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Abstract: 

Insect development is driven by the action of ecdysteroids on morphogenetic processes. The classic ecdysteroid 

receptor is a protein heterodimer composed of two nuclear receptors, the ecdysone receptor (EcR) and 

Ultraspiracle (USP), the insect ortholog of retinoid X receptor. The functional properties of EcR and USP vary 

among insect species, and provide a basis for identifying novel and species-specific insecticidal candidates that 

disrupt this receptor’s normal activity. A heterologous mammalian cell culture assay was used to assess the 

transcriptional activity of the heterodimeric ecdysteroid receptor from species representing two major insect 

orders: the fruit fly, Drosophila melanogaster (Diptera), and the Colorado potato beetle, Leptinotarsa 

decemlineata (Coleoptera). Several nonsteroidal agonists evoked a strong response with the L. decemlineata 

heterodimer that was consistent with biochemical and in vivo evidence, whereas the D. melanogaster receptor’s 

response was comparatively modest. Conversely, the phytoecdysteroid muristerone A was more potent with the 

D. melanogaster heterodimer. The additional presence of juvenile hormone III potentiated the inductive activity 

of muristerone A in the receptors from both species, but juvenile hormone III was unable to potentiate the 

inductive activity of the diacylhydrazine methoxyfenozide (RH2485) in the receptor of either species. The 

effects of USP on ecdysteroid-regulated transcriptional activity also varied between the two species. When it 

was tested with D. melanogaster EcR isoforms, basal activity was lower and ligand-dependent activity was 

higher with L. decemlineata USP than with D. melanogaster USP. Generally, the species-based differences 

validate the use of the cell culture assay screen for novel agonists and potentiators as species-targeted 

insecticidal candidates. 
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Article: 

Insect development is largely driven by the action of ecdysteroids and its modulation by juvenoids. For all 

insects and many other arthropods, ecdysteroid action is mediated by the heterodimerization of two nuclear 

receptors, the ecdysone receptor (EcR) and its partner, ultraspiracle (USP), the insect ortholog of the vertebrate 
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retinoid X receptor (RXR). Many essential characteristics of ecdysteroid action are well described in 

Drosophila melanogaster [1,2], and have since been confirmed and further investigated in other insect species 

[3,4]. Generally, one or more isoforms of EcR and USP in a given species trigger an orchestrated and 

multitiered hierarchy of transcriptional changes in target cells that ultimately mediate the morphogenetic 

changes associated with molting, metamorphosis, and reproductive physiology [5]. 

 

Although the basic molting mechanism is highly conserved, it is apparent that the characteristics of the EcR–

USP heterodimer vary among species. This is readily seen in the species-specific effects of the diacylhydrazines, 

nonsteroidal agonists that show order-specific differences in receptor affinity and in vivo toxicity [6]. 

Biochemical and cell culture studies of EcR and USP have also revealed species-specific functional 

characteristics that presumably underlie differences in ecdysteroid-driven developmental events [7–11]. 

Steroids and nonsteroidal agonists bind exclusively to the EcR ligand-binding domain (LBD), although the 

presence of USP increases ligand-binding affinity [12–15]. 

 

The diversity of ligand-responsive characteristics seen among ecdysteroid receptors from various insect species 

suggests a basis for identifying and screening for compounds that perturb normal receptor function 

[12,13,15,16]. Ecdysteroid receptor-mediated transcriptional activity has been measured in mammalian cells, 

which have no endogenous response to insect ecdysteroids, by transfecting them with the genes encoding EcR 

and USP, along with an ecdysteroid-inducible reporter [17–19]. An analysis of species-specific versions of EcR 

and USP and site-directed mutations in this heterologous cell system has generally established that the effects of 

ecdysteroids and other diacylhydrazine-based agonists can be measured by reporter gene activity [8,19,20]. 

