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The necessity and importance of cognitive diagnosisng bealized by more and
more researchers. As a result, a number of models have beeeddifr cognitive
diagnosis—the IRT-based discrete cognitive diagnosis models (§0dvid the
traditional continuous latent trait models. However, there is la déditerature that
compares the newly defined ICDMs based on constrained latestnotadels to more
traditional approaches such as a multidimensional factor anatgiiiel. The purpose
of this study is to compare the feedback provided to examinees using
multidimensional item response model (MIRT) versus feedback providad as
ICDM. Specifically, a Monte Carlo study was used to comparelidgnostic results
from the R-RUM, a noncompensatory model with dichotomous abilitiesagmdses
made based on the 2PL CMIRT model, a compensatory model with continuous
abilities. A fully crossed design was used to consider the teffefc test quality,
Q-matrix structure and inter-attribute correlation on the ageeemnates of the
diagnostic feedback for examinees between these two models. Giveméehaf the
factors of this study is “test quality”, an initial study waerformed to explore the
possible relationship between test quality (including estimated Impedameters)
based on the models used to characterize examinee responses. ¢m,adedause
these models provide examinee information in different ways (onestéisand one
continuous), a method using logistic regression, which is used to tdiscthe

continuous estimates provided by the 2PL CMIRT, is discussed as a way to maximize



diagnostic agreement between these two models.

The significance of this study is that, if the two modelseagronsistently
across the experimental conditions, model selection for cognitiveogespcan be
based largely on the preference of the researcher, which imgddoy an underlying
theory and assessment purposes. However, if the two models do nataatgiseently,
this study will help (1) to identify situations where the two niedgree or disagree
consistently and (2) to explore the feasibility of using the Mikdidel for classifying
examinees cognitively.

The results from the first study demonstrate that the tedefs define test
quality in different ways and that item parameters of the tvoalels are weakly
associated. Therefore, subsequent comparisons are made within eachafterdel
estimating the R-RUM and the 2PL CMIRT, using common datasle¢sreBults from
the final study indicate that (1) the two models agree more tensysunder the
R-RUM generation, (2) there is a higher agreement rate bettheetwo models
under most scenarios of simple structure, (3) there is mooe fer both models
under the MIRT generation, and (4) the MIRT model does not appear to be as
successful at classification decisions as the R-RUM. Posiitles directions are

discussed.
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CHAPTER |

INTRODUCTION

Traditionally, testing industries have focused on constructing measa&sess
a single dimension. The test is assumed to measure only one latent or uritbbserve
ability or skill via the measured variables or items. Each examinee is @deredr
based on the total item scores or a single continuous latent ability and therdfoa
single score is reported. Such reports have been widely used for higlletéiens
such as college admissions, scholarship awards and even graduation.uks a res
researchers and practitioners have applied various statistical tools yavatrionly
one latent ability is present in the data structure.

Despite its parsimonious nature, traditional scaling of examinsesohee
limitations. Most psychological and educational tests measure multipke akdlthe
unidimensionality assumption cannot be met under these circumstances (Hambleton
& Swaminathan, 1985). In addition, it falls short of cognitive psychology in the
twentieth century. Cognitive psychometrics involves measurement modedsiagse
high-order thinking, which is related to a set of skills. It is commonly aghe¢d
research in high-order thinking is fundamental to the testing industry,rastess
are based on cognitive problem-solving skills (Gierl, Leighton, & Hunka, 2000). As a
summative assessment model, traditional modeling, such as unidimensional item
response theory (IRT) models, might be appropriate. However, traditionalrassess

is limited in its ability to provide any formative feedback for improving unston,



learning and curriculum development. Principals, teachers and educatorsareed m
informative reports for classroom instructions and intervention programs. Thist urg
public demand is culminated in the No Child Left Behind @€01), which explicitly
calls for ‘interpretive, descriptive and diagnostic reports’ and the ussedsament
results for improving students’ academic achievements. Whereas bothofiorms
assessment are necessary, one during the learning and teaching prodessted t
at the end of the instruction, formative assessments are more useful diagp@dtical
the classroom level throughout the course of instruction. In the simplest case,
formative assessments should determine mastery or non-masterytfof K s&ills.

Recently, a variety of probabilistic latent class models havedmeloped for
cognitive diagnostic purposes. These models assume that classesna lolef set
of discrete latent abilities, either binary or multicategorical. Eachesiet IRT-based
cognitive diagnostic models (ICDMs) has an item response function (IRF) that
predicts the probability of the correct response for each item, given tbetatstatus
of each examinee on each skill. As in IRT, the use of an IRF enables resetcher
evaluate the quality of test items through the evaluation of the item pararfetees
an appropriate model is selected, each examinee’s profile is produced.

As an alternative for cognitive diagnosis, some researchers hatedpout
that other IRT-based continuous latent models parallel the above discretesICDM
Contrary to the discrete ICDMs, these models place each of the underlyityg abil
distributions on a continuum. DiBello, Roussos and Stout (2007) and Stout (2007)
discussed these continuous models as possible psychometric models for cognitive

diagnosis. Among these models, the application of multidimensional item response



theory (MIRT) models is common in research. For instafipplied Psychological
Measurementlevoted the winter issue of 1996 to research in MIRT models. Instead

of providing an estimate of a profile defining which attributes (or skills) baea

mastered (i.e., a mastery profile), MIRT models produce factor scoregfdieeif

one were interested in determining which skills should be improved, further tesearc
must be performed to choose some factor score for each skill, at and above which the
examinees are classified as masters and below which the exameekssified as
nonmasters. Consequently, if research or assessment is based omtisedaes

from MIRT models, it is important to research how these conclusions abauitiveg
status of examinees compare to those from the ICDMs.

Both types of models, MIRT models or ICDMS, can be classified aogotali
skill interactions into compensatory models and noncompensatory or conjunctive
models.Compensatiomeans that higher values on one skill can offset the lower
values on other skills when calculating the probability of the correct respos
item. The extreme case of a compensatory model is the disjunctive model, which
means a certain minimum on ONLY one of the relevant attributes is ngcessar
compensate for the lack of ability on all other skills for the correct respotise of
item.Noncompensation or conjunctiomeans certain minimums on all skills are
necessary for a high chance of a correct answer of the item. Anyonev/imgt a
minimum ability for at least one attribute will lack the ability to aesthe item
correctly. Having a higher ability in one attribute is NOT sufficientampensate for
the lower ability in other attribute(s) and to answer the item corresetly Chapter |l

for more details).



The vast arrays of the psychometric models for cognitive diagnosis and the
different ways to express cognitive complexity (e.g, underlying latetibdisons,
skills interaction, etc) make model selection difficult for accurat@ébive
assessments. If the selection is to be made among models differing scdyein
assumptions, this might only pose the challenge of selecting some seteofasxor
scores from MIRT models to evaluate the examinees cognitively. |Eteetion is
made among models differing only in skill interactions, this might only pose the
challenge of determining the type of skill interactions to provide cogngmetfack.
If the selection is to be made among models differing in both scale assumptions and
skill interaction (compensatory or noncompensatory), this would pose the challenge
of determining the type of skill interactions for cognitive evaluation offexees in
addition to the challenge of determining a reasonable set of cut points. Irtdhe lat
case, it is expected that the cognitive evaluation of examinees williéxedi with a
noncompensatory ICDM versus a compensatory MIRT or a compensatory ICDM
versus a noncompensatory MIRT.

It is always difficult to select a reasonable psychometric modalbke of the
challenge of identifying how the skills interact with each other—actesssj
individuals, groups and forms. In addition, it is not always clear whethetuthe t
underlying distributions of abilities are discrete or continuous. However, if in
application, final decisions based on cognitive feedback are similar even when usi
different models, then model selection may be based on an underlying theory without
a focus on how these decisions will impact ultimate decisions for examinees Due t

the recency of the cognitive diagnosis, there has been limited researemaanthe



comparison of the ICDMs and MIRT models for cognitive diagnostic purpose.
Therefore, it is the research goal of this study to compare the two typesielsnand
investigate if model selection can influence final decisions that mayle for an
examinee.

For the purpose of the current study, two models with different scale
assumptions and different skill interactions—one compensatory MIRT model and one
noncompensatory ICDM model—were chosen (see Chapter Il). The purpose of the
current study is to determine how comparable the two models are with respect to the
cognitive evaluation of the examinees. The two models have different assusnpti
about attribute scale and skill interactions. Therefore, it is neceassagntify what
technique is most appropriate to compare the two different models. In chpgter |
technique is described such that the two models yield the most consisteni@valuat
of the examinees. Next, based on this technique, the models are compared with
respect to how much the two models agree for cognitive diagnostic purposes.

To address these goals, a simulation study was performed. T¢togs-fatest
guality, the Q-matrix (Tatsuoka, 1983) structure and the correlation between the
attributes—were chosen in the simulation study. However, as the ICDMscardly
developed, its relationship with MIRT models is still unclear. Thereforeglarpnary
simulation study must be performed to investigate the relationship betwe®rothe
models. The relationship between the two models means (1) if they defirgriglity
in the same way and (2) what the relationship between the item paramelersnaj t
models is. It is possible that the two models differ in their definitions of testyqual

but the item parameters of the two models might be associated with each other.



Chapter Ill describes in detail the questions and methodologies about the initia
simulation study used to establish a definition of test quality of the ICDMs #Rd M
models so that these two methodologies can be fairly compared on the finahresear
goals. Two flowcharts (Figure 3 and Figure 4) are provided torgiiesthe simulation
procedures. Chapter IV discusses the initial study and chapter V addiiesdinal
research goals.

The answers to the initial study will facilitate the understandirigeof
relationship between the ICDMs and MIRT models, which will be used to ensure a
fair comparison between the models based on test quality. The answersrialthe fi
research goal will provide information about the importance of model iseldot
cognitive feedback. As the demand and the need for cognitive assessment are
increasing rapidly, model selection is becoming more and more crucial fioatfee
assessment to be popular (DiBello & Stout, 2007; Bolt, 2007). If model selection does
not impact the outcome related to examinees’ cognitive status, it is possible for
popular models to be used without affecting the results. If model selection does
impact the outcome, the study is helpful to identify situations where the twosnodel
agree or disagree consistently. The results from the final reseatakilyaéso
provide insight into the feasibility of using MIRT models for cognitive sifasation
of examinees.

Chapter Il provides a discussion of the ICDMs and traditional anaigiels
including the MIRT models. The review on different skill interaction is discliasd
the comparison of the two selected models is provided. Chapter Il discusses the

guestions, methodologies and statistics of each simulation study. ChaptelslV dea



with the preliminary study and the final research goal of the study. Chapteds the

study with conclusions and future directions.



CHAPTERII

LITERATURE REVIEW

Cognitive diagnosis, skill assessment or skill profilingneto the partitioning
the latent multidimensionality into discrete latent attributesl @valuating the
examinees with respect to their status of mastery of etrdbusst (Hartz, Roussos &
Stout, 2002). In the literature on cognition, ‘attribute’ is used ihtargeably with
‘dimension’, ‘factor’, ‘skill’, ‘subskill’ and ‘latent ability’. Inthis study, the ICDMs
refer only to the stochastic models recently developed. All okthesdels assume
that attributes are discrete and are discussed in detail flor5@cl. The traditional
continuous latent variable models, referred as traditional factdytiananodels, are
presented in Section 2.2. In both sections, conjunctive models and coropensat
models are discussed. Section 2.3 includes the definitions and |g#eratuew of
compensation and noncompensation. The last section presents the compitiee
selected models.

2.1 IRT-based Cognitive Diagnostic Models

IRT-based cognitive diagnostic models (ICDMs) recently develapelefine
the probability of correctly answering an item as a function of a set of @iscre
attributes measured by the item. In addition, the models require that ariQ+maat
been defined with elemendg, where 1 indicates that tik& attribute is required by
thei™ item and 0 otherwise. In most cases, the Q-matrix is assumed as fixed and is

determined by content experts. In addition, most ICDMs assume that onlyyhwdste



those attributes specified by the Q-matrix is necessary for the tcasponses. These
ICDMs can be classified according to skill interaction into noncompensatory or
conjunctive and compensatory models. The conjunctive models are presentatifirst
the compensatory models are presented next.

Conjunctive Models

Reparameterized Unified Mod&UM, Hartz et al, 2002, also referred to as the
Fusion model) was defined based on the Unified Model (DiB&llout & Roussos,
1995). The Unified Model is among the first cognitive models to ackmigelehat
the Q-matrix is an incomplete representation of all the ¢wgniequirements for the
test, thus differentiating the Unified Model from most earbgrative diagnosis

models. Specifically, the Unified model includes(d;), where 6; is a single

continuous ability parameter as a unidimensional projection of exaisnezevant
attributes outside those defined in the Q matrix (using a Rasdel with different

parameters—€, ). The problem with the Unified Model is that it is not estimable

because there ard;23 parametersk(= the number of attributes required by the item)
for each item and thus, the parameters are not identifiable.

Hartz (2002) developed the RUM (Fusion Model) out of the Uni¥iediel.
She reparameterized the Unified model so that it was estiraableshe retained the
interpretability of the parameters. The reparameterized nmadeRK; parameters per
item, wherekK; represents the total number of required attributes for an itém.

R-RUM defines the probability of a correct resporBeX; =1/«,,0,) as:



K
P(X; =1/a,,0,) =[x T1r,“ %P, (9,) (2.1)

K
where 7, = [1 7
k=1

=P(correctly applying all item required attributes givery, =1 for all item

required attributes), which is the probability of giving a coreedwer to all
the attributes given that an examirjes a master of all the traitk£1,...K)
related to item.

