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Abstract: 

In the late third larval instar of Drosophila melanogaster, the prothoracic gland, an endocrine portion of the ring 

gland, synthesizes ecdysteroids at an accelerated rate. The resultant ecdysteroid titer peak initiates the events 

associated with metamorphosis. The normal prothoracic gland displays several ultrastructural features at this 

developmental stage that reflect increased steroidogenic activity, including extensive infoldings of the plasma 

membrane (membrane invaginations) and an increase in both the concentration of smooth endoplasmic 

reticulum (SER) (or transitional ER) and elongated mitochondria. By contrast, the prothoracic glands of larvae 

homozygous for a conditional larval lethal mutation, l(3)ecd
1ts

, not only fail to produce ecdysteroids at normal 

levels at the restrictive temperature (29° C), but also acquire abnormal morphological features that reflect the 

disruptive effects of the mutation. These abnormalities include an accumulation of lipid droplets presumed to 

contain sterol precursors of ecdysteroids, a disappearance of SER and a drastic reduction of membrane 

invaginations in the peripheral area of the cell. These morphological defects are observed in pro- thoracic 

glands dissected from larvae transferred from 18° C to 29° C approximately 24 h before observation and also 

within 4 h of an in vitro transfer to 29° C following dissection from wandering third instar larvae reared at 18° 

C. No ultrastructural abnormalities were noted in the corpus allatum portion of mutant ring glands. These 

observations further indicate the direct involvement of the ecd gene product in ecdysteroid synthesis and 

suggest a role for the gene in the proper transport of precursors to the site where they can be utilized in 

ecdysteroid biosynthesis. 
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Article: 

Ecdysteroids and juvenile hormone regulate the course of larval development and metamorphosis in insects 

(Gilbert et al. 1981). Ecdysteroids are produced by the prothoracic gland and juvenile hormone is synthesized 

by the corpus allatum, these two tissues comprising a portion of the ring gland in higher flies, that in turn 

encircles the aorta dorso-anterior to the larval brain- ventral ganglion complex. Ultrastructural analysis of these 

endocrine glands in a variety of insects has revealed intracellular features consistently associated with hormone-

producing activity (see Sedlak 1985). Furthermore, developmental changes in the frequency of certain 

organelles and structural membrane changes coincide with fluctuations in the titer of ecdysteroids and juvenile 

hormone, suggesting that these morphological characteristics reflect regulatory aspects of biosynthesis (e.g., 

Smith and Nijhout 1982; Sedlak et al. 1983). Nevertheless, the molecular components responsible for the regu-

lation of ecdysteroid biosynthesis remain poorly characterized. 
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Several endocrine mutations exist in Drosophila melanogaster that reduce larval ecdysteroid levels and may, 

therefore, not encode the gene product necessary for normal ecdysteroid synthesis. Abnormalities in ring glands 

that express these mutations have provided clues about those ultrastructural features necessary and/or important 

for normal endocrine function as well as the primary site of action of some of these mutations (e.g., Aggarwal 

and King 1969; Klose et al. 1980). The ecd
1ts

 mutation is a conditional larval lethal that autonomously and 

reversibly reduces ecdysteroid synthesis in mutant prothoracic gland cells at the restrictive temperature of 29° C 

(Henrich et al. 1987b). Nevertheless, the mutation exerts a range of pleiotropic effects that suggest a more 

general and perhaps nonspecific effect upon steroidogenesis (Redfern and Bownes 1983). As part of an attempt 

to understand the regulatory mechanisms that underlie ecdysteroid biosynthesis, and to gain insights about a 

possible deficiency of the ecd gene and its product in this process, we have examined and compared the ultra- 

structure of the prothoracic gland cells of the ring gland of wild-type and mutant late third instar larvae before 

and after temperature upshift, both in vivo and in vitro. 

