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Greater anterior knee laxity (AKL) has been identified as a risk factor of anterior 

cruciate ligament (ACL) injury and could be indicative of a weaker ligament. While ACL 

morphometry and structural composition have the potential to affect ligamentous strength 

and resistance to external loadings, little is understood about how ligament size and 

structure may contribute to AKL. Thus, the purpose of this study was to determine the 

degree to which ACL morphometry and structural composition collectively predict AKL 

in active females and males. A cross sectional design recruiting active collegiate females 

and males were used. AKL was assessed by a knee arthrometer. T2-weighted magnetic 

resonance imaging (MRI) scans were utilized to obtain ACL morphometry as assessed by 

ACL volume, ACL width, and ACL cross-sectional area. T1-weighted MRI scans were 

utilized to acquire femoral notch width. Structural composition of the ACL was assessed 

by T2* and T2 relaxation times. All AKL and MRI measures were used to determine 1) 

sex differences in ACL morphometry; 2) sex differences in ACL structural composition; 

and 3) which ACL morphometric measure and MR relaxation measure were the strongest 

independent predictors of AKL and the degree to which ACL morphometry combined 

with ACL structural composition to predict AKL in active females and males. Twenty 

college-aged active healthy males (180 ± 0.1 m, 84.0 ± 10.9 kg, 23.2 ± 2.9 yrs) and 

twenty females (167 ± 0.1 m, 61.9 ± 7.2 kg, 21.3 ± 2.3 yrs) were measured for AKL and 

underwent MRI testing on the left knee. Results revealed that males had 30% larger ACL 

volume and 18% larger ACL width than females, with no sex difference in ACL cross-



sectional area. There were no significant differences between sexes in ACL structural 

composition as assessed via T2 and T2* relaxation times. ACL volume was the strongest 

morphometric predictor of AKL in both males and females. Smaller ACL volume and 

lower T2 relaxation times collectively predicted AKL in females (R2=.68), whereas 

smaller ACL volume and higher T2* relaxation times collectively predicted AKL in 

males (R2=.44). The primary findings collectively indicated that ACL morphometry and 

structural composition independently and collectively correlated with AKL. Further, 

females had smaller ACL morphometry than males with the ACL volume likely being the 

most appropriate measure of ACL size in studies of sex biases in ACL injury. 

Investigation of factors associated with the established risk factor of greater AKL could 

advance future prevention efforts to enhance ligament strength.
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CHAPTER I 

INTRODUCTION 

Statement of Problem 

Anterior cruciate ligament (ACL) injury frequently occurs in active populations 

with around 70% of ACL injuries resulting from non-contact injury mechanisms (Boden, 

Dean, Feagin Jr, & Garrett Jr, 2000; Gianotti, Marshall, Hume, & Bunt, 2009; Hootman, 

Dick, & Agel, 2007). The primary function of the ACL is to prevent anterior 

displacement of the tibia relative to the femur (Butler, Grood, Noyes, & Zernicke, 1978) 

with secondary functions to protect against increased knee abduction and tibial rotation 

motions (Markolf et al., 1995). While knee stability during functional activity is provided 

passively by the ligaments and actively by the muscles around the knee, (Noyes, Grood, 

Butler, & Malek, 1980) it is possible that when there is a delay or an error in the 

neuromuscular control system, active restraint is insufficient and a greater relatively 

demand is placed on the passive restraints (Hashemi, Breighner, et al., 2011; Hewett, 

Paterno, & Myer, 2002). During this situation, the capability of the ligament to resist the 

external load is critical in maintaining ACL integrity. However, in vivo research is 

limited with regard as to how the intrinsic factors of the ACL may be related to ACL 

injury.  

Clinically, ACL function is most commonly assessed by anterior knee laxity 

(AKL) testing (Butler, Noyes, & Grood, 1980). Greater AKL has been identified as a risk
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factor of ACL injury (Myer, Ford, Paterno, Nick, & Hewett, 2008; Uhorchak et al., 2003; 

Woodford-Rogers, Cyphert, & Denegar, 1994). Specifically, a prospective study of 

college-aged military cadets reported a 2.7 times greater ACL injury risk with anterior 

knee laxity value ≥ 1 SD above the mean (Uhorchak et al., 2003). Additionally, a 1.3 mm 

side-to-side difference of anterior-posterior knee laxity prospectively resulted in more 

than a 3-fold greater odds of ACL injury (Myer et al., 2008). Collectively these reveal 

that greater AKL has a demonstrated association with increased risk of ACL injury. 

Anterior knee laxity is commonly defined as the anterior displacement of the tibia 

relative to the femur under a fixed load. Greater anterior-posterior knee laxity was 

associated with lower failure load one year after ACL reconstruction surgery in a canine 

population (Beynnon et al., 1994). AKL measures in an intact animal ACL were 

significantly less than in those with a ruptured ACL (Lopez, Hagquist, Jeffrey, 

Gilbertson, & Markel, 2004). Additionally, 3D finite element modeling reported that 

greater PCL graft laxity was associated with lower graft strength (Lai et al., 2015). While 

these studies are limited to ligamentous grafts, they collectively suggest that greater knee 

laxity could be indicative of a weaker ligament. Thus, factors associated with lesser laxity 

have the potential to be related to ligamentous strength. A better understanding of the 

factors associated with stronger or less lax ligaments may be of benefit in ultimately 

reducing ACL injury incidence.   

The orthopedic biomechanics literature has well established that greater cross-

sectional area of connective tissue is generally associated with greater resistance to the 

displacement (Nordin & Frankel, 1989). Specific to the ACL, this concept would indicate 
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that greater ACL morphometry (i.e. larger size) would be associated with less 

deformation of the ligament under the fixed load, thus less AKL. While this theory is 

supported by animal research which reported total anterior-posterior translation of knee 

was associated with ligamentous cross-sectional area (R2=0.86) after ligament 

reconstruction (Grood et al., 1992), the relationship between ACL morphometry as 

measured by ligament width and AKL in healthy humans was relatively weak compared 

to the previous animal study (R2=0.22) (H.-M. Wang, Shultz, & Schmitz, 2015). Such 

differences in the relationships of laxity to ligament size are likely explained in part by 

the different morphometric measures used. While the most predictive morphometric ACL 

measure has yet to be established, other intrinsic factors contributing to stronger 

ligaments should also be investigated in vivo.   

The strength of the ligament may not be fully represented by the ligamentous 

morphometric characteristics as ligaments with similar morphometry may have different 

material properties due to compositional differences. The primary compositional 

structures of ligaments include type I collagen, type III collagen, proteoglycans, elastin 

and water content (Culav, Clark, & Merrilees, 1999; Nordin & Frankel, 1989). Lower 

collagen density was associated with lower strain at failure of cadaver ACLs (Hashemi, 

Chandrashekar, Mansouri, Slauterbeck, & Hardy, 2008). Different collagen fibers have 

various diameters, which may affect restraint capacity (Liu, Yang, al-Shaikh, & Lane, 

1995). Collagen fibril orientation was associated with the ability of the ligament to resist 

external forces (Quapp & Weiss, 1997). Small amounts of Type V collagen and 

proteoglycans could determine the structural make-up of the larger diameter collagen 
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fibers, which may impact collagen fibers integrity (Nakamura et al., 2000; Raleigh & 

Collin, 2012). These collagen factors thus have the potential to affect failure load. Such 

works collectively indicate that a well-structured and well-organized collagen network 

matrix is capable of resisting higher external loads, thus also being less lax.  

To the date we understand very little about how the compositional differences and 

associated material properties of ligaments affect ligamentous function in-vivo. Recent 

advances in quantitative magnetic resonance imaging (MRI) have allowed insight as to 

the material properties of ligamentous tissue. T2 relaxation times is referred as the 

transverse relaxation rate (Chavhan et al., 2009). Shorter T2 relaxation times reflect 

denser collagen, more organized collagen ultrastructure, and less water content (Matzat, 

van Tiel, Gold, & Oei, 2013). T2 relaxation times is largely influenced by the presence of 

free water molecules, which slow down the loss of transverse magnetization (Matzat et 

al., 2013). Denser and more organized collagen matrix restricts the motion of water 

molecules, thus reducing free water molecules, and enhancing dipole-dipole interactions 

which shorten T2 relaxation times (Fullerton & Rahal, 2007; Matzat et al., 2013). Due to 

the influence of free hydrogen distribution association with MRI signal intensity decay, 

differences in collagen structure may be detected in vivo by T2 relaxation times. 

T2 relaxation times have been utilized in an in vivo animal model to predict 

ligamentous function. Specifically, lower T2 relaxation times when combined with 

greater ACL volume were associated with lower anterior-posterior knee laxity of animal 

ACL grafts (Fleming, Vajapeyam, Connolly, Magarian, & Murray, 2011). Similar to T2 

relaxation times, T2* relaxation times, which considers both of the spin-spin interaction 
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and the interaction with the magnetic field, has been utilized in an animal study of ACL 

grafts (Biercevicz, Murray, et al., 2014; Chavhan et al., 2009). T2* relaxation times was 

negatively associated with yield load of healing ACL grafts (Biercevicz, Murray, et al., 

2014). These findings indicate that T2 and T2* relaxation times may both be capable of 

detecting ligament strength and thus have a potential relationship to AKL. However, 

while T2* relaxation time was independently associated with ligament strength 

(Biercevicz, Murray, et al., 2014), T2 relaxation time was not independently associated 

with ligament strength (Fleming et al., 2011). This suggests that T2* relaxation times 

may be more sensitive in detecting ligament composition associated with ligamentous 

strength than T2 relaxation times. Currently based on our knowledge, a direct comparison 

of the ability of T2 and T2* to predict ligamentous strength or AKL has not been 

performed. Additionally, while T2* relaxation times has been utilized in human cadavers 

(Biercevicz, Akelman, Rubin, et al., 2015), the results did not support previous 

T2*relaxation times association with ligamentous strength in vivo animal study 

(Biercevicz, Murray, et al., 2014). Given the limitation of the cadaver model in fully 

representing a true physiologic environment, further human in vivo investigation of the 

T2 and T2* relations to ligamentous function is needed. 

While we have learned that AKL can be influenced by a multitude of factors 

including circulating sex hormones (Shultz, Kirk, Johnson, Sander, & Perrin, 2004; 

Shultz et al., 2010; Shultz, Wideman, Montgomery, Beasley, & Nindl, 2012), genetic 

factors (Bell, Shultz, Wideman, & Henrich, 2012; Silman, Day, & Haskard, 1987), and 

lower extremity alignment characteristics (Shultz, Dudley, & Kong, 2012; Shultz, 
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Schmitz, Nguyen, & Levine, 2009), the influence of  morphometric and intrinsic factors 

of the ligament on in vivo AKL has received little attention. A better understanding of the 

relationship of morphometric and intrinsic factors to AKL may serve to inform future 

prevention programming to address the established risk factor of greater AKL by 

focusing on increasing ligamentous strength.  

It is likely that relationships of ligamentous properties to AKL may be sex 

specific. ACL volume of female cadavers was smaller than in males (Chandrashekar, 

Slauterbeck, & Hashemi, 2005). Additionally, female cadaver ACLs had lower strain at 

failure (Chandrashekar, Mansouri, Slauterbeck, & Hashemi, 2006) and lower collagen 

density than males (Hashemi, Chandrashekar, Gill, et al., 2008). These findings indicated 

that ACL morphometry and structural composition associated with failure load could be 

sex specific. Because sex-specific hormones could mediate collagen turnover rate and 

impact ligament function (Shultz, Wideman, et al., 2012), the relationships of ACL 

volume and structural composition to AKL could differ between females and males. Due 

to disparities in sex-specific ACL structural composition and limited in vivo study of 

structural composition, further understanding the intrinsic factors on sex specific AKL 

could contribute the explanation of the higher injury risk in females (Beynnon et al., 

2014). 

Objectives and Hypotheses 

Initial objectives are to 1) determine sex differences in ACL morphometry and 

femoral notch width (manuscript #1) and; 2) determine sex differences in ACL structural 

composition (manuscript #2).  
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 Hypothesis 1: Males will have greater ACL morphometry measures 

(ligament volume, width, and cross-sectional area) and wider femoral 

notch width than females. 

 Hypothesis 2: Males will have shorter T2* and T2 relaxation times 

than females. 

The next objectives are to determine which morphometric measure and which MR 

relaxation measure are the strongest independent predictors of anterior knee laxity 

(manuscript #3).  

 Hypothesis 3: ACL volume will have greater predictive ability of 

anterior knee laxity than will ACL width and ACL cross-sectional 

area. 

 Hypothesis 4: T2* relaxation times will have greater predictive 

ability of anterior knee laxity than will T2 relaxation times. 

The primary objective of this investigation is to determine the degree to which 

ACL morphometry (as assessed by ligament volume, width, or cross-sectional area) and 

structural composition of the ACL (as assessed by T2* or T2 relaxation times) 

collectively predict to anterior knee laxity (AKL) in active females and males 

(manuscript #3).  

 Hypothesis 5: The combination of smaller ACL morphometry (as 

determined from hypothesis 3) and longer quantitative MR relaxation 

time (as determined from hypothesis 4) will predict greater anterior 

knee laxity in males and females 
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Limitations and Assumptions 

1. The findings from this dissertation may not be generalized to populations other 

than the physically active college-aged individuals.  

2. The ACL volume measure requires manually segmenting the ACL contour from 

each MRI image. Depending on the field strength, chosen sequence, and 

individual participant variation, there is not a uniform resolution/pixel intensity 

distinguishing the ACL from surrounding soft tissues.  

3. This work will control for femoral notch width because previous research 

reported that smaller femoral notch width area was associated with smaller ACL 

cross-sectional area (Dienst et al., 2007). There is a potential that other bony 

geometry may potentially affect ACL morphometry and structural composition.  

4. A single tester will obtain all laxity and MRI measures; therefore prediction 

equations may not be generalizable to other testers.  

5. The potential factors affecting structural composition of the ACL are not fully 

understood.  

6. While clinically available, T2 and T2* mapping technology has not been widely 

used in human ligaments.  

7. This work does not account for genetic factors that could impact structural 

composition of the ACL.  

8. Even though we will control for phase of menstrual cycle in testing, the 

hormonal level within the 3 to 8 days of follicular phase can differ between 

participants (Landgren, Unden, & Diczfalusy, 1980).  
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9. Anterior knee laxity measure does not directly measure ACL function. ACL 

provides about 85 % of total anterior restraint with other passive structures 

providing less than 3% per structure (Butler et al., 1980). 

Delimitations 

1. Only healthy active males and females between the ages of 18 and 30 with no 

previous knee ligament injury and surgery will participate in this study 

2. Previous studies reported that side-to-side measures of knee laxity and ACL 

volume demonstrated high degrees of symmetry (Jamison, Flanigan, Nagaraja, 

& W., 2010; Shultz & Nguyen, 2007). Bilateral knee laxity measures will first 

be used to determine the level of AKL symmetry. Then, AKL, ACL 

morphometry, and structural composition of the ACL will be only obtained from 

the left knee 

3. All participants will be prohibited from engaging in strenuous physical activities 

for at least 24 hours before testing 

4. All measures will obtained by a singer tester with established day-to-day 

reliability  

5. While T2 and T2 * mapping will be utilized to assess the structural composition 

of the ACL, it is not a direct measure of collagen structure.   

6. Data, results, and interpretation for females will be based on a limited window of 

the menstrual cycle (3 to 8 days)   
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Operational Definitions 

Healthy: No history of injury or current chronic pain to the either lower extremity in the 

past 6 months that has resulted in limited physical activities; No previous history of 

significant injury to the capsule, ligament, or menisci of either knee; No previous history 

of the surgery to either knee.  

Recreationally Active: An individual who currently engages in exercise at least 2 hours 

per week.    

Adults: 18 to 30 years old. 

T2 relaxation: T2 relaxation refers to the decay of transverse magnetization caused by 

the spin-spin interactions. 

T2* relaxation: The time constant defining the loss of signal following excitation. Two 

components contribute to T2*. First, some signal loss occurs due to T2 relaxation. 

Second, some signal loss is caused by variation in precession angles for different spins 

within a voxel.  

Radiofrequency Pulse: The electromagnetic pulse used in MRI to change the direction 

of the magnetic field.  

Repetition time: The time from the application of an excitation pulse to the application 

of the next pulse.  

Excitation time: The time of rotational magnetization out of alignment with the 

longitudinal axis, caused by the application of an RF pulse 

Larmor frequency: The rate of precession of the magnetic moment of the proton around 

the external magnetic field.  
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Bo: The constant, homogeneous magnetic field used to polarize spins, creating 

magnetization.    

Predictor Variables 

ACL volume: The total volume of the ACL calculated from manual ACL segmentation 

of sagittal MRI images.  

ACL Cross Sectional Area: ACL cross-sectional area calculated as the area of ACL 

segmented from the axial image.  

ACL Width: ACL width as the width of a line transected the ACL, and was drawn 

perpendicular to Blumensaat’s line. 

Femoral Notch Width: Femoral notch width calculated at two-thirds of the notch depth 

with a line parallel to the ventral articular surface line.  

T2* relaxation times: T2* relaxation times was generated from T2 relaxation image 

protocol of sagittal MRI images which indicate transverse relaxation rate. T2* does 

account for spin-spin interaction and magnetic field. Shorter relaxation times reflect more 

collagen density, organized collagen structure, and less water content (Matzat et al., 

2013).  

T2 relaxation times: Similar to the T2* relaxation times which was also generated from 

T2 relaxation image protocol of sagittal MRI images, but accounts only for spin- spin 

interaction of protons, not the interaction with the magnetic field. 

Dependent Variable 

Anterior Knee Laxity: The anterior displacement of tibia relative to the femur under 

130 N force.
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CHAPTER II 

REVIEW OF THE LITERATURE 

This review will address how a measure of ACL function (anterior knee laxity) 

may be associated with ligamentous intrinsic factors and how these factors may associate 

with ACL injury risk. Specifically, this review will address the current understanding of 

ACL epidemiology, function, injury mechanisms and ligamentous intrinsic factors that 

have been observed. Next, it will describe relationship of ACL morphometry and 

structural MRI composition measures associated to anterior knee laxity and ligamentous 

strength. 

ACL Injury 

Anterior cruciate ligament (ACL) injury has been stated as the “one of the major 

problems in sports medicine” (Renstrom, 2013). The ACL injury is commonly reported 

in the athletic population with around 0.11-0.17 injuries per 1000 Athlete-Exposures 

(Hootman et al., 2007). ACL injury has a collective health care cost in $4 billion in 

annual expenses (Brophy, Wright, & Matava, 2009; Gianotti et al., 2009; Griffin et al., 

2000). Additionally, there are a long-term health burdens due to high rates of 

osteoarthritis development after initial ACL injury (Lohmander, Ostenberg, Englund, & 

Roos, 2004). The following section will address short-term and long-term effects of ACL 

injury.
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Injury and Long-term Effects 

Injury to the ACL impacts around 80,000 people annually in the United States 

with 70% of injuries in noncontact situations (Griffin et al., 2000). The recent costs of 

ACL injury are estimated at approximately $4 billion per year in the U.S. (Brophy et al., 

2009). The injury compensation system in New Zealand reported that the expenses of 

ACL surgeries with following treatment costs involves in $11,157 per person (Gianotti et 

al., 2009). Across a 16 year injury epidemiology investigation of college athletes, the 

ACL injury rate was 0.15 per 1000 athlete-exposures with women’s gymnastics (0.33), 

women’s soccer (0.28), women’s basketball (0.23) and men’s spring football (0.33) being 

the highest risk sports (Hootman et al., 2007). Of approximately 80% of knee ligament 

surgeries and 65% of ACL surgeries, the patient was participating in sports activities at 

the time of injury (Gianotti et al., 2009). These reports collectively indicate that ACL 

injury results high expenses of health care and often occurs during sporting activity. 

The ACL injury rate for 15 collegiate sports increased 1.3% on average per year 

from 1989 to 2004 (Hootman et al., 2007). Comparison of Belgian soccer teams between 

2000 and 2010, revealed ACL injury rates decreased slightly (7%), but not significantly 

(Quisquater et al., 2013). Further, the rates of ACL reconstruction significantly increased 

during 1994 to 2006 from 32.94 to 43.48 per 100,000 person-years (Mall et al., 2014). 

These findings indicate that ACL injury continues to be a current health issue that is 

increasing in scope.   

While the acute care and short-term postsurgical rehabilitation of ACL injury are 

significant issues, the long-term consequences are also considerable. A high rate of knee 
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osteoarthritis (OA) development and long-term knee functional limitations are related to 

ACL injury within 12 years of initial injury (Lohmander et al., 2004). Additionally, 

approximate 38% of ACL injuries are combined with medial meniscus tears (Frobell, 

Lohmander, & Roos, 2007). The combination of ACL and medial meniscus injuries 

significantly increased the risk of OA 15 years post-reconstruction (Cohen et al., 2007; 

Meunier, Odensten, & Good, 2007; Oiestad et al., 2010). Regardless of the patient had 

ligamentous reconstruction or meniscal repair surgeries; this may not reduce the 

incidence of knee OA development (Lohmander et al., 2004; Myklebust & Bahr, 2005). 

Numbers of adults over the age of 26 with knee OA symptoms have been estimated over 

than 9 million people with more than $185 billion in associated expenses in the U.S. 

(Kotlarz, Gunnarsson, Fang, & Rizzo, 2009; Lawrence et al., 2008). Collectively these 

results indicate that ACL injury not only has a short-term impact but also long-term 

negative effects on an individual’s lifetime.   

Summary 

ACL injury is still a critical issue in sports medicine (Renstrom, 2013) with high 

costs (Brophy et al., 2009; Gianotti et al., 2009; Griffin et al., 2000) and the subsequent 

OA problems (Cohen et al., 2007; Lohmander et al., 2004; Meunier et al., 2007; Oiestad 

et al., 2010). Most ACL injuries are due to non-contact mechanisms in active populations 

(Boden et al., 2000). Due to the high ACL injury risk in active populations, 

understandings of how the ACL functions and how the ACL is strained during sports 

activity are needed to best design future prevention strategies. 

 



15 
 

Knee Function 

Ligaments provide passive restraint to maintain knee stability (Noyes et al., 

1980). Specifically, the ACL is the primary stabilizer in restraining anterior displacement 

of the tibia (Butler et al., 1980) with secondary functions to limit knee abduction and 

tibial rotation motions (Markolf et al., 1995). The following section will address the 

functionality of the knee joint and the role of the ACL in maintaining joint stability.    

Knee Joint 

The surface of the tibia relative to the femur permits three dimensional rotational 

and translational motions (Grood & Suntay, 1983; Pennock & Clark, 1990). The relative 

joint rotations between the femur and the tibia occur in the sagittal (flexion and 

extension) frontal (knee abduction and adduction), and transverse (internal and external 

rotation) planes (Grood & Suntay, 1983). The relative joint translations between the 

femur and the tibia occurs along the transepicondylar line (medial/lateral shift), along the 

floating axis (anterior/posterior drawer), and along the tibial long axis 

(compression/distraction) (Pennock & Clark, 1990). The rotational and translational 

motions in all three planes results in six degrees of freedom at the knee joint.  

ACL Function 

Knee ligaments provide the primary passive restraint for knee stability (Noyes et 

al., 1980). Specifically, the function of the ACL is to prevent the anterior tibial 

displacement relative to the femur (Butler et al., 1978) and to restrain tibial internal 

rotation and knee abduction (Markolf et al., 1995). In human cadaveric knees, 

performance of anterior drawer tests demonstrated that the ACL offers about 85% of the 
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total resisting force at 30 degrees of knee flexion with the other passive structures 

providing less than 3% per structure (Butler et al., 1980). During in situ anterior loading, 

the ACL provided about 82% of the total resisting force in 30 degrees of knee flexion and 

ACL strain gradually decreased as the knee was flexed (Takai, Woo, Livesay, Adams, & 

Fu, 1993). Further, the magnitude of the in situ ACL force was maximized at 15 degrees 

of knee flexion under 110 N anterior loads (Sakane et al., 1997). These findings indicate 

that passively prevention of anterior tibial translation is the main function of ACL and 

that its role is most critical in small knee flexion angles.  