= P(Yijk :1/ajk =0)
o P(Yijk ::Uajk =1

which is interpretable as itemdiscrimination parameter for attribukeor the
penalty for not mastering attribute
¢ = the amount that correct item performance requiyesn addition to the

required Q attributes; referred to as the completeness index far item

The ranges of the parameters are 8, < 1, 0< r, <1, 0<c;<3. For the
discrimination parameterr,. is 1 when the item does not require kfattribute and
0 when the discrimination is maximum. The additional abdityjs assumed to be
continuous, ranging fromee to +oo . As the value of¢; approaches infinity,

P (6;) approaches to 1 for all values af. When the value af; is approximately 0,
the different values of; (¢;) will influence the item response functiorhe

estimation of the RUM was solved using a Markov Chain Monte Carlo (MCMC)

algorithm and a stepwise parameter selection procedure.

10



The RUM is among the most common ICDMs studied (e.g, Jang, 2005). Hartz
(2002) applied the model to PSAT/NMQT for the purpose of improving students’
performance on SAT. Jang (2005) also applied the RUM comprehensively to
ETS-TOEFL standardized testing. Jang constructed the Q-matrix by comthiaing
characteristics of the items with the results from DIMTEST and DETEG&
insignificant item parameters were eliminated and the program for the \RasM
rerun on the data, using the modified Q-matrix. The follow-up study, surveys and
interviews, was conducted on a sample of 28 students and two teachers, to
cross-validate the diagnostic reports. Roussos, Hartz and Stout (2003) applied the
RUM to the math section of American College Testing’'s assessment.

TheReduced RUMR-RUM, Hartz et al, 2002, Henson & Douglas, 2005; Fu,
2005) The R-RUM is a simplified version of the RUM with the additional ability,

0, , removed. With the non-Q attribut€g. (¢;)) removed, it is implicitly

acknowledged that the Q-matrix is a complete representation of the skillsecefpuri
the test or the non-Q attributes are insignificant. The interpretations @ntianing
parameters are the same as in the RUM and thus the probability of a aspecise

is defined as:
* K (1= ) Qi
P(X; =1la;)=n, knlrik : (2.2)

Henson & Douglas (2005) applied this model in the study on tB&/I€st
discrimination indices.
The NIDA Model(noisy inputs, deterministic “and” gate, Junker and Sijstma,

2001; Maris, 1999) In the NIDA model, the probability of a correct response is:

11



K
P(X; =l a;,s,9) = H [(1- Sk)ajk gkl_ajk 1™ (2.3)
k=1

Where s, = P(7; =0/ =10, =1), a slipping parameter
9y = Py =l ay =0,q, =1), a guessing parameter
1y » a latent variable defined at attribute level, with 1 indicating the examinee

] has correctly applied attribukeon itemi and O otherwise.
The NIDA model predicts the probability of giving a correct response gsddect

of slipping and guessing parameters. In the modglis an error probability that an

examinee incorrectly applies attribitgvhen in fact, he or she is a master of that

attribute and g, is the probability that an examinee correctly applies attribute

when he or she is a non-master of that attribute. Because the slipping amigguess
parameters are defined at the attribute level, only the Q-matrix distieguis
difference among items and no item specific parameters are defined.(1M99)
gives another version of the NIDA model with the parameters estimateacfoitem

and so the probability of a correct response is defined as:

K
P(Xij = l/aj ' S g) = H [(1_ S|k )ajk gikl_ajk ]qik (2.4)
k=1

However, like the Unified Model, this model is not identified.

de la Torre and Douglas (2004) applied the NIDA model for assessiriglithe s
used in mixed number subtraction. Based on the content and the problem-solving
characteristics of the 20-item test, they identified an eight-skill @afar fraction

subtraction.

12



The DINA Mode{deterministic inputs, noisy “and” gate, Junker & Sijstma,
2001; Macready & Dayton, 1977; Haertel, 1989). The DINA model defines the
probability of a correct response as a function of two probabilities based on whether
the examinee has mastered the required attributes fititeen. Specifically,

P(X; =1/&;,5,,9,) = 1-5)" g, "% (2.5)

K
Where &; = l}_[ aﬂij , Which is an indicator of whether examindes mastered all the
i=1

required attributes for item with 1 indicating the mastery of all of the item’s
required attributes and 0 nonmastery of at least one attribute;

s = P(X; =0/¢&; =1), aslipping parameter; defining the probability that
the examineg¢ a master of all traits, incorrectly responds to the item.

g, = P(X; =1/, =0), a guessing parameter, meaning that a nonmaster of

at least one attribute, ‘guesses’ and correctly responds to the item.

The DINA model constraingl—s tg be greater thay . The model simplifies

examinees into two groups—masters and non-masters. In the non-master group, the
examinees missing one attribute are equivalent to those missing all thetedtri

Zhang (2006) applied the DINA model for differential item functionDidr)
study. In the study, Zhang manipulated the item parameters for the difjeveps
and completed a DIF analysis on simulated data and using real data. In addhien t
NIDA model, de la Torre and Douglas (2004) also applied the DINA model for the

cognitive diagnosis of the skills used in mixed number subtraction. Recently, based on

13



real data, de la Torre and Lee (2007) used the DINA model to explore the relgtionshi
between the ICDMs, classical testing theory and IRT indices.

Compensatory Models

In the following section, examples of compensatory models are introduced.
They include the compensatory RUM (Hartz, 2002), NIDO (Templin, Henson,
Douglas, 2006) and a disjunctive model—DINO model (Templin & Henson, 2006).
As defined in the previous chapter, a disjunctive model is an extreme case of the
compensatory model in the sense that the competency on ONLY one skill is enough
for the correct answer of the item. Last are the LCDM (Henson, TempliviJl&e,
2008) and the GDM (von Davier, 2005), the two general versions of compensatory
and noncompensatory model as was shown by Henson, Templin and Willse (2008)
through their introduction of the log-linear cognitive diagnostic model (LCDM).

Compensatory RUHartz, 2002). The compensatory RUM is a compensatory
version of the R-RUM, where the probability of a correct response is defined as:

exp[s; + z:=l7’ik O @]

< (2.6)
1+exp[s + Zk:17ik Ol & ]

P(X=1/4,a,0q,7)=

whereg, = the intercept parameter interpreted as the lmesklg-odds of getting the

item correct for examinees not mastering the skill.
7. =the increased log-odds of getting the item cori@ceach mastered
Q-matrix indicated skill

Therefore, for those who are nonmasters dhallQ-matrix specified attributes,

the probability of the correct response is a fuorctf the intercept parameter. This

14



model was later defined as a special case of thergkzed diagnostic model (GDM,
to be discussed, von Davier, 2005) and was apmid@EFL test (von Davier, 2005).
The NIDOModel(noise input deterministic ‘or’ gate, Templin, Hens
&Douglas, 2006 Based on NIDA model, Templin, Henson and Dougl&9&2
developed a compensatory model so that the protyatila correct response:
K
eXp[Z (B + 7 i )]

P(X; =1/ a;,q,) = k=L (2.7)
1+ eXp[Z (Be + 7 )]
=)

whereg, = the threshold of getting the skill correct for exaees not mastering the

skill;

7= the skill level discrimination parameter

Notice that the NIDO model defines the probigbof a correct response using
only two parameters per skill. Like the NIDA modglis model does not have
parameters at the item level and so the item pammswill have identical values
within the same skill. As a result, the probabibfygetting the item correct will be
identical for items with an identical Q-matrix gntr

The DINO Modeldeterministic input noise ‘or’ gate, Templin & Haan, 2006)

Based on the DINA model, Templin and Henson (208éyeloped a disjunctive

model. Similar to the notatiafj in the DINA model, the notationy; is used to

divide examinees into two groups: those who havstenad at least one attribute of

the Q-matrix (v, =1) and those who have not mastered any Q-mategifspd entries

(@, =0) for thei" item. Specifically:

15



o :1—1£[(1—05jk)qik (2.8)

Incorporating this notation into the DINA modeletbonjunctive model now becomes
a disjunctive model, predicting the probability afcorrect response as a function of

the slip and guessing parameters:

P(X; =l @) =(@1-5)" g™ (2.9)
where (1-s)> g, . Templin and Henson (2006) applied the DINO nhddevaluate
and diagnose the pathological gamblers.

The Log-linear Cognitive Diagnostic Mod@lCDM, Henson, Templin & Willse,
2008) The LCDM is a flexible log-linear model tiwan fit many of the
noncompensatory or compensatory models discussea abirst, give a general

model when the number of attributes iK22). The LCDM predicts the probability

of correct response as:

P(xij —1a)= eXpli,a, + 7i,0, + V200, — ) (2.10)
1+expl ey + 7,0, + Vinpta @y — )

where y,,, represents skill interactions with a value gretttan O indicating the
noncompensation and 0 or less indicating compensati
7. IS the discrimination parameter for each attribvetated to item.
S, is the intercept parameter interpreted as thegtitity of a correct response

for those who are nonmasters of the required skills
Notice this is a model for dichotomous datsing examples, Henson, Templin

and Willse (2008) demonstrated how the LCDM coul@dmpensatory RUM, DINA,
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DINO and reduced RUM. Perhaps more importantly li®M provides a
parameterization for assessing the differencesdeveach model and thus can be
used to identify a reduced model such as the mgulelsously described. The
authors also performed MCMC estimations on a reasat The results from the
LCDM estimation indicated that some items were st with the DINA, one item
was consistent with the DINO and some items wensistent with compensatory
RUM.

The Generalized Diagnosis Mod&DM, von Davier, 2005)fhe GDM is a
general and flexible version of the ICDMs. The GDMn cprovide parameter
estimates for multiple item types (dichotomous amdered responses) with multiple
latent ability types (either dichotomous or appnaaiely continuous). With the GDM,
the Q-matrix entries can be either dichotomousatytpmous skills. Within the class
of the GDM, both compensatory and noncompensatoBME€ may be specified
(Henson et al, 2008). The GDM predicts the probigtai correct responses by:

exp[B,; + 7 h(a, ay )]
1+ Z?:le)(pwyi + 7)T/i.h(q"< )]

P(X =x/8,a0,7)= (2.11)

where h(q,,a) = (h,(q;,,a),....h,(q,,a)) is a vector of functions
Vi = Vsitre Vi) » (1) dimensional slope parameters to determine the

contribution of each non-zero Q-matrix entry.

B, the real-valued difficulty parameters
When h(q;,a) = a; xq;, the compensatory RUM is a special case of the GDM.

With the exception of the RUM, all the above ICDM# ¢ modeled with the GDM
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(Henson et al, 2008). However, the GDM can approtentiae RUM (Henson et al,

2008). Notice wherk in equation 2.11 is 1 and; is defined as a continuous latent

variable with normal distribution, the GDM is an esgsion for the two-parameter
logistic IRT model.

The GDM was applied to both the simulated daidthe real data (von Davier,
2005). For the simulated data, the classificationueacy across four skills using
Cohen’s kappa was above .85 across five differeplications. The application was
done on TOEFL Internet-based testing pilot datd wito forms (Form A and B) and
two sections (Reading and Listening). The Q-madrisere supplied by the experts.
Seven out of eight skills were strongly relatedh® overall ability obtained using the
traditional 2PL IRT model. The skill profile indita four highly correlated skill
classifications for the Listening section and thHeeé highly correlated skKill
classifications for the Reading section.

The popular ICDMs in the literature have beemmonly conjunctive models,
such as the RUM and DINA. These ICDMs are IRT-basdte sense that they share
some similarities with the IRT models in their asgtions. The ICDMs assume local

independence conditional on the latent ability. (i¢). Specifically, they assume that

after conditioning on an examinee’s abilities, trtesponses of an examinee to
different items will not influence each other ahdttexaminees from the same group

(i.e., the samex;) should have the same expected response pattethe ICDMs,

monotonicity means that the probability of corrgctesponding to an item is

non-decreasing in each coordinate of the attribuiiés all other coordinates held
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fixed (Junker & Sijtsma, 2001).
2.2 Traditional Factor Analytic Models

Linear Factor Model

Factor analysis started with Charles Spearr(804). He proposed the
one-factor theory, which assumed the test measuredyeneral factor in commoa,
general intelligence. He suggested that all hunmaellectual activities have this
general factor in common. In addition, the more tests have in common with the
general factor, the higher their correlation wolokd He also proposed a second factor,
the specific factarThis factor was only specific to a single actwt variable and not
correlated with the general factor. Its presenaddcoeduce the correlation between
the tests. Therefore, within a test, it is the gehéactor, a factor universal to a
person’s ability, that accounts for the correla@onong the items.

Some researchers did not agree with the arterfanodel. Thurstone (1938) is
one of the famous proponents of the multiple factémalyzing the responses from
240 volunteer students on fifty-six tests, he id&a nine independent factors. Later,
Thurstone (1941) completed a second study and fthendame factors present. It was
Thurstone who put forward the concept of ‘simpleucure’, a very important
concept in factor analysiSimple structurelescribes a test where each item loads on

only one dimension. Graphically, simple structuse be represented as follows:
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Figure 1. Simple Structure
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As opposed to simple structure, a test isofaadty complex when a measured
variable is related to more than one factor ortamiis measured by more than one

factor (refer to Figure 2).
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Figure 2. Factorially Complex Structure

Generally, for each person, the factor moday tve expressed:

X =u + N T +¢& (2.12)
In this modelx; is a column vector of the measured variabta responses to items.
The constank; represents thi" item’s difficulty. 4 is a {xk) matrix of factor
loadings, representing the amount of informatiaat #ach item contains about each
factork related to item. Factor loading describes discriminating powethefitem.
For standardized data, factor loadings range fram®with 1 indicating maximum
discrimination and O indicating no relation wittetfactorfy is a column vector of
latent variables ang is a column vectosf unique factors. WheK>1, it is a

multi-factor model. WhelK=1, A is a column vector and the equation (2.12) is the
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expression for classical testing theory (CTilQdqrresponds t@, unobservable true
score in CTT).