 

 
 

Materials and methods 

Stock maintenance 

A wild-type Canton-S strain and a homozygous mutant strain for a multiple marked chromosome (ecd
1ts

st red e 

ca) were reared on a standard agar corn meal medium at 18° C in constant light. For comparative studies, the 

wild-type Canton-S strain was also reared at 25° C in constant light. To analyze the effects of prolonged 

upshifts to 29° C that elicit an ecdysteroid deficiency in mutant larvae (Henrioh et al. 1987b), both wild-type 

and mutant cultures were transferred from 18° C to 29° C nine days after egg laying and sacrificed 24 h after the 

upshift. For in vitro experiments, wild-type and mutant larvae were reared at 18° C continuously until the onset 

of wandering during the third larval instar. At this time, the brain-ventral ganglion-ring gland complexes were 

dissected out as desoribed previously (Henrich et al. 1987b). 

 

Quantification of ecdysteroids 

After dissection, the brain-ventral ganglion-ring gland complexes were incubated in 15 μl of pre-equilibrated 

Grace's insect culture medium (Gibco) at 18° C, 25° C or 29° C for 4 h in vitro. The ecdysteroids in 10 pl 

aliquots of medium were quantified by radioimmunoassay (RIA) by use of H-22 antiserum (Warren et al. 1984). 

The ecdysteroid content is expressed in ecdysone equivalents (Henrich et al. 1987b), although, in Drosophila, 

the in vitro incubation products include ecdysone, 20-deoxymakisterone and an unidentified ecdysteroid 

(Redfern 1984; Henrich et al. 1987a). The same glands whose ecdysteroid synthetic rates were measured were 

prepared for ultrastructural observation. Comparisons between wild- type and mutant ring glands were based 

upon observations made on a minimum of five replicates in each group. The animals for the in vivo and in vitro 

temperature upshift experiments were not developmentally equivalent (see above). If the same stage animals 



(early wandering third instar larvae) were used for the in vivo experiments as were used in vitro, the animals 

would immediately begin to pupariate before being sacrificed. The ecdysteroid synthetic activity of the ring 

gland decreases drastically at that stage (Dai and Gilbert 1991) and the animals used for the in vivo and in vitro 

studies would not be physiologically equivalent. 

 

Tissue preparation and microscopy 

For electron microscopy, brain-ventral ganglion complexes with the ring gland attached were fixed in 2.5% 

glutaraldehyde in 0.1 M cacodylate buffer (pH 7.4) for 2 h at 4° C and then postfixed in 2% OsO4 (1:1, 4% 

OsO4:0.2 M cacodylate buffer) for L5 h at 4° C. Samples were embedded in vinyl cyclohexane dioxide (Spurr 

1969) and sections were cut with a Sorvall MT-2 ultramicrotome. For ultrastructural orientation, 1-μm-thick 

serial sections were cut and stained with toluidine blue solution while ultrathin sections (50-60 nm) were stained 

with 5% uranyl acetate in a 70% ethanol solution for 10 min at room temperature and post-stained with lead 

citrate (Reynolds 1963). Examination was conducted with a Zeiss EM-10 electron microscope operating at 60-

80 kV. Ultra- structural comparisons between wild-type and mutant glands were based upon observations made 

on a minimum of five replicates of EM samples in each group and a minimum of 80 partially serial sections of 

each sample. 

 

Results 

General ultrastructural features of prothoracic gland cells from early wandering third instar larvae 

Previous studies on whole larvae and pupae demonstrated that a peak of 20-hydroxyecdysone occurs 4-6 h prior 

to puparium formation and persists until pupation (Borst et al. 1974; Hodgetts et al. 1977). Our RIA data reveal 

that the ring glands of wild-type wandering third instar larvae reared at 25° C possess a slightly greater capacity 

for ecdysteroid biosynthesis in vitro than do glands from larvae reared at 18° C (Fig. 1). Developmental studies 

indicate that the prothoracic glands are most active in the in vitro synthesis and secretion of ecdysteroids during 

the late third larval instar (Dai and Gilbert 1991). The correlated ultrastructural features of wild- type 

prothoracic gland cells are shown in Fig. 2, and although similar observations have been made previously (King 

et al. 1966; Aggarwal and King 1969), a reexamination was necessary for subsequent comparison with mutant 

glands, both in terms of ecdysteroid production and ultrastructure. Numerous elongated mitochondria and 

