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Abstract: 
 
Purpose: Oxidative stress in the auditory system contributes to acquired sensorineural hearing 
loss. Systemic oxidative stress, which may predict auditory oxidative stress, can be assessed by 
measuring volatile organic compound metabolite concentrations in urine. The purpose of this 
retrospective study was to determine if hearing decreased in those with higher concentrations of 
urinary volatile organic compound metabolites. Materials and methods: Audiometric, 
demographic, and metabolite concentration data were downloaded from the 2011–2012 cycle of 
the U.S. National Health and Nutritional Examination Survey. Participants were first grouped by 
reported noise exposure. For each metabolite, an analysis of covariance was used to look for 
differences in age-adjusted hearing loss among urinary volatile organic compound metabolite 
concentration groups. Participants were grouped into quartiles based on concentration for each 
metabolite separately because many individuals were at the lower limit of concentration 
detection for several metabolites, leading to a non-normal distribution. Results: Age-adjusted 
high-frequency pure-tone thresholds were significantly (FDR < 0.05) increased by about 3 to 
4 dB in high concentration quartile groups for five metabolites. All five metabolites were 
glutathione-dependent mercapturic acids. The parent compounds of these metabolites 
included acrylonitrile, 1,3 butadiene, styrene, acrylamide, and N,N-dimethylformamide. 
Significant associations were only found in those with no reported noise exposure. Conclusions: 
Urinary metabolites may help to explain susceptibility to oxidative stress-induced hearing loss. 
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Article: 
 
1. Introduction 
 
Volatile organic compound (VOC) metabolites are markers for oxidative stress, which is a 
molecular pathway linked to acquired sensorineural hearing loss (ASNHL) [1,2]. Inhibiting 
oxidative stress has been shown to reduce hearing loss in animals and may have therapeutic 
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effects in humans as well [3]. Oxidative stress damages the cochlea by producing reactive 
oxygen species that damage DNA, break down lipids, and induce apoptosis in the cochlea [2]. 
The mechanisms that regulate this damage are poorly understood. Furthering our understanding 
of these mechanisms may help to identify those at risk for ASHNL and lead to the development 
of pharmaceutical treatments. 
 
Oxidative stress is caused by both environmental and endogenous toxins. Environmental 
toxins known to induce stress include organic solvents and cigarette smoke [4,5]. Endogenous 
factors associated with oxidative stress include polymorphisms in genes such as NOX, and 
concentrations of VOC metabolites such as 4-methyl-octane, 4-methyl-decane, hexane, and 5-
methyl-pentadecane [1,5]. Exploring the association of VOC metabolism and hearing loss may 
help to explain how oxidative stress damages the auditory pathway because these metabolites are 
affected by both environmental and endogenous stress factors. For example, oxidative stress-
inducing toxins such as cigarette smoke and organic solvents lead to increases in VOC 
metabolites [[6], [7], [8]]. Internally, genetic markers for glutathione S-transferase have been 
associated with metabolism rates of the VOCs benzene, acrolein, and crotonaldehyde [9]. 
Identifying specific metabolites associated with hearing loss may highlight the effects of specific 
environmental toxins and endogenous molecular pathways. 
 
Urinary VOC metabolites that are produced by ototoxic organic solvents have been shown to be 
increased in those with hearing loss [[10], [11], [12], [13], [14], [15]]. However, to date, only this 
small subset of VOC metabolites has been measured in those with hearing loss. Specifically, 
increases in three urinary VOC metabolites, mandelic acid and phenylgloxylic acid, both of 
which are metabolites of styrene, and hippuric acid, a metabolite of toluene, have been 
associated with ASNHL [[10], [11], [12], [13], [14], [15]]. Mandelic acid is the only urinary 
VOC metabolite previously found to be increased in individuals with hearing loss among those 
without noise exposure [10]. All three metabolites have been associated with hearing loss in 
those with occupational noise exposure [[11], [12], [13], [14]]. Metabolites may not be 
associated with ASNHL in both noise-exposed and unexposed populations because noise and 
organic solvents have been shown to have a synergistic effect [16]. Hippuric acid levels have 
also been associated with auditory processing impairments in individuals with and without 
occupational noise exposure [14,15]. 
 
