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Mass spectrometry metabolomics has become increasingly popular as an integral aspect 

of studies designed to identify active compounds from natural product mixtures.  Classical 

metabolomics data analysis approaches do not consider the possibility that interactions (such as 

synergy) could occur between mixture components.  With this study, we developed “interaction 

metabolomics” to overcome this limitation.  The innovation of interaction metabolomics is the 

inclusion of compound interaction terms in the data matrix.  The interaction terms are calculated 

as the product of the intensities of each pair of features (detected ions).  Herein, we tested the 

utility of interaction metabolomics by spiking known concentrations of an antimicrobial 

compound (berberine) and a synergist (piperine) into a set of inactive matrices.  We measured 

the antimicrobial activity for each of the resulting mixtures against Staphylococcus aureus and 

analyzed the mixtures with liquid chromatography coupled to high-resolution mass spectrometry 

(LC-MS).  When the dataset was processed without compound interaction terms (classical 

metabolomics), statistical analysis yielded a pattern of false positives, a phenomenon that can be 

explained by confounding, in this case due to a left-out interaction in the model.  However, 

interaction metabolomics correctly identified berberine and piperine as the compounds being 

responsible for synergistic activity.  Our results demonstrate the utility of a conceptually new 

approach for identifying synergists in mixtures that may be useful for applications in natural 

products research and other areas that require comprehensive mixture analysis.  
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CHAPTER I: INTRODUCTION 

A central challenge in natural products research is to identify biologically active 

compounds in complex mixtures.1–5  The gold standard approach towards accomplishing this 

task is bioassay-guided fractionation, wherein the mixture is subjected to successive stages of 

purification and biological evaluation until active compounds are identified.  The value of 

bioassay-guided fractionation is evidenced by its history of success; many of the most 

therapeutically important natural products, molecules like artemisinin, Taxol, and penicillin, 

were discovered using this approach.6,7  What happens, however, when the activity of a mixture 

is not due to a single compound, but to a mixture of compounds, which could act together 

synergistically, additively, or antagonistically?  This question often arises in the study of 

botanical (herbal) medicines, which are employed therapeutically as mixtures rather than single 

molecules.  Many proponents of the use of botanical medicines argue that they are effective by 

virtue of the combined action of multiple compounds.8  A number of studies do point to the 

occurrence of synergistic biological effects in botanical extracts.8–10  In a few cases, the specific 

constituents or mechanisms responsible for this synergy have been identified.  For example, 

artemisinin has been shown to be more potent in vivo against malaria when used as a complex 

tea than as an isolated molecule,11 and some plants contain both the antimicrobial alkaloid 

berberine (Figure R1) and additional molecules that enhance the activity of berberine via efflux 

inhibition.5  However, the vast majority of natural product research focuses on the isolation of 

single active compounds, and there is a dearth of literature citing specific constituents that 

interact synergistically.  It is possible that scenarios where multiple constituents in natural 

product mixtures exert meaningful combined biological activity are not, after all, very common.  

Alternately, perhaps our lack of knowledge about how combination effects arise is due to 



  2 

limitations in our ability to study them.  Approaches that focus on isolation and purification of 

single compounds may not fully explore the potential interactions that could contribute to the 

activity of mixtures.  

There are five major requirements for an experimental design that enables identification 

of synergists in a mixture based on their association with biological activity.  (1) Multiple 

mixtures must be evaluated for biological activity.  (2) The active components must vary in 

concentration across the mixtures; otherwise, no new information is gained by testing multiple 

mixtures.  (3) Two compounds that interact synergistically must be present at the correct range of 

concentrations to observe a synergistic effect.  (4) The biological assay used must be appropriate 

for detection of synergy.  (5) The method used to measure the presence and abundance of the 

mixture components must be able to detect the active constituents.  Given requirements 1-5, 

there are multiple scenarios in which an analyst performing natural products drug discovery 

might fail to detect the presence of a synergist.  The presence of a synergist will be missed if 

there are not enough measurements of biological activity, if the wrong biological activity is 

being measured, if the synergist and the active compound are not present in the same samples, if 

the synergist and the active concentration are not present at the correct concentrations to observe 

synergy, or if the analytical technique used for detection misses either the synergist or the active 

compound.  Because of these inherent limitations, it will not be possible in a typical natural 

products drug discovery experiment to answer the question, “Is a synergist present in this natural 

product extract)?”  The question that can be answered is the following question, “Could the 

activity that has been observed for a series of natural product mixtures be due to synergy 

between detectable compounds?”  Herein, we sought to develop a metabolomics data analysis 

approach that would address this second question.   
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The most widely used and validated approach for studying interactions between two 

biologically active molecules is the checkerboard assay.1,3,10  To conduct this assay, two 

compounds are tested in combination over a range of concentrations by two-fold dilution.  The 

data are then plotted in the form of an isobologram, which visually represents the changes in 

dose-response behavior resulting from the combined effects of the two samples.  If the dose-

response behavior doesn’t change when the two compounds are combined, the compounds are 

deemed to be non-interactive.  Additivity results in a linear dose-response behavior, while 

synergy or antagonism is indicated by non-linear changes in dose-response behavior.10  While 

checkerboard assays are most often employed to study combinations of pure compounds, they 

have also been employed using fractions to study synergy in botanical mixtures.2,12   

The isobologram approach can be employed as a final validation step to confirm the types 

of interactions that occur between biologically active compounds.13  Practically speaking, 

however, it is not feasible to isolate every constituent from a biologically active natural product 

mixture and test activity in two-by-two combinations.  In cases where biological activity of a 

mixture may result from the combined effect of multiple compounds, some methodology is 

needed to help the analyst decide which mixture components to isolate and evaluate. 

Several methods have previously been developed to identify synergists from complex 

natural product mixtures.14,15  One of these is synergy-directed fractionation3 in which isolation 

is guided by measurements of the ability of one compound (or mixture of compounds1) to 

enhance the activity of a known active component of the mixture.  With synergy-directed 

fractionation, it is possible to identify active compounds even if they don’t possess activity alone.  

For example, this approach enabled identification of flavonoids in Hydrastis canadensis 

(goldenseal) that have no inherent antimicrobial activity but enhance the activity of the alkaloid 
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berberine.1,3  Building on synergy-directed fractionation, Caesar, et al., developed an approach 

(called “Simplify”) to predict whether features identified in the liquid-chromatography mass 

spectrometry (LC-MS) datasets for complex mixtures interact synergistically, additively, or 

antagonistically.  Simplify relies on the “activity index,” which is a measure of the ratio of the 

observed activity of a mixture to the activity that would be predicted based on concentration of a 

known active compound.2  The Simplify approach was employed to identify sugiol from the 

medicinal plant Salvia miltiorrhiza, and it was shown that sugiol synergistically enhances the 

antimicrobial activity of the alkaloid cryptotanshinone.  Synergy-directed fractionation and 

Simplify are approaches that can be used to identify constituents in a mixture that enhance the 

activity (synergistically or additively) of a known active compound.  A limitation of these 

approaches is that they require a-priori knowledge of the identity and concentration of this 

known active compound.   

With the study described here, we set out to develop an approach to identify synergists 

that would be effective even when none of the active constituents are known.  We used 

untargeted LC-MS metabolomics as a central tool towards this goal.  The application of LC-MS 

metabolomics to identify biologically active natural products relies on the integration of a 

“chemical” dataset and a “biological” dataset.4,16,17  The chemical dataset consists of a set of 

features (ions detected by the mass spectrometer, each described by a characteristic mass to 

charge ratio, m/z, and retention time) and their associated abundance (peak height or peak area).  

The biological dataset is a set of measurements that describe how each mixture perturbs a 

biological system (for example, inhibits cell growth, alters cell morphology, or reduces tumor 

size in an animal).   
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Several different data analysis approaches can be used to integrate these chemical and 

biological datasets.  The most intuitive of these is to select the individual features in the chemical 

dataset one-by-one and compare the abundance profile of each one to the biological activity of 

the samples.  Such comparisons can be accomplished with univariate statistical methods such as 

Pearson correlation.  In scenarios where more than one compound may be responsible for the 

activity of a natural product mixture, however, multivariate statistical approaches of data analysis 

are needed.  For metabolomics data, multivariate latent-variable regression techniques such as 

partial-least squares (PLS) regression are particularly appropriate.  PLS helps to address the 

problem of overfitting, which can occur in metabolomics data analysis because the number of 

observations of biological activity is often small compared with the number of variables 

(features) in the chemical dataset.  Such an “underdetermined” experimental design is more the 

rule than the exception in natural products metabolomics studies.  PLS linearly combines sets of 

variables that co-vary to create a smaller number of groups of orthogonal variables (latent 

variables).   