smooth endoplasmic reticulum (SER) were the most prominent characteristics, as well as a high frequency of 

deep plasma-membrane invaginations which form intercellular channels in the periphery of prothoracic gland 

cells, increasing the surface area of the cell, probably for secretion purposes. It should be noted that in some 

specialized eukaryotic cells, e.g., most secretory cells, SER is really a small ribosome-free region of the rough 

endoplasmic reticulum (RER). Such regions are usually called transitional ER (rather than SER), and they 

represent the specialized region of ER from which the vesicles carrying newly synthesized protein or lipids bud 

off for intracellular transport (see De- Pierre and Dallner 1975). In Drosophi/a prothoracic gland and corpus 

allatum cells, the SER examplifies this transitional ER. The relative ratio between SER and RER reflects the 

fluctuations in cell-secretion activity during development (King et al. 1966; Dai and Gilbert 1991). Since there 

is no accepted definition of the size of these small ribosome-free regions, i.e., the distance between two 

neighboring ribosome-attached regions, it is sometimes difficult to clearly distinguish SER from RER. In 

addition, since the transitional ER is mainly classified as SER and conventional SER terminology has been used 

previously to describe Drosophila ring glands (King et al. 1969; Aggarwal and King 1969; Klose et al. 1980; 

Dai and Gilbert 1991), we will use the term SER here, but it is actually transitional ER. Multivesicular bodies 

were also found in the cytoplasm, especially at the cell periphery and consisted of some small vesicles which 

were enclosed within a membrane and were usually surrounded by SER (Fig. 2). In addition, numerous 

multivesicular body remnants were present in the membrane invaginations. The internal vesicles of these 

remnants disappeared, and only the outer bounding membrane remained (data not shown), as also described by 

Sedlak et al. (1983) for the cells of a lepidopteran prothoracic gland. Their function in the pro- thoracic gland 

cell is not known. Although lipid droplets may be storage sites for ecdysteroid precursors (Romer 1971; Rees et 

al. 1980), each cell in a section contained only a few lipid droplets, approximately 0-10 droplets with an average 

diameter of 0.67 μm, and usually surrounded by RER and mitochondria (Fig. 3 b). Nevertheless, dynamic 

fluctuations in the frequency of lipid droplets may be important indicators of prothoracic gland activity as will 

be seen subsequently. 



 

Typical Golgi complexes were commonly found in prothoracic gland cells, often associated with electron- 

dense coated vesicles. Since there has been no evidence supporting a correlation between the appearance of 

these complexes and biosynthetic activity in Orthoptera and Lepidoptera, it has been assumed that this organelle 

is not directly involved in the synthesis and/or secretion of ecdysteroids (Gersch et al. 1975; Birkenbeil 1983; 

Sedlak et al. 1983). Prothoracic gland cells of the Drosophila ring gland are innervated by axons containing 

various electron-dense granules that penetrate into the basal lamina or indent the cells. What appear to be a 

presynaptic density and omega profile typical of exocytotic events are also visible in these axon endings (data 

not shown). 

 

As shown in Fig. 1, the amount of ecdysteroids secreted by wild type, Canton-S and ecd
lts

 mutant glands at 18° 

C were almost identical, but less than those of wild type glands at 25° C. Both wild-type (Fig. 3 a—c) and mu-

tant glands (Fig. 3 d, e) at 18° C displayed similar ultra- structural features except that glands at 18° C contained 

less and smaller SER and membrane invaginations than glands at 25° C. Nevertheless, these characteristics gen-

erally suggest that both wild-type and mutant ring glands at 18° C and wild-type ring glands at 25° C function 

normally. 

 

Effects of shift to the restrictive temperature in vivo on the ultrastructure of the ecd
1ts

 prothoracic gland 

In order to compare the possible effects of the ecdysoneless (ecd
1ts

) mutation on ring-gland morphology, wild-

type and mutant mid-third instar larvae were transferred from 18° C to 29° C 24 h prior to ring gland dissection. 

