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Data from global networks and satellite sensors have been used to monitor a wide

array of processes and variables, such as temperature, precipitation, etc. The mod-

eling and analysis of global data has been extensively studied in the realm of spatial

statistics in recent years. In this dissertation, we present our research in the following

two areas. In the first project we consider the asymptotics of the popularly used

covariance and variogram estimators based on Method of Moments (MOM) for sta-

tionary processes on the circle. Although it has been known that such estimators are

asymptotically unbiased and consistent when modeling the stationary process on Eu-

clidean spaces, our findings on the circle seem to contradict these results. Specifically,

we show that the MOM covariance estimator is biased and the true covariance func-

tion may not be identifiable based on this estimator. On the other hand, the MOM

variogram estimator is unbiased but inconsistent under the assumption of Gaussian-

ity. Our second research focus is on global data generation. Our proposed parametric

models generalize some of existing parametric models to capture the variation across

latitudes when modeling the covariance structure of axially symmetric processes on

the sphere. We demonstrate that the axially symmetric data on the sphere can be

decomposed as Fourier series on circles, where the Fourier random coefficients can be

expressed as circularly-symmetric complex random vectors. We develop an algorithm

to generate axially symmetric data that follows the given covariance structure. All of

the above theories and results are supplemented via simulations.
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CHAPTER I

INTRODUCTION

In this chapter we will give a brief introduction to some of the basic concepts

in spatial statistics, Specifically, we will discuss stationarity and intrinsic stationar-

ity, covariance and variogram functions and their properties, mean square continuity,

spectral representations and spectral densities, complex random processes and Gaus-

sian random vectors, as well as some basic properties related to circulant and block

circulant matrices.

1.1 Spatial Random Field

A random process is a collection of random variables {Z(x) : x ∈ Ω}, defined in

a common probability space that takes values on a specific domain Ω. Generally, Ω

may take a variety of forms as given below.

• x ∈ Ω = N , the set of all integers: Z(x) is a time series.

• x ∈ Ω = R1: Z(x) is a random process, commonly referred as a stochastic

process.

• x ∈ Ω = Rd: Z(x) is a random field or a spatial process if d > 1.

• x ∈ Ω = S2: Z(x) is a random process on the sphere.

• x ∈ Ω = Rd × R: Z(x) is a spatio-temporal process that involves both location

and time.
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We now denote {Z(x) : x ∈ D ⊂ Rd} as a real-valued spatial random field

in d-dimensional Euclidean space Rd, where x is the location, varying over a fixed

domain D. The distribution of Z(x) is characterized by its finite-dimensional dis-

tribution function, that is, the distribution function of the random vector Z˜ =

(Z(x1), . . . , Z(xn))T given by

F (h1, . . . , hn) = P (Z(x1) ≤ h1, . . . , Z(xn) ≤ hn), (1.1)

for any n and any sequence of locations {x1, x2, . . . , xn} and h1, . . . , hn ∈ R.

1.1.1 Stationarity and Isotropy

A spatial random field Z(x) is said to be strictly stationary, if for any n, x1, . . . , xn ∈

Rd, h1, . . . , hn ∈ R and x ∈ Rd, Z(x) is invariant under translation, that is,

P (Z(x1 + x) ≤ h1, . . . , Z(xn + x) ≤ hn) = P (Z(x1) ≤ h1, . . . , Z(xn) ≤ hn). (1.2)

The assumption of strict stationarity is normally too strong as it involves the

distribution of the random field. Another commonly used but weaker assumption is

the weak stationarity. More specifically, a random process Z(x) is weakly stationary

(or simply stationary) if

E(Z(x)) = µ

E(Z2(x)) < ∞

C(h) = Cov(Z(x), Z(x+ h)). (1.3)
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In other words a random process Z(x) is stationary if it has a constant mean

and finite second moment as well as a (auto-)covariance function C(h) that depends

only on the spatial distance between the two locations. Further, a strictly stationary

random field with finite second moment is (weakly) stationary, but weak stationarity

does not imply strict stationarity unless Z(x) is a Gaussian random field, under which

both stationarities are equivalent, as the finite-dimensional distribution of a Gaussian

random field is multivariate normal, which is uniquely determined by the first and

second moments.

The covariance function C(h) of a stationary process Z(x) on Rd has the following

properties.

(i) C(0) ≥ 0;

(ii) C(h) = C(−h);

(iii) |C(h)| ≤ C(0);

(iv) If C1(h), C2(h), . . . , Cn(h) are valid covariance functions, then each of the fol-

lowing functions C(h) is also a valid covariance function.

(a) C(h) = a1C1(h) + a2C2(h), ∀a1, a2 ≥ 0;

(b) C(h) = C1(h)C2(h);

(c) lim
n→∞

Cn(h) = C(h), ∀h ∈ Rd.

A function C(·) on Rd is non-negative definite if and only if

N∑
i,j=1

aiajC(xi − xj) ≥ 0, (1.4)

3



for any integer N , any constants a1, a2, . . . , aN , and any locations x1, x2, . . . , xN ∈

D ⊆ Rd.

A valid covariance function must be positive definite. On the other hand, given a

positive definite function, one can always define a family Z(x), x ∈ D of zero-mean

Gaussian random process with the given function as its covariance function.

A stationary process with a covariance function C(||h||) which is free from direction

is called isotropy. The random field, Z(x), on Rd is strictly isotropic if the joint

distributions are invariant under all rigid motions, i.e., for any orthogonal d × d

matrix H and any x ∈ Rd,

P (Z(Hx1 +x) ≤ h1, . . . , Z(Hxn+x) ≤ hn) = P (Z(x1) ≤ h1, . . . , Z(xn) ≤ hn). (1.5)

Isotropy assumes that it is not required to distinguish one direction from another

for the correlation of a random field Z(x). When describing the correlation between

random fields at two locations, the correlation of Z(x) at these two locations is the

same as long as these two points are within the same distance.

The variogram function proposed by Matheron (1973) is an alternative to the

covariance function. It is defined as the variance of the difference between random

fields at two locations, that is,

2γ(h) = V ar(Z(x+ h)− Z(x)). (1.6)
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Here γ(h) is called the semivariogram. If the variogram function solely depends on

the distance between the two locations, then the process with finite constant mean is

said to be intrinsically stationary. If Z(x) is further assumed to be stationary with

covariance function C(h), then γ(h) = C(0)−C(h). Intrinsic stationarity is defined in

terms of the variogram and it is more general than (weak) stationarity that is defined

in terms of covariance. Clearly, when C(h) is known, we can obtain γ(h), but the

reverse is not true. For example, consider the linear semivariogram function given

below,

γ(h) =

 a2 + σ2h , h > 0;

0 , otherwise,

where a, σ ∈ R. Since γ(h) → ∞ as h → ∞, the process with the above semivari-

ogram is not stationary and C(h) does not exist.

Parallel to positive definiteness for the covariance function, the variogram is con-

ditionally negative definite, that is,

N∑
i,j=1

aiaj2γ(xi − xj) ≤ 0, (1.7)

for any integer N , any constants a1, a2, . . . , aN with
∑N

i=1 ai = 0, and any locations

x1, x2, . . . , xN ∈ D ⊆ Rd.
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1.1.2 Mean Square Continuity

For a sequence of random variables X1, X2, . . . and a random variable X defined

on a common probability space, define Xn
L2

→ X if E(X2) <∞ and E(Xn−X)2 → 0

as n→∞. We then say that {Xn} converges in L2 to X if there exists such a X.

There is no simple relationship between C(h) and the smoothness of Z(x). Sup-

pose Z(x) is a random field on Rd, then Z(x) is mean square continuous at x if

lim
h→0

E(Z(x+ h)− Z(x))2 = 0.

If Z(x) is stationary and C(·) is its covariance function then E(Z(x+ h)− Z(x))2 =

2(C(0) − C(h)). Therefore Z(x) is mean square continuous if and only if C(·) is

continuous at the origin.

1.1.3 Spectral Representation of a Random Field

In spatial statistics, sometimes it is more convenient to use complex valued random

functions, rather than real valued random functions. We say, Z(x) = U(x) + iV (x)

is a complex random field if U(x), V (x) are real random fields. If U(x) and V (x) are

stationary so is Z(x). Let Z̄ represents the conjugate of the complex number Z. The

covariance function can be defined as,

C(h) = cov(Z(x+ h), Z(x)), C(−h) = C(h).
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For any complex constants c1, . . . , cn, and any locations x1, x2, . . . , xn,

n∑
i,j=1

cic̄jC(xi − xj) ≥ 0. (1.8)

Suppose ω1, . . . , ωn ∈ Rd and let Z1, . . . , Zn be mean zero complex-valued random

variables with E(ZiZ̄j) = 0, i 6= j and E|Zi|2 = fi. Then the random sum

Z(x) =
n∑
k=1

Zke
iωTk x, x ∈ Rd (1.9)

is a weakly stationary complex random field in Rd with possibly complex-valued co-

variance function C(x) =
∑n

k=1 fke
iωTk x.

Further, if we consider the integral as a limit in L2 of the above random sum, then

the covariance function can be represented as,

C(x) =

∫
Rd
eiω

T xF (dω), (1.10)

where F is called the spectral distribution. Here is a more general result from Bochner

(for example, Stein, 1999).

Theorem 1.1 (Bochner’s Theorem).

A complex valued covariance function C(·) on Rd is a weakly stationary mean square

continuous complex-valued random field on Rd if and only if it can be represented as

(1.10) , where F is a positive measure.
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If F has a density (spectral density), denoted by f with respect to Lebesgue

measure, (i.e. if such an f exists) we can use the inversion formula to obtain f :

f(ω) =
1

(2π)d

∫
Rd
e−iω

T xC(x)dx. (1.11)

1.1.4 Spectral Densities

Here we provide some examples of isotropic covariance functions and their corre-

sponding spectral densities.

(i) Rational Functions that are even, non-negative and integrable. The correspond-

ing covariance functions can be expressed in terms of elementary functions. For

example, if f(ω) = φ(α2 +ω2)−1, then C(h) = πφα−1e−α|h| (obtained by contour

integration).

(ii) The Gaussian covariance function is the most commonly used covariance func-

tion for a smooth process on R, where the covariance function is given by

C(h) = ce−αh
2

and the corresponding spectral density is f(ω) = 1
2
√
πα
ce

−ω2

4α .

(iii) The Matérn class has a more practical use and it is more frequently used in

spatial statistics. The spectral density is of the form f(ω) = 1
φ(α2+ω2)ν+1/2 where

φ, ν, α > 0 and the corresponding covariance function is given by

C(h) =
π1/2φ

2ν−1Γ(ν + 1/2)α2ν
(α|h|)νYν(α|t|) (1.12)

where Yν is the modified Bessel function. The larger ν is, the smoother the Yν .

Further, Yν will be m times mean square differentiable if and only if ν > m.
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When ν is of the form of (m + 1/2) with m being a non-negative integer, the

spectral density is rational and the covariance function is of the form e−α|h|·

polynomial(|h|). For example, when ν = 1
2
, C(h) corresponds to exponential

model and when ν = 3
2
, it is the transformation of the exponential family of

order 2:

ν = 1/2 : C(h) = πφα−1e−α|h|

ν = 3/2 : C(h) =
1

2
πφα−3e−α|h|(1 + α|h|).

1.2 Circularly-Symmetric Gaussian Random Vectors

Now we introduce circularly-symmetric random variables and vectors. A complex

random variable Z is circularly-symmetric if both Z and eiφZ have the same proba-

bility distribution for all real φ. Since E[eiφZ] = eiφE[Z], any circularly-symmetric

complex random variable must have E[Z] = 0.

Let Z˜ = (Z1, Z2, . . . , Zn)T , where Zj = (ZRe
j , ZIm

j )T and j = 1, 2, . . . , n be a zero

mean complex random vector of dimension 2n. Then its covariance matrix KZ˜ and

the pseudo-covariance matrix MZ˜ are defined as follows:

KZ˜ = E[Z˜Z˜∗], (1.13)

MZ˜ = E[Z˜Z˜T ], (1.14)
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where Z˜∗ = Z̄˜T is the conjugate transpose of Z˜ .

Generally, to characterize the relationship of a complex random vector, one needs

both covariance and pseudo-covariance matrices. First note that a complex random

variable Z = ZRe + iZIm is (complex) Gaussian if both ZRe and ZIm are real and

jointly Gaussian. Now consider a vector Z˜ = (Z1, Z2)T where Z1 = ZRe
1 + iZIm

1 and

Z2 = Z∗1 (ZRe
2 = ZRe

1 , ZIm
2 = −ZIm

1 ). The four real and imaginary parts of Z˜ are

jointly Gaussian where each follows N(0, 1/2), so Z˜ is complex Gaussian.

The covariance matrix defined by (1.13) is given by

MZ˜ = E

 Z2
1 Z1Z

∗
1

Z1Z
∗
1 Z2

1

 =

0 1

1 0

 ,

and the pseudo-covariance matrix defined by (1.14) is given by

KZ˜ = E

Z1Z
∗
1 Z2

1

Z2
1 Z1Z

∗
1

 =

1 0

0 1

 .

Note that E[Z2
1 ] = E[ZRe

1 ZRe
1 − ZIm

1 ZIm
1 ] = 1/2 − 1/2 = 0. If both Z1 and Z2 are

real, then covariance and pseudo-covariance matrices are the same, i.e., MZ˜ ≡ KZ˜.

The covariance matrix of the real Z˜ = (Z˜Re, Z˜ Im)T random vector with dimension

of 2n, where Z˜Re = (ZRe
1 , ZRe

1 , . . . , ZRe
1 ) and Z˜ Im = (ZIm

1 , ZIm
2 , . . . , ZIm

n ), can be
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determined by both KZ˜ and MZ˜, given as follows:

E[Z˜ReZ˜Re] =
1

2
Re(KZ˜ +MZ˜),

E[Z˜ ImZ˜ Im] =
1

2
Re(KZ˜ −MZ˜),

E[Z˜ReZ˜ Im] =
1

2
Im(−KZ˜ +MZ˜),

E[Z˜ ImZ˜Re] =
1

2
Im(KZ˜ +MZ˜). (1.15)

We can get the covariance of Z˜ = (Z˜Re, Z˜ Im)T as follow,

Cov(Z˜) = E(Z˜Z˜T )

=

 E[Z˜ReZ˜Re] E[Z˜ReZ˜ Im]

E[Z˜ ImZ˜Re] E[Z˜ ImZ˜ Im]

 .