Recent studies in natural products have described various workflows to predict active 

compounds from chemical and biological datasets.  These workflows have been referred to with 

different terms, such as “compound activity mapping,”18,19 “bioactivity based molecular 

networking”20 and “biochemometrics.”4,21  Compound activity mapping and bioactivity based 

molecular networking successfully identified active compounds from natural product mixtures 

using Pearson correlations,18–20 while “biochemometrics” used PLS regression techniques for the 

identification of single active compounds4 and mixtures of natural products that act together 

additively.22 
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A limitation data analysis workflows previously employed for natural products 

research4,18–21 is that they have operated under the assumption that the individual mixture 

components do not interact with each other.  Our goal with this study was to develop and test a 

new “interaction metabolomics” data analysis approach for natural products discovery applicable 

in scenarios where mixture components interact to achieve biological effects.  Towards this goal, 

we constructed an experimental system for which the observed biological activity was due to the 

interaction of known synergists.  We measured antimicrobial activity against the bacterium 

Staphylococcus aureus in mixtures containing the antimicrobial alkaloid berberine12,23 and the 

synergist piperine (Figure R1).1,24  We also collected mass spectrometry metabolomics data for 

all of the mixtures, and calculated a set of synthetic features from these data that we refer to as 

“compound interaction terms” (CIT).  Each compound interaction term represents a product of 

the peak areas of two features detected in the mixtures.  Finally, we tested two data analysis 

workflows, one with these interaction terms included (“interaction metabolomics”) and one 

without the inclusion of the compound interaction terms (“classical metabolomics”).  Our 

ultimate objective was to test whether compound interaction terms in the analysis workflow 

would enable identification of the synergistic antimicrobial activity of berberine and piperine.   
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CHAPTER II: EXPERIMENTAL SECTION 

General Protocol for Antimicrobial Susceptibility Assay 

Antimicrobial susceptibility against Staphylococcus aureus (strain SA1199)25 was 

evaluated using broth microdilution methods for aerobic bacteria based on the Clinical 

Laboratory Standards Institute (CLSI) guidelines.26  Cultures were grown from a single isolated 

colony of the strain and incubated to log-phase in Müeller-Hinton broth (MHB).  The inoculum 

was diluted into a 96-well plate to achieve a final density of 1.0 x 105 CFU/mL.  Samples were 

introduced in triplicate and diluted in broth with a vehicle of 1%DMSO and 1% glycerol.  The 

negative control was vehicle alone in MHB, and the positive control was the antibiotic 

levofloxacin.  Two sets of wells of the same samples were prepared.  The first set (growth wells) 

contained bacterial inoculum and test compound or control in MHB.  The second set of wells 

(control wells) had the identical composition to the growth wells except that MHB was used in 

place of bacterial inoculum.  After 18 hours of incubation, the optical density of all wells was 

measured at 600 nm (OD600) using a Synergy H1 microplate reader (Biotek, Winooski, VT, 

USA).  The OD600 of each sample was corrected for background absorbance of the sample by 

subtracting the measured OD600 of the control wells from the measured OD600 of the growth 

wells.  Antimicrobial activity against S. aureus was calculated as percent growth inhibition 

relative to the vehicle control (Equation 1), where vehicle OD600 is the background corrected 

OD600¬ value for the vehicle (1% DMSO, 1% glycerol) in MHB, and sample OD600 is the 

background corrected OD600¬ value for the treatment or control in MHB.   

% inhibition =  
Vehicle OD600−Sample OD600

Vehicle OD600
× 100     (Equation 1) 
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Synergy Evaluation 

To test the combination effects between the model compounds, a broth microdilution 

checkerboard assay was employed.  The antimicrobial berberine (> 98%, Sigma-Aldrich) and the 

efflux pump inhibitor piperine (>97%, Sigma-Aldrich)1,24 were tested in combination at 

concentration ranges of 4.7 to 300 µg/mL and 0.78 to 50 µg/mL respectively.  The vehicle used 

was 1% DMSO and 1% glycerol in MHB.  The net fractional inhibitory concentration (∑FIC) 

was calculated by Equation 2, where MICberberine is equal to the minimum inhibitory 

concentration of berberine against S. aureus alone, MICpiperine is equal to the minimum inhibitory 

concentration of piperine alone, MICberberine+piperine is the minimum inhibitory concentration of 

berberine at a given concentration of piperine, and MICpiperine+berberine is equal to the minimum 

inhibitory concentration of piperine at a given concentration of berberine.   

∑ FIC = FICberberine + FICpiperine       (Equation 2) 

where: 

FICberberine =
MICberberine+piperine

MICberberine
 and FICpiperine =

MICpiperine+berberine

MICpiperine
 

For the purposes of this study, combination effects were evaluated based on FIC indices 

as described previously by Caesar, et al., where ΣFIC ≤ 0.5 is for synergistic effects, ΣFIC 

between 0.5 and 1.0 is for additive effects, and ΣFIC ≥ 4.0 is for antagonistic effects.2,27,28 

Preparation of the Simulated Extract 

A series of 42 purified natural product compounds for possible inclusion in the simulated 

extract were obtained from commercial sources (Table 1).  Each compound was tested for 

antimicrobial activity against Staphylococcus aureus strain SA119929 at a concentration of 256 

µg/mL.  Compounds that demonstrated ≥ 20% inhibition were rejected from the sample set.  The 

remaining compounds were retested at 100 µM in three separate conditions, alone, in 
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combination with 32 µg/mL berberine (95 µM), or in combination with 32 µg/mL piperine (112 

µM) (Table 2).  Any compound that inhibited bacterial growth by more than 20% under any of 

these conditions was rejected from the set to be included in the mixture.   

A subset of 21 compounds from the original 42 compounds fit the selection criteria of 

showing ≤ 20% inhibition of S. aureus alone or in combination with berberine or piperine.  The 

simulated extract (total mass 1288.8 mg) was prepared from these compounds as follows: 

naringin (8.2%), betulinic acid (0.2%), atropine (9.7%), amygdalin (12.3%), caffeine (2.9%), 

chlorogenic acid (2.0%), 3,4-dihydroxybenzaldehyde (2.4%), tropine (9.6%), p-octopamine 

(2.9%), boldine (10.3%), anisodamine (1.4%), quinine (7.5%), dehydroevodiamine (0.18%), 

apocynin (7.3%), vanillin (3.0%), ferulic acid (9.5%), vanillic acid (4.6%), syringic acid (4.9%), 

theobromine (0.5%), stigmasterol (0.6%) and β-sitosterol (0.2%).   
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Table 1. Antimicrobial screening of 42 natural products at 256 µg/mL for S. aureus 

susceptibility testing 

Compound Name 
Percent 

Inhibition 
Compound Name 

Percent 

Inhibition 

naringin (Sigma, >95%) 1.5 ± 4.1 p-octopamine (Cayman, >98%) 5.6 ± 4.9 

beta-sitosterol (Sigma, >96%) -9.56 ± 0.67 18β-glycyrrhetinic acid (Cayman, 

>98%) 
57 ± 13 

betulinic acid (Sigma, 90%) 8 ± 16 loganin (Cayman, >98%) -7.1 ± 9.6 

stigmasterol (Sigma, >95%) -9.3 ± 2.1 4-hydroxycoumarin (Cayman, 

>98%) 

84.0 ± 2.3 

atropine (Sigma, >99%) 2.29 ± 0.30 7-methoxyflavone (Cayman, 

>98%) 

20 ± 30 

capsaicin (Sigma, >50%) 18.5 ± 7.1 boldine (Cayman, ≥ 95%) 0.7 ± 3.4 

amygdalin (Sigma, >97%) 10.7 ± 1.9 anisodamine (Cayman, > 98%) 4.0 ± 1.6 

chrysin (Sigma, >98%) 70 ± 14 harmine (Cayman, >98%) 34 ± 19 

quercetin (Sigma, >98%) 94.7 ± 5.2 quinine (Cayman, >95%) -3.4 ± 1.7 

caffeine (Sigma, >99%) 3.0 ± 2.1 ursolic acid (Cayman, >98%) 21.1 ± 7.7 

kaempferol (Alfa aesar, >98%) 50.9 ± 6.8 dehydroevodiamine (Cayman, 

>98%) 

16.7 ± 1.6 

myricetin (TCI, >97%) 98.41 ± 0.69 2-hydroxyanthraquinone (Cayman, 

>98%) 
69 ± 21 

chlorogenic acid (Alfa aesar, 

98.2%) 

16.1 ± 1.9 apocynin (Cayman, >98%) 6.1 ± 1.4 

rutin (Arcos Organics, 97%) 38.2 ± 1.3 etoposide (Cayman, >98%) 99.2 ± 4.3 

isorhynchophylline (Cayman, 

>95%) 

-12.11 ± 0.74 vanillin (Alfa aesar, >99%) -0.7 ± 3.6 

3,4-dihydroxybenzaldehyde (Cayman, 

>98%) 
11.3 ± 4.8 coumarin (TCI, >99%) 67.8 ± 3.0  

palmatine (Cayman, >98%) 99.04 ± 0.07 salicylic acid (SCBT, 99%) 41.1 ± 3.6 

tropine (Cayman, >95%) -0.1 ± 2.3 ferulic acid (Cayman, >98%) 8.0 ± 2.6 

chrysosplenetin (Cayman, >98%) -12.5 ± 1.9 vanillic acid (SCBT, 97%) 20.3 ± 3.5 

naringenin (Cayman, >98%) 94.7 ± 4.0 syringic acid (Cayman, 98%) 8.9 ± 1.5 

berberine (Sigma, >98%) 99.84 ± 0.12 theobromine (Cayman, >98%) 5.9 ± 4.2 
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Table 2. Antimicrobial activity of pre-selected compounds at 100 µM and in combination 

with berberine (32 µg/mL) and with piperine (32 µg/mL) 

