might be there if more appropriate 

(or subtle) objective sustained attention measures were used (e.g., RTsd or tau). Future work 

should investigate the impact that personal cues that are embedded within tasks have on 

objective measures more reflective of attention consistency, and critically, the covariation 

between objective and subjective measures. 

A final approach to maximizing the demands of the sustained attention tasks could be to 

make the tasks longer or less interesting, which should reduce subjects’ motivation or effort to 

perform. Previous work has argued that mind wandering increases with time on task because 

subjects’ motivation to perform wavers (Esterman et al., 2016; Thomson et al., 2015). From an 

opportunity cost perspective (Kurzban et al., 2013; Thomson et al., 2015) subjects may gain 

more information about the costs of engaging in longer, monotonous tasks, especially when tasks 

start being interpreted by subjects as long (e.g., over 30 min). Subjects typically don’t know how 

long a task will last, and so their motivation and effort may remain stable for some time; at some 

point, however, they may decide it is no longer worth the cost to put in the same effort. In these 

cases, mind wandering should increase, and performance should become more variable. For 

example, Brosowksy et al., (2020) found that within-subjects, MRT RRT and mind wandering 

increased with time-on-task, and this was coupled with a decrease in motivation. Future research 

could examine how task length impacts the correlation between objective and subjective 
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indicators of attention consistency by varying how long subjects must complete a task for (i.e., a 

10 min SART vs. a 25 min SART). 

Conclusions 

The ability to sustain attention is a fundamental cognitive function to basic and complex 

intellectual processes and outcomes. Current measurement approaches, however, limit our 

understanding of attention consistency by relying on separate “objective” or “subjective” 

approaches that have their own unique source of measurement error. The current integrated 

dissertation argues that, because both objective (performance-based) and subjective (self-report-

based) measures of sustained attention capture only some variance related to sustained attention, 

a more construct valid measurement approach is to assess their covariation. It is here—in the 

individual-differences overlap between objective and subjective measures—where we should 

best capture sustained attention ability, independent of sources of measurement error unique to 

either of these indicator types. The current dissertation studies highlight the importance of 

improved measurement and discusses strengthens, outstanding concerns, and future directions to 

further improve the proposed measurement approach. 
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