Multi-planar loading can also affect the ACL. 100 N of anterior force combined 

with 10 Nm of internal rotation or 10 Nm of abduction moments to the cadaveric knee 

lead to increasing ACL force in a small knee flexion angle (Markolf et al., 1995). 

Specifically, the ACL was strained maximally during combined anterior translation and 

internal rotation loads (Markolf et al., 1995). Thus the ACL has restraint roles in three 

anatomical planes. 

Summary 

The knee joint can be moved in three planes of six directions (Grood & Suntay, 

1983; Pennock & Clark, 1990) with the primary function of the ACL being passive 

resistance to anterior tibial translation (Butler et al., 1980) and secondarily, to prevent 

internal and abduction motions (Markolf et al., 1995), especially in small knee flexion 

angles (Sakane et al., 1997; Takai et al., 1993).  
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Normal Ligament 

Ligaments are composed of cellular material and extracellular matrix (C. B. 

Frank, Hart, & Shrive, 1999). These different structural components are necessary to 

maintain ligamentous function. The ligaments are viscoelastic structures with unique 

mechanical behaviors. The following section will describe ligamentous composition and 

mechanical behavior. 

Ligament Structural Composition and Biology 

Ligaments are bands which consist of relatively few cells and a large amount of 

extracellular matrix (C. B. Frank et al., 1999). The epiligament is a connective membrane 

covering the ligament that supports neurovascular structures and regulates water and 

metabolites (Chowdhury, Matyas, & Frank, 1991). Around two-thirds of the ligament is 

composed of water and collagen accounts for three-quarters of the dry weight (C. Frank, 

Amiel, Woo, & Akeson, 1985). More than 85% of the collagen is type I and less 10 

percentage being type III. Other small proportions of the matrix are composed of elastin, 

proteoglycans, and glycoproteins (C. B. Frank, 2004).  

Type I collagen is composed of two identical α1 chains and one α2 chain (Amiel 

& Nimni, 1993). Type III collagen consist of three identical chains and is abundant in 

blood vessels and is scant in the bone and ligaments (Amiel & Nimni, 1993). Comparing 

collagen ultrastructure, Type I collagen fibers are thick and dense, whereas Type III 

collagen fibers are thin and loose (Liu et al., 1995). Type I fibrils also have a relatively 

large diameter which could indicate that the ability to undertake higher mechanical 

loading (Culav et al., 1999). Type III is critical during the initial healing process and scar 
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tissue formation, thus could be an indicator of tissue maturity and offer the early 

mechanical support to the new synthesized tissue (Burgeson & Nimni, 1992). Type V 

collagen is a less abundant component of collagen fibrils, but plays an important role in 

the regulation of collagen fibril assembly and determination lateral collagen size make up 

which could affect collagen fiber integrity (Kadler, Baldock, Bella, & Boot-Handford, 

2007). Type XII and XVI were fibril-associated collagens with interrupted triple helices 

which were found at the surfaces of Type I collagen and could interact with other 

collagen to impact ligament function (Kadler et al., 2007). 

Compared to collagen content, smaller amounts of proteoglycans are detected in 

normal ligaments (C. B. Frank, 2004). The function of the proteoglycans is to bind 

together the collagen fiber and produce a gel-like material (Nordin & Frankel, 1989). The 

most predominant proteoglycan in normal ligamentous tissue is decorin (Plaas et al., 

2000) with the amount of decorin negatively associated with the size of collagen fibrils. 

This indicates that proteoglycans may indirectly affect ligamentous structure and function 

(Nakamura et al., 2000). A large percentage of the extracellular ligamentous matrix 

consists of water content (C. Frank et al., 1985). The amount of water content could 

impact ligamentous biomechanical behavior and function. (Thornton, Shrive, & Frank, 

2001). These findings indicate that amounts of proteoglycan and water content in 

extracellular matrix could be critical components with regard to ligamentous function.  

Role of Intrinsic Factors on Ligament Function 

Many intrinsic factors discussed above could impact ligamentous integrity and 

function. While most collagen fibers are arranged along the long axis of the ligament, 
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some collagen fibers are aligned in a nonparallel fashion which can assist against strains 

from different joint positions (C. B. Frank et al., 1999; Woo & Debski, 1999). The 

orientation of collagen fibers strongly affects ligamentous failure load. From cadaveric 

knee measurements, the ultimate load in the anatomical orientation to the ACL was 2160 

± 157 N which was different to the ultimate load in the tibial orientation (1602 ± 167 N) 

(Woo, Hollis, Adams, Lyon, & Takai, 1991). Specifically, the ability of collagen fibers to 

protect against a strain was higher in the longitudinal aspect (the force parallel to the 

fiber) than the transverse aspect (the force perpendicular to the fiber) (Quapp & Weiss, 

1997). Thus a more organized, uniform collagen network may increase ultimate failure 

load of the ligaments.  

Collagen concentrations may also affect ultimate failure load of the ligaments. 

Decreases in total collagen content are reported in injured ligaments (Amiel, Ishizue, 

Harwood, Kitabayashi, & Akeson, 1989). Specifically, the total collagen concentration 

from healthy ACLs was 80% of dry weight compared to 73.6% for partially torn ACLs 

(Amiel et al., 1989). Additionally, ACL failure load and failure strength in cadavers were 

highly correlated to percent area occupied by collagen (Hashemi, Chandrashekar, 

Mansouri, et al., 2008). Hence, collagen density is a critical factor impacting ligamentous 

integrity.  

Individual structural components of the collagen fibers could also affect ultimate 

failure load of ligaments. Each type of collagen fiber has a different diameter and 

characteristics, which may influence the ability of resisting external forces (Culav et al., 

1999; Liu et al., 1995). Smaller amounts of proteoglycans (Nakamura et al., 2000) and 
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Type V collagen (Raleigh & Collin, 2012) were negatively associated with collagen 

fibers diameters. Further proteoglycans make a gel-like material and contribute to the 

collagen fiber network integrity (Nordin & Frankel, 1989), thus helping to stabilize the 

extracellular matrix and increase resistance the deformation which may further influence 

ligament function and strength. Collectively, many ligamentous characteristics have the 

ability to affect ligamentous integrity and the associated failure load.  

Ligament Biomechanics 

The structural properties of ligaments are normally measured via tensile tests. The 

load-elongation curve is well described to characterize the behavior of the tissue 

(Korhonen & Saarakkala, 2011; Takeda, Xerogeanes, Livesay, Fu, & Woo, 1994; Woo & 

Debski, 1999). The typical load-elongation curve is upwardly concave at the beginning, 

but the slope is nearly linear before reaching the ultimate load. The specific shape of the 

curve depends on the properties and geometry of the ligament (Korhonen & Saarakkala, 

2011; Takeda et al., 1994; Woo & Debski, 1999). The main structural properties assessed 

include linear stiffness, ultimate load, ultimate deformation, and energy absorbed at 

failure (Korhonen & Saarakkala, 2011; Takeda et al., 1994; Woo & Debski, 1999). The 

mechanical properties of the ligament are usually expressed in terms of stress-strain curve 

(Korhonen & Saarakkala, 2011; Takeda et al., 1994; Woo & Debski, 1999). Stress is 

defined as the applied force divided by the area of the ligament and strain is defined as 

the ratio of the change in length compared with the original length (Korhonen & 

Saarakkala, 2011; Takeda et al., 1994; Woo & Debski, 1999). The stress-strain curve is 

nonlinear which can be divided into several areas. (Figure 2.1) Region one is referred to 
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as the nonlinear toe region. The straightening of the crimp pattern in collagen will lead to 

the engaging of the ligament fibers until they reach their straightened condition. The 

second region is linear in which the collagen fibers are elongated. The slope of this region 

is called the Young’s modulus. A steeper slope refers to greater resistance to deformation 

and could indicate that there is more collagen per unit area or could have larger fibril 

diameters. As the strain further increases, microtrauma will occur in the third region. 

Furthermore, increasing the strain will cause complete ligament rupture in the fourth 

region (Korhonen & Saarakkala, 2011; Takeda et al., 1994; Woo & Debski, 1999). The 

main parameters obtained from the stress-strain curve are the ultimate stress and ultimate 

strain (Figure 2.2) (Korhonen & Saarakkala, 2011; Takeda et al., 1994; Woo & Debski,  

1999). 

 

 

 

Figure 2.1 Stress-Strain Curve. Representative Stress-strain curve with labelled regions 

from ligamentous tensile testing. Collagen fibril structure is represented at the top of the 

graph (Korhonen & Saarakkala, 2011). 
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Figure 2.2 Stress-Strain Curve. Idealized stress-strain curve of ligamentous mechanical 

properties (Woo & Debski, 1999).  

 

 

Ligaments display viscoelastic or time-dependent behavior under loading 

(Crowninshield & Pope, 1976; Fu, Harner, Johnson, Miller, & Woo, 1994; Woo & 

Debski, 1999). The area between unloading and loading curves from cyclic loading is 

called hysteresis which represents the energy loss from within the tissue (Woo & Debski, 

1999). Creep and stress relaxation are two other types of behavioral characteristic of 

viscoelastic (Fu et al., 1994). Creep is a phenomena where a constant load is applied to 

the ligament and the deformation increases quickly at first, but then slowly progresses. 

Stress relaxation occurs when a constant elongation of ligament is maintained and the 

load decreases quickly at first, but then slowly decreases (Fu et al., 1994). Different 

loading rates may dictate different types of tissue damage. While slow loading conditions 
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have a higher chance to cause bony avulsion, faster loading conditions have greater 

probability to result in mid-substance failures (Crowninshield & Pope, 1976).  

Ligament Physiology and Response to Mechanical Loading  

Collagen turnover rate in a normal ligament is relatively slow in that the average 

half-life is about 300 to 500 days (Berger & Weiss, 2004). Exercise loading has been 

demonstrated to accelerate collagen synthesis (Kubo, Ikebukuro, Maki, Yata, & Tsunoda, 

2012; Langberg, Rosendal, & Kjaer, 2001). Specifically, Tendon Type I collagen was 

significantly increased after two months of isometric training (Kubo et al., 2012). 

Another tendon training study reported that individuals involved in a military training 

program revealed an increase in Type I collagen turnover following one month of 

training (Langberg et al., 2001). Comparing the structural composition between ligaments 

and tendons reveals both of them are similar consisting of relatively few cells and a large 

proportion of extracellular matrix (Nordin & Frankel, 1989); hence, the training response 

of increase collagen turnover demonstrated in tendon may also apply to the ligament.  

In a cell culture studies, mechanical loading resulted in increased levels of Type I 

and Type III collagen mRNA, increased fibroblast proliferation, elevation of growth 

factor expression, and increased enzyme activity (Hsieh et al., 2000; S. G. Kim, Akaike, 

Sasagaw, Atomi, & Kurosawa, 2002; Lin, Lee, O'Neal, McKean, & Sung, 1999; Mackey, 

Heinemeier, Koskinen, & Kjaer, 2008; Park et al., 2006; Zhou et al., 2005).  These results 

indicate that mechanical loading modulates catabolic and anabolic collagen processes to 

maintain collagen function. In addition to collagen synthesis and breakdown, mechanical 

loading plays a critical role in allowing fibroblasts to maintain their ideal orientation. The 
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study reported that ACL fibroblasts align parallel to stretch direction which subsequently 

impacts the generation of an oriented collagen matrix (J. H. Wang, Jia, Gilbert, & Woo, 

2003). These results indicated that mechanical load increases collagen synthesis and cell 

proliferation as well as manipulates collagen orientation, both of which are critical in 

maintaining the tensile properties and function of the ligament.    

Exercise Loading and Ligamentous Properties 

While mechanical loading is critical in maintenance of collagen integrity and 

function, ligamentous training studies are limited in number. An animal study reported 

that following a 5 week running protocol, the running group had greater MCL failure 

loads than the non-running animals (Adams, 1966). An increase of ligamentous failure 

load after training could be associated with an accelerated collagen synthesis as well as 

an increase in ligament mass, fiber diameter, and ligamentous cross-sectional area 

(Heikkinen & Vuori, 1972; Tipton, James, Mergner, & Tcheng, 1970; Tipton, Matthes, 

Maynard, & Carey, 1975). Further, from a human cross-sectional study, the size of the 

ACL in weightlifters was larger than the non-weight lifters’ size after controlling for age, 

height, and weight (Grzelak, Podgorski, Stefanczyk, Krochmalski, & Domzalski, 2012). 

These collective findings indicated that an increased tissue size and enhanced structural 

composition characteristics via training, may contribute to tissue strength. However, 

prospective training studies in humans are lacking, and the mechanisms through which 

training potentially increases ligamentous properties and geometry are unknown.  
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Summary 

While Type I collagen is the most abundant collagen in human ligament (Amiel & 

Nimni, 1993), each type of collagen fiber (Culav et al., 1999; Liu et al., 1995), various 

proteoglycans (Nakamura et al., 2000), and water content (Thornton et al., 2001) 

combine to maintain ligament function. Ligamentous mechanical behavior is described 

by a stress-strain curve (Takeda et al., 1994; Woo & Debski, 1999). Mechanical load 

regulates collagen synthesis and break-down to maintain collagen integrity function 

(Hsieh et al., 2000; Zhou et al., 2005), which could contribute tissue strength via enhance 

tissue properties or increase tissue size (Tipton et al., 1970; Tipton et al., 1975). 

However, the mechanisms through which ligamentous properties and geometry may 

interact to affect ligamentous strength in vivo are unknown.   

ACL Injury Risk Factors 

ACL injury risk factors have been separated in groups such as biomechanical 

(Olsen, Myklebust, Engebretsen, & Bahr, 2004), hormonal (Slauterbeck et al., 2002; 

Wojtys, Huston, Lindenfeld, Hewett, & Greenfield, 1998), and anatomical (Chaudhari et 

al., 2009; Ireland, Ballantyne, Little, & McClay, 2001; Stijak, Herzog, & Schai, 2008; 

Whitney et al., 2014) injury risk factors. Despite extensive research, it is still poorly 

understood how one injury factor can interact with others to affect injury risk. The 

following section will highlight the previously identified injury risk factors and why a 

focus on laxity may advance our understanding of ACL injury.  

 

 



26 
 

Injury Rates Between Males and Females 

Approximately 72% of ACL injuries are due to non-contact mechanisms with the 

most common activities associated with ACL injury being basketball, football, and soccer 

(Boden et al., 2000). When the ACL injury rate is accounted per 1000 exposures, the 

most high risk sports are men’s spring football (0.33), female gymnastics (0.33), female 

soccer (0.28), and female basketball (0.23) (Hootman et al., 2007). The disparate ACL 

injury rates between males and females have been consistently reported (Arendt, Agel, & 

Dick, 1999; Arendt & Dick, 1995; Beynnon et al., 2014; Myklebust, Maehlum, Holm, & 

Bahr, 1998; Prodromos, Han, Rogowski, Joyce, & Shi, 2007). Specifically, after 

accounting for sport and competition level, female athletes are twice more likely to suffer 

a first-time ACL injury than male athletes (Beynnon et al., 2014). From a sports-specific 

meta-analysis, the ACL injury rate of soccer female athletes was 0.32 versus 0.12 per 

1000 exposures for males and basketball females was 0.29 versus 0.08 per 1000 

exposures for males (Prodromos et al., 2007). Similar results in an epidemiology study 

across five years reported that soccer and basketball female athletes have around 3 times 

greater ACL injury risk than males (Arendt & Dick, 1995). Prospective cohort study of 

female handball athletes demonstrated a significantly higher ACL injury rate (0.31 per 

1000 player hours) than males (0.06 per 1000 player hours) with a majority of injuries 

occurring during non-contact mechanisms characterized by high speed and plant-and-cut 

movements (Myklebust et al., 1998). In high school soccer and basketball athletes, girls 

have 3 to 4 times higher rate of ACL reconstruction surgery than boys (Powell & Barber-

Foss, 2000). Collectively, these finding consistently report that females have a 3 to 5 
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times higher ACL injury rate than males during sporting activities. However, the exact 

mechanism(s) that explain this sex bias are not completely understood.   

Biomechanical Risk Factors 

The majority of ACL injuries are due to a non-contact mechanisms during weight-

bearing activities (Boden et al., 2000). Video analyses of actual ACL injuries revealed 

that ACL injury typically occurs in knee abduction combined with either internal or 

external tibial rotation at close to full knee extension during planting-and-cutting 

movements or other one-leg landing positions (Olsen et al., 2004). However, from this 

study, the internal-external forces and moments applied to the knee cannot be determined 

at the time of the injury.  

Cadaveric knee studies demonstrated that anterior force combined with internal 

tibial rotational or knee abduction motion in an extended knee posture (Markolf et al., 

1995), isometric quadriceps contraction (Renstrom, Arms, Stanwyck, Johnson, & Pope, 

1986), and impulsive knee compression forces (Withrow, Huston, Wojtys, & Ashton-

Miller, 2006)  increases strain to the ACL. These results reveal that excessive anterior 

displacement combined with knee abduction and internal tibial rotation motion could 

increase the strain to the ACL and potential increase the risk to rupture the ACL.  

High-risk movement patterns may influence injury risk -Upon initial foot contact 

during landing tasks, vertical and posterior ground reaction forces create an external 

flexion moment at the knee joint that requires counteraction by an internal knee extension 

moment generated from the quadriceps to control knee flexion as the body decelerates (B. 

Yu, Lin, & Garrett, 2006). Thus aggressive quadriceps contraction with the shallow knee 
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flexion (<30°) produces anterior shear forces, resulting in anterior tibial translation 

(ATT) which could potentially injure the ACL (DeMorat, Weinhold, Blackburn, Chudik, 

& Garrett, 2004). Further, during weight acceptance activities, greater axial compressive 

loads with the knee extended led to greater ATT, regardless of increased quadriceps and 

hamstring activation (Schmitz, Kim, & Shultz, 2010). Small knee flexion angle, increased 

quadriceps muscle force, and greater posterior ground reaction force, led to increased 

knee extension moment with increased ACL loading (B. Yu & Garrett, 2007).  

Joint anatomy can also impact ACL loading. Joint compressive forces (JCF) are 

contact forces which act perpendicular to the medial/lateral tibial plateau. At near full 

knee extension position, the JCFs acting on the posteriorly sloped tibial plateau will lead 

to a shear component that induces ATT (Hashemi, Breighner, et al., 2011). This anterior 

shear component with steeper posterior tibial slope (Marouane, Shirazi-Adl, Adouni, & 

Hashemi, 2014) could potentially produce a larger shear forces resulting in a higher ATT 

(Hashemi, Breighner, et al., 2011), thus, rupturing the ACL.  

Collectively, higher-risk movement biomechanics could contribute to the 

increased ACL loading such as knee position, ground reaction force, quadriceps muscle 

activation, and tibial slope which alone or combined together will affect how the ACL is 

loaded in more than one plane of motion. Although not the focus of the current 

investigation, understanding neuromuscular and biomechanical factors association with 

ACL function may contribute future prevention efforts to reduce high-risk movement 

patterns.  
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Hormonal Risk Factors 

Due to increased incidence of ACL injury in female populations, (Arendt & Dick, 

1995; Powell & Barber-Foss, 2000; Prodromos et al., 2007), hormonal risk factors of 

ACL injury have been investigated. A retrospective study reported that a greater number 

of ACL injuries occurred before or after 1 to 2 days after the onset of menses 

(Slauterbeck et al., 2002). Self-reported menstrual history data demonstrated that a 

significantly greater number of ACL injuries occurred in the ovulatory phase of the cycle 

and fewer injuries occurred in the follicular phase (Wojtys et al., 1998). However, a 

systemic review did suggest a consensus of which phase of menstrual cycle association 

with higher ACL injury rate due to accurately identify hormonal level during the 

injury(Hewett, Zazulak, & Myer, 2007; Vescovi, 2011). These reports indicate that ACL 

injury may be associated with menstrual cycle phase. 

Mechanisms by which sex hormones may influence injury risk -Circulating sex 

hormones have been investigated for their profound effect on a variety of collagen 

tissues. Estrogen, progesterone, relaxin, and androgen receptors have been found in the 

cells of the ACL, indicating sex hormones may have an effect on ligamentous structure 

and composition (Dragoo, Lee, Benhaim, Finerman, & Hame, 2003; Hamlet, Liu, 

Panossian, & Finerman, 1997; Liu et al., 1996). A study collecting blood samples through 

menses, ovulation, early and late luteal phases of menstrual cycle demonstrated that CICP 

( C-Propeptide of Type I Procollagen) was reduced in early and late luteal days, 

indicating that the magnitude of fluctuations of sex hormone concentrations across the 

menstrual cycle were sufficient to affect collagen metabolism (Shultz, Wideman, et al., 
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2012). An ACL cell culture study reported that increased levels of estrogen lead to 

decreased levels of fibroblast proliferation and type I procollagen synthesis (W. D. Yu, 

Panossian, Hatch, Liu, & Finerman, 2001). However, the doses of estrogen are mediated 

by increasing progesterone. Specifically, fibroblast proliferation and type I procollagen 

synthesis rise with increasing progesterone doses when estrogen levels are held at 

constant (W. D. Yu et al., 2001). Functionally, ligament had a lower failure load when 

exposed in estradiol than without estradiol (Slauterbeck, Clevenger, Lundberg, & 

Burchfield, 1999). Although the specifics of how the mechanism(s) of hormones impact 

structural composition of the ligament are little understood, these findings suggest that 

sex hormones could influence ACL metabolism and collagen synthesis which may 

indirectly affect ligamentous function. A better understanding how hormone factors 

affect ACL structural integrity could benefit sex-specific ACL prevention efforts. 

Additionally, in studies of ACL injury not directly assessing the role of circulating sex 

hormones, controlling for time of menstrual cycle may be a prudent step. 

Anatomical Risk Factors 

The bony anatomy has also been investigated in relation to ACL injuries. From 

case-control study, a decreased femoral notch width (odds ratio [OR], 0.70) and an 

increased in bony ridge thickness at the anteromedial outlet of the femoral notch (OR, 

1.61), were independently associated with ACL injury risk (Whitney et al., 2014). 

Radiographic measurement reported that ACL injured patients had smaller notch width 

and notch indexes than healthy controls (Ireland et al., 2001). A meta-analysis also 

indicated that the intercondylar notch width was narrower on ACL-injured patients 
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compared to healthy individuals (Zeng et al., 2013). Further, a case-control study 

reported that the tibial slope of the lateral condyle was greater in ACL patients (7.5°) than 

controls (4.4°), indicating that greater lateral tibial plateau slope may be an injury risk 

factor of the ACL (Stijak et al., 2008). Although the multifactorial bony anatomy may be 

injury risk factors of the ACL, the mechanisms by which bony anatomy may affect injury 

risk of ACL are inclusion. 

Mechanisms by which bony anatomy may influence injury risk –The skeletal 

morphometry also plays a role in ACL injury risk. From a cadaveric knee study, tibial 

slope was associated with peak ACL strain and peak anterior tibial acceleration during 

simulated jump landings (McLean et al., 2011). In human single leg land-and-cut tasks, 

lateral tibial slope was correlated with peak anterior knee reaction force (McLean, Lucey, 

Rohrer, & Brandon, 2010), thus potentially increasing ACL strain. Smaller femoral notch 

width was associated with smaller in vivo cross-sectional area of the ACL and ACL 

volume (Charlton, St John, Ciccotti, Harrison, & Schweitzer, 2002; Dienst et al., 2007). 