Compound Name 

Percent Inhibition at 100 µM 

Compound only 
With berberine 

at 32 µg/mL 

With piperine 

at 32 µg/mL 

naringin 3.0 ± 1.4 35.1 ± 1.6 13.1 ± 1.6 

betulinic acid 13 ± 14 27 ± 13 11 ± 14 

atropine 4.48 ± 0.70 41.93 ± 0.77 18.2 ± 5.1 

capsaicin -16.8 ± 2.0 99.16 ± 0.13 16.4 ± 1.7 

amygdalin 1.0 ± 2.9 32.4 ± 3.1 15.29 ± 0.95 

caffeine 4.8 ± 1.6 35.29 ± 0.57 17.5 ± 1.3 

chlorogenic acid 6.46 ± 0.78 36.1 ± 1.8 20.8 ± 4.2 

3,4-dihydroxybenzaldehyde 2.3 ± 2.1 29.1 ± 3.2 18.2 ± 4.3 

tropine 0.4 ± 3.1 31.6 ± 3.9 14.5 ± 2.4 

p-octopamine 4.3 ± 1.1 35.10 ± 0.35 18.1 ± 1.1 

boldine 4.5 ± 1.6 34.3 ± 2.6 16.6 ± 1.1 

anisodamine 0.8 ± 3.4 29.7 ± 3.2 15.1 ± 2.9 

quinine -1.6 ± 3.7 29.1 ± 1.6 11.2 ± 2.8 

dehydroevodiamine 6.3 ± 1.5 32.0 ± 2.4 19.1 ± 1.1 

apocynin 5.4 ± 1.8 28.31 ± 0.92 16.5 ± 1.4 

vanillin 2.5 ± 2.6 24.6 ± 6.5 17.1 ± 1.8 

ferulic acid -0.9 ± 7.3 29.2 ± 2.9 16.5 ± 3.0 

vanillic acid 5.4 ± 1.2 32.7 ± 1.8 14.3 ± 1.8 

syringic acid 4.38 ± 0.65 29.84 ± 0.59 15.7 ± 2.0 

theobromine 0.3 ± 4.0 25.8 ± 6.6 15.4 ± 2.7 

berberine 2.0 ± 7.2 48.6 ± 1.9 99.35 ± 0.11 

piperine -0.9 ± 1.6 99.12 ± 0.18 23.1 ± 3.2 
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Chromatographic Separation of the Simulated Extract 

Solvents used in chromatographic separation were ACS grade (Fisher Scientific).  The 

simulated extract was dissolved completely in methanol and fractionated by normal-phase flash 

column chromatography on a CombiFlash RF system with a 40 g silica gel column.  Gradient 

elution using hexane, chloroform, and methanol was employed for 84 minutes at a flow rate of 

40 mL/min and yielded 150 eluates.  The eluates were pooled in sets of 15 tubes to make 10 

fractions.  The first pooled fraction was not used because it contained an insufficient quantity of 

material.  The rest of the pooled fractions were labeled 01-09 and were used as background 

matrices for preparation of the spiked fractions. 

Antimicrobial Evaluation of Spiked Fractions 

Two sets of mixtures (“spiked fractions”) were prepared by spiking the inactive 

background matrices with berberine (M01-M08, Table 3) or with berberine and piperine (M09-

M17, Table 4).  Pooled fractions 01-08 were used as background matrices for M01-M08 (Table 

3), and pooled fractions 01-09 were used to create M09-M17 (Table 4).  Thus, pooled fractions 

01-08 were used twice as background matrices, once for the berberine mixtures and once for the 

berberine-piperine mixtures, while pooled fraction 09 was used only once for one berberine-

piperine mixture.  (Fewer berberine mixtures were required for testing than berberine-piperine 

mixtures.)  To create the mixtures with final assay concentrations shown in Table 3 and Table 4, 

stock solutions of berberine and piperine were prepared at a concentration of 10 mg/mL in 

DMSO-glycerol (1:1) and combined with stock solutions of the pooled fractions.  The 

concentrations of berberine used in M01-M08 (Table 3) was slightly higher than that used in 

M09-M17 (Table 4) to avoid saturating the antimicrobial response due to the impact of added 

piperine.  Three separate antimicrobial broth dilution assays were performed on the mixtures 
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using the “General Protocol for Antimicrobial Susceptibility Testing,” one with the nine pooled 

fractions (background matrices) alone, one with the pooled fractions spiked with berberine, and 

one with the pooled fractions spiked with berberine and piperine.   

LC-MS Analysis of Spiked Fractions 

Each spiked fraction was diluted 100-fold from assay concentration and analyzed in 

triplicate using a Thermo Fisher Q ExactiveTM Plus mass spectrometer (Thermo Fisher 

Scientific, Waltham, MA) equipped with an electrospray ionization (ESI) source coupled with a 

Waters Acquity ultraperformance liquid chromatograph (Waters Corporation, Milford, MA).  A 

3 µL volume of each sample was injected and eluted through a reversed-phase column (BEH 

C18, 1.7 µm, 2.1 x 50 mm, Waters Corporation) using a binary solvent system consisting of 

water with 0.1% formic acid (solvent A) and acetonitrile with 0.1% formic acid (solvent B).  The 

10-min. gradient elution started with 10%B for 0.5 min. then increased to 100%B for 8 min. and 

finally re-established to starting conditions in the last 1.5 min.  Analysis was conducted in full 

scan acquisition, collecting profile data in switching positive and negative polarity.  The scan 

range was from 120 to 1500 m/z with a scan time of 200 ms.  The following mass spectrometer 

parameters were used: the AGC target was at 1× 106 with a capillary voltage and temperature at -

0.7 V and 310 °C respectively; the S-lens RF level was 80.00, spray voltage was 3.7 kV, and the 

sheath and auxiliary gas flows were 50.15 and 15.16, respectively.  The full MS dataset is 

uploaded and accessible as MassIVE dataset MSV000089598 

(ftp://MSV000089598@massive.ucsd.edu).  

Metabolomics Data Peak Picking and Data Filtering 

Peak Picking. The two different LC-MS datasets (M01-M08 and M09-M17) were 

analyzed separately.  LC-MS raw files were imported to MZmine 2.5330 for peak picking.  

ftp://MSV000089598@massive.ucsd.edu/
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Methods to create a list of features include mass detection, chromatogram building, 

chromatogram deconvolution, deisotoping, feature alignment, gap-filling, duplicate filter, and 

peak filter and the parameters used are included in Table S1.  The final feature lists were 

imported to MS Excel for further treatment.  

Data Filtering.  LC-MS data were first filtered to remove background noise, which may 

be due to small solvent contaminants or electronic noise in the system.  The first blank filter aims 

to remove these signals, the relative standard deviation (RSD) of a feature across all samples, 

including the blanks, were calculated.  All features with RSD across samples and blanks that 

were less than 30% were removed from the dataset.  The next blank filter was to remove features 

with higher signals in the blanks as compared to the samples.  This was done by calculating the 

percent ratio of the mean of the blanks to the mean of the samples.  All features with a percent 

ratio that were higher than 80% were removed.  The datasets were then filtered to remove poor 

quality features based on their having greater than a relative standard deviation (RSD) cutoff of 

35% RSD.  The RSD was calculated from the feature peak areas of triplicate LC-MS analyses of 

the same sample.  The full, RSD and blank filtered feature lists are available as supporting 

information (https://doi.org/10.5281/zenodo.6612585).  Peak areas shown are the average peak 

area across the three replicate injections.  The second filtering step removed mass spectral 

features that did not vary in intensity (peak area) across the spiked fractions (mixtures), choosing 

an empirically selected cutoff value of ≤ 0.01% of the variance for the feature with highest 

variance for M01-M08 and ≤ 0.1% of the variance of the features with highest variance for M09-

M17.  The reduced dataset is available as Supporting information 

(https://doi.org/10.5281/zenodo.6612585). 

 

https://doi.org/10.5281/zenodo.6612585
https://doi.org/10.5281/zenodo.6612585
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Calculation of the Compound Interaction Terms 

The compound interaction terms (CIT) were calculated with Equation 3, where 𝐼𝐹𝑖
 

represents the intensity of feature i, 𝐼𝐹(𝑖+1)
 represents the intensity of feature (i + 1), and 

𝐶𝐼𝑇 𝐹𝑖𝐹(𝑖+1)
 represents the compound interaction term for features i and (i+1).  

𝐶𝐼𝑇𝐹𝑖𝐹(𝑖+1)
= 𝐼𝐹𝑖

× 𝐼𝐹(𝑖+1)
        (Equation 3) 

For a given dataset, the total number of non-redundant compound interaction terms 

(𝑁𝐶𝐼𝑇) is determined by Equation 4, where m is equal to the total number of features (ions) 

detected across all samples.  

𝑁𝐶𝐼𝑇 =
𝑚(𝑚+1)

2
          (Equation 4) 

Data Standardization 

Highly abundant features will have a large variance that will dominate the first PLS 

components.  Thus, they may mask other features, leading to misinterpretation of the data.  This 

problem is magnified when compound interaction terms are calculated because the magnitude of 

the compound interaction terms is large compared to the magnitude of the individual features.  

To overcome this scaling problem, LC-MS peak areas or interaction terms were standardized to 

unit variance.31  To calculate the standardized abundance of each feature (𝐼𝑠𝑡𝑑,𝐹𝑖
), the intensity of 

each feature (𝐼𝐹𝑖
) in each mixture was divided by the standard deviation (s) of the peak area of 

that feature across all samples (mixtures) (Equation 5).   

𝐼𝑠𝑡𝑑,𝐹𝑖
=

𝐼𝐹𝑖

𝑠
          (Equation 5) 

The standardized compound interaction term intensities were calculated in the same 

fashion as the standardized feature intensities, using the compound interaction term (CIT) values 

in place of the feature peak areas.  
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Statistical Analysis: Partial-Least Squares Regression and Calculation of Selectivity Ratios 

The pre-processed datasets were imported to Sirius 11.5 (Pattern Recognition Systems 

AS, Bergen, Norway) for statistical analysis.  The data were modeled using partial least-squares 

regression followed by target projection (TP) to obtain selectivity ratios that connect biological 

activity to the mass spectral variables.4,16,17,32  To ensure the reliability of the model and good 

line fitting between the predicted and measured response variables, the root-mean-squared error 

of prediction (RMSEP) must be calculated through validation based on repeated Monte Carlo 

resampling.33–35  The dataset was validated leaving out one object with 100 repetitions and 

significance level of 0.5 to determine the number of PLS components to use for modeling.  