Iltem Response Theory Models

In the above linear factor models (equatiob2p. the observed variable is
predicted based on a linear combination of a sktteht variables. However, equation
2.12 is not appropriate for dichotomous item respsn When equation 2.12 is a
one-factor model, the model has the following latigns. First, the assumption of
linearity between the item and the latent factomcd be met (McDonald, 1999). It is
possible that equation (2.12) yields a probablktys than O if the factor score is too
small, and a probability greater than one if the#gdascore is large enough. Second, it
assumes that error and factor are independentcbfaaer and that the error variance
is constant across all values of factors. WKan equation 2.12 is greater than 1, the
linear factor model is a multiple-factor model. Wheapplying the linear
multiple-factor model to educational measuremem, $ame limitations associated
with the linear one-factor model still exist excémt each factor has its constant error
variance across the values of the latent ability.

In educational measurement, one method tocowse these limitations is by
using a nonlinear transformation such as is comynoséd the popular IRT models.
IRT models have some favorable features—such asinweriance of both item
parameter estimates and ability estimates andltiéyao predict the probability of
the correct response for an examinee to an iterangithe item parameter(s). In
addition, the standard error of measurement, thahe inverse of square root of

information, varies across ability. The relatiomshetween the probability of a correct
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response and the latent ability is monotonic, tlsat as ability increases, the
probability of the correct response increasesRIh inodels, the common models are
either logistic models or the normal orgive mod@lsrd, 1952) and they differ
approximately by a constant, but the logistic IRGd®ls are more popular due to their
simplicity in computation. IRT models can be cléssl into three-parameter (3PL)
model (Birnbaum, 1968), two-parameter (2PL) modBirnbaum, 1968) and
one-parameter (1PL) model (Rasch, 1961). Becawséotius of the current study is
about cognitive diagnosis, only the multidimensio@am response theory (MIRT)
models are discussed.

Multi-dimensional IRT modelsThe multidimensional IRT (MIRT) models

predict the probability of the correct responsedoitem as a function of a set of item
parameters as well as a vector of the given alhditgls. In MIRT, there are two classes
of popular models—the compensatory MIRT models (RMIReckase & McKinley,
1991) and the noncompensatory MIRT models (NCMI&Jmpson, 1978).
Noncompensatory Multidimensional IRT (NCMIRIDdel (Sympson, 1978)

Each dimension in the NCMIRT has its own difficuttgrameter g, ) and its own
discrimination parametea, , for thek™ trait related to item. Higher values of the

difficulty parameters indicate more difficult iteraad lower values indicate easy
items. The multiplicative nature of the noncompémsamodels prohibits an
examinee from compensating for a low ability on dmaension by having a high
ability on another or the other dimension(s). Thesttomplex model of this family

of NCMIRT is the 3PL NCMIRT, where the probabiliy a correct response is:
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(a b —di )

(ax bk —di) (2.13)

K e
=1/0 ;,a;,d,)=c¢c + @-c¢c)II

P (X
k=11 + €

1)

The 2PL NCMIRT model is a simpler version lmst3PL model withc,

constrained to zero forl,...,I. The 1PL NCMIRT model is the simplest versiaf
equation (2.13) with the discrimination parametansstrained to unity and guessing
fixed at zero.

Compensatory Multidimensional IRT (CMIRT) Mo@dReckase & McKinley,
1991). Unlike the noncompensatory model, the CMitkddel has a vector of
discrimination parameters, one difficulty parameted one guessing parameter per

item. The negative values of the difficulty paraendd, ) indicate the more difficult

items while the positive values suggest the edtsigrs. Regardless of the number of
dimensions, there is only one item difficulty paetar and one item guessing
parameter. The 3PL CMIRT model, as is indicatedyithes the discrimination
parameten for each skilk related to item, a guessing parameter)( and a difficulty

parameter ¢, ) for all dimensions. Specifically, the 3PL multidénsional logistic
model is:

ZKaikijeri
P(x; =1/0,;,a,,d;)=c + (1-¢) = 7K (2.14)

jl
T ajk 0 jk +dj
k=1

l1+e

The discrimination parameters in (2.14) amest@ined to be positive and the
length of the item vector is equal to the amounnaftidimensional discrimination
(Ackerman, 1994; Reckase & McKinley, 1991). Duehte additive nature of the

elements in the exponent, the examinees having alblity on one dimension can
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benefit from having a high ability on another on@tdimension(s).
As to the 2PL CMIRT (Reckase, 1985), the gugsgarameter is set to zero.

Thus the model becomes:

ZKaik 0 +d;
e k=1

K
T ajk 0 jk +dj
k=1

1+ e

Note that this is equivalent to the nonlinkator analysis with a logit link as
previously described (Christoffersson, 1975; McDdn&b67).

With the 1PL or the Rasch CMIRT model, the gpileg parameters are set to
zero and the discrimination parameters are congitiaio unity.

These two types of the models can be rewriteen a generalized

multidimensional item response theory (GMIRT) mo@etkerman & Bolt, 1995):

g fij
ek:l
P(X; /©,ay,by, 1) = < (2.16)

> fix K T i
[L+e" 4 2 e ]

where fix=a, (¢, —d,). In equation (2.16),u is a weight with O representing

fully compensatory model and 1 fully noncompensatoodel, but any value
between 0 and 1 indicates the varying degree opeosation required by the
attributes. This model may be viewed as a gengmkssion of the MIRT models and
the unidimensional IRT models. In addition, a guesparameter could be included
to define a three-parameter model.

In educational measurement, the nonlineaofanbdel and the MIRT models,

are more popular. The 1996 winter issuédpplied Psychological Measurememas
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devoted to research of MIRT models. As shown inndaet section, a large amount of
research has been completed using MIRT modelsuoatidnal measurement. As
members of the IRT family, the relationship betw®HRT models and the linear
factor analysis has been established (Christofiersk975). Due to its popularity,
there may be some circumstances where the MIRT Inaldd be selected to
provide diagnostic information as to the ICDMs. Tdfere, it is the goal of the
current study to compare these two types of maddlsvestigate how consistent the
two models are with respect to cognitive diagnostid to identify the situations
where they are comparable.

2.3 Literature on Compensation and Noncompensation

The concepts of compensation and the noncosagien or conjunction was
first introduced by Coombs (1964), Coombs and Ki&5b5) and Johnson (1935).
Under conjunctive model, the joint abilities of attributes are necessary for
answering the item correctly. Anyone lacking théigtin one attribute will lack
sufficient knowledge to answer the item correctig do will most likely miss the
item. That is, having a higher ability on one atite is NOT sufficient for
compensating for the lower ability in other attté(s) and answering the item
correctly.

In contrast, compensatory models allow forghér ability on one attribute to
compensate for the lower ability on other attrilfs)tethus increasing the probability
of getting the item correct. Popular compensatoogl@hs include the linear factor
models and some MIRT models with additive propsrtignlike equation 2.13, which

is multiplicative across dimensions, equation 2dldquation 2.15 are additive across
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the dimensions. Although additive models in theriture assume a compensatory
relationship between the latent abilities and #sponse holds, other models, such as
a disjunctive model, can also be considered congtens Disjunctive model require
that a minimum competency on ONLY one attributerisugh for the correct answer.
Apart from disjunctive model, disjunctive proceggimay also be represented by the
negative interaction term (Henson, Templin, & VW[I2008).

The compensatory and noncompensatory modelditherent from each other
in the nature of cognition. The implied cognitivesamption of compensation is that
the complete mastery of the Q-matrix skills is netessary for the correct answer of
the item. Instead, an ability at or above a minimawel on any of the relevant skills
plays a dominant role in answering the item colygat the disjunctive case, it is
enough to have a minimum on one skill for the atirresponse of the item). The
cognitive assumption of noncompensation is thahallskills relevant to the item are
necessary for the correct response of the item.ifirapevidence supports both types
of models.

Some research found compensation outperfomordompensation while other
research found compensation and noncompensatieaacsenparable or
noncompensation was superior. For example, Sim{#ub) used the GMIRT model
to investigate the relationship between noncomgensarocessing and the task of
matrix completion. She foundi, an indicator of the degree of compensation, én th
GMIRT model,was greater than 0, supporting the compensatogepsing in the
cognitive solution of matrix completion. Mislevyat (2002) found that compared

with the conjunctive model, the compensatory mgadetiuced relatively high
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reduction in posterior variance, indicating the pamsatory model is a better fit.
Comparing the compensatory model with the noncosgdeny model, Van Leeuwe
& Roskam (1991) found that a compensatory MIRT nhgdevided better fit to
LSAT data than a noncompensatory MIRT model.

Hambleton and Slater (1997) compared a congperyspolicy with a policy
combining compensatory and conjunctive componeitts iespect to standard setting.
Their results demonstrated that the compensatdigygacreased the levels of
decision consistency and the levels of decisioni@ay whereas the policy
combining both compensatory and conjunctive comptmiewered the levels of
decision consistency and the levels of decision@ay. Under the policy with the
conjunctive components, the candidates failedvatrg high rate. Consistent with
Hambleton and Slater’s results, Haladyna and HE339) found compensatory
strategies outperformed conjunctive strategiesstesty in terms of reliability and
rater consistency. Richter and Spath (2006), iif #tedy of decision-making, found
that people integrated information with other typésask-relevant knowledge in
judgment and decision making, which was an indicatif compensatory
decision-making.

On the other hand, some research does firldrhotlels are comparable or
support the noncompensatory model. Way, Ansleyramdyth (1988) simulated data
using both compensatory and noncompensatory motteds: independent variable
was the correlation between the dimensions andeépendent variable was the ability
estimates. Their results showed that the observ@@ slistributions for each model

were comparable and theestimates were most highly related to the avechgiee
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two 6 parameters. In a study of the success of the gtadiiudents (Nelson, Nelson
& Malone, 2000), both the compensatory term ancttimunctive term were found to
be significant predictors. Investigating geomeamalogy solution as a function of
systematic variations in information structurewé ttem, Mulholland, Pellgegrino
and Glaser (1980) found that the best-fitting fiorcivas a nonadditive model (a
conjunctive model) instead of a simple additive gldd compensatory model). In the
study of teacher licensure, Mehrens and Phillip89)%ound that the conjunctive
model was more appropriate when the purpose wsetta cut-off value for the
minimal competence instead of predicting the degfesiccess. To study Korean
high school students’ decision-making process, Hoiithang (2004) conducted their
study using ‘think-aloud’, tape-recording and obations and concluded that
students preferred the non-compensatory rulesadsiéthe compensatory rules
which allowed the trade-off among alternative siméds.

With the complexity of cognition, it is impokke for one model to be the best
for all scenarios. Apart from cognition, many fastaight influence which type of
skill interaction might occur. These factors ina@uassessment purposes, content areas,
test designs, attribute structures, or differemget populations. Skill interactions
might vary across items, skills, test structuradjviiduals, groups and populations. It
is quite possible that some data might be a mix@éimpensation and conjunction.
2.4 Comparison of theR-RUM and the2PL CMIRT

A common saying may depict the dilemma of psyeetricians very precisely:
“A person with one watch knows what time it is;@gon with two watches is never

quite sure.” The challenge becomes greater where thie many models available.
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That is, models will have to be selected based @ormpromise of model fit, the
purpose of the models and some additional factmk as the assessment purpose and
the way of reporting the cognitive status. Howewvdren the measurement from two
different models yields a similar interpretationen one can make a selection based
on personal preference, software availability al/#me assessment purposes. Thus,
the goal of the current study is to investigatedfiect of two different models on the
final cognitive diagnosis of the examinees.

To make such a comparison, two models werecssl—R-RUM and 2PL
CMIRT model. When choosing the models, four factosgere taken into
consideration—model popularity, the substantivenifgarameter interpretations, skill
interactions and attribute scales. Among the ICDiks,conjunctive models are more
commonly used such as the RUM, the R-RUM and the D{&lg. Hartz et al, 2002,
Jang, 2005; Henson and Douglas, 2005). Among tmdtivnal MIRT models, the
CMIRT models are more often found to outperform R@MIRT models (e.g., Bolt

&.Lall, 2003; Mislevy et al, 2002). The R-RUM sharesnilar item parameter

interpretations as the 2PL MIRT modet, in the R-RUM, ranging from 0 to 1, can
be interpreted as the conditional item difficultsgrgmeter based on Q-matrix. It is
closer tad,, item difficulty parameter in the 2PL MIRT models.the R-RUM, r, is

interpretable as itemdiscrimination parameter for attribuke with O indicating the
maximum discrimination and 1 indicating no discmiation. This is somewhat similar

to a,, discrimination parameter in the 2PL MIRT modélke rest of the ICDMs do

not share the similar item parameter interpretatisith MIRT models as the R-RUM.
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When selecting models for comparison, all ulydegy assumptions were also
considered. The R-RUM is a conjunctive model and #®. CMIRT is a
compensatory model. The R-RUM assumes the underbjistgbutions are discrete
while the 2PL CMIRT assumes each of the distrimgics on a continuum. The 2PL
CMIRT and the R-RUM aggregate all different assuons and are, therefore, chosen
for the research goal. If these two models cardygesimilar interpretation about the
cognitive status of the examinees, then the chgdlenf selecting a cognitive
diagnostic model can be based on whichever modelpgychometricians prefer
(maybe, the customers prefer), what software idabta, or/and whichever model fit
the assessment purposes.

However, an initial challenge must be overcdratore directly comparing the
R-RUM with the 2PL CMIRT model with cognitive feedtka The R-RUM is newly
developed and its relationship with the traditiohdlRT models is unknown. A
preliminary study is necessary to address theioeksttip between the two models.
Two questions are related to the relationship betwbe two models: (1) how do the
two models define test quality? (2) What is theatiehship between the item
parameters of the two models?