For a circularly-symmetric complex random vector, we have the following theorem.

Theorem 1.2 (Gallager, 2008).

Let Z˜ be a zero mean Gaussian random vector. Then MZ˜ = 0 if and only if Z˜ is

circularly-symmetric.
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1.3 Circulant Matrix

A square matrix An×n is a circulant matrix if the elements of each row (except

first row) has the previous row shifted by one place to the right.

A = circ[ao, a1, · · · , an−1] =



a0 a1 a2 · · · an−1

an−1 a0 a1 · · · an−2

an−2 an−1 a0 · · · an−3

...
...

...
. . .

...

a1 a2 a3 · · · a0


. (1.16)

The eigenvalues of A are given by

λl =
n−1∑
k=0

ake
i2lkπ/n

=
n−1∑
k=0

akρ
k
l , l = 0, 1, 2, · · · , n− 1,

where ρl = ei2πl/n represents the lth root of 1, and the corresponding (unitary) eigen-

vector is given by

ψl =
1√
n

(1, ρl, ρ
2
l , · · · , ρn−1

l )T .

If a matrix A is real symmetric, that is, ai = an−i, then its eigenvalues are real.

More specifically, for even n = 2N the eigenvalues λj = λn−j (there are either two

eigenvalues or none with odd multiplicity), for odd n = 2N − 1 the eigenvalue λ0

12



equal to any λj for 1 ≤ j ≤ N − 1 or λ0 occurs with odd multiplicity. A square

matrix B is Hermitian, if and only if B∗ = B where B∗ is the complex conjugate. If

B is real then B∗ = BT . According to Tee (2005) Hermitian matrices has a full set

of orthogonal eigenvectors with corresponding real eigenvalues.

1.3.1 Block Circulant Matrices

The idea of a block circulant matrix was first proposed by Muir (1920). A matrix

Bnp×np is a block-circulant matrix if it has the following form,

B = bcirc[Ao, A1, · · · , An−1] =



A0 A1 A2 · · · An−1

An−1 A0 A1 · · · An−2

An−2 An−1 A0 · · · An−3

...
...

...
. . .

...

A1 A2 A3 · · · A0


(1.17)

where Aj are (p×p) sub-matrices of complex or real valued elements. De Mazancourt

and Gerlic (1983) proposed some methodologies to find the inverse of B. Let M be a

block-permutation matrix,

M =



0 Ip 0 · · · 0

0 0 Ip · · · 0

...
...

...
. . .

...

0 0 0 · · · Ip

Ip 0 0 · · · 0


,
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where Ip is p× p identity matrix and B can be defined as follows,

B =
n−1∑
k=0

AkM
k.

Define M0 as an np× np identity matrix, the eigenvalues of M given by ρl, and the

eigenmatrix of M can be given by Qnp×np = {ψ0˜, ψ1˜, . . . , ψn−1

˜
}. It can be shown

(Trapp, 1973) that Q−1 = Q∗/n where Q∗ is the conjugate transpose of Q. Thus we

can write,

M = QDQ−1 =
QDQ∗

n
,

where D is a diagonal matrix and the diagonal elements Di, i = 0, 1, . . . , n− 1, are

given by the discrete Fourier transform of the blocks Aj,

Di =
n−1∑
k=0

Ake
i2lkπ/n.

The inverse of matrix B takes the following form,

B−1 = Q ·



D−1
0 0 · · · 0

0 D−1
1 · · · 0

...
...

. . .
...

0 0 · · · Dn−1


·Q−1.
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The eigenmatrix Q is solely dependent on the dimension of B and the eigenvalues

of B (ρl’s). In other words, B is not dependent on the blocks (Aj’s), i.e., for any

block diagonal matrix Dnp×np, QDQ
−1 is a block circulant matrix, and it immediately

follows that the inverse of the matrix B is also a block circulant matrix.

When Aj is 1× 1, B = A, D−1
i = λ−1, and the eigenmatrix has a dimension of n× n

then

A−1 = QΛ−1QT , where Λ = {λ0, . . . , λn−1}.

When A is real symmetric Q is also real and symmetric and Q−1 = QT .
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CHAPTER II

LITERATURE REVIEW

2.1 Spatial Data

What is meant by spatial data? In general, spatial data, or in other words geospa-

tial data, is information about a physical object or a measurement that can be repre-

sented by numerical values in a geographic coordinate system. Spatial data appeared

in the form of maps in 1686 but spatial modeling did not start until 1907 (Cressie,

1993). There are many questions that are of interest to geoscientists and engineers

about spatial data. Many questions naturally arise such as how to model a spatial

process and then use these models to make predictions at unobserved locations. There

are many challenges when modeling spatial data, however. Every point (location ob-

served) is a random variable and only one observation/measurement is available. In

addition the number of unknowns to estimate is quite large compared to the avail-

able data, which creates a high-dimensional data problem. For example, if data

are observed at 10 locations, in order to estimate the variance-covariance matrix to

characterize the spatial dependency for future predictions, there will be 55 unknown

entities in the variance-covariance matrix to be estimated. We will discuss some basic

properties of geospatial data by exploring some popular data sets from the literature.

Since 1978 Microwave Sounding Units (MSU) have measured radiation emitted by

the earth’s atmosphere from NOAA polar orbiting satellites. The different channels of

the MSU measure different frequencies of radiation proportional to the temperature
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of broad vertical layers of the atmosphere. Tropospheric and lower stratospheric

temperature data are collected by NOAA’s TIROS-N polar-orbiting satellites and

adjusted for time-dependent biases by the Global Hydrology and Climate Center at

the University of Alabama in Huntsville (UAH)1. More information about how the

data is processed can be found in Christy et al. (2000). Satellites do not measure

temperature directly but measure radiances in various wavelength bands and then

mathematically invert to obtain the actual temperature.

−150 −100 −50 0 50 100 150
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50
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50

longitude

 

−400

−200

0

200

 

Figure 1. MSU Data Observed in August 2002, Grid Resolution 2.5◦ Latitude ×

2.5◦ Longitude with 10368 Observations.

1https://www.ncdc.noaa.gov/temp-and-precip/msu/overview
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Figure 2. MSU Data Distribution at each Latitude (Data Between 60◦S and 60◦N

were Considered)

Level 3 Total Ozone Mapping Spectrometer (TOMS) data2 is another popular

global data set discussed in literature which has more than 20000 spatial points or

gridded points (Cressie and Johannesson, 2008; Jun and Stein, 2008; Stein, 2007).

There were some missing values in this data set. Stein (2007) used the average of 8

neighboring locations to replace the missing values. They used spherical harmonics

with associated Legendre polynomials of up to 78 covariates to remove the spatial

trends to study axial symmetry (discussed in Chapter 4) of the global data.

2http://disc.sci.gsfc.nasa.gov/data/datapool/TOMS

18

http://disc.sci.gsfc.nasa.gov/data/datapool/TOMS


−150 −100 −50 0 50 100 150

−
50

0
50

longitude

 

0

100

200

300

400

 

Figure 3. TOMS Data: Resolution 1◦ Latitude × 1.25◦ Longitude in May, 1-6 1990.

The Instrument used Back-Scattered Sunlight, Therefore Measurements were not

Available South of 73◦S During This Week.
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Figure 4. TOMS Data Distribution at Each Latitude (Data Between 50◦S and 50◦N

were Considered)

Both MSU and TOMS data demonstrate strong variation when it is closer to

Earth’s poles. This shows the complexity of geospatial data. In addition, collecting

geospatial data could be very expensive and time consuming.
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2.2 Research Studies in Spatial Data

There has been extensive statistical research on methodologies and techniques

developed under Euclidean space Rd. Approaches that are valid in Rd have been ap-

plied to analyze global-scale data in recent years, due to global networks and satellite

sensors that have been used to monitor a wide array of global-scale processes and

variables. Table 1 lists some commonly used covariance models that are valid on R3.

Table 1. Commonly used Covariance Models in R3

Family C(h) Parameters

Matérn σ2

2ν−1Γ(ν)
(h
φ
)νYν(

h
φ
) ν, σ2, φ

Spherical σ2(1− 3h
2φ

+ 1
2
(h
φ
)3)I(0≤h≤φ) φ, σ2

Exponential σ2 exp{−(h/φ)} φ, σ2

Gaussian σ2 exp{−(h/φ)2} φ, σ2

However, this can have unforeseen impacts, such as making use of models that are

valid in Rd but in fact might not be valid under spherical coordinate systems. Huang

et al. (2011) have investigated some of commonly used covariance models that are

valid in Rd, and they pointed out that many are actually invalid on the sphere.

In particular, Huang et al. (2011) conjectured (and later proved by Gneiting (2013))

that commonly used Matérn covariance model is not valid if the smoothness param-

eter (ν) is greater than 0.5, when modeling the homogeneous processes on the Earth.
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The main emphasis of this dissertation is on random processes on a unit sphere.

In particular, we focus on covariance models and estimation in modeling global data.

Note that the assumption of homogeneity on the sphere requires that the mean of

the random process is constant and that the covariance function of the process at

two locations depends only on the spherical distance. This assumption is difficult

to evaluate and often deemed unrealistic in practice. Several approaches on mod-

eling non-homogeneity have been proposed in literature. For example, Stein (2007)

argued that Total Ozone Mapping Spectrometer (TOMS) data varies strongly with

latitudes and thus homogeneous models are not suitable. Furthermore, aerosol depth

(AOD) from Multi-angle Imaging Spectrometer (MISR), Sea Surface Temperature

(SST) from RRMM Microwave Imager (TMI) are some other examples for anisotropy

global data on a sphere. Monte Carlo Markov Chain (MCMC) modelling is another

approach to model non-stationary covariance models on a sphere. Lindgren et al.

(2011) analyzed global temperature data with a non-stationary model defined on a

sphere using Gaussian Markov Random Fields (GMRF) and Stochastic Partial Dif-

ferential Equations (SPDE). Further Bolin and Lindgren (2011) constructed a class

of stochastic field models using SPDEs and non-stationary covariance models were

obtained by spatially varying the parameters in the SPDEs, where they claimed that

the method is more efficient than standard MCMC procedures.

The analysis and modeling of axially symmetric data on the sphere has received

increasing attention in literature in recent years. It was first introduced by Jones

(1963), where the covariance of random processes between two spatial points depends

on the longitudes only through their difference between those points. This assumption
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is more plausible and reasonable when modeling global data. For example, geophysi-

cal processes or variables such as temperature and moisture often exist homogeneity

on longitudes rather than latitudes. Stein (2007) used spherical harmonics to model

(TOMS) data that exhibit an axial symmetry. Jun and Stein (2008) applied first-

order differential operators to an isotropic process to draw conclusions about the

local properties of axially symmetric spatio-temporal processes. Hitczenko and Stein

(2012) investigated the properties and theory of different forms of axially symmetric

processes on the sphere. Li (2013) used convolution methods with Matérn-type kernel

functions to capture the non-stationarity of random fields on a sphere. Huang et al.

(2012) developed a new and simplified representation for a valid axially symmetric

process and also explored the construction of parametric models for axially symmetric

processes.

The computational cost for modeling and analyzing axially symmetric data is very

expensive. As we will see in Chapter 4, the covariance function for axially symmet-

ric processes requires triple summations, which one is to estimate O(n3) parameters.

Although the covariance structure given by Huang et al. (2012) might potentially

reduce the number of parameters to be estimated in the order of O(n2), the large

data sets from global sensors and satellites often add much more computational cost.

Stein (2007) used 170 parameters from an axially symmetric covariance structure to

model TOMS data but was still not able to capture the global dependency. Cressie

and Johannesson (2008) used more than 396 parameters when they modeled global

data. Hence, it is necessary to develop practically useful parametric models with
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easily interpretable parameters.

Statistical simulations have been one of the critical components in statistical re-

search. Through simulations, the researcher can explore how a proposed statistical

model/method behaves in the simulated and reproducible data that mimic the real

applications. For axially symmetric processes, however, it seems that in literature

there is a lack of simulations that generate global data that follow the given axially

symmetric covariance structure. On the other hand, as we will see later, the spectral

representation of the process on the sphere is a summation of Legendre polynomi-

als, which is distinct from its planar counterpart as represented by an integration

of Bessel functions in Rd. This distinction could be understood through group rep-

resentation theory, which possibly lies on the compactness of a sphere. Therefore,

the estimation methods proposed based on Rd should be reexamined for validity. All

these areas are the basis for an exciting new line of research we are currently pursuing.

2.3 The Outline of This Dissertation

In Chapter 3 we explore some of the properties of commonly used covariance and

variogram estimators for the stationary process on the circle based on Method of Mo-

ments (MOM). In contrast to the results given in time series and the Euclidean space,

the MOM covariance estimator is biased and the true covariance function might not

be identifiable based on the MOM estimator. On the other hand, the MOM variogram

estimator is unbiased, but it is inconsistent under the assumption of Gaussianity. In

Chapter 4 we first introduce the random process on the sphere. We then discuss the

homogeneous process and the spectral representation for its covariance function. Our
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main focus in this chapter is the axially symmetric process and its covariance func-

tion representation through the discrete Fourier transform. The parametric models

for characterizing such processes will also be discussed. In particular, we extend the

models given in Huang et al. (2012) and provide some graphical properties of those

models. These generalized models will be fully implemented in Chapter 5 for axially

symmetric data generation. In Chapter 5, we implement an algorithm to generate

axially symmetric data based on the given covariance structure. We validate our gen-

erated data via simulations. Finally, Chapter 6 gives a summary of this research and

provides further research directions.
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CHAPTER III

ASYMPTOTICS OF ESTIMATORS ON A CIRCLE

3.1 Introduction

For a stationary time series process, the covariance and variogram functions have

been commonly used in the literature. More specifically, let X(t) be a stationary

process with unknown constant mean µ and covariance function C(h), h ≥ 0. Let

γ(h) = C(0)−C(h) be the variogram function. For simplicity, we assume {X(tk), k =

1, 2, . . . , n} is a sequence of random variables observed on gridded locations {tk =

(k − 1)δ, k ≥ 1} in R1 with δ = tk − tk−1 > 0 being the fixed interval length. First,

note that X̄ = 1
n

∑n
k=1X(tk) is an unbiased estimator of µ, and further under certain

ergodic conditions, for example, the covariance function converges to zero as the lag

h→∞. Thus,

var(X̄)→ 0, as n→∞,

implying the consistency of X̄ when estimating µ (for example, Cressie, 1993). The co-

variance and variogram function estimators based on the method of moments (MOM)

are given by

Ĉ(h) =
1

n− h

n−h∑
j=1

(X(tj + h)− X̄)(X(tj)− X̄), h = 1, 2, · · · , n− 1.