Mutant individuals subjected to this upshift acquire an ecdysteroid deficiency that stems from a reduction in 

ecdysteroid synthesis by the ring gland, and ultimately die after experiencing a delayed and abnormal tanning of 

the larval cuticle (Henrich et al. 1987 b). Nevertheless, the larvae attain essentially full size and exhibit normal 

wandering behavior. The prothoracic glands of wild- type larvae transferred to 29° C show extensive invagina-

tions of the plasma membrane, consistent with the onset of increased ecdysteroid secretion that normally occurs 



during the wandering period of the third larval instar (Fig. 4a). Under higher magnification, it was apparent that 

the cytoplasm contained a certain amount of SER mixed with RER and free ribosomes (Fig. 4 a, inset). 

 

 
Fig. 3a—e. Prothoracic gland cells from early wandering, fhird in- star larvae of wild-type and ecdlts mutant reared at 18° C. Same 

abbreviations as in Fig. 2, plus G Golgi complex; IS intracellular space; L lipid droplet; long arrow membrane invaginations; short 

arrow multivesicular body. a Wild-type cell; bar: 0.5 um; x 20000. b Mitochondrion associated with lipid droplet and intracellular 

space in cell of wild-type; bar: 0.5 um; x 40000. c Smooth endoplasmic reticulum (arrow) in cell of wild-type; bar: 0.2 um; x 64000. 

d Smooth endoplasmic retioulum (arrow) in cell of ecdlts mutant; bar: 0.2 um; x 64000. e Cell of ecdlts" mutant; bar: 0.5 um; x 20000 

 

By comparison, mutant prothoracic gland cells displayed several abnormal features after upshift to the re-

strictive temperature. These include a decrease in the extensive invaginations of the plasma membrane as well 

as a striking accumulation of lipid droplets in the cytoplasm (Fig. 4 b), i.e., ~20-30 droplets in each cell of a 

section with an average diameter of 1.35 μm. This correlates with a drastic reduction in the ecdysteroid bio-

synthetic capacity of the ring gland (Henrich et al. 1987). Highly electron-dense mitochondria were also noted 

in prothoracic gland cells from mutant larvae. In addition, the concentration of RER appeared to be much higher 

in these cells, while no SER was observed (Fig. 4b, inset). 

 

In summary, the prolonged upshift affected the pro- thoracic gland cells of the mutant by eliciting the accu-

mulation of lipid droplets, caused the enhancement of mitochondrion density, and resulted in a preponderance 

of RER at the expense of the SER as well as a decrease in the depth of the membrane invaginations. 

 

 

 



Effects of shift to the restrictive temperature in vitro on the ultrastructure of the ecd
1ts

 prothoracic gland 

If the morphological features associated with active pro- thoracic gland cells are causally related to the ability of 

the glands to synthesize ecdysteroids, then ring glands from ecd
1ts

 larvae should differ from their wild-type 

counterparts when subjected to 29° C in vitro. In this experiment, after incubation in vitro for 4 h, mutant ring 

glands produced and/or secreted substantially less ecdysteroids into the incubation medium than wild-type ring 

glands. As determined by RIA, the glands from ecd
1ts

 larvae at 29° C produced only about 16% the amount of 

ecdysteroids synthesized by the glands from wild-type animals at 29° C (Fig. 1). 

 

The prothoracic gland cells of both Canton-S and ecd
1ts

 early wandering third instar larvae displayed similar 

ultrastructural features at 18° C. However, within 4 h after the temperature upshift to the mutant's restrictive 

temperature, there were dramatic changes (Fig. 5). Whereas there were almost no lipid droplets in the 

prothoracic gland cells of wild-type glands (Fig. 5a), numerous lipid droplet deposits were present in the 

cytoplasm of the ecd
1ts

 prothoracic gland cells (Fig. 5 b) as described for the experiment in vivo. Wild-type cells 

contained abundant SER (Fig. 5a, inset) and deeper membrane invaginations and more intracellular spaces that 

were not membrane bounded and probably derived from lipid droplets as occasionally seen in mutant cells in 

vivo (Figs. 4 b, 5a). Intracellular spaces are commonly considered to be fixation artifacts as a consequence of 

samples not being fixed rapidly enough. In our experiments, however, since all ultrastructural comparisons were 

temporally consistent, the same EM preparation procedures were used, and the differences in intracellular space 

frequency between wild-type and mutant were consistent and reproducible, our data may indicate the utilization 

of lipid droplets or other electron-lucent substances. In contrast to the lipid droplets, more RER than SER, 

numerous free ribosomes, shorter and narrower membrane invaginations and fewer and smaller intracellular 

spaces characterized the prothoracic gland cells of the mutant after the temperature upshift (Fig. 5 b, inset). 