Furthermore, the Drosophila EcR–USP heterodimer is potentiated by the presence of juvenile hormone (JH) in 

mammalian cells; that is, JH dramatically reduces the ecdysteroid concentration necessary to attain maximal 

induction from an ecdysteroid-inducible reporter gene [9,21]. The mechanism for potentiation has not been 

elucidated, although it reveals a modulatory action that may be useful for identifying novel insecticides acting 

as disruptors of normal ecdysteroid action. This possibility increases the importance of evaluating the 

heterologous cell culture assay as a valid tool for the assessment of ecdysteroid receptor capabilities from 

specific species. 

 

Hundreds of phytocompounds that act as nonsteroidal and steroidal agonists of the insect ecdysteroid receptor 

have been identified [22,23], and a large number of JH analogs and mimics have also been isolated from plants 

[24]. If the cell culture assay has utility as a method for detecting novel inducers and/or JH potentiators of EcR–

USP, then receptors from an insect species such as the Colorado potato beetle, Leptinotarsa decemlineata, are 

expected to evoke a profile of response that varies considerably from those previously reported for 

D. melanogaster. Furthermore, these characteristics are expected to be consistent with in vivo measurements of 

ecdysteroid activity in L. decemlineata [16,20,25–27]. L. decemlineata belongs to a relatively primitive insect 

order, the Coleoptera. Owing to its worldwide importance as a pest insect and its well-established ability to 

develop resistance to insecticides, the species has been well studied for its susceptibility to a variety of agonists 

[28,29]. 

 

The L. decemlineata ecdysteroid receptor shows the general structural features shared by all EcR and USP 

sequences characterized among insects and other arthropods [5,30,31]. Two EcR isoforms (A and B) have been 

identified so far in the L. decemlineata genome. L. decemlineata USP (LdUSP) carries an LBD that is 

remarkably similar to the vertebrate RXR, and lacks many of the features found in D. melanogaster USP 

(DmUSP), such as glycine-rich regions and a B-loop between helices 2 and 3 [30–32]. This divergence between 

the Coleopteran USP LBD (often referred to as RXR in this order) with those of the Lepidoptera and Diptera 

has been noted, suggesting a concomitant functional divergence [32]. Whereas the cell culture assay has been 

employed to survey the responses of ecdysteroid receptors from several species, this work focuses on a direct 

and thorough comparison of several attributes associated with well-described ecdysteroid receptors from two 

insect species for which relevant biochemical and in vivo information exists. The comparative profiles 

demonstrate an approach for developing a screening system to identify and characterize candidate insecticidal 



compounds showing both inductive and potentiative activity.  

 

Results 

The DNA-binding domains (DBDs) of Leptinotarsa and Drosophila EcR and USP are identical at every amino 

acid position that is conserved among all EcR and USP DBD sequences, respectively, and share an overall 

identity of over 90% in both cases [31]. Therefore, it was expected that the canonical hsp27 ecdsyone response 

element (EcRE) would allow direct comparisons of agonist inducibility when tested with EcR–USP from each 

of the two species. Sequence conservation is not as extensively shared in the LBD, where the identity between 

D. melanogaster EcR (DmEcR) and L. decemlineata EcR (LdEcR) is about 67% [21] (Fig. S1). USP LBD 

conservation is < 39% between the two species [21] (Fig. S2). 

 

The N-terminal (A/B) domains of EcR are also divergent in the two insect species [31] (Fig. 1), although all of 

the isoforms from both species share almost complete identity over a stretch of 35–37 amino acids that lie just 

to the N-terminal side of the DBD (Fig. 1C). The EcRA isoforms from the two species share a few similar 

motifs in the middle region of the A/B domain (Fig. 1A), whereas LdEcRB shares some identity with 

DmEcRB1 only in the most N-terminal region (Fig. 1B). 

 
 

Effects of selected agonists on EcR–USP transcriptional activity in the two species 

In an initial series of experiments, the basal and ligand-induced properties of the three D. melanogaster 

isoforms (DmEcRA, DmEcRB1, and DmEcRB2) with the VP16-DmUSP heterodimer used in earlier studies 

were compared with those of the L. decemlineata isoforms (EcRA and EcRB) paired with the equivalent VP16-

LdUSP construct [18]. Activity was determined by measuring reporter gene (luciferase) activity mediated by 

the hsp27 EcRE after normalization for cell mass using β-galactosidase activity registered via a constitutive 

promoter. 