2γ̂(h) =
1

n− h

n−h∑
j=1

(X(tj + h)−X(tj))
2, h = 1, 2, · · · , n− 1,
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respectively. It has been shown (for example, Cressie, 1993) that both the variogram

and covariance MOM estimators are biased. While the bias for the covariance MOM

estimator is of the rate of O(1/n), the bias for the variogram MOM estimator is

smaller. Furthermore, the asymptotic joint Gaussianity of the estimators {Ĉ(h)} and

of 2γ̂(h) has also been established under the same ergodic conditions (i.e., conditions

that ensure the dependence in the process dies off sufficiently quickly as the lag dis-

tance increases). Finally, for fixed h, both the variances and covariances of {Ĉ(h)}

and of 2γ̂(h) can be found (for example, in Cressie, 1985; Fuller, 2009) as of O(1/n),

which demonstrates the consistency of both estimators. Parallel results can also be

obtained for the covariance and variogram MOM estimators in Rd (Cressie, 1993).

There are two distinct asymptotics in spatial statistics: increasing domain asymp-

totics, where more data are collected by increasing the domain, and fixed-domain

or infill asymptotics, where more data are collected by sampling more densely in a

fixed domain. Asymptotic properties of estimators are quite different under the two

asymptotics. The above asymptotics in the time series and Rd belong to the first one.

There have been extensive discussions of the infill asymptotics in the literature. For

example, Zhang (2004) showed that for the popularly used Matérn covariance model,

one cannot correctly distinguish between two Matérn covariances with probability

one no matter how many sample data are observed in a fixed region. Consequently,

not all covariance parameters in Matérn models are consistently estimable. However,

discussion about the asymptotics on the circle and sphere is lacking. In particular,

with the increasing interest in the study of global data on the sphere, it is necessary

that the infill asymptotics of existing estimators be examined. As the first step for
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the study of the asymptotics of covariance and variogram estimators on the sphere,

we consider their asymptotics on the circle.

This chapter is organized as follows. We first introduce the random processes on

the circle and then give the spectral representation of the covariance and variogram

functions for stationary processes. Under the assumption of stationary Gaussian

process on the circle, we show that the unbiased estimator X̄ is not consistent when

estimating µ. Then, we demonstrate that the covariance function estimator based

on MOM is biased with non-estimable bias, while the variogram MOM estimator is

unbiased but inconsistent. Our results are supplemented via simulations.

3.1.1 Random Process on a Circle

Let X(t) be the random process on the unit circle S1. If X(t) is further assumed

to be with finite second moment and continuity in quadratic mean, then X(t) can be

represented in a Fourier series which is convergent in quadratic mean (Dufour and

Roy, 1976),

X(t) = A0 +
∞∑
n=1

(An cos(nt) +Bn sin(nt)), t ∈ S1,

where

A0 =
1

2π

∫
S

X(t)dt, An =
1

π

∫
S

X(t) cos(nt)dt, Bn =
1

π

∫
S

X(t) sin(nt)dt.
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Let s, t ∈ S1. The covariance function C(s, t) of the process X(t) on the given

locations s and t is given below

C(s, t) = cov(X(s), X(t)).

Now we assume the underlying process X(t) is stationary on the circle, that is,

E(X(t)) = µ unknown, and its covariance function solely depends on the angular

distance θ,

C(θ) = cov(X(t+ θ), X(t)), θ ∈ [0, π].

Under the assumption of stationarity, we have

cov(An, Am) = cov(Bn, Bm) = anδ(n,m), and cov(An, Bm) = 0, for n ≥ 0,m > 0,

with an ≥ 0, and δ(n,m) = 1 if n = m, and 0 otherwise. Further the covariance

function C(θ) can be written as the following spectral representation:

C(θ) = a0 +
∞∑
n=1

an cos(nθ), for θ ∈ [0, π].

By the orthogonality of {cos(nθ), n = 0, 1, 2, · · · , } on θ ∈ [0, π], we have

a0 =
1

π

∫ π

0

C(θ)dθ, an =
2

π

∫ π

0

C(θ) cos(nθ)dθ, n ≥ 1.
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If a random process X(t) is intrinsically stationary, one has E(X(t)) = µ, an unknown

constant, and the variogram function depends only on the angular distance θ, given

by

2γ(θ) = var(X(t+ θ)−X(t)), t ∈ S1.

Note that if X(t) is stationary, then

γ(θ) = C(0)− C(θ).

Equivalently, γ(θ) has the following spectral representation

γ(θ) =
∞∑
n=1

an(1− cos(nθ)).

3.1.2 Mean and Covariance Estimation on the Circle

We now consider estimation of the unknown mean µ and covariance function C(θ).

Let {X(tk), k = 1, 2, · · · , n} be a collection of gridded observations on the unit circle,

with tk = (k − 1) ∗ 2π/n, k = 1, 2, · · · , n. For simplicity, let n = 2N be an even

number. Denote X˜ = (X(t1), X(t2), · · · , X(tn))T as the observed random vector.

29



When the underlying process X(t) is stationary on the unit circle, the variance-

covariance matrix of X˜ is given by

Σ =



C(0) · · · C((N − 1)δ) C(π) C((N − 1)δ) · · · C(δ)

C(δ) · · · C((N − 2)δ) C((N − 1)δ) C(π) · · · C(2δ)

C(2δ) · · · C((N − 3)δ) C((N − 2)δ) C((N − 1)δ) · · · C(3δ)

...
...

...
...

...
...

...

C(δ) · · · C(π) C((N − 1)δ) C((N − 2)δ) · · · C(0)



where Σ is a symmetric circulant matrix with elements

C(0), C(δ), C(2δ), · · · , C((N − 1)δ), C(π), C((N − 1)δ), · · · , C(δ), where δ = 2π/n.

Therefore the sample mean (denoting 1˜n = (1, 1, . . . , 1)Tn×1),

X̄ =
1

n
1˜TnX˜

is an unbiased estimator of µ with variance given by

var(X̄) = cov

(
1

n
1˜TnX˜ , 1

n
1˜TnX˜

)
=

1

n2
1˜TnΣ1˜n

=
1

n

(
C(0) + C(π) + 2

N−1∑
m=1

C(m2π/n)

)
.
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If we assume that C(θ) is a continuous function on [0, π] and note the summation

in the last quantity is a trapezoid sum of C(θ) on the gridded locations within [0, π],

then,

1

π

π

2N

(
C(0) +

N−1∑
m=1

C(m2π/n) + C(π)

)
→ 1

π

∫ π

0

C(θ)dθ = a0,

as n → ∞. That is, var(X̄) → a0 as n → ∞. Therefore, we have the following

proposition.

Proposition 3.1. The sample mean X̄ is an unbiased estimator of µ with the asymp-

totic variance of a0. If a0 > 0 and X(t) is further assumed to be Gaussian, then X̄

is NOT a consistent estimator of µ.

Proof. It is only necessary to prove the second part. If X(t) is Gaussian, then X̄ ∼

N(µ, var(X̄))⇒ Z = X̄−µ√
var(X̄)

∼ N(0, 1). First, for a fixed ε0 > 0 and ε0 < a0, there

exists K, such that for all n > K, we have

|var(X̄)− a0| < ε0 ⇒ a0 − ε0 < var(X̄) < a0 + ε0.

Now for each fixed ε > 0 and all n > K,

P
(
|X̄ − µ| > ε

)
= P

(
|X̄ − µ|√
var(X̄)

>
ε√

var(X̄)

)

≥ P

(
|Z| > ε√

a0 − ε0

)
> 0.
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Hence X̄ 6→ µ in probability. The last inequality above is due to the following.

{
|Z| > ε√

a0 − ε0

}
⊆

{
|Z| > ε√

var(X̄)

}
.

Remark 1. Under the assumption of Gaussianity, Proposition 3.1 indicates that X̄

will never be a consistent estimator for µ, which contrasts to the result given in time

series and Rd.

Remark 2. Recall that, if X(t) is a stationary process on the circle, we have

a0 = var(A0)

and µ = E(A0). Therefore, a0 = 0 ⇒ µ = 0, under which var(X̄) → 0 and so X̄ is

consistent. In other words, if a0 = 0 so that X(t) is a zero mean stationary process

on the circle, then X̄ is an unbiased and consistent estimator of µ = 0.

Remark 3. If in practice, we have multiple copies of data observations on the circle,

we can then estimate a0 or var(X̄) through these copies. More explicitly, suppose

that we have i.i.d. copies of the random samples on the circle with averages denoted

as {X̄i, i = 1, 2, · · · ,m}. We then use the method of moments to estimate a0, which

is given as following:

â0 =
1

m− 1

m∑
j=1

(X̄j − ¯̄X)2,
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where ¯̄X = 1
m

∑m
k=1 X̄k. Under some regularity conditions, one can show that â0 is

an unbiased and consistent estimator of a0.

3.2 Data Generation on a Circle

To explore the properties of the MOM estimator, we performed a simulation study.

We consider two covariance functions that are valid on a circle; exponential and power

families as given below:

C(θ) = C1e
−a|θ| a > 0, C1 > 0, θ ∈ [0, π], (3.1)

C(θ) = c0 − (|θ|/a)α a > 0, α ∈ (0, 2], (3.2)

where θ ∈ [0, π] and c0 > 0 satisfies c0 ≥
∫ π

0
(θ/a)α sin θdθ.

Recall that X˜ = (X(t1), X(t2), . . . , X(tn))T is the observed gridded data on the

circle. Its variance-covariance matrix Σ is symmetric and circulant. Hence it can be

decomposed as

Σ = QΛQT ,

where Λ = diag{λ1, λ2, · · · , λn} and Q = {ψ1, ψ2, · · · , ψn} with λi, i = 1, 2 . . . , n, are

eigenvalues and ψ1, ψ2, · · · , ψn are eigenvectors of the circulant matrix, respectively.

(See Section 1.3). Therefore, let Z˜ be i.i.d. standard normal random variates. Then

X˜ = Σ1/2 ∗ Z˜ = QΛ1/2QT ∗ Z˜ ,
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is the observed data vector that follows the given covariance function.

3.3 Covariance MOM Estimator

Now we consider the MOM estimator of C(θ), which is given by

Ĉ(∆λ) =
1

n

n∑
i=1

(X(ti + ∆λ)− X̄)(X(ti)− X̄), (3.3)

where ∆λ = 0, 2π/n, 4π/n, · · · , 2(N − 1)π/n (for simplicity, we set n = 2N even).

For the simulation, we set C1 = a = 1 and choose α = 0.5, c0 ≥
∫ π

0
(θ)0.5 sin(θ)dθ.

From the Fresnel integral, it can be shown that c0 ≥ 2.4353. Now we compare

the covariance estimator (empirical) to its theoretical covariance given by (3.1) and

(3.2), respectively. We computed the MOM estimator Ĉ(∆λ) with n = 48 gridded

observations on the circle with 500 repetitions.

Remark 4. One can easily notice a shift between the theoretical and empirical values

appearing on both graphs (Figure 5). The shift can be shown to be approximately

equal to a0, where a0 = 1
π

∫ π
0
C(θ)dθ. For both covariance functions considered, we

can obtain

exponential family: a0 =
C1

aπ
(1− e−aπ),

power family: a0 = c0 −
(π
a

)α 1

α + 1
.

34



●

●

●

●

●

●

●

●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●

●

●

●

●

●

●

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

(a) exponential

# of simulations =  500
∆λ

C
ov

ar
ia

nc
e

−172.5 −90 −30 30 75 135

● Theoretical
Empirical

●

●

●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●

●

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

(b) power

# of simulations =  500
∆λ

C
ov

ar
ia

nc
e

−172.5 −90 −30 30 75 135

● Theoretical
Empirical

Figure 5. Comparison Between Theoretical and Empirical Covariances Without any

Adjustments on a Circle.

Next we consider the covariance function D(θ), after subtracting a0 from C(θ).

Since the bias seems to be equal to a0

D(θ) = C(θ)− a0.

From Remark 2, D(θ) is now the covariance function of a stationary process on the

circle, where the constant term of its spectral representation equals to zero. The

simulation setup is the same as above except that C(θ) is replaced with D(θ). The

results show that the empirical and theoretical values match very well (Figure 6).
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Figure 6. Theoretical and Empirical Covariance Comparison on a Circle Using The

Modified Covariance Function D(θ).

Remark 5. The covariance estimator is biased and the bias is close to a0, which is

non-estimable. However if i.i.d. copies of random data on the same circle are available

then one can estimate a0, i.e., â = var(X̄). The new covariance estimator could then

be estimated by subtracting â0 from the original MOM estimator as given below.

C̃(∆λ) = Ĉ(∆λ)− â0.

Our simulation shows both curves match very well (Figure 7).
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Figure 7. Theoretical and Empirical Covariance Comparison on a Circle After Sub-

strating â0 from the Empirical Covariance.

Now we theoretically calculate the unbiasedness of Ĉ(∆λ).