Selectivity ratios of mass spectral variables (or LC-MS features) correlating with biological 

activity were calculated to identify compounds of interest.1,2,4,16,17,32,36 
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CHAPTER III: RESULTS AND DISCUSSION 

For this study, we created an experimental design where all five of the requirements to 

observe synergy (see Introduction) were satisfied.  Antimicrobial activity against Staphylococcus 

aureus was selected as the biological effect to be measured, and the number of mixtures 

necessary to distinguish a synergistic effect was determined using a modified factorial design.37  

We selected a known antimicrobial (berberine, Figure R112) and a known synergist (piperine, 

Figure R11,24), both of which are detectable by LC-MS.  We measured the dose-response 

behavior of these compounds alone and in combination (Figure 1) and prepared a series of 

mixtures at a range of concentrations where direct antimicrobial activity of berberine (Table 3) 

or synergistic antimicrobial activity of berberine and piperine (Table 4) would be observed.  To 

create an inactive matrix for the mixtures, we prepared a simulated extract by mixing inactive 

compounds and separating them using flash chromatography.  The antimicrobial activity of the 

pooled fractions from the simulated extract were shown to be inactive against S. aureus (Figure 

2) and served as the background matrix for the berberine or berberine-piperine mixtures (spiked 

fractions).  Finally, we measured the antimicrobial activity of each of the spiked fractions and 

subjected each to analysis with LC-MS.  The result of these experiments was a dataset that we 

could use to develop and validate the interaction metabolomics approach to identify synergists.  

Notably, this dataset, which is freely available (https://doi.org/10.5281/zenodo.6612585) could 

also be employed by scientists seeking to benchmark other methodologies for identifying 

synergists.   

Antimicrobial Activity of Berberine and Piperine is an Effective Model for Synergy 

Berberine and piperine were selected for these studies as an antimicrobial and synergist, 

respectively.  Berberine has been reported to inhibit the growth of S. aureus,3,12,23 while piperine 

https://doi.org/10.5281/zenodo.6612585
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had been reported to act as an efflux pump inhibitor.1,24  Berberine is a substrate to the NorA 

efflux pump in S. aureus, and piperine inhibits bacterial efflux, enhancing the antimicrobial 

activity of berberine without possessing any direct antimicrobial activity.3,5,12  

To confirm synergy between berberine and piperine, a checkerboard assay was conducted 

(Figure 1).  Results show that berberine alone inhibits the growth of S. aureus with an MIC of 

150 µg/mL (446 µM) as previously reported23 (Figure 1A), while piperine alone does not show 

measurable antimicrobial activity (Figure 1B).  As berberine is combined with increasing 

concentrations of piperine (Figure 1C), its MIC shifts to as low as 9.38 µg/mL (27.9 µM).  An 

isobologram was plotted (Figure 1D) and using Equation 2, the net fractional inhibitory 

concentration index of berberine and piperine (∑FIC) was calculated to be 0.19, which is ≤ 0.50, 

demonstrating synergy.  Therefore, berberine and piperine possess synergistic antimicrobial 

activity against S. aureus under the conditions used for this study.  
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Figure 1. Checkerboard assay results of berberine and piperine combinations against S. 

aureus 

 

Notes. Figures 1A and 1B show the dose-response curves of berberine and piperine against S. aureus, respectively.  Figure 1C 

shows a dose-response curve of berberine combined with different concentrations of piperine (shown in different colors).  

Without added piperine, the MIC of berberine is 150 µg/mL.  The addition of piperine reduces the MIC of berberine.  For 

example, the MIC of berberine is 9.38 µg/mL in the presence of 50 µg/mL piperine.  Figure 1D shows a hyperbolic isobologram 

indicating synergy.  Additionally, the ∑FIC value (Equation 2) of berberine in the presence of 50 µg/mL piperine is 0.19, 

signifying synergy. 
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Figure 2. Antimicrobial activity against Staphylococcus aureus of the fractions without 

berberine or piperine 

 

Notes. Error bars represent the standard deviation of triplicate % inhibition values.  Percent inhibition of bacterial growth is 

expressed relative to the vehicle control (1% DMSO, 1% glycerol).  The antibiotic levofloxacin (10 µg/mL) served as the positive 

control. 

Characteristics of the Biological and Chemical Datasets Used to Model Synergy 

We employed a modified factorial design37 that enabled a demonstration of the 

interaction effects between berberine and piperine using a smaller number of mixtures (total of 9) 

than is typically employed to collect an isobologram.13  To conduct this experiment, we prepared 

nine mixtures with known concentrations of berberine and piperine, each with an inactive 

background matrix.  The inactive matrices were created using flash chromatographic separation 

of a simulated natural product extract (Figure 3).  Thus, each fraction had varying levels of the 

inactive constituents similar to what would be obtained by a typical natural products isolation 

experiment.  We controlled the levels of berberine and piperine by spiking them into the 



 

  21 

mixtures after chromatographic separation because we wished to create a test system where 

synergy would certainly occur.  In natural products drug discovery project where the identities of 

synergists are not known, it is possible that synergy could be missed because synergists would be 

separated from each other in the fractionation process.  One possible strategy to prevent this from 

occurring would be to accomplish “poor” chromatography, with broad peaks, and to generate 

many fractions.  It would also be possible to increase the likelihood that synergists co-occur by 

intentionally recombining fractions after chromatographic separation, as has been done 

previously.12,22,38  The optimization of methods for fractionation and recombination to observe 

synergy would be a worthy topic of future research.  Our goal with this study was to test methods 

of assigning active constituents when synergists are present.  

To prepare the simulated extract, we tested the antimicrobial activity of a series of 42 

commercially available natural products (Table 1) to select those that fulfilled the following two 

selection criteria: (1) did not inhibit S. aureus growth by >20% (Equation 1) at assay 

concentration of 100 µM and (2) did not enhance the antimicrobial activity of berberine or 

piperine.  A subset (22) of the compounds tested fit criterion 1 (Table 1).  When these 

compounds were tested in combination with berberine (32 µg/mL or 95 µM) or piperine (32 

µg/mL or 112 µM), none enhanced the activity of piperine and only capsaicin enhanced the 

antimicrobial activity of berberine (Table 2).  The observed enhancement of berberine activity 

by capsaicin was consistent with a previous report of capsaicin being an inhibitor of the NorA 

efflux pump of S. aureus.39  Therefore, capsaicin was not included in the simulated mixture 

reducing the number of compounds to 21.  Finally, the components were all analyzed with LC-

MS and all except stigmasterol and β-sitosterol were detected in extracted ion chromatograms 

and by peak picking above the threshold of 1 × 105 using MZmine 2.5330 (Table S1).   
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Flash chromatography was employed to separate the simulated extract into ten pooled 

fractions.  From these, the nine pooled fractions that yielded sufficient material for the 

experiments were spiked to create a series of fractions spiked with berberine alone (M01-M08) 

(Table 3) or with berberine and piperine (M09-M17) (Table 4).  Different concentrations of 

berberine were used between the two sets of mixtures because berberine antimicrobial activity 

was expected to saturate at higher concentrations in the mixtures without piperine.  The 

background matrices used to create the spiked fractions were prepared with a final assay 

concentration of 100 µg/mL (expressed as mass of dried material per mL assay volume).  As in a 

realistic natural products isolation experiment, the concentrations of individual background 

matrix components in these mixtures were not known. 
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Figure 3. Experimental workflow for preparation and analysis of spiked fractions 

 

Notes. A simulated extract was prepared by mixing 21 natural products that did not demonstrate antimicrobial activity against S. 

aureus, alone or in combination with berberine and piperine.  This mixture was fractionated and the pooled fractions were used as 

background matrices to create spiked fractions containing known amounts of berberine (antimicrobial) and piperine (synergist).  

Untargeted metabolomics data were collected with ultraperformance liquid chromatography coupled to mass spectrometry (LC-

MS) to obtain a metabolomics dataset.  Antimicrobial activity was evaluated for all fractions against Staphylococcus aureus to 

obtain a biological dataset. 
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Table 3. Composition and biological activity of berberine spiked fractions without piperine   

Sample 
Berberine 

(µg/mL) 

Piperine 

(µg/mL) 
Fraction No.a % inhibition 

(± s.d.)b 

M01 0 0 F01 5.4 (±8.9) 

M02 100 0 F02 97.67 (±0.34) 

M03 75 0 F03 97.50 (±0.64) 

M04 64 0 F04 88.4 (±8.8) 

M05 50 0 F05 29.0 (±4.5) 

M06 32 0 F06 20.47 (±0.13) 

M07 25 0 F07 16.9 (±2.1) 

M08 16 0 F08 13.7 (±1.8) 

Berberine (at 100 µg/mL)c 95.1 (±2.7) 

Levofloxacin (positive control)c         99.61 (±0.22) 

Notes. Concentrations indicate the assay concentrations used to evaluate % inhibition against Staphylococcus aureus.  Prior to 

analysis by LC-MS, samples were diluted 100-fold from the concentrations shown below to avoid saturation of instrument 

response. 

 aFraction indicates the pooled mixture of inactive compounds generated by flash chromatography separation of the simulated 

extract.  Concentration is expressed as mass of the total mixture per well volume and does not indicate concentration of individual 

mixture components.  Each mixture used a different fraction containing some subset of the compounds from the simulated extract.  