 

In order to compare the efficacy of agonists, maximally inducing doses of several ecdysteroids and the most 

inductive nonsteroidal agonist, methoxyfenozide (RH2485), based on preliminary experiments, were tested. 

 



The pattern of response was similar for each of the three D. melanogaster isoforms (Fig. 2A). In all cases, 

muristerone A (MurA) (2.5 μm) evoked the strongest fold induction, and the greatest absolute level of 

transcriptional activity. RH2485 also evoked a response from all three DmEcR isoforms, with lesser responses 

from the natural molting hormone, 20-hydroxyecdysone (20E), and makisterone A (MakA), the latter being the 

most abundant ecdysteroid in late third instar whole body titers of D. melanogaster [33]. The relatively modest 

response to natural ecdysteroids such as 20E has been noted in previous cell culture studies. Also, differences in 

the quantitative levels of transcription were previously reported, with DmEcRB1 showing the highest levels of  

basal and induced activity, and EcRA displaying the lowest levels of activity [9]. 

 

 
 

The response profile observed for each of the two LdEcR–LdUSP heterodimers varied considerably from those 

seen with the DmEcR–DmUSP heterodimers (Fig. 2B). RH2485 evoked a much higher fold induction (up to 

25-fold) from the L. decemlineata heterodimers. By contrast, the response of LdEcR–LdUSP to MurA and 20E 

was relatively modest as compared with that of DmEcR–DmUSP. Minimal induction was seen with MakA with 

receptors from either species. 

 

Differences in normalized induction in this experiment and others are not attributable to differences in cell 

growth caused by the effects of the individual ligands. The β-galactosidase reporter gene measurements used to 

normalize transcriptional activity (by providing an estimate of cell mass) varied by < 20% for all the ligand 

regimens applied. Also, the absolute β-galactosidase values varied by < 20% between experiments; that is, cell 

growth rates were relatively constant (data not shown). 

 

Immunoblots were also performed with cell extracts expressing the EcR isoforms employed in this study, to 

determine whether transcriptional activity levels are related to expression levels. Although the signal evoked 



from individual isoforms varied to some degree, as noted in previous work [9], the strength of signal did not 

correlate with differences in transcriptional activity (Fig. 2C). In summary, each of the isoforms within a 

species generated a similar responsiveness to maximal dosages of individual agonists. Whereas the EcR N-

terminal domain influences the quantitative level of transcription for a given isoform, it had no effect on relative 

ligand responsiveness. Importantly, the relative induction by individual agonists was species-specific for all of 

the tested ligands, and the responsiveness to RH2485 was much higher in Leptinotarsa than in Drosophila, 

whereas DmEcR–DmUSP was more responsive to MurA than to any other agonist. 

 

Effects of selected ecdysteroids and nonsteroidal ecdysteroid agonists on transcriptional activity in the 

two species 

 



 
 

The potency of natural and nonsteroidal agonists was further evaluated by comparing the dose response of 

DmEcRB2–DmUSP with those of the two LdEcR–LdUSP complexes. Three natural ecdysteroids, MurA, 

ponasterone A (PonA), and MakA, were tested in receptors from both species (Fig. 3A–C). MurA was 

significantly more potent with receptors of D. melanogaster than with those of L. decemlineata. Whereas 

DmEcR–DmUSP showed a maximal response in the range of 1–10 μm MurA, LdEcR–LcUSP required about 



50 μm MurA to show a maximal response. Nevertheless, the maximal induction evoked by MurA at 50 μm was 

over 30-fold with L. decemlineata. Receptors from both species were maximally induced by 1 μm PonA, and 

neither species responded strongly to MakA, even at 50 μm. 

 

Four nonsteroidal ecdysteroid agonists, halofenozide (RH0345), methoxyfenozide (RH2485), RH5849, and 

tebufenozide (RH5992), were also tested over a range of dosages with receptors from both species (Fig. 4A–C). 

