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Abstract: 

The usp locus encodes a member of the nuclear hormone receptor superfamily in Drosophila melaaogaater that 

interacts with EcR (ecdysone receptor) to mediate ecdysteroid-induced gene expression. A 2.7-kb usp mRNA 

was detected at all developmental times tested, although its abundance varied. Among premetatnorphic stages, 

both the 2.7-kb transcript and Usp protein attained their highest levels in the late third larval instar. The 2.7-kb 

usp transcript was also found in adult stages and a 1.2-kb transcript was detected in the polyadenylated RNA 

fraction of both mature adult females and early embryos. Aneuploids carrying two asp mutant alleles and a 

putative variegating usp
+
 allele often developed deformities of the adult wing disc that apparently resulted from 

mutational disruption of uap activity before metamorphosis and whose frequency was affected by maternal 

genotype. Both of the recessive lethal uap mutations associated with this "cleft thorax" phenotype involved 

substitutions of conserved arginine residues in the DNA-binding domain, although the frequency of the 

phenotype was not the same for the two alleles. Both mutant proteins retained the ability to form heterodimers 

with EcR in vitro but showed reduced affinity for an ecdysone response element. 

 

Abbreviations used: BR-C, Broad-Complex; DBD, DNA-binding domain; EcR, ecdysone receptor; EcRE, 

ecdysone response element; EMS, ethylmethane sulfonate; hsp27, 27-kDa heat shock protein; PCR, polymerase 

chain reaction; rp49, ribosomal protein 49; RXR, retinoid X receptor; SDS-PAGE, sodium dodecyl sulfate-

polyacrylamide gel electrophoresis; tap, ultraspiracle; Usp, Ultraspiracle gene product. 

 

Article: 

INTRODUCTION 

Postembryonic development in holometabolous insects requires periodic surges of the insect steroid hormone, 

20-hydroxyeedysone, that stimulate cellular changes associated with molting and metamorphosis. The temporal 

and spatial patterns of chromosomal activity elicited by 20-hydroxyealysone in the salivary gland of Drosophila 

melanogaster and other insects reveals a highly coordinated series of transcriptional changes (Ashburner et at, 

1974) that have been characterized molecularly (Huet et at, 1993). Nevertheless, the heterogeneity of 

ecdysteroid-dependent transcription at both the tissue and organismal levels involve regulatory events that 

remain unexplained (Karim and Thummel, 1992; Andres et al, 1993). 

 

The action of 20-hydroxyeedysone depends upon its interaction with a heteromeric complex composed of two 

members of the nuclear hormone receptor superfamily, EcR3 (Koelle et al, 1991) and Usp, the product of the 

usp gene locus (Yao et al, 1993). This complex recognizes EcREs in vitro (Yao et al, 1992; Thomas et al., 

1993; Tal- bot et al, 1993) and puff sites associated with early ecdy- steroid-induced puffs in vivo (Yao et al., 

1993). lisp is a homologue of the mammalian RXRs, which themselves can form heteromers with several 

vertebrate nuclear re- ceptors to modulate their affinity for genomie response elements (Yu et al, 1991; Kliewer 

et at, 1992; Bugge et al, 1992; Leid et al, 1992; Marks et at, 1992; Zhang et al, 1992; Yao et at, 1992). Among 

the transcriptional regu- lators induced by 20-hydroxyecdysone, some are other members of the receptor 
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superfamily (Segraves and Hogness, 1990; Lavorgna et a, 1993; Stone and Thum- mel, 1993), raising the 

possibility that the ecdysone receptor complex undergoes later modifications that alter its activity (Richards, 

1992). Like Usp, these are orphan receptors for which no known hormone ligand has been identified (see 

Segraves, 1991). However, ectopic expression of usp
+
 during Drosophila embryogenesis evokes no mutant 

effects, implying that its function also requires the presence of a localized ligand (Oro et al., 1992). 