Mercapturic acids are a larger subset of VOCs that have not been measured in those with hearing 
loss. These VOC metabolites are produced by glutathione conjugation, which leads to oxidative 
stress, and therefore may be associated with ASNHL [2,17]. Mercapturic acids are also of 
interest because they have a short half-life, which makes many of them ideal markers for specific 
environmental exposures [17]. To date, urinary concentrations of mercapturic acids have not 
been compared to audiometric thresholds. 
 
The purpose of this study was to examine the association among urinary VOC metabolites and 
ASNHL. Although previous studies have identified an association between ototoxic organic 
solvent metabolites and hearing loss, this is the first study to measure the association of hearing 
loss and a panel of VOC metabolites that include mercapturic acids 
[[11], [12], [13], [14], [15], [16]]. Identifying specific urinary markers may support the effect of 
specific environmental toxins and endogenous molecular pathways in the auditory system. 



 
2. Methods 
 
2.1. Data collection 
 
The data for this retrospective analysis came from the 2011–2012 cycle of the National Health 
and Nutritional Examination Surveys (NHANES). This survey is an ongoing program designed 
to assess the health and nutritional status of the residential, civilian, non-institutionalized U.S. 
population by recruiting a nationally representative sample using a stratified, multistage, 
probability cluster design [18]. Participants who were between 20 and 69 years old filled out a 
questionnaire, underwent a series of examinations, and submitted biological samples for 
laboratory analyses. Data were extracted from the 2011–2012 cycle of this program because 
these were the only years when both audiometric data and urine samples were collected at the 
time of this study. From this dataset, inclusion criteria included a valid hearing test, a urine 
sample for VOC metabolite analyses, no middle ear issues, and a withdraw from exposure to 
loud noises for 12 h before testing. Individuals with recent noise exposure were excluded 
because it is difficult to differentiate those with ASNHL and those with temporary threshold 
shifts. Questionnaires were used to determine age, gender, and recent and long-term noise 
exposure history of all participants. 
 
2.1.1. Auditory assessment 
 
Auditory data downloaded for this study included tympanometry and pure-tone threshold 
measurements. Tympanometry was conducted with the Earscan Tympanometer (Micro 
Audiometrics, Murphy, NC). Individuals with tympanograms that were flat or indicated negative 
middle ear pressure were excluded from this study to reduce the number of people with hearing 
loss caused by other pathologies. 
 
Hearing tests were performed with the AD226 audiometer (Interacoustics, Middlefart, 
Denmark). Calibration checks and noise measurements were performed daily with the 
bioacoustic simulator and 1800 sound level meter (Quest Technologies, Miami, FL) [19]. 
Hearing was assessed by calculating the mean bilateral high-frequency thresholds at 4000, 6000, 
and 8000 Hz (PTA4,6,8). Individuals with reported thresholds outside of the limits of the 
audiometer at any threshold were excluded from the study. 
 
2.1.2. Urinary volatile organic compound metabolites 
 
Urinary concentrations of 27 VOC metabolites were measured with ultra-performance liquid 
chromatography coupled with electrospray tandem mass spectrometry [20]. This concentration 
data was downloaded for all 27 metabolites, 21 of which were mercapturic acids [17]. 
 
2.2. Statistical analysis 
 
Participants were first separated by a present or absent history of reported noise exposure. Then, 
within these groups, participants were placed into groups based on the quartiles of concentrations 
for each VOC metabolite. Participants were placed into groups because the concentrations of 



VOC metabolites strongly deviated from normality, typically because of a floor effect where 
many participants were at the lowest level of detection. A Levene's test was run to measure 
homogeneity of variance in age-adjusted hearing loss across groups. Analyses of covariances 
(ANCOVA) were run for all VOC metabolites to measure the effect of VOC metabolite 
concentration groups on age-adjusted hearing loss. The family-wise error rate was controlled 
across all tests within each noise exposure group by assessing the false discovery rate [21,22]. 
All analyses were run in SPSS (IBM Corp., Chicago) except for the false discovery rate, which 
was calculated using a publicly available excel spreadsheet [23]. 
 