The maximal fold induction evoked by nonsteroidal compounds was considerably higher among the LdEcR 

dimers than it was for the compared DmEcRB2–DmUSP heterodimer. Except for RH5849, each of the RH 

compounds evoked a maximal induction at 10 μm with the LdEcR–LdUSP dimers that was > 10-fold. The order 

of fold induction obtained for the pooled results (i.e. LdEcRA and LdEcRB) was RH2485 = 

RH5992 > RH0345 > RH5849; one-way ANOVA, P ≤ 0.01). By contrast, the Drosophila receptor showed a 

more modest induction with all of the nonsteroidal ecdysteroid agonists, never exceeding 10-fold (Fig. 4A). 

 

An electrophoretic mobility shift assay (EMSA) was also performed using cell culture extracts expressing 

DmEcRB1–DmUSP and DmEcRB2–DmUSP or the LdEcR–LdUSP combinations to verify their interaction 

with the hsp27 EcRE. The observed shifts associated with the hsp27 EcRE revealed that DmEcRB1–VP16-

DmUSP showed an increased shift intensity in the presence of agonist, and that that of DmEcRB2–VP16-

DmUSP was modestly increased by the presence of agonist (Fig. 5) [9]. Under identical experimental 

conditions, the two LdEcR–LdUSP complexes showed little change in shift intensity when an agonist was 

present. The variability among the individual EcR–USP pairings could be attributed to the selected conditions, 

which had been optimized for testing DmEcR–DmUSP. 

 

 
 

Effect of JH on EcR–USP transcriptional activity in the two species 

When Chinese hamster ovary (CHO) cells expressing DmEcR–DmUSP are challenged with JHIII alone, no 

effect on transcriptional activity is observed [9]. However, the simultaneous presence of JHIII in a cell culture 

medium that already contains ecdysteroids reduces the concentration of ecdysteroids necessary for maximal 

transcriptional activity by about 10-fold. In other words, JHIII potentiates the responsiveness of EcR–USP to 

ecdysteroids [9,14,21]. Using the same paradigm employed for measuring potentiation in the Drosophila system, 

a submaximal dosage of MurA together with JHIII was simultaneously tested with cells expressing LdEcR–

LdUSP. Under these conditions, partial and significant potentiation by JHIII was observed in the 

L. decemlineata receptor (Fig. 6A; P ≥ 0.01, t-test). 

 

The potentiation testing paradigm was then modified by testing the nonsteroidal agonist RH2485 instead of 

MurA. No potentiation by JHIII was seen in either D. melanogaster or L. decemlineata, using RH2485 as an 



agonist (Fig. 6B). This result indicates that potentiation by JHIII is not a general cellular effect, but depends 

upon the specific agonist–EcR interaction. 

 

Effects of L. decemlineata and D. melanogaster USP constructs on ecdysteroid-inducible transcriptional 

activity 

As noted, when VP16-DmUSP⁄DDBD is tested with the three D. melanogaster EcR isoforms, EcRA and 

EcRB2 heterodimers form a relatively inactive dimer [9] (Fig. 7A). However, DmUSP⁄ΔDBD retains nearly 

normal activity when paired with EcR-B1, indicating that the nature of the EcR–USP interaction is 

isoformspecific [9,34] (Fig. 7A). The analogous VP16-LdUSP⁄ΔDBD was tested with LdEcRA and LdEcRB. In 

both cases, the expression of VP16-LdUSP⁄ΔDBD, as verified by immunoblots (data not shown), resulted in a 

heterodimer with severely reduced transcriptional activity (Fig. 7B). 

 

In order to compare the capabilities of DmUSP and LdUSP further, cross-species heterodimers were tested for 

transcriptional activity (Fig. 7C). At least four functional differences were observed: (a) the DmEcRB1 and 

DmEcRB2 isoforms display a higher level of ligand-dependent (induced) transcriptional activity with VP16-

LdUSP than with the equivalent VP16-DmUSP; (b) the same EcRB1 and EcRB2 isoforms display a lower level 

of ligand-independent (basal) transcriptional activity with VP16-LdUSP than with VP16-DmUSP; (c) VP16-

LdUSP/ΔDBD forms a relatively inactive dimer with DmEcRB1, unlike VP16-DmUSP/ΔDBD; and (d) VP16-

DmUSP consistently evokes a lower quantitative level of transcriptional activity, with both its own EcR 

isoforms, and with the two L. decemlineata EcR isoforms. 