However, the mitochondria of the glands from mutant animals appeared more electron dense than those from 

wild-type larvae (Fig. 5a, b). Moreover, after the upshift, the glands from ecd
1ts

 larvae contained a relatively 

high level of lipid droplets, RER and considerably less SER and membrane invaginations than either glands 

from wild type or mutant larvae that were kept at 18° C (Figs. 5 b, 3 a, c—e). The effects noted here did not 

appear to be a consequence of developmental changes resulting from the action of the mutant gene product, but 

rather to be associated with the disrupted physiology of the cell, since all appeared within a 4 h period following 

the temperature upshift. 

 

Effects of shift to the restrictive temperature in vivo on the ultrastructure of the corpus allatum 

Several studies have demonstrated that the ecd
1ts

 mutation exerts a range of pleiotropic effects upon develop-

ment (Redfern and Bownes 1983; Sliter 1989), suggesting that the disruption of ecdysteroid synthesis is only 

one of several consequences of the mutation. Therefore, the corpus allatum portion of the larval ring gland was 

also analyzed after treatment of larvae undergoing the aforementioned experimental regimes, as a control for the 

studies of the prothoracic glands. 

 

The corpus allatum is the site of elevated juvenile hormone bisepoxide III (JHB3) synthesis through the 

wandering phase of the third larval instar (Richard et al. 1989). No apparent ultrastructural differences were ob-

served between corpus allatum cells from wild-type (Fig. 6 a, c) and ecd
1ts

 (Fig. 6b, d) larvae either before (Fig. 

6a, b) or after (Fig. 6c, d) the upshift to the restrictive temperature. Like the corpus allatum from wild-type 

larvae reared at 25° C, cells from both the mutant and wild-type animals were devoid of whorls of SER (pre-

sumably the equivalent of allatum bodies, Aggarwal and King 1969; see Dai and Gilbert 1991) which may be 

SER precursors associated with corpus allatum inactivity. These cells contained extensive SER structures and 

numerous mitochondria of various shapes that are indicative of high corpus allatum activity (see Sedlak 1985). 

No evidence of the accumulation of lipid droplets or of the abnormalities of membrane invaginations, mito-

chondria or SER was found in the mutant corpus allatum after the temperature upshift. These observations 

suggest that the ecd
1ts

 mutation does not directly exert effects on endocrine tissues other than the prothoracic 

glands. 

 



 
 



 



 



Discussion 

Both the corpus allatum and the prothoracic gland of the Drosophila melanogaster ring gland undergo ultra- 

structural changes during the late third instar that are consistent both with the concomitant fluctuations in 

hormone titers and with developmental changes observed in previous studies of insect endocrine organs. The 

active prothoracic gland cell is characterized by increased amounts of SER, mitochondria of various shapes, and 

cell surface area, the latter by the formation of extensive infoldings of the plasma membrane. Lipid droplets, 

presumably the depositories of sterol precursors for ecdysteroid biosynthesis, occur in limited quantities during 

the normal wandering stage when whole body ecdysteroid titers and biosynthetic activity increase. The corpus 

allatum of the ring gland accumulates lipid droplets after pupation when juvenile hormone synthetic activity is 

negligible (Dai and Gilbert 1991). 