Smaller femoral notch width may limit the size of the ligament which could be associated 

with less restraint capacity, thus increase the risk of ACL. However, how bony anatomy 

profiles combine or independently associate with joint laxity and ACL injury risk is little 

understood. Bony anatomy risk factors may modify the ACL loading profile which may 

result in alterations in ACL morphometry (Charlton et al., 2002; Dienst et al., 2007; 

McLean et al., 2010; McLean et al., 2011). These non-modifiable injury risk factors 

could contribute towards screening in high risk populations.  
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Knee Laxity Injury Risk Factors  

Greater AKL has been identified as an ACL injury risk factor (Branch et al., 

2010; Myer et al., 2008; Uhorchak et al., 2003; Woodford-Rogers et al., 1994). 

Prospective study reported a 2.7 times greater risk when the AKL value was ≥1 SD above 

the mean and GJL composite score was ≥ 5 (Uhorchak et al., 2003). A 1.3 mm side-to-

side difference of anterior-posterior knee laxity lead to a more than 3-fold greater odds of 

sustaining an ACL injury (Myer et al., 2008). Further, ACL injured patients were 

reported to display greater internal rotational knee laxity in their contralateral limb than 

controls (Branch et al., 2010). While multiplanar greater knee laxity has demonstrated an 

association with ACL injury risk (Branch et al., 2010; Myer et al., 2008; Uhorchak et al., 

2003; Woodford-Rogers et al., 1994), measurement of AKL is the most common method 

to assess ACL function (Shultz, Houglum, & Perrin, 2005).  

Mechanisms by which laxity may influence injury risk –As stated earlier, upon 

initial foot contact during landing tasks, multiple-factors contribute to an increase in ACL 

loading such as knee position, ground reaction force, and muscle activation. ACL injury 

occurs when the external loading exceeds the ligamentous failure load (Slauterbeck, 

Hickox, Beynnon, & Hardy, 2006). As previously mentioned, the functional purpose of 

the ACL is to avoid knee displacement anteriorly (Butler et al., 1978), as well as to 

protect against knee abduction and tibial rotation (Markolf et al., 1995). Co-contraction 

of the quadriceps and hamstrings provide active protective mechanisms to the knee 

(Wojtys, Ashton-Miller, & Huston, 2002). It is possible that when there is a delay in co-

contraction or dysfunction of knee muscles, active restraint is insufficient and the 
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demands on the passive restraints increase. (Hashemi, Breighner, et al., 2011; Hewett et 

al., 2002). During this situation, a weaker ligament will have an increased likelihood of 

failure. Greater anterior-posterior knee laxity in animal grafts was associated with lower 

failure load (Beynnon et al., 1994). AKL of intact ACLs was less than ruptured ACLs 

(Lopez et al., 2004). Using a 3D finite element model, greater PCL graft laxity was 

associated with lower graft strength (Lai et al., 2015). Further, while sex hormones could 

affect collagen synthesis (Shultz, Wideman, et al., 2012), an animal study reported that 

ACLs exposed to relaxin resulted in increased knee laxity and structurally weaker ACLs 

(Dragoo, Padrez, Workman, & Lindsey, 2009), indicating that hormones could alter the 

mechanical properties of the ACL and further influence on ligamentous function. These 

collectively suggest that greater knee laxity could be indicative of a weaker ligament. 

A natural anterior shift of the tibia relative to the femur occurs in a fully extended 

knee when transitioning from a non-weight bearing to weight bearing position, (Beynnon, 

Fleming, Labovitch, & Parsons, 2002; Fleming et al., 2001; Torzilli, Deng, & Warren, 

1994). This anterior shift is restrained by the ACL in the normal knee during weight 

bearing (Fleming et al., 2001; Torzilli et al., 1994). ACL deficient patients had a more 

posterior tibial contact position which could contribute to increased anterior tibia 

translation and internal rotation of the tibia (Scarvell, Smith, Refshauge, Galloway, & 

Woods, 2005). Individuals who have lax ACLs may undertake the similar situation of the 

ACL deficient, which allows for a more anterior displacement of the tibia during weight 

bearing position. Hence, a lax ACL may potentially undergo larger strains during sports 

activity, thus increasing the risk of ACL injury.    
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Peak anterior tibial translation (ATT) was positively correlated with greater AKL 

in both females and males during a drop landing (Torry et al., 2011). Cadaveric 

simulations of landing demonstrated that greater AKL was associated with greater 

magnitudes of ACL strain during simulated landing (Kiapour et al., 2014). These findings 

combined with greater anterior-posterior knee laxity being associated with lower failure 

load in animal grafts (Beynnon et al., 1994) indicate that increased AKL may allow 

greater anterior displacement of the tibia relative to the femur upon weight bearing 

position and thus, could potentially rupture the ACL. Further, in ACL deficient knees, the 

peak value of the tibial acceleration was significantly greater than controls during heel 

strike (Yoshimura, Naito, Hara, & Zhang, 2000). This anterior tibial acceleration is 

associated with greater strain to the ACL during simulated landing (McLean et al., 2011) 

and creates higher forces to the ligaments (Solomonow, 2009). Greater tibial acceleration 

during early axial load with greater initial and lesser terminal anterior stiffness predicated 

an increase in anterior shear force (Schmitz, Sauret, & Shultz, 2013). Hence, greater 

magnitudes of AKL, thus greater magnitudes of ATT, could be associated with greater 

acceleration of the tibia which increases the opportunity to injure the ACL. Collectively, 

greater magnitudes of AKL could result in biomechanical alternations which potentially 

could increase the risk of injuring the ACL. Thus, a better understanding of contributors 

to laxity could positively affect prevention efforts related to higher ACL strain.  

Factors Thought to Contribute to Increased Knee Laxity 

While AKL has consistently been reported as a risk factor of ACL injury, it has 

received relatively little attention due to common consideration of it not being 
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modifiable. However there are multiple factors related to AKL that may be modified. 

Circulating sex hormones have been demonstrated to affect AKL and thus, must be 

considered a factor in terms of joint laxity (Shultz et al., 2004; Shultz et al., 2010; Shultz, 

Wideman, et al., 2012). Specifically, AKL measurements are significantly different 

between the follicular and the ovulatory phase and between the follicular and the luteal 

phase, indicating that AKL in women could related to sex hormone concentrations (Deie, 

Sakamaki, Sumen, Urabe, & Ikuta, 2002). Further, AKL increased 3 to 5 days after 

changes in estradiol, progesterone, and testosterone were noted which indicated that 

changes in sex hormones across the menstrual cycle mediate changes in AKL (Shultz et 

al., 2004). A systematic review study analyzed AKL at three different occasions during a 

menstrual cycle and reported that AKL was highest during days 10-14, then 15-28, and 

lowest from days 1-9, indicating that the menstrual cycle may have a significant effect on 

AKL (Zazulak, Paterno, Myer, Romani, & Hewett, 2006). Collectively, AKL could vary 

across the menstrual cycle which suggests a need to control for phase of menstrual cycle 

when studying AKL. 

Genetic profiles could also impact joint laxity (Bell et al., 2012; Silman et al., 

1987). Previous studies have reported that a familial predisposition to greater joint laxity 

is a heritable trait (Silman et al., 1987). Certain genotypes have been associated with 

greater magnitude of AKL (Bell et al., 2012) with the presence of the AA genotype 

having been correlated with greater magnitudes of AKL (Bell et al., 2012) in females. 

The basic collagen structure of the α1 and α2 chains is encoded by certain genetic 

profiles, thus genetic factors could affect collagen make up and may potentially impact 
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ACL function(Collins, Posthumus, & Schwellnus, 2010; Khoschnau et al., 2008; 

Posthumus et al., 2009; September, Schwellnus, & Collins, 2007). These findings suggest 

that genetics play a role in AKL phenotypes. 

Postural/anatomical characteristics can also affect AKL. Lower extremity 

alignment measures have been related to AKL joint laxity (Shultz, Dudley, et al., 2012; 

Shultz et al., 2009). Collectively, females with a less anterior pelvic tilt, smaller 

tibiofemoral angle, larger GR, and larger navicular drop were associated with greater 

AKL (Shultz et al., 2009). Lower anterior pelvic tilt and greater hip anteversion, greater 

GR, and greater navicular drop were collectively associated with greater AKL in males 

(Shultz et al., 2009). While postural/anatomical characteristics are associated with AKL, 

the best anatomical predictors of AKL are uncertain. Further, how these anatomical 

factors may have a long term effect on the magnitude of ACL loading and thus contribute 

to increase AKL is unknown. Hence, the current investigation is not focused on 

postural/anatomical characteristics. 

As stated previously, knee stability is provided by both passive and active 

restraint around the knee (Noyes et al., 1980). Even though joint laxity primarily is 

designed to assess passive restraint capabilities, active restraint from musculotendinous 

structures that cross the joint may influence measures of joint laxity. Greater frontal and 

transverse planes knee laxity were associated with less lower extremity lean mass 

(LELM), but not in the sagittal plane knee laxity (Shultz, Pye, Montgomery, & Schmitz, 

2012). This indicted that the surrounding muscle mass of the knee may contribute to the 

joint laxity to some extent but further understanding how muscle characteristics which 
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could modify affect joint laxity and which may non-modify is also needed, but not the 

focus of the current investigation.  

From previous findings, many factors could contribute to AKL such as circulating 

sex hormones (Shultz et al., 2004; Shultz et al., 2010; Shultz, Wideman, et al., 2012), 

genetics (Bell et al., 2012; Silman et al., 1987), lower extremity alignment characteristics 

(Shultz, Dudley, et al., 2012; Shultz et al., 2009), and muscle mass (Shultz, Pye, et al., 

2012). While sex hormones and genetics profiles could alter mechanical properties and 

the potential to influence ACL function (Collins et al., 2010; Dragoo et al., 2009), it is 

unknown how these factors directly correlate with ligamentous strength. While AKL has 

been demonstrated as a prospective ACL injury risk factor (Myer et al., 2008; Uhorchak 

et al., 2003), understanding the intrinsic factors of the ligament (ligamentous 

morphometry and structural composition) which could be associated with ligamentous 

strength and the respective AKL may benefit future prevention efforts by enhancing 

factors that increase ligamentous strength and subsequently lower AKL.  

Exercise Loading May Influence Anterior Knee Laxity 

While athletes have less AKL than non-athletes (Huston & Wojtys, 1996; 

Medrano Jr & Smith, 2003), it is uncertain if some part of their training may have 

affected their innate laxity. There are limited reports of how chronic sporting activity may 

affect AKL. Participants who played either handball or volleyball had greater AKL, but 

not in basketball (Vauhnik et al., 2009). On the other hand, swimming and basketball 

athletes have less AKL than the recreationally active participants (Ng & Maitland, 2001). 

These findings suggest that type and amount of chronic loading may be associated with 
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lower AKL. Given lower anterior-posterior knee laxity is associated with higher failure 

load (Beynnon et al., 1994), chronic loading which strengthens ligamentous properties 

(Tipton et al., 1970; Tipton et al., 1975) may contribute to lower AKL.  

As AKL has been established as an ACL injury risk factor (Myer et al., 2008; 

Uhorchak et al., 2003), it has the potential to be a targeted focus of 

prevention/intervention programs. One intervention study reported that 12 weeks of knee 

extensor open kinetic chain resistance training at loads of 2 sets of 20RM resulted in a 

reduction of AKL in the ACL-injured knee group compared to control groups 

(Barcellona, Morrissey, Milligan, Clinton, & Amis, 2015). The report supported the 

notion that chronic loading accelerated ligamentous remodeling thus lowered AKL 

(Hayashi, 1996). On the other hand, 3 months of passive anterior loading intervention did 

not change the AKL in healthy females (Vauhnik et al., 2015). Although the ability of 

training to affect laxity is not firmly established, such findings give a suggestion that 

long-term training may contribute to decreased anterior knee laxity. Before undertaking 

training studies, a first step is to be to understand which intrinsic properties of the 

ligament may be related to ligamentous strength/laxity. Once established, training 

programs could be directed on specific intrinsic goals.  

Morphometry and Structural Composition of the ACL as Injury Risk Factors  

Given the material property positive relationship of size to strength discussed 

above, there is a rationale to investigate the role of ligament size on risk of ACL injury. A 

prospective case-control study reported that smaller ACL volume was an independent 

predictor of ACL injury (Whitney et al., 2014). Additionally a case-control study 
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demonstrated that ACL injured participants had smaller ACL volume on their non-

injured side than controls which also indicated that ACL volume could be an injury risk 

factor (Chaudhari et al., 2009). The established sex bias in ACL injury rates may also 

help us to understand the role of ligament size in injury risk. A cadaveric study reported 

that females had 10% smaller ACL length, 20% smaller minimum area, and 35% smaller 

ACL volume than males even after adjusting for body height and weight (Chandrashekar 

et al., 2005). In a comparison of 50 males and 50 females’ high school basketball 

athletes, ACL cross-section area was smaller in females (7.6 m) than males (8.7 m) 

(Anderson et al., 2001). These findings indicate that smaller morphometry could be 

associated with less ligamentous restraint capacity which could potentially increase the 

risk of ACL.   

The restraint capacity of the ligament may not be fully represented by the 

ligamentous morphometry. Ligaments with similar ligamentous morphometry may have 

differences in their material properties. Lower ACL fibril density in human cadavers was 

associated with lower strain at failure (Hashemi, Chandrashekar, Mansouri, et al., 2008). 

In addition, cadaveric studies have observed that females have 8.3% lower ACL strain at 

failure, 18% lower collagen density, and 22.49% lower modulus of elasticity when 

compared to males (Chandrashekar et al., 2006; Hashemi, Chandrashekar, Mansouri, et 

al., 2008). These findings indicate that ACL structural composition could be correlated 

with ligamentous restraint capacity which potentially affects ACL injury risk.   
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The Relationship of AKL to ACL Size and Material Properties 

As stated previously, greater anterior-posterior knee laxity of animal ACL grafts 

has been associated with lower failure load (Beynnon et al., 1994) and greater graft laxity 

was associated with lower graft strength (Lai et al., 2015). These suggest that greater 

knee laxity could be indicative of a weaker ligament. It is well established in the 

orthopedic biomechanics literature that greater connective tissue morphometry is 

generally associated with greater resistance to deformation (Nordin & Frankel, 1989). 

This suggests that greater ligamentous morphometry (e.g. volume, CSA, width) will lead 

to less deformation at a fixed load. Specific to the ACL, this concept would infer that 

greater ACL morphometry would be associated with less anterior knee joint laxity. While 

this theory is supported by animal studies reporting total anterior-posterior translation of 

knee being positively associated with ligamentous cross-sectional area (R2=0.86) after 

ligament reconstruction (Grood et al., 1992), the relationship between ACL morphometry 

as measured by ACL width to AKL in healthy humans was relatively weak compared to 

the previous animal study (R2=0.22) (H.-M. Wang et al., 2015). Thus, the investigation of 

other intrinsic factors on AKL is needed.  

The structural composition of the ligament may also associate with ligamentous 

strength and laxity. Lower T2* relaxation times, which represents collagen density (Nissi 

et al., 2006), collagen structure (Nieminen et al., 2001), and water content (Lusse et al., 

2000), was associated with higher yield load of healing ACL grafts (Biercevicz, Murray, 

et al., 2014). Further, greater graft volume combined with lower T2 relaxation times was 

highly associated with greater failure load (increased predictability) (Fleming et al., 
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2011). Such findings indicated that greater collagen density, more organized collagen 

structure, and less water content could be indicative of ligament strength. (Fleming et al., 

2011) Collagen type (Liu et al., 1995), collagen orientation (Quapp & Weiss, 1997) 

collagen structure (Nakamura et al., 2000; Raleigh & Collin, 2012), and collagen density 

(Hashemi, Chandrashekar, Mansouri, et al., 2008) could also be associated with failure 

load. These collectively indicate that a dense and well organized structural composition 

of the ligament is capable of resisting higher external loads, thus likely resulting in lesser 

laxity. However, the relationship of the combined ACL morphometry and structural 

composition on the AKL is little understood in healthy humans.  

Summary 

Multiple ACL injury factors have been investigated. Biomechanical study has 

focused on how external loading strains the ACL during deceleration mechanisms (B. Yu 

& Garrett, 2007). Circulating sex hormones could affect collagen metabolism which in 

turn impacts AKL (Shultz, Wideman, et al., 2012). These injury risk factors could be 

associated with AKL and greater AKL has been consistently identified as an ACL injury 

risk factor (Uhorchak et al., 2003). Many factors could contribute to AKL such as 

hormones (Shultz, Wideman, et al., 2012), genetics (Bell et al., 2012), lower extremity 

alignment characteristics (Shultz et al., 2009), and muscle mass (Shultz, Pye, et al., 

2012). However, there is little attention on the relationship of intrinsic ACL properties to 

AKL. While ACL volume is predictive of ACL injury risk, the relationship between ACL 

volume and AKL in humans is little understood. Further, while structural composition of 

the ligament could be associated with ligamentous failure load (Fleming et al., 2011), 
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knowledge of how structural composition relates to AKL is limited. A better 

understanding of how ACL intrinsic factors influence AKL could contribute to future 

interventions which focus on increasing ligamentous strength and corresponding 

decreased AKL.  

In-vivo Assessment of ACL Morphometry and Intrinsic Properties 

Magnetic resonance imaging (MRI) is the primary technology utilized to acquire 

in vivo ligamentous morphometry (Anderson et al., 2001; Chaudhari et al., 2009) and 

structural composition of the ligament (Biercevicz, Miranda, Machan, Murray, & 

Fleming, 2013; Biercevicz, Murray, et al., 2014; Fleming et al., 2011). The following 

section will introduce the ligamentous morphometry and structural composition MRI 

measurements. 

Magnetic Resonance Imaging (MRI) 

MRI is a non-invasive modality that produces diagnostic images without the use 

of radiation (Hendrick, 1994; Jacobs, Ibrahim, & Ouwerkerk, 2007; Pooley, 2005). MRI 

utilizes the magnetic properties of hydrogen atoms to detect magnetic resonance (MR) 

signal changes in order to create images (Hendrick, 1994; Pooley, 2005). MRI systems 

rely on three components which include the primary magnet, gradient magnets, and 

radiofrequency (RF) coils (Hendrick, 1994; Jacobs et al., 2007; Pooley, 2005). Normally, 

hydrogen atoms are aligned randomly in humans. When placed in a strong magnetic field 

(Bo), the hydrogen atoms become aligned in a parallel or anti-parallel fashion (Hendrick, 

1994; Pooley, 2005). A greater proportion of protons aligning in a parallel manner than 

anti-parallel manner produces a net magnetic vector of the hydrogen atoms (Hendrick, 
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1994; Pooley, 2005). The main magnetic field (Bo) results in the proton spin (precession) 

which allows for proton excitation and corresponding measurement of MR signal 

(Hendrick, 1994; Pooley, 2005). Gradient coils are used to alter the primary magnetic 

field for localization of the MR signal in three directions (Jacobs et al., 2007). Lastly, 

radiofrequency coils are used to transmit RF energy which leads to decreased 

longitudinal magnetization resulting in net magnetization vector flips to the transverse 

plane (Hendrick, 1994; Pooley, 2005). While T1 relaxation times refers the recovery time 

of the longitudinal magnetization, T2 relaxation times indicates the decay of transverse 

magnetization (Hendrick, 1994; Pooley, 2005). Changes in MR signal (i.e. changes in 

proton spin) received by the RF coils are changed from the frequency domain to the time-

amplitude domain to create diagnostics images (Hendrick, 1994; Pooley, 2005). 

ACL Morphometry Imaging 

Structural imaging of soft tissue is most commonly performed using T2 weighted 

MR sequences (Anderson et al., 2001; Davis, Shelbourne, & Klootwyk, 1999; Dienst et 

al., 2007; Fayad, Rosenthal, Morrison, & Carrino, 2008). Multiple measures, which 

include cross-sectional area (CSA), length, width, and volume of the ACL in either 

sagittal or coronal planes have been used to assess ACL morphometry (Anderson et al., 

2001; Chandrashekar et al., 2005; Charlton et al., 2002; Chaudhari et al., 2009; Davis et 

al., 1999; Dienst et al., 2007; Fayad et al., 2008; Jamison et al., 2010; Simon, Everhart, 

Nagaraja, & Chaudhari, 2010; Whitney et al., 2014).  

With regard to using a morphometric ACL measure as a representative measure of 

ACL function, there does not seem to be a gold-standard method in the literature as the 
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multiple methods all have a degree of uncertainty/error in the measure. Much of the 

reason for this is due to the methods by which the MR data are collected and how the 

ACL is visualized. CSA is first identified from a point from the oblique sagittal plane 

which is one third of total ACL length proximal to the tibial insertion. Then, the marked 

point is viewed from the oblique axial plane and CSA is segmented and calculated 

(Whitney et al., 2014). CSA measures rely on single oblique sagittal and oblique axial 

planar images. Thus, given the non-uniform 3 dimensional nature of the ACL, CSA may 

not fully represent ACL morphometry.   

ACL width is another morphometric measure that has been measured from one 

single sagittal image as the linear distance crossing the ACL which is perpendicular to the 

Blumensaat’s line (Anderson et al., 2001). While ACL width is also the result of a single 

planar measure that does not take into account the non-uniform 3D ACL form, the 

contrast of ligamentous tissue to surrounding tissue is slightly better than measures from 

the oblique planes used in ACL CSA measures.   

Conversely, ACL volume measures use multiple sagittal images to fully measure 

the entire ACL anatomy. ACL volume is measured by manually segmenting the ACL 

area from each sagittal image and then calculating the ACL volume across multiple 

images. This may more fully model the three dimensional nature of the ACL (Chaudhari 

et al., 2009; Jamison et al., 2010; Whitney et al., 2014). 

Two dimensional measures such as CSA and ACL width may offer a benefit to 

researchers from a time demand and potentially offer few chances to introduce error to 

the measure. The ACL volume measure is more time consuming and potentially may 
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increase measure error from multiple-images due to the need to segment multiple images. 

However it is important to note that while all 3 measures are reported in the literature, 

ACL volume is the only ACL morphometric measure that has been reported as a 

predictor of ACL injury risk (Whitney et al., 2014). Collectively, ACL volume may be a 

more appropriate measure to assess ACL morphometry, but the other measures may merit 

further investigation as to the most appropriate measure of ligamentous function and 

laxity.  

The literature is inconsistent with regard to the relationship of ACL morphometry 

to body size (Anderson et al., 2001; Charlton et al., 2002; Chaudhari et al., 2009; Fayad 

et al., 2008; Jamison et al., 2010). One study measured healthy male and female 

participants and reported from a multifactorial model that height was the only significant 

predictor of ACL volume (Jamison et al., 2010). Another match-control study of male 

and female participants reported that weight was a significant covariate of ACL volume, 

but not height (Chaudhari et al., 2009). However, these studies did not provide details of 

the strength of relationships between ACL volume to height or weight. Due to the 

inconsistent findings, height and weight should both be considered in models predicting 

ACL volume. 

In-vivo Assessment of ACL Intrinsic Properties 

In-vivo assessment of ligamentous structural characteristics has been limited to 

different MRI techniques. These primarily include signal intensity, T2, and T2* 

relaxation imaging. Signal intensity is calculated by normalizing the desired voxel 

intensity value to femoral cortical bone intensity (Biercevicz, Akelman, Fadale, et al., 
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2015; Biercevicz et al., 2013). Signal intensity is thought to be a potential surrogate 

measure of ligament strength (Biercevicz et al., 2013; Biercevicz, Murray, et al., 2014). 

Specific to the ACL, the median normalized grayscale intensity value has been used as an 

outcome variable associated with ligamentous strength (Biercevicz, Akelman, Fadale, et 

al., 2015; Biercevicz et al., 2013). While easily calculated, signal intensity technique is 

based on a simple voxel intensity comparison. The voxel intensity could vary greatly 

depending on a number of local environmental factors, MRI scan sequence parameters 

and scanner hardware. Thus, making comparisons across studies quite are difficult. 

Further, this structural image technique is not established to reflect differences in 

structural composition such as collagen density and free water molecules. 