 

 
 



Discussion 

A controlled assessment and comparison of the Leptinotarsa and Drosophila EcR–USP heterodimers in this 

study reveals a variety of distinctions between them in terms of quantitative level of transcriptional activity, 

ligand responsiveness, and capability for potentiation by JHIII. These findings are generally consistent with 

expectations from other in vivo and biochemical work with the two species’ receptors, and indicate that the 

CHO cell culture assay system can be validly employed to characterize individual insect EcR–USP 

heterodimers for their responsiveness to agonists and potentiators. 

 

 
 

Utility of the cell culture as a screening assay for novel agonists 

The differences in characteristics of the ecdysteroid receptors from the two species studied here, and the general 

consistency with previously published results [25–27], suggest a basis for screening plant extracts and candidate 

insecticides affecting EcR–USP-mediated induction or potentiation in either or both species. 

 

The fold induction evoked by the tested RH compounds on transcriptional activity of LdEcR approximately 

corresponded with their ligand affinity [12,19]. Nevertheless, although RH0345 is not the most efficacious of 

the RH compounds in the cell culture assay, it is actually the most toxic of these compounds in L. decemlineata, 

owing to its relative persistence in target tissues [35]. This observation highlights the reality that a robust fold 

induction in the assay is not necessarily the best indication of toxicity. The study alternatively suggests that 

ligand potency may be the best primary criterion for isolating insecticidal candidates within a given species, 

even if fold induction is modest. The potency of RH0345 with the LdEcR isoforms was similar to those of 

RH2485 and RH5992, and all three of these RH compounds showed greater potency and efficacy than RH5849, 

which is weakly toxic in L. decemlineata. Finally, all of the RH compounds yielded a higher fold induction with 

the L. decemlineata receptor than with the receptor of D. melanogaster, which is relatively unresponsive to the 

effects of RH compounds [36], thus suggesting that fold induction can serve as a basis for predicting differences 

in the toxicity of a compound between species. The weak inductive effects of the natural ecdysteroids (MurA, 

PonA, MakA, and 20E) further show a lack of correspondence between fold induction and ligand affinity, as the 

affinities of the natural ecdysteroids for EcR are higher than the affinities of the diacylhydrazines [12]. 

 



The differences in fold induction observed between the natural steroids and the nonsteroidal agonists is 

predictable, as these agonist classes involve different amino acid interactions in the ligand-binding pocket. 

Nevertheless, both DmEcR and LdEcR carry the same residue at each of the putative binding sites ascribed to 

the RH compounds [8], consistent with the suggestion that other features of the ligand-binding pocket account 

for species differences in responsiveness to RH compounds [13]. 

 

EcR and USP 

Transcriptional activity levels varied widely among the three Drosophila isoforms and two Leptinotarsa 

isoforms. Such quantitative differences may prove important for in vivo functions. In Manduca, the presence of 

a B-isoform increases transcriptional activity normally mediated by the A-isoform alone, heightening the 

possible relevance of these differences for in vivo regulation [37]. 

 

There is growing evidence that changes in net activity induced by ecdysteroids and nonsteroidal agonists in the 

cell culture system involve not only allosteric changes in the receptor itself, but also factors such as the effect of 

DNA and ligand on receptor stability and the regulation of nuclear receptor transport in the cell [38–41]. 

Therefore, differences between basal and induced transcriptional activity must be viewed as a net effect 

resulting not only from changes in the level of receptor molecule activity, but also from changes in stability and 

intracellular localization. Possible differences in these parameters among EcR–USP dimers from different 

species have not been explored extensively, although the relationship between protein stability and ligand 

interactions has been noted for Drosophila E75 and its interaction with heme [42]. Degradation of DmEcR is 

seen at specific developmental periods [43]. 

