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Abstract: 
 
The study examines the relationship between the big five personality traits (extroversion, 
agreeableness, conscientiousness, neuroticism, and openness) and robot likeability and successful 
HRI implementation in varying human-robot interaction (HRI) situations. Further, this research 
investigates the influence of human-like attributes in robots (a.k.a. robotic anthropomorphism) on 
the likeability of robots. The research found that robotic anthropomorphism positively influences 
the relationship between human personality variables (e.g., extraversion and agreeableness) and 
robot likeability in human interaction with social robots. Further, anthropomorphism positively 
influences extraversion and robot likeability during industrial robotic interactions with humans. 
Extraversion, agreeableness, and neuroticism were found to play a significant role. This research 
bridges the gap by providing an in-depth understanding of the big five human personality traits, 
robotic anthropomorphism, and robot likeability in social-collaborative robotics. 
 
Keywords: agreeableness | big five | conscientiousness | extroversion | HRI | HRI 
implementation | neuroticism | openness | robot likeability | robotic anthropomorphism | social-
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Article: 
 
INTRODUCTION 
 
Technology has been improving our lives dramatically and drastically in the last several decades. 
COVID-19 pandemic and the changing landscape presents a testimony to the above statement. 
Technology is playing an important role in our lives today, and we are trying to find a new normal 
during the present world crises through technology usage. The ‘new normal’ emerging out of the 
current turbulent times will subsequently need more technology usage and enhancement whether 
it means connecting students online; schools and Universities experimenting more with 
online/hybrid classes; continuous and consistent sanitation requirements of high touch areas in 
both developed and emerging economies; remote work possibilities for people who are sick, 
unwell, elderly or sensitive; reduced face-to-face interaction for increasing productivity, and much 
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more. For achieving all this, we will need ‘social robots’ in our everyday lives to meet the new 
demands of the ever-changing global world. Social robots provide comfort to the elderly and have 
shown to improve their well-being (Wada & Shibata, 2007). People who feel lonely, tend to 
anthropomorphize robots more than others (Samuel, 2019). These social robots may serve as tools 
and agents to alleviate their loneliness (Eyssel & Reich 2013) and additionally decrease their stress 
levels (Wada et al. 2004). Social robots are known to have been used in a variety of situations 
including (but not limited to) patients suffering from dementia, therapeutic applications for 
children with autism, adults with health issues, mental health issues, and in stroke patients’ 
recovery processes (Tapus, Ţăpuş, & Matarić 2008; Ab Aziz 2015; Libin & Libin 2004). 
 Human-robot interaction (HRI) is a research domain dedicated to understanding 
communication between robots and humans (Kaplan, 2019). This research area is gaining 
popularity and attention in the diverse fields of study – science, technology, engineering, and 
mathematics (STEM), along with business and management (Arora & Arora, 2020). One of the 
early contributions to HRI study is artificial intelligence research. Artificial Intelligence (AI) is a 
term used for robotic technologies, which refers to the ability of computers/robots to acquire 
knowledge and think like humans (Arora & Arora, 2020). With the advancement in AI technology 
and the expansion of HRI, social-collaborative robots have emerged in HRI space in the past few 
years (Lungarella et al., 2003). According to the Big Five trait taxonomy, personality can be 
broadly classified as being comprised of five significantly different traits. These five 
characteristics are Extraversion, Agreeableness, Conscientiousness, Neuroticism, and Openness 
(Goldberg, 1981), and the generalizability of the Big Five dimensions remains constant across all 
cultures (McCrae & Costa, 1997; Pulver et al., 1995; Salgado, 2002). ‘Extraversion’ is a trait that 
is energetic and enthusiastic to social settings, and typically emotionally positive. ‘Agreeableness’ 
can be described as affectionate, altruistic, modest, and sympathetic. ‘Conscientiousness’ refers to 
an organized, responsible, reliable, goal-oriented, and controlled personality style. ‘Neuroticism’ 
is characterized as tense, anxious, fearful to the world around, and typically, emotionally negative 
and sad. The ‘Openness’ characteristic is described as open-minded, having broad interests, 
insightful, and curious (John & Srivastava, 1999). People utilize such personality variables in 
describing themselves and others as well as in how they perceive the world around them (John & 
Srivastava, 1999). In this new era of social-collaborative robots where robots are continuously 
assuming roles of family members, teammates, and/or therapists, Big Five traits can be a strong 
predictor of differential reaction to robots, and play a crucial role in successful HRI 
implementations. Given the current turbulent times and the emerging focus on adapting to 
humanless touch technology, there is a dire need to study and examine Big Five human personality 
dimensions to understand the field of HRI through the lenses of robotic anthropomorphism, robot 
likeability, and successful HRI implementation. Our research aims to fulfill this gap. 
 Robotic anthropomorphism refers to the attribution of human form, behavior, or 
characteristics to robots (Bartneck et al., 2009). In addition to employing human personality traits 
or Big Five to understand human/consumer behavior towards robots, we conceptualize that 
anthropomorphism (along with the Big Five) will help researchers understand HRI. Previous 
research has examined the impact of anthropomorphism in the field of social robotics (Kaplan, 
Sanders, and Hancock, 2019). Still, not much literature is available on the role of the Big Five 
personality traits in the context of robotic anthropomorphism. Robot likeability refers to a positive 
initial impression (usually within seconds) of robots, and the concept of robot likeability 
significantly influences our positive or negative judgments about social-collaborative robotics 
(Bartneck et al., 2009). 