 

Genetically, the usp locus is defined by three recessive lethal mutations that cause death at the end of the first 

larval instar, Mutant larvae often fail to shed the first instar cuticle which then appears as an extra row of 

posterior spiracles (Perrimon et al., 1985). In fact, the completion of ernbryogenesis requires usp activity 

supplied through the maternal germ-line (Perrimon et al., 1985) and Usp has been implicated in the regulation 

of s15 chorion gene expression (Shea et al., 1990; Khoury Christianson et al., 1992). The usp gene plays a vital 

role in early stages of postzygotic development since adult gynandromorphs with mutant usp imaginal clones 

cannot be recovered (Oro et al, 1992). Although normal usp function is also required for metamorphosis, usp 

mutant thoracic clones generated during larval development are normal in both appearance and frequency (Oro 

et al., 1992). Therefore, it is conceivable that usp activity is not required for all ecdysteroid-induced 

metamorphic events. Mutant eye-antennal clones are also recovered, but these are abnormal as the consequence 

of a nonautonomous effect (Oro et al., 1992). 

 

The central role that Usp plays in the regulation of hormonal processes necessitates a detailed analysis of usp 

expression and the functional effects of usp mutations. These studies describe the dynamics of usp transcription 

and Usp translation, reveal indications of transcriptional complexity in adult females and early embryos, 

identify a maternal and early embryonic critical period during which normal usp function is required for 

eventual adult thoracic development, and establish the molecular and functional basis of two lethal us]) mu- 

tations that do not exert equivalent effects on thoracic development. 

 

MATERIALS AND METHODS 

Stock preparation and timing of larvae. Several hundred D. melanogaster adults (Canton-S strain) were reared 

at 25°C for 4-5 days following eclosion and then transferred to 150-mm petri plates containing an agar- grape 

medium (37.5 ml concentrated grape juice, 112.5 ml water, 6 g agar) at 25°C. Females were allowed to lay eggs 

for approximately 1 hr. These eggs were discarded and a second 3-hour egg collection was made. Two more 

egg collections followed, yielding samples of early embryos (0-3 hr), mid embryos (8-11 hr), and late embryos 

(19-22 hr) that were frozen in liquid nitrogen and stored at —80°C until the time of RNA extraction. 

 

For larval stagings, early first instar larvae were collected as they hatched from agar plates during a 2-hour 

interval (22-24 hr after egg laying). These larvae were transferred to standard cornmeal media, allowed to de- 

velop for the appropriate time at 25°C, and then separated by washing the food through sieves that retained the 

larvae. The mouthhooks and anterior spiracles of 20 individual larvae recovered at each time were observed in 

order to verify the developmental stage (Roberts, 1986). Collections were discarded if any individual in the 

sample was not at the appropriate stage. Otherwise, the collected larvae were frozen in liquid nitrogen. Early 

wandering stage larvae were chosen individually as they wandered off the food over a 6-hour period and 

periodically frozen in batches that were later combined. Similarly, individual late wandering larvae showing 

more sluggish wandering activity were collected and frozen later, as were white prepupae undergoing anterior 

spiracle eversion. Other white prepupae were allowed to develop for another 21-24 hr (early pupae) or 63-68 hr 

(late pupae) before collection. Using these methods, collections were made for early first larval instars (25-27 hr 

after egg laying), late first instars (39-43 hr), early second instars (46-49 hr), late second instars(60-63 hr), early 

third instars (72-80 hr), mid third instars (94 hr), early wandering third instars (106-112 hr), late wandering third 

instars (110-116 hr), white prepupae (118 hr), early pupae (139-142 hr), and late pupae (181-186 hr). Adult flies 

were harvested by clearing containers and allowing adults to eclose for 4-6 hr. Sexes were separated, frozen in 

liquid nitrogen, and stored at —80°C until the time of RNA extraction, Other newly eclosed males and females 

were separated and kept in vials for 4 days before freezing them. 

 



RNA isolation. Total RNA was extracted using the hot phenol/chloroform method described previously (Jew- 

ett, 1986). Polyadenylated RNA fractions were separated using the polyATtract mRNA Isolati0n System 

(Promega). The manufacturer's protocol was followed at room temperature, which results in the retention of 

mRNA species with polyadenine tails exceeding approximately 25 nucleotides. The nonpolyadenylated fraction 

from these isolations was also retained for further analysis. The yield of polyadenylated RNA among samples 

ranged between 0.28 and 0.76% of the total RNA fraction. 