In Chapter lll, Figure 3 is the flowchart tddmess the initial challenge
regarding the relationship of the two models witlo specific questions. Notice that
the results from the test quality of the two modeil§influence the comparability of
these two models. Figure 4 provides the detailedilsition procedures to investigate
if the two models can produce a similar interpretabf the cognitive status of the

examinees. Included are also the research questimmethods and the statistics

31



used in each simulation study.
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CHAPTER 111

METHODOLOGY

The purpose of the current study is to fintlmmw comparable the ICDMs and
the traditional MIRT models are with respect tomitige feedback of examinees. For
this purpose, the R-RUM and the 2PL CMIRT modelsaiected. The R-RUM is a
noncompensatory model with discrete attributestbted®PL CMIRT model is a
compensatory model with continuous attributeshdfse two models yield the similar
results about the cognitive status of the examineasistently across experimental
conditions, then model selection can be based®pridgference of the researchers
or/and the clients in addition to software avaiigapiHowever, unlike the R-RUM,
which yields the probability of mastering each Iskile MIRT model produces
continuous factor scores, and thus classificaticexaminees into masters and
non-masters does not exist for the MIRT model. €foee, first, a methodology is
defined to identify a point, or a cut-off, for tfector scores so that examinees at or
above this point are masters and examinees belsywdimt are nonmasters.
Specifically, assume that a common dataset isaeliieand fit by both the R-RUM
and the 2PL CMIRT model. The R-RUM analysis of thaga will result in estimates
that can be directly used to classify examineesmaaster of each attribute whereas
the results from the 2PL CMIRT model for each httte will be continuous scores for

each examinee, with no direct way of determining o transform the continuous
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scores of the MIRT into dichotomous estimates o$tery/nonmastery. Therefore a
method is described to determine a cutoff on tladesof the MIRT continuous
abilities such that the agreement of mastery/notenasf the two models, when
using the same dataset, is maximized.

Among the statistical tools, binomial logistagression (thence referred as
logistic regression) is used to convert the comtursvalues of the MIRT model to
dichotomous outcomes. In logistic regression, iedejent variables can be interval,
nominal or categorical, or a combination of allsdend the dependent variable is
dichotomous. Logistic regression can be used tdigréhe likelihood of having or
not having the expected outcome given the independgiable(s). The property of
logistic regression is that it is either monotoinicreasing or monotonic decreasing. In
the current study, the independent variable is#tenated continuous factor scores
from the MIRT model and the dependent variabl&ésdstimated mastery status
(either master or nonmaster) when the R-RUM has bsemated using the same
dataset. Thus, an examinee will be classifiedragsster on oned when the
predicted probability of the logistic regressioregual to or greater than .50. As the
estimated continuous factor scores increase, theotad likelihood of being a master
(i.e., the predicted probability of the dependeariable equaling 1 in the logistic
regression) increases monotonically. Using logig@gression, the predicted
probability for the mastery status of each skilll we obtained given each continuous
factor score. Those having a predicted probahalityr above .50 are classified as

masters and those below .50 are classified as rirreaBecause the cut-off values
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(i.e. .50) from logistic regression yield the moshsistent cognitive evaluations of
examinees between the two models, they are refagéaptimal’.

Provided that the previously described methiidbe used to compare the two
models, the following paragraphs provide an explanaf the conditions selected to
compare them in a simulation study. Because thassisnulation-based study about
how comparable the two models are with respecbg¢mitive feedback given to
examinees, factors in this study are considerdtklf are expected to affect the
estimation of the examinees’ profiles (either comtius or dichotomous) either
directly or indirectly. Section 3.1 discusses theseditions in detail.

3.1 Experimental Conditions

As was discussed, factors of the simulatiodist are selected that are
expected to affect the cognitive feedback of exaesn One important factor
affecting the estimation of examinees’ cognitivass is test quality. Test quality
directly influences the ability of a test to acdetp estimate examinees’ profile, either
continuous or dichotomous. Henson and Douglas (P@etefined the test reliability
or the test quality in cognitive diagnosis to be #itcuracy of classification of
examinees. Item discrimination, in the cognitivagtiostic models, measures the
extent that an item provides information aboutdlassification of each attribute.
Items with high discrimination are more reliableckssifying examinees as masters
or nonmasters. Simulation studies (Hartz et al226{&nson & Douglas, 2005)
showed that test quality directly affects the coriassification rate of the examinees.
A high-quality test has a higher correct classtfmarate. In contrast, a low-quality

test has a higher misclassification rate. Whendeatity is low, two parallel tests will
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not agree even if the true model is applied anthe@greement rate in this case must
be low if two different models are compared whelibcated using the same dataset.
If and only if the two models define test qualitythe same way, the estimated factor
scores of a master will be consistently higher tise of a nonmaster. On the
contrary, if the two models define test qualityfeliently, the implication is that one
model is more reliable at classifying examinee®ré&fore, comparisons cannot be
made across the datasets simulated using the fieoetit models. Comparisons can
only be made on the datasets simulated using eadelmafter running the estimation
programs of the two models on the common datasets.

In this study, different test qualities—highedium and low—are replicated. In

the R-RUM, the items with highz, and low r, are more informative about the

attributes (Hartz et al, 2002; Henson, Douglas520@émplin, Henson & Templjn
2008). To be more specific, Henson and Douglas§pa6fined high, medium and

low quality tests in the R-RUM as follows:
1. High quality test: ~ ~ (.85, .95) andr, ~ (.10, .30)
2. Medium quality test: 7, ~ (.75, .95) andr, ~ ( .10, .90)
3. Low quality test: 7z, ~ (.75, .85) andr, ~ ( .40, .90)
In MIRT models, the test quality is relatedhie composite discrimination

K
index, which isa, =,/>a; , where a, are from equation 2.13 to equation 2.16
k=

(Ackerman, 1994). Higher values &, indicate the item is good at differentiating

the abilities among examinees. Following the d&bniof test quality in cognitive
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diagnosis, a good item in MIRT models, when appladcognitive purposes, should
be more able to discriminate among examinees’ goatis traits to answer an item
correctly. Similarly, tests constructed with MIRTodels according to the different
definitions of test quality should differ in theibility at discriminating examinees
along the continuous traits. For the 2PL CMIRT miphigh, medium and low quality
tests will be defined as (personal communicatioth ®ir. Terry Ackerman):

1. High quality test: a.~ ( 1.30, 1.80)
2. Medium quality test: a,~(.70-, 1.20)
3. Low quality test: a_.~ (.30, .70)

Table 1 summarizes the definitions of test qualftyhe two selected models and the

definitions in this table are applicable to bottmgiation studies:

Table 1. Test Quality Table

Models R-RUM 2PL CMIRT Model
Parameter * .
Quality i i &
High Quality .85~.95 .10~.30 1.30~1.80
Medium Quality .75~.95 .10~.90 .70~1.20
Low Quality .75~.85 .40~.90 .30~.70

Next, the number of attributes per form ietixat 4. A test can be constructed
such that an item only measures one skill, whigleferred to as ‘simple structure’ in
factor analytic model (Figure 1). Alternatively, é@m can be complex and measures
more than one skill, which is referred to as ‘faietily complex structure’ (i.e.,

complex structure) in factor analytic model (Fig@jeln the simple structure, the
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sum of each row in the Q-matrix equals to one. Jura of each row in the Q-matrix,
under the complex structure, is greater than 1vahdbe set between 2 and 4 in this
study. The data structure is important becauseftieet of skill interaction on the
probability of correct response is absent wherdtita structure is simple and so it is
expected that these conditions are when the tweefagthe R-RUM and 2PL MIRT)
would agree the most. The opposite is true whemldt@ structure is complex. In this
dissertation, both simple structure and complaxcttire are going to be generated:
1. Simple structure: the sum of each row is 1
2. Complex structure: the sum of each row is betweand4
Last, the inter-attribute correlation is s&ecbecause inter-attribute correlation

affects the dimensionality of the data structure tide inter-attribute correlation
approaches unity for all attribute pairs, the strcee of the data approaches
unidimensionality. The dimensionality of the datiaisture has potential influence on
the estimation of the examinees’ cognitive stafilrerefore, the inter-attribute
correlation is selected as the third experimerdgatidion and the inter-attribute
correlations in this study are capped at .20, r&D.80 to replicate the possible range
for correlated attributes in the real world.

In addition to the factors mentioned, the siasze for all conditions of this study
is 2000 and the test length is 40. For each exmatiah condition, there are ten
replications. Altogether, there are 3 x 2 x BOxdatasets and they are replicated in

both simulation study 1 and study 2.
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Table 2. Experimental Conditions for Simulation®tu

Test Qualit;?ata Structure Simple Structure Complex Structure
Quality Test r=.20, .50, .90 r=.20, .50, .90
Normal Test r=.20, .50, .90 r=.20, .50, .90

Poor Test r=.20, .50, .90 r=.20, .50, .90

r=correlation

Notice that test quality could play a centmdé in that it directly impacts the
ability to estimate examinees’ ability. One chafjerarises when comparing model
performance for the R-RUM and the 2PL CMIRT becauseunknown whether the
two models define test quality in the same waywahdther the item parameters of
the two models are related to each other. As féniagopic is concerned, research is
limited. de la Torre and Lee (2007) explored tHatrenship between classical test
theory (CTT), item response theory (IRT) and thBM3, using the DINA model and
real data. Therefore, an initial study is compldtedxplore the relationship between
the R-RUM and the traditional 2PL CMIRT model inntesr of test quality and item
parameters. There are two possible outcomes wetinthal study. The most desirable
outcome is that two models define test qualityhie $ame way, i.e., same amount of
reliability regarding the estimation of examineasility. The least desirable outcome
is that they do not define test quality in the samag, meaning that one model is more
reliable at estimating the examinees’ cognitivdif@on a nonsystematic way. Thus,
as was reiterated in the section on test qualigyrésults of the initial study determine
the methodological framework of the second simatasitudy. Section 3.2 gives the

details for the initial study, specific questiomglastatistics.
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3.2 Simulation Study 1: A Comparison of Test Quality and Item Parameters
between the R-RUM and the CMIRT
Research Questions

As was discussed previously, test qualityeistial because it directly affects
how reliably the abilities of examinees (either thmmous or discrete) are estimated.
When the two tests define test quality in the samag the two models are ‘equally’
reliable with cognitive diagnosis, yielding the saamount of correct classification
rate with the truth. Comparison can be made viaikiting datasets separately using
the two models and making a comparison acrossgwdts from the two models.
Otherwise, if they define test quality differentligen the two models cannot be
compared directly across the simulation conditiasiag two different models. Thus,
comparison has to be made via simulating datasperately with each model and
estimating the examinees’ profiles, both continuang dichotomous, on the common
datasets. In addition, in both circumstances, gteeament rate of the two models
should be in line with test quality regardless affadstructure. That is, the agreement
rate is higher under high-quality test, mediocrdarrmedium-quality test and lower
under low-quality test. Therefore, the first quasstin simulation study 1 is: “Do the
two models define test quality in the same way, age they symmetric in terms of
test quality?”

Both the R-RUM and the 2PL CMIRT define tesalgfy using discrimination

parameters. The item parameter related to tesitgigamostly r, in the R-RUM

and a_ in the 2PL CMIRT model. Apart from test qualityjstalso necessary to
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explore the relationship between other item pararseif the two models. Such
parameters includer, versusd,and r, versus a, . The question is how strongly

the item parameters of the two models are relateath other? Specifically, the
guestion is: are item parameters of one model made given that the item
parameters of another model are known, i.e., ag $fmmetric in terms of item

parameters? If the item parameters of one modekawmerable, it is hypothesized

that 7z, in the R-RUM andd, in the MRIT should be positively correlated to arig

degree. On the other hand, in the R-RUMand a, in the MIRT model should be

negatively correlated at a high degree. In additibe association and the differences
between the item parameters should exhibit a ceaméipattern across the
experimental conditions (specified in Table 2).

The recoverability of item parameters of or@el using another model means
that (1) one model is used to generate data (eegR-RUM); (2) both models are
applied to the data and the item parameters ditbenodels are estimated (first
estimation); (3) data are generated using the secmuel (e.qg., the 2PL CMIRT
model) assuming the item parameters for the secwukl from the first estimation
are the true parameters; (4) data generated frermrdvious step (step 3) are
estimated using the first model (e.g., the R-RUME@d estimation). If the item
parameters of the first model are recoverable usiagecond model, i.e., the two
models are symmetric in terms of item parametles) the estimated item parameters
for the first model from the second estimation dtidne associated at least

moderately with the estimated item parametersefitbt model from the first
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estimation. The association and any differencesdxst the two sets of estimated
item parameters should also show a consistentrpatteoss different experimental
conditions (specified in Table 2). However, if teeovered item parameters of the
first model from the two estimations are only assted moderately, but the
association and/or the differences between thatadels do not display any
consistent pattern across the conditions (spedifif@ble 2), the two models are only
associated in terms of item parameters.
To briefly summarize the questions in thet fsisnulation study, the question is:
are the two models symmetric?
1. Are the two models symmetric in term of test qy&liThat is, do they define
test quality in the same way?
2. Are the two models symmetric in terms of item pagtars? This question is
expressed in two specific questions:
a. Are the item parameters of the two models assatiaith each other?
Do the association of the item parameters anditfexehces of the
item parameters show a consistent pattern acrgesieental
conditions (specified in Table 2)?
b. Are the item parameters of one model recoveratdaather model is
used?
Simulation Procedures
Figure 3 describes the procedures for datargéion in study 1. First, R-RUM

datasets were generated (using the program ‘CDM.Edfpiled in FORTRAN):
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1. The first step is to generate the Q-matrices aadrthltivariate normal
distributions.

a. Randomly generate the test Q-matrix, 40-item exaitis4 attributes. To
generate the Q-matrix for each test, a random (400{1 matrix is
generated such that the sum of each row is gréwterO and less than or
equal to 4 (i.e., all items must measure 1-4 atteib for the complex
design and for the simple design; the total of gaghwas 1). The sum
for each column is greater than 5 (i.e., for anegitest each attribute
must be measured by at least 5 items).

b. Randomly generate four attributes, i.e., multiv@@ormal distributions

with means of 0, standard deviations of 1 and eetatron structure gb.

p~ uniform (.20, .50, .90). The sample size is 2000.