3. Results 
 
Of the 9756 individuals in the 2011/2012 NHANES data set, only about 10% of the participants 
in the original dataset had both a hearing test and urine analysis. With this, only 557 participants 
met the inclusion criteria for the group without reported noise exposure, and 292 met the 
inclusion criteria for the group with reported noise exposure. In the group without reported noise 
exposure, the mean age was 42.9 years old, 61% percent were female, and the mean bilateral 
PTA4,6,8 was 12.8 dB HL. In the group with reported noise exposure, the mean age was 
45.81 years old, 29% percent were female, and the mean bilateral PTA4,6,8 was 17.7 dB HL. 
 
Table 1. Common and full names of 21 VOC metabolites and associated parent compounds 
analyzed in this study. 
Parent Metabolite Metabolite full namea 
Mercapturic acids 
1,3-Butadiene DHBMA (3,4-Dihydroxybutyl) 
1,3-Butadiene MHBMA2 (2-Hydroxy-3-butenyl) 
1-Bromopropane BPMA (n-Propyl) 
Acrolein CEMA (2-Carboxyethyl) 
Acrolein 3HPMA (3-Hydroxypropyl) 
Acrylamide AAMA (2-Carbamoylethyl) 
Acrylamide GAMA (2-Carbamoyl-2-hydroxyethyl) 
Acrylonitrile CYMA (2-Cyanoethyl) 
(Multiple) HEMA (2-Hydroxyethyl) 
Benzene PMA (Phenyl) 
Crotonaldehyde HPMMA (3-Hydroxypropyl-1-methyl) 
N,N-Dimethylformamide AMCC (N-methylcarbamoyl) 
Propylene oxide 2HPMA (2-Hydroxypropyl) 
Styrene PHEMA ([1-2]-Phenyl-2-hydroxyethyl) 
Toluene BMA (Benzyl)  
Other metabolites 
Carbon-disulfide TTCA 2-Thioxothiazolidine-4-carboxylic acid 
Cyanide ATCA 2-Aminothiazoline-4-carboxylic acid 
Ethylbenzene, styrene PGA Phenylglyoxylic acid 
Styrene MA Mandelic acid 
Xylene 2MHA 2-Methylhippuric acid 
Xylene 3,4MHA [3-4]-Methylhippuric acid 
a Only the R-group is listed for the full names of mercapturic acids. 

 
Six of the 27 VOC metabolites in the NHANE's database were excluded because the measured 
concentrations did not vary among the participants included in the study. Of the 21 VOC 



metabolites remaining, 15 were mercapturic acids. Two of the non-mercapturic acids, mandelic 
acid and phenylglyoxylic acid, were previously associated with hearing loss, Table 1 [10,11,13]. 
 
Table 2. F-tests and p-values from analysis of covariance for 21 volatile organic 
compound metabolites in individuals reporting a history with and without noise exposure. 
Bilateral high-frequency pure-tone thresholds were different among quartile groups created from 
5 VOC metabolite concentrations in those without reported noise exposure.  

No noise group Noise exposed group 
VOC metabolites F-test p-Value F-test p-Value 
Mercapturic acids 
CYMA 5.40 0.001⁎ 1.27 0.285 
PHEMA 5.97 0.003⁎ 0.062 0.94 
DHBMA 4.69 0.003⁎ 0.688 0.56 
MHBMA2 4.22 0.04 1.11 0.292 
GAMA 4.37 0.005⁎ 0.435 0.728 
AMCC 3.73 0.011⁎ 0.489 0.69 
HPMMA 2.48 0.061 1.02 0.383 
BMA 1.88 0.133 1.24 0.295 
AAMA 2.04 0.108 0.415 0.742 
HEMA 1.63 0.182 0.790 0.500 
CEMA 2.16 0.092 0.212 0.888 
2HPMA 0.809 0.489 1.45 0.23 
3HPMA 1.43 0.233 0.355 0.785 
PMA 1.33 0.265 0.38 0.767 
BPMA 1.21 0.307 0.461 0.71  
Other metabolites 
(3MHA + 4MHA) 1.96 0.118 3.76 0.011 
2MHA 2.27 0.080 1.06 0.364 
PGA 2.54 0.056 0.748 0.524 
MA 2.18 0.089 0.566 0.638 
ATCA 1.1 0.349 0.642 0.589 
TTCA 0.393 0.758 0.231 0.875 
* Statistically significant (FDR < 0.05). 
 