 There is a dearth of human psychology and consumer behavior research in the field of 
human-robot interaction. The success of HRI between humans and social-collaborative robotics 
cannot be assessed without recognizing human judgment towards different levels of robotic 
anthropomorphism and its subsequent influence on robot likeability. Social-collaborative robotics 
exhibits social characteristics that are more human-like than traditional artificial intelligence 
designs. Therefore, developers utilize both robotic anthropomorphism and likeability into account 
when designing social-collaborative robots for consumers of all ages with either emotional 
(therapeutic) or physical needs. In order to bridge the identified research gaps in HRI space 
pertaining to the Big Five, Robotic anthropomorphism, robot likeability, and overall HRI 
implementation, our research addresses the following questions: 
 

1. Do the Big Five personality traits (Extroversion, Agreeableness, Conscientiousness, 
Neuroticism, and Openness) impact robot likeability in human-robot Interaction (HRI) 
situations? 

2. Will the degree of human-like attributes in robots (a.k.a., robotic anthropomorphism) 
influence the likeability of robots? 

3. Will robotic anthropomorphism influence the relationship between human personality 
variables and robot likeability in varying (industrial versus social) HRI situations? 

 
The research makes the following contributions. First, the study focuses on the Big Five human 
personality traits and how they are linked to positive and/or negative reactions to robots. Previous 
research (e.g., Eysenck, 1950; Donnellan et al., 2006) has provided evidence of extraversion and 
how it is linked with robot likeability through strong communication preferences and low 
communication apprehension (Nomura et al., 2008; Kaplan, Sanders and Hancock, 2019); 
however there is not much research available on how different human personality traits can be 
associated with positive and/or negative reactions towards social robots in varying HRI settings. 
Kaplan et al. (2019) utilized the Mini International Personality Pool (Mini-IPIP; Donnellan et al., 
2006) and examined Big Five personality traits for social robots, yet their research focus was on 
extroversion-introversion trait and its relationship with anthropomorphism and robot likeability. 
They did not investigate the entire breadth of Big Five personality traits, and the subsequent impact 
of Big Five on a positive and successful HRI implementation. Our research aims to fulfill this gap. 
Second, there is limited research conducted on how these human personality traits are associated 
with anthropomorphic tendencies, and human’s ability to anthropomorphize robots by attributing 
human-like characteristics to robots (Woods et al., 2007; Letheren et al., 2016; Kaplan, Sanders 
and Hancock, 2019). Furthermore, the following question arises: Does robotic anthropomorphism 
acts as a bridge (or mediator) between human personality traits and our reactions and likeability 
for robots. Our research explores this question and fulfills the research gap through an in-depth 
examination of robotic anthropomorphism and its relationships with the Big Five human 
personality traits, along with robot likeability and overall positive/successful HRI implementation. 
Last but not least, most HRI research focused on any social robot without getting into details of 
the robot’s appearance and its real usage in industry and home settings. The issue of robot 
morphology plays a significant role in human perception of robots, especially in the context of 
“two robots of differing appearance, even if they worked in the same job domain” (Kaplan, 
Sanders, and Hancock, 2019, p. 135) since varying robots’ appearances will yield different results 
with respect to human personality traits and their reactions (likeability) towards robots. In our 
research, we tried to overcome this research gap by examining two different robots (one social 



robot used in therapeutic situations called PARO Baby Seal robot, and another industrial robot 
called KUKA robot generally used in organizations, as a supplier of intelligent automation 
solutions) through the lenses of Big Five human personality traits; and investigating how 
anthropomorphism mediates the relationship between Big Five and robot likeability leading to a 
successful HRI implementation. To the authors’ knowledge, this is the one-of-its-kind HRI 
research attempted in the interdisciplinary areas of Big Five personality traits (Extraversion, 
Agreeableness, Conscientiousness, Neuroticism, and Openness to experience), robotic 
anthropomorphism, robot likeability, and successful HRI implementation by utilizing two different 
robot settings from home and industry. 
 This article consists of four sections. First, we focus on defining and describing social-
collaborative robotics in HRI. Second, we examine how Big Five human personality traits impact 
social-collaborative robotics either directly or through the mediating effect of robotic 
anthropomorphism. Thereafter, we investigate the effects of Big Five and robotic 
anthropomorphism on robot likeability, and the subsequent impact of these HRI interrelationships 
on the success of HRI implementation. Next, we propose our Personality – Anthropomorphism – 
Likeability framework and utilize SmartPLS methodology to investigate the impact of our 
framework on consumers and businesses through human personality traits, robotic 
anthropomorphism, robot likeability, and (successful) HRI implementation in the context of social-
collaborative robotics and HRI. 
 
THEORETICAL FRAMEWORK 
 
Social-collaborative robots possess skills related to cognition (reasoning, planning, manipulation, 
navigation, etc.), and collaboration through their interaction with human-supported HRI 
environments (Lungarella et al., 2003). According to Arora and Arora (2020), social-collaborative 
robots can be classified in multiple categories in the HRI domain – therapeutic robots, physically-
assistive robots, robot interrogators, Wizard-of-Oz (WoZ), and industrial robots with human 
interaction capabilities. Social-collaborative robots not only possess cognitive skills (i.e., logical 
thinking, decision- making, and consciousness, problem-solving, etc.) but are also equipped with 
the ability to understand and exhibit social and ethical norms by displaying socially acceptable 
behaviors (Arora & Arora, 2020). Social-collaborative robots can assist humans in various 
situations, both therapeutically (emotionally) and physically. Human-robot interaction (HRI) 
focuses on the interaction between humans and robots (Kaplan et al., 2019). Therefore, it is crucial 
to understand the human side of personality differences in order to implement HRI successfully. 
An important question arises here. Do different human personality traits influence (and change) a 
person’s attitudes about and their behavior towards robotic technology? The answer may lie in the 
extensive research literature available on human personality traits that suggests that all personality 
measures may be categorized under the umbrella of a 5-factor model of personality, also called the 
“Big Five” (Goldberg, 1990). 
 Personality is an essential human attribute for human social interaction, and researchers 
(e.g., Dicaprio, 1983; Woods et al., 2005; and Tapus and Matarić, 2008) defined personality as: 
“the pattern of collective character, behavioral, temperamental, emotional and mental traits of an 
individual that has consistency over time and situations” (Aly and Tapus, 2015, p. 186). Several 
personality models can be utilized in the human social interaction context, of which the 
predominant ones are: Big Five (Openness, Conscientiousness, Extraversion, Agreeableness, and 
Neuroticism) (Goldberg 1990, 1999); Eysenck Model of Personality (PEN) (P: Psychoticism, E: 