T2 relaxation refers to the decay of transverse magnetization caused by the spin-

spin interactions (Chavhan et al., 2009). Specifically, the tilt of the proton from the 

longitudinal magnetization into the transverse plane via a 90°radiofrequency (RF) pulse 

results in a transverse magnetization (Chavhan et al., 2009). In the transverse plane, the 

transverse magnetization rotates at the Larmor frequency and creates an MR signal in the 

radiofrequency receiver coil (Chavhan et al., 2009). The transverse magnetization reaches 

a maximum magnitude when all of the protons are in phase and begins reducing in 

magnitude immediately as protons start to go out of phase (Chavhan et al., 2009). The 

transverse relaxation is referred to as the process of dephasing and a 37% reduction in the 

amount of transverse magnetization (Chavhan et al., 2009). The transverse relaxation rate 

is called T2 relaxation (Chavhan et al., 2009). While T2 relaxation considers only spin-

spin interaction, T2* relaxation, which is similar to T2 relaxation, considers both spin-
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spin interaction and the interaction with the magnetic field (Pooley, 2005). Local 

magnetization is not completely stable resulting in magnetic field inhomogeneity. 

Inhomogeneous magnetic field leads to single loss due to variation in precession angles 

for different spins (Jung & Weigel, 2013).Therefore, T2* is shorter than T2 relaxation.  

(Figure 2.3) 

 

 

 

Figure 2.3 T2 and T2* Relaxation Curve. T2* relaxation is shorter than T2 relaxation 

(Chavhan et al., 2009). 

 

 

The simplified T2 spin echo sequence consists of a 90° excitation pulse followed 

by a 180° refocusing pulse (Figure 2.4 and 2.5) (Jung & Weigel, 2013; Pooley, 2005). 

The time between the excitation pulse and the next peak echo is called echo time (TE) 

(Jung & Weigel, 2013; Pooley, 2005). Per the above statement, while T2 relaxation is the 

result of spin-spin interaction which is irreversible, T2* is the result of spin-spin 

interaction and the result of field inhomogeneity which can be reversed by application of 
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a 180° refocusing pulse (Jung & Weigel, 2013; Pooley, 2005). When the spin begins re-

phasing and forming a new echo after application a 180° refocusing pulse, only signal 

intensity decay resulting from magnetic field inhomogeneity can be refocused (Jung & 

Weigel, 2013; Pooley, 2005). Thus, utilized spin echo sequence, the T2 relaxation can be  

determined by the peak amplitude of the echo (Figure 2.4) (Pooley, 2005).  

 

 

     (a)                                                                (b) 

 

Figure 2.4 Spin Echo Sequence. (a) While protons begin to de-phase in the transverse 

plane following application of a 180° refocusing pulse, the proton spins will flip to the 

opposite axis which will allow the spins to re-phase and form the echo. (b) Spin echo 

sequence. After application a 90° excitation pulse, signal intensity decays immediately, 

which is T2* decay. After application of a 180° refocusing pulse, the spins will re-phase 

and de-phase again. The peak of the multi-echo will determined T2 decay (Pooley, 2005). 
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Figure 2.5 Spin Echo Sequence. The spins can be fully re-phased while considering 

magnetic field inhomogeneity which is described by T2’. T2* consists of on both T2’ and 

T2 which signal intensity at TE is decreased (Jung & Weigel, 2013). 

 

 

The gradient echo sequence consists of an exciting RF pulse with a flip angle less 

than 90°, but without a 180° RF pulse (Plein et al., 2011; Pooley, 2005). While, T2 

relaxation cannot be produced without a 180° RF pulse, the gradient echo can create T2* 

relaxation by application of the gradient pulse which results in the de-phase and re-phase 

of the signal (Plein et al., 2011; Pooley, 2005). The T2* relaxation is determined by the 

peak amplitude of the gradient echo (Figure 2.6) (Plein et al., 2011). 
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Figure 2.6 Gradient Echo Sequence. The gradient echo sequence consists of RF pulse 

with a flip angle α. The peak of the multi-gradient echo will determine T2* decay (Plein 

et al., 2011). 

 

 

As stated earlier, T2 relaxation times is defined as the speed by which the proton 

loses phase coherence, following excitation. Due to the loss of coherence, an exponential 

decay of transverse magnetization will occur with a corresponding loss of MR signal. The 

rate of decay is largely influenced by the presence of free water molecules, which slow 

down the loss of transverse magnetization (Matzat et al., 2013). Relative to pathologic 

soft tissue, T2 relaxation of healthy soft tissue is shorter due to the collagen matrix’s 

ability to trap and immobilize the protons of the water molecules. Conversely, longer T2 

relaxation times is due to the degradation of the collagen matrix, which permits greater 

mobility of the water component of the extracellular matrix (Matzat et al., 2013). 

Moreover, the highly organized macromolecular matrix restricts the motion of water 

molecules and enhances dipole-dipole interactions, which shortens T2 relaxation times 
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(Fullerton & Rahal, 2007). Due to the significant influence of free water distribution on 

MR signal intensity decay, changes in collagen structure of the ligament may be detected 

by T2 relaxation times. 

Shorter relaxation times could reflect more collagen density, organized collagen 

structure, and less water content, while longer relaxation times could reflect less collagen 

density, less organized collagen, and more free water content (Matzat et al., 2013). 

Specifically, T2 relaxation times can be modified by changing the water content, collagen 

fiber concentration, collagen orientation, and proteoglycan content (Li et al., 2011; 

Mosher, Dardzinski, & Smith, 2000; Regatte, Akella, Borthakur, Kneeland, & Reddy, 

2002; Wayne et al., 2003; White et al., 2006). T2 relaxation times has been reported to be 

dependent upon the orientation of aligned collagen fibrils with respect to the main 

magnetic field (Bo) (Nieminen et al., 2001; Takeuchi, Sekino, Iriguchi, & Ueno, 2004; 

Xia, Moody, Burton-Wurster, & Lust, 2001). Further, in a study using MRI and polarized 

light microscopy, approximately 40% of depth-wise variation in T2 relaxation times was 

attributed to collagen fiber density (Nissi et al., 2006). A decreased collagen fiber density 

(Alhadlaq & Xia, 2004) and a reduced proteoglycan content (Wayne et al., 2003) has 

been shown to cause an increase in T2 relaxation times. The net orientation of the water 

molecules is also correlated with T2 relaxation times (Lusse et al., 2000). It is important 

to note that these findings indicating that T2 relaxation times is sensitive to the collagen 

characteristics and water content have been studied in articular cartilage. With regard to 

ligamentous tissue, T2 relaxation times is a feasible measure but quite limited with regard 

to its utilization in the literature.   
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Limited studies have investigated the relationship between MRI measures and 

ligamentous structural properties. Although the signal intensity method has been reported 

to be predictive of the biomechanical properties of the ligaments such as maximum load 

and yield load (R2=0.37-0.42) in animals, signal intensity is sensitive to MRI parameters 

and scanner hardware (Biercevicz et al., 2013). Hence, the results may not be comparable 

across studies. Further, signal intensity reflects only a comparison between voxels, which 

may not represent intrinsic structural properties (Biercevicz, Akelman, Fadale, et al., 

2015; Biercevicz et al., 2013). 

T2 and T2* relaxation times both have the potential to assess ligamentous 

structural properties. Lower T2 relaxation times in combination with greater ACL volume 

was correlated with failure load (R2=0.69) in animal ACL grafts (Fleming et al., 2011). 

Even though the sample size is relatively small (N=8), the strong relationship has been 

reported between the combination of ACL volume and T2 relaxation times to 

ligamentous strength (Fleming et al., 2011). Further, T2 relaxation times from this study 

was generated by multi-echo time (n=7) which has been demonstrated to be accurate and 

reduce sensitivity to noise (Biercevicz, Akelman, Fleming, Walsh, & Murray, 2014; 

Jenkins, Hickey, & Isherwood, 1987). Thus multi-echo T2 relaxation times could be 

associated with ligamentous strength. Further, lower T2* relaxation times was correlated 

with greater maximum and yield load of animal graft (R2=0.78-0.93) (Biercevicz, 

Murray, et al., 2014). While T2* relaxation times was assessed by two gradient echo 

times, T2* relaxation times was still highly associated with ligamentous strength 

(Biercevicz, Murray, et al., 2014). ComparngT2* and T2 relaxation times studies reveals 
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that T2* relaxation times was independently correlated with ligamentous strength 

(Biercevicz, Murray, et al., 2014), with T2 relaxation times not independently associated 

with ligament strength (Fleming et al., 2011). These collectively findings suggest that 

both T2 and T2* relaxation times could potentially predict ligamentous biomechanical 

characteristics of ligament, but T2* relaxation times may be more sensitive in detecting 

ligament composition associated with ligamentous strength than T2 relaxation times. It is 

also important to note that the relationship of laxity to T2 and T2* relaxation times has 

not been established. However, neither T2 nor T2* relaxation times has been utilized in 

healthy human ligaments and reports of predictability between T2 and T2* relaxation 

times to ligamentous strength and strength are limited. Further there is no reports of the 

relationship of T2 and T2* relaxation times to clinical in-vivo measure of ligamentous 

function, such as AKL. A better understanding of the relationship of T2 and T2* 

assessment in human ligaments to AKL could advance ACL prevention efforts by 

focusing on which structural properties may be related to ligamentous laxity/strength. 

Summary 

While multiple MRI measures such as cross-sectional area (CSA), width, and 

volume of the ACL have been used to assess ACL morphometry (Anderson et al., 2001; 

Chaudhari et al., 2009; Jamison et al., 2010; Whitney et al., 2014), a gold-standard 

method which best represents of ligamentous function is uncertain. MRI techniques of T2 

and T2* relaxation imaging to evaluate ligamentous structural characteristics have been 

demonstrated to predict in vivo ligamentous biomechanical characteristics in ACL grafts 

(Biercevicz, Murray, et al., 2014; Fleming et al., 2011). However, the predictability of 
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both T2 and T2* relaxation times to measures of ligamentous strength in healthy human 

ligaments is limited.   

Summary 

Anterior cruciate ligament (ACL) is a high expenses (Brophy et al., 2009; 

Gianotti et al., 2009; Griffin et al., 2000) with long term OA development issue (Cohen et 

al., 2007; Lohmander et al., 2004; Meunier et al., 2007; Oiestad et al., 2010). The primary 

function of the ACL is to prevent anterior tibial translation (Butler et al., 1980)  and 

secondary functions are to protect internal and abduction motions (Markolf et al., 1995). 

Knee stability is maintained by passive restraints from the ligaments and active restrain 

from muscles (Noyes et al., 1980). While active restraint is insufficient due to 

dysfunction of the neuromuscular control system, the passive restraints from the 

ligaments are critical to maintain joint integrity (Hashemi, Breighner, et al., 2011; Hewett 

et al., 2002). During this situation, the strength of the ligament to resist the external load 

is critical.  

Clinically, ACL function is measured by AKL (Butler et al., 1980) and grater 

AKL has been identified as a risk of ACL injury (Myer et al., 2008; Uhorchak et al., 

2003; Woodford-Rogers et al., 1994). While hormones (Shultz, Wideman, et al., 2012), 

genetics (Bell et al., 2012), lower extremity alignment characteristics (Shultz et al., 2009) 

contribute AKL, little is attention on the relationship between intrinsic factors and AKL. 

Greater anterior-posterior knee laxity was associated with lower failure load and strength 

(Beynnon et al., 1994; Lai et al., 2015), indicating that greater AKL could be correlated 

with weaker ligament. While ACL volume and the structural composition of the ligament 
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were associated with ligament strength (Fleming et al., 2001; Hashemi, Chandrashekar, 

Mansouri, et al., 2008), how ACL morphometry combination with structural composition 

of the ACL relate to AKL is limited. A better understanding how intrinsic factors affect 

AKL could advance prevention efforts focused on enhance ligamentous strength.   

While multiple MRI techniques have been utilized on ACL morphometry 

measures (Anderson et al., 2001; Chaudhari et al., 2009; Jamison et al., 2010; Whitney et 

al., 2014), a gold-standard measure is unsure. T2 and T2* MRI relaxation times has been 

used to assess ligamentous structural characteristics (Biercevicz, Murray, et al., 2014; 

Fleming et al., 2011), but the capability of these measures in vivo are limited. A better 

understanding gold-standard measure on ligamentous morphometry and structural 

composition could further advance measurement technique to detect ligamentous 

properties.
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CHAPTER III 

METHODS 

The initial objectives are to determine sex differences in ACL morphometry, and 

femoral notch width and to determine sex differences in ACL structural composition. The 

next objectives are to determine which morphometric measure (as assessed by ligament 

volume, width, and cross-sectional area) and which MR relaxation measure (as assessed 

by T2* and T2 relaxation times) are the strongest independent predictors of anterior knee 

laxity. The primary objective of this research is to determine the extent to which ACL 

morphometry and structural composition of the ACL combine to predict to anterior knee 

laxity (AKL) in active females and males. The approach is to measure ACL volume, 

ACL width, and ACL cross-sectional area (CSA) as ACL morphometric variables and to 

measure T2 and T2* relaxation times as ACL structural composition variables and 

femoral notch width in active females and males, and to examine the extent to which 

these factors predict anterior knee laxity. The central hypothesis is that smaller ACL 

morphometry and longer quantitative MR relaxation times would predict greater AKL in 

male and females.   

Participants 

Forty (20 males, 20 females) healthy, recreationally active participants between 

18-30 years of age, will be recruited from local universities to participant in this study. 

Healthy is defined as no history of injury or current chronic pain to the either lower
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 extremity in the past 6 months that has limited physical activities; no previous history of 

injury to the capsule, ligament, or menisci of either knee and no previous history of the 

surgery to either knee. Recreationally active is defined as an individual who current 

engages in exercise at least 2 hours per week. In order to control the hormonal influences 

on AKL, females will be based on a limited window of the menstrual cycle (3 to 8 days 

post menses onset). (Shultz et al., 2004) Inclusion criteria are: 1) current engagement in 

sport activities at least 2 hours per week; 2) no lower extremity injury in the last 6 

months. Participants were excluded if they had: 1) previous history of injury to the 

capsule, ligament, or menisci of either knee 2) any vestibular or balance disorder 3) any 

metal or implanted medical device in the body. 4) do not meet predefined AKL criteria 

(Shultz et al., 2007) 5) cannot relax during the AKL measures All participants will read 

and sign an informed consent form approved by the University of North Carolina at 

Greensboro’s Institutional Review Board for the Protection of Human Subjects. Each 

participant will attend a single testing session consisting of an anterior knee laxity 

assessment and MRI assessment. Participants will be instructed to avoid high intensity 

activities 24 hours prior to testing. All measures will be performed on the left knee. The 

activity rating scale (Marx, Stump, Jones, Wickiewicz, & Warren, 2001) (Appendix B) 

will be used to quantify participant activity level. Participants self-rated running, cutting, 

decelerating, and pivoting activities each as 0 (less than once per month), 1 (once per 

month), 2 (once per week), 3 (2–3 times per week) or 4 (4 or more times per week), 

resulting in a score from 0 to 16. 
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Procedures 

The anterior knee laxity test will take place on the University of North Carolina at 

Greensboro’s campus in the Applied Neuromechanics Research Laboratory. MRI scans 

will take place on the Joint School of Nanosciences & Nanoengineering which is 20 

minutes away from UNCG campus. Upon arrival, participants will be provided written 

consent and will be assessed for anterior knee laxity measures. If the participants meet 

the anterior laxity screening criteria, demographics of age, sex, height, and weight are 

recorded. Next, participants will also complete physical activity and injury history 

questionnaires (Appendix A and B). After the completion of the questionnaires, 

participants are then underwent MRI examination.  

Demographics and Questionnaires 

Participants demographics of age, sex, height, and weight are recorded, and 

physical activity (type, duration, and intensity) and injury history are assessed by a 

standard questionnaire (Appendix A and B).  

Anterior Knee Laxity Assessment 

Anterior knee laxity (AKL) is defined as the anterior displacement of the tibia 

relative to the femur at 130 N load and will be measured by a single examiner  using the  

KT-2000 Knee Arthrometer (figure 3.1) (Medmetric Corp, San Diego, CA). The subject 

will be placed in a supine position with the knee flexed 25 ± 5° over a thigh bolster. The 

foot/ankle will be rested in the foot cradle while a hook and loop strap is placed around 

both thighs. This method is used to prevent rotation of the lower extremities during 

testing. The examiner will first apply 90 N posterior-directed force then 130 N anterior-
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directed force to the tibia, while displacement (mm) of the tibia with respect to the femur 

will be recorded by computer software. Three measures will be obtained and last two 

averaged for analyses. Anterior knee laxity (AKL) is defined as the average anterior 

displacement of the tibia relative to the femur over last two trials. The investigator has 

previously established between day measurement consistency and precision [ICC (SEM) 

=0.87 (0.5) mm] of this measure (Taylor et al., 2015). Potential subjects will be 

prescreened to obtain a wide distribution of AKL values in both sexes. This will be done 

to ensure equal amounts of average, above-average, and below average laxity within each 

sex. Previously reported data (Shultz et al., 2007) will be used to define average (M=5.6 

± 1.0 mm, F=8.1 ± 2.5 mm) above-average (>1 SD; M=6.6mm, F=10.6mm), and below  

average (<1 SD; (M=4.6mm, F=5.6mm) AKL.  

 

 

 

Figure 3.1 Anterior Knee Laxity Assessment. Anterior Knee laxity assessment which is 

obtained with KT-2000 arthrometer.  
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MRI Examination 

MRI data will be acquired using a 3T Siemens Tim Trio scanner (Erlangen, 

Germany) and a 15 channel knee coil (Siemens Erlangen, Germany). T2-weighted, 

multiplanar MRI scans (repetition time (TR) =1300 ms; excitation time (TE) = 39 ms; 

Flip angle (FA) =160º; FOV=150x150 mm; voxel size = 0.5×0.5×0.5mm) will be used 

for ACL morphometric measures. T1-weighted, multiplanar MRI scans (repetition time 

(TR) =1200 ms; excitation time (TE) = 33 ms; FOV=160x160 mm; voxel size = 

0.5×0.5×0.6mm) will be used for femoral notch width measures.  

The T2 relaxation imaging will be performed using spin echo data sets with 

following parameters: repetition time (TR) =3040 ms; excitation time (TE) at 13.8, 27.6, 

41.4, 55.2, and 69 ms; flip angle (FA) =180º; voxel size, FOV=160 x160 mm; voxel 

size= 0.4×0.4×3.0mm (Fleming et al., 2011). T2* relaxation will be performed using 

gradient echo data sets with following parameters: repetition time (TR) =1000 ms; 

excitation time (TE) at 8.26, 10.28, 12.3, 14.32, 16.34, 18.36, 20.38, 22.4, 24.42, 26.44, 

28.46 and 30.48 ms; flip angle (FA) =90º; FOV=280 x280mm; voxel size = 

0.5×0.5×3.0mm (Biercevicz, Akelman, et al., 2014; Biercevicz, Akelman, Rubin, et al., 

2015). Full scan sequence details can be found in appendix C.   

MRI Morphometric Data Reduction 

ACL volume will be calculated as reported by Chaudhari et al (Chaudhari et al., 

2009) using ITK-SNAP software (http://www.itksnap.org/pmwiki/pmwiki.php). ACL 

contouring of each sagittal slice will be done manually using a digitizing tablet (Wacom 

http://www.itksnap.org/pmwiki/pmwiki.php
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DTK1300; Wacom Co, Kazo, Japan). All slices that will be contoured will be used in the 

calculation of ACL volume (Figure 3.2). The investigator has previously established  

intratester measurement consistency and precision [ICC3,1 (SEM) =0.97 (36.1) mm3]. 

 

 

  

Figure 3.2 ACL Volume Measure. ACL was manually segmentation on each sagittal 

image. ACL volume then calculated from resultant ROI.  

 

 

ACL width will be measured using Medical Image Processing, Analysis and 

Visualization software (MIPAV; http://mipav.cit.nih.gov) per methods described 

previously.(Anderson et al., 2001) First, the sagittal plane image that indicated the 

clearest image of Blumensaat’s line will be selected. Blumensaat’s line is the landmark 

which corresponds to the roof of femoral intercondylar notch as drawn on the sagittal 

knee joint image.(Seyahi, Atalar, Koyuncu, Cinar, & Demirhan, 2006) At the point of the 

notch outlet, ACL width will be determined by a line drawn perpendicular to 

Blumensaat’s line that measured the distance across the ACL (Figure 3.3). The 

investigator has previously established intratester measurement consistency and precision 

[ICC (SEM) =0.98 (0.3) mm]. 

 

http://mipav.cit.nih.gov/
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Figure 3.3 ACL Width Measure. ACL width was the distance across the ACL (yellow) on 

a line (red) perpendicular to the Blumensaat’s line.  

 

 

ACL cross-sectional area will be measured using ITK-SNAP software 

(http://www.itksnap.org/pmwiki/pmwiki.php) as reported by Whitney et al.(Whitney et 

al., 2014) From an oblique sagittal image perpendicular to the ACL, a point one third of 

the total ACL length from the attachment to the tibia will be identified (Figure 3.4a). 

After identification of this point, ACL cross-sectional area will be segmented and 

calculated from the oblique axial image (Figure 3.4b). The investigator has previously 

established intratester measurement consistency and precision [ICC (SEM) =0.87 (0.7) 

cm2]. 
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    a.                                      b.  

 

Figure 3.4 CSA Measure. (a) Identified CSA from the oblique sagittal image (b) CSA 

will be segmented and calculated from the oblique axial image (Whitney et al., 2014).  

 

 

Femoral notch width will be measured using Medical Image Processing, Analysis 

and Visualization software (MIPAV; http://mipav.cit.nih.gov) as reported by Stein et 

al.(Stein et al., 2010) First, the clearest image of Blumensaat’s line from the sagittal 

image and the beginning of the Blumensaat’s line at the anterior outlet from the frontal 

image will be chosen to identify the axial image. Then, from the axial image, the articular 

surface line tangent to the medial and the lateral femur condyle will be drawn. Notch 

depth is the line perpendicular to the articular surface line. At two-thirds of the notch 

depth, the notch width will be calculated as the line parallel to the articular surface line 

(Figure 3.5). The investigator has previously established intratester measurement 

consistency and precision [ICC (SEM) =0.99 (0.2) mm]. 

http://mipav.cit.nih.gov/
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Figure 3.5 Femoral Notch Width Measure. Femoral notch width was the distance across 

the notch (purple) on a line (green) perpendicular to that line at 2/3 of the notch depth 

(orange) (Stein et al., 2010). 

 

 

MRI Structural Composition Data Reduction 

Using customized Matlab code (Mathworks Inc, U.S.A), the voxel-wise T2 

relaxation maps will be calculated using the signal intensity (SI) relationship from all five 

echo times of the T2 relaxation imaging sequence. Equation: SI(TE)= So exp(-TE/T2), 

where SI(TE) are the voxel-specific SIs for the various echo times (TE) and where So is 

the signal intensity at the initial TE.(Fleming et al., 2011) To isolate ligament specific T2 

values, the calculated T2 relaxation map will be registered to the structural imaging 

sequence using Slicer 3D Software (https://www.slicer.org/) and the mean T2 relaxation 

value of the voxels included in the 3D ACL volume described above will be calculated 

using ITK SNAP software (http://www.itksnap.org/pmwiki/pmwiki.php) and included in 

the analyses.      
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Using customized Matlab code (Mathworks Inc, U.S.A), the voxel-wise T2* 

relaxation maps will be calculated using the signal intensity (SI) relationship from all 

twelve echo times of the T2* relaxation imaging sequence. Equation: SI(TE)= So exp(-

TE/T2*), where SI(TE) are the voxel-specific SIs for the various echo times (TE) and 

where So is the signal intensity at the initial TE.(Biercevicz, Akelman, et al., 2014; 

Biercevicz, Akelman, Rubin, et al., 2015) To isolate ligament specific T2* values, the 

calculation T2* relaxation map will be registered to the structural imaging sequence 

using Slicer 3D Software (https://www.slicer.org/) and the mean T2* relaxation value of 

the voxels included in the 3D ACL volume described above will be calculated using ITK 

SNAP software (http://www.itksnap.org/pmwiki/pmwiki.php) and included in the 

analyses.     