 

Northern blotting. For Northern blots, 15 μg of total RNA, 15 μg of nonpolyadenylated RNA, or 2 μg of poly- 

adenylated RNA from each developmental stage was loaded onto a 1.0% denaturing agarose gel containing 1X 

gel running buffer (0.5 M formaldehyde, 20 mM Mops, 8 mM sodium acetate, pH 5.0, 1 mM EDTA). The 

samples were denatured prior to loading by incubating them for 15 min in 0.5X Mops buffer containing 2.2 M 

formaldehyde and 50% formamide at 65°C. After electrophoretic separati0n, the gel was denatured (150 mM 

NaCl, 50 mM NaOH) and then neutralized (150 mM NaCl, 100 mM Tris, pH 8.0) and transferred with 20x SSC 

to Hybond- N nylon membranes (Amersham) by capillary elution. Nucleic acids were membrane-bound with 

254 nm ultraviolet light in a Stratalinker 1800 (Stratagene). 

 

After transfer, membranes were hyhridized under high stringency conditions (50% formamide, 5× SSPE, 5× 

Denhardt's, 1% SDS, 100 μg/ml of denatured, sheared salmon sperm DNA at 42°C) with DNA probes prepared 

by random priming (U.S. Biochemical). For the usp probe, a 2.2-kb EcoRI fragment was isolated by gel 

purification from a cDNA clone containing the entire usp coding region as well as flanking untranslated regions 

(Henrich et al., 1990). The probe for a ribosomal protein (rp49) was prepared from a 639-bp EcoRI/ HindIII 

fragment that includes an entire cDNA (O'Connell and Rosbash, 1984) and used as a control for the amount of 

RNA which had been loaded in each lane. 

 

After hybridization, filters were successively washed at 42°C in (i) 5× SSPE, (ii) 1× SSPE, 0.5% SDS and (iii) 

0.1X SSPE, 0.5% SDS. The hybridized DNA was then visualized by exposure of the membrane to autoradi0- 

graphic film (Kodak X-OMAT) at –80°C with intensifying screens. 

 

A probe prepared from the common exon region of the EcR gene (Andres et al., 1993) was tested with the 

Northern blots in order to verify the staging of the samples. The observed developmental pattern was consistent 

with previous reports except that a peak of EcR transcript occurred in the early second larval instar on these 

blots, whereas this peak is associated with late second instar larvae in other stagings (data not shown; Koelle et 

al, 1991; Talbot et al., 1993). 

 

Western blot analysis. Some of the staged and frozen animals described earlier were washed with 0.9% NaCl 

and 0.1% Triton X-100. After homogenizing in cracking buffer (0.125 M Tris-HC1, pH 6.8, 5% 

mercaptoethanol, 0.1% Triton X-100, 4 M urea, 1 mM PMSF), supernatants were collected by centrifuging at 

14,000g for 30 min. After the protein contents were determined (Bio-Rad Protein Assay kit), SDS was added to 

a final concentration of 2%. After incubation for 5 min at 95°C, 80 mg of protein was applied to each slot on a 

10% SDS-polyacrylamide gel. Following SDS-PAGE, protein was blotted to a ProtBlott membrane (Applied 

Biosystems). Nonspecific binding was blocked by pretreating the membrane in 5% nonfat dry milk in TBS (25 

mM Tris-HC1, 0.5 M NaCl, pH 7.5) for 1 hr. Blots were then incubated for 2 hr at room temperature with a 

1:10 dilution of a supernatant of the monoclonal antibody AB11 (kindly pro- vided by D. L. King and F. C. 

Kafatos), which is directed against an epitope of Usp in the DNA-binding domain (Khoury Christianson et al, 

1992). After three 15-min washes in TNT (TBS containing 0.1% Triton X-100), blots were incubated for 1 hr in 

peroxidase-conjugated anti-mouse IgG (Sigma) diluted 1:1000 with TBS. They were then washed in TNT three 

times for 15 min each and stained with DAB-H2O2 (160 μg/ml 3,3-diaminobenzidine, .0001% H2O2 in 1 x 

TBS). 

 

The Usp protein used as a positive control (kindly pro- vided by Russ Eldridge and Lois K. Miller) was 

produced with a baculovirus expression vector under polyhedron promoter control according to previously 

described procedures (O'Reilly et al., 1992). 