Extraversion, and N: Neuroticism) (Eysenck 1953, 1991); and Meyers-Briggs (Extraversion-
Introversion, Sensation-Intuition, Thinking-Feeling, and Judging-Perceiving) (Myers-Briggs and 
Myers 1980; Murray 1990). We use the Big Five personality traits for our HRI research, as “it is 
the most descriptive model of human personality” (Aly and Tapus, 2015, p. 186). The 5-factor 
structure of Big Five personality model has been analyzed in various languages, integrated into 
existing personality inventories (McCrae & John, 1992; Judge et al., 1999); assimilated and 
generalized across all cultures (McCrae & Costa, 1997; Pulver et al., 1995; Salgado, 2002), and 
has maintained stability and consistency over time (Costa & McCrae, 1992). The big five 
personality traits are: (1) Extraversion, which “implies an energetic approach toward the social and 
material world and includes traits such as sociability, activity, assertiveness, and positive 
emotionality”; Agreeableness, which “contrasts a prosocial and communal orientation toward 
others with antagonism and includes traits such as altruism, tender-mindedness, trust, and 
modesty”; Conscientiousness, which describes a “socially prescribed impulse control that 
facilitates task- and goal-directed behavior such as thinking before acting, delaying gratification, 
following norms and rules, and planning, organizing, and prioritizing tasks”; Neuroticism, which 
“contrasts emotional stability and even-temperedness with negative emotionality, such as feeling 
anxious, nervous, sad, and tense”; and openness to experience, which measures “the breadth, 
depth, originality, and complexity of an individual’s mental and experiential life” (John et al., 2008: 
120). 
 The current study focuses on extraversion-introversion as strong predictors of diverse 
reactions towards robots in HRI contexts. Individuals who score high on the extraversion trait tend 
to be enthusiastic about social settings and are more open to new experiences or entities, typically 
describing then as likable and/or positive. Extraverts exhibit positive responses to technologies 
and robots due to low communication apprehension and their inherent ability to demonstrate strong 
preferences for communication, while introverts portray negative reactions and attitudes towards 
robots due to their need for higher levels of communication apprehension (Nomura et al., 2008). 
Since robotic anthropomorphism is linked with human-like characteristics in robots (e.g., facial 
features of robots like big eyes, smiling face, interactive voice, speech, hand and body gestures 
integrated into robots like ASIMO, Nao, Kirobo Mini, Pepper, etc.), the ability to 
anthropomorphize robots is strongly linked to attributing these specific personality traits related to 
user’s personality (Kaplan et al., 2019) leading to robot likeability. Individuals with a high 
extraversion trait are predicted to show more positive attitudes in HRI settings. Furthermore, since 
extraversion integrates strong anthropomorphic tendencies (Letheren et al., 2016), we hypothesize 
that extroversion will be strongly related to robot anthropomorphism in addition to direct 
relationships and associations with robot likeability in HRI situations. Therefore, we posit the 
following hypotheses: 
 
H1A: Extraversion will be positively associated with robotic anthropomorphism. 
H1B: Extraversion will be positively associated with robot likeability. 

 
Agreeableness is another trait that can be expected to demonstrate a favorable reaction in HRI. 
This is because agreeableness includes characteristics such as favorable to others, sympathetic and 
altruistic. Agreeable people are likable, caring, cooperative, good-natured, cheerful and gentle, 
along with their ability to trust others easily (Judge et al., 1999). Research has shown that the trait 
of agreeableness is associated with less need for physical distance between robots compared to 
other traits (Takayama & Pantofaru, 2009). With all the positive traits of agreeable individuals, the 



cooperative nature of agreeable individuals may lead to more successful careers in life; however, 
high levels of agreeableness may pose a problem sometimes as they may tend to sacrifice their 
success in pleasing others (Judge et al., 1999). Conscientiousness is a characteristic that follows 
social rules and norms dedicated to the achievement of goals, and consists of three significant 
orientations or facets – (a) dependability orientation (responsible and careful), (b) achievement 
orientation (hardworking and persistent), and (c) orderliness (planned and organized) (Judge et al., 
1999). Once the human’s interaction with a robot is accepted as a goal, conscientiousness will 
strive to achieve the goal of successful HRI. Both agreeableness and conscientiousness 
demonstrate higher levels of robot likeability and anthropomorphism (Kaplan, Sanders, and 
Hancock, 2019). Thus, we posit the following hypotheses: 
 
H2A: Agreeableness will be positively associated with robotic anthropomorphism. 
H2B: Agreeableness will be positively associated with robot likeability. 
H3A: Conscientiousness will be positively associated with robotic anthropomorphism. 
H3B: Conscientiousness will be positively associated with robot likeability. 