Statistical Plan 

Age, height (cm), mass (kg), AKL (mm), ACL volume (mm3), ACL width (mm), 

ACL CSA (mm2), femoral notch width (mm), T2 relaxation (ms) and T2* relaxation (ms) 

will be entered into Excel and transferred to SPSS for later analysis. The following 

statistical approaches will be used to test each of the following hypotheses.  

Hypothesis 1: Males will have greater ACL morphometry measures (ligament 

volume, width, or cross-sectional area) and wider femoral notch width than 

females. 

Hypothesis 2: Males will have shorter T2* and T2 relaxation times than females. 

To test hypotheses 1 & 2, independent sample T-tests will be used to assess for difference 

in ACL morphometry, femoral notch width, and structural composition of the ligament 
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between males and females. Test variables will be ACL volume, ACL width and ACL 

cross-sectional area, femoral notch width, and T2 and T2* relaxation times.    

Hypothesis 3: ACL volume will have greater predictive ability of anterior knee 

laxity than will ACL width and ACL cross-sectional area. 

Hypothesis 4: T2* relaxation times will have greater predictive ability of anterior 

knee laxity than will T2 relaxation times. 

To test hypotheses 3, separate sex-specific stepwise linear regression analyses will assess 

which ACL morphometry measure will be the strongest predictor of AKL. On the first 

step, femoral notch width will be initially entered to control for the relationship of ACL 

size and femoral notch width. (Dienst et al., 2007) On the next step, stepwise linear 

regression analysis will be used to assess which ACL morphometry variable (ACL 

volume, ACL width and ACL CSA) will be the strongest AKL predictor in males and 

females. The independent variables of the ACL morphometry regression will be ACL 

volume, ACL width and ACL CSA with femoral notch width as a control variable and 

with the dependent variable being AKL. 

To test hypotheses 4, separate sex-specific stepwise linear regression analyses will assess 

which quantitative MR relaxation time will be the strongest predictor of AKL. The 

independent variables for the MR relaxation times regression will be T2 relaxation and 

T2* relaxation times with AKL serving as the dependent variable. 

Hypothesis 5: The combination of smaller ACL morphometry (as determined 

from hypothesis 3) and longer quantitative MR relaxation time (as determined 

from hypothesis 4) will predict greater anterior knee laxity in males and females 
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To test hypotheses 5, separate sex-specific stepwise linear regression analyses will be 

tested the primary hypothesis that the ACL MR relaxation time and ACL morphometric 

measure, as determined from the hypotheses 3 & 4, will each have unique contributions 

in a multivariate model explaining the variance in AKL. The independent variables will 

be the ACL MR relaxation time and ACL morphometric measure as determined from the 

hypotheses 3 & 4 with the dependent variable being AKL. In the regression model, 

stepwise linear regression analysis will be used to assess the combined predictive ability 

of the included morphometric and relaxation time variables. 

Power Analysis 

All hypotheses will be evaluated at p ≤ .05. Power analysis based upon hypothesis 

1&2 revealed that a sample size of 16 (8 per group) would achieve 80 % power to detect 

a large effect size (d=1.52~2.13) using T-Testing with greater ACL volume, wider 

femoral notch width, and higher T2 relaxation times in males than females. Power 

analysis based upon hypothesis 3,4&5 revealed that a sample size of 36 would achieve 

80% power to detect a large effect size of 0.30 attributed to the main 3 independent 

variables of interest for individual hypothesis 3,4&5 using F-Testing. A larger effect size 

of 0.30 was chose based preliminary data (N=10 with R-Squared of 0.32~0.68) using the 

dependent variable of AKL and the predictors of ACL volume, femoral notch width, T2* 

relaxation and sex. Based on the individual hypothesis 3, 4&5, selected predictors were 

chose for calculation effect size. To ensure adequate power for all variables, a sample 

size of 40 participants (20 males and 20 females) will be used.
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CHAPTER IV 

SEX SPECIFIC IN-VIVO ACL MORPHOLOGY 

Abstract 

Background: Females have consistently higher ACL injury rates than males. Reasons for 

this disparity are not fully understood. While ACL morphometric characteristics have an 

association with injury risk, little is known in vivo of sex comparisons on various ACL 

morphometric measures. 

Hypothesis: Males have larger ACL volume, ACL width, ACL cross-sectional area. 

Males have larger ACL morphology after accounting for femoral notch width. 

Study Design: Cross-sectional study 

Methods: Magnetic resonance scans (3T) on the left knee were obtained from 20 active 

collegiate males and 20 active collegiate females. ACL volume, ACL width and ACL 

cross-sectional area measures were obtained from T2 weighted multiplanar images. 

Femoral notch width was measured from T1 weighted multiplanar MRI images. 

Independent sample T-tests examined sex differences in all ACL measures and femoral 

notch width.  

Results: Males had larger ACL volume and ACL width than females. After controlling by 

femoral notch width, ACL volume was still greater in males than females.  

Conclusion: Larger in vivo ACL morphometric measures were found in active healthy 

males than females. This suggests that ACL volume measure which is more 
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representative of ACL anatomy could be relevant in investigations of ACL morphometry 

and ACL injury risk. 

Keywords: ACL volume, femoral notch width, MRI, knee 

Introduction 

 Greater ACL injury rates in females have been consistently reported. (Arendt et 

al., 1999; Arendt & Dick, 1995; Beynnon et al., 2014; Myklebust et al., 1998; Prodromos 

et al., 2007) Even after accounting for sport and competition level, female athletes are 

twice as likely to suffer a first-time ACL injury compared to male athletes. (Beynnon et 

al., 2014)The ACL injury rate of soccer female athletes was 0.32 compared 0.12 per 1000 

exposures for males, and basketball females was 0.29 versus 0.08 per 1000 exposures for 

males.(Prodromos et al., 2007) While this sex-bias in injury risk has been consistent, the 

exact reasons for this sex bias are not completely understood. From a structural 

perspective, it has been suggested that a smaller ligament size may be one factor that 

contributes to the higher rate of ACL in females. (Chandrashekar et al., 2005) 

 It is well established in the orthopedic biomechanics literature that as the size of 

connective tissue increases, it is generally associated with greater resistance to 

deformation. (Nordin & Frankel, 1989) Specific to the ACL, this concept would infer that 

larger morphometric characteristics of the ACL would be more capable of resisting 

external forces. This suggests that various measures of greater ligamentous size, such as 

volume, width, and cross-sectional area of the ligament, will result in greater ligamentous 

restraint capacity.  
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 Thus, investigations of morphometric characteristics of the ACL may help to 

better understand risk of ACL injury. A prospective case-control study reported that 

smaller ACL volume was an independent predictor of ACL injury.(Whitney et al., 2014) 

An additional case-control study demonstrated that ACL injured participants had smaller 

ACL volume on their non-injured side than controls which also indicated that ACL 

volume could be an injury risk factor.(Chaudhari et al., 2009) The established sex bias in 

ACL injury rates may also help us to understand the role of ligament size in injury risk. A 

cadaveric study reported that females had smaller ACL volume and cross-sectional area 

than males even after adjusting for body height and weight. (Chandrashekar et al., 2005) 

In high school basketball athletes, ACL width and cross-sectional area were smaller in 

females than males.(Anderson et al., 2001) These findings indicate that smaller 

morphometric characteristics could be associated with less ligamentous restraint capacity 

which could potentially increase ACL injury risk. While multiple magnetic resonance 

imaging (MRI) measures, which include volume, width, and cross-sectional area (CSA) 

of the ACL, have been used to assess morphology of ACL, (Anderson et al., 2001; 

Chandrashekar et al., 2005; Charlton et al., 2002; Chaudhari et al., 2009; Davis et al., 

1999; Dienst et al., 2007; Fayad et al., 2008; Jamison et al., 2010; Simon et al., 2010; 

Whitney et al., 2014) sex-specific in vivo comparisons of the various ACL morphometric 

characteristics are still limited.   

 Given the physical relationship of the ACL to the femoral notch and the potential 

for ligamentous impingement, (Fung & Zhang, 2003) the femoral notch is another 

anatomic factor that has been investigated with regard to ACL injury risk. A case-control 
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study reported that decreased femoral notch width was independently associated with 

ACL injury risk (odds ratio [OR], 0.70).(Whitney et al., 2014) Radiographic 

measurement of ACL injured patients revealed smaller notch width and notch indexes 

than healthy controls.(Ireland et al., 2001) Further, previous research reported that 

smaller femoral notch area was associated with smaller ACL cross-sectional area (Dienst 

et al., 2007) with females having smaller notch width index area than males.(Dienst et al., 

2007) This suggests that smaller femoral notch width may limit the size of the ligament. 

This reduced ligamentous size could then be associated with less restraint capacity, thus 

increasing ACL injury risk.  

 Given that the in vivo sex-specific differences of ACL size and femoral notch 

width which may be corresponding to injury rate difference  have not been fully 

established, the primary objective of the study was to determine sex differences in ACL 

morphometric characteristics and femoral notch width. It was hypothesized that males 

would have larger ACL morphometric characteristics and femoral notch width than 

females. A secondary objective was to determine sex differences in ACL morphology 

while accounting for femoral notch width. Better in vivo understanding of sex specific 

structural factors could contribute the explanation of the higher ACL injury risk in 

females.  

Materials and Methods 

Subjects 

Healthy, recreationally active participants (20 males and 20 females) were 

recruited from local universities to participate in this study (demographics in Table 4.1). 
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Inclusion criteria were: 1) current engagement in sport activities at least 2 hours per 

week; and 2) no lower extremity injury in the last 6 months. Participants were excluded if 

they had: 1) previous history of injury to the capsule; ligament, or menisci of either knee; 

2) any vestibular or balance disorder; and 3) any metal or implanted medical device in the 

body. All participants read and sign an informed consent form approved by the University 

of North Carolina at Greensboro’s Institutional Review Board for the Protection of 

Human Subjects. Each participant attended a MRI testing session consisting of 3D T1 

and T2 weighted magnetic resonance imaging (MRI) of the left knee. Participants were 

instructed to avoid high intensity activities 24 hours prior to testing. The activity rating 

scale (Marx et al., 2001) was used to quantify participant activity level. Participants self-

rated running, cutting, decelerating, and pivoting activities each as 0 (less than once per 

month), 1 (once per month), 2 (once per week), 3 (2–3 times per week) or 4 (4 or more 

times per week), resulting in a score from 0 to 16. 

MRI Examination 

MRI data were acquired using a 3T Siemens Tim Trio scanner (Erlangen, 

Germany) and a 15 channel knee coil (Siemens Erlangen, Germany). T2-weighted, 

multiplanar MRI scans (repetition time (TR) =1300 ms; excitation time (TE) = 39 ms; 

Flip angle (FA) =160º; FOV=150x150 mm; voxel size = 0.5×0.5×0.5mm) were used for 

ACL morphometric measures. T1-weighted, multiplanar MRI scans (repetition time (TR) 

=1200 ms; excitation time (TE) = 33 ms; FOV=160x160 mm; voxel size = 

0.5×0.5×0.6mm) were used for femoral notch width measures.  
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Morphometric Data Reduction 

 ACL volume was calculated as reported by Chaudhari et al (Chaudhari et al., 

2009) using ITK-SNAP software (http://www.itksnap.org/pmwiki/pmwiki.php). ACL 

contouring of each sagittal slice was done manually using a digitizing tablet (Wacom 

DTK1300; Wacom Co, Kazo, Japan). All slices that were contoured were used in the 

calculation of ACL volume (Figure 4.1). For the establishment of intra-tester reliability 

and precision, ACL volume in 10 pilot participants was measured twice at least a week 

apart [ICC3,1 (SEM) =0.97 (36.1) mm3]. 

 ACL width was measured using Medical Image Processing, Analysis and 

Visualization software (MIPAV; http://mipav.cit.nih.gov) per methods described 

previously. (Anderson et al., 2001) First, the sagittal plane image that indicated the 

clearest image of Blumensaat’s line was selected. Blumensaat’s line is the landmark 

which corresponds to the roof of femoral intercondylar notch as drawn on the sagittal 

knee joint image.(Seyahi et al., 2006) At the point of the notch outlet, ACL width was 

determined by a line drawn perpendicular to Blumensaat’s line that measured the distance 

across the ACL (Figure 4.2). The investigator has previously established intratester 

measurement consistency and precision [ICC3,1 (SEM) =0.98 (0.3) mm] of this 

measure.(H.-M. Wang et al., 2015) 

 ACL cross-sectional area was measured using ITK-SNAP software 

(http://www.itksnap.org/pmwiki/pmwiki.php) as reported by Whitney et al.(Whitney et 

al., 2014) From an oblique sagittal image perpendicular to the ACL, a point one third of 

the total ACL length from the attachment to the tibia was identified (Figure 4.3a). After 

http://www.itksnap.org/pmwiki/pmwiki.php
http://mipav.cit.nih.gov/
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identification of this point, ACL cross-sectional area was segmented and calculated from 

the oblique axial image (Figure 4.3b). For the establishment of intra-tester reliability and 

precision, ACL cross sectional area in 10 pilot participants was measured twice at least a 

week apart [ICC3,1 (SEM) =0.87 (0.7) cm2]. 

 Femoral notch width was measured using Medical Image Processing, Analysis 

and Visualization software (MIPAV; http://mipav.cit.nih.gov) as reported by Stein et 

al.(Stein et al., 2010) First, the clearest image of Blumensaat’s line from the sagittal 

image and the beginning of the Blumensaat’s line at the anterior outlet from the frontal 

image were chosen to identify the axial image. Then, from the axial image, the articular 

surface line tangent to the medial and the lateral femur condyle was drawn. Notch depth 

is the line perpendicular to the articular surface line. At two-thirds of the notch depth, the 

notch width was calculated as the line parallel to the articular surface line (Figure 4.4). 

For the establishment of intra-tester reliability and precision, femoral notch width in 10 

pilot participants was measured twice at least a week apart [ICC3,1 (SEM) =0.99 (0.2) 

mm]. 

Statistical Analysis 

 Independent sample T-tests examined the differences in ACL morphometry and 

femoral notch width measures between males and females. Secondarily we examined sex 

differences in ACL morphometry after normalization to femoral notch width. Test 

variables were ACL volume (mm3), ACL width (mm), ACL cross-sectional area (cm2), 

and femoral notch width (mm). The alpha level for all analyses was set priori at equal or 

http://mipav.cit.nih.gov/
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less than .05. All calculations were performed using the SPSS statistical software (version 

21.0; IBM Corp, Armonk, NY). 

Results 

 Sex-specific descriptive statistics for ACL volume, ACL width, ACL cross-

sectional area and femoral notch width are shown in Table 4.1. Independent t-tests 

indicated that males had significantly larger ACL volume (T.05 (1, 38) = -4.67, p < .001), 

ACL width (T.05 (1, 38) = -2.53, p= .016), and larger femoral notch width (T.05 (1, 38) = -5.52, 

p < .001) than females. There was no sex difference in ACL cross-sectional area (T.05 (1, 38) 

= -1.89, p= .067). After normalizing by femoral notch width, males still had significantly 

larger ACL volume than females (T.05 (1, 38) = -3.29, p= .002). However, there were no sex 

differences in ACL width (T.05 (1, 38) = -.61, p= .544) and ACL cross-sectional area (T.05 (1, 

38) = -.26, p= .793). The normalized ACL morphometric descriptives are shown in table 

4.2. 

Discussion 

 While a higher incidence of ACL injury in females has been repeatedly reported 

(Arendt et al., 1999; Arendt & Dick, 1995; Beynnon et al., 2014; Myklebust et al., 1998; 

Prodromos et al., 2007), the potential role of morphologic factors in ACL injury risk is 

little understood. (Whitney et al., 2014) In the current study we examined sex differences 

in anatomical factors to better understand the sex-bias in ACL injury. Our primary finding 

was that males had 30% greater ACL volume and 18% greater ACL width than females. 

In vivo results of the current study are supported by a previous in vitro study in which 

males had 35% greater ACL volume and 20% greater cross-sectional area than females 
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even after adjusting for body height and weight. (Chandrashekar et al., 2005) These 

results show that in vivo and in vitro sex differences in ACL morphologic measures were 

similar, with females having consistency smaller ACLs than males.  

 While lesser ACL volume and ACL width in females was observed, the 

mechanism(s) by which these findings may directly influence ACL injury risk are not 

well understood. Theoretically, smaller connective tissue size would be correlated with 

lower capacity to against external forces.(Nordin & Frankel, 1989) Specific to the ACL, 

smaller ACL volume has been previously correlated with lower failure load.(Fleming et 

al., 2011) Further, a computational study stimulated in situ ACL stress, indicating that 

decreased ACL graft diameter resulted in higher ACL stress.(Westermann, Wolf, & 

Elkins, 2013) These findings suggest that smaller ACL morphometry could be associated 

with less restrain capacity thus increase the risk of ACL. Hence, our current study 

findings of smaller ACL volume and ACL width in females could be a part of an 

explanation of higher ACL injury rates on females. (Arendt et al., 1999; Arendt & Dick, 

1995; Beynnon et al., 2014; Myklebust et al., 1998; Prodromos et al., 2007) 

 With regard to using an ACL morphometry as a representative of ACL strength 

and corresponding potential for injury, there does not seem to be a gold-standard method 

in the literature to fully characterize the ligament’s ability to withstand loading. From 

cadaveric work, both ACL CSA and ACL volume were contributors to ligamentous 

energy absorbed at failure,(Hashemi, Mansouri, et al., 2011) indicating that multiple 

dimensional measures such as ACL width, CSA, and volume may represent ligamentous 

strength.  
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 Given the well-established relationship of CSA to strength, it was surprising that 

sex differences were not observed for CSA. A potential reason for this may be the 

methods by which CSA are obtained in vivo. Given the non-uniform 3 dimensional 

nature of the ACL, CSA and width may not fully represent the entire ACL structure. 

While ACL width is a single planar measure that does not take into account the non-

uniform three dimensional ACL form, the contrast of ligamentous tissue to surrounding 

tissue is slightly better than measures from the oblique planes used in ACL CSA 

measures. Additionally the precision of the measures may play a role. Because the ratio 

of the SEM to the mean differences was 0.19 in ACL width and 7.0 in CSA, the lesser 

relative precision of CSA measure may have played a role in current findings. Thus with 

regard to two dimensional measures, ACL width may likely more accurately delineate 

ACL size than CSA.  

 Conversely, ACL volume is a three dimensional measure that use multiple sagittal 

images to fully measure the entire ACL anatomy. This may more fully model the three 

dimensional nature of the ACL. (Chaudhari et al., 2009; Jamison et al., 2010; Whitney et 

al., 2014) Further, it has been suggested that three dimensional simulation models using 

finite element analysis of the ligament could be more predictive of ligamentous 

biomechanics than one or two dimensional models,(Galbusera et al., 2014) indicating 

ACL volume may be the best predictor of ligamentous failure characteristics. 

Collectively, due to the better delineation of ACL morphology, ACL volume may be the 

best method to represent morphologic on ACL.  
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 The current finding of smaller femoral notch width in females than males (16.4 

mm vs. 19.0 mm) is supported by a previous report (15.6 mm vs. 17.7mm). (Uhorchak et 

al., 2003) Because smaller femoral notch width area has previously been correlated to 

smaller ACL cross-sectional area, (Dienst et al., 2007) the role that sex differences of 

ACL morphology have in ACL injury may be influenced by femoral notch width. 

Therefore, the current study as a secondary objective investigated differences in ACL 

morphology between males and females after normalizing to the femoral notch width. 

Current results indicated that the sex differences in ACL size still existed for ACL volume 

measure regardless of the size of femoral notch width. Thus ACL volume could more 

precisely represent total ACL morphometry with regard to bony anatomy (Chaudhari et 

al., 2009; Jamison et al., 2010; Whitney et al., 2014) than ACL width and ACL CSA 

measures. Additionally, ACL volume is also the only ACL morphometric measure that 

has been reported as a predictor of ACL injury risk,(Whitney et al., 2014) indicating that 

ACL volume may be better predictive of ligamentous function and strength. Collectively, 

ACL volume could be the most appropriate measure to assess morphologic on ACL with 

regard to studying the sex bias in ACL injury.   

 Given the limited number of in vivo ACL morphologic studies, the comparison of 

current values to previously reported values are warranted. The current ACL volume 

measures compared favorably with previous reports in males (1725.1 mm vs. 

1386.0~2256.5 mm3) and females (1200.1 mm vs. 1072.0~1880.3 mm3).(Chaudhari et 

al., 2009; Whitney et al., 2014) Our results of absolute ACL width were similar with a 

previous in vivo study of males (7.0 m vs. 7.6 m) and females (8.6 m vs. 8.7 
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m).(Anderson et al., 2001) When comparing our ACL cross-sectional area measures, the 

current values were higher than previous reported male (0.9 cm2 vs. 0.5 cm2) and female 

(0.8 cm2 vs. 0.4 cm2) values.(Anderson et al., 2001) The current difference in ACL cross-

sectional area may be based upon the previous discussion of the lack of contrast in our 

imaging which may be based upon our imaging parameters. Additionally the investigator 

responsible for the study is not a radiologist, which could likely lend some error to the 

measure.   

 The findings from the current study have several clinical implications. From the 

perspective of structural ACL injury risk factors, our findings provide evidence of in vivo 

sex differences on various ACL morphometric characteristics. These findings could 

contribute to future efforts of determining which clinical measures may relate to 

morphometry in order to better screening targeted populations. In addition, the results 

provide the options for future imaging studies to determine which ACL size measures 

could be most suitable regard to investigations of sex bias in ACL injury risk. A better 

understanding of morphologic factors in ACL injury risk may advance future intervention 

design.  

 A limitation of the present study was that all ACL and femoral notch measures 

required manually segmenting the contour from each MRI image. Depending on the 

magnetic field strength, chosen sequence, and individual participant variation, there is not 

a uniform resolution/pixel intensity distinguishing the ACL from surrounding soft tissues. 

However, our intra-tester consistency of the ACL measures suggests these are reliable 

measures. A second limitation was that all MRI measures were acquired from the left 



80 
 

knee only. However, this decision was based upon a previous study demonstrating a high 

degree of ACL volume symmetry (r =.91, P <.001). (Jamison et al., 2010) A limitation of 

our secondary objective was that ACL morphometry was normalized by femoral notch 

width instead of body height and body weight. This decision was based upon previous 

report of femoral notch width being related to ligamentous cross-sectional area. (Dienst et 

al., 2007) However, the literature is inconsistent with regard to the relationship of ACL 

morphology to body size.(Anderson et al., 2001; Charlton et al., 2002; Chaudhari et al., 

2009; Fayad et al., 2008; Jamison et al., 2010) Finally, the study was limited by the use of 

a general healthy population. It is still unknown if the differences found in the current 

study are found in an only highly athletic population that is at greater risk of sustaining an 

ACL injury.  