 

Little is known about the molecular and cellular processes involved in ecdysteroidogenesis (see Rees 1985). By 

analogy with vertebrate steroidogenic pathways (Nussdorfer and Mazzocchi 1983; Lehoux et al. 1987; Simpson 

and Waterman 1988; Kappler et al. 1989), at least five important steps should occur: (1) the transport of 

precursors (cholesterol, β-sitosterol) to the prothoracic gland cells and their storage in subcellular sites; (2) the 

conversion and subsequent transport of these precursors to biosynthetic sites in the mitochondria; (3) the 

biosynthesis of ecdysteroids by P450 enzymes in the SER and mitochondria; (4) the packaging and subsequent 

secretion of these products from the cell; and (5) the regulation of one or more of these components by the 

action of one or more tropic neurohormones. It should be noted that among the five steps noted, only the bio-

synthesis of ecdysteroids (step 3) would be a process confined to steroidogenic organs (Waterman et al. 1986; 

Simpson et al. 1987; Simpson and Waterman 1988). The genetic approach available in Drosophila me/anogaster 

allows for the identification of discrete gene products that, when structurally altered, could cause a failure in 

any of these steps. Ultrastructural analysis of ring glands from mutant larvae homozygous for lethal giant larva 

(l(2)gl) (Aggarwal and King 1969) suggested that the well-studied ecdysteroid deficiency of this mutant (Ha-

dorn 1937) may arise from a failure of prothoracicotropic hormone release caused by extensive abnormal prolif-

eration of surrounding tissues, and not as the consequence of some intrinsic failure of the prothoracic gland (i.e., 

step 5). Later, lgl was found to be a tumor-promoting mutation that affects imaginal disc growth (Gateff 1978). 

 

The ecd mutation studied here is typified by a reduction in the ecdysteroid titer after prolonged maintenance of 

larvae at the restrictive temperature of 29° C, and disruption of imaginal disc development (Garen et al. 1977; 

Redfern and Bownes 1983; Sliter 1989). This has led to the suggestion that the mutation interferes with a broad 

range of cellular functions, including ecdysteroidogenesis. Although the ecdysoneless mutation causes cellular 

degeneration and death after some weeks at its restrictive temperature, it does not block ongoing morphogenetic 

processes or reduces general life sustaining processes, such as feeding and respiration, and therefore may play a 

specific regulatory role in steroidogenesis. 

 

In this study, the prothoracic gland cells from the mutant showed no signs of degeneration, such as the 

proliferation of lysosome-like structures that accompanies the normal degeneration of the prothoracic gland 

component of the ring gland during metamorphosis (Dai and Gilbert 1991). Nor, in fact, did the mutation appear 

to alter the morphology of the corpus allatum cells. Both in vivo and in vitro, an upshift to 29° C caused an 

accumulation of lipid droplets, the disappearance of SER, enhancement of electron-dense mitochondria, and a 

decrease in membrane invaginations concomitant with a measured reduction in ecdysteroid secretion in mutant 

prothoracic gland cells. 

 

The basic question concerns the specific step that the ecd mutation disrupts in the prothoracic gland. It is un-

likely that the mutation alters a biosynthetic enzyme (step 3), because it is autonomously expressed in nonen-

docrine tissues (Sliter 1989). The abnormally high accumulation of lipid droplets, if in fact they contain precur-

sors (Romer 1971; Rees et al. 1980), also suggests that the cells retain the ability to sequester cholesterol, i.e., 

cholesterol reaches the prothoracic gland (step 1) and, therefore, ecdysteroid deficiencies do not arise from an 

inadequate supply of precursors to the cell. It should be noted that the incubation medium contains no choles-

terol, so the droplets, if truly sterol-containing, must form from substrates already in the cell. Furthermore, 



glands from ecd
1ts

 larvae incubated in vitro do not accumulate ecdysteroids, as measured by radioimmunoassay, 

ruling out a failure of secretion (step 4). 

 

Thus, two possibilities remain for explaining the ecd
1ts

 phenotype: interference with cholesterol conversion and 

transport, and/or the activation of heightened synthetic levels via a neurohormonally modulated pathway, as in 

Manduca (see Gilbert et al. 1988). The ring gland of Drosophila also responds to neural extracts that 

presumably contain PTTH (Henrich et al. 1987a) and the response of glands from ecd
1ts

 larvae to these extracts 

is impaired. However, the interpretation of this observation is complicated because the mutation only partially 

disrupts its gene product (Henrich et al. 1987b). The reduction in cell surface area alone in glands from ecd
1ts

 

animals at the restrictive temperature could account for the diminished response by reducing the number of 

available PTTH receptors. Brains from ecd
1ts

 larvae contain abnormally high levels of PTTH-like activity, 

eliminating the possibility that the ecd gene encodes a PTTH, but suggesting that a failure to release PTTH 

could be among the mutation's developmental consequences. 