2. A cut-off value is set at O for this to dichotomize the latent distributions into
the attribute patterns.

3. Randomly generate the item parameters € ) for the R-RUM. The item
parametersy; , ri , are simulated using random uniform distributiouith
lower bounds and upper bounds defined to repliteelifferent qualities of
the test (as specified in Table 1).

4. Randomly simulate the examinees’ responses usenB{RUM (equation 2.2).

5. Estimate both (a) item parameters and (b) persoanpeters of the MIRT

model on the R-RUM datasets (using a FORTRAN proglMiRT.EXE’, to
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be discussed in the section 3.4). This was a taystep for MIRT
generation.

Estimater; , ry for the R-RUM datasets (using a FORTRAN program
‘RUM.EXE’, to be discussed in the section 3.4).

Obtain the maximums, minimums and averages ofshmated item

parameters (including item difficulty, discriminati parameters and,_, the

composite discrimination index) from Step 5 (aftamning the first descriptive
FORTRAN program called ‘Studyl 1.EXE’).

Obtain the maximum, minimum and average differensesmdard error of
differences of the estimateg, ry from Step 6 and the estimated CMIRT
model item parameters from Step 5 (after runnimgsécond descriptive
FORTRAN program called ‘Study 1_2.EXE’). The coaténs were averaged
across different datasets within each conditiosyasng that the tests were

measuring the same set of attributes.

Next is the 2PL CMIRT data generation (using thegpam ‘CMIRT1.EXE’ compiled

in FORTRAN):

9.

Randomly generate the MIRT datasets, assumingstiraaed item (Step 5, a)
and person parameters (Step 5, b) are the trueptees for the 2PL CMIRT
model and using the same Q-matrices from 1 (a).mMbael used in this step of

data generation is expressed in equation (2.16).

10.Estimater; , ri on the datasets generated in Step 9 (using theTRAR

program ‘RUM.EXE").
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11. Obtain the maximum, minimum and average differensesdard error of
differences of the estimated, ri from Step 6 and from Step 10 (using the
third descriptive FORTRAN program called ‘Study 1EXE’). Similarly, the
correlations are averaged across different datastts each condition,

assuming that the tests are measuring the samé attibutes.
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Figure 3. Flow Chart for Simulation Study 1:

1.Generate (a) Q-matrix and (b) Multivariate Normatribution ~ (0,p) for
examinees (seTable2 on page 3)

2.Use the cut-off to get attribute pattern%

A 4
e A

3. Simulaterri*, rik* according to
test qualities (see Table 1 on page 36)
J

@)

Program'CDM.EXE’. Save output%

v e
t : 7.Run ‘Studyl_1.EXE’to compare
[ 4. Simulate R-RUM datasets ] (a) with definitions of MIRT test qualify}
g
o (a)
’@E Study 1 (Q1
! e
o g 5. Run ‘MIRT.EXE’ to estimate CMIRT (a) (a)(b) ~| 9. Run ‘CMIRT1.EXE’ to generate 2PL CMIRT data,
: o item and (b) person parameters ~ assuming the estimated parameters are true.
3 2 'y 11. Study 1(Q2-b) Run|>
2 3 > ‘Studyl_3.EXE®
SN0
o = v v ) v
0::5 [ 6. Run ‘RUM.EXE’ to estimateri*, rik* ] P o 10. Run ‘RUM.EXE’ to estimatari*, rik* ]

Single arrows indicate transitions. Double arromdigate comparisons. The letters in parenthesedebagows mean the outputs
with the same letters from the previous step assguhonto the next step. (1) Outputs include thedymean, maximum and
minimum, standard error for the item parameters @rdpositea. (2)(3) Outputs also include standard error ofedénces and
averaged correlations.



Research Analyses

The reported descriptive statistics includexhm standard deviation and
reliability indices for the score distributions. @&amine if the test quality of one
model corresponds to the respective test qualignother model, the means,
minimum and maximum values and standard deviafjobsined from Step 7) were
listed in tables for the estimated CMIRT item paesens (item difficulty,

discrimination, and composite discrimination partene.e.,

a, = \/af +a’ +a} +a ) after running MIRT.EXE on the R-RUM datasets (Siep

a ). The results were compared with the test qudéfinition of the MIRT model
specified in Table 1 of Section 3.1.

To investigate if the estimated item paransetéithe two models were
associated with each other, the following stasstiere reported: minimum
differences, maximum differences, standard erraghefmean differences along with
the average correlations between the estimatsdri s (from Step 5) and the
estimated MIRTa andb parameters (from Step 6) were reported. To exarhthe
item parameters of one model are recoverable @siother model, the reported
statistics also included the grand mean differeno@simum differences, maximum
differences, standard error of the mean differeab@sg with the average correlations
between the two estimateqs, ri s (one from Step 5 and the other from Step 10). The
average correlations were calculated across tiferelit datasets within each
experimental condition, assuming that each fornhiwieach condition measured the

same set of skills repeatedly. If the differenaessanall, standard errors are small and
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the associations are at least moderate, the twelsade at least associated.
3.3 Simulation Study 2: How Comparable Arethe Two M odels with Respect to
Cognitive Feedback?

In this section, research questions related tditlaé goals are given first. Next,
detailed simulation procedures and a flowcharigaren for the second study.
Because the results from the first simulation st{s#e section 2 of Chapter V)
showed clearly that the two models define testityudifferently, simulation study 2
is performed according to Figure 4.

Research Questions
Two specific questions related to the finallgoa:
1. How much do the two models agree and disagreecshitive diagnosis of
examinees?
2. What are the correct classification rates withtthe attribute profiles
associated with each model?
Simulation Procedure

At the beginning of the current chapter, ltigisegression was identified as the
appropriate technique from which the optimal cdtvadues can be obtained given
each estimated factor score. A program for logiggression (called ‘Logistic.EXE’)
was compiled in FORTRAN to obtain the expectedlilii@d of mastery for each
given factor score. In addition, a number of srpatigrams were compiled in
FORTRAN for the second simulation study. ‘Alpha.EX&a program compiled to
dichotomize the estimated attribute profiles fré¢va R-RUM program, ‘RUM.EXE’.

Last, ‘Consistency.EXE’ was compiled in FORTRANctoss-tabulate the agreement
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rate with the estimated cognitive status of exaesn# the two models and to
calculate the correct classification rate of thenested «'s with the true o's.

Each of the programs is listed in the spegifep of the data generation
procedures (see Figure 4 for the flowchart). Inléfiehand part of the chart, Step 1 to
Step 5 are the same as in the first simulationysiliterefore, only the remaining
simulation steps are described. In the right-hdrtiechart, in addition, Step 1 is the
same as in the first study. Thus, the descriptiartswith the second step.

For the R-RUM model:

6. Estimate the probability of being a master on tHRUBRM datasets (using
‘RUM.EXE’).

7. Dichotomize the attribute estimates from step ihn@&Alpha.EXE’).

8. Obtain the predicted likelihood of being a masterdach given factor
scores (using ‘Logistic.EXE’).

9. Crosstabulate the agreement rates between theagstimognitive status
of examinees of the two models and the correcsifieation rates with
the truth (using ‘Consistency.EXE’).

For the MIRT model:

2. Generate the MIRT dataset according to the dedimstiof test quality in
the MIRT model (using CMIRT2.EXE, complied for tABL CMIRT
generation in this study).

3. Estimate the probability of being a master on tHRMdatasets using
the R-RUM (using ‘RUM.EXE).

4. Estimate the factor scores on the MIRT datasetauMIRT.EXE").
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Dichotomize the estimated alphas from the (usingha&.EXE’).

Obtain the predicted likelihood of being a mastesir{g ‘Logistic.EXE’)
to obtain the cutoff point for the estimated fastor

Calculate the agreement rates between the estiroatgutive status of
examinees of the two models and the correct cleasdn rates with the

truth (using ‘Consistency.EXE’)
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Figure 4. Flowchart for Simulation Study 2

( 1. Generate (a) Q-matrix and (b) Multivariate NormadtBbution ~ (0,p) for 1

)

L examinees (same as in study 1) (see Table 2 on3&ge

R-V

[ 2. Use the cut-off to get attribute pattern}

2PL CMIRT

; . ¢ ) ) @)(b)
3. Simulateri*, rik* according to different test
qualities (see Table 1 on page 35)

4[ 4. Simulate R-RUM datasets (same datasets asdwg $)l] [ the definition of MIRT test qualities

2.Use CMIRT model and simulate data according}o

[ Program'CDM.EXE’. Save outputs]

i Ny Y

AW

Indino aAes " 3X3'21HINDZ, weiboid

5. Run MIRT.EXE to 6. RUN‘RUM.EXE’ to 3.RuUn‘RUM.EXE’ to
estimate the factor score estimate thé, for each skill estimate thé, for each skill

4. Run MIRT.EXE to
estimate the factor score

:

. R 4 N\
8.Run ‘Logistic Regressioh. 7. Run ‘Alpha.EXE’ to 5. Run ‘Alpha.EXE’ to
EXE’ to get cutoff dichotomize the skills dichotomize the skills

\§ J

6. Run ‘Logistic Regression
EXE’t

0 get cutoff

; ! )

Get the cutoffs for each fact

4 N\
Get the cutoffs for each factor 9. Run ‘Consistency.EXE’ tq 7.Run ‘Consistency.EXE’ t
and dichotomize each theta crosstabulate. crosstabulate.

.

or
and dichotomize each theta}
J/

Single arrows indicate transitions. Double arromdigate comparisons. The bigger arrow points todigygendent variables. The
letters in parentheses beside arrows mean thetsutpiln the same letters from the previous stepassed onto the next step.



Research Analyses

The analyses were completed after obtaining rbsults from the above
procedure. Comparison can be made within each modamine the agreement rate
and the correct classification rates with the tdstheach model. Statistics included
the raw agreement rate and Cohdeppa.Cohen’sKkappawas included because the
raw agreement rate is a chance-dependent statistics
3.4 Estimation M ethod

In the current study, Markov chain Monte CaNtiCMMC) estimation was used
to estimate the two models (R-RUM and 2PL CMIRT). MCRN&3 become an
increasingly popular method of estimation in ediocetl measurement for IRT
models (e.g., Bolt and Lall, 2003; Bradlow, WaideWwang, 1999; Patz & Junker,
1999, Yao & Boughton, 2007) as well as for ICDM (eHgartz et al, 2003; Henson &
Douglas, 2005; Templin & Henson, 2006).

MCMC incorporates the principles of Bayesiariahce by simulating random
samples from a theoretical distribution, specidlg posterior distribution so that the
features of the theoretical distribution can bénested using the random samples
(Patz and Junker, 1999). For measurement modelgitit posterior density for a

measurement moddi(#, £ | X), can be expressed using Bayesian theorem as:
f(0,51X)=1(X]6,5)* f(ﬁ,ﬂ)/Ugﬁf(X 10, 8)* £(0,5)d(0, 5) @.1)

Where X represents the response data
6 denotes person parameters (either continuousboutimous, either

unidimensional or multidimensional) in the measugatrmodel
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£ denotes item parameters in the model (eithgrd, in 2PL CMIRT or
r.,7, in R-RUM)

f(X]86,p)is the likelihood of the item response given adl gerson and item
parameters.
f (0, ) is the prior density of the model parameters.
Note that the quantity in the denominatdhies marginal distribution of the
data X and this is a normalizing constant

Essentially, MCMC defines a Markov chauty, M;, My, ..., with states

M, = (6%, B), wherek is the total number of states. Observations @tates) are

sampled from the Markov chain. The way the Markourchaoves from one state to

the next is determined by the transition kernet{RaJunker, 1999):
{(6°, £°). (6%, B*) = PIM ., = (6", B") IMc =(6°, )] (3.2)

The stationary distributioh(é, j) satisfies
[, H0°. 80, (6" BT (6°, B)d(6°, ) = T (6, ") (33)

Unlike maximum likelihood estimation (MLE), whefleet goal is to obtain point
estimates of interest, sampled values under MCM@earge to distributions
expressed in the left hand of (3.1) (i.e, the pastelistribution). After convergence,
the initial set of draws (the burn-in) is ignorézhving a stationary

distribution, f (8, ) . Researchers can obtain either the averages pb#terior
(expected a posteriori, EAP) or locate the maxinvailnes (Maximum a posteriori,

MAP) for the model parameters. Standard error optheterior can also be estimated
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using the standard deviation of the random draws fihe Markov Chain.

In MCMC, the specification of the prior is nesas for all item and person
parameters. Ideally, selected priors are conjugates. Conjugate priors are the
priors that return posterior distributions from g@mne family of distributions as the
prior, thus rendering MCMC more efficient. When ca@gte priors are not available,
it is possible to specify priors with known propestto make MCMC sampling more
efficient (Kim & Bolt, 2007).

Once the priors are specified, a model isifipddor the response data, the
choice of sampling mechanism is an important stgabse the integration for the
posterior is either impossible or too burdensomamaationally. Two popular
sampling procedures are Gibbs sampling and Metreptdisting within Gibbs
(MHWG).