 

The studies also demonstrated that DmUSP and LdUSP are not interchangeable in terms of transcriptional 

activity, although USP does not affect ligand affinity when tested in cross-species dimers [12]. Species-specific 

differences in USP structure have already been implicated in the regulation of developmental events associated 

with larval growth and subsequent metamorphosis [44]. The effects observed in cross-species EcR–USP dimers 

further suggest that USP plays a role in determining the quantitative level of transcriptional activity. 

 

Implications for a mechanism of potentiation 

As noted earlier, the effects of potentiation suggest a low-affinity interaction between EcR–USP and JHIII. A 

similar effect for DmEcR–DmUSP has been observed for methyl farnesoate and other substrates within the 

mevalonate pathway [14]. The mechanism for this effect upon EcR–USP activity remains unknown, although 

the ability of JHIII to potentiate ecdysteroid inducibility has also been observed with polychlorinated biphenyls, 

whose activity is associated with members of the basic helix–loop–helix Per-Arnt-Sim (bHLH-PAS) 

transcription factor family [45]. Members of this family, in turn, include the Drosophila methoprene-tolerant 

(MET) gene product [46], and MET is known to bind to JHIII [47]. Mutations of the MET gene in Drosophila 

block the normally lethal effects of methoprene application [46]. Mammalian bHLH-PAS transcription factors 

bind to nuclear receptors, leaving the possibility for a MET–EcR–USP interaction. A physical interaction 

between MET and both EcR and USP has been reported [48], although its relevance for the functional effects of 

JHIII remains to be explored. The homolog of MET in Tribolium castaneum mediates JH action, further raising 

the possibility of a similar role in modulating ecdysteroid receptor action [49]. Nonsteroidal ecdysteroid 

agonists are known to confer a markedly different shape upon the ligand-binding pocket of EcR than natural 

ecdysteroids [8] that could prevent interactions with regulatory cofactors such as MET via the LBD. It is 

important to recognize that USP itself binds to JH and methyl farnesoate under certain experimental conditions 

[50]. Alternatively, the effect of RH2485 on EcR is to alter the shape of its ligand-binding pocket, thus blocking 

potentiation mediated by USP binding to JHIII. Finally, although MET explains some JH-mediated activities in 

T. castaneum, it does not account for all of them [49], leaving open the possibility that JH acts via multiple 

modes of action. The inability to see potentiation with nonsteroidal compounds at least demonstrates that the 

effects of JHIII cannot be attributed to a generalized cellular action upon the transcriptional complex that 

includes EcR and USP. Rather, the occurrence of potentiation depends upon the specific agonist. 

 

 



Summary 

The comparative study of the Leptinotarsa and Drosophila EcR–USP complexes further establishes the utility 

of the heterologous CHO cell culture system for assessing the effects of agonists/antagonists and other 

modulators on EcR–USP-mediated transcriptional activity. The insect ecdysteroid receptor is a commercially 

proven target for insecticidal action, and the assay provides a conceptual basis for high-throughput screening 

and identifying compounds that perturb receptor function, not only in terms of classic ecdysteroid agonist 

functions, but also for those compounds that are capable of mimicking or evoking the potentiation effect 

induced by JHIII in this assay. 

 

Experimental procedures 

Cell culture, EMSA, and western immunoblotting 

All aspects of cell culture methodology, ligand application, transfection, reporter gene measurement, western 

immunoblotting and EMSAs have been previously reported [9,21]. Briefly, CHO cells were grown to 

confluence and transfected (250 ng each) with: (a) a plasmid vector containing the luciferase gene controlled by 

the canonical hsp27 EcRE and a weak constitutive promoter [51]; (b) a vector containing the β-galactosidase 

gene controlled by a constitutively active promoter; (c) one of the EcR-encoding vectors described below; and 

(d) one of the USP-encoding vectors described below. After transfection for 6 h, cells were incubated with or 

without agonists and/or JHIII for 24 h, cells were harvested, and extracts were processed for the studies. The 

reagents tested included: MurA (Alexis Biochemical, San Diego, CA, USA), PonA, MakA (AG Scientific, San 

Diego, CA, USA), and JHIII (Sigma Chemical, St Louis, MO, USA). The diacylhydrazine-based agonists that 

were tested included RH0345, RH2485, RH5849, and RH5992, all > 95% pure, and kindly provided by Rohm 

and Haas Co. (Spring House, PA, USA). Western immunoblots of LdEcR and DmEcR were performed with the 

9B9 and DDA 2.7 monoclonal antibodies, respectively, obtained from the Developmental Studies Hybridoma 

Bank at the University of Iowa. 