 

Little is known about the cellular storage of cholesterol, its conversion and subsequent intercellular transport in 

insects. Among vertebrates, chronic treatment with adrenocorticotropic hormone (ACTH) elicits a notable time-

dependent enhancement of steroidogenesis accompanied by dramatic ultrastructural changes in adrenocortical 

cells both in vivo and in vitro (e.g., an accumulation of lipid droplets and mitochondria) hypertrophy), whereas 

acute exposure of isolated cells to ACTH provokes a striking depletion of lipid droplets that is proportional to 

the extent of corticosterone secretion (Nussdorfer et al. 1971, 1974; Andreis et al. 1989). These droplets contain 

cholesterol (Moses et al. 1969; Frühling et al. 1973) which is then converted to the steroid hormone (Boyd et al. 

1983). In addition, chronic ACTH exposure stimulates the de novo synthesis of various enzymes that participate 

in steroidogenesis and are located mainly in the mitochondria and SER (Tamaoki 1973; Brown and Goldstein 

1980; Nussdorfer and Mazzocchi 1983; Mazzocchi et al. 1986; Nussdorfer 1986; Singer et al. 1988). Moreover, 

the activity of cholesterol ester hydrolase in the bovine adrenal cortex is increased via ACTH stimulation of 

adenylate cyclase (Boyd and Gorban 1980). If an analogous situation exists in Drosophila, then a mutationally 

induced impairment of neurohormonal receptors, a transduction enzyme, or cholesterol ester hydrolase could 

elicit the subcellular disappearance of SER, the appearance of electron-dense mitochondria (Kaiser 1980; Haget 

et al. 1981; Johnson et al. 1985) and an abnormal accumulation of lipid droplets such as observed here. 

 

Any explanation of the effects of the ecd
1ts

 mutation must account for the qualitative and quantitative decrease 

in intercellular channels found in glands from mutant larvae at the restrictive temperature. This phenotype does 

not simply arise because of a retardation of gland development. When upshifted to 29° C in vitro, at a time 

when glands from mutant larvae at the permissive temperature show normal morphology, ecd
1ts

 glands lose 

their SER and membrane invaginations, and accumulate lipid droplets, despite the fact that the medium supplies 

no exogenous cholesterol or lipid. This observation suggests that ultrastructural abnormalities arise from, or 

cause, the disrupted flow of sterols from storage sites in the cell to sites of utilization. When the surface area of 

the plasma membrane increases or the level of ecdysteroidogenesis increases, one would expect a reduction in 

the size and number of lipid droplets, as seen in the active, wild-type prothoracic gland. However, the glands 

from ecd
1ts

 animals exhibit a decreased rate of ecdysteroid synthesis, decreased quantities of SER and plasma 

membrane and an increased abundance of lipid droplets. The mutation may cause the sequestration of sterols in 

an insoluble form in the lipid droplets so that the effects of the ecd
1ts

 mutation would be most severe in an 

ecdysteroid-producing organ and in cells undergoing a rapid increase in size and/or number. 

 

Thus, at its restrictive temperature, the ecd mutation directly or indirectly blocks the formation of SER, disturbs 

mitochondrial function, and reduces ecdysteroid biosynthesis, presumably by interrupting the normal cycle of 

intracellular conversion of cholesterol to ecdysteroids. The latter compounds are presumably synthesized in the 

mitochondria and SER as is the case for mammalian steroids. 

 

The unequivocal demonstration of the ecd gene's role in steroidogenesis can only be elucidated by studing new 

alleles of the mutant and, ultimately, sequencing the gene. Nevertheless, ultrastructural observations of this and 



other endocrine mutations in Drosophila melanogaster, can lead to testable hypotheses concerning the cellular 

and developmental regulation of steroidogenesis. 
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