E(Ĉ(∆λ)) =
1

n

n∑
i=1

E((X(ti + ∆λ)− X̄)(X(ti)− X̄))

=
1

n

n∑
i=1

E((X(ti + ∆λ)− µ− (X̄ − µ))(X(ti)− µ− (X̄)− µ))

=
1

n

n∑
i=1

cov(X(ti + ∆λ), X(ti))−
1

n

n∑
i=1

E((X(ti + ∆λ)− µ)(X̄ − µ))

− 1

n

n∑
i=1

E((X(ti)− µ)(X̄ − µ)) +
1

n

n∑
i=1

E((X̄ − µ)(X̄ − µ))

= C(∆λ)− E((X̄ − µ)(X̄ − µ))− E((X̄ − µ)(X̄ − µ))

+E((X̄ − µ)(X̄ − µ))

= C(∆λ)− var(X̄).
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That is, the MOM estimator Ĉ(∆λ) of the covariance function is actually a biased

estimator with the shift amount approximately equal to a0. In other hand, if a0 = 0,

the MOM estimator Ĉ(∆λ) is an asymptotically unbiased estimator of C(θ). This

leads to the following proposition.

Proposition 3.2. The MOM covariance estimator is a biased estimator of the true

covariance function C(θ), if a0 > 0. However, if a0 = 0 so that the process is a zero

mean process then the MOM covariance estimator is asymptotically unbiased.

3.4 Variogram MOM Estimator

When the random process on a circle is stationary, the semivariogram can be

obtained by

γ(θ) = C(0)− C(θ).

In Rn, The variogram MOM estimator generally performs better than the covariance

MOM estimator (Cressie, 1993). Given gridded data observations X˜ on the unit

circle, the variogram MOM estimator is given by

γ̂(∆λ) =
1

2n

n∑
i=1

(X(ti + ∆λ)−X(ti))
2. (3.4)
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We first perform a simulation with the same set up as before. Note that the theoretical

exponential and power variogram functions are given below:

exponential : γ(θ) = C(0)− C(θ) = C1(1− e−a|θ|),

power : γ(θ) = C(0)− C(θ) = (|θ|/a)α.

We compute the variogram estimator γ̂(∆λ) with n = 48 gridded observations on the

circle with 500 repetitions and then compare them with the theoretical values. The

empirical and theoretical values match very well (Figure 8).
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Figure 8. Comparison Between Theoretical and Empirical Variogram on a Circle.
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Now we explore the asymptotics of the MOM variogram estimator.

E(γ̂(∆λ)) =
1

2n

n∑
i=1

E(X(ti + ∆λ)−X(ti))
2

=
1

2n

n∑
i=1

(2γ(∆λ)) = γ(∆λ). (3.5)

Therefore, γ̂(∆λ) is an unbiased estimator of γ(∆λ).

We first calculate the variance and covariance of the variogram estimator on the

circle. Again we consider the equal-distance gridded points on the circle {ti : 1 ≤

i ≤ n, ti = (i − 1) × 2π/n} and X˜ = (X(t1), X(t2), . . . , X(tn))T being the observed

data vectors. Assume that the random process X(t) is stationary. Then γ̂(∆λ) can

be written as

γ̂(∆λ) = X˜ TA(∆λ)X˜ .
Here for each ∆λ, A(∆λ) is a circulant matrix, and in particular, A(0) = 0. For

simplicity, we set n = 2N to be even. First we give an example for n = 6 to

demonstrate the structure of A(∆λ). Let n = 6, for each of the four distance angles

∆λ = 0, π/3, 2π/3, π, design matrices A(∆λ) are given below:
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A(0) = 0;

A(π/3) =
1

12



2 −1 0 0 0 −1

−1 2 −1 0 0 0

0 −1 2 −1 0 0

0 0 −1 2 −1 0

0 0 0 −1 2 −1

−1 0 0 0 −1 2


=

1

12
circ(2,−1, 0, 0, 0,−1);

similarly,

A(2π/3) =
1

12
circ(2, 0,−1, 0,−1, 0);

A(π) =
1

12
circ(2, 0, 0,−2, 0, 0).

In general, for 1 ≤ m ≤ N − 1, and let δ = 2π/n be the common interval length so

that ∆λ = mδ. Then we have

A(0) = 0;

A(mδ) =
1

2n
circ(2, 0, 0, . . . ,−1, 0, . . . ,−1, 0, . . . , 0),

where −1’s are placed at (m+ 1)th and (n−m+ 1)th positions;

A(Nδ) = A(π) =
1

2n
circ(2, 0, 0, . . . ,−2, 0, . . . , 0),

where −2 is placed at (N + 1)th position.
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It follows that A(∆λ) = A(mδ) is a symmetric circulant matrix. From Section

1.3, the eigenvalues of A(mδ) are then given by

λ
(A)
j =

1

2n
(2− (exp(j2πi/n))m − (exp(j2πi/n))n−m)

=
1

2n
(2− exp(mj2πi/n)− exp(−mj2πi/n))

=
1

n
(1− cos(jmλ)) =

1

n
(1− cos(j∆λ)), j = 0, 1, 2, . . . , n− 1.

for 1 ≤ m ≤ N − 1, and for m = N ,

λ
(A)
j =

1

2n
(2− 2(exp(j2πi/n))N)

=
1

n
(1− cos(jπ))

=
1

n
(1− cos(j∆λ)), j = 0, 1, · · · , n− 1.

In addition, from Section 1.3, all circulant matrices can be orthogonally diagonalized

using the same orthogonal (Fourier) matrix, denoted as P . Consequently, the trace

of the product of circulant matrices is the trace of product of diagonal matrices from

their corresponding spectral decomposition, which is the sum of the product of cor-

responding eigenvalues from those circulant matrices.
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Next we consider the distribution of the variogram estimator. First we write the

variogram estimator in the following form:

γ̂(∆λ) =
1

2n

n∑
i=1

(X(ti + ∆λ)−X(ti))
2

=
1

2n

n∑
i=1

((X(ti + ∆λ)− µ)− (X(ti)− µ))2.

Therefore,

γ̂(∆λ) = (X˜ − 1˜nµ)TA(∆λ)(X˜ − 1˜nµ). (3.6)

Note that A(∆λ) is a circulant matrix with following spectral decomposition

A(∆λ) = PΛ(A)P T ,

where P is the Fourier matrix (orthonormal), solely depending on the dimension of

A, and

Λ(A) = diag(λ
(A)
1 , λ

(A)
2 , · · · , λ(A)

n ),

with λ(A)
m =

1

n
(1− cos((m− 1)∆λ)), m = 1, 2, · · · , n.

If X˜ follows a multivariate normal distribution N(1˜nµ,Σ), then (X˜ −1˜nµ) ∼ N(0˜,Σ).
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Note that the variance-covariance matrix Σ is also a circulant matrix, which has

the following spectral decomposition:

Σ = PΛ(Σ)P T ,

with Λ(Σ) = diag(λ
(Σ)
1 , λ

(Σ)
2 , · · · , λ(Σ)

n ),

where λ
(Σ)
j =

(
C(0) + 2

N−1∑
m=1

C(mδ) cos((j − 1)mδ) + C(π) cos((j − 1)Nδ)

)
.

Let Y˜ = P T
(
X˜ − 1˜nµ), then Y˜ follows a multivariate normal distribution with mean

0˜ and variance-covariance matrix given by

var(Y˜ ) = cov(P T
(
X˜ − 1˜nµ) , P T

(
X˜ − 1˜nµ))

= P TΣP = P TPΛ(Σ)P TP = Λ(Σ).

That is, Y˜ 4= (Y1, Y2, · · · , Yn)T are independent normal random variates with mean 0

and variance λ
(Σ)
j , j = 1, 2, . . . , n, respectively.

The variogram estimator is then given by

γ̂(∆λ) = (X˜ − 1˜nµ)TA(∆λ)(X˜ − 1˜nµ)

= (P (X˜ − 1˜nµ))TΛ(A)(P T (X˜ − 1˜nµ))

= Y˜Λ(A)Y˜ =
n∑

m=1

λ(A)
m Y 2

m.
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Note that Ym√
λ

(Σ)
m

∼ N(0, 1), and so Y 2
m

λ
(Σ)
m

∼ χ2
1 (or written as χ2

1,m due to the dependency

on m), which implies

γ̂(∆λ) =
n∑

m=1

λ(A)
m λ(Σ)

m

 Ym√
λ

(Σ)
m

2

4
=

n∑
m=1

λ(A)
m λ(Σ)

m χ2
1,m.

Here χ2
1,1, χ

2
1,2, · · · , χ2

1,n are i.i.d. χ2
1 random variables. Hence

E(γ̂(∆λ)) =
n∑

m=1

λ(A)
m λ(Σ)

m , var(γ̂(∆λ)) = 2
n∑

m=1

(λ(A)
m λ(Σ)

m )2

that

E(γ̂(∆λ)) =
n∑

m=1

λ(A)
m λ(Σ)

m = γ(∆λ),

which recovers the result (3.5) we obtained earlier. Next we consider the variance of

the variogram estimator under the Gaussian assumption.
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Without loss of generality, we assume that a1 > 0 (otherwise, we can always

choose some am such that am > 0). First notice that

γ̂(∆λ) =
n∑

m=1

λ(A)
m λ(Σ)

m χ2
1,m

= (C(0)− C(∆λ))
n∑

m=1

λ
(A)
m λ

(Σ)
m

C(0)− C(∆λ)
χ2

1,m

4
= (C(0)− C(∆λ))

n∑
m=1

Cn,mχ
2
1,m,

where
∑n

m=1Cn,m =
∑n

m=1
λ

(A)
m λ

(Σ)
m

C(0)−C(∆λ)
= 1 and Cn,m > 0 since both matrices A and

Σ are positive definite. Hence

var(γ̂(∆λ)) = (C(0)− C(∆λ))2 ∗ 2 ∗

(
n∑

m=1

C2
n,m

)

≤ 2(C(0)− C(∆λ))2

(
n∑

m=1

Cn,m

)
= 2(C(0)− C(∆λ))2.

On the other hand,

var(γ̂(∆λ)) = (C(0)− C(∆λ))2 ∗ 2 ∗

(
n∑

m=1

C2
n,m

)
≥ (C(0)− C(∆λ))2 ∗ 2 ∗ C2

n,2.
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Note that

Cn,2 =
1− cos(∆λ)

C(0)− C(∆λ)

1

n

(
C(0) + 2

N−1∑
k=1

C(kδ) cos(kδ) + C(π) cos(Nδ)

)

=
1− cos(∆λ)

C(0)− C(∆λ)

1

π

π

n

(
C(0) + 2

N−1∑
k=1

C(kδ) cos(kδ) + C(π) cos(Nδ)

)
.

Now we consider the limit of Cn,2 when n→∞. It should be pointed out that when

n → ∞, we are sampling denser and denser data points over the circle so that we

have ∆λ obtainable. A simple approach is to take the sample size n to be doubled so

that n tends to infinity while maintaining γ(∆λ) to be estimable. Under this setting,

we have

π

n

(
C(0) + 2

N−1∑
k=1

C(kδ) cos(kδ) + C(π) cos(Nδ)

)
→
∫ π

0

C(θ) cos(θ)dθ, as n→∞,

and so

Cn,2 →
1− cos(∆λ)

C(0)− C(∆λ)

1

2

2

π

∫ π

0

C(θ) cos(θ)dθ =
1− cos(∆λ)

C(0)− C(∆λ)
∗ a1

2
,

Cn,2 >
1− cos(∆λ)

C(0)− C(∆λ)
∗ (
a1

2
− ε0),

for a fixed 0 < ε0 <
a1

2
and a large enough sample size n. Consequently,

var(γ̂(∆λ)) > 2(a1/2− ε0)2(1− cos(∆λ))2.
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We summarize our findings as the following proposition.

Proposition 3.3. The variance of the variogram MOM estimator is finite and asymp-

totically bounded away from zero.

From our previous calculation, we have, for each fixed m,

Cn,m =
1

n
(1− cos((m− 1)∆λ))(
C(0) + 2

N−1∑
k=1

C(kδ) cos((m− 1)kδ) + C(π) cos((m− 1)π)

)
/(C(0)− C(∆λ))

→ (1− cos((m− 1)∆λ))

(
1

π

∫ π

0

C(θ) cos((m− 1)θ)dθ

)
/(C(0)− C(∆λ))

=
am−1

2
(1− cos((m− 1)∆λ))/(C(0)− C(∆λ)), as n→∞.

Now we present our main result for the MOM variogram estimator.

Proposition 3.4. If the underlying process X(t) is assumed to be Gaussian, the

MOM variogram estimator is not consistent on the circle.

Proof. First we consider the consistency of the variogram estimator. To show the

following

P (|γ̂(∆λ)− γ(∆λ)| ≥ ε)→ 0,

as n→∞ for fixed ε > 0 and ∆λ 6= 0, it is equivalent to show that

P

(∣∣∣∣∣
n∑

m=1

Cn,mχ
2
1,m − 1

∣∣∣∣∣ ≥ ε

)
→ 0,
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as n→∞ for fixed ε > 0 and ∆λ 6= 0. Here
∑n

m=1 Cn,m = 1, Cn,m > 0 for each fixed

n. Note that we also have, for each fixed m,

0 < Cn,m →
am
2

1− cos(m∆λ)

C(0)− C(∆λ)
≡ bm.

For simplicity, we can assume that b2 > 0 (Otherwise we can pick some bm > 0 for

some m fixed). That is

Cn,2 → b2 > 0, as n→∞.

Therefore, for fixed ε0 > 0 and ε0 < b2, we choose all n > N , such that

b2 − ε0 < Cn,2 < b2 + ε0

Therefore, for all n > N , (and denote χ2
1,2 = χ2

1 for simplicity)

n∑
m=1

Cn,mχ
2
1,m ≥ Cn,2χ

2
1,2 > (b2 − ε0)χ2

1.