 

Intmunohistochemistry. Whole larval tissues were fixed in 4% paraformaldehyde and stained by horseradish 

peroxidase methods (MacDonald and Struhl, 1986). The fixed tissues were rinsed in 1× PBS and then washed 

twice for 30 min each in PBN (1× PBS, 1% bovine serum albumin, 0.5% NP-40). The tissues then were 

incubated for 2 hr in the AB-11 monoclonal antib0dy, diluted 1:10 with PBN. After three 30-min washes in 

PBS, the tissues were incubated in horse anti-mouse IgG biotinylated antibody (1:500, Vector Laboratories) for 

1 hr. After re- peated rinsing in PBS, the tissues were incubated in Vectastain ABC reagent (Vector 

Laboratories) for 1 hr. The conjugated peroxidase activity was then revealed with a 0.05% 3-3'-

diaminobenzidine (Sigma), 0.025% H2O2 solution. The staining reaction was stopped by several washes in PBS. 

The tissues were then mounted in 50% glycerol in PBS and immediately examined under the microscope. 

 

Amplification and sequencing of mutant alleles. Genomic DNA served as a template for PCR since prelimi- 

nary reactions with primers that flank the only known open reading frame in the usp locus indicated that this 

portion of the gene contains no introns. The first primer, just 5' to the open reading frame (+174-195; Henrich et 

al, 1990) contained an EcoRI overhang site (5'-GGGAATTCCCCAGCACCACATCACAAGCCC-3') and the 

complementary primer (+1723-1741; Henrich et al., 1990) contained an overhanging BamHI sequence (5'- 

TTTGGATCCGCGCCTTTAGAGTCGGGACC-3') to facilitate cloning and verification. Genomic DNA was 

extracted by the methods of Ballinger and Benzer (1989) from females carrying a duplication (Dp(1:3)w
vco

) 

which includes a usp
+
 allele. These females were also homozygous on the X chromosome for one of two lethal 

mutations (Perrimon et al., 1985), usp
s
 (formerly usp

VE653
; Lindsley and Zimm, 1992) or usp

4
 (formerly 

usp
VE849

). For these genotypes, therefore, two-thirds of the genomic templates were mutant. At least two 

independent PCR reactions (AmpliTaq; Perkin-Elmer) were carried out for each genotype using standard 

procedures and conditions (Saiki, 1990). An amplification product of predicted length was recovered and 

subsequently subcloned by sticky/blunt end ligation to the multiple cloning site of a Bluescript plasmid vector 

(Stratagene) pre- digested with EcoRI and SmaI. At least four insert-containing clones were recovered by X-Gal 

color selection from each of the PCR reactions. All recovered clones were then subjected to standard 

dideoxynucleotide sequencing (Sequenase; U.S. Biochemical) with primers derived from sequences within the 

wild-type usp cDNA sequence (Henrich et al., 1990) and the reaction products separated on a 6% 

polyacrylainide gel by standard methods. Candidate mutational sites were verified by identifying one or more 

clones from each of the PCR reactions that involved the same nucleotide substitution. Except for those noted 

here, no instances of a mutation at the same nucleotide were observed in more than one clone. 

 

In vitro translation. The plasmids carrying mutant or wild-type PCR products that specified either wild-type or 

mutant Usp proteins were selected for further analysis. Another plasmid (pCAl-EcR) was also constructed by 

cloning the BamHI (+621)/HindIII (+3961) fragment of EcR-B1 eDNA into Blueseript plasmid vector (Koelle 

et at, 1991). In vitro transcription with T3 or T7 polymerase was carried out according to manufacturer's 

protocols (Stratagene). For in vitro translation, 0.5, μg of transcript was mixed with 35 μl of rabbit reticulocyte 

lysate (Promega) in a total reaction volume of 50 μl. Each transcript was also added to a second lysate reaction 

containing [
35

S]methionine. The mixture was separated electrophoretically after incubation and the relative 

abundance of translated Usp and EcR products estimated by autoradiography. This measure confirmed the 

presence of translated protein and revealed that the mutant Usp proteins were slightly more abundant than the 

wild-type Usp and EcR products. For both usp mutations, three plasmids encoding mutant proteins were 

translated and tested. 