Table 3. Median volatile organic compound metabolite concentrations of markers significantly 
associated with hearing loss and mean bilateral pure tone thresholds (standard error) for each 
quartile group. Thresholds are age-adjusted; a value of 0 indicates the expected hearing loss of 
some given their age. The thresholds in the highest quartile group are approximately 3–4 dB 
higher compared to those in the lower groups. For PHEMA, quartiles 1 and 2 were combined 
because over half of the participants were at the lower limit of detection, 0.495 ng/mL.  

Q1 Q2 Q3 Q4 
Metabolite Med 

(ng/mL) 
HL mean 
(SE) 

Med 
(ng/mL) 

HL mean 
(SE) 

Med 
(ng/mL) 

HL mean 
(SE) 

Med 
(ng/mL) 

HL mean 
(SE) 

AMCC 31.5 −0.76 (0.72) 85.1 −1.41 (0.74) 161 −0.34 (0.95) 382 2.26 (0.96) 

CYMA 0.527 −0.695 
(0.75) 1.24 −1.12 (0.78) 2.76 −1.06 (0.79) 94.6 2.88 (0.99) 

DHBMA 80.3 −1.73 (0.76) 185 −1.36 (0.73) 310 1.2 (0.90) 533 1.88 (0.92) 
GAMA 6.65 −1.31 (0.78) 11 −1.52 (0.81) 16.7 0.408 (0.86) 32.2 2.3 (0.90) 
PHEMA n/a n/a 0.495 −0.88 (0.78) 0.857 −0.44 (0.83) 1.69 2.49 (0.97) 
 
Five of the 21 VOC metabolites were significantly associated (FDR < 0.05) with mean bilateral 
PTA4,6,8 after adjusting for age, Table 2. Thresholds were approximately 3–4 dB higher in 



increased metabolite concentration groups compared to the lowest concentration group, Table 3. 
According to the Levene's test, the variances were not statistically different across concentration 
groups for these five metabolites. All five of these metabolites were mercapturic acids. The 
parent compounds for these metabolites included acrylonitrile, styrene, 1,3-
butadiene, acrylamide, and N,N-dimethylformamide. 
 
4. Discussion 
 
This is the first study to show a decrease in hearing thresholds in those with increased 
concentrations of mercapturic acid in urine. Increases in these metabolites have been linked to 
diseases and biological aging, possibly because they indicate systemic oxidative 
stress [17,24,25]. Oxidative stress damages nucleic acids and lipids and can induce cell death 
through apoptosis or necrosis. Mercapturic acids are associated with oxidative stress because 
they are created in a detoxification route for endogenous and exogenous oxidative stress-
inducing toxins [17,24,26]. Mercapturic acids can also create oxidative stress by 
depleting glutathione [17]. Given that oxidative stress has been linked to ASNHL, it is possible 
that systemic markers of oxidative stress are increased in those with hearing loss because the 
mechanisms that create oxidative stress in the blood and urine are similar to the mechanisms that 
create this stress in the auditory system. Also, oxidative stress intermediates created in the blood 
may enter the auditory system and generate stress in an otherwise healthy ear. 
 
Identifying increased levels of specific mercapturic acids in those with hearing loss may support 
the effects of environmental toxins on auditory function. Mercapturic acids have a short half-life, 
making them reliable markers for environmentally exposed toxins [26]. All five mercapturic 
acids associated with hearing loss in this study are downstream markers of VOCs found in 
cigarette smoke, which is known to cause hearing loss [7,27,28]. Furthermore, the parent 
compounds of all five metabolites are also linked to specific toxins, including synthetics and 
polymers. Acrylonitrile, N,N-dimethylformamide, and 1,3 butadiene are found in synthetic 
fibers, leathers, and rubbers, respectively [[29], [30], [31]]. Styrene and acrylamide are found in 
plastics and polymer gels, respectively [32,33]. Urinary metabolites may serve as more accurate 
markers for environmental toxin exposure than reports from individuals. 
 