Hence notice that, for the fixed ε > 0,

{
(b2 − ε0)χ2

1 > 1 + ε
}
⊆

{
n∑

m=1

Cn,mχ
2
1,m > 1 + ε

}
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Now, for all n ≥ N ,

P

(∣∣∣∣∣
n∑

m=1

Cn,mχ
2
1,m − 1

∣∣∣∣∣ ≥ ε

)

= P

(
n∑

m=1

Cn,mχ
2
1,m > 1 + ε or

n∑
m=1

Cn,mχ
2
1,m < 1− ε

)

≥ P

(
n∑

m=1

Cn,mχ
2
1,m > 1 + ε

)
≥ P

(
(b2 − ε0)χ2

1 > 1 + ε
)

= P

(
χ2

1 >
1 + ε

b2 − ε0

)
6→ 0,

since the last term is a fixed positive number. This proves the non-consistency of

variogram estimator.
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CHAPTER IV

PARAMETRIC MODELS AND ESTIMATION ON A SPHERE

4.1 Random Process on a Sphere

Suppose the process {X(P ) : P ∈ S2} (S2 unit sphere), defined in a common

probability space, where P = (λ, φ) ∈ S2 with longitude λ ∈ [−π, π) and latitude

φ ∈ [0, π], is continuous in quadratic mean with respect to the location P and has

finite second moment. Then it can be represented by spherical harmonics (Huang

et al., 2012; Jones, 1963; Li and North, 1997), with the sum converging in mean

squares:

X(P ) =
∞∑
ν=0

ν∑
m=−ν

Zν,me
imλPm

ν (cosφ).

Here Pm
ν (·) are normalized associated Legendre polynomials such that their squared

integral on [−1, 1] is 1, and Zν,m are complex-valued coefficients satisfying

Zν,m =

∫
S2

X(P )e−imλPm
ν (cosφ)dP.

Without loss of generality, we suppose that the process X(P ) is with zero mean,

which implies E(Zν,m) = 0. Let P = (λP , φP ) and Q = (λQ, φQ) be two arbitrary
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locations on the sphere, the covariance function of the process is given by

R(P,Q) = E(X(P )X(Q))

=
∞∑
ν=0

∞∑
µ=0

ν∑
m=−ν

µ∑
n=−µ

E(Zν,mZµ,n)eimλPPm
ν (cosφP )e−inλQP n

µ (cosφQ),

where Z̄ denotes the complex conjugate of Z. Note that the continuity of X(P ) on

every point P implies that R(P,Q) is continuous at all pairs of (P,Q) (Leadbetter,

1967, page 83).

4.1.1 Homogeneous Covariance Functions on the Sphere

Under the assumption of homogeneity (or isotropy), the covariance function of a

random process X(·) on S2 is invariant under rotations. More specifically, a homoge-

neous random process on the sphere satisfies

E(X(P )) = µ, for any P ∈ S2,

Cov(X(P ), X(Q)) = C(θPQ),

where θPQ is the spherical angle between two locations P,Q, given by

θPQ = arccos (sin(φP ) sin(φQ) + cos(φP ) cos(φQ) cos(λP − λQ)) .
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Parallel to the requirement for a valid covariance function in Rd, a valid covariance

function C(·) on the sphere must be non-negative definite, i.e.,

N∑
i,j=1

aiajC(θPiPj) ≥ 0,

for any integer N , any constants a1, a2, . . . , aN , and any locations P1, P2, . . . , PN ∈ S2.

According to Schoenberg (1942), a real continuous function C(θ) is a valid homo-

geneous covariance function on the sphere (S2) if and only if it can be written in the

following form:

C(θ) =
∞∑
k=0

ckPk(cos θ), θ ∈ [0, π],

where Pk(·) is the Legendre polynomial, ∀ck ≥ 0 and
∑

k ck <∞. A general result of

the above representation on Sd (d > 2) can also be found in Schoenberg (1942).

Note that the Legendre polynomials Pk(·) are orthogonal in the following sense:

∫ 1

−1

Pn(x)Pm(x)dx =
2

2n+ 1
δ(n,m).

Hence the coefficients ck can be obtained as

ck =
2k + 1

2

∫ π

0

C(θ)Pk(cos θ)dθ, k = 0, 1, 2, . . . (4.1)
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Table 2. Validity of Covariance Functions on the Sphere, a > 0, θ ∈ [0, π]

Model Covariance function Valid on S2

Spherical
(

1− 3θ
2a

+ 1
2
θ3

a3

)
1(θ≤a) Yes

Stable exp
{
−
(
θ
a

)α}
Yes for α ∈ (0, 1]
No for α ∈ (1, 2]

Exponential exp{−
(
θ
a

)
} Yes

Gaussian exp
{
−
(
θ
a

)2
}

No

Power∗ c0 − (θ/a)α Yes for α ∈ (0, 1]
No for α ∈ (1, 2]

Radon transform of order 2 e−θ/a(1 + θ/a) No

Radon transform of order 4 e−θ/a(1 + θ/a+ θ2/3a2) No

Cauchy (1 + θ2/a2)−1 No

Hole - effect sin aθ/θ No

∗When α ∈ (0, 1], the power model is valid on S2 for some c0 ≥
∫ π

0
(θ/a)α sin θdθ.

One can directly use the above integral to evaluate the validity of a homogenous

covariance function on the sphere by checking if ck is non-negative for all k and∑
k ck <∞.

The construction of covariance models is critical for spatial prediction. However,

the covariance models that are valid on Rd may not be valid on the sphere (S2). For

example, Huang et al. (2011) evaluated the validity of commonly used covariance

models that are valid on Rd and summarized their findings in Table 2. Furthermore,

Gneiting (2013) showed that the Matérn covariance function is only valid on the

sphere when the smoothness parameter ν ∈ (0, 1/2]. Another way of constructing a
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valid homogeneous covariance function on the sphere is by using the valid covariance

function in R3.Specifically, Yadrenko (1983) showed that if K(·) is a valid isotropic

covariance function on R3 then

C(θ) = K(2 sin(θ/2))

is a valid isotropic covariance function on the unit sphere, where θ is the greatest

circle distance on the sphere.

4.1.2 Variogram on a Sphere

Parallel to the case of circle, if a random process X(·) on a sphere is intrinsically

stationary on S2, then one has E(X(P )) = µ, an unknown constant for all P ∈ S2

and the variogram function between any two locations P,Q ∈ S2 depends only on the

spherical angle θPQ

V ar(X(P )−X(Q)) = 2γ(θPQ), ∀P,Q ∈ S2.

The variogram function is conditionally negative definite, that is,

N∑
i,j=1

aiaj2γ(θPiPj) ≤ 0,

for any integer N , any constants a1, a2, . . . , aN with
∑

i ai = 0, and any locations

P1, P2, . . . PN ∈ S2. Immediately from (4.1), for a continuous function 2γ(·) with

55



γ(0) = 0, the variogram is negative definite if and only if

γ(θ) =
∞∑
k=0

ck(1− Pk(cos θ)), θ ∈ [0, π], (4.2)

where Pk(·) are Legendre polynomials, ∀ck ≥ 0 and
∑
ck <∞.

It is known that in Rd, one can always obtain the variogram from the stationary

covariance function with γ(θ) = C(0) − C(θ) but not the converse. However, in S2

Yaglom (1961) argued that for a valid γ(θ), θ ∈ [0, π] one can always construct the

covariance function C(θ) = c0 − γ(θ) for some c0 ≥
∫ π

0
γ(θ) sin(θ)dθ.

Here is the outline of this chapter. We first introduce axially symmetric random

processes on the sphere and the representation for the covariance function. Next,

we propose parametric models to generalize some of existing parametric models to

capture the variation across latitudes when modeling the covariance structure of ax-

ially symmetric processes on the sphere. Finally, we discuss the properties of the

cross-covariance and cross-variogram estimators based on the Method of Moments.

4.2 Axial Symmetry

For an axially symmetric process X(P ), P ∈ S2 on the sphere, the covariance

function R(P,Q) at two locations P = (φP , λP ), Q = (φQ, λQ) ∈ S2 is given by

R(φP , φQ, λP , λQ) = R(φP , φQ, λP − λQ).
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Following the discussion given by Stein (2007) and Huang et al. (2012), the covariance

function can be expressed as the following:

R(P,Q) = R(φP , φQ, λP − λQ)

=
∞∑

m=−∞

∞∑
ν=|m|

∞∑
µ=|m|

fν,µ,me
im(λP−λQ)Pm

ν (cosφP )Pm
µ (cosφQ), (4.3)

where the matrix Fm(N) = {fν,µ,m}ν,µ=|m|,|m|+1,...,N must be positive definite for all

N ≥ |m| and fν,µ,m = fµ,ν,m for each fixed integer m. Furthermore, if we denote

Cm(φP , φQ) =
∞∑

ν=|m|

∞∑
µ=|m|

fν,µ,mP
m
ν (cosφP )Pm

µ (cosφQ),

then

R(P,Q) = R(φP , φQ,∆λ) =
∞∑

m=−∞

eim∆λCm(φP , φQ), m = 0,±1,±2, ..., (4.4)

where ∆λ = λP − λQ ∈ [−π, π] and φP , φQ ∈ [0, π]. Here the complex bivariate

continuous function Cm(φP , φQ) has the following properties:

• Hermitian and positive definite.

•
∑∞

m=−∞ |Cm(φP , φQ)| <∞ for any φP , φQ ∈ [0, π].

One can use the inverse Fourier transformation to derive Cm(φP , φQ) based onR(P,Q),

Cm(φP , φQ) =
1

2π

∫ π

−π
R(φP , φQ,∆λ)e−im∆λd∆λ.
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Let Cm(φP , φQ) = CR
m(φP , φQ) + iCI

m(φP , φQ). From Huang et al. (2012), if a ran-

dom process is real-valued, its corresponding covariance function R(P,Q) is also real-

valued, and so we have Cm(φP , φQ) = C−m(φP , φQ). The covariance function R(P,Q)

on the sphere given by (4.4) can then be simplified as the following:

R(P,Q) = C0(φP , φQ) +
∞∑
m=1

e−im∆λC−m(φP , φQ) +
∞∑
m=1

eim∆λCm(φP , φQ)

= CR
0 (φP , φQ) + 2

∞∑
m=1

[cos(m∆λ)CR
m(φP , φQ)− sin(m∆λ)CI

m(φP , φQ)].

4.2.1 Longitudinally Reversible Processes

If we further assume that the covariance function R(P,Q) of an axially symmetric

process satisfies

R(φP , φQ, λP − λQ) = R(φP , φQ, λQ − λP ), (4.5)

we then call the underlying process to be longitudinally reversible (Stein (2007)).

Now the covariance function R(P,Q) of a real-valued longitudinally reversible process

reduces to

R(P,Q) =
∞∑
m=0

Cm(φP , φQ) cos(m∆λ).

as Cm(φP , φQ) is real so that we have C−m(φP , φQ) = Cm(φP , φQ) and Cm(φP , φQ) =

C−m(φP , φQ).

58



4.3 Proposed Parametric Models

As discussed in Section 4.2, many covariance models valid in Rd might not be valid

in S2. Therefore, it is necessary to develop parametric models that possibly reflect

the topological structure of compactness of a sphere. Although the Matérn covariance

model has been often used to model global data in recent years, it has some drawbacks.

For example, it has been shown that the homogeneous Matérn covariance model is

not valid when the smoothness parameter is larger than 0.5. Further modifications

have been proposed (e.g., Jeong and Jun, 2015; Jun and Stein, 2008; Li, 2013). Huang

et al. (2012) discussed a new representation for the covariance structure of an axially

symmetric process. Based on the parametric form of Cm(φP , φQ), they proposed some

parametric covariance models.

The covariance function on sphere, R(P,Q), given in (4.4), is clearly a func-

tion of both latitudes and the difference of longitudes. If we assume that in (4.4)

Cm(φP , φQ) = amC̃(φP − φQ) only depends on the difference between φP and φQ,

such that C1(∆λ) =
∑+∞

m=−∞ ame
im∆λ exists, then R(P,Q) = C1(∆λ)C̃(φP − φQ).

This is a simple separable model as given in Huang et al. (2012). Here is an example

when both covariance components are exponential

R(P,Q) = c0e
−a|∆λ|e−b|φP−φQ|,

where c0 > 0, and both a > 0 and b > 0 are defined as decay parameters in longitude

and latitude, respectively. However, the separable models are not capable to capture

the covariance structure of the entire sphere since it obviously also assumes the sta-

tionarity across latitudes. Huang et al. (2012) further proposed some non-separable
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covariance models by carefully choosing functions for Cm(φP , φQ) that are valid on

the sphere, under which some R(P,Q) are given below:

R(P,Q) = Ae−a|φP−φQ|
1− p2

1− 2p cos Θ + p2
, (4.6)

R(P,Q) = Ae−a|φP−φQ| log
1

(1− 2p cos Θ + p2)
, (4.7)

R(P,Q) = 2Ae−a|φP−φQ|
(
π4

90
− π2Θ2

12
+
πΘ3

12
− Θ4

48

)
, (4.8)

where A > 0, 0 < p < 1, u ∈ R are all constants, Θ = ∆λ + u(φP − φQ) − 2kπ, and

k is chosen such that Θ ∈ [0, 2π]. First notice that all of the three covariance models

(4.6, 4.7, 4.8) depend not only on the difference in longitudes, but on the difference

in latitudes as well. As an example, we consider the model (4.6) from Huang et al.

(2012). When φP = φQ, the model reduces to

R(φP , φP ,∆λ) = A
1− p2

1− 2p cos(∆λ) + p2
,

indicating all covariance functions on latitudes are the same. If we further set ∆λ = 0,

the variance of the process over all locations is given by,

V ar(X(P )) = C
1 + p

1− p
,

implying a constant variance across the entire sphere. This is unrealistic, since we

have seen from MSU and TOMS data that the variance highly depends on latitudes.

As a generalization of the above models, we propose the following proposition.
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Proposition 4.1. Let C(·) = C(x− y) be the stationary covariance function on Rd.

For simplicity, we let f(ω) ≥ 0 be the spectral density of C(·). Then

C̃(x, y) = C2 − C(x)− C(y) + C(x− y),

with C2 ≥
∫ ∞
−∞

f(ω)dω > 0,

is the non-stationary covariance function on Rd.