 

Gel shift analysis. From the lysate, 3-μl portions of EcR and Usp in vitro translated proteins were mixed and 

incubated on ice for 15 min in a total volume of 16 μl containing 25 mM Hepes (pH 7.0), 1 mM Tris (pH 7.5), 

9% glycerol (v/v), 90 mM KCl, 1 mM EDTA, 0.9 mM DTT, 2 μg of poly(dI-dC), poly(dI-dC), and 5 pmole of 

m13 20-mer oligonucleotides (used as nonspecific single-stranded DNA binding competitors). The reaction was 

incubated for another 15 min following addition of 40 fmole of end-labeled hsp27 EcRE (Yao et al., 1992). The 

probe was prepared by annealing the two single- stranded oligonueleotides, 5'-AGACAAGGGTTCAAT-

GCACTTGTCCAA-3' and 5'-TTGGACAAGTGCATTGAACCCTTGTCT-3', by previously reported methods 

(Antoniewski et al., 1993). Electrophoresis was per- formed as described (Buratowski et al., 1989) and the 



intensity of autoradiographic signals produced by the retarded complexes was quantified using a Molecular 

Dynamics Phosphorimager. 

 

Genetic strains and crosses. For experiments involving the usp
3
 and usp

4
 mutations (referred to collectively as 

usp
x
), stocks of the general genotype: y usp

x
 w/y usp

x
 w/y; Dp(1;3)w

vco
 P[y

+
]/+ and FM7/y usp

x
 w were prepared 

by standard crossing procedures. The duplication, Dp(1;3)w
vco

, carries a usp
+
 allele. A transformant copy of y

+
 

(referred to as P[y
+
]; Geyer and Corces, 1987) was linked to the duplication-bearing chromosome. It resides 

within five recombination units on the distal side of the duplication, which itself lies on 31, and served as a 

marker for the duplication-bearing chromosome in a y+ genetic background. The duplication was also 

detectable in these genotypes because it carries a variegating allele of 9hite (w
cvo

). The usp
2
 (formerly usp

KA21
; 

Perrimon et al., 1985; Lindsley and Zimm, 1992) mutation could not be sustained in homozygous females and 

therefore was maintained in an FM7/usp
2
 stock. From this strain, usp

2
/Y; Dp(usp+) males were obtained 

through appropriate crosses, as needed. Similarly, heterozygous or homozygous usp mutant flies carrying a 

transformant copy of usp
+
 (referred to as P[usp

+
] here; Oro et al., 1990) were prepared by standard cr0ssing 

procedures. At eclosion, females and males of the genotypes designated under Results were crossed and 

transferred to 18° or 29°C. After several days, flies were transferred to new vials and eggs collected once a day. 

Offspring were counted and scored upon adult eclosion for the phenotypes described. 

 

RESULTS 

Levels of nsp Transcripts in Embryonic and Larval Stages 

The appearance of usp transcript was analyzed at several times during larval development in 0rder to assess the 

gene's potential role in the hormonal regulation of molting and metamorphic events. On Northern blots prepared 

with total RNA a major signal was detected at 2.7 kb under high stringency conditions in all the developmental 

stages tested with a probe derived from a 2.2- kb cDNA (Henrich et al., 1990; Fig la). Among the total RNA 

samples, a smaller 1.7-kb signal was also detected at all developmental times, but this appeared to be an artifact 

caused by rRNA obscuring the detection of signals in the interval between 2.7 and 1.7 kb. 

 

The 2.7-kb transcript in total RNA was found throughout embryogenesis, but its abundance receded noticeably 

in the early first larval instar and later reached another minimum during the early third instar. Between the early 

and mid third instar the level of total usp naRNA increased and later reached a maximum in the early wandering 

period of the third larval instar, even though the amount of rp49 transcript, used as a control for loading 

variation, remained relatively low throughout this period, The abundance of usp transcript declined slightly by 

the white prepupal stage and continued to recede through the early pupal stage. For developmental times when 

direct comparisons involving usp mRNA levels were possible, the changes observed here were consistent with 

those reported previously (Oro et al., 1990; Andres et, al., 1993). The decline of rp49 control transcript found 

after the prepupal stage in this study has also been noted previously (Andres and Cher- bas, 1992). Northern 

blots prepared from the nonpolyadenylated RNA fraction of these t0tal RNA samples produced signals that 

were similar in intensity and pat- tern to those obtained from total RNA (data not shown). 