Conclusion 

 In summary, current main findings were that active males had larger ACL volume, 

ACL width and femoral notch width than active females. Additionally, regardless of the 

sex differences in femoral notch width, ACL volume of males was still larger than 

females. Given the previously established association of ACL volume with ACL injury 

risk (Whitney et al., 2014), ACL volume may be the most relevant measure for 

investigations of sex difference in ACL injury rate. Future studies are needed to 

determine the factors associated with smaller ACL morphology in order to better target 

the high risk injury individuals.  
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Table 4.1 Descriptive Statistics 

 Males Females 

 Mean± SD Min-Max Mean± SD Min-Max 

Age (yrs) 23.2 ± 2.9 19-30 21.3 ± 2.3* 18-27 

Height (cm) 180.4 ± 6.7 170-192 166.9 ± 7.7* 151-182 

Weight (kg) 84.0 ± 10.9 63-106 61.9 ± 7.2* 51-76 

Activating- 

Rating score 

9.2 ± 4.1 4-16 10.7 ± 3.9 4-16 

ACL Volume 

(mm3) 

1712.2 ± 356.3 1052.0-2261.0 1200.1 ± 337.8* 805.2-2231.0 

ACL Width 

(mm) 

8.5 ± 2.3 5.3-12.5 7.0 ± 1.2 * 4.7-9.3 

ACL CSA 

(cm2) 

0.9 ± 0.2 0.6-1.3 0.8 ± 0.2 0.4-1.3 

Femoral Notch 

Width (mm) 

19.1 ± 1.8 15.9-22.5 16.4 ± 1.1* 13.8-18.8 

* statistically different (P <.05) between males and females 

 

 

Table 4.2 Normalized ACL Morphometric Descriptives 

 Males (Mean± SD) Females (Mean± SD) 

Normalized_ACL volume 

(mm3/mm) 

89.3 ± 15.6 72.4 ± 16.8* 

Normalized_ACL Width 

(mm/mm)  

0.44 ± 0.11 0.43 ± 0.07 

Normalized_ACL CSA 

(cm2/mm) 

0.05 ± 0.01 0.05 ± 0.01 

* represent statistically different between males and females 
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Figure 4.1 ACL Volume Measure. Manual ACL segmentation and resultant area (shaded) 

on sagittal image.  

 

 

.  

Figure 4.2 ACL Width Measure. The distance across the ACL (green) on a line (red) 

perpendicular to the Blumensaat’s line (blue). 
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Figure 4.3 CSA Measure. (a) Identified CSA from the oblique sagittal image; (b) The 

ACL was segmented and CSA calculated from the oblique axial image.  

 

 

 

Figure 4.4 Femoral Notch Width Measure. The distance across the notch (purple) taken 

from a line (blue) parallel to a line tangent to a line located tangent to the posterior 

femoral condyle located at 2/3 of the notch depth (orange).

3a 
3b 
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CHAPTER V 

SEX COMPARISONS OF IN VIVO ANTERIOR CRUCIATE LIGAMENT T2 

AND T2* RELAXATION TIME 

 

 

Abstract 

Background: Females have consistently higher ACL injury rates than males. In-vivo sex 

differences in intrinsic ACL characteristics may offer insight to this injury risk but are not 

widely understood. Recent advances in quantitative MRI techniques may allow for 

investigation of sex comparisons of ACL intrinsic properties as assessed via T2 and T2* 

relaxation times. 

Hypothesis: Males have shorter ACL T2 and T2* relaxation times than females.   

Study Design: Cross-sectional study 

Methods: Recreationally healthy males (n=20) and females (n=20) were assessed via 3T 

magnetic resonance imaging on the left knee. T2 weighted structural imaging was utilized 

to calculate ACL volume. T2 relaxation imaging was performed by using spin echo sets 

with five echo times. T2* relaxation imaging was performed by assessing gradient echo 

data sets with twelve echo times. Independent sample T-tests examined sex differences in 

T2 and T2* relaxation times of the ACL.  

Results: There were no differences in T2 and T2* ACL relaxation times between sexes.  

Conclusion: The current study found no in-vivo differences between active males and 

females in T2 and T2* relaxation times of human ACLs. Although this indicates that 

there may be no sex differences in collagen density, collagen ultrastructure organization,
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 and water content; T2 and T2* relaxation imaging may not be capable of fully 

characterizing established cadaveric sex differences. Future validation of such imaging 

techniques is warranted. 

Keywords: ACL; MRI; structural composition; knee 

Introduction 

 Intrinsic ligamentous characteristics often refer to both the size and composition 

of the ligament. With regard to ACL size, ACL volume has been a predictor of ACL 

injury risk factor (Whitney et al., 2014) and greater ACL graft volume was associated 

with greater failure load,(Fleming et al., 2011) indicating that ACL morphometry could 

be indicative of ligamentous strength. Given that females have consistently higher 

anterior cruciate ligament (ACL) injury rates than males, (Arendt et al., 1999; Arendt & 

Dick, 1995; Beynnon et al., 2014; Myklebust et al., 1998; Prodromos et al., 2007) the 

potential role of ACL intrinsic characteristic in this sex bias are not fully understood. 

(Whitney et al., 2014) While the structural composition of the ligament may also impact 

ligamentous function and strength,(Culav et al., 1999; Liu et al., 1995; Nakamura et al., 

2000; Nordin & Frankel, 1989; Quapp & Weiss, 1997; Raleigh & Collin, 2012) in-vivo 

sex differences in ACL structural composition are unknown.  

 The primary compositional components of ligaments include type I collagen, type 

III collagen, proteoglycans, elastin, and water content.(Culav et al., 1999; Nordin & 

Frankel, 1989) Lower ACL collagen fibril density in human cadavers has been associated 

with lower ACL failure strain.(Hashemi, Chandrashekar, Mansouri, et al., 2008) In 

addition, cadaveric studies have observed that females have lower collagen density, lower 
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ACL strain at failure, and lower modulus of elasticity when compared to males, 

(Chandrashekar et al., 2006; Hashemi, Chandrashekar, Mansouri, et al., 2008) indicating 

compositional sex disparities in ACLs. Collectively, sex differences in ACL structural 

composition may be associated with ligamentous restraint capacity which may contribute 

to sex difference in ACL injury risk. 

 Several structural compositional characteristics of the ligament could impact 

ligamentous integrity. Regardless of collagen density, the various diameters of different 

collagen fibers may affect restraint capacity.(Liu et al., 1995) Collagen fibril orientation 

is also associated with the ability of the ligament to resist external forces.(Quapp & 

Weiss, 1997) Small amounts of Type V collagen and proteoglycans could determine the 

structural composition of the larger diameter collagen fibers, which may impact collagen 

fiber integrity.(Nakamura et al., 2000; Raleigh & Collin, 2012) Such work collectively 

suggests that for 2 ligaments of the same size, the one that is well-structured and well-

organized collagen network matrix may be capable of resisting higher external loads.  

 To the date we understand very little about in vivo ACL composition. Recent 

advances in quantitative MRI have allowed insight into material properties of 

ligamentous tissue. T2 relaxation is referred as the transverse relaxation rate,(Chavhan et 

al., 2009) with shorter T2 relaxation times in cartilage reflecting denser collagen, more 

organized collagen ultrastructure, and less water content.(Matzat et al., 2013) Restriction 

of water molecules in the tissue, thus reducing free water molecules and enhancing 

dipole-dipole interactions result in shortened T2 relaxation times.(Fullerton & Rahal, 

2007; Matzat et al., 2013) Thus, due to the influence of free hydrogen distribution on 
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MRI signal intensity decay,(Fullerton & Rahal, 2007; Matzat et al., 2013) differences in 

collagen structure of ligaments may be detected in vivo by T2 relaxation time.(Fleming et 

al., 2011)  

 T2 relaxation time has been utilized in an in vivo animal model to predict strength 

of healing ligamentous graft tissue. Specifically, lower T2 relaxation values when 

combined with greater ACL volume were associated with greater failure load of animal 

ACL grafts.(Fleming et al., 2011) Similar to T2 relaxation, T2* relaxation, which 

considers both the spin-spin interaction and the interaction with the magnetic field, has 

been utilized in the study of animal ACL grafts.(Biercevicz, Murray, et al., 2014; 

Chavhan et al., 2009) T2* relaxation time was negatively associated with yield load of 

healing ACL grafts.(Biercevicz, Murray, et al., 2014) These findings indicate that T2 and 

T2* relaxation times may both be capable of detecting intrinsic ACL properties. 

 While T2* relaxation time has been independently associated with ligament 

strength,(Biercevicz, Murray, et al., 2014) T2 relaxation has not been independently 

associated with ligament strength.(Fleming et al., 2011) This suggests that T2* relaxation 

times may be more sensitive in detecting ligament compositional characteristics 

associated with ligamentous strength than T2 relaxation times. To our knowledge, a direct 

sex comparison of T2 and T2* relaxation times to assess intrinsic ACL properties has not 

been performed. Additionally, while T2* relaxation has been utilized in human cadaver 

ACLs, (Biercevicz, Akelman, Rubin, et al., 2015) the results did not support a previous 

association with ligamentous graft properties in vivo.(Biercevicz, Murray, et al., 2014) 

Given the limitation of the cadaver model in fully representing a true physiologic 
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environment, further human in vivo investigation of T2 and T2* relaxation times with 

regard to the sex bias in ACL injury is warranted. 

 A better understanding of detecting potential in-vivo ACL structural 

compositional differences between sexes could advance future investigations of sex 

disparities in ACL injury. Thus, the primary objective of the study was to determine sex 

differences in ACL structural composition as assessed via T2 and T2* relaxation times. It 

was hypothesized that males have shorter T2* and T2 relaxation times than females. 

Materials and Methods 

Subjects 

 Healthy, recreationally active participants (20 males and 20 females) were 

recruited from local universities to participate in this study (demographics in Table 5.1). 

Inclusion criteria were: 1) current engagement in sport activities at least 2 hours per 

week; and 2) no lower extremity injury in the last 6 months. Participants were excluded if 

they had: 1) previous history of injury to the capsule, ligament, or menisci of either knee 

2) any vestibular or balance disorder and 3) any metal or implanted medical device in the 

body. All participants read and sign an informed consent form approved by the University 

of North Carolina at Greensboro’s Institutional Review Board for the Protection of 

Human Subjects. Each participant attended a MRI testing session consisting of structural 

T2 imaging along with T2 and T2* relaxation mapping imaging. Participants were 

instructed to avoid high intensity activities 24 hours prior to testing. All measures were 

performed on the left knee. In order to control potential hormonal effects on collagen 

metabolism, females were tested during a limited window of the menstrual cycle (3 to 8 
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days post menses onset). (Shultz, Wideman, et al., 2012) The activity rating scale (Marx 

et al., 2001) was used to quantify participant activity level. Participants self-rated 

running, cutting, decelerating, and pivoting activities each as 0 (less than once per 

month), 1 (once per month), 2 (once per week), 3 (2–3 times per week) or 4 (4 or more 

times per week), resulting in a score from 0 to 16. 

MRI Examination 

 All MRI data were acquired using 3T Siemens Tim Trio scanner (Erlangen, 

Germany) and a 15 channel knee coil (Siemens Erlangen, Germany). T2-weighted, 

multiplanar MRI scans (repetition time (TR) =1300 ms; excitation time (TE) = 39 ms; 

Flip angle (FA) =160º; FOV=150x150 mm; voxel size= 0.5×0.5×0.5mm) were used to 

calculate ACL volume. 

 The T2 relaxation imaging was performed using spin echo data sets with 

following parameters: repetition time (TR) =3040 ms; excitation time (TE) at 13.8, 27.6, 

41.4, 55.2, and 69 ms; flip angle (FA) =180º; voxel size, FOV=160 x160 mm; voxel size= 

0.4×0.4×3.0mm.(Fleming et al., 2011) T2* relaxation was performed using gradient echo 

data sets with following parameters: repetition time (TR) =1000 ms; excitation time (TE) 

at 8.26, 10.28, 12.3, 14.32, 16.34, 18.36, 20.38, 22.4, 24.42, 26.44, 28.46 and 30.48 ms; 

flip angle (FA) =90º; FOV=280 x280mm; voxel size = 0.5×0.5×3.0mm.(Biercevicz, 

Akelman, et al., 2014; Biercevicz, Akelman, Rubin, et al., 2015)  

Morphometric Data Reduction 

 ACL volume was calculated as reported by Chaudhari et al (Chaudhari et al., 

2009) using ITK-SNAP software (http://www.itksnap.org/pmwiki/pmwiki.php). ACL 

http://www.itksnap.org/pmwiki/pmwiki.php
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contouring of each sagittal slice was done manually using a digitizing tablet (Wacom 

DTK1300; Wacom Co, Kazo, Japan). All slices that were contoured were used in the 

calculation of ACL volume and then in the creation of 3D ACL volume (Figure 5.1). For 

the establishment of intra-tester reliability and precision, ACL volume in 10 pilot 

participants was measured twice at least a week apart [ICC3,1 (SEM) =0.97 (36.1) mm3]. 

MRI Relaxation Time Data Reduction 

 Using customized Matlab code (Mathworks Inc, U.S.A), the voxel-wise T2 

relaxation maps were calculated using the signal intensity (SI) relationship from all five 

echo times of the T2 relaxation imaging sequence. Equation: SI (TE) = So exp(-TE/T2), 

where SI(TE) are the voxel-specific SIs for the various echo times (TE) and where So is 

the signal intensity at the initial TE.(Fleming et al., 2011) A graphic representation of the 

calculation of relaxation maps is located in Figure 5.2. To isolate ligament specific T2 

values, the calculation T2 relaxation map was registered to the structural imaging 

sequence using Slicer 3D Software (https://www.slicer.org/) and the mean T2 relaxation 

value of the voxels (Figure 5.3) included in the 3D ACL volume described above was 

calculated using ITK SNAP software (http://www.itksnap.org/pmwiki/pmwiki.php) and 

included in the analyses.      

 Using customized Matlab code (Mathworks Inc, U.S.A), the voxel-wise T2* 

relaxation maps were calculated using the signal intensity (SI) relationship from all 

twelve echo times of the T2* relaxation imaging sequence. Equation: SI (TE) = So exp(-

TE/T2*), where SI(TE) are the voxel-specific SIs for the various echo times (TE) and 

where So is the signal intensity at the initial TE.(Biercevicz, Akelman, et al., 2014; 
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Biercevicz, Akelman, Rubin, et al., 2015) To isolate ligament specific T2* values, the 

calculation T2* relaxation map was registered to the structural imaging sequence using 

Slicer 3D Software (https://www.slicer.org/) and the mean T2* relaxation value of the 

voxels included in the 3D ACL volume described above was calculated using ITK SNAP 

software (http://www.itksnap.org/pmwiki/pmwiki.php) and included in the analyses.     

Statistical Analysis 

 Independent sample T-tests examined sex differences in T2 and T2* ACL 

relaxation times. The alpha level for all analyses was set priori at equal or less than .05. 

All calculations were performed using the SPSS statistical software. (version 21.0; IBM 

Corp, Armonk, NY) 

Results 

 Descriptive statistics for the mean ACL T2 relaxation and T2* relaxation times 

between males and females are show in Table 5.1. There were no significant differences 

in T2 relaxation time (T.05 (1, 38) = -.61, p=.543), and T2* relaxation times (T.05 (1, 38) = -.83, 

p=.412) between males and females.  

Discussion 

 Structural composition of cadaver ACLs has been associated with failure load 

(Chandrashekar et al., 2006; Hashemi, Chandrashekar, Mansouri, et al., 2008) which 

indicates that intrinsic ACL properties may play a role in ACL injury. However, the 

influences of potential in-vivo sex disparities in ACL structural composition that may 

contribute to the sex bias in ACL injury rates are unknown. In the present study, we 

compared the differences between males’ and females’ ACL structural composition as 
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assessed via T2 and T2* relaxation mapping. Our main result demonstrated that males 

had similar T2 and T2* relaxation times compared to females, which suggested no 

structural composition differences of the ACL. 

 We are unaware of other in vivo sex comparisons of ligamentous tissue.  Thus, 

sex comparisons in other similar tissue may help to interpret current findings. Knee 

articular cartilage T2 relaxation times of healthy males (57.9 ± 5.2 ms) was similar to 

healthy females (57.0 ± 5.3 ms),(Mosher et al., 2004) which is congruent with the current 

T2 findings of in vivo ACL T2 relaxation times of males (58.2 ± 7.7 ms) and females 

(55.9 ± 8.1 ms). While studies establishing validation of T2 and T2* relaxation times to 

tissue properties have focused on articular cartilage tissue,(H. K. Kim, Shiraj, Anton, 

Horn, & Dardzinski, 2014; Mosher et al., 2004; Watrin et al., 2001) the current study was 

the first in vivo report of ACL T2 and T2* relaxation times. When comparing the 

structure of articular cartilage to ligamentous tissue, both tissues have an abundance 

water and an extracellular matrix.(Bhosale & Richardson, 2008; C. Frank et al., 1985; C. 

B. Frank, 2004; Sophia Fox, Bedi, & Rodeo, 2009) While 65-80% of cartilage is 

composed of water, type II collagen accounts for 10-20% of wet weight and 

proteoglycans account for 10-20% of the wet weight.(Bhosale & Richardson, 2008; 

Sophia Fox et al., 2009) Conversely, slightly less of the ligament is composed of water 

(~67% of wet weight) with type I and type III collagen accounting for ~25% of the wet 

weight and the other being small amounts of elastic, proteoglycans and glycoproteins.(C. 

B. Frank, 2004; C. B. Frank et al., 1999) While there are structurally similarities between 

articular cartilage and ligament that warrant investigation of T2 and T2* relaxation 
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imaging in ligament, the structural differences between the tissues have the potential to 

override the established sensitivity of T2 and T2* relaxation times to water and collagen 

content in cartilage.(Li et al., 2011; Mosher et al., 2000; Regatte et al., 2002; Wayne et 

al., 2003; White et al., 2006)  

 Comparison of T2 and T2* relaxation times between the cartilage and ligaments 

help us to further understand the sensitivity of T2 and T2* measures in various tissues. In 

knee cartilage measures, T2 relaxation times have been reported around 58.3 ±14.4 ms in 

vivo(Welsch et al., 2008) and 51.9 ± 9.2 ms in vitro (T. Kim et al., 2014) while T2* 

relaxation times were around 22.5 ± 7.7 ms(Welsch et al., 2008) in vivo and 20.3 ± 10.3 

ms(T. Kim et al., 2014) in vitro. The present study reported that mean T2 relaxation was 

57.1 ± 7.9 ms and mean T2* relaxation was 18.9 ± 2.4 ms. While mean values are similar 

between cartilage and ligamentous tissue, we are still unaware of work that has fully 

investigated the relationship T2 and T2* measures to ligamentous tissue components. 

Hence, future investigations of histologic studies in healthy ligaments are needed. 

 Although a previous cadaver study reported 18% less ACL collagen density in 

females in than males,(Hashemi, Chandrashekar, Mansouri, et al., 2008) current findings 

did not support in vivo sex differences in ligamentous structure composition as assessed 

by T2 and T2* relaxation times. Similarly, T2* relaxation could not predict maximum 

failure in combined sex cadaveric ACLs.(Biercevicz, Akelman, Rubin, et al., 2015) Based 

on the association of ligamentous structural composition to failure load, (Chandrashekar 

et al., 2006; Hashemi, Chandrashekar, Mansouri, et al., 2008) these previous findings 

suggest that T2* relaxation may not have the sensitivity to detect collagen density 



94 
 

differences previously assessed in cadavers by transmission electron 

microscopy.(Hashemi, Chandrashekar, Mansouri, et al., 2008) However, sex comparisons 

of other intrinsic characteristics such as collagen orientation and proteoglycan content 

which may affect the network matrix and corresponding T2 and T2* relaxation times are 

unknown.  

 Regardless of sex comparisons, several animal studies have reported that shorter 

T2 and T2* relaxation times were associated with larger ligamentous graft failure 

load,(Biercevicz, Murray, et al., 2014),(Fleming et al., 2011) indicating that structural 

composition could be associated with ligament strength. However, in vivo T2 and T2* 

relaxation times have not been studied in healthy ligamentous tissue. A single previous 

cadaveric ACL study reported a T2* range from 10.6-17.7ms (Biercevicz, Akelman, 

Rubin, et al., 2015) and median was 13.1 ms compared to the current study T2* range 

was of 13.0-24.6 ms and median was 18.7. Although relaxation times may be slightly 

higher in vivo than in vitro, the in vivo and in vitro abilities of T2 and T2* relaxation 

times to characterize ligamentous ultrastructure characteristics in healthy ligaments is 

needed.  

 The present study was limited by lack of direct measurement of ligamentous 

histology. It is important to note that the previous T2 and T2* findings are related to the 

collagen characteristics and water content as studied in articular cartilage.(Li et al., 2011; 

Mosher et al., 2000; Regatte et al., 2002; Wayne et al., 2003; White et al., 2006) With 

regard to ligamentous tissue, existing work is limited to the T2 and T2* relaxation times 

relationships to ligamentous biomechanics.(Biercevicz, Akelman, Rubin, et al., 2015; 
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Biercevicz, Murray, et al., 2014; Fleming et al., 2011) A second limitation is that potential 

factors affecting structural composition of the ACL are not fully understood. Our current 

work did not account for the multitude of genetic factors that could impact structural 

composition of the ACL.(Raleigh & Collin, 2012) However, how mechanism(s) by which 

genetic profiles alter ligamentous structural composition and corresponding ligamentous 

function and strength are inconclusive. Finally, although activity-rating scores were 

similar between sexes (Table 1), participants had a wide range of physical activity levels 

which may impact ligamentous structural composition.(Tipton et al., 1975)  

Conclusion 

 In summary, the current study found no in-vivo differences between active males 

and females in T2 and T2* relaxation times in human ACLs. Although this indicates that 

there may be no sex differences in collagen density, collagen ultrastructure organization, 

and water content; T2 and T2* relaxation imaging may be not sufficient to fully 

characterize established cadaveric sex differences. While sex differences in T2 and T2* 

relaxation times were not identified, the current study offers a reference for future 

comparisons with pathologic or high-risk individuals. Future histologic studies are 

needed to determine the extent of which structural composition of ligament is sensitive to 

T2 and T2* relaxation times.   
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Table 5.1 Descriptive Statistics 

 Male (N=20) Female (N=20) 

 Mean ± SD Min-Max Mean ± SD Min-Max 

Age (yrs) 23.2 ± 2.9 19-30 21.3 ± 2.3* 18-27 

Height (cm) 180.4 ± 6.7 170-192 166.9 ± 7.7* 151-182 

Weight (kg) 84.0 ± 10.9 63-106 61.9 ± 7.2* 51-76 

Activity- 

Rating score 

9.2 ± 4.1 4-16 10.7 ± 3.9 4-16 

T2 Relaxation (ms) 58.2 ± 7.7 42.1-67.4 55.9 ± 8.1 42.7-69.5 

T2* Relaxation (ms) 19.4 ± 2.6 14.5-24.6 18.5 ± 2.2 13.0-22.6 

* represent statistically different (P < .05) between males and females 

 

 

 

Figure 5.1 3D ACL Model. 3D ACL model ascertained from segmented images. 
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Figure 5.2 Example of T2 Relaxation Time. Example of T2 relaxation time quantification 

using the voxel-wise data from each of the 5 excitation times. The resultant rate of voxel 

by voxel signal intensity decay was quantified over the 5 times using the Levenberg-

Marquardt monoexpoential equation (Fleming et al., 2011) 

 

 

 

Figure 5.3 Example of T2 Relaxation Map. Example of T2 relaxation map was ACL 

outlined by brown contour.
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CHAPTER VI 

THE RELATIONSHIP OF ACL MORPHOMETRY AND STRUCTURAL 

COMPOSITION TO ANTERIOR KNEE LAXITY 

 

 

Abstract 

Background: Greater anterior knee laxity (AKL) has been reported as a prospective ACL 

injury risk factor and could be indicative of a structurally weaker ligament. Given that 

ACL morphometry and structural composition have the potential to influence 

ligamentous strength, thus its biomechanical response to an applied load, understanding 

the combined contributions of ACL morphometry and structural composition is 

warranted.   

Hypothesis: ACL volume and T2* relaxation times are the strongest morphometric and 

relaxation time predictors, respectively, of AKL in both sexes. Smaller ACL volume 

combined with lower T2* relaxation times would collectively predict greater AKL in both 

sexes. 

Study Design: Cross-sectional study 

Methods: College-aged, active healthy males (n=20) and females (n=20) underwent MRI 

examination and AKL testing on the left knee. T2 weighted MRI scans assessed ACL 

volume, ACL width, and ACL cross-sectional area. T1 weighted MRI scans assessed 

femoral notch width. T2 and T2*relaxation times assessed ACL structural composition. 