Proof. by Bochner’s theorem, if f(·) ≥ 0 is the spectral density of the covariance

function C(·), we have

C(x) =

∫ ∞
−∞

e−ixωf(ω)dω.

Now for any N , we choose a sequence of complex numbers ai, i = 1, 2, · · · , n, and any

sequence of real numbers ti, i = 1, 2, · · · , n, taking C2 =
∫∞
−∞ f(ω)dω,

n∑
i=1

n∑
j=1

aiajC̃(ti, tj) =
∑
i

∑
j

aiaj(C2 − C(ti)− C(−tj) + C(ti − tj))

=
n∑
i=1

n∑
j=1

aiaj

∫ ∞
−∞

(1− e−itiω − eitjω + e−i(ti−tj)ω)f(ω)dω

=

∫ ∞
−∞

f(ω)dω

∣∣∣∣∣
n∑
i=1

ai(e
−itiω − 1)

∣∣∣∣∣
2

≥ 0.

This proves the positive definiteness of C̃(·, ·), which concludes the proof.
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We apply the above proposition on the following two stationary covariance functions,

C(φ) = Ce−a|φ|,

C(φ) = C
1√

a2 + φ2
,

where C > 0, a > 0. We arrive with the following two non-stationary covariance

functions.

C̃(φP , φQ) = C1(C2 − e−a|φP | − e−a|φQ| + e−a|φP−φQ|), (4.9)

C̃(φP , φQ) = C1

C2 −
1√

a2 + φ2
P

− 1√
a2 + φ2

Q

+
1√

a2 + (φP − φQ)2

 ,(4.10)

where C1, a > 0, and C2 ≥ 1 to ensure the positive definiteness of the above function.

When φP = φQ, both functions are actually a function of φP :

C̃(φP , φP ) = C1(C2 − 2e−a|φP | + 1),

C̃(φP , φP ) = C1

(
C2 −

2√
a2 + φ2

P

+
1

a

)
.
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Therefore, we propose the following covariance models for axially symmetric processes

on the sphere, which generalize some models given by Huang et al. (2012):

R(P,Q) = C̃(φP , φQ)
1− p2

1− 2p cos Θ + p2
, (4.11)

R(P,Q) = C̃(φP , φQ) log
1

(1− 2p cos Θ + p2)
, (4.12)

R(P,Q) = C̃(φP , φQ)

(
π4

90
− π2Θ2

12
+
πΘ3

12
− Θ4

48

)
, (4.13)

where Θ = ∆λ+ u(φP − φQ) ∈ [0, 2π], C1 > 0, C2 > 0, a > 0, u ∈ R, p ∈ (0, 1).

Remark 6. The parameters C1, C2, a, p are scaling parameters of the covariance

functions and u is a location parameter. All covariance models have a similar pattern

and share one property. When there is no location shift (u = 1), the maximum of

R(P,Q) occurs at λmax = |φP − φQ| and the minimum of R(P,Q) occurs at λmin =

π + λmax.

Remark 7. The scaling parameter p changes rapidly at the supremum and infimum

of the covariance models and parameters C1, C2, and a are regular scaling parameters.

The parameter u is a location parameter which shifts the covariance from left to right

with respect to ∆λ when u > 0. When u = 0 it provides a longitudinally reversible

covariance model.
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Figure 9. The Covariance Between 300S and 500N (Latitudes 600 and 1400) of Three

Covariance Models with Exponential Family. i.e., C̃(φP , φQ) Given by (4.9) Over 100

Longitudes (We Set C1 = C2 = a = u = 1, and p = 0.5).
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Figure 10. Covariance Curves for Different Parameters using Model 1 (Huang et al.,

2012): (a)-Parameter p, (b)-Parameter a, (c)-Parameter C1 (Similar Pattern for Pa-

rameter C2), (d)-Parameter u

4.4 Covariance and Variogram Estimators on a Sphere

The covariance function R(P,Q) has also been termed the cross covariance in the

literature, as it captures the covariance of the process between points at two latitudes

with longitudes separated by ∆λ ∈ (−π, π). In this section, we consider the estimator
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for the covariance function R(P,Q) based on MOM as well as its properties. In addi-

tion, we will introduce the cross variogram function on the sphere. The unbiasedness

of the cross variogram estimator based on MOM will also be discussed.

4.4.1 Cross Covariance and Cross Variogram Functions

As discussed in Wackernagel (2013), the cross covariance function, or R(P,Q),

can be decomposed as:

R(φP , φQ,∆λ) =
1

2
(R(φP , φQ,∆λ) +R(φP , φQ,−∆λ))

+
1

2
(R(φP , φQ,∆λ)−R(φP , φQ,−∆λ)).

For fixed latitudes φP and φQ, the first term is an even function of ∆λ, while the

second term is an odd function of ∆λ. We notice that, when φP 6= φQ, R(φP , φQ,∆λ)

has the following properties:

• R(φP , φQ,∆λ) 6= R(φQ, φP ,∆λ);

• R(φP , φQ,−∆λ) 6= R(φP , φQ,∆λ);

• R(φP , φQ,−∆λ) = R(φQ, φP ,∆λ).

As a special case, when φP = φQ is fixed, two locations are on the same circle, the

cross covariance R(φP , φP ,∆λ) is a stationary covariance function on the circle, thus

a function that is depending only on longitudinal difference (∆λ).
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Now we introduce the cross variogram function on the sphere. The cross variogram

function is defined as:

2γ(φp, φQ,∆λ) = E ((X(φP , λ+ ∆λ)−X(φP , λ))(X(φQ, λ+ ∆λ)−X(φQ, λ))) .

When φP = φQ, the above expression reduces to the one for the variogram function

on the circle.

Note that

γ(φp, φQ,∆λ) =
1

2
E ((X(φP , λ+ ∆λ)−X(φP , λ))(X(φQ, λ+ ∆λ)−X(φQ, λ)))

=
1

2
E (((X(φP , λ+ ∆λ)− µP )− (X(φP , λ)− µP ))

((X(φQ, λ+ ∆λ)− µQ)− (X(φQ, λ)− µQ))

=
1

2
(cov(X(φP , λ+ ∆λ), X(φQ, λ+ ∆λ))

− cov(X(φP , λ+ ∆λ), X(φQ, λ))

−cov(X(φP , λ), X(φQ, λ+ ∆λ)) + cov(X(φP , λ), X(φQ, λ)))

=
1

2
(R(φP , φQ, 0)−R(φP , φQ,∆λ)−R(φP , φQ,−∆λ) +R(φP , φQ, 0))

= R(φP , φQ, 0)− 1

2
(R(φP , φQ,∆λ) +R(φP , φQ,−∆λ)).

That is,

γ(φp, φQ,∆λ) = R(φp, φQ, 0)− 1

2
(R(φP , φQ,∆λ) +R(φP , φQ,−∆λ)). (4.14)
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Notice that the (semi-)cross variogram relates to only the even term of the cross co-

variance function. Wackernagel (2013) argues that the cross variogram might not be

sufficient when there is a delayed effect, which introduces a non-zero value represent-

ing the odd component in the cross covariance decomposition.

When the axially symmetric process X(P ) is also longitudinally reversible, that

is, R(φP , φQ,−∆λ) = R(φP , φQ,∆λ), we have

γ(φp, φQ,∆λ) = R(φp, φQ, 0)−R(φP , φQ,∆λ),

which is the same relationship as the one between the covariance and variogram

functions on the circle.

4.4.2 The MOM Cross Covariance and Cross Variogram Estimators

We now provide the MOM estimators for the cross covariance R(φP , φQ,∆λ) and

cross semivariogram functions γ(φP , φQ,∆λ) of an axially symmetric process on the

sphere. First, for any two latitudes φP and φQ with {λi, i = 1, 2, . . . , n} representing

the gridded longitudes on each circle (for simplicity, we assume n = 2N is an even

number), then the MOM estimator R̂(φP , φQ,∆λ) is given by

R̂(φP , φQ,∆λ) =
1

n

n∑
i=1

(X(φP , λi + ∆λ)− X̄P )(X(φQ, λi)− X̄Q), (4.15)

where ∆λ = 0, 2π/n, 4π/n, · · · , 2(N − 1)π/n, X̄P = 1
n

∑n
i=1 X(φP , λi), and X̄Q =

1
n

∑n
i=1 X(φQ, λi).
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Now we show the unbiasedness of the cross covariance estimator.

E(R̂(φP , φQ,∆λ))

=
1

n

n∑
i=1

E((X(φP ,Λi)− X̄P )(X(φQ, λi)− X̄Q))

=
1

n

n∑
i=1

cov(X(φP ,Λi), X(φQ, λi))−
1

n

n∑
i=1

E((X(φP ,Λi)− µP )(X̄Q − µQ))

− 1

n

n∑
i=1

E((X(φQ, λi)− µQ)(X̄P − µP )) +
1

n

n∑
i=1

E((X̄P − µP )(X̄Q − µQ))

= R(φP , φQ,∆λ)− E((X̄Q − µQ)(X̄P − µP ))− E((X̄P − µP )(X̄Q − µQ))

+E((X̄P − µP )(X̄Q − µQ)) = R(φP , φQ,∆λ)− cov(X̄P , X̄Q).

where Λi = λi + ∆λ and note that,

cov(X̄P , X̄Q)

=
1

n2

n∑
i=1

n∑
j=1

cov(X(φP , λi), X(φQ, λj))

=
1

n2

n∑
i=1

n∑
j=1

R(φP , φQ, (i− j) ∗ 2π/n)

=
1

n2

n∑
i=1

n∑
j=1

C0(φP , φQ) + 2
∞∑
m=1

(Cm,R(φP , φQ) cos(m ∗ (i− j) ∗ 2π/n)

− Cm,I(φP , φQ) sin(m ∗ (i− j) ∗ 2π/n))

= C0(φP , φQ) + 2
∞∑
m=1

Cm,R(φP , φQ)

(
1

n2

n∑
i=1

n∑
j=1

cos(m(i− j) ∗ 2π/n)

)

−2
∞∑
m=1

Cm,I(φP , φQ)

(
1

n2

n∑
i=1

n∑
j=1

sin(m(i− j) ∗ 2π/n)

)
= C0(φP , φQ),
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since

n∑
i=1

n∑
j=1

cos(m ∗ (i− j) ∗ 2π/n)

=
n∑
i=1

n∑
j=1

(cos(m ∗ i ∗ 2π/n) cos(m ∗ j ∗ 2π/n)

− sin(m ∗ i ∗ 2π/n) sin(m ∗ j ∗ 2π/n))

=

(
n∑
i=1

cos(m ∗ i ∗ 2π/n)

)2

−

(
n∑
i=1

sin(m ∗ i ∗ 2π/n)

)2

= 0

and

n∑
i=1

n∑
j=1

sin(m ∗ (i− j) ∗ 2π/n)

=
n∑
i=1

n∑
j=1

(sin(m ∗ i ∗ 2π/n) cos(m ∗ j ∗ 2π/n)

− cos(m ∗ i ∗ 2π/n) sin(m ∗ j ∗ 2π/n))

=

(
n∑
i=1

cos(m ∗ i ∗ 2π/n)

)
∗

(
n∑
i=1

sin(m ∗ i ∗ 2π/n)

)

−

(
n∑
i=1

cos(m ∗ i ∗ 2π/n)

)
∗

(
n∑
i=1

sin(m ∗ i ∗ 2π/n)

)
= 0.

Now for any integer m, we have

n∑
k=1

cos(mk ∗ 2π/n) =

 0, for any integer m 6= 0,

n, for m = 0
and

n∑
k=1

sin(mk ∗ 2π/n) = 0.
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Hence,

cov(X̄P , X̄Q) = C0(φP , φQ).

Therefore,

E(R̂(φP , φQ,∆λ)) = R(φP , φQ,∆λ)− C0(φP , φQ).

We summarize the above calculations as the following proposition.

Proposition 4.2. The MOM cross covariance estimator is biased with the constant

shift given by C0(φP , φQ) = cov(X̄P , X̄Q). Hence, the true R(P,Q) may not be iden-

tifiable based on the MOM estimator.

Remark 8. When φP = φQ, the result above reduces to that for the MOM covariance

estimator on the circle.

Remark 9. If the mean at each latitude is zero, then we can rewrite the cross

covariance MOM estimator as:

R̂(φP , φQ,∆λ) =
1

n

n∑
i=1

X(φP , λi + ∆λ)X(φQ, λi).

It can be shown that this estimator is unbiased.
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Next we consider the MOM cross semivariogram estimator for axially symmetric

processes on the sphere.

γ̂(φp, φQ,∆λ) =
1

2n

n∑
i=1

(X(φP ,Λi)−X(φP , λi))(X(φQ,Λi)−X(φQ, λi))) , (4.16)

where Λi = λi + ∆λ. We have

E(γ̂PQ(∆λ)) =
1

2n

n∑
i=1

E (X(φP ,Λi)−X(φP , λi))(X(φQ,Λi)−X(φQ, λi)))

=
1

2n

n∑
i=1

(2γ(φp, φQ,∆λ)) = γ(φp, φQ,∆λ),

which is unbiased. Here we summarize our finding in Proposition 4.3.

Proposition 4.3. The MOM cross semivariogram estimator is unbiased.

Remark 10. We expect a similar result as the one in the case of a circle for the

consistency of the MOM cross semivariogram estimator on the sphere, but the proof

will be more complicated. This will be one of the areas for our future research.
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CHAPTER V

GLOBAL DATA GENERATION

5.1 Introduction

Statistical simulations have been one of the critical components in statistical re-

search. Through simulations, the researcher can explore how a proposed statistical

model/method behaves in the simulated and reproducible data that mimic the real ap-

plications. For axially symmetric data generation, there seems only a limited amount

of research in the literature. In order to capture non-stationarity, Jun and Stein

(2007) proposed spatio-tempo covariance functions on the sphere by applying a first

order differential operator to fully symmetric spatio-tempo processes on the sphere.