Urinary metabolites may also identify individuals susceptible to toxin exposure by discerning 
those that are more likely to metabolize these toxins into hazardous, rather than inert, 
intermediates. For example N,N-dimethylformamide may be metabolized into either AMCC or 
other less toxic pathways [34]. Our findings demonstrated that those with higher levels of 
AMCC are more likely to have hearing loss. It is possible that those who are exposed to N,N-
dimethylformamide and metabolize it into AMCC may be at a higher risk of hearing loss than 
those who metabolize it into less toxic intermediates. This advantage may also be true for 
styrene. In this study, we evaluated the association of three metabolites with hearing loss. Of 
these three, only the mercapturic acid demonstrated a significant association. It is possible that 
individuals who are both exposed to styrene and metabolize it through the mercapturic acid 
pathway are susceptible to ASHNL compared to those who metabolize styrene through less toxic 
intermediates. 
 



The findings of this study may also explain endogenous pathways key to regulating oxidative 
stress induced hearing loss. For instance, acrylamide is a downstream product of lipid 
peroxidation [35]. The association between hearing loss and this metabolite of may specifically 
support the damaging effect of lipid peroxidation over other harmful effects of oxidative stress, 
such as apoptosis and necrosis. Investigating the relationship of these metabolites may explain 
how individuals who favor specific metabolic pathways may be more susceptible to hearing loss. 
 
Associations between hearing loss and VOC metabolites were only found in individuals without 
reported noise exposure. This is surprising considering that organic solvents and noise 
synergistically affect hearing loss [16]. There has also been more research to support an 
association of hearing loss and VOC metabolites in noise exposed participants compared to those 
without reported noise-exposure [[10], [11], [12], [13], [14], [15]]. We may have not been able to 
identify a significant association between hearing loss and noise exposure in this group because 
there were less individuals in this group. It is also possible that the increased variance in pure-
tone thresholds caused by varying degrees of noise exposure among the participants made it 
difficult to detect a significant association with VOC metabolite concentrations. 
 
Mandelic acid, phenylgloxylic acid, and hippuric acid, have been associated with ASNHL in 
previous research [[10], [11], [12], [13], [14], [15]]. In this current retrospective study, we 
evaluated the association of hearing loss with mandelic acid and phenylgloxylic acid, but data on 
hippuric acid concentrations were not available. Although neither mandelic acid or 
phenylgloxylic acid were associated with hearing loss in either noise exposure group, a trend in 
increased mean PTA(4,6,8) was found in quartile groups based on higher concentrations for both 
mandelic acid (p = 0.089) and phenylgloxylic acid (p = 0.056) in individuals without reported 
noise exposure. Significant findings may have been obtained with a larger sample size. 
 
One limitation of this study is that differences between metabolic concentration quartile groups 
may have been explained by lurking variables such as noise exposure, cardiovascular health, or 
exposure to other toxins. These variables were excluded in this study because we tested 22 VOC 
metabolites and did not have the sample size to include more variables. However, even with this 
limitation, it is still interesting that associations were specific to these five VOC metabolites. Of 
these lurking variables, noise likely has the greatest influence on hearing thresholds. Although all 
significant associations were found within individuals without reported noise exposure, it is 
possible that unreported noise exposure was higher in those in higher metabolite concentration 
groups. However, if noise was a significant lurking variable, then it likely would have had a 
larger difference in metabolite concentration groups among those with reported noise exposure. 
Despite this, a follow up study is needed to focus on the interaction of the five VOC metabolites 
associated with hearing loss in this study and lurking variables such as noise and environmental 
exposure and cardiovascular health. 
 
5. Conclusion 
 
This was the first study to detect an increase of ASNHL in those with higher levels 
of mercapturic acids in urine. Thresholds were about 3–4 dB higher in high metabolite 
concentration groups compared to low concentration groups for five mercapturic acids. The 
parent compounds of these mercapturic acids included acrylonitrile, styrene, 1,3-



butadiene, acrylamide, and N,N-dimethylformamide. These findings support further investigation 
into the effect of environmental toxins and metabolic regulation on urinary concentrations of 
VOC metabolites in those with ASNHL. 
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