 
Neuroticism, unlike the other Big Five traits, is likely to demonstrate an adverse reaction in HRI. 
Neuroticism refers to a lack of positive emotional stability and psychological adjustment. It, 
therefore, may be related to two characteristics: anxiety (instability and stress proneness), and 
one’s well-being (personal insecurity and depression) (Judge et al., 2019; Takayama & Pantofaru, 
2009). The trait of neuroticism is characterized as nervous, tense, fearful, and exhibiting a tendency 
to see the world negatively. Costa and McCrae (1992) differentiated among six facets of 
neuroticism: anxiety, depression, self-consciousness, hostility, vulnerability, and impulsiveness. In 
the HRI context, neuroticism is associated with adverse attitudes towards robots (Takayama & 
Pantofaru, 2009) and robotic anthropomorphism. 
 On the contrary, openness to experience is characterized by philosophical and intellectual 
abilities, along with unconventionality (imaginative, autonomous, and nonconforming) attributes 
(Judge et al., 1999). The openness personality trait is characterized as having a high level of 
curiosity for new entities and being open-minded to novel objects. Therefore, individuals with a 
high level of openness will be more likely to see robots as new entities, be able to 
anthropomorphize robots positively, and will be more willing to accept them in HRI situations. 
Therefore, we posit the following hypotheses: 
 
H4A: Neuroticism will be negatively associated with robotic anthropomorphism. 
H4B: Neuroticism will be negatively associated with robot likeability. 
H5A: Openness to Experience will be positively associated with robotic anthropomorphism. 
H5B: Openness to Experience will be positively associated with robot likeability. 

 
As defined earlier, robotic anthropomorphism is the human-like attribution of human behavior and 
characteristics in robots (Bartneck et al., 2008). Prior research has shown some significant results 
on robotic anthropomorphism in HRI (Kaplan et al., 2019; Woods et al., 2007; Epley et al., 2007; 
Reich and Eyssel, 2013). Robots with higher anthropomorphism or stronger attribute-similarities 
and characteristics with humans in both appearance and behavior may facilitate constructive and 
natural HRI (Duffy, 2003; Złotowski et al., 2015; Strait et al., 2017). Robotic anthropomorphism 



increases comfort levels for users (humans) during their interactions with robots (Sauppé & Mutlu, 
2015; Strait et al., 2017). A robot exhibiting a high degree of anthropomorphism is often perceived 
to be intelligent and more likable (Bartneck et al., 2008). Therefore, we posit: 
 
H6: Robotic Anthropomorphism will be positively associated with robot likeability. 

 
Robot likeability is usually determined within seconds during social-collaborative robots’ 
interactions and, thus, the impression of likeability significantly influences (positive or negative) 
HRI implementation (Kaplan et al., 2019; Bartneck et al., 2008). While human-like robots have 
resulted in positive outcomes, such as increased feelings of familiarity or ease in working with 
robots (Sauppé & Mutlu, 2015), researchers have also identified adverse (negative) feelings (Mori 
et al., 2012) of consumers towards robots. This psychological phenomenon is referred to as ‘the 
uncanny valley effect,’ originally described by Japanese robotics professor Masahiro Mori in the 
1970s (Mori et al., 2012). 
 

 
Figure 1. Masahiro Mori’s (2012) ‘Uncanny Valley Effect’ curve (Adapted 
from MaDorman et al. (2015) 
 

Figure 1 describes the ‘uncanny valley’ as a dip between a humanoid robot and a healthy person. 
The graph shows that robot likeability increases to a highly human-like robot up to a point, and 
then drops if the robot becomes too human-like. In short, people respond more adversely to robotic 
anthropomorphism as the degree of human-like attributes increase. Consequently, the uncanny 
valley effect is another factor to consider in designing social-collaborative robotics, to remember 
that if robots are too human-like, they may be viewed less positively (Arora and Arora, 2020). 
Robot likeability is particularly interesting because the amount of information that humans process 
within seconds is limited to very few variables. For instance, it may be the robot’s appearance and 
one or two of its motions. Therefore, it is vital to design robots with consideration to appearance 



and behavior, (or robotic anthropomorphism), for the purpose of a successful HRI implementation. 
The more likable a robot is, the more successful its implementation in practical, real-world settings 
(Zheng et al., 2013). Therefore: 
 
H7: Robot likeability will be positively associated with a successful HRI implementation. 

 
Figure 2 demonstrates our Personality – Anthropomorphism – Likeability conceptual framework. 
Figure 2 exemplifies relationships among the constructs of Big Five personality traits, robotic 
anthropomorphism, and robot likeability, leading to a successful and positive HRI implementation, 
as described in H1-7. 
 

 
Figure 2. Human Personality – Robotic Anthropomorphism – Robot Likeability HRI Framework 

 
METHODOLOGY 
 
To test the conceptual framework, the X-Culture project was used to collect the data. X-Culture 
(www.X-Culture.org) is a large-scale international business collaboration and consulting project, 
which in a given semester attracted about 5,000 business students and working professionals from 
all six continents across the globe. The project is run twice a year on a semi-annual basis. The 
participants work in global virtual teams, typically six to seven people per team, each from a 
different country. The project participants rely on such as tools as Google Docs, Dropbox, 
WhatsApp, Facebook, Twitter, Snapchat, Google Hangouts, Skype, and the for communication 
and collaboration. 
 
Sample 
 
About 37 percent of the participants were graduate MBA and EMBA students, and the rest were 
business students in their last or second to last (senior or junior) year of studies. The average age 
was 23.3 years, and 39 percent were male. The vast majority of the participants had at least some 
work experience (average of 3.2 years), and many (31.1 percent) were employed at the time of the 
project. Some even ran their own businesses or held managerial positions (5.1 percent). The X-
Culture project teams submitted weekly deliverables, and all project participants completed 
weekly progress surveys. The average response rate was 97.2% resulting in a sample size of 308 
usable fully-completed questionaries. 