 

This suggested that a significant proportion of the usp mRNA was not polyadenylated or possessed a relatively 

short polyadenine tail (<25 nucleotides), an observation further supported by densitometry analysis. During all 

stages except early embryogenesis, less than 15% of usp niRNA was polyadenylated, whereas 40 to 90% of 

rp49 mRNA was recovered from the polyadenylated fraction in these same RNA samples (data not shown). 

 

Only a small proportion of usp mRNA was polyadenylated whose changes in abundance might be obscured in a 

total RNA sample. Because of this concern and the possibility of signal interference caused by rRNA, a 

polyadenylated RNA fraction from each developmental stage was subjected to Northern analysis. The amount 

tested represents an approximately 25-fold concentration of the polyadenylated portion of the total RNA 

fractions previously shown. 

 



 
 

The developmental pattern of the polyadenylated RNA fraction was similar but not identical to the pat- tern 

seen with total RNA (Fig. lb). Levels of the polyadenylated 2.7-kb usp transcript reached a slight peak during 

mid embryogenesis, although it was easily detected throughout the embryonic stage. Another peak of the 2.7-kb 

transcript occurred during the early second larval instar which was not readily apparent in the total RNA 

fraction. The abundance of usp polyadenylated mRNA then receded gradually to relatively low levels in the 

early third larval instar. Whereas rp49 transcript levels remained about the same throughout the third larval 

instar, the amount of usp mRNA increased during the mid third larval instar and reached its highest level in the 

late wandering third larval instar, several hours after the peak seen in total RNA fractions. The amount of 

transcript remained high through the white prepupal stage and then declined noticeably by the early pupal stage. 

Additionally, a 1.2-kb transcript not detected in the total RNA fraction was found in early embryogenesis, but it 

was considerably less abundant than the larger 2.7-kb transcript and not seen in any other embryonic, larval, or 

pupal stages. 

 



 
 

Levels of usp Transcript in Adult Stages 

In the late pupal stage, a 2.7-kb transcript was readily seen in polyadenylated RNA samples (Fig. 2). The abun- 

dance of the 2.7-kb usp mRNA had increased substantially by adult eclosion in both sexes, and the highest 

observed level among adult stages was found in 4-day- old adult females. A 1.2-kb transcript was also n0ted in 

mature females that presumably corresponds to the 1.2- kb transcript found in early embryos. Signals were also 

detected at 1.35 and 1.0 kb in all adult stages except mature males, although the larger size may be an artifact 

caused by rRNA interference. The existence of two minor usp transcripts in adult female ovaries has been noted 

previously (Shea et al., 1990). A 5.0-kb signal was also found in mature males, but the possibility that this was 

contaminating DNA in the RNA sample was not completely ruled out. 

 

Levels of Usp Protein 

Developmentally staged animals were also tested for the presence of Usp protein (Fig. 3). The monoclonal an- 

tibody used, AB11, recognized two bands on a developmental Western blot (Khoury Christianson et al., 1992). 

The larger 54-kDa band corresponds to the predicted size of lisp based on its deduced amino acid sequence. A 

smaller 48-kDa signal was also detected b0th in Drosophila protein extracts and in a bacuIovirus-driven 

expression system (Fig. 3). The 54-kDa protein was the most common form during embryogenesis and the early 

larval instars, whereas the 48-kDa form predominated in the wandering phase of the third larval instar. Both 

proteins were detected in the white prepupal and early pupal stages. 

 

The detection of Usp roughly correlated with the presence of usp transcript and both were detected through- out 

embryogenesis. However, while polyadenylated usp transcript levels peaked in the early second larval in- star, 

levels of the protein declined progressively through the first and early second larval instar. The disparity 

between protein and transcript levels was greatest in the second larval instar, when the level of Usp declined 

below levels of detection, whereas usp mRNA was readily observed. Usp was not detected at all from the 

late second larval instar through the mid third larval instar, even though usp transcript was detected at 

varying levels throughout this period. The protein did not reappear at detectable levels until the early 

wandering stage and increased substantially during the late wan- dering third larval instar. These high levels 

were sustained through the early pupal period, 144 hr after egg laying. The late third larval instar RNA 

sample that was loaded onto the Northern blot (Fig. 1b) was derived from about 2.5 times as many larvae as 

were used to produce the equivalent protein sample (Fig. 3), although both samples were collected from the 

same culture. Assuming that this ratio is consistent for all samples, Usp protein may indeed be present during 

the late second and early third larval instars, but only at levels below the limit of detection on Western blots. 