AKL was measured via a commercial knee arthrometer. After determining the strongest 

independent morphometric and relaxation times prediction measures of AKL, separate 
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sex-specific linear regressions examined the degree to which ligament morphometry and 

MR relaxation time collectively predicted AKL.  

Results: T2 relaxation time was an independent predictor of AKL in females and ACL 

volume was the strongest ACL size predictor in both males and females. In the 

multivariate model smaller ACL volume and lower T2 relaxation times collectively 

predicted greater AKL in females, while smaller ACL volume and larger T2* relaxation 

times predicted greater AKL in males.  

Conclusion: Smaller ACL volume combined with either lower T2 in females or higher 

T2* relaxation times in males predict greater AKL. The findings that ACL morphometry 

and structural composition features individually and collectively contribute to AKL lay a 

basis for in vivo investigations focused on AKL as a risk factor of non-contact ACL 

injury.  

Keywords: ACL volume; MRI; T2 relaxation times; Knee 

Introduction 

 Anterior cruciate ligament (ACL) injury frequently occurs in active populations 

with around 70% of ACL injuries resulting from non-contact injury mechanisms.(Boden 

et al., 2000; Gianotti et al., 2009; Hootman et al., 2007) The primary function of the ACL 

is to prevent anterior displacement of the tibia relative to the femur(Butler et al., 1978) 

with secondary functions to protect against increased knee abduction and tibial rotation 

motions.(Markolf et al., 1995) While knee stability during functional activity is provided 

both passively by the ligaments and actively by the muscles around the knee,(Noyes et 

al., 1980) it is possible that when there is a delay or an error in the neuromuscular control 
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system, active restraint is insufficient and a greater relative demand is placed on the 

passive restraints.(Hashemi, Breighner, et al., 2011; Hewett et al., 2002) During this 

situation, the capability of the ligament to resist the external load is critical in maintaining 

ACL integrity.  

 Clinically, ACL function is most commonly assessed by anterior knee laxity 

(AKL) testing.(Butler et al., 1980) AKL is commonly defined as the anterior 

displacement of the tibia relative to the femur under a fixed load with greater AKL being 

prospectively identified as an ACL injury risk factor.(Branch et al., 2010; Myer et al., 

2008; Uhorchak et al., 2003; Woodford-Rogers et al., 1994) The mechanisms 

underpinning this increased risk of injury with greater AKL are not well understood. 

Greater anterior-posterior knee laxity was associated with lower failure load one year 

after ACL reconstruction surgery in a canine population.(Beynnon et al., 1994) 

Additionally, 3D finite element modeling reported that greater PCL graft laxity was 

associated with lower graft strength.(Lai et al., 2015) While these studies are limited to 

ligamentous grafts, they suggest that greater knee laxity could be indicative of a weaker 

ligament. Thus, factors associated with lesser laxity have the potential to be related to 

ligamentous strength. A better understanding of the factors associated with stronger or 

less lax ligaments may be of benefit in ultimately reducing ACL injury incidence.   

 The orthopedic biomechanics literature has well established that greater material 

size is positively related to the ability to resist external loadings, thus producing less 

displacement of the tissue when loaded.(Nordin & Frankel, 1989) Focusing on the ACL, 

this theory would indicate that greater ACL morphometry (i.e. larger size) would be 
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associated with less deformation of the ligament under the fixed anterior load, thus less 

AKL. While this theory is supported by total anterior-posterior translation of animal 

knees being associated with cross-sectional area of the reconstructed ACL (R2=.86), 

(Grood et al., 1992) the relationship between ACL morphometry as measured by ligament 

width and AKL in healthy humans (R2=.22) was relatively weak compared to the 

previous animal study.(H.-M. Wang et al., 2015) Such differences in laxity’s relationships 

with ligament size are likely explained in part by the different morphometric measures as 

the most ACL size predictive of ligament function has yet to be established. 

 The restraint capacity of the ligament may not be fully represented by the 

ligamentous morphometric characteristics. Intrinsic factors such as of collagen fiber 

orientation,(Woo et al., 1991) collagen density,(Amiel et al., 1989) and collagen fiber 

diameter (Culav et al., 1999; Liu et al., 1995) also have the potential to impact 

ligamentous function. These intrinsic factors could help to stabilize the extracellular 

matrix thus increasing resistance to deformation under load. Thus, intrinsic factors 

contributing to stronger/less lax ligaments should also be investigated in vivo.   

 While there is no current gold-standard to detect in vivo ligamentous structural 

composition, quantitative magnetic resonance imaging (MRI) has the potential to offer 

compositional insight. T2 relaxation times are related to cartilage collagen density, 

collagen orientation, and water content.(Matzat et al., 2013) This suggests structural 

composition of ligaments may also be measured via MRI. Lower T2 relaxation times 

were correlated with larger failure load and lower anterior-posterior knee laxity in animal 

ACL grafts.(Fleming et al., 2011) Additionally, lower T2* relaxation times were related 
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to greater yield load on healing ACL grafts.(Biercevicz, Murray, et al., 2014) Thus, T2 

and T2* relaxation times may both be utilized to detect ligamentous structural 

composition and could be associated with AKL. A better understanding of which 

quantitative MRI measure best predicts AKL and associated structural composition would 

further advance our understanding of ACL injury. 

 While greater AKL is an established ACL injury risk factor,(Branch et al., 2010; 

Myer et al., 2008; Uhorchak et al., 2003; Woodford-Rogers et al., 1994) there is much to 

be understood as to the factors that contribute to greater AKL. Thus, the first purpose was 

to determine which MR relaxation measure and which ACL morphometric measure were 

the strongest independent predictors of AKL. It was hypothesized that T2* relaxation 

times and ACL volume would have the greatest independent predictive abilities of AKL. 

Next, the primary objective of the study was to determine the extent to which ACL 

structural composition and ACL morphometry combine to predict to AKL in active 

females and males. It was hypothesized that smaller ACL morphometry and longer T2* 

relaxation times would combine to predict greater AKL in males and females than 

morphometry or relaxation time in isolation. A better understanding of the relationship of 

the intrinsic ligamentous factors to AKL may serve to inform future prevention 

programming to address the established risk factor of greater AKL by focusing on 

increasing ligamentous strength. 
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Materials and Methods 

Subjects 

 Healthy, recreationally active participants (20 males and 20 females) were 

recruited from local universities to participate in this study (demographics in Table 6.1). 

Inclusion criteria were: 1) current engagement in sport activities at least 2 hours per 

week; and 2) no lower extremity injury in the last 6 months. Participants were excluded if 

they had: 1) previous history of injury to the capsule; ligament, or menisci of either knee; 

2) any vestibular or balance disorder; 3) any metal or implanted medical device in the 

body; 4) did not meet predefined AKL criteria(Shultz et al., 2007); or 5) could not relax 

during the AKL measures. All participants read and sign an informed consent form 

approved by the University of North Carolina at Greensboro’s Institutional Review Board 

for the Protection of Human Subjects. Each participant attended an AKL testing session 

as well as a MRI testing session consisting of structural T1 and T2 imaging along with T2 

and T2* relaxation mapping imaging. Participants were instructed to avoid high intensity 

activities 24 hours prior to testing. All measures were performed on the left knee. In order 

to control potential hormonal effects on AKL, females were tested during a limited 

window of the menstrual cycle (3 to 8 days post menses onset). (Shultz et al., 2004) The 

activity rating scale (Marx et al., 2001) was used to quantify participant activity level. 

Participants self-rated running, cutting, decelerating, and pivoting activities each as 0 

(less than once per month), 1 (once per month), 2 (once per week), 3 (2–3 times per 

week) or 4 (4 or more times per week), resulting in a score from 0 to 16.  
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Anterior Knee Laxity Assessment 

 AKL was defined as the anterior displacement of the tibia relative to the femur at 

130 N load and was measured by a single examiner using the KT-2000 Knee Arthrometer 

(Medmetric Corp, San Diego, CA). The subject was placed in a supine position with the 

knee flexed 25 ± 5° over a thigh bolster. The foot/ankle was rested in the foot cradle 

while a hook and loop strap was placed around both thighs. This method is used to 

prevent rotation of the lower extremities during testing. The examiner was first to apply 

90 N posterior-directed force then 130 N anterior-directed force to the tibia, while 

displacement (mm) of the tibia with respect to the femur is recorded by computer 

software. Three measures were obtained and the last two averaged for analyses. AKL was 

defined as the average anterior displacement of the tibia relative to the femur over the last 

two trials. The investigator has previously established between day measurement 

consistency and precision [ICC (SEM) =0.87 (0.5) mm] of this measure.(Taylor et al., 

2015) Potential subjects were prescreened to obtain a wide distribution of AKL values in 

both sexes. This was done to ensure equal amounts of average, above-average, and below 

average laxity within each sex. Previously reported data (Shultz et al., 2007) was used to 

define average (M=5.6 ± 1.0 mm, F=8.1 ± 2.5 mm) above-average (>1 SD; M=6.6mm, 

F=10.6mm), and below average (<1 SD; (M=4.6mm, F=5.6mm) AKL.  

MRI Examination 

 MRI data were acquired using a 3T Siemens Tim Trio scanner (Erlangen, 

Germany) and a 15 channel knee coil (Siemens Erlangen, Germany). T2-weighted, 

multiplanar MRI scans (repetition time (TR) =1300 ms; excitation time (TE) = 39 ms; 
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Flip angle (FA) =160º; FOV=150x150 mm; voxel size = 0.5×0.5×0.5mm) were used for 

ACL morphometric measures. T1-weighted, multiplanar MRI scans (repetition time (TR) 

=1200 ms; excitation time (TE) = 33 ms; FOV=160x160 mm; voxel size = 

0.5×0.5×0.6mm) were used for femoral notch width measures.  

 The T2 relaxation imaging was performed using spin echo data sets with 

following parameters: repetition time (TR) =3040 ms; excitation time (TE) at 13.8, 27.6, 

41.4, 55.2, and 69 ms; flip angle (FA) =180º; voxel size, FOV=160 x160 mm; voxel size= 

0.4×0.4×3.0mm.(Fleming et al., 2011) T2* relaxation was performed using gradient echo 

data sets with following parameters: repetition time (TR) =1000 ms; excitation time (TE) 

at 8.26, 10.28, 12.3, 14.32, 16.34, 18.36, 20.38, 22.4, 24.42, 26.44, 28.46 and 30.48 ms; 

flip angle (FA) =90º; FOV=280 x280mm; voxel size = 0.5×0.5×3.0mm.(Biercevicz, 

Akelman, et al., 2014; Biercevicz, Akelman, Rubin, et al., 2015)  

MRI Morphometric Data Reduction 

 ACL volume was calculated as reported by Chaudhari et al (Chaudhari et al., 

2009) using ITK-SNAP software (http://www.itksnap.org/pmwiki/pmwiki.php). ACL 

contouring of each sagittal slice was done manually using a digitizing tablet (Wacom 

DTK1300; Wacom Co, Kazo, Japan). All slices that were contoured were used in the 

calculation of ACL volume (Figure 6.1). For the establishment of intra-tester reliability 

and precision, ACL volume in 10 pilot participants was measured twice at least a week 

apart [ICC3,1 (SEM) =0.97 (36.1) mm3]. 

 ACL width was measured using Medical Image Processing, Analysis and 

Visualization software (MIPAV; http://mipav.cit.nih.gov) per methods described 

http://www.itksnap.org/pmwiki/pmwiki.php
http://mipav.cit.nih.gov/
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previously.(Anderson et al., 2001) First, the sagittal plane image that indicated the 

clearest image of Blumensaat’s line was selected. Blumensaat’s line is the landmark 

which corresponds to the roof of femoral intercondylar notch as drawn on the sagittal 

knee joint image.(Seyahi et al., 2006) At the point of the notch outlet, ACL width was 

determined by a line drawn perpendicular to Blumensaat’s line that measured the distance 

across the ACL (Figure 6.2). The investigator has previously established intratester 

measurement consistency and precision [ICC3,1 (SEM) =0.98 (0.3) mm] of this 

measure.(H.-M. Wang et al., 2015) 

 ACL cross-sectional area was measured using ITK-SNAP software 

(http://www.itksnap.org/pmwiki/pmwiki.php) as reported by Whitney et al.(Whitney et 

al., 2014) From an oblique sagittal image perpendicular to the ACL, a point one third of 

the total ACL length from the attachment to the tibia was identified (Figure 6.3a). After 

identification of this point, ACL cross-sectional area was segmented and calculated from 

the oblique axial image (Figure 6.3b). For the establishment of intra-tester reliability and 

precision, ACL cross sectional area in 10 pilot participants was measured twice at least a 

week apart [ICC3,1 (SEM) =0.87 (0.7) cm2]. 

 Femoral notch width was measured using Medical Image Processing, Analysis 

and Visualization software (MIPAV; http://mipav.cit.nih.gov) as reported by Stein et 

al.(Stein et al., 2010) First, the clearest image of Blumensaat’s line from the sagittal 

image and the beginning of the Blumensaat’s line at the anterior outlet from the frontal 

image were chosen to identify the axial image. Then, from the axial image, the articular 

surface line tangent to the medial and the lateral femur condyle was drawn. Notch depth 

http://mipav.cit.nih.gov/
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is the line perpendicular to the articular surface line. At two-thirds of the notch depth, the 

notch width was calculated as the line parallel to the articular surface line (Figure 6.4). 

For the establishment of intra-tester reliability and precision, femoral notch width in 10 

pilot participants was measured twice at least a week apart [ICC3,1 (SEM) =0.99 (0.2) 

mm]. 

MRI Structural Composition Data Reduction 

 Using customized Matlab code (Mathworks Inc, U.S.A), the voxel-wise T2 

relaxation maps were calculated using the signal intensity (SI) relationship from all five 

echo times of the T2 relaxation imaging sequence. Equation: SI (TE) = So exp(-TE/T2), 

where SI(TE) are the voxel-specific SIs for the various echo times (TE) and where So is 

the signal intensity at the initial TE.(Fleming et al., 2011) A graphic representation of the 

calculation of relaxation maps is located in Figure 6.5. To isolate ligament specific T2 

values, the calculated T2 relaxation map was registered to the structural imaging 

sequence using Slicer 3D Software (https://www.slicer.org/) and the mean T2 relaxation 

value of the voxels (Figure 6.6) included in the 3D ACL volume (Figure 6.7) described 

above was calculated using ITK SNAP software 

(http://www.itksnap.org/pmwiki/pmwiki.php) and included in the analyses.      

 Using customized Matlab code (Mathworks Inc, U.S.A), the voxel-wise T2* 

relaxation maps were calculated using the signal intensity (SI) relationship from all 

twelve echo times of the T2* relaxation imaging sequence. Equation: SI (TE) = So exp(-

TE/T2*), where SI(TE) are the voxel-specific SIs for the various echo times (TE) and 

where So is the signal intensity at the initial TE.(Biercevicz, Akelman, et al., 2014; 
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Biercevicz, Akelman, Rubin, et al., 2015) To isolate ligament specific T2* values, the 

calculation T2* relaxation map was registered to the structural imaging sequence using 

Slicer 3D Software (https://www.slicer.org/) and the mean T2* relaxation value of the 

voxels included in the 3D ACL volume described above was calculated using ITK SNAP 

software (http://www.itksnap.org/pmwiki/pmwiki.php) and included in the analyses.     

Statistical Analysis 

 Separate sex-specific stepwise linear regression analyses tested the initial 

hypotheses that T2* relaxation times and ACL volume would have the strongest 

independent predictive ability of AKL for quantitative MR imaging and ACL 

morphometry, respectively. When assessing the relationship of ACL morphometry and 

AKL, femoral notch width was initially entered to control for the relationship of ACL 

size and femoral notch width. (Dienst et al., 2007) On the next step of the ACL 

morphometry regression, the stepwise forward method was used to assess which ACL 

morphometry variable was the strongest AKL predictor in males and females. The 

independent variables were ACL volume, ACL width and ACL CSA. For the quantitative 

MR imaging regression, forward stepwise method was used to assess which quantitative 

MR imaging variable was the strongest AKL predictor in males and females. The 

independent variables were T2 relaxation and T2* relaxation times with AKL serving as 

the dependent variable. 

 Separate sex-specific stepwise linear regression analyses tested the primary 

hypothesis that the ACL MR relaxation time and ACL morphometric measure, as 

determined from the initial hypotheses, would each have unique contributions in a 
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multivariate model explaining the variance in AKL. The independent variables were the 

ACL MR relaxation time and ACL morphologic measure as determined from the initial 

hypotheses with the dependent variable being AKL. In the regression model, stepwise 

linear regression analysis was used to assess the combined predictive ability of the 

included morphometric and relaxation time variables. The alpha level for all analyses was 

set priori at equal or less than .05. All calculations were performed using the SPSS 

statistical software (version 21.0; IBM Corp, Armonk, NY) 

Results 

 Descriptive statistics for AKL, ACL volume, ACL width, ACL cross-sectional 

area, femoral notch width, T2 relaxation times and T2* relaxation times are shown in 

Table 6.1. Obtained laxity distributions are found in Table 6.2. A pearson correlation table 

of all variables can be found in Table 6.3. On the initial step of the sex-specific stepwise 

ACL morphometry regression analyses, femoral notch width was significantly associated 

with AKL in females (R2 = .22, P = .039) and males (R2 = .21, P = .041) with ACL 

volume in females being the only ACL morphometric factor to explain additional 

variance (R2Δ=25%, PΔ=.012). Although not explaining significant additional variance in 

males, ACL volume was the first ACL morphometric measure to enter (R2Δ=9%, 

PΔ=.149). Both ACL width and ACL CSA were excluded from the stepwise regression 

model. These sex-specific stepwise regression models and regression coefficients are 

found in Tables 6.4 and 6.5, respectively. From these findings, ACL volume was chosen 

as the ACL size measure to be included in the subsequent regressions to test the 

relationship of ACL size and relaxation times to AKL. The final regression equation in 
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females was AKL= (-.074)*femoral notch width + (-.005)*ACL volume + 15.631; the 

final regression equation in males was AKL= (-.485)*femoral notch width + 15.581. 

 On the initial step of the sex-specific stepwise MR relaxation times regression 

analyses, T2 relaxation time in females was significantly associated with AKL (R2 = .27, 

P = .020) and T2* relaxation times could not explain additional variance (R2Δ=6%, 

PΔ=.239). In males, T2* relaxation time was a nonsignificant trend to predict AKL (R2 

= .15, P = .098) and T2 relaxation times could not explain additional variance (R2Δ=6%, 

PΔ=.287). These sex-specific stepwise regression models and regression coefficients are 

found in Tables 6.6 and 6.7, respectively. From these findings, T2 and T2* were chosen 

for females and males, respectively, as the MR relaxation times to be included in the 

subsequent regressions to test the relationship of ACL size and relaxation times to AKL. 

The final regression equation in females was AKL= (-.171)*T2 relaxation times + 

17.634. 

 The final sex-specific stepwise linear regression analyses were used to test the 

ability of ACL volume and T2 (females) or T2* (males) relaxation times to collectively 

predict AKL. On the initial step of the sex-specific regression analyses ACL volume was 

significantly associated with AKL in both females (R2 = .47, P = .001) and males (R2 

= .28, P = .017). In females, smaller ACL volume combined with lower T2 relaxation 

times significantly predicted greater AKL (R2 = .68, P< .001; R2Δ=22%, PΔ=.003); 

whereas, smaller ACL volume combined with higher T2* relaxation times significantly 

predicted greater AKL in males (R2 = .44, P = .008; R2Δ=16%, PΔ=0.043). The sex-

specific stepwise regression models and regression coefficients are found in Tables 6.8 
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and 6.9, respectively. The final regression equation in females was AKL= (-.005)*ACL 

volume + (-.155)*T2 relaxation times + 22.963; the final regression equation in males 

was AKL= (-.003)*ACL volume + (.310)*T2* relaxation times + 5.381. 

Discussion 

 Greater AKL has been identified as a prospective risk factor of non-contact ACL 

injury. (Branch et al., 2010; Myer et al., 2008; Uhorchak et al., 2003; Woodford-Rogers et 

al., 1994) However, little is understood how ACL size and structural composition 

characteristics may contribute to a more lax knee. As hypothesized, our primary findings 

in males were that smaller ACL volume combined with higher ACL T2* relaxation time 

predicted greater AKL. Contrary to our hypothesis, smaller ACL volume combined with 

lower ACL T2 relaxation time predicted greater AKL in females. To the best of our 

knowledge, the current study was the first in vivo report of the relationship of AKL to 

ACL volume and quantitative tissue relaxation times; indicating that ACL size and ACL 

structural composition independently contribute to AKL. 

 While the final overall regression models predicting AKL from ACL size and 

relaxation times were significant in females as well as males (Table 8), examination of 

the regression coefficients indicates that ACL volume and the respective relaxation times 

were each significant independent predictors of AKL (Table 9). It is of note in the final 

female model that the partial correlation of ACL volume trended upward from -.683 (P 

= .001) to -.755 (P<.001). Similarly in males the partial correlation of ACL volume 

trended upward from -.528 (P = .017) to -.584 (P =.043). These findings together indicate 
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that ACL volume and relaxation times can independently and collectively contribute to 

AKL. 

 While previous animal and human studies reported that smaller ACL size was 

associated with greater AKL, (Grood et al., 1992; H.-M. Wang et al., 2015) it was not 

surprising in our current findings that smaller ACL volume in both sexes was associated 

with greater AKL. A previous computational study indicated that smaller ACL graft size 

lead to greater strain on the ligament during loading (Westermann et al., 2013) with an 

animal study also reporting that smaller graft ACL volume had lower failure 

loads.(Fleming et al., 2011) These findings collectively suggest that smaller ACL volume 

is less capable of resisting external forces, thus likely more lax.  

 Given ligaments are composed of diverse materials, the various intrinsic 

properties of these materials could potentially affect function of the ligament.(Culav et 

al., 1999; Liu et al., 1995; Nakamura et al., 2000; Nordin & Frankel, 1989; Quapp & 

Weiss, 1997; Raleigh & Collin, 2012) Regardless of ACL volume contribution, lower T2 

relaxation times in females and higher T2* relaxation time in males were independently 

related to greater AKL. Thus indicating that intrinsic ACL properties assessed via T2 and 

T2* relaxation times are associated with ligamentous function in females and males, 

respectively. Percentages of water content, collagen density, collagen alignment, and 

proteoglycan content impacts T2 and T2* relaxation times in articular cartilage.(Li et al., 

2011; Mosher et al., 2000; Regatte et al., 2002; Wayne et al., 2003; White et al., 2006) 

Shorter relaxation times could reflect greater collagen density, a more organized collagen 

structure, and less water content, while higher relaxation times could reflect lesser 
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collagen density, a less organized collagen structure, and more free water content.(Matzat 

et al., 2013) Given that lower ligamentous fibril density was related to weaker cadaver 

ACLs(Hashemi, Chandrashekar, Mansouri, et al., 2008), these findings indicate that a 

poorly-structured and disorganized matrix of the ligament is less capable to restrain 

external loadings, thus resulting in a greater amount of laxity. Hence, it was expected that 

higher T2* relaxation times would be correlated with a greater AKL in males. 

Conversely, it was surprising that shorter T2 relaxation time in females was related to 

greater AKL.  