 Admittedly, the present sample is comprised of students and certain concerns about the 
generalizability of the findings exist. However, the threat to the validity and generalizability of the 
findings is likely minimal. The concern is that students differ from the general population in terms 
of their demographic characteristic, particularly age. However, the fact that students are typically 
younger is of little concern if the maturation effect does not influence the effects studied. For 
example, in the case of the present study, some organizations offered post-market commissions to 
the students, as well as prospects of internships and job offers. So the stakes and motivation were 
high and closer to those in the real world, rather than a typical symbolic bonus that professors offer 
to their students for participating in a study. The participants, the project settings, and the inter-
member differences were real, and the work design was closely reminiscent of the real business 
world. Therefore, the threat that the findings of the present study would not generalize to the real 
world consumer population is minimal. 
 In subsequent sections, measures used in the framework, data collection process, and data 
analysis are discussed. The X-Culture participants watched 3 videos (2-3 minutes each) of social 
robots in industrial (e.g., KUKA Industrial Robot - 
https://www.youtube.com/watch?v=2ZUn9qtG8ow) situations before being exposed to the final 
questionnaire. The idea was to get the participants to understand and enjoy the field of industrial 
and social robotics through videos. Research in social sciences and interpersonal communication 
has revealed that messages/communications can be made more persuasive and compliant by 
cueing humans’ involvement with objects and behaviors (Clark 1998; Cleveland, Kalamas, and 
Laroche 2005). Thus, for the respondents to understand the field of social-collaborative robotics, 
we used video messages/advertisements as cues to understand social behaviors in varying HRI 
situations. Once the respondents felt connected to the topic (after multiple exposures to industrial 
and social robots through videos), an electronic Web-based questionnaire was provided to the X-
Culture participants with questions focusing on two robots: (a) KUKA Industrial robot 1used by 
manufacturing companies for automation and digitization, turnkey production facilities, and smart 
software solutions; and (b) PARO Seal Therapeutic Robot2 – a personal assistant social robot 
helping humans to reduce anxiety, depression, and loneliness, while also stimulating, collaborating 
and engaging with people who are living with dementia (Pu et al., 2020). 
 
Measures 
 
The questionnaire consisted of measures from existing literature that were adapted to this study. 
Godspeed questionnaires using 5-point semantic differential scales were utilized as measures for 
robotic anthropomorphism, robot likeability, and HRI implementation (Bartneck et al., 2008). Big 
Five human personality traits (Extraversion, Agreeableness, Conscientiousness, Neuroticism, and 
Openness to Experience) were assessed on a 5-point Likert scale using measures from John & 
Srivastava (1999). All eight constructs in the conceptual model constitute latent variables requiring 
indirect measurement (Churchill, 1979; Bagozzi and Phillips, 1982). As the constructs in our 
research reflect (i.e., cause) their indicators, they were specified to be reflective (Diamantopoulos 
and Winklhofer, 2001; Diamantopoulos et al., 2008). All indicators were selected based on an 
extensive literature review as well as evidence from academicians. A 5-point Likert scale was used 
to measure the items. We conducted Harman’s single-factor test (Podsakoff and Organ, 1986), the 
most widely used method to evaluate the possibility of common method variance (Podsakoff et 
al., 2003). We did not find any general factor that accounted for the majority of the variance in 



these variables. Therefore, we conclude that common method variance is not a problem in our 
study (Podsakoff and Organ, 1986). 
 
Data Analysis 
 
We validated our measures and tested our hypothetical model using partial least squares (PLS), 
and more specifically, SmartPLS version 3.2.8 (Ringle et al., 2015). PLS is a structural equation 
modeling tool that employs a fixed point or component-based least squares estimation procedure 
to obtain parameter estimates. PLS uses a series of interdependent OLS regressions to minimize 
residual variances, placing minimal demands on data in terms of measurement scales, sample size, 
and distributional assumptions (Chin, 1998; Fornell and Bookstein, 1982; Wold, 1982). Therefore, 
it is preferable to approaches that employ covariance-based maximum likelihood methods (e.g., 
Lisrel, EQS, etc.) in examining data where the sample size is relatively small (Bagozzi et al., 1991; 
Hulland et al., 2010). PLS is also a conservative modeling approach that tends to underestimate 
rather than overestimate path coefficients (Dijkstra, 1983), reducing the likelihood of Type 1 errors 
in hypothesis testing (Bagozzi et al., 1991). 
 The conceptual model (Figure 1) was tested by analyzing the data using partial least 
squares (PLS) following a two-step process. The first step involved assessing the measurement 
model to evaluate the consistency, reliability, and validity of the measures. The second step 
involved assessing the structural model to evaluate the significance and strength of the path 
coefficients between the variables. 
 
Measurement Model 
 
Indicator reliability was tested using a bootstrapping procedure with 1,000 randomized samples 
taken from the original sample and of original cardinality (Henseler et al., 2009). While checking 
the estimates of outer loadings of all indicators with their constructs, it was found that the 
indicators of the construct “Openness to Experience” did not exhibit sufficient outer loadings 
values. Therefore, the construct “Openness to Experience” was dropped from the final analysis. 
Finally, the measurement model containing seven constructs was assessed. As shown in Table 1, 
all estimates of the outer loadings exceed the recommended minimum value of .7 and exhibit 
sufficient t-values. 
 When testing for indicator reliability, convergent validity is also assessed, as loadings 
greater than .7 imply that the indicators share more variance with their respective constructs than 
with the error variances (Chin, 1998). To assess construct reliability, Cronbach’s alpha (α) and 
composite reliability (CR) were determined. As depicted in Table 1, the α for the constructs are all 
above the suggested cut-off value of .7 (Cronbach, 1951; Litwin, 1995). Similar results were 
observed for the CR values, which were all greater than the suggested cut-off value of .6 (Bagozzi 
and Yi, 1988; Henseler et al., 2009). Convergent validity was assessed using the average variance 
extracted (AVE). As depicted in Table 1, the AVE is in all cases above the recommended value of 
.5 (Fornell and Larcker, 1981; Henseler et al., 2009). AVE was also used to evaluate discriminant 
validity. Table 2 indicates the correlations between the latent variables and the square roots of AVE 
on the diagonal. As the square root of AVE is in each case greater than the correlation among the 
latent variable scores with respect to its corresponding row and column values, we can conclude 
that none of the constructs shares more variance with another construct than with its own 
indicators, thus exhibiting sufficient levels of discriminant validity (Fornell and Larcker, 1981; 