 

Expression of Usp in Larval and Imaginal Tissues 

The abundance of lisp protein during late larval development is consistent with expectations about its role in 

mediating ecdysteroid-dependent expression during the onset of metamorphosis (Richards, 1992). In the wing 

discs, the presence of Usp in the nuclei of both epithelial cells and the peripodial membrane during the late third 

larval instar was readily apparent (Fig. 4a). The intensity of immunostaining was greatest among cell nuclei in 

the folds of these discs. Usp was also easily detected in the nuclei of both salivary gland and larval fat body 

cells of wandering third instar larvae (Fig. 4b). The fat body, like the salivary gland, responds transcriptionally 

to ecdysteroids (Deutsch et al., 1989). The Usp protein was also found in the nuclei of all cell types that 

comprise the larval ring gland, the central nervous system, and the leg and eye-antennal discs during the 

wandering peri0d of the third larval instar (data not shown). 

 

 
 

A Developmental Phenotype Associated with usp Mutations 

As noted earlier, usp function may not be required for wing disc development during metamorphosis, even 

though Usp is readily detectable there in late third in- star larvae. However, the usp locus fulfills a vital function 

associated with wing disc development prior to the larval stage (Oro et al., 1992). 

 



A thoracic abnormality was found among adult females homozygous for either of two usp lethal mutations (usp
3
 

and asp
4
 Lindsley and Zimm, 1992) on the X-chromosome who also carried a wild-type usp allele contained in 

the duplication, Dp(1;3)w
vco

 (Table 1). In these aneuploids, the relative dosage of normal and mutant lisp 

activity is roughly intermediate between the equal amounts found in heterozygotes and the absence of normal 

Usp activity in homozygous recessive larvae. The mildest mutant phenotype resulted in a slight separation of 

the microchaetes and macrochaetes along the dorsal midline of the thorax. A more severe phenotype resulted in 

a cleft which may have arisen either from the improper fusion of the discs along the dorsal midline of the notum 

or a mutant effect on cells lying along the midline of the mesothoracic disc. In the most severe phenotype, a 

cleft extended through both the notum and scutellurn of the dorsal thorax, although the epidermis was 

continuous in these flies, implying that some aspects of disc fusion occurred normally (Fig 5). Typically, these 

flies also possessed bent and misshapen sensory bristles. Many flies of this genotype also developed severely 

gnarled legs (data not shown), which are derived during early embryogenesis from the same ancestor cells as 

the wing discs (Cohen et al., 1993). 

 

 
 

The duplication rescued males hemizygous for usp
2
, which is probably the most severe allele because it is a 

nonsense mutation (Oro et al., 1990). By contrast, the single wild-type usp
+
 allele in the duplication consistently 

failed to rescue females homozygous for usp even though usp
+
 /usp

2
 heterozygotes survived normally (Table 

la). Based on the assumption that usp
2
 is a severe loss of function mutation, the failure to rescue homozygous 

usp
2
 females leads to the hypothesis that the wild-type usp

+
 allele in Dp(1;3)w

vco
 is expressed at a lower level 

than the X-linked usp
+
 allele in heterozygotes, perhaps as a consequence of position effect variegation. In fact, 

the duplication is inserted into a heterochromatic region of 3L, carries a variegating allele of the white locus 

(w
vco

; Fauvarque and Dura, 1993) and is dosage compensated properly in males (Lucchesi et al., 1974). The 

latter feature may explain the duplication's ability to rescue hemizygous usp
2
/Y; Dp(1;3)wv

coe
 males. 

Duplication-bearing females carrying usp
2
 along with either usp

3
 or usp

4
 survived at a frequency predicted from 

the survival rates of various sibling classes. However, some of these heteroallelic mutant usp females developed 

the cleft thorax phenotype (Table 1). Siblings from the cross who carried usp
+
 on the X chromosome always 

developed normally. 

 



When the