 Both T2 and T2* relaxation are sensitive to water content, collagen fiber 

concentration, collagen orientation, and proteoglycan content.(Li et al., 2011; Mosher et 

al., 2000; Regatte et al., 2002; Wayne et al., 2003; White et al., 2006) While T2 relaxation 

looks only at the signal decay resulting from the interaction of protons in water molecules 

in the tissue, T2* relaxation accounts for both signal decay resulting from protons’ 

interaction within the tissue as well as the interaction with external factors that affect 

signal decay, such as inconsistencies in the magnetic field or chemical effects on the 

field.(Pooley, 2005) Realistically, local magnetization is not completely stable which 

results in rapid signal loss due to diversity in precession angles of protons.(Jung & 

Weigel, 2013) Therefore, T2* is shorter than T2 relaxation times. Further, reports of T2* 

relaxation times in ligamentous tissue (Biercevicz, Akelman, et al., 2014; Biercevicz, 

Akelman, Rubin, et al., 2015) are more common than those of T2. (Fleming et al., 2011) 

 The current study revealed that T2 and T2* relaxation times could be indicative of 

intrinsic ACL properties, albeit with opposite directionality that is not well supported by 
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current literature. Several studies have investigated the correlation between T2 and T2* 

relaxation times in cartilage measures.(T. Kim et al., 2014; Mamisch et al., 2012; Welsch 

et al., 2008; Welsch et al., 2010) Multiple in vivo studies report positive associations 

between T2 and T2*, (Mamisch et al., 2012; Welsch et al., 2008; Welsch et al., 2010) 

while an in vitro study reported a negative relationship between T2 and T2* relaxation 

times.(T. Kim et al., 2014) Thus there does not appear to be a consensus of the 

relationship between T2 and T2* relaxation times and the physiologic environment may 

alter this relationship. It is critical to note that the relationship between T2 and 

T2*relaxation times in ligaments is unknown in vitro or in vivo.  While greater 

glycosaminoglycan (Wei et al., 2015), proteoglycan (Wayne et al., 2003), and collagen 

content (Menezes, Gray, Hartke, & Burstein, 2004) are associated with lower cartilage T2 

relaxation times, how these structural components may differentially affect T2* 

relaxation time of ligaments is poorly understood. It is possible that T2 and T2* 

relaxation times may be individually more sensitive to differing ligamentous 

ultrastructure characteristics between males and females. Future sex histologic 

comparisons in vivo or in vitro in ligaments are needed to clarify these relationships. 

 When comparing measures of ACL volume, ACL width, and ACL cross-sectional 

area, they appear to provide different degrees of information with regard to tissue 

function. Our secondary findings were that smaller ACL volume was the strongest 

morphometric predictor of greater AKL in both males (r=-.528, P =.017) and females (r=-

.683, P =.001). ACL width is a one dimensional measure as calculated by the distance 

crossing the ACL.(Anderson et al., 2001) This single sagittal plane image may not fully 
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representative of ligament function. Similar to ACL width, ACL cross-sectional area 

relies on characterizing ACL morphometry from a single oblique plane.(Whitney et al., 

2014) Although both measures are time efficient, they are reliant on the contrast of 

ligamentous tissue to surrounding tissue in a single plane and do not take into account the 

full non-uniform, three dimensional nature of the ACL. Thus, the three dimensional 

measure of ACL volume appears to provide the strongest measure of structure as it 

related to function.(Chaudhari et al., 2009; Jamison et al., 2010; Whitney et al., 2014)  

 Given previous studies reported that smaller intercondylar notch was associated 

with smaller ACL size, (Charlton et al., 2002; Davis et al., 1999; Dienst et al., 2007) our 

study controlled for femoral notch width when attempting to determine the ACL 

morphometric measure most predictive of AKL. Our findings indicated that after 

accounting for femoral notch width, ACL volume was still a predictor of AKL in females 

(R2Δ=25%, PΔ=.012), but not in males (R2Δ=9%, PΔ=.149). After adding ACL volume 

to the regression model of females, the partial correlation of femoral notch width 

decreased from -.466 (P = .039) to -.033 (P =.894), indicating that regardless of femoral 

notch width, ACL volume had the strongest association with AKL in females. Similarly 

in males, the partial correlation of femoral notch width decreased from -.460 (P = .041) to 

-.194 (P =.427). This suggests that ACL volume and femoral notch width shared 

considerable predicted variance in AKL. It also should be noted that the standard 

deviation of mean in females was 42% higher than in males. The greater variance in 

females’ AKL that was a function of sampling to ensure a wide range of laxity values 

may have enhanced the predictive ability of ACL volume to AKL in females.  
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 While increased AKL has been prospectively identified as a risk factor of ACL 

injury,(Branch et al., 2010; Myer et al., 2008; Uhorchak et al., 2003; Woodford-Rogers et 

al., 1994) this risk factor is traditionally considered non-modifiable. Our current findings 

enhance the foundational understanding of the clinical AKL measure. Better 

understanding the contributions of intrinsic ACL properties to AKL could advance the 

future prevention efforts that focus on increasing ligament strength, and potentially lower 

AKL. Further, our study also provided sex-specific models of how the ACL morphometry 

and structural composition combine to predict AKL. These findings could contribute to 

better identification of the underlying intrinsic ACL injury risk factors and the 

corresponding clinical measure in order to better address the sex bias on ACL injury.  

 A limitation of the current study was that all ACL morphometry measures were 

obtained via manually segmentation. Based on the resolution of the sequence, the chosen 

image, and the subject variation; there is an expected degree of measurement error 

between and within participants. However, intra-tester consistency and precision 

measures has been established. A second limitation was that all our measures were 

obtained from the left knee. This decision was based on previous reports of high degrees 

of AKL and ACL volume symmetry between limbs.(Jamison et al., 2010; Shultz & 

Nguyen, 2007) The symmetry of ligamentous T2 and T2* relaxation times is unknown. 

Third, while the study was based upon obtaining a wide range of AKL in males and 

females, the wide included range of physical activity level may confound the current 

findings and hurt external validity to populations at high risk of non-contact ACL injury. 

However, the recruited wider range of populations could help us to better drive reliable 
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estimates of understanding the gross relationship of ACL morphometry and structural 

composition to AKL.  

Conclusion 

 Primary current main findings were that smaller ACL volume combined with 

lower T2 relaxation times in females and smaller ACL volume combined with higher T2* 

relaxation times in males to predict greater AKL. The secondary findings were that ACL 

volume was the strongest predictor of AKL in both sexes. These findings collectively 

indicated that ACL morphometric and structural composition factors independently and 

collectively associated with AKL. Contrary to our hypothesis, the finding that shorter T2 

relaxation times in females was predictive of ligament function warrants further study as 

to the in-vivo relationship of T2 and T2*relaxation times to ligamentous structural 

properties. Future studies should continue to address factors associated with increased 

AKL to help focus future intervention efforts to enhance the ligament strength and reduce 

laxity. 
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Table 6.1 Participants’ Descriptive Statistics (Mean ± Standard Deviation) 

 Males (N=20) Females (N=20) 

Age (yrs) 23.3 ± 2.9 21.3 ± 2.3 

Height (cm) 180.4 ± 6.7 166.9 ± 7.7 

Weight (kg) 84.0 ± 10.9 61.9 ± 7.2 

Activity-Rating Score 9.2 ± 4.1 10.7 ± 3.9 

AKL (mm) 6.3 ± 1.9 8.1 ± 2.7 

ACL Width (mm) 8.5 ± 2.3 7.0 ± 1.2 

ACL Volume (mm3) 1712.2 ± 356.3 1200.1 ± 337.8 

ACL CSA (cm2) 0.9 ± 0.2 0.8 ± 0.2 

Femoral Notch Width(mm) 19.1 ± 1.8 16.5 ± 1.1 

T2 (ms) 57.5 ± 8.2 55.9 ± 8.1 

T2* (ms) 19.1 ± 2.5 18.5 ± 2.2 

 

 

Table 6.2 Obtained AKL Distributions 

 Males Females 

Below Average AKL 

Average AKL 

Above Average AKL 

4.1 ± 0.4 (N=6) 

6.1 ± 0.5 (N=6) 

8.1 ± 1.4 (N=6) 

5.0 ± 0.4 (N=6) 

7.9 ± 1.3 (N=8) 

11.4 ± 0.6 (N=6) 
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Table 6.3 Bivariate Correlations of All Variables 

Males ACL_V ACL_W ACL_CSA FNW T2 T2* 

AKL -.53* -.42 -51* -.46* -.18 .38 

ACL_Volume  .73* .66* .63* .14 .03 

ACL_Width   .59* .40 .20 .12 

ACL_Cross-sectional 

area (CSA) 

   .59* -.04 .30 

Femoral Notch Width 

(FNW) 

    .18 .08 

T2 relaxation times      .14 

T2* relaxation times      1 

Females ACL_V ACL_W ACL_CSA FNW T2 T2* 

AKL -.68* -.42 -54* -.47* -.52* -.18 

ACL_Volume  .36 .71* .66* .07 .35 

ACL_Width   .70* .42 .28 .13 

ACL_Cross-sectional 

area (CSA) 

   .77* .16 .25 

Femoral Notch Width 

(FNW) 

    .21 .25 

T2 relaxation times      -.12 

T2* relaxation times      1 

* Significant correlation between variables (P≤.05) 
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Table 6.4 Stepwise Regression Model of Femoral Notch Width and ACL Volume 

Predicting AKL  

 
Model (Female) R2 R2Δ Sig. FΔ 

1 .217 .217 .039 

2 .467 .251 .012 

Model (Male)    

1 .212 .212 .041 

2 .305 .093 .149 

Model1 Predictors: (Constant), femoral notch width 

Model2 Predictors: (Constant), femoral notch width, ACL volume 

 

 

Table 6.5 Stepwise Regression Coefficients and Correlations of Femoral Notch Width 

and ACL Volume Predicting AKL  

 
Females Correlations 

Coefficients  Beta t Sig. Zero-order Partial Part 

(Constant) 15.631 2.005 .061    

Femoral notch width -.074 -.135 .894 -.466 -.033 -.024 

ACL volume -.005 -2.828 .012 -.683 -.566 -.501 

Males Correlations 

Coefficients  Beta t Sig. Zero-order Partial Part 

(Constant) 14.218 3.397 .003    

Femoral notch width -.224 -.814 .427 -.460 -.194 -.165 

ACL volume -.002 -1.512 .149 -.528 -.344 -.306 
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Table 6.6 Stepwise Regression Model of T2 and T2* Relaxation Times Predicting AKL  

Model (Female) R2 R2Δ Sig. FΔ 

1 .265 .265 .020 

2 .324 .059 .239 

Model (Male)    

1 .145 .145 .098 

2 .201 .057 .287 

Model1 Predictors: (Constant), T2 relaxation times in female, T2* relaxation times in 

male 

Model2 Predictors: (Constant), T2* relaxation times in female, T2 relaxation times in 

males 

 

 

Table 6.7 Stepwise Regression Coefficients and Correlations of T2 and T2* Relaxation 

Times Predicting AKL 

 
Females Correlations 

Coefficients  Beta t Sig. Zero-order Partial Part 

(Constant) 23.610 3.828 .001    

T2 relaxation times -.181 -2.707 .015 -.515 -.549 -.540 

T2* relaxation times -.294 -1.220 .239 -.181 -.284 -.243 

Males Correlations 

Coefficients  Beta t Sig. Zero-order Partial Part 

(Constant) 3.385 .827 .420    

T2* relaxation times .323 1.895 .075 .381 .418 .411 

T2 relaxation times -.056 -1.099 .287 -.181 -.257 -.238 
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Table 6.8 Stepwise Regression Model of ACL Volume and T2 or T2* Relaxation Times 

Predicting AKL 

 

Model (Female) R2 R2Δ Sig. FΔ 

1 .467 .467 .001 

2 .684 .217 .003 

Model (Male)    

1 .278 .278 .017 

2 .437 .158 .043 

Model1 Predictors: (Constant), ACL volume 

Model2 Predictors in Females: (Constant), ACL volume, T2 relaxation times  

Model2 Predictors in Males: (Constant), ACL volume, and T2* relaxation time   

 

 

Table 6.9 Stepwise Regression Coefficients and Correlations Model of ACL Volume and 

T2 or T2* Relaxation Times Predicting AKL 

 
Females Correlations 

Coefficients  Beta t Sig. Zero-order Partial Part 

(Constant) 22.963 8.203 .000    

ACL volume -.005 -4.742 .000 -.683 -.755 -.647 

T2 relaxation times -.155 -3.412 .003 -.515 -.638 -.466 

Males Correlations 

Coefficients  Beta t Sig. Zero-order Partial Part 

(Constant) 5.381 1.703 .107    

ACL volume -.003 -2.968 .009 -.528 -.584 -.540 

T2* relaxation times .310 2.186 .043 .381 .468 .398 
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Figure 6.1 ACL Volume Measure. Manual ACL segmentation and resultant area (shaded) 

on sagittal image. 

 

 

 

Figure 6.2 ACL Width Measure. The distance across the ACL (green) on a line (red) 

perpendicular to the Blumensaat’s line (blue). 
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Figure 6.3 CSA Measure. (a) Identified CSA from the oblique sagittal image; (b) The 

ACL was segmented and CSA calculated from the oblique axial image.  

 

 

 

Figure 6.4 Femoral Notch Width Measure. The distance across the notch (purple) taken 

from a line (blue) parallel to a line tangent to a line located tangent to the posterior 

femoral condyle located at 2/3 of the notch depth (orange).  

 

6.3a 6.3b 
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Figure 6.5 Example of T2 Relaxation Time. Example of T2 relaxation time quantification 

using the voxel-wise data from each of the 5 excitation times. The resultant rate of voxel 

by voxel signal intensity decay was quantified over the 5 times using the Levenberg-

Marquardt monoexpoential equation (Fleming et al., 2011). 

 

 

 

Figure 6.6 Example of T2 Relaxation Map. Example of T2 relaxation map was ACL 

outlined by brown contour. 
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Figure 6.7 3D ACL Model. 3D ACL model ascertained from segmented image.
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CHAPTER VII 

CONCLUSIONS 

 A better understanding of how intrinsic ligamentous characteristics associate with 

ACL function can positively impact our understanding of ACL injury. This study 

examined the extent to which in vivo measures of ACL morphometry and structural 

composition collectively predicted AKL in active healthy males and females. A clinical 

goal was to better understand the factors contributing to greater AKL in order to advance 

future intervention/prevention efforts focused on enhancing ligament strength. Both ACL 

morphometry and MRI relaxation times measures associated with structural composition 

were predictive of AKL. Although previous studies (Grood et al., 1992; H.-M. Wang et 

al., 2015) reported that smaller ACL morphometry was associated with greater AKL, the 

current investigation is the first in vivo report of the structural composition of the 

ligament also being related to AKL. However, it is still unknown as to how such intrinsic 

ligamentous characteristics are associated with ACL injury risk.  

 The majority of recent research investigating risk factors of ACL injury has 

revolved around biomechanical strategies as these studies offer an avenue of high 

potential for intervention/prevention. However, the literature is somewhat mixed with 

regard to the effectiveness of movement biomechanics to predict injury risk. (Hewett et 

al., 2005; Padua et al., 2015; Smith et al., 2012) Inappropriate landing biomechanics 

could produce a high external loadings on the ACL, (B. Yu & Garrett, 2007) thus 
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increasing the potential for ACL rupture. However, this biomechanical prospective may 

not fully explain the likelihood of ACL injury as the magnitude of external loadings 

needed to rupture the ACL could vary depending on intrinsic ligamentous characteristics 

indicative of ligamentous strength. (Fleming et al., 2011) Due to the perceived difficulty 

in intervening upon such factors, anatomic factors are often dismissed. However, recent 

evidence shows great promise in the usefulness of such factors to predict noncontact ACL 

injury risk.(Whitney et al., 2014) Investigation of anatomic factors provides insight to a 

comprehensive prediction model for assessing injury risk. While direct intervention of 

anatomical factors may not always be feasible, development of interventions to moderate 

the risk of injury in individuals with high-risk anatomical factors may be of clinical 

importance.   

 Although that various ligamentous structural characteristics have a potential to 

influence ligament function, how these intrinsic factors collectively contributing to 

increased injury risk is unknown. While invasive in vitro techniques could provide 

histological evidences of the relationship of ligamentous structural properties to 

corresponding to ligamentous biomechanics, in-vitro results may not be fully externally 

valid to the in vivo setting. Further, the findings from animal in vivo studies have some 

degree of challenges such as biological function, biomechanical responses, and structural 

composition differences compared to humans. To this point, the in vivo structural 

composition of human ligaments is relatively unknown.  

 Recent advances in quantitative MRI have provided plausible measures for 

assessing in vivo ligamentous structural composition. MRI is a non- invasive method to 
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detect the signal intensity changes from hydrogen atoms in order to create diagnostic 

images.(Pooley, 2005) Due to MRI signal intensity sensitivity to free hydrogen 

distribution, (Fullerton & Rahal, 2007) the rate of signal decay could be indicative of 

differences in collagen structure of ligaments. (Biercevicz, Proffen, Murray, Walsh, & 

Fleming, 2015) T2 and T2* relaxation imaging may have the ability to assess structural 

composition of the ligament. (Biercevicz, Akelman, et al., 2014; Biercevicz, Akelman, 

Rubin, et al., 2015; Fleming et al., 2011) While this approach has been recently utilized 

in the vivo animal grafts, (Fleming et al., 2011) as well as cadaver ligaments (Biercevicz, 

Akelman, Rubin, et al., 2015), the ability of such imaging techniques to assess healthy, in 

vivo ligament were unknown to this point.  

 This investigation utilized the novel methods of T2 and T2* to evaluate the 

relationship of ligamentous structural composition to the ligamentous function measure 

of AKL. Based on T2 and T2* relaxation times sensitivities to water and collagen in 

cartilage, (Li et al., 2011; Mosher et al., 2000; Regatte et al., 2002; Wayne et al., 2003; 

White et al., 2006) T2 and T2* could be applied to indicate ligamentous structural 

composition. (Biercevicz, Akelman, et al., 2014; Biercevicz, Akelman, Rubin, et al., 

2015; Fleming et al., 2011) Our study indicated after accounting for ACL volume, lower 

T2 in females and higher T2* in males predicted greater AKL. It was expected that higher 

T2* in males, which suggests less collagen density, disorganized collagen matrix, and 

more free water distribution, could predict grater AKL. However, the directionality of the 

females’ relationship of relaxation time to AKL conflicted with the limited work that 

exists in this area. Additionally, our current measures of structural composition, T2 and 
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T2* relaxation times, did not differ between sexes while other cadaver based histologic 

studies have demonstrated sex differences. (Hashemi, Chandrashekar, Mansouri, et al., 

2008) Hence, further sex comparisons of structural composition as assessed via T2 and 

T2* in vitro and vivo is warranted.  

 The sex disparity in ACL injury rates has been repeatedly reported,(Beynnon et 

al., 2014; Prodromos et al., 2007) but the underlining reasons are still uncertain. The 

larger ACL morphometry in males may offer some insight as ACL volume has been 

prospectively associated with ACL injury risk. (Whitney et al., 2014) Due to the better 

delineation of ACL morphometry and representative of ACL anatomy, ACL volume 

appears to be the most appropriate morphometric measure to use in structural studies of 

ACL biomechanics and injury. However, the factors that may directly contribute to ACL 

morphometry are not well understood. 

 The investigations of ACL injury risk have been divided in groups such as 

biomechanical, hormonal, genetic and anatomical injury risk factors. Little is understood 

how these injury risk factors interact to each other. Ligamentous intrinsic characteristics 

such as ACL morphology and structural composition could be indicative of weak or 

strong ligaments and related to ligamentous function. While biomechanical injury factors 

have focused on reducing external loadings, we do not know if the mechanism of non-

contact ACL injury is one-time even or if it is the result of chronic loading patterns over 

time (Shultz, Schmitz, et al., 2012). Hence, future study should include combinations of 

biomechanical and intrinsic factors to advance our ability to prediction and intervene 

upon injury risk factors. Further, investigations of hormonal and genetic factors on 
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intrinsic characteristics may contribute the underlining mechanism(s) of sex disparity and 

family traits of ACL injury. This direction of research could provide for comprehensive 

prediction models, comprehensive intervention design, and optimized rehabilitation, to 

most positively impact joint health.
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APPENDIX A 
 

PHYSICAL ACTIVITY AND HEALTH HISTORY 
 
 

 

Do you have any General Health Problems or Illnesses? (e.g. diabetes, respiratory disease)  

Yes____ No____ 

Do you have any vestibular (inner ear) or balance disorders? Yes____ No____ 

Do you smoke? Yes____ No____ 

Do you drink alcohol? Yes____ No____    If yes, how often?      

Do you have any history of connective tissue disease or disorders? (e.g. Ehlers-Danlos, 

Marfan’s Syndrome, Rheumatoid Arthritis) Yes____ No____ 

Has a family member of yours ever been diagnosed with breast cancer?  Yes____ No____ 

(if no, please skip next question.)  

If yes, please put a check next to the types of relatives that have been diagnosed.  You 

may check more than one box: 

Mother              Sister           Grandmother             Aunt         .  

Male relative (father, brother, grandfather, or uncle)          .  

Other type of relative (please write in)                       . 

Please list any medications you take regularly:       

             

Please list any previous injuries to your lower extremities.  Please include a description of 

the injury (e.g. ligament sprain, muscle strain), severity of the injury, date of the injury, and 

whether it was on the left or right side. 

Body Part Description  Severity  Date of Injury  L or R 

Hip 

             

Thigh 

             

Knee  
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Lower Leg 

             

Ankle 

             

Foot 

             

Please list any previous surgery to your lower extremities (Include a description of the 

surgery, the date of the surgery, and whether it was on the left or right side) 

Body Part  Description   Date of Surgery  L or R 

            

            

            

     

 

Please list all physical activities that you are currently engaged in.  For each activity, 

please indicate how much time you spend each week in this activity, the intensity of the 

activity (i.e. competitive or recreational) and for how long you have been regularly 

participating in the activity. 

Activity #Days/week  #Minutes/Day        Intensity         Activity Began When? 

            

            

            

            

            

      

What time of day do you generally engage in the above activities?    

             

Please list other conditions / concerns that you feel we should be aware of:    
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The Activity Rating Scale 

Please indicate how often you performed each activity in your 

healthiest and most active state, in the past year. 

 
 Less than 

one time 

in a 

month 

One 

time in 

a month  

One 

time in 

a week 

2 or 3 

times 

in a 

week 

4 or 

more 

times in 

a week 

Running: running while playing a 

sport or jogging 

     

Cutting: Changing directions 

while running 

     

Decelerating: coming to a quick 

stop while running 

     

Pivoting: turning your body with 

your foot planted while playing a 

sport; For example: skiing, 

skating, kicking, throwing, hitting 

a ball (golf, tennis, squash), etc. 

     

 

Investigator Comments:  
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APPENDIX B 
 

PHYSICAL ACTIVITY QUESTIONNAIRE 

 

 
In this section, we would like to ask you about your current sport/physical activity/exercise habits 

that you perform regularly.  Please answer the following questions as accurately as 

possible.   When answering, consider the definitions of strenuous, moderate, and mild exercise 

(listed below). 

 

STRENUOUS EXERCISE (HEART BEATS RAPIDLY): e.g.- running/jogging/elliptical at 

vigorous pace, vigorous swimming, vigorous long distance bicycling, heavy lifting etc. 

MODERATE EXERCISE (NOT EXHAUSTING): e.g.- fast walking/jogging at moderate pace, 

easy bicycling, easy swimming, weight training, etc. 

MILD EXERCISE (MINIMAL EFFORT): e.g.- casual walking, stretching, light resistance 

exercises, etc. 

 

1.) During a typical 7-Day period (a week), how many times on the average do 

you participate in strenuous exercise for more than 20 minutes?  

 

Average # of times/week    
 

  

 

Please list strenuous physical activities that your participate in regularly. 

 

 

 

2.)  During a typical 7-Day period (a week), how many times on the average do 

you participate in moderate exercise for more than 20 minutes?  

 

Average # of times/week    
 

  

Please list moderate physical activities that your participate in regularly. 

 

 

 

3.) During a typical 7-Day period (a week), how many times on the average do 

you participate in mild exercise for more than 20 minutes?  

 

Average # of times/week  
 

  

 

Please list the mild physical activities that your participate in regularly. 
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APPENDIX C 
 

MRI FULL SCAN SEQUENCE 
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