Each fraction was added at a concentration of 100 µg/mL, expressed as mass dried fraction per well volume in the antimicrobial 

assay.   

bAntimicrobial activity is expressed as % inhibition relative to vehicle control ± standard deviation across triplicate wells. 
cLevofloxacin and berberine were used as positive controls at 10 µg/mL and 100 μg/mL respectively. 
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Table 4. Composition and biological activity of berberine and piperine spiked fractions 

Sample 
Berberine 

(µg/mL) 

Piperine 

(µg/mL) 
Fraction No.a % inhibition  

(± s.d.)b 

M09 0 0 F01 7.4 (±3.1) 

M10 32 0 F02 15.8 (±2.0) 

M11 0 32 F03 8.7 (±1.6) 

M12 32 32 F04 99.12 (±0.15) 

M13 16 16 F05 31.2 (±2.8) 

M14 8 8 F06 5.0 (±1.2) 

M15 24 8 F07 13.7 (±3.7) 

M16 8 24 F08 22.7 (±9.8) 

M17 24 24 F09 64 (±12) 

Berberine (at 32 µg/mL)d              17.5 (±2.7) 

 Piperine (at 32 µg/mL)d                3.2 (±1.4) 

Levofloxacin (positive control)c               99.3 (±1.1) 
aThe same background matrices (fractions) used for mixtures 01-08 were used to prepare mixtures 09-16 here, plus another fraction 

for mixture 17.  All fractions were tested at an assay concentration of 100 µg/mL. 
bAntimicrobial activity is expressed as % inhibition of S. aureus growth relative to vehicle control ± standard deviation among 

triplicate wells. 

cLevofloxacin was used as the positive control at 10 µg/mL. 
dBerberine and piperine at 32 μg/mL were added as controls. 

To obtain the “biological dataset,” antimicrobial activity was measured for the pooled 

fractions alone (Figure 2) and for the fractions spiked with berberine (Figure 4A) or berberine 

and piperine (Figure 4B).  As expected, the pooled fractions alone (without berberine or 

piperine) demonstrated less than 20% growth inhibition of S. aureus (Figure 2).  Spiking the 

fractions with berberine alone (M01-M08) caused a dose-dependent inhibition of bacterial 

growth (Figure 4A).  The mixtures spiked with berberine and piperine (Figure 4B) also 

suppressed bacterial growth, with the highest activity observed for mixture twelve (M12).  

Synergistic antimicrobial activity was observed for several of the mixtures (Figure 4B). 
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Figure 4. Antimicrobial activity against Staphylococcus aureus of the spiked fractions, with 

berberine only (A) and with berberine and piperine (B) 

 

Notes. Error bars represent the standard deviation of triplicate % inhibition values.  Percent inhibition of bacterial growth is 

expressed relative to the vehicle control (1% DMSO, 1% glycerol).  Levofloxacin (10 µg/mL) served as the positive control as a 

known antibiotic.  In A, berberine at 100 µg/mL was also added as a control.  The synergistic enhancement of biological activity 

by piperine is apparent in Figure 4B.  For example, mixture ten (M10) contains 32 µg/mL berberine and only exhibits 15.8 ± 

2.0% inhibition of S. aureus growth.  Mixture twelve (M12) contains the same amount of berberine as M10 (32 µg/mL) but also 

contains 32 µg/mL piperine and demonstrates 99.12 ± 0.15% inhibition.  Since piperine demonstrates no antimicrobial activity 

alone, the enhanced biological activity of M12 as compared to M10 represents synergy.  A similar conclusion can be drawn by 

comparing the biological activity of M15 to M17 (Figure 4B). 
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LC-MS analysis was conducted on all of the spiked fractions to obtain the “metabolomics 

dataset” (Figure S1 to Figure S4).  Berberine was readily detectable in M01-M08 (Figure S1 

and Figure S2), while berberine and piperine were detectable in M09-F17 (Figure S3 and 

Figure S4).  Berberine and piperine were identified by their characteristic mass spectral data 

(Figure S5).  The mass spectrum for berberine (Figure S5A), which has an inherent positive 

charge, is characterized by a single peak representing the [M+] ion.  Piperine is detected as a 

series of five features (Figure S5B), including the protonated species [M+H]+, sodiated [M+Na]+ 

species, proton bound dimer, [2M+H]+, sodium bound dimer [2M+Na]+, and a sodiated 

acetonitrile cluster [M+ACN+Na]+.  

Analysis of standards indicated that all of the inactive matrix compounds were detectable 

by LC-MS except stigmasterol and β-sitosterol (Table 5), for a total of 19 detectable 

compounds.  Similarly, and as would be expected, each of the inactive matrix compounds were 

also detectable in at least one of the spiked fractions (Table 6).  Of the 19 components detected 

in the original dataset (Table 5), seven (naringin, chlorogenic acid, tropine, p-octopamine, 

vanillic acid, and theobromine) were removed in the data filtering step that required variation in 

abundance across the mixtures (Table 6).  Thus, the final metabolomics datasets included 

features (Table S2) from berberine, piperine, and twelve inactive compounds.  
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Table 5. Distribution of analytes in the spiked fractions as detected by LC-MS after 

filtering based on <35% relative standard deviation in peak area across replicate injections 

 
Black – analyte identified 

White – not detected 

 

 

  

Analyte M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15 M16 M17

naringin

betulinic acid

atropine

amygdalin

caffeine

chlorogenic acid

3,4-dihydroxybenzaldehyde

tropine

p-octopamine

boldine

anisodamine

quinine

dehydroevodiamine

apocynin

vanillin

ferulic acid

vanillic acid

syringic acid

theobromine

β-sitosterol

stigmasterol

berberine

piperine
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Table 6. Distribution of analytes in the simulated fractions after filtering features that do 

not vary across samples 

 
aBlack – analyte identified 
bWhite – not detected or filtered out 
c% Variance cut-off: M01-M08 = 0.1%; M09-M14 = 0.01% 

 

  

Analyte M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15 M16 M17

naringin

betulinic acid

atropine

amygdalin

caffeine

chlorogenic acid

3,4-dihydroxybenzaldehyde

tropine

p-octopamine

boldine

anisodamine

quinine

dehydroevodiamine

apocynin

vanillin

ferulic acid

vanillic acid

syringic acid

theobromine

β-sitosterol

stigmasterol

berberine

piperine
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Conceptual Demonstration of the Compound Interaction Term  

To demonstrate the concept of the compound-interaction term (Equation 3 and 

Equation 4), we examined the data obtained from the chemical and biological analysis of the 

spiked fractions by selecting major features associated with berberine ([M+]) and piperine 

([M+H]+) and comparing their standardized abundance (Equation 5) with the measured 

biological activity of the fractions (Figure 5).  For the fractions spiked with just berberine (M01-

M08, Figure 5A), biological activity is correlated with the peak area of berberine.  For the 

fractions that contain both berberine and piperine (M09-M17), neither the peak area of the 

berberine feature (Figure 5C, 5D) nor the peak area of the piperine feature (Figure 5E, 5F) is 

strongly correlated with biological activity.  This is expected given that the antimicrobial activity 

of the mixtures results from the combined (synergistic) activity of berberine and piperine.  To 

obtain a value that correlated with activity in the berberine-piperine mixtures, a compound 

interaction term (Equation 3) was obtained by multiplying the peak area of one berberine feature 

([M+]) by the peak area for one piperine feature ([M+H]+).  This compound interaction term 

tracks closely with antimicrobial activity (Figure 5G) and the relationship is linear (R2 value of 

0.95) (Figure 5H). 
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Figure 5. Comparison of biological and chemical data demonstrate the utility of the 

compound interaction term 
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Notes. The antimicrobial activity (% inhibition of S. aureus growth) was strongly correlated with standardized abundance for the 

fractions spiked with berberine (M01-M08, panel A and B).  For the mixtures spiked with berberine and piperine (M09-M17), 

neither berberine (C) nor piperine (E) abundance tracks with biological activity.  This lack of correlation is shown with poor 

linearity of regression plots for % inhibition versus peak area of berberine (D) and piperine (F).  The compound interaction term, 

obtained by multiplying the peak area for piperine with the peak area for berberine (Equation 3), tracks with biological activity 

for the berberine-piperine mixtures (G).  The linear relationship between % inhibition and compound interaction term is 

demonstrated in panel H.  To generate these plots, piperine abundance was measured as the peak area of the selected ion for the 

[M+H]+ ion of piperine detected at m/z 286.1426 while peak area of berberine was measured as the peak are of the [M]+ ion 

detected at m/z 336.1217.  The peak areas for these ions were normalized as shown by Equation 5. 

Comparison of Classical and Interaction Metabolomics Workflows 

While a univariate approach, as depicted in Figure 5, is useful for demonstrating the 

compound interaction term idea, a multivariate statistical approach is more appropriate when 

untargeted metabolomics datasets containing many features are analyzed.  Here we analyzed the 

data in a “classical metabolomics” workflow (Figure 6A) and an “interaction metabolomics” 

workflow (Figure 6B).  The difference between the two workflows was in the data matrix 

(Figure 7) used for the analysis.  The classical workflow was conducted on a matrix containing 

biological activities and standardized feature intensities for each of the mixtures.  In the 

workflow allowing interactions, the matrix was expanded to include standardized compound 

interaction terms (Equation 3) for each feature pair in the dataset.  Both datasets used in these 

calculations are freely available (https://doi.org/10.5281/zenodo.6612585). 