 

Band densities were measured, using BioRad (Hercules, CA, USA) quantity one software from the EMSA and 

western immunoblot images. The pixel intensity of the band signal was determined for the defined band area 

and adjusted relative to one of the signals, as designated, to calculate the relative band density. 

 

Vector description and construction 

All DmEcR and DmUSP expression vectors and the luciferase (and β-galactosidase) reporter gene vectors have 

been described previously [9,21]. The expression vectors encoding the natural isoforms of DmEcR are denoted 

DmEcRA, DmEcRB1, and DmEcRB2. 

 

The following protocols were used to construct the LdEcR cell culture vectors encoding its two natural isoforms 

(LdEcRA and LdEcRB). The LdEcRA ORF was isolated by PCR from pBluescriptKS + LdEcRA [31], using 

the forward primer 5′-TTTT GGATCC ACC ATG ACC ACC ATA CAC TCG ATC-3′ and the reverse primer 

5′-TTTT TCTAGA CTA TGT CTT CAT GTC GAC GTC-3′. The underlined portions of the primers represent 

the inserted BamHI and XbaI restriction sites, respectively. The vector pcDNA3.1+ and the LdEcRA amplicon 

were digested with the restriction endonucleases BamHI and XbaI. The digestion products were purified from 

an agarose gel excision, and then ligated to create the vector pcDNA3.1 + LdEcRA. The LdEcRB fragment was 

removed from pBluescriptKS + LdEcRB [31], and the vector pcDNA3.1- (Invitrogen, Carlsbad, CA, USA) was 

linearized by restriction digestion with XbaI and BamHI. Both restriction products were purified by excision 

from an agarose gel and then ligated to produce the vector pcDNA3.1-LdEcRB. 

 

The vectors encoding DmUSP have also been described previously [9]. For these vectors, the N-terminal (A/B) 

domain of DmUSP was replaced with the VP16 activation domain, as the DmUSP A/B domain displays 

minimal transcriptional activity in CHO cells [18]. Two constructs were produced; VP16-DmUSP includes the 

USP DBD, whereas VP16-DmUSP/ΔDBD has had the DBD deleted. 

 

The analogous VP16-LdUSP and VP16-LdUSP/ΔDBD vectors were constructed for this study as follows. The 

LdUSP and LdUSP/ΔDBD fragments were isolated by PCR from pBluescriptKS + LdUSP [31], using the 



forward primer 5′-TTTT GAATTC TGC TCG ATTTGC GGG GAC AAG-3′for LdUSP (which is the 5′-end of 

the DBD-encoding DNA sequence) or 5′-TTTT GAATTC AAG CGG GAG GCG GTT CAA GAA-3′ (which 

lies just to the 3′-side of the DBD-encoding sequence). Each primer was paired with the reverse primer 5′-

TTTT AAGCTT CTA AGT ATC CGA CTG GTT TTC-3′, which is the complement of the 3′-end of the 

LdUSP LBD. The respective EcoRI and HindIII restriction sites inserted by the PCR primers are underlined. 

The resulting LdUSP amplicon includes the entire DBD, whereas LdUSP/ΔDBD includes the entire ORF 

beginning at the first amino acid following the LdUSP DBD. Both amplicons and the pVP16 vector were 

digested with EcoRI and HindIII restriction endonucleases. Ligation of the products into the linearized pVP16 

vector (Clontech, Mountain View, CA, USA) resulted in the pVP16-LdUSP and pVP16-LdUSP/ΔDBD 

constructs. All constructs were subsequently verified by DNA sequencing. 
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