Henseler et al., 2009). To assess the structural model’s prediction relevance, we applied a 
blindfolding procedure with an omission distance of 5 (Henseler et al., 2009). All resulting Q2 
values are larger than zero, indicating sufficient predictive power of the structural model (Stone, 
1974; Geisser, 1975). 
 
Table 1. Overview of indicators and measures of reliability and validity 

Constructs and Indicators 
Outer Loadings 

Point Estimation t-Value 
Extraversion (α = .710, AVE = .590, CR = .812)   
ex1 Is talkative   
ex6 Is reserved (reverse scale)   
ex11 Is full of energy .765 3.346 
ex16 Generates a lot of enthusiasm .730 2.796 
ex21 Tends to be quiet (reverse scale)   
ex26 Has an assertive personality .808 3.368 
ex31 Is sometimes shy, inhibited (reverse scale)   
ex36 Is outgoing, sociable   
Agreeableness (α = .697, AVE = .695, CR = .819)   
ag2 Tends to find faults in others (reverse scale)   
ag7 Is helpful and unselfish with others .751 2.899 
ag12 Starts quarrels with others (reverse scale)   
ag17 Has a forgiving nature   
ag22 Is generally trusting   
ag27 Can be cold and aloof (reverse scale)   
ag32 Is considerate and kind to almost everyone   
ag37 Is sometimes rude to others (reverse scale)   
ag42 Likes to cooperate with others .909 5.566 
Conscientiousness (α = .727, AVE = .648, CR = .846)   
Co3 Does a thorough job   
Co8 Can be somewhat careless (reverse scale)   
Co13 Is a reliable worker   
Co18 Tends to be disorganized (reverse scale)   
Co23 Tends to be lazy (reverse scale) .821 5.678 
Co28 Perseveres until the task is finished   
Co33 Does things efficiently   
Co38 Make plans and follows through with them .724 4.372 
Co43 Is easily distracted (reverse scale) .864 7.123 
Neuroticism (α = .767, AVE = .586, CR = .850)   
Ne4 Is depressed .730 5.919 
Ne9 Is relaxed, handles stress well(reverse scale)   
Ne14 Can be tense .733 6.544 
Ne19 Worries a lot   
Ne24 Is emotionally stable, not easily upset   



Ne29 Can be moody .804 8.047 
Ne34 Remains calm in tense situations (reverse scale)   
Ne39 Gets nervous easily .791 7.632 
Anthropomorphism (α = .738, AVE = .548, CR = .829) 
An1 Fake - Natural .771 17.183 
An2 Machine-like – Human-like .753 19.712 
An3 Unconscious - Conscious .712 12.803 
An4 Artificial - Lifelike .722 14.403 
An5 Moving rigidly – Moving elegantly   
Likeability (α = .860, AVE = .643, CR = .900)   
Li1 Dislike - Like .718 15.516 
Li2 Unfriendly - Friendly .815 34.963 
Li3 Unkind - Kind .839 36.594 
Li4 Unpleasant - Pleasant .848 42.130 
Li5 Awful - Nice .782 23.736 
HRI Implementation (α = .868, AVE = .791, CR = .919)   
HR1 Inert - Interactive .915 51.416 
HR2 Stagnant - Lively .899 35.220 
HR3 Failure - Success .845 29.903 

 
Table 2. Correlations between constructs and Discriminant Validity 

Construct AG AN CO EX HR LI NE 
Agreeableness (AG) .834       
Anthropomorphism (AN) .074 .740      
Conscientiousness (CO) .360 .122 .805     
Extraversion (EX) .447 .096 .392 .768    
HRI implementation (HR) .111 .282 .050 .017 .786   
Likeability (LI) .148 .374 .101 .064 .472 .802  
Neuroticism (NE) -.208 -.014 -.449 -.236 -.021 -.169 .765 

 
Structural Model 
 
After evaluating and assuring measurement model validity, SmartPLS was employed to test the 
structural model. The significance of the hypothesized paths was determined using the T-statistic 
calculated with the bootstrapping technique. The explanatory power of the structural model was 
assessed according to the variance accounted for by the endogenous variables (Oh et al., 2012). 
Stone–Geisser criterion Q2 values were obtained by running blindfolding procedures; these ranged 
above the threshold value of zero, thus establishing the model’s predictive relevance (Ringle et al., 
2015). 
 Two structural models were assessed, one with constructs of Anthropomorphism, 
Likeability and HRI Implementation related to KUKA (industrial robot); and the second model 
with constructs of Anthropomorphism, Likeability, and HRI Implementation related to PARO 
(social-collaborative personal assistant robot). Both models included the constructs of 
Extraversion, Agreeableness, Conscientiousness, and Neuroticism. 