 

 

  

https://doi.org/10.5281/zenodo.6612585
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Figure 6. Two possible metabolomics workflows for data analysis, (A) classical 

metabolomics and (B) interaction metabolomics 

 
Notes. The two workflows both start with a biological dataset and a metabolomics dataset (in this case LC-MS data obtained by 

analysis each of the mixtures individually).  The values from these biological and metabolomics datasets are compiled in one of 

two data matrices (Figure 7).  The data matrix for the interaction workflow differs by the inclusion of an additional compound 

interaction terms (CIT).  The values in the data matrices are then standardized (Equation 5) and multivariate statistical analysis is 

conducted, resulting in the prediction of putative antimicrobials (classical metabolomics) or putative synergists (interaction 

metabolomics). 
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Figure 7. Comparison of the data matrices used for classical metabolomics (A) and 

interaction metabolomics (B) shown in Figure 6 

 

Notes. Each matrix contains data for all mixtures (M) in which features (F) are detected.  A feature (F) represents a peak in the 

LC-MS dataset with a unique m/z value and retention time.  The intensity (I) of each feature in each mixture is obtained by 

integrating the relevant selected ion trace in the LC-MS chromatogram.  The intensities (I) of the features vary between mixtures 

because the abundance of the compounds (analytes) associated with the features differs between the mixtures.  The data matrix 

used for the interaction workflow (B) includes the same features described for the classical metabolomics matrix (A), but also 

includes additional compound interaction terms (CIT) (Equation 3) for each pair of features detected.  The total number of 

mixtures is n and the total number of features is m.  Each mixture has a measured biological activity (AMn), which in this study is 

measured % inhibition against Staphylococcus aureus. Compound interaction terms (CIT) are included in matrix B (for 

interaction metabolomics) and are obtained by multiplying together the intensities (I) of the features in a pairwise fashion 

(Equation 3). For classical metabolomics (A), the first column on the matrix contains biological activity (AMn) for each mixture 

(Mn).  For each mixture, there are a series of many additional columns containing the intensity (IFn,Mn) values for each feature 

(Fn) in each mixture (Mn).  Prior to final data analysis, these data matrices are normalized to unit variance as shown by Equation 

5.    
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Data Filtering is Important for Interaction Metabolomics  

Prior to the data filtering steps used for reducing the number of features (See 

Experimental Section), the number of features detected in the berberine spiked mixtures (M01-

M08) was 2894 (Table 7).  By Equation 4, 2894 features would yield 4,189,065 compound 

interaction terms, which would result in a data matrix with 4,191,959 variables (4,189,065 

compound interaction terms plus 2894 features).  Data processing with such a dataset would be 

likely to yield false results because the number of variables is so large compared to the number 

of biological measurements.17  To reduce the number of features to a manageable number for an 

interaction metabolomics workflow, we removed features that were present in the blank and any 

features for which relative standard deviation of peak area across triplicate analyses was >35%.  

This reduced the total number of features in the berberine spiked mixtures to 232.  We then 

further filtered the data by removing any features for which peak area did not vary by more than 

0.01% across all samples.  The rationale for this filtering step the assumption that if biological 

activity varies across the samples, abundance of the compounds responsible for activity should 

also vary.  The final filtered dataset had 26 features, and the data matrix including features and 

compound interaction terms had manageable total of 207 variables (Table 8).  (Note, this 

number is lower than the 377 variables + features because any feature with peak area of zero will 

result in a compound interaction term of zero).  Similarly, the total number of features in the 

berberine and piperine spiked mixtures was 33 after all data filtering steps (Table 8), and the 

final compound interaction term data matrix contained a total of 462 variables.  
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Table 7. Number of features and annotated adducts after the different filtering steps 

Data Filtering for M01 to M08 Data Filtering for M09 to M17 

Data Filtering No. of Features 

No. of 

Annotated 

Adducts 

Data Filtering No. of Features 

No. of 

Annotated 

Adducts 

Exported from 

MZmine 
2894 38 

Exported from 

MZmine 
5698 52 

After Blank 

Filter 
446 32 

After Blank 

Filter 
1696 51 

After RSD 

Filter 
232 30 

After RSD 

Filter 
817 50 

After variance 

across samples 

filter 

26 15 

After variance 

across samples 

filter 

33 18 

 

Table 8. PLS Modeling Information 

 

M09-M17 

(Fractions spiked with berberine and 

piperine) 

M01-M08 

(Fractions spiked with berberine) 

Classical 

Model Fig. 5B 

Interaction 

Model 

Fig. 5C 

Classical 

Model Fig. 5A 

Interaction 

Model 

Fig. 5D 

Object count 9 9 8 8 

Variable count 33 462 26 207 

Comp. retained 2 3 2 3 

Comp. variance 

(x, y) 

1 - 30.50%, 76.47; 

 

2 - 22.27%, 14.26% 

 

1 – 22.33%, 75.74% 

 

2 – 20.44%, 16.25% 

 

3 – 20.38%, 6.48% 

1 – 24.42%, 95.89% 

 

2 – 15.00%, 3.18% 

1 – 19.61%, 86.37% 

 

2 – 21.79%, 12.27% 

 

3 – 23.06%, 1.03% 

Monte Carlo 

validation threshold 
0.357 0.333 0.500 0.500 

RMSECV 14.02 11.09 18.61 27.22 

R2Y 0.907 0.985 0.991 0.997 

Comp. in SR 2 3 2 3 
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Comparison of Putative Active Constituents Predicted by Classical Metabolomics and 

Interaction Metabolomics 

For both classical metabolomics and interaction metabolomics (Figure 6), PLS was used 

to determine which features in the chemical dataset were most strongly associated with 

biological activity, an approach often referred to as “biochemometrics”.  As with previous 

biochemometrics studies,1,2,4,16,17,22,32 we employed the selectivity ratio as a measure of which 

mixture components associate with biological activity.  The selectivity ratio is obtained by 

dividing the variance explained by the target projection component for a given feature by the 

residual variance (see Experimental Section, Figure 8).  Because the association between 

biological activity and ion abundance indicated by selectivity ratios is purely correlative, false 

correlations may occur.  Thus, predictions of biological activity based on selectivity ratio are 

deemed “putative” and would typically be followed up by a validation experiment testing 

activity of the isolated compounds.  For this study, the biological activity of the mixture 

components was known a priori so the validity of the predictions from the multivariate statistical 

model could easily be tested.  We predicted that the application of classical metabolomics 

(Figure 6A) to the data for mixtures 01-08 would assign high selectivity ratio to the features 

associated with berberine, and that application of interaction metabolomics (Figure 6B) to 

mixtures 09-17 would assign high selectivity ratios to the compound interaction terms associated 

with berberine and piperine.  
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Figure 8. Calculation of a selectivity ratio 

 

Notes. (1) The data matrix has dimensions of n rows and m columns.  It consists of a response vector y (biological dataset) with 

(indicated as AMn in Figure 7) and a corresponding X predictor matrix.  In the case of the conventional workflow, the X predictor 

matrix is composed of a series of intensities (I) for all detected features (Figure 7A).  In the case of the synergy workflow, the X 

predictor matrix also includes the compound interaction terms (Figure 7B). (2) The regression coefficients bPLS from the PLS-R 

model are used to perform the Target Projection (TP). (3) The TP splits the dataset into predictive loadings pTP and scores tTP and 

a residual matrix ETP (dimensions in parentheses). (4) For each feature, a selectivity ratio (SR) is calculated. 

The effectiveness of the two workflows (Figure 6) for predicting active mixture 

components is compared in Figure 9.  The plots in this figure show the magnitude of the 

selectivity ratio on the y-axis calculated for each explanatory variable (LC-MS feature or a 

compound interaction term) on the x-axis.  Note that the selectivity ratio plot includes features 

detected across all of the samples included in the analysis, and as such are a composite view that 

differs from the more common way of viewing LC-MS data for each mixture individually.  

There is no absolute cutoff value for what qualifies as a “relevant” selectivity ratio.  The 

magnitude of the selectivity ratios obtained in a given analysis will vary depending on the unique 

characteristics of the dataset being inspected.  It is most useful to think of selectivity ratios as a 

ranking tool.  Compounds associated with features that have high selectivity ratios are associated 

with biological activity and can be prioritized for isolation and further testing.  In this case, since 

we knew for each dataset which compounds were active, we considered the selectivity ratio 

analysis to be successful when the features or interaction terms with highest selectivity ratios 

corresponded to those known active compounds. 
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When the classical metabolomics workflow (Figure 6A) was applied to the mixtures 

spiked only with berberine (M01-M08), one of the two features with highest selectivity ratio 

corresponded to the [M]+ ion for berberine (m/z 336.1238, 3.28 minutes) (Figure 9A).  The 

second of the two features with highest selectivity ratio (m/z 338.1393, 2.89 minutes) was 

tentatively assigned to the molecule 7,8-dihydroberberine.  Inspection of berberine standard by 

LC-MS (Figure S6) indicated the presence of the 7,8-dihydroberberine feature (at 21-times 

lower intensity than berberine); thus, it appears that 7,8-dihydroberberine is a contaminant of the 

“pure” berberine.  The predicted activity of 7,8-dihydroberberine highlights one limitation of the 

biochemometrics approach for predicting active mixture components; any feature that correlates 

with activity will be predicted to be active, but the prediction is purely correlative and must be 

verified by testing of the compound in isolation.  Previous literature has reported that the 

antimicrobial activity of 7,8-dihydroberberine is similar to that of berberine40, suggesting that 

this compound may contribute to the overall activity of this fraction (not evaluated).  Several 

other features are given non-zero selectivity ratios in this analysis (Figure 9A).  These are likely 

false positives, but would be deprioritized for isolation given that their selectivity ratio values are 

small relative to the features associated with berberine and the putative 7,8-dihydroberberine. 
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One might expect (as we did at the onset of this study), that PLS analysis of a system 

where activity due to synergy would generate a poor model because compound interaction would 

be overlooked.  Instead, PLS modeling created what would be considered a “good” fit of the data 

for the mixtures spiked with piperine and berberine (M09-M17, Figure 9B).  PLS modeling of 

interaction metabolomics on the mixtures with synergistic effects had a root-mean-standard error 

for cross-validation (RMSECV) value of 11.09 with an R2Y of 0.985 (Table 8). 