The Gibbs sampler is a mechanism to simulete/slfrom the joint posterior
distribution when the conditional distribution @fah variable is known. For Gibbs
sampling, Markov chains with transition kernels emastructed in (Geman and

Geman, 1984):

ts[(0°,8°), (6%, 81 = p(6* | B°, X)p(B | 6", X) (3.3)
The Gibbs sampling algorithm generates each paean{ét', 3 )repeatedly with
respect to its conditional distribution, conditingion other variables. Two transition

steps are taken from one stat@**, % to Jhe next (6%, 8¢ )
1. Draw 6% ~ p(@| X, B*™");

2. Draw B* ~ p(@]| X,6%)
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The known conditional distributions make Gibbs skngpeasy to implement and the
value is always accepted & 1). As is shown in the following discussion, it is a
special case of Metroplis-Hasting.

The algorithm of MHwWG uses a proposal distiidrut It is an algorithm when
samples from the complete conditionals can notraeial according to the Gibbs
algorithms. Unlike Gibbs sampling, the conditiodadtributions are unknown for this
algorithm. Similar to Gibbs sampling, Metroplis-Hagtalgorithm uses separate

proposal distributionsq, (6°,6") and q,(8°, 8") . After the proposal distribution is
drawn, it is accepted or rejected (Patz & Junk@®9).
1. Draw 8% ~ p(@| X, 8**"):
(a) Draw 6" ~q,(6“",0)

(b) Accept 6% = " with probability

(6"1.6") = min { p(X 16", )P0, f*1)ay (07,0°)
| p(X |67, A7) (0", B )0, (67,0

) ,1} (3.4)
Otherwise, setd* = 9

2. Draw ¥ ~ p(6| X,6%):
(@) Draw £ ~q,(8“".8)

(b) Accept g% = " with probability

a(ﬂkl,ﬁ*):mm{ p(X 16, 87)p(6", )0, (5. 5*) 1} (35)

p(X 6%, 81 p(6", 80, (B, 87

Otherwise, setg* = g**
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where (8", 5" )s the candidate step in the Markov chain.

The resulting Markov chain has the statiordasyribution

f(8,8)=p@,5|X)x p(X]|0,pL)p(@, L), indicating the joint posterior is
proportional to the product op(X |8, B) p(é, £)

It should be noted that the convergence ofkighachain is crucial.
Consequently, it is important to evaluate MCMC cengence. Time-series plot is an
efficient way to check the convergence of the chaire time-series plots in the
current study showed that the MCMC algorithm cogedrvery well for all
experimental conditions.

Computer Programs The two computer programs that use MCMC algorithm
are RUM.EXE (Henson, 2005) and MIRT.EXE (HensorQ@0RUM.EXE is a
program compiled for the R-RUM parameter estimatMiRT.EXE was complied in
FORTRAN to estimate factor scores. Jiang (2005heinsimulation study, found that
the correlations between the true and the estinthttds were around .80 for the
mixed structure (i.e., some items measured onlys&ileand some measured more
than one) when the number of dimensions was Skdumber of items was 45. For
the same number of dimensions and items with coxgileicture, the FORTRAN
program used in this study recovered the abilitapeeters quite efficiently with the
average correlation being .85.

Chapter 4 contains the results for the twauation studies and Chapter 5

discusses the results and future direction.
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CHAPTER IV

RESULTS

The present chapter presents the results ftpmne symmetry of the two
models and (2) the comparison of the two modelb véspect to cognitive feedback.
The first question can be written in two parts:

1. Are the two models symmetric in term of test qyalit
2. Are the two models symmetric in terms of item pagters?

The second question, which is the goal ofstey, focuses on how comparable
the two models are with respect to cognitive feeb&pecific questions include:

1. How much do the two models agree and disagreeasihitive diagnosis of
examinees?

2. What are the correct classification rates withtthéh associated with each
model?

The first section contains the descriptiveistias of the datasets. The second
section contains the results on the symmetry ofwlmemodels in terms of test quality
and item parameters. The last section of the chaptkides the results for comparing
the two models with respect of cognitive feedbaic&xaminees.

4.1 Initial Descriptive Statistics

Table3 contains the descriptive statistics (mean, stahdaviation,

reliability—KR 20) for test quality for the R-RUMErom Table 3, it is evident that

test quality plays an important role in determinihg magnitude of mean, standard
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deviation and KR-20. The most predominant trerttias$ as test quality dropped, the
tests became easier. For each data structureigther test quality, as typically
defined, was associated with more difficult tebislding the test quality constant,
tests became more variable as inter-attribute lediwas increased. Holding
inter-attribute correlation constant, tests witingglie structure were less variable than
tests with complex structure for the same testiyu&ompared with complex
structure, test with simple structure was easidrraore homogeneous because there
was limited higher-order thinking involved for eaitdm. These indicate that test
quality and data structure will have an impact s performance of examinees.
High-quality tests with complex structure are mabée to discriminate among
examinees, thus decreasing the variability of t83te traditional reliability index
showed that reliability decreased as test quatibyped and it increased within the
same test quality as inter-attribute correlatiareased because higher inter-attribute

correlation creates more dependency and testddemeéasure the same thing.
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Table 3. Descriptive Statistics for the R-RUM

Mean SD KR20

r=.2 | 14.255| 10.150 .941

) High-Quality r=5 | 14.961| 12.265 .965
2 r=9 | 17.786| 14.981 .981
% r=2 | 19.511| 7.644] .865
x Medium Quality r=.5 | 19.625| 9.279 915
g r=9 | 20.913| 11.050 .945
S r=2 | 21.840| 6.136| .767
Low Quality r=.5 | 21.880| 7.141 .834

r=9 | 22.294| 8.815| .899

r=.2 | 21.568| 8.900| .897

o High-Quality r=5 | 21.513| 10.471 .933
g r=.9 | 21.615| 12.866 .964
= r=.2 | 25.069| 5.949| .766
g Medium Quality | r=.5 | 25.936| 6.509| .816
?El r=.9 | 25.622| 7.849 .878
) r=.2 | 26.322| 4.426| .560
Low Quality r=5 | 26.408| 4.877 .643

r=9 | 26.308| 5.771| .752

Table 4 contains the descriptive statistics (metandard deviation,
reliability—KR20) for the MIRT model. A similar, tdlough different pattern, was
observed in Table 4 for the traditional MIRT modéte mean did not exhibit a clear
pattern, but rather it fluctuated. This can balaited to the fact that the difficulty
parameter in the MIRT model generation ranged ft@o -3. Because of the
randomness and the wider range, the threshold yahight move up or down within
the range for datasets, thus creating a certairuatrad fluctuations among the means.

Holding test quality constant, simple structuredueed less variable forms than
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complex structure. As in the datasets generated)&iRUM, within the same test
guality, forms became more variable as the inteibate correlation went up. As in
Table 3, KR-20 indexes also increased as the attabute correlation went up within

each test quality.

Table 4. Descriptive Statistics for the ZBMIRT Model

Mean SD KR20

r=.2 | 20.071| 8.929 .908

&) High-Quality r=.5 | 20.116| 10.509 941
§ r=9 | 19.805| 11.861 .958
5 r=.2 | 19.408| 6.894 .835
X Medium Quality r=5 | 19.898| 8.084 .887
g— r=.9 | 20.388| 9.104 917
8 r=2 | 20.491| 4.651 .624
Low Quality r=.5 | 19.701| 5.384 726

r=.9 | 20.181| 6.251 .802

r=.2 | 19.928| 6.906 .831

o High-Quality r=.5 | 20.020| 8.353 .892
% r=.9 | 19.845| 10.107 934
g r=.2 | 19.542| 5.277 711
g Medium Quality | r=.5 | 19.699| 6.250| .800
?El r=9 | 20.370| 7.342| .862
%) r=2 | 20.092| 3.889 444
Low Quality r=.5 | 20.223| 4.454 .589

r=.9 | 20.356| 4.938 .668

4.2 Symmetry of the Two Models

Are the two models symmetric in terms of test tyialihe estimateda,'s, the item

discrimination and difficulty parameters are digjeld in Table 5 to Table 13. The
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reported statistics include mean, minimum, maximana standard deviation. To
evaluate if the two models are symmetric in ternfistest quality, the baseline

comparison is set up to be tre's in test quality definitions of the MIRT model é&se

Table 1). Comparisons were made between the vatutee criterion table and the
estimateda,'sbased on the R-RUM datasets. The size of compa&testimated
using the R-RUM datasets for each test quality tmmdwas much larger than their
counterparts in the criterion table. When testitpalas high or medium, the size of the
maximum a,'s was between 4 to 5, about 2.5 times or larger their counterparts in
the MIRT model definition. More importantly, the tiesated mean ofa.'s was
approximately 2.7 for high-quality test, 1.5 foetimedium-quality test and .80 for the
low-quality test. All these indicated that, if inpeeted in a traditional way, the
discrimination indices for the R-RUM were much matescriminating between
masters and nonmasters than their counterpartseinraditional MIRT model. The
means for item difficulty anda,'srevealed that, as test quality dropped, testsrbeca
easier, thus less discriminating. Comparing comptexcture with simple structure, the
mean for item difficulty clearly showed that testsre harder for complex structure
than for simple structure. Complex structure ineshhigh-order thinking of more than
one skill per item; therefore, it is harder.

For the complex structure, the means &fs increased as inter-attribute
correlations increased, holding test quality camstdhis phenomenon was also
reported by Smith (2007), who demonstrated via KEtran studies and mathematical

formula that when the data structure was compleg, & 'sbecame larger as the
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inter-attribute correlation increased becausertter-attribute correlation played a part

in the magnitudes of the,'s. The standard deviation fax,'salso increased as the

inter-attribute correlations increased, indicatimg discriminating power of the tests is
more and more variable as tests become more umdiomal. The mean and standard
deviation for item difficulty decreased as test lgyadecreased. Following the
definition of test quality in cognitive diagnosihie above phenomena indicates that
item parameters tended to be more homogeneouyseseable to discriminate between
masters and nonmasters as test quality dropped.ighdems do not discriminate
between masters and nonmasters very well as taltyqdrops. Thus, it can be inferred
that item difficulty in MIRT is not only correlatedith 7z, , but also withr, in the
R-RUM.

For the simple structure, if test quality wesd constant, the inverse occurred
with the meana_'s (in this case, it isa, , depending on which trait the item measures),
which decreased as the inter-attribute correlatimtseased. The only exception
occurred for low quality test with high inter-akinte correlation. There were only ten
replications per condition. Had more replicatiorei performed, more phenomena
due to randomness would have disappeared. Regarofedata structure, standard
deviations for item difficulty anda,'sof the medium-quality tests were the highest,
compared with those of the high and low qualitydelt occurs because the estimated
MIRT item parameters were based on the R-RUM degasel true item parameters for
the R-RUM datasets have the widest range for theiunmequality tests.

It can be concluded from the magnitudes of rtremans ofa,'sthat the two
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models do not have a symmetric relationship aaddest quality is concerned. Had the
two models been symmetric in terms of test qudlitg,two models can be compared
across test quality simulation conditions. Becatle models are not symmetric in
term of test quality, the comparison of the two mledwith respect of cognitive

diagnosis must be made within each model aftemasitng the R-RUM and the 2PL
CMIRT model (running both RUM.EXE and MIRT.EXE) dhe common datasets.
Under this scenario, the assumption is that the iseduilt separately using each
model. However, another model is selected and wbsefjuent analyses are still be
very informative about how much the two models agamd disagree. The next
guestion of model symmetry is: are the two modegimmsetric in terms of item

parameters?
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Table 5. Descriptive Statistics for Test Qualityfidiéion for High-quality Test When r=.20

Structure Complex Structure Simple Structure
Difficulty | Discrimination | Composite | Difficulty | Discrimination | Composite
Mean -1.177 1.883 2.890 .381 2.704 2.704
Minimum -2.977 .812 1.662 -.283 1.681 1.681
Maximum 1.045 5.163 5.163 1.002 5.048 5.048
Standard Deviation| 1.191 542 487 .266 .566 .566

Table 6. Descriptive Statistics for Test Qualityfidiéion for High-quality Test When r=.50

Structure Complex Structure Simple Structure
Difficulty | Discrimination | Composite | Difficulty | Discrimination | Composite
Mean -1.192 1.923 2.897 .369 2.627 2.627
Minimum -2.966 1.020 1.684 -.359 1.590 1.590
Maximum .875 4.457 4.457 1.046 4.535 4.535
Standard Deviation| 1.081 497 .500 .254 514 514
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Table 7. Descriptive Statistics for Test Qualityfidiéion for High-quality Test When r=.90

Structure Complex Structure Simple Structure
Difficulty | Discrimination | Composite | Difficulty | Discrimination | Composite
Mean -.881 2.064 3.004 391 2.557 2.557
Minimum -2.930 1.070 1.612 -.324 1.551 1.551
Maximum 911 4.909 5.476 1.048 4.616 4.616
Standard Deviation| 1.002 517 .588 .269 530 .530

Table 8. Descriptive Statistics for Test Qualityfidiéion for Medium-quality Test When r=.20

Structure Complex Structure Simple Structure
Difficulty | Discrimination | Composite | Difficulty | Discrimination | Composite
Mean -.180 .993 1.540 .673 1.464 1.464
Minimum -2.860 077 191 -.631 173 173
Maximum 1.810 3.469 4.083 2.371 6.426 6.426
Standard Deviation] .954 .602 .684 567 .902 .902
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Table 9. Descriptive Statistics for Test Qualityfidiéion for Medium-quality Test When r=.50

Structure Complex Structure Simple Structure
Difficulty | Discrimination | Composite | Difficulty | Discrimination | Composite
Mean -.204 1.105 1.698 .795 1.431 1.431
Minimum -2.908 .078 .252 -.621 143 143
Maximum 2.405 4.092 5.025 2.265 6.467 6.467
Standard Deviation .933 .641 787 571 .939 .939

Table 10. Descriptive Statistics for Test Qualitgfidition for Medium-quality Test When r=.90