 Table 3 shows the PLS results of the theoretical model that contains the constructs related 
to KUKA. The results include standardized path coefficients and significance based on two-tailed 
t-tests. The relationships between extraversion and anthropomorphism (b = .199, p < .10), 
anthropomorphism and likeability (b = .373, p < .01), agreeableness and likeability (b = .123, p < 
.05), neuroticism and likeability (b = -.170, p < .01), and likeability and HRI implementation (b = 
.472, p < .01) were all significant. On the other hand, the relationships between conscientiousness 
and anthropomorphism; agreeableness and anthropomorphism; neuroticism and 
anthropomorphism; extraversion and likeability; conscientiousness and likeability were non-
significant. 
 Table 4 shows the PLS results of the theoretical model that contains the constructs related 
to PARO. The relationships between extraversion and anthropomorphism (b = .152, p < .05), 
agreeableness and anthropomorphism (b = .120, p < .10), anthropomorphism and likeability (b = 
.586, p < .01), likeability and HRI implementation (b = .752, p < .01) were significant. On the 
other hand, the relationships between conscientiousness and anthropomorphism; neuroticism and 
anthropomorphism; openness to experience and anthropomorphism; extraversion and likeability; 
agreeableness and likeability; conscientiousness and likeability; neuroticism and likeability were 
non-significant. 
 
Table 3. Path coefficients and R2 of structural model (KUKA) 

Constructs 
Path coefficients 

Hypotheses 
 

Point estimate t-Value  

AN (R2=.201)     
EX .199 1.679 H1a Accepted* 
AG .018 0.268 H2a Rejected 
CO .055 0.674 H3a Rejected 
NE -.056 0.716 H4a Rejected 
LI (R2=.178)     
AN .373 6.856 H5 Accepted*** 
EX -.049 0.712 H1b Rejected 
AG .123 1.940 H2b Accepted** 
CO -.045 0.596 H3b Rejected 
NE -.170 2.597 H4b Accepted*** 
HR (R2=.071)     
LI .472 10.057 H6 Accepted*** 

*p < 0.10; ** p < 0.05; *** p < 0.01 
 
 
 
 
 
 
 
 
 
 
 
 



Table 4. Path coefficients and R2 of structural model (Paro) 

Constructs 
Path coefficients 

Hypotheses 
 

Point estimate t-Value  
AN (R2=)     
EX .152 2.224 H1a Accepted** 
AG .120 1.884 H2a Accepted* 
CO .044 0.676 H3a Rejected 
NE -.018 0.268 H4a Rejected 
LI (R2=)     
AN .586 15.088 H5 Accepted*** 
EX -.042 0.566 H1b Rejected 
AG .009 0.150 H2b Rejected 
CO -.020 0.253 H3b Rejected 
NE -.020 0.287 H4b Rejected 
HR (R2=.565)     
LI .752 25.161 H6 Accepted*** 

 
DISCUSSIONS 
 
The COVID-19 pandemic has changed how we perceived the world, and we are gradually adopting 
a ‘new normal’ of interacting with others virtually. We are learning that, through social distancing, 
we are capable of working as a team and be able to learn and study without face-to-face interaction. 
In contrast, many of us are facing challenges, such as feeling isolated, anxious, or stressed in 
addition to uncertainty and fear. Individuals will need to take care of their mental health during 
and after the pandemic without physical interaction with humans. Touchless robotic technology 
(e.g., social-collaborative robots) has emerged as a critical support system for humans in the 
present times for automation, digitization, therapeutic and emotional needs. 
 In this new era of diffused humanized technology, social robots have become ubiquitous. 
Social-collaborative robots have emerged as our pets and/or our family members in some 
situations. Task-oriented robots improve the quality of human lives. Artificial intelligence (AI) is 
continuously impacting and changing our globalized landscape, both at the individual (consumer) 
and organizational levels. Some organizations employ humans and robots as collaborative teams 
for enhancing productivity. Such teamwork has resulted in significant positive outcomes in the 
field of Human-Robot Interaction (HRI). While individuals are adopting a new environment and 
landscape, businesses are also facing continuous changes in response to disruptive technology 
advancement and data-driven management. There are many companies utilizing robots in order to 
implement tasks effectively and efficiently and to provide better service to consumers. For 
instance, Amazon works with robots that assist in the preparation of customer orders as a team. 
Similarly, Uber’s artificial intelligence assigns human drivers to pick up guests. AI and HRI seem 
inevitable and essential in this data-driven and ever-changing work environment. 
 Prior research has shown that human personality traits (especially extraversion) play a 
crucial role in building robot likeability (Kaplan, Sanders, and Hancock, 2019), however previous 
researchers did not include constructs of robotic anthropomorphism and HRI implementation. 
Furthermore, researchers did not include diverse HRI situations (e.g., industrial and social 
robotics). In our research, we aim at understanding human-robot interaction in both industrial and 