Further, Jun and Stein (2008) extended the above approach and used the Discrete

Fourier Transform (DFT) to find the inverse of the covariance matrix when calculat-

ing the exact likelihood for the data on regular grids. They indicated that the inverse

of the covariance matrix for axially symmetric data is of the order O(n3
l nL) where nL

is the number of longitudes and nl the number of latitudes. However, no data genera-

tion or simulation was discussed. Li (2013) proposed convolution methods to generate

random fields with a class of Matérn-type kernel functions by allowing the parameters

in the kernel function to vary with latitudes. They conducted a simulation study by

generating data based on their proposed method. They used maximum likelihood

estimation and local smoothing to recover the given parameters. In recent work by

Jeong and Jun (2015), they presented a number of simulation scenarios using the

Matérn-like covariance models that include stationary and non-stationary processes.
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They seemed to generate data for simulations based on the given covariance struc-

ture directly. No data validation was given. As we have discussed in the previous

chapters, global data normally exhibit both complexity and high dimensionality. For

example, the MSU data was observed on a 72 × 144 grid which results in an esti-

mated covariance matrix with a dimension of 10368×10368. Hence, it is necessary to

develop an algorithm that is efficient and with low dimensionality. In this research,

we use the Discrete Fourier Transform to decompose the process as Fourier series on

the circles, and represent the random Fourier coefficients with circularly-symmetric

complex random vectors. This has greatly reduced both computational cost as well

as dimensionality. It also gives a better insight into the axially symmetric process on

the sphere.

This chapter is organized as follows. We first layout the details and methodologies

of generating data on the sphere using circularly-symmetric random vectors. Then

we provide an algorithm for global data generation. Finally, we conduct simulations

and use the cross variogram and cross covariance MOM estimation to validate the

data generated.

5.2 Method Development

Let X(P ) be a continuous real-valued Gaussian random process defined on a unit

sphere S2, where P = (λ, φ) ∈ S2 with longitude λ ∈ [−π, π) and latitude φ ∈ [0, π].
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Following, Remark 2.5 Huang et al. (2012), for each fixed latitude φ, X(P ) can be

represented as a stationary process on the circle. More specifically,

X(φ, λ) =
∞∑

m=−∞

Wm(φ)eimλ, (5.1)

where

Wm(φ) =
1

2π

∫ 2π

0

X(φ, λ)e−imλdλ,

with E(Wm(φP )Wn(φQ)) = δ(m,n)Cm(φP , φQ). That is, {Wm(φ), φ ∈ [0, π],m =

0,±1,±2, . . . , } are uncorrelated Gaussian complex random variables with covariance

function given by Cm(φP , φQ).

In order to obtain axially symmetric random variates for a given latitude φ, we

first construct normal independent (complex) random variates Wm(φ) that follow

the given variance-covariance function Cm(φP , φQ). To achieve this, we truncate the

infinite summation in (5.1) to obtain a finite summation up to N as given below (for

notation simplicity we use X(P ) to represent the finite summation).

X(P ) = X(φ, λ) =
N∑

m=−N

Wm(φ)eimλ. (5.2)
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Since Wm’s are independent for m = 0,±1,±2, · · · ,±N , we have

Cov(X(P ), X(Q)) = Cov

(
N∑

m=−N

Wm(φP )eimλP ,
N∑

j=−N

Wj(φQ)eijλQ

)
=

∑
m,j

eimλP e−ijλQCov(Wm(φP ),Wj(φQ))

=
∑
m

eim(λP−λQ)Cm(φP , φQ),

indicating that the Fourier series for the covariance function R(P,Q) has also been

truncated up to N . Let Wm(φ) = W r
m(φ) + iW i

m(φ) and Cm(φP , φQ) = Cr
m(φP , φQ) +

iCi
m(φP , φQ). In order to obtain real data values that follow the given covariance

function R(P,Q), we require that

• W−m(φ) = Wm(φ), and

• C−m(φP , φQ) = Cm(φP , φQ), for m = 0, 1, 2, · · · , N .

First we simplify the process:

X(P ) =
N∑

m=−N

Wm(φ)eimλ = W0(φ) +
N∑
m=1

Wm(φ)eimλ +
−N∑
m=−1

Wm(φ)eimλ

= W0(φ) +
N∑
m=1

Wm(φ)eimλ +
N∑
m=1

Wm(φ)e−imλ

= W0(φ) +
N∑
m=1

[
(W r

m(φ) + iW i
m(φ))(cos(mλ) + i sin(mλ))

+ (W r
m(φ)− iW i

m(φ))(cos(mλ)− i sin(mλ))
]

= W0(φ) + 2
N∑
m=1

[
W r
m(φ) cos(mλ)−W i

m(φ) sin(mλ)
]
. (5.3)
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Now we consider the corresponding variance-covariance function for each Wm(φ).

Note that to have real-valued data observations, we need

C−m(φP , φQ) = Cm(φP , φQ), for m = 1, 2, · · · , N. (5.4)

Writing Cm(φP , φQ) = Cr
m(φP , φQ) + iCi

m(φP , φQ) and with (5.4), we have

Cr
−m(φP , φQ) = Cr

−m(φP , φQ), Ci
−m(φP , φQ) = −Ci

−m(φP , φQ).

Now,

Cov(Wm(φP ),Wm(φQ)) = Cov(W r
m(φP ) + iW i

m(φP ),W r
m(φQ) + iW i

m(φQ))

=
[
Cov(W r

m(φP ),W r
m(φQ)) + Cov(W i

m(φP ),W i
m(φQ))

]
+i
[
−Cov(W r

m(φP ),W i
m(φQ)) + Cov(W i

m(φP ),W r
m(φQ))

]
= Cr

m(φP , φQ) + iCi
m(φP , φQ).

In addition, we set the following.

Cov(W r
m(φP ),W r

m(φQ)) = Cov(W i
m(φP ),W i

m(φQ)) =
1

2
Cr
m(φP , φQ), (5.5)

Cov(W i
m(φP ),W r

m(φQ)) = −Cov(W r
m(φP ),W i

m(φQ)) =
1

2
Ci
m(φP , φQ). (5.6)

The above relationships (5.5) and (5.6) will become our basis for data generation.

77



5.2.1 Data Generation

Now for each fixed m = 0, 1, 2, · · · , N , we write Wm(φ) = W r
m(φ) + iW i

m(φ) then

Wm(φ) = W r
m(φ) − iW i

m(φ). We may assume that W r
m(φ) and W i

m(φ) are indepen-

dent, each following a (Gaussian) distribution with mean zero and the same variance

σ2
m(φ) = 1

2
Cr
m(φ, φ) and Ci

m(φ, φ) = 0 (that is, Wm(φ) is circularly symmetric). For

a set of distinct latitudes Φ = {φ1, φ2, · · · , φnl}, we consider a sequence of complex

random variables {Wm(φ) : φ ∈ Φ}, which forms a multivariate complex random

vector W˜m = (Wm(φ1),Wm(φ2), · · · ,Wm(φn))T where Wm(φi) = W r
m(φi) + iW r

m(φi)

with associated 2× nl-dimensional real random vector

V˜m = (W r
m(φ1), · · · ,W r

m(φnl),W
i
m(φ1), · · · ,W i

m(φnl))
T

= (Re(W˜m), Im(W˜m))T .

We now show that the Gaussian random vector W˜m is circularly-symmetric, that

is, we calculate the covariance matrixKW = E(W˜mW˜∗m) (whereW˜∗m is the conjugated

transpose of W˜m) and pseudo-covariance MW = E(W˜mW˜T
m), and show that MW = 0.

First note that

MW =



E[Wm(φ1)Wm(φ1)] E[Wm(φ1)Wm(φ2)] · · · E[Wm(φ1)Wm(φnl)]

E[Wm(φ2)Wm(φ1)] E[Wm(φ2)Wm(φ2)] · · · E[Wm(φ2)Wm(φnl)]

...
...

. . .
...

E[Wm(φnl)Wm(φ1)] E[Wm(φnl)Wm(φ2)] · · · E[Wm(φnl)Wm(φnl)]


.
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We calculate each of the above entries. For any i, j,

E[Wm(φi)Wm(φj)]

= E[(W r
m(φi) + iW i

m(φi))(W
r
m(φj) + iW i

m(φj))]

= E(W r
m(φi)W

r
m(φj))− E(W i

m(φi)W
i
m(φj))

+i[E(W r
m(φi)W

i
m(φj)) + E(W i

m(φi)W
r
m(φj))]

=


1
2
(Cr

m(φi, φj)− Cr
m(φi, φj)) + i[−1

2
Ci
m(φi, φj) + 1

2
Ci
m(φi, φj)] = 0 for i 6= j

1
2
(Cr

m(φi, φi)− Cr
m(φi, φi)) + i[0 + 0] = 0 for i = j.
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The last equality is due to the independence of W r
m(φi) and W i

m(φi). Therefore,

MW = 0, and so W˜m is circularly-symmetric. In addition,

KW = E(W˜mW˜∗m)

=



E[Wm(φ1)W ∗
m(φ1)] E[Wm(φ1)W ∗

m(φ2)] · · · E[Wm(φ1)W ∗
m(φnl)]

E[Wm(φ2)W ∗
m(φ1)] E[Wm(φ2)W ∗

m(φ2)] · · · E[Wm(φ2)W ∗
m(φnl)]

...
...

. . .
...

E[Wm(φnl)W
∗
m(φ1)] E[Wm(φnl)W

∗
m(φ2)] · · · E[Wm(φnl)W

∗
m(φnl)]



=



Cr
11 Cr

12 + iCi
12 · · · Cr

1nl
+ iCi

1nl

Cr
21 − iCi

21 Cr
22 · · · Cr

2nl
+ iCi

2nl

...
...

. . .
...

Cr
nl1
− iCi

nl1
Cr
nl2
− iCi

nl2
· · · Cr

nlnl



=



Cr
11 Cr

12 · · · Cr
1nl

Cr
21 Cr

22 · · · Cr
2nl

...
...

. . .
...

Cr
nl1

Cr
nl2
· · · Cr

nlnl


+ i



0 Ci
12 · · · Ci

1nl

−Ci
21 0 · · · Ci

2nl

...
...

. . .
...

−Ci
nl1
−Ci

nl2
· · · 0


= Re(KW ) + iIm(KW ),

where Cr
m(φi, φj)

4
= Cr

ij and Ci
m(φi, φj)

4
= Ci

ij. Now,

KV = E(V˜mV˜ ∗m) = E(V˜mV˜Tm)

=

 E[Re(W˜m)Re(W˜m)T ] E[Re(W˜m)Im(W˜m)T ]

E[Im(W˜m)Re(W˜m)T ] E[Im(W˜m)Im(W˜m)T ]


2nl×2nl

.
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Since W˜m is circularly-symmetric from (1.15) we can obtain the following results,

E[Re(W˜m)Re(W˜m)T ] = E[Im(W˜m)Im(W˜m)T ] =
1

2
(Re(KW ))nl×nl ,

E[Re(W˜m)Im(W˜m)T ] = −E[Im(W˜m)Re(W˜m)T ] =
1

2
(Im(KW ))nl×nl .

Thus,

KV =
1

2

 Re(KW ) Im(KW )T

Im(KW ) Re(KW )

 =
1

2

 Re(KW ) −Im(KW )

Im(KW ) Re(KW )



Note that KV is a non-negative definite matrix, and its singular value decomposition

is given by

KV = PΛP T ,

where Λ is a diagonal matrix with eigenvalues (real-positive) of KV and P is an

orthonormal matrix, containing the corresponding orthonormalized eigenvectors of

KV . Let A = K
1/2
V = PΛ1/2P T and let Z˜ = {z(1)

1 , z
(1)
2 , . . . , z

(1)
nl , z

(2)
1 , z

(2)
2 , . . . , z

(2)
nl } be

a vector of i.i.d. standard normal random variates, we obtain

V˜m = A2nl×2nlZ˜2nl×1,

and hence W˜m (note Wm(φi) = W r
m(φi) + iW r

m(φi)).
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Now for each latitude φl, l = 1, 2, · · · , nl and λk, k = 1, 2, · · · , nL, we denote the

axially symmetric real data as {X(φl, λk)}. These random variates can be obtained

from the equation (5.3), which is stated below.

X(φl, λk) = W0(φl) + 2
N∑
m=1

[
W r
m(φl) cos(mλk)−W i

m(φl) sin(mλk)
]
. (5.7)

Remark 11. For the above decomposition, one needs to compute the eigenvalues

and eigenvectors of KV , which has the computational cost of O(n2
l ).

Algorithm 5.1 (Pseudo-code).

• Given a cross covariance function R(P,Q) with given parameters

(C1, C2, a, u, p)

• Choose a resolution φ1, . . . , φnl , λ1, . . . , λnL (or nl × nL)

• Obtain {Wm}

(1) derive Cm(φP , φQ) m = 0, 1, . . . , nL/2 based on R(P,Q)

(2) for each m get Re(KW ) and Im(KW ) hence obtain KV

(3) use SVD to compute V˜m (nl − tuples)

(4) get W˜m’s from V˜m
• Apply the equation (5.7) to obtain gridded data.
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5.3 Simulation Setup

We now implement the algorithm above to obtain axially symmetric data with the

given covariance structure. We will use models (4.11), (4.12), and (4.13) discussed

in Section 4.3 in the simulation. We select two sets of parameters, which are given

below:

Table 3. Parameter Values

Parameter values

Set 1 : C1 = 1, C2 = 1, a = 1, u = 1, p = 0.5

Set 2 : C1 = 1, C2 = 2, a = 3, u = 1, p = 0.6

The parameter u is the location parameter and u = 0 gives the covariance function

of a longitudinally reversible process on a sphere.

5.3.1 Deriving Cm for Model 1

As we have noted it is very crucial to derive Cm(φP , φQ) based on the given

R(P,Q). Here are the detailed steps to derive Cm(φP , φQ) from Model 1 (4.11).

Cm(φP , φQ) for other models can be obtained similarly.