Structure Complex Structure Simple Structure
Difficulty | Discrimination | Composite | Difficulty | Discrimination | Composite:
Mean -.013 1.152 1.713 743 1.371 1.371
Minimum -2.639 A71 .289 -.605 .165 165
Maximum 2.262 5.237 5.237 2.217 7.455 7.455
Standard Deviation .818 .628 .812 .523 .923 .923
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Table 11. Descriptive Statistics for Test Qualitgfidition for Low-quality Test When r=.20

Structure Complex Structure Simple Structure
Difficulty | Discrimination | Composite | Difficulty | Discrimination | Composite
Mean .204 .582 .895 .740 792 792
Minimum -1.237 .075 167 121 114 114
Maximum 1.319 1.489 1.569 2.012 8.311 8.311
Standard Deviation 529 276 .295 278 493 493

Table 12. Descriptive Statistics for Test Qualitgfidition for Low-quality Test When r=.50

Structure Complex Structure Simple Structure
Difficulty | Discrimination | Composite | Difficulty | Discrimination | Composite
Mean .206 .645 .962 744 .756 .756
Minimum -1.122 121 144 112 .082 .082
Maximum 1.379 1.453 1.909 1.389 1.776 1.776
Standard Deviation .505 .264 .326 274 .346 .346
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Table 13. Descriptive Statistics for Test Qualitgfidition for Low-quality Test When r=.90

Structure Complex Structure Simple Structure
Difficulty | Discrimination | Composite | Difficulty | Discrimination | Composite
Mean .267 .705 1.061 .736 A74 T74
Minimum -1.085 134 .160 .094 .060 .060
Maximum 1.337 1.731 1.826 1.446 6.674 6.674
Standard Deviation 428 .249 344 0.27 443 443




Are the two models symmetric in terms of item patars?The two questions were
asked about the symmetry of the item parametetfseafvo models. The first
guestion is about the estimated item parameteitseafivo models (both obtained on
the R-RUM datasets). Are the estimated item pararsetf the two models associated?
Do the association and the differences of the panameters of the two models show
a consistent pattern across experimental condiégspointed out earlier, symmetry
means that the item parameters, either betweemvthenodels or recovered using
another model, are not only associated with edo@robut also the patterns of
association and differences are consistent actbsgperimental conditions.

Table 14 to Table 19 display descriptive stats on the symmetry of two
models in terms of item parameters. The reporiaissts include grand mean
differences, minimum differences, maximum differesicstandard errors of mean
difference and average correlations. However, ¢salts in the tables (Table 14 to

Table 19) demonstrated that there was no consigégtarn across the experimental

conditions. First of all, the correlation between and d, was positive and the

correlation betweer, ”: and a, was negative across all experimental conditions.
The patterns of association and differences changadnter-attribute correlations,
data structure and test quality. For the complexctire, z;'s and d;’'s were weakly

associated for different test qualities and diffeiater-attribute correlations whereas

the associations betweefiﬁ and a, were moderate or high. For the simple

structure, the item parameters, either betweeand d. or between ri; and a,, are
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moderately or highly correlated.

When test structure was complex and test tyushs held constanthe

association betweerr; and d. became weaker and then stronger as inter-skill

correlation increased from .20 to .90. The assotidietween ri; and a, became

stronger and then weaker as inter-skill correlatmmneased from .20 to .90. Different

patterns were observed for the simple structureeMflata structure was simple and
inter-attribute correlation was held constant,aksociation betweenr; and d,

reduced as test quality dropped except when teditgjwas low and inter-attribute
correlation was .50. There was an outlier (.1@hamassociation between; and d.,

the lowest correlation between, and d, among the simple structure, thus decreasing
the average correlation for this condition. Ondbatrary, the opposite was observed
for the correlation betweeriii; and a, —the association increased as test quality
dropped. Comparing simple structure with complencitre, the size of correlations
between ri; and a, , that betweenz; and d., was larger for simple structure than

for complex structure with inter-attribute corrébat and test quality held constant.
As far as the mean difference is concernegijrtagnitudes of mean differences

dropped as test quality dropped if the inter-atitteébcorrelations were held constant.
The declining pattern was observed both in the niféerence betweerfi; and a,
as well as in the mean difference betweerand d.. The mean difference between

7, and d, was smaller for simple structure than for compldructure. With
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inter-attribute correlation being fixed, the magde in the mean differences between
ri; and a, was larger for simple structure than for complaxcure. The general

pattern for mean differences indicated that the iparameters,z, and d, as well as

ri; and a, , tended to get closer as test quality droppeds ttonsistent with the

previous observation when the size of mean compasiecreased from about 2.7 to
1.5 and from about 1.5 to about .80 as test qudétyeased.

As far as standard error of mean differencas woncerned, the size of the
standard error of mean differences was quite ctamdisvithin the same test quality. A
comparison of simple structure with complex streetindicated that this statistic was

larger for complex structure than for simple stowet For the complex structure,

standard error of mean differences showed a sysiterdecrease between; and
d, and betweel’]; and a, as test quality dropped. For the simple structstandard

error of mean differences associated with the diffees betwedrii and a, showed

the same systematic decrease as test quality ditoppmvever, in case of simple

structure, standard error of mean differences @ssacwith the differences between

z; and d. was larger for medium-quality test.
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Table 14. Descriptive Statistics for the Relatietvieen Item Parameters of the
Two Models in Case of High-quality TeSgmplex Structure

r=.20 r=.50 r=.90
”i*’di ril:'aik ﬂi*’di ri;’aik ”i*’di ril:'aik
Grand Mean Difference| -2.076 1.683 -2.086 1.72 -1.78 1.858
Minimum Difference -.002 A27 -.081 .699 -.030 .690
Maximum Difference -3.902 5.066 -3.913 4.351]] -3.878 4.800
SEMD 1.187 1.257 1.079 1.252 .998 1.356
Average Correlation 127 -.508 .061 -.570 134 -.528
SEMD=standard error of mean difference
Table 15. Descriptive Statistics for the Relati@tveen Item Parameters of the
Two Models in Case of Medium-quality TeSbmplex Structure
r=.20 r=.50 r=.90
7Zi*’di ril:’a'ik 7Zi*’di ril:’aik ”i*’di ril:’a'ik
Grand Mean Difference| -1.024 487 -1.049 .609 -.857 .646
Minimum Difference -.007 -.002 -.001 .000 -.004 -.001
Maximum Difference -3.777 3.313 -3.825 3.951 -3.578 5.129
SEMD .945 .870 925 .955 .806 .945
Average Correlation .198 -.892 .165 -.904 271 -.859

SEMD=standard error of mean difference
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Table 16. Descriptive Statistics for the Relatietvieen Item Parameters of the
Two Models in Case of Low-quality Tesgriplex Structure

r=.20 r=.50 r=.90
”i*'di ril:'aik ”i*'di ri;’aik ”i*’di ril:'aik
Grand Mean Difference| -.596 -.075 -.592 -.004 -.533 .046
Minimum Difference .001 .000 .001 .000 .001 .001
Maximum Difference -1.992 1.067 -1.908 1.061 -1.873 1.336
SEMD 520 425 .500 407 421 .383
Average Correlation .293 -.922 .188 -.938 .238 -.853
SEMD=standard error of mean difference
Table 17. Descriptive Statistics for the Relati@tveen Item Parameters of the
Two Models in Case of High-quality Test, SlenfStructure
r=.20 r=.50 r=.90
7Zi*’di ril:’a'ik 7Zi*’di ril:’aik ”i*’di ril:’a'ik
Grand Mean Difference| -.520 2.502 -.529 2.425 -.510 2.348
Minimum Difference .004 1.356 .007 1.280 .003 1.227
Maximum Difference -1.141 4.956 -1.203 4.413 -1.156 4519
SEMD 246 1.822 234 1.641 247 1.691
Average Correlation 717 -.850 .735 -.816 .748 -.806

SEMD=standard error of mean difference
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Table 18. Descriptive Statistics for the Relatietvieen Item Parameters of the
Two Models in Case of Medium-quality Te&imple Structure

r=.20 r=.50 r=.90
”i*’di ri;’aik ”i*’di ri;’aik ”i*'di ril:'aik
Grand Mean Difference| -.173 .984 -.061 918 -.105 .859
Minimum Difference .004 .010 .000 -.006 .000 .000
Maximum Difference 1.443 6.126 -1.391 6.364 -1.389 7.314
SEMD 537 1.255 .539 1.293 496 1.25y7
Average Correlation 571 -.908 .556 -911 .488 -.910
SEMD=standard error of mean difference
Table 19. Descriptive Statistics for the Relati@tveen Item Parameters of the
Two Models in Case of Low-quality Tesimple Structure
r=.20 r=.50 r=.90
7Zi*’di ril:’aik ”i*’di ril:’aik ”i*’di ril:’a'ik
Grand Mean Difference| -.060 151 -.052 .104 -.062 127
Minimum Difference -.002 .001 .002 -.001 .000 .000
Maximum Difference 1.061 7.863 -.650 1.302 -.656 6.228
SEMD .263 .606 .263 .500 .264 .568
Average Correlation 512 -.970 .397 -.963 .509 -.952

SEMD=standard error of mean difference



The tables (Table 20 to Table 25) reported grandmaifference, minimum
difference, maximum difference, standard error eemdifference and average

correlation for the recoverability of item paramstel hese tables showed the

estimated item parameters between’s and betweenr s (obtained after running
‘RUM.EXE’ on both R-RUM datasets and MIRT dataseis)ye only moderately or

lowly correlated. For both data structures, th@eissions between the estimated

z'sand I ’s were strongest at the medium quality test. Nexte the associations
between the estimated item parameters at low guabt. The associations between
the item parameters were weakest for high quadsdy. fThe pattern of association
strength can be attributed to the range of iteraipaters defined in the test quality.
The range for the medium-quality test is widest the high-quality test is the

narrowest. In measurement, restricting the randleesitrict the correlations.

The grand mean difference became smallerdtr the estimatedr " ’s and the

estimatedr s as test guality dropped. The trend was obsepa¢il with simple
structure and with the complex structure. It carkglained partly by the fact that the
estimated CMIRT data for this question were gererabased on the estimated
parameters from the R-RUM datasets. The findiragge consistent with the two
previous observations. The first observation wak tie decrease in the mean
compositea as test quality dropped. The second observati@with the decrease in
the grand mean difference of the estimated iterarpaters between the two models

(first question related to the symmetry of itemgraeters).

The standard error of mean difference forbecame smaller as test quality
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dropped for both simple structure and complex stine¢ holding the inter-attribute
correlation constant. An exception occurred at gnspructure with .90 inter-attribute
correlation. However, the difference between thadard error of mean difference for
high quality test and for medium quality test wasya01, thus, it is negligible. The
decrease in the standard error of mean differeappdned because the size of the
mean differences reduced as test quality droppadcdmplex structure, the same

trend was observed for the standard error of méterehce. As test quality dropped,

the standard error of mean difference forand for r became smaller
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Table 20. Descriptive Statistics for Recoverabitifytem Parameters of the Two

Models in Case of High-quality Test, Complex Stauet

r=.20 r=.50 r=.90
i r T r T r
Grand Mean Difference -.241 .250 -.229 .264 -.176 .261
Minimum Difference .000 .000 .000 .000 .000 .000
Maximum Difference | -.793 .870 -.716 .884 -.711 877
SEMD 197 297 .186 .307 172 316
Average Correlation 134 438 181 .349 237 .366

SEMD=Standard Error of Mean Difference

Table 21. Descriptive Statistics for Recoverabitifytem Parameters of the Two
Models in Case of Medium-quality Test, Complex Stnwe

r=.20 r=.50 r=.90
T r T r T r
Grand Mean Difference -.136 119 -.135 144 -.124 126
Minimum Difference .000 .000 .000 .000 .000 .000
Maximum Difference | -.710 .835 -.568 .855 -.500 .834
SEMD 146 217 125 .246 117 247
Average Correlation .361 .603 .380 .601 435 520

SEMD=Standard Error of Mean Difference
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Table 22. Descriptive Statistics for Recoverabitifytem Parameters of the Two
Models in Case of Low-quality Test, Complex Struetu

r=.20 r=.50 r=.90
i r T r T r
Grand Mean Difference -.133 -.033 -.101 -.013] -.094 -.011
Minimum Difference .001 .000 .000 .000 .00( .00(
Maximum Difference | -.449 -.578 -.390 -572] -332 -560
SEMD .100 154 .094 162 077 A72
Average Correlation .383 497 .266 485 314 406

SEMD=Standard Error of Mean Difference

Table 23. Descriptive Statistics for Recoverabitifytem Parameters of the Two
Models in Case of High-quality Test, Simple Struetu

SEMD=Standard Error of Mean Difference

r=.20 r=.50 r=.90
i r T r T r
Grand Mean Difference -.07¢ .298 -.085 316 -.0[7278.
Minimum Difference .000 .000] .000 .000 .000 .000
Maximum Difference -.396 .804 -.406 77 -.4Q7 795
SEMD .093 .299 .097 .301 .09C .296
Average Correlation 277 521 220 .56¢ 317 .629
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Table 24. Descriptive Statistics for Recoverabitifytem Parameters of the Two

Models in Case of Medium-quality Test, Simple Stnoe

r=.20 r=.50 r=.90
T r T r T r
Grand Mean Difference -.066 158 -.070 114 -.0f0103.
Minimum Difference .000 .000| .000 .000 .000 .000
Maximum Difference -.388 797 -.40( .825% -.3719 .694
SEMD .083 227 .091 224 .091 231
Average Correlation 547 733 .565 .68[L 482 .664

SEMD=Standard Error of Mean Difference

Table 25. Descriptive Statistics for Recoverabitifytem Parameters of the Two
Models in Case of Low-quality Test, Simple Struetur

r=.20 r=.50 r=.90
T r T r T r
Grand Mean Difference -.048 051 -.047 .06 -.039070.
Minimum Difference .000 .000; .000 .000 .000 .000
Maximum Difference -.233 494 -222 479 -.227 501
SEMD .064 153 .060 163 .063 165
Average Correlation 412 .634 352 .582 401 573

SEMD=Standard Error of Mean Difference



The results of the first simulation study demortstitahat the two models are
not symmetric, either in test quality or in itenrg@eters. However, evidence was
strong that the item parameters of the two model®aly weakly associated with
each other because the associations between th@@@meters are very low for
some experimental conditions. The next sectiondeswn the comparison of the two
models in terms of cognitive diagnosis. Based @vr#ésults of this simulation study,
the comparison with regards to final goal must la&enwithin each model after
running the programs of both models on the comnatasets.