Despite the good fit of the model to the experimental data, we know it to be incorrect.  

Features that correspond to known inactive components of the fractions were incorrectly 

assigned larger selectivity ratios than berberine or piperine (Figure 9B).  This appears to be a 

case of confounding.  Thus, the data in Figure 9B demonstrate a crucial limitation of classical 

PLS modeling of metabolomics data.  If the observed biological effect is due to synergy, a model 

that appears to be of high quality can be obtained even though the association pattern between 

activity and analytes is wrong due to the missing interaction term. 

When the new interaction metabolomics approach (Figure 6B) was applied to the 

datasets containing compound interaction terms, the resulting selectivity ratio plot (Figure 9C) 

showed the correct prediction of active constituents.  From the 462 features and interaction terms 

in the dataset (Table 8), only five had high selectivity ratios.  All of these high selectivity ratio 

features correspond to the compound interaction terms for piperine features combined with 

berberine features.  Therefore, the problem of confounding demonstrated in Figure 9C is 

resolved when a dataset that includes interaction terms is utilized.  Importantly, multiple features 

are detected in this selectivity ratio plot (Figure 9C) because the single piperine molecule forms 

five different cluster ions in the source of the mass spectrometer (Figure S5).  Thus, although 

five compound interaction terms are found, they are redundant in that each corresponds to the 
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berberine feature area multiplied by the area of a feature representing a different ion formed by 

LC-MS analysis of piperine.  

Because we knew which components in the mixtures were active, it was possible in this 

study to diagnose the problem of a confounded model (Figure 9B) and correct it with inclusion 

of compound interaction terms (Figure 9C).  However, an analyst working with a system of 

unknown composition could waste a great deal of time pursuing putative active compounds with 

high selectivity ratios in Figure 9B, only to discover than none of them are active.  Both of the 

models in Figure 9B and Figure 9C were of similar quality, having RMSECV of 14.02 and 

11.09, respectively, and R2Y of 0.907 and 0.985, respectively (Table 8).  Thus, is not possible to 

diagnose the confounding problem observed in Figure 9B based on the model parameters alone.   

A possible solution to prevent a false model such as that shown in Figure 9B would be to 

include interaction terms in any metabolomics dataset, preemptively considering possibility that 

activity is due to compound interactions.  To test the effectiveness of such an approach, we 

applied interaction metabolomics to the dataset for the mixtures containing only berberine 

(Figure 9D), where we knew that activity was not due to compound interactions.  A concern 

prior to carrying out this data analysis was that the inclusion of interaction terms might introduce 

additional false correlations.  However, even with the compound interaction terms, selectivity 

ratio analysis of the berberine spiked mixtures predicted berberine and putative 7,8-

dihydroberberine to be the active constituents (Figure 9D), similar to the conclusion for the data 

matrix without compound interaction terms (Figure 9A).  These results suggest that interaction 

metabolomics might be an applicable approach even when compounds in the mixture do not 

interact. 
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Notably, and as would be expected, the compound interaction term for the berberine × 

7,8-dihydroberberine produced a high selectivity ratio in Figure 9D.  Thus, the inclusion of 

compound interaction terms might enable identification of combinations of compounds that 

interact additively, a concept that would be a good topic of future exploration.  Importantly, 

however, the data in Figure 9D demonstrate that a compound interaction term with high 

selectivity ratio could be indicative of either synergy, additivity, or a false correlation.  These 

results underscore the importance of additional validation for any predictions made based on 

statistical comparison of chemical and biological datasets. 
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Figure 9. Comparison of selectivity ratio plots using classical metabolomics (A and B) and 

interaction metabolomics (C and D) 
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Notes. The five compound interaction terms (CIT) in Figure 9C are due to the products of berberine and the five piperine adducts: 

protonated species [M+H]+, sodiated [M+Na]+ species, proton bound dimer, [2M+H]+, sodium bound dimer [2M+Na]+, and a 

sodiated acetonitrile cluster [M+ACN+Na]+.  Specifically, in Panel C, 13 × 23 = piperine [M+H]+ × berberine [M]+, 19 × 23 = 

piperine [M+Na]+ × berberine [M]+23 × 24 = berberine [M]+ × piperine  [M+ACN+Na]+, 23 × 32 = berberine [M]+ × piperine 

[2M+H]+, 23 × 33 = berberine [M]+ × piperine [2M+Na]+. In panel D, 21 × 22 = berberine [M+] × [M+H]+ of putative 7,8 

dihydroberberine. The total number of features in the dataset were 17, 32, 528, and 153 for panels A, B, C, and D, respectively.  

Prior to multivariate statistical analysis, all metabolomics data were filtered based on the requirement that they demonstrate 

consistent peak area across all replicate analyses, and the requirement that the feature area vary by > 0.01% across all samples in 

the mixture (see Experimental Section).  
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CHAPTER IV: CONCLUSIONS 

Here we demonstrate the utility of interaction metabolomics, a new approach for 

predicting constituents that interact to exert a combined biological effect.  In our experiments, 

interaction metabolomics enabled identification of synergists, an outcome that was not achieved 

with a classical metabolomics workflow.  While the experiments presented here focused on 

synergistic interactions, interaction metabolomics could theoretically also be applied to study 

antagonism, a possibility that could be explored in future studies.   

It was critical in this first exploration of interaction metabolomics to apply an 

experimental design where synergy was known to occur, and where the identities of the 

compounds responsible for this synergy were also known.  Without this knowledge, a negative 

result could have been interpreted either as no synergistic interactions or a failure of the model to 

accurately predict synergy.  Nonetheless, the scenario for this study was somewhat artificial.  In 

a realistic natural products discovery workflow, synergists might not be present in the same 

mixtures, or might not be at relevant concentrations to observe interactions.  The development of 

a strategy to overcome these limitations such that interaction metabolomics can be applied to 

identify unknown synergists would be a worthy topic of future investigation.  

The studies presented here suggest that the inclusion of compound interaction terms to 

account for possible synergistic interactions might be useful as a general practice for 

metabolomics data processing.  The broader applicability and advantages of such an approach 

need to be evaluated with further investigations using additional experimental systems.  Such 

explorations should, in theory, be quite achievable; any metabolomics experiment could be 

modified to account for synergistic interactions by appending interaction terms to the data 

matrix.  However, it is important to consider that the inclusion of interaction terms dramatically 
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increases the number of features in the dataset.  Therefore, successful implementation of this 

approach will require careful attention to ensure that appropriate statistical methods are used and 

that features lists are filtered to remove noise and reduce them to a manageable size.   
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APPENDIX A: SUPPLEMENTARY INFORMATION 

Table S1. MZmine parameters used for peak picking analysis of the MS raw data 

LCMS File No.: 210723 and 220202  By: Warren Vidar 

Parameters Recommendations 210723 (M09-M17) 220202 (M01-M08) 

Raw data methods > Filtering > Crop Filter (Optional) 

RT 0.00 to wash time 0.00 to 8.00 0.00 to 8.00 

MS level 1 1 1 

Polarity POS / NEG POS & NEG POS & NEG 

Spectrum type Profile / Centroid Profile Profile 

m/z Auto range Auto range Auto range 

Raw data methods > Feature detection > Mass Detection 

Mass detector Exact mass / Centroid Exact mass Exact mass 

Noise level 5E3 to 5E4 5E3 5E3 

Raw data methods > Feature detection > ADAP Chromatogram Builder 

No. of scans 4 or 5 4 5 

Group intensity threshold 5E3 5E3 5E3 

Min highest intensity 1E5 to 5E5 1E5 1E5 

m/z tolerance 0.003 Da 0.003 Da 0.003 Da 

Feature list methods > Feature detection > Chromatogram Deconvolution 

Algorithm Wavelets ADAP Wavelets ADAP Wavelets ADAP 

m/z center calculation Median Median Median 

S/N threshold 10 10 10 

S/N estimator Intensity window SN Intensity window SN Intensity window SN 

Min feature height 1E5 1E5 1E5 

Coefficient/area threshold 30 to 200 50 40 

Peak duration range 0.00 to 2.00 0.00 to 2.00 0.00 to 2.00 

RT wavelet range 0.00 to 0.10 0.00 to 0.10 0.00 to 0.10 

Isotopes > Isotopic Peaks Grouper 

m/z tolerance 0.0015 Da 0.0015 Da 0.0015 Da 

RT tolerance 0.05 min. 0.05 min. 0.05 min. 

Maximum charge 3 3 3 

Representative isotope Most intense Most intense Most intense 

Feature list methods > Alignment > Join Aligner 

m/z tolerance 0.0015 Da 0.0015 Da 0.0015 Da 

Weight for m/z 2 2 2 

RT tolerance 0.05 min. 0.05 min. 0.05 min. 