R(P,Q) = R(φP , φQ,∆λ) = C̃(φP , φQ)
1− p2

1− 2p cos(Θ) + p2
,

where Θ = ∆λ+ u(φP − φQ), with some choice of C1, C2, a, u, and p.
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Now,

Cm(φP , φQ) =
1

2π

∫ π

−π
R(φP , φQ,∆λ)e−im∆λd∆λ

= C̃(φP , φQ)
1

2π

∫ π

−π

1− p2

1− 2p cos(Θ) + p2
e−im∆λd∆λ.

Now lets focus on the following integration.

∫ π

−π

1− p2

1− 2p cos(x+ b) + p2
e−imxdx,

where we set x = ∆λ and b = u(φP − φQ) and we have,

1− p2

1− 2p cos(x+ b) + p2
=

2− 2p cos(x+ b)− (1− 2p cos(x+ b) + p2)

1− 2p cos(x+ b) + p2

= 2× 1− p cos(x+ b)

1− 2p cos(x+ b) + p2
− 1

= 2×
∞∑
n=0

pn cosn(x+ b)− 1

= 1 + 2
∞∑
n=1

pn(cosnx cos(nb)− sin(nx) sin(nb)).
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Therefore, for m 6= 0,

∫ π

−π

1− p2

1− 2p cos(x+ b) + p2
e−imxdx

=

∫ π

−π

[
1 + 2

∞∑
n=1

pn(cosnx cos(nb)− sin(nx) sin(nb))

]
e−imxdx

=

∫ π

−π
e−imxdx+ 2

∞∑
n=1

pn
∫ π

−π
[cosnx cos(nb)− sin(nx) sin(nb)] e−imxdx

= 2
∞∑
n=1

pn
[
cos(nb)

∫ π

−π
cos(nx)e−imxdx− sin(nb)

∫ π

−π
sin(nx)e−imxdx

]
= 2

∞∑
n=1

pn [π cos(nb)δ(n,m) + πi sin(nb)]

= 2πpmeimb.

That is, for m 6= 0,

Cm(φP , φQ) = C̃(φP , φQ)
1

2π
(2πpmeimb)

= C̃(φP , φQ)pmeimb,

and for m = 0, C0(φP , φQ) = C̃(φP , φQ).

In summary,

Cm(φP , φQ) =

 C̃(φP , φQ), m = 0

C̃(φP , φQ)pmeimb, m 6= 0.
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If C̃(φP , φQ) is given by (4.9) then Cm(φP , φQ) for Model 1 is given by,

Cm(φP , φQ) =

 C1

(
C2 − e−a|φP | − e−a|φQ| + e−a|φP−φQ|

)
, m = 0,

C1

(
C2 − e−a|φP | − e−a|φQ| + e−a|φP−φQ|

)
pmeimb, m 6= 0.

The Cm(φP , φQ) functions for all three proposed models are given below

Table 4. The Cm(·, ·) Functions for Covariance Models used in Data Generation.

Model Cm(φP , φQ), m = ±1,±2, ... Parameters

Model 1 C̃(φP , φQ)pmeimb and C0 = C̃(φP , φQ) u > 0, p ∈ (0, 1)

Model 2 C̃(φP , φQ)p
m

m
eimb and C0 = 0 u > 0, p ∈ (0, 1)

Model 3 C̃(φP , φQ) 1
m4 e

imb and C0 = 0 u > 0

Note that out of above three models, model 1 has C0(φP , φQ) 6= 0. Hence, from

Chapter 4, the MOM cross covariance estimator is biased with non-estimable shift.

On the other hand, both models 2 and 3 have C0(φP , φQ) = 0, and hence one could

use the unbiased MOM cross covariance estimator for data validation.

5.3.2 Data Generation Through R(P, Q)

In order to demonstrate how effective our data generation algorithm is, we also

consider the data generated through the given covariance matrix R(P,Q) directly.
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Note that the covariance matrix R(P,Q) is a real block circulant matix given by (Jun

and Stein, 2008; Li, 2013).

R(P,Q) =



R0 R1 R2 · · · RnL−1

RnL−1 R0 R1 · · · RnL−2

RnL−2 RnL−1 R0 · · · RnL−3

...
...

...
. . .

...

R1 R2 R3 · · · R0


nlnL×nlnL

(5.8)

where the Rj’s are nl × nl sub-matrices of real-valued elements, R0 is the covariance

matrix between latitudes at longitude 1, R1 is the covariance matrix between latitudes

at longitude 1 and longitude 2, and so on. Note that each Rj is symmetric only when

the process is longitudinally reversible. To generate the gridded data values X˜ which

are formed by {X(φi, λj), i = 1, 2, . . . , nl, j = 1, 2, . . . , nL}, one can just simply obtain

a vector Z˜ that contains i.i.d. standard normal variates of size nl × nL, then

X˜ = R1/2(P,Q) ∗ Z˜ .
5.4 Results

To validate if the generated axially symmetric global data follow the given co-

variance model, we compare the MOM cross variogram estimates from the generated

data to its theoretical counterparts. As indicated in Chapter 4, although the cross

variogram (4.16) only reflects the even component of the cross covariance, it is unbi-

ased.
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Moreover, when the data are generated from the longitudinally reversible covariance

function, the cross variogram is equivalent to the cross covariance.

We conducted simulations for different pairs of latitudes with the same number

of longitudes (nL = 100). The pair of latitudes has been selected from very close to

far away. The cross variogram estimates are almost identical to the theoretical values

when the pair of latitudes are closer, which is not shown in here. We demonstrate

a case with larger latitude difference (φP = 100, φQ = 1500 equivalent to 700S and

600N) in order to capture the largest possible errors.

5.4.1 Comparison of MOM Estimators

Now we compare the cross variogram estimator given in (4.16), using our approach

(using Cm) with using R(P,Q) directly to generate data, respectively. One can see

that the estimate given by our method is closer to the true values than those from

R(P,Q) directly, under 500 repetitions and 4000 repetitions respectively (Figure 11).
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Figure 11. Using Parameter Set 1 and Set 2 to Perform The Variogram Estimator

Under Model 1. The Solid Line (Blue) Represents the Theoretical Values of Cross

Variogram and Dashed Lines (Green, Purple) Represents the Estimates for 500 and

4000 Simulations Respectively.
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5.4.2 Results for Longitudinally Reversible Processes

Setting u = 0 in all of our models yields longitudinally reversible covariance func-

tions (see Figure 10 1(d) ). Based on 500 simulations, one can see that the cross

variogram estimates directly from R(P,Q) approach are slightly different from the

theoretical values all three models (Figure 12). In contrast, the estimates from the

Cm approach are very close to the theoretical values (Figure 13).
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Figure 12. Cross Variogram Estimator Comparison based on R(P,Q) Approach for

Longitudinally Reversible Process Using Model 1, Model 2, and Model 3 (u = 0).
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Figure 13. Cross Variogram Estimator Comparison based on Cm Approach for Lon-

gitudinally Reversible Process Using Model 1, Model 2, and Model 3 (u = 0).

5.4.3 Comparison of Cross Covariance

As indicated in Chapter 4, when C0(φP , φQ) = 0, the cross covariance MOM es-

timator is unbiased. Therefore we obtain the cross covariance MOM estimates given

by (4.15) under model 2 and model 3, and then compare them with the true values.
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Here we select two pairs of latitudes, φ = 70, 80 (200S ,100S) and φ = 60, 120 (300S,

400N). Note that the cross covariance estimates match with the theoretical values

very well (Figure 14).

5.4.4 Comparison of MSE

In addition to comparing the bias, we also consider the mean square error (MSE)

of the MOM cross variogram estimates obtained under both Cm and directly from

R(P,Q) approaches. The overall MSE is calculated based on the following formula,

MSE =
1

nL

∑
(var + bias2)

=
1

nL

nL∑
j=1

[
1

nn

nn∑
i=1

(
γ̂i(jδ)− γ̂(jδ))2

)
+ (γ(jδ)− γ̂(jδ))2

]

where δ = 2π
nL

and nn is the number of simulations.
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Figure 14. Cross Covariance Comparison of Model 2 and Model 3
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Figure 15. MSE Comparison Between Cm and R(P,Q) Using 500 Simulations. Pair

1 (300S, 00), Pair 2 (400S, 100N) Figures (a) - (b) are the Comparisons for Model 1

and Figure (c)-(d) are the Comparisons for Model 2
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Table 5. MSE Comparison for Cm and R(P,Q) Approaches, the Values in Parenthesis

are the Biases for each Pair. Set 1 and Set 2 are Referring to the Set of Parameters

Discussed in Simulation Setup.

Set 1 Set 2

Model (φP , φQ) R(P,Q) Cm R(P,Q) Cm

Model1

(60, 90)
2.298 2.427 15.688 16.384

(0.0022) (0.0004) (0.0250) (0.0015)

(50, 100)
1.784 1.782 13.295 12.767

(0.0009) (0.0001) (0.0193) (0.0030)

(10, 150)
0.564 0.623 8.062 9.177

(0.0009) (0.0001) (0.0226) (0.0023)

Model2

(60, 90)
2.000 2.080 12.452 13.021

(0.0004) (0.0004) (0.0042) (0.0023)

(50, 100)
1.437 1.459 9.196 9.262

(0.0001) (0.0000) (0.0015) (0.0006)

(10, 150)
0.457 0.512 6.034 7.266

(0.0014) (0.0001) (0.0337) (0.0026)

One can see from the above table that a variety of pairs of latitudes and two different

sets of parameters are used in simulations. The MSEs from Cm are comparable with

those directly from the R(P,Q) approach while the Cm approach gives smaller bias.
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5.4.5 Generated Data

−150 −100 −50 0 50 100 150

−
60

−
40

−
20

0
20

40
60

longitude

 

−3

−2

−1

0

1

2

3

 
Generated axially symmetry data

Figure 16. A Snapshot of Global Data Generated Based on the Cm Approach Using

the Zero Mean Random Process (Model 2).

Figure 16 is a snapshot of the global data generated based on model 2 and could

potentially be used later for research. Clearly there are spatial trends within the

latitudes but not within the longitudes. It is somewhat difficult to use the covariance

structure to generate data when it is closer to Earth’s pole (similar complexity can

also be observed in MSU and TOMS data). Therefore we produced a snapshot by

generating the data on [0, 2π/3]× [0, 2π] (equivalent to [−π/3, π/3]× [−π, π] ) grid,

with a grid resolution of 10 × 20 (i.e nl = 120, nL = 180 ⇒ 21600 spatial points).

However we observed some inconsistencies (strong spots) when examining closer to

the boundary points of longitudes (λ→ ±π).
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Figure 17. One Snapshot of The Axially Symmetric Data Generated Based on Model

2 Grid Resolution 20 × 10 (Data Scale -10 and 10).

Figure 17 refers to the data snapshot given by Figure (16) and it is clear that trends are

within latitudes not within longitudes. Four snapshots of the gridded data generated

based on all models are given in Appendix A.

5.5 Discussion

In this dissertation, we focused on data generation and estimation for axially

symmetric processes on the sphere. We first showed that for the stationary random

process on the circle, the commonly used covariance function estimator based on

the MOM estimator is biased with non-estimable bias, while the unbiased MOM vari-

ogram estimator is inconsistent under Gaussianity. Our second project emphasized on

data generation, in which the axially symmetric random process can be decomposed

as Fourier series on circles, where the Fourier random coefficients can be expressed

as circularly-symmetric complex random vectors. We developed an algorithm that

generates axially symmetric data with a given covariance model. The bias of the
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cross variogram estimates from the data generated based on our algorithm is gener-

ally smaller than that directly from the R(P,Q) approach, while maintaining similar

MSEs. The computation cost for our algorithm is very small, on the order of O(nLn
2
l ).

This is much smaller than that when taking the square root of R(P,Q) through sin-

gular Value decomposition (SVD). Note that the dimension of R(P,Q) is nlnL×nlnL,

which might be expensive or not even possible when performing the SVD with large

dimensions. In addition, obtaining R(P,Q)1/2 with the light of block circulant ma-

trix seems unclear. Li (2013) indicated that one might find the eigenvalues using the

properties of block circulant matrices, more specifically, they pointed out that these

eigenvalues are related to the sub-matrices R0, R1, . . . , RnL−1. However, since these

matrices are not necessary symmetric, their eigenvalues could be complex-valued or

negative. When submatrices are symmetric, Tee (2005) proposed some methods to

find the eigenvalues. This will be extensively explored in the future.
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CHAPTER VI

FUTURE RESEARCH

We can extend this dissertation work to a number of future research areas. We

will first explore the unbiasedness and consistency of the MOM covariance and var-

iogram estimators for homogeneous and axially symmetric random processes on the

sphere. In particular, we expect a similar result shown for the circle hold for axially

symmetric random processes. We will also explore the ergodic condition (if exists)

that ensures the consistency of these estimators.

We have noticed that our proposed data generation algorithm assumes the closed

form of Cm(φP , φQ), which sometimes may not be available. This might restrict the

applicability of our data generation algorithm. Note that in order to implement the

algorithm, we only need Cm(φP , φQ) over the gridded locations. Therefore, given the

covariance structure R(P,Q), we may use the Discrete Fourier Transform to obtain

the gridd ed Cm(φP , φQ) values. This would definitely complement the current re-

search.

Kriging, or making predictions at unobserved locations, has always been one of

the important applications of data modeling and analysis in spatial statistics. With

the complexity and dimensionality of global data, it is very important that practically

useful parametric models with interpretable parameters are available for geography

and environmental scientists. In continuing of this dissertation research, we wish to
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enhance kriging techniques and make use of proposed global data generation methods

to make global predictions with less dimensionality.
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APPENDIX A

DATA SNAPSHOTS FOR ALL MODELS
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Axially symmetric data

Four Consecutive Axially Symmetric Data Snapshots based on Model 1 (4.6), Grid

Resolution 20 × 10 (Data Scale -10 and 10).
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Axially symmetric data

our Consecutive Axially Symmetric Data Snapshots based on Model 2 (4.7), Grid

Resolution 20 × 10 (Data Scale -10 and 10).
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Four consecutive axially symmetric data snapshots based on model 3 (4.8), grid res-

olution 20 × 10 (data scale -10 and 10).
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