social robots’ interactions/situations by examining the constructs of Big Five personality traits 
(Extraversion, Agreeableness, Conscientiousness, Neuroticism, and Openness to experience), 
robotic anthropomorphism, robot likeability, and HRI implementation. Our research focused on 
these constructs through KUKA industrial and PARO social robots. We got some noteworthy 
results that are discussed below. 
 For both industrial KUKA and social PARO robots, we found strong relationships between 
robotic anthropomorphism, robot likeability, and HRI implementation. Robotic 
anthropomorphism was positively associated with (and resulted in) robot likeability, which 
positively resulted in HRI implementation in both industrial and social HRI situations. This means 
that the more a robot looks/behaves like a human being, the more it is likable by the humans; and 
positive robot likeability leads to a positive and successful human-robot implementation, where 
HRI yields positive results for humans in industry and home (social) settings. The main differences 
occurred in the way human personality traits relate to robotic anthropomorphism and/or robot 
likeability. During HRI interactions with KUKA robots, we found extraversion resulted in positive 
anthropomorphism, and then to positive robot likeability. However, the direct relationship between 
extraversion and robot likeability was not significant. This means that extraverted individuals like 
robots which are anthropomorphic or human-like. For KUKA robots, agreeableness resulted in 
positive robot likeability, while neuroticism resulted in negative robot likeability. 
Conscientiousness and Openness did not exhibit any significant relationships with either robotic 
anthropomorphism or robot likeability. Unlike extraversion, we found that agreeableness and 
neuroticism did not have strong and significant relationships through robotic anthropomorphism 
to robot likeability. This means that unlike extraverted individuals, agreeable and neurotic 
individuals like or dislike the robot without experiencing any feelings of anthropomorphism. For 
these individuals, anthropomorphism has no effect in the context of industrial human-robot 
interactions. 
 On the contrary, during social robot interactions with humans, the relationships between 
human personality traits and robotic anthropomorphism were extremely important. We found that 
both extraversion and agreeableness resulted in positive anthropomorphism for PARO robots, 
which further resulted in positive robot likeability. Unlike industrial settings, the direct 
relationships between personality traits and robot likeability were missing in social HRI; all 
relationships were channeled through robotic anthropomorphism. Neuroticism, 
Conscientiousness, and Openness did not exhibit any significant relationships with either robotic 
anthropomorphism or robot likeability. In both cases of industrial KUKA and social PARO robots, 
we found that extraverted individuals experienced anthropomorphism first before liking the robot. 
However, agreeable individuals experienced anthropomorphism before robot likeability in social 
HRI, whereas they exhibited strong preferences for robot likeability (without experiencing robotic 
anthropomorphism) in industrial HRI. Neurotic individuals displayed negative feelings for 
industrial robots and no feelings for social robots. We did not find significant relationships for 
personality traits of Conscientiousness and Openness (for either KUKA industrial or PARO social 
robots) in our research results. 
 Our research has the potential to guide policies regarding designing and implementing 
robots in industrial and social HRI situations. This is our biggest research contribution. Watson 
and Clark (1997) pointed out “extraverts are more sociable but are also described as being more 
active and impulsive, less dysphoric, and as less introspective and self-preoccupied than 
introverts” (p.769). Our research strengthens this statement because our findings suggest that 
extraversion results in positive anthropomorphism first, and then leads to positive robot likeability 



in both industrial and social HRI settings. Extraverts engage with robots more than any other 
personality traits and form strong anthropomorphism in any HRI situation. While designing robots 
for extraverts, roboticists and robot designers may need to include stronger anthropomorphic 
(human-like) attributes in order for the extraverts to like their robots. For example, Toyota’s Kirobo 
Mini (as part of Toyota Heart Project and a big step in AI for Toyota since it reads a person’s facial 
expressions and determines his/her mood) is specifically designed with big eyes to attract 
consumers from all ages, especially Japan’s lonely, elderly and childless (Prosser, 2016). Since 
neuroticism can be broken down into six factors of anxiety, hostility, depression, self-
consciousness, vulnerability, and impulsiveness (Costa and McCrae, 1992); neurotic individuals 
experience negative feelings for robots. Agreeable individuals are likable, good-natured, and 
cheerful and gentle, and possess qualities of trust, cooperation, and mutual care for others (Judge 
et al., 1999); and, therefore, are more prone to like robots than other human personality traits. 
While designing robots for agreeable and neurotic individuals, roboticists may not need to pay 
much attention to physical, behavioral, and anthropomorphic details in robots. However, they may 
need to define stronger non-behavioral, functional robotic features (e.g., robot functionality, 
control, usage, etc.) in robots. Overall, we found the prominence of three personality traits 
(Extraversion, Agreeableness, and Neuroticism) in the 5-factor structure of the Big Five traits 
while examining their interrelationships with robotic anthropomorphism, robot likeability and 
successful HRI implementation in industrial and social settings. 
 Our research has some limitations. The nature and composition of the sample can be 
problematic since it involves students and working professionals examining HRI situations 
through video messages. It would be beneficial if these HRI interactions can appear in person. 
However, we would not be able to garner more than 300 surveys in the physical situation. Given 
that the uncanny valley hypothesis is supported by prior researchers (Strait et al., 2017; Ho & 
MacDorman 2010), Ho & MacDorman (2010) refer to the likeability (y-axis) as interpersonal 
warmth, which is the dominant element in human perception to the robotic entities. Although 
eeriness (uncanny) is almost parallel to the y-axis (likeability) in the graph, the researchers declare 
the warmth does not correlate with eeriness (Ho & MacDorman 2010). Future researchers and 
roboticists can include the measures of warmth and eeriness as critical components for designing 
robots. Similar to warmth and eeriness, attractiveness and humanness (e.g., human-like motion 
and skin texture, along with certain levels of physical attractiveness that influence various kinds 
of personal decisions without rationale) can be included in future research for better robotic 
designs, development, and implementation (Cunningham, 1986; Ho & MacDorman 2010). Future 
research should attempt to replicate the research results and develop process models that may 
explain the following: (a) why ‘extraversion’ has strong relationships with anthropomorphism in 
all HRI situations, why ‘agreeableness’ and ‘neuroticism’ are (positively and negatively) related 
to robot likeability in industrial HRI and not in social HRI situation, and why ‘agreeableness’ is 
positively associated with anthropomorphism (and not likeability) in social HRI; (b) how 
anthropomorphism becomes a significant factor in social HRI vis-à-vis industrial HRI; and (c) 
what robot design and implementation will work in different HRI settings while defining situations 
when all five factors of Big Five personality traits become significant in human-robot interaction. 
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