4.3 How ComparableArethe Two Modelswith Cognitive Feedback?

The final research goal of this study is teestigate if the two models are
comparable with respect to cognitive feedbackhdftiwo different models yield the
same amount of disagreement with each other arfdthagttrue attribute patterns, the
application of one model versus another does filoteince the cognitive feedback.
The application of one model versus another is/egleif the two models yield
different amounts of agreement with each othervaitiad the truth. For the final goal,
there are two specific goals:

1. How much do the two models agree and disagreecshitive diagnosis of

examinees?

2. How much do the estimated 's for each model agree with the true’s?
How much do the two models agree and disagBmR the raw agreement (Table 26)
andKappastatistic (Table 27) were reported. Kappastatistic is not
chance-dependent, the interpretation baseddampawill be more appropriat&appa

statistic showed that the agreement rates of tbentadels were higher in the case
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when the R-RUM was used to generate the data wdrapared to those in the MIRT
generation. The phenomenon can be attributed ttatt¢hat the MIRT model
assumes continuous distributions; therefore, theTMhodel is insensitive to the
classification of examinees into either mastensammasters. It is also observed that,
as test quality dropped, tests became less dis@atmg at classifying examinees into
masters or nonmasters. Consequently, the agreelmetmieen the two models
decreased. As the inter-attribute correlation wgnttest became more
unidimensional and the agreement between the twadetaalecreased. The
agreements between the two models in case of Itesattribute correlation were
higher than those in case of medium and high-atilsorrelation. Simple structure
outperformed complex structure across all expertai@onditions so far as the

agreement rates between the two models are comtcerne
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Table 26. Percentage of Raw Agreement betweenvtbevViodels

R-RUM Generation| MIRT Generatio

r=.20 .987 .928

o High-Quality r=.50 .984 917
2 r=.90 978 913
% r=.20 972 937
> | Medium Quality | r=.50 .970 .920
= r=.90 953 .901
§ r=.20 961 942
Low Quality r=.50 946 916

r=.90 914 .896

r=.20 .999 .984

o High-Quiality r=.50 .999 .984
= r=.90 .996 932
E r=.20 984 972
Q Medium Quality | r=.50 977 932
Ez r=.90 .958 .883
D r=.20 978 .957
Low Quality r=.50 942 .879

r=.90 .885 .816
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Table 27 Kappabetween the Two Models

R-RUM Generation MIRT Generation

r=.20 975 .853

o High-Quality r=.50 .967 .832
2 r=.90 955 826
% r=.20 943 872
% Medium Quality | r=.50 .940 .839
Té- r=.90 .905 .801
8 r=.20 921 .876
Low Quality r=.50 .892 .827

r=.90 .829 791

r=.20 997 967

o High-Quality r=.50 995 931
= r=.90 .992 .864
E r=.20 967 943
g Medium Quality | r=.50 .954 .864
g- r=.90 917 .765
7)) r=.20 955 913
Low Quality r=.50 .884 754

r=.90 770 .631

How much do the estimated 's for each model agree with the trutfiable 28

displayed the raw agreement with the true attrilputdile. Table 29 showed

Kappabased agreement with the true attribute patté&tagpaindexes showed that
there was higher agreement with true attributeilgrohder the R-RUM generation.
Kappaindexes indicated that fitting the MIRT model b2 tR-RUM data yielded
higher agreement with the truth than fitting th&kRM to the MIRT data or fitting
the MIRT model to the MIRT datasets. This is beeaihe underlying distributions of

the R-RUM are discrete. When the MIRT model wagdfithe R-RUM datasets, the
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estimated thetas were pulled to extremes. Cons#gutre agreement with the truth
under the R-RUM generation was higher.

Under the MIRT generation, the agreement wightruth was lower. Unlike the
R-RUM, the MIRT model assumes underlying distribng were on a continuum. In
most cases, fitting the R-RUM to the MIRT data ¢esl higher agreement with the
truth than the true model, the MIRT model. The caMgeption occurred at high
guality test for inter-attribute correlation of .Zlhe continuous distribution
characteristics make the MIRT model insensitivel&ssification purposes.

The general trend is that the R-RUM yieldshkigagreement with the truth
across the conditions. The R-RUM is more senstbveassification purposes. In
most cases, the amount of agreement increaseteasitribute correlations went up.
Comparing complex structure with simple structitres obvious that simple structure
recovered the true attribute profile better thamplex structure. Test quality does
affect the correct classification rate. The higtpeality the test has, the higher
agreement it produces.

In conclusion, the discrete ICDM is more ajpiate for classification
purposes. From the results of this study, it islent that it does not matter which
model should be selected when the true underlyistglaltion is dichotomized.
When the assumption about discrete distributiond, ltbe two models yield pretty
consistent results, especially when the data strecs simple. When the underlying
distribution is continuous, it is still appropriateuse the cognitive diagnostic models
for cognitive evaluation of examinees. If the MIRDdel is applied for cognitive

diagnosis, alternative ways of reporting high-tlmagkskills need to be considered.
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Table 28. Percentage of Agreemetit the True Attribute Patterns

RUM Generation

MIRT Generation

FitR-RUM | FitMIRT | FitR-RUM | Fit MIRT

r=.20 981 975 820 829

© High-Quality | r=.50 979 971 828 827
2 r=.90 989 974 852 822
(% r=.20 944 934 777 780
% Medium Quality | r=.50 .957 944 .796 .786
2 r=.90 976 945 .808 768
S r=.20 862 857 687 686
Low Quality r=.50 .889 876 729 714

r=.90 941 .894 762 716

r=.20 996 996 861 860

o High-Quality | r=.50 996 995 867 864
3 r=.90 997 994 892 866
= r=.20 1950 946 .801 799
1 Medium Quality | r=.50 .958 951 811 803
EL r=.90 973 .950 .854 .805
o r=.20 851 .850 698 697
Low Quality r=.50 .860 849 724 705

r=.90 916 863 788 720
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Table 2Kappabased Agreement with the True Attribute Patterns

RUM Generation MIRT Generation
Fit R-RUM Fit MIRT Fit R-RUM | Fit MIRT

r=.20 961 .949 .655 657

) High-Quality | r=.50 .958 941 673 654
2 r=.90 978 948 712 645
% r=.20 .889 .868 575 561
x Medium Quality | r=.50 916 .888 .612 572
g r=.90 .952 .889 636 536
S r=.20 731 713 421 372
Low Quality | r=.50 784 751 493 429

r=.90 .884 .788 548 433

r=.20 .992 991 732 720

o High-Quality | r=.50 .992 .99 743 729
= r=.90 .994 .989 789 733
E r=.20 1900 892 619 598
Q Medium Quality | r=.50 917 .902 640 .606
E r=.90 .946 .900 719 611
B r=.20 713 .700 435 .393
Low Quality | r=.50 731 .698 480 410

r=.90 .834 725 595 441




CHAPTER YV

CONCLUSIONSAND FUTURE DIRECTIONS

This paper compared the R-RUM and the 2PL CMIRhwaispect to cognitive
diagnosis. The research was carried out in tworagpaimulation studies. The first
simulation study explored the relationship betwt#entwo models—whether they are
symmetric in terms of test quality and item parargetBased on the results of the
first study, the second study was performed to @mmpow comparable the two
models are with providing examinees with cogniiiviermation. The final chapter
discusses the conclusions of the studies and pedsthre directions.

5.1 Conclusions

The simulation results of the first study clgandicated that the two models
define test quality in different ways and theimt@arameters are weakly associated.
The first study provided a methodological framewaithin which the second study
was conducted.

There are a few phenomena that are worthtipgiout. First, data structure
plays an important role in determining the agreematies between the two models as
well as the agreement rates of each model witlrthle. Results from the second
study revealed that, in case of simple structimey tigreed more consistently and
yielded the highest correct classification rateal be attributed to the fact that each
item measures only one attribute, thus eliminativegimpact of skill interaction on

the correct response. Obviously, when each itetheoflata measures only one trait, it
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does not matter whether the R-RUM or the MIRT masleised. Second, the two
models had higher agreement rates when the truelmas the R-RUM. Therefore,
when the true underlying distributions for the tateariables are dichotomous, the
traditional continuous MIRT model can recover tihehdtomous traits. In this case, it
does not matter much which model is used for cogndiagnosis. However, when
the true underlying distributions are continuowsthrer the R-RUM nor the CMIRT
perform very well for classifying examinees. Rectlad results from the first
simulation study. The results clearly show the tmadels define test quality
differently and if interpreted in a traditional wdlge R-RUM is more reliable or
discriminating as shown in Table 5 to Table 13 @=#ion 4.2 of Chapter IV). The
different definitions of test quality determineaaertain degree that the R-RUM is
better able to recover the truth. However, the tnui@erlying distribution plays a more
vital role in determining which model is bettercagnitive diagnosis and when the
two models agree more consistently. Third, asdeatity decreased, the agreement
rates between the two models decreased. Lastatitéyute correlation played a role
in the agreements rate of the two models with edletr as well as with the truth. As
test became more unidimensional, the agreemerst bateveen the two models
decreased. For datasets with the same test quhaétggreement rates between the
estimated « 's and the true: ’s increased as inter-attribute correlation inceglas.e.,
data approached unidimensionality.
5.2 Future Directions

One important finding of the current studyhiat the two models do not define

test quality in the same way and they do not sbaeeto-one relationship in terms of
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item parameters, but the two models are weaklyczas®sal with each other. The

results and conclusions were based on the definttidest quality of the two models

specified in Table 1. The rangeréf for medium quality test (.10 to .90) overlaps

with high quality test (.10-.30) as well as withviguality test (.40-.90). The item
parameters were generated from random uniformilglision. Because of the
characteristics of uniform distribution, it was exped that one third of the parameters
fell within the range for high-quality test and ahéd within the range for

low-quality test. However, the effect of the ovepang item parameters on the results
of the first simulation study is unknown. Futuradst is necessary to explore the topic
using alternative non-overlapping definitions afttquality after verifying the
definitions using simulation study.

There were only ten replications per conditiontfos study. Some outliers
came into being as a result. Future study showlddi® more replications with more
examinees. This study only investigated the casesevthe cut-off value is uniform.
Further research is necessary to include situatidrese the cut-off value is
non-uniform. Due to distributional assumption,ande expected that the
classification purposes of cognitive diagnosis wilt the discrete cognitive models at
advantage. Therefore, it will be more importangxplore other possible ways of
reporting the attribute profile when the MIRT modelsed. One of the possible ways
of reporting the attribute profile is to build ada examinee bank and report the
percentile. It is also advisable to consult expertdetermine a certain percentile or a

certain factor score as a cut-off. It is also int@ot to determine how to report the
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attribute profiles. If the decision is to reporettiiscrete profile, perhaps cognitive
diagnostic model might be better. If the decis®ioitake full advantage of the
proficiency scale, the MIRT model will be favorabléerefore, determining how to
report the attribute profile is also crucial for deb selection (DeBillo, Stout, 2007).

When comparing the R-RUM and the MIRT modeldognitive diagnosis, the
results in this study were optimal because cognitNormation from both models
was available and the cut-off point from logisggression maximized the agreement
rate between the two models. Zero was assumedtteelieue cut-off point. In the
real world, it is possible that only the MIRT modagblused for cognitive diagnosis and
zero may not be the desirable cut-off point. Urttlex scenario, getting a realistic
cut-off point is crucial. Standard setting is highkcommended.

The current study simulated 2000 examineesi@nitems. Future study is
necessary to address the effect of the numbeemisitand examinees on the correct
classification of the examinees’ cognitive statmsigtery versus nonmastery). The
significance of this direction is that it will hetp investigate the robustness of each
model under the varying number of items and exaesin€hus, it will provide
important feedback on which model is robust in azsemall number of examinees,
small number of items and combinations of both.

It might be equally important to develop sostetistical indexes to test if the
underlying distribution is discrete or continuowstisat the selection of continuous
versus discrete models is based on scientific ecele

Another direction of research might be witthe MIRT models. Ackerman and

Bolt (1995) proposed the generalized MIRT (GMIRTQd®rl. The GMIRT model may
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be modified for cognitive purposes into a discretesion:

g fij
P(Xij /ajk’7ik’b|kuu): £ < (5.1)
[L+e™ " ]+u>e™]

where f, =(y,di)ay —By . 7 represents the discrimination powekSf
attribute related to item «,;, Iis attribute profile with 1 indicating the examénis a

master and 0 otherwisal is a weight with O representing compensatory maddl
1 noncompensatory model, but any value betweerd@ andicates the varying
degree of compensation required by the attrib(tess. is analogous to the
generalized MIRT (GMIRT) model. The only differenseébetweend and a, 6
being continuous andx being discrete—either dichotomous or polytomouss T
model belongs to item response theory model. Theab convenience is that the
weight, u, can vary across item, assessing the differermedegf compensation or
noncompension within the test. With this models iélso possible to do exploratory

Q-matrix analyses using NOHARM.
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