Weight for RT 1 1 1 

Require same charge state checked checked checked 

Compare isotope pattern checked checked checked 

Isotope m/z tolerance 0.0015 Da 0.0015 Da 0.0015 Da 

Min. absolute intensity 1E5 to 5E5 1E5 to 5E5 1E5 to 5E5 

Isotope pattern min. score 50% 50% 50% 

Feature list methods > Gap filling > Same RT and m/z range gap filler 

m/z tolerance 0.0015 Da 0.0015 Da Peak Finder, 20% 

Feature list methods > Filtering > Duplicate filter 

Filter mode New average New average New average 

m/z tolerance 0.0015 Da 0.0015 Da 0.0015 Da 

RT tolerance 0.05 min. 0.05 min. 0.05 min. 

Feature list methods > Filtering > Peak filter 

Height 1E5 to 1E10 1E5 to 1E10 1E5 to 1E10 

No. of data points 5 to 100 5 to 100 5 to 100 

Identification > Custom database search 

m/z tolerance 0.0015 Da 0.0015 Da 0.0015 Da 

RT tolerance 0.02 min. 0.1 min. 0.1 min. 
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Figure S1. Positive mode full scan base peak chromatogram of M01 to M04 

 

Note.  Not all analytes of interest are evident in the base peak chromatogram, but many could be identified with selected ion 

chromatograms, as indicated in Table 5 and Table 6.   
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Figure S2. Positive mode full scan base peak chromatogram of M05 to M08 

 

Note. Not all analytes of interest are evident in the base peak chromatogram, but many could be identified with selected ion 

chromatograms, as indicated in Table 5 and Table 6.   
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Figure S3. Positive mode full scan base peak chromatogram of M09 to M13 

 

Note. Not all analytes of interest are evident in the base peak chromatogram, but many could be identified with selected ion 

chromatograms, as indicated in Table 5 and Table 6.   
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Figure S4. Positive mode full scan base peak chromatogram of M14 to M17 and a mixture 

of reference standards of compounds used in the simulated extract 

 

Note. Not all analytes of interest are evident in the base peak chromatogram, but many could be identified with selected ion 

chromatograms, as indicated in Table 5 and Table 6.    
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Figure S5. Mass spectra of berberine (A) and piperine (B) 

 

Notes. Figure S5A shows the 13C isotope of berberine, while Figure S5B highlights multiple peaks corresponding to different 

adducts of piperine.  RT refers to the retention time of the peak (time eluted from the LC column) in minutes. 
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Table S2. List of feature annotations in the LC-MS data 

Features 

(m/z -TR)a Molecular Ion or Adductb Compound Name (Analyte) 

137.0232-1.43 M-H]- 3,4-dihydroxybenzaldehyde 

139.0389-1.44 [M+H]+ 3,4-dihydroxybenzaldehyde 

142.1226-0.52 [M+H]+ tropine 

151.0388-2.2 [M-H]- vanillin 

153.0544-2.19 [M+H]+ vanillin 

154.0862-0.53 [M+H]+ p-octopamine 

163.0991-1.96 [M+2H]2+ quinine 

165.0545-2.4 [M-H]- apocynin 

167.0339-1.73 [M-H]- vanillic acid 

167.07-2.4 [M+H]+ apocynin 

169.0497-1.72 [M+H]+ vanillic acid 

173-1.41 [M+Cl]- 3,4-dihydroxybenzaldehyde 

176.0681-0.51 [M+Na]+ p-octopamine 

181.0718-0.78 [M+H]+ theobromine 

183.6123-1.94 [M+ACN+2H]2+ quinine 

193.0498-2.36 [M-H]- ferulic acid 

194.0807-2.2 [M+ACN+H]+ vanillin 

195.0651-2.36 [M+H]+ ferulic acid 

195.0873-1.48 [M+H]+ caffeine 

197.0447-1.79 [M-H]- syringic acid 

199.0599-1.79 [M+H]+ syringic acid 

203.0537-0.78 [M+Na]+ theobromine 

222.0983-0.78 [M+ACN+H]+ theobromine 

229.0268-2.35 [M+Cl]- ferulic acid 

236.0913-2.37 [M+ACN+H]+ ferulic acid 

244.0801-0.79 [M+ACN+Na]+ theobromine 

251.017-1.44 [M+TFA-H]- 3,4-dihydroxybenzaldehyde 

275.0562-1.44 [2M-H]- 3,4-dihydroxybenzaldehyde 

286.1433-4.95 [M+H]+ piperine 

290.1746-2.06 [M+H]+ atropine 

302.1285-2.94 [M+H]+ dehydroevodiamine 

304.1919-5.16 [M-H]- capsaicin 

306.1696-1.48 [M+H]+ anisodamine 

306.2062-5.16 [M+H]+ capsaicin 

308.125-4.95 [M+Na]+ piperine 

312.1558-2.06 [M+Na]+ atropine 

324.0991-4.95 [M+K]+ piperine 

325.1905-1.96 [M+H]+ quinine 
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328.1539-1.83 [M+H]+ boldine 

328.1878-5.16 [M+Na]+ capsaicin 

334.1811-0.54 [2M+3H2O+2H]2+ p-octopamine 

336.1224-3.19 [M+H]+ berberine 

340.1319-1.47 [M+Cl]- anisodamine 

340.1686-5.16 [M+Cl]- capsaicin 

344.1619-5.16 [M+K]+ capsaicin 

349.1516-4.96 [M+ACN+Na]+ piperine 

350.1612-1.47 [M+FA-H]- anisodamine 

350.1975-5.16 [M+FA-H]- capsaicin 

353.0879-1.36 [M-H]- chlorogenic acid 

355.1019-1.37 [M+H]+ chlorogenic acid 

359.1532-1.94 [M+Cl]- quinine 

361.1361-0.78 [2M+H]+ theobromine 

369.182-1.93 [M+FA-H]- quinine 

372.1286-1.36 [M+NH4]
+ chlorogenic acid 

375.0689-1.36 [M+Na-2H]- chlorogenic acid 

377.0837-1.37 [M+Na]+ chlorogenic acid 

383.1182-0.78 [2M+Na]+ theobromine 

389.0646-1.36 [M+Cl]- chlorogenic acid 

393.0577-1.35 [M+K]+ chlorogenic acid 

399.0931-1.36 [M+FA-H]- chlorogenic acid 

455.3528-7.5 [M-H]- betulinic acid 

456.1505-1.65 [M-H]- amygdalin 

458.1649-1.65 [M+H]+ amygdalin 

475.1919-1.66 [M+NH4]
+ amygdalin 

480.1472-1.65 [M+Na]+ amygdalin 

492.1282-1.66 [M+Cl]- amygdalin 

496.1207-1.65 [M+K]+ amygdalin 

498.394-7.5 [M+ACN+H]+ betulinic acid 

501.3585-7.5 [M+FA-H]- betulinic acid 

502.1292-1.65 [M+2Na-H]+ amygdalin 

502.1569-1.65 [M+FA-H]- amygdalin 

570.1443-1.65 [M+TFA-H]- amygdalin 

571.2795-4.95 [2M+H]+ piperine 

579.1724-2.59 [M-H]- naringin 

579.3422-2.06 [2M+H]+ atropine 

581.1863-2.59 [M+H]+ naringin 

593.2612-4.95 [2M+Na]+ piperine 

598.2128-2.59 [M+NH4]
+ naringin 

603.1681-2.58 [M+Na]+ naringin 

603.2496-2.93 [2M+H]+ dehydroevodiamine 

609.2343-4.95 [2M+K]+ piperine 
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611.4051-5.16 [2M+H]+ capsaicin 

615.1492-2.59 [M+Cl]- naringin 

625.1781-2.58 [M+FA-H]- naringin 

633.387-5.15 [2M+Na]+ capsaicin 

649.3612-5.16 [2M+K]+ capsaicin 

649.3739-1.92 [2M+H]+ quinine 

693.1652-2.59 [M+TFA-H]- naringin 

707.1834-1.36 [2M-H]- chlorogenic acid 

731.1777-1.36 [2M+Na]+ chlorogenic acid 

911.7138-7.5 [2M-H]- betulinic acid 

913.3073-1.66 [2M-H]- amygdalin 

913.3111-1.64 [2M-H]- amygdalin 

937.3046-1.64 [2M+Na]+ amygdalin 

937.3082-1.65 [2M+Na]+ amygdalin 

959.3157-1.65 [2M+FA-H]- amygdalin 

1159.3512-2.59 [2M-H]- naringin 

1161.364-2.59 [2M+H]+ naringin 

1161.3663-2.59 [2M+H]+ naringin 

1205.3577-2.58 2M+FA-H]- naringin 
a Each feature is described by its measured mass to charge ratio (m/z) and retention time (TR, min.) 
bACN = acetonitrile, FA = formic acid ,TFA = trifluoroacetic acid,. 
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Figure S6. Positive mode base peak chromatograms of an isolated berberine standard 

 

Notes. Figure A shows the full scan within the time range of 2.00 to 4.50 min. Figure B shows the selected ion chromatogram 

(XIC) for berberine at m/z 336.1227, while Figure C shows the selected ion chromatogram (XIC) for a possible impurity, which 

is putatively identified as 7,8-dihydroberberine at m/z 338.1385.  The two ions have different retention time, making the latter not 

an adduct or isotope of berberine. Figure D to F show the mass spectra of the full scan and selected ion chromatograms of 

berberine and putative 7,8-dihydroberberine.  NL represents the “normalization level” or intensity used to normalize the 

abundance on the y-axis. 
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Figure R1. Chemical structures of berberine (A) and piperine (B). 

    
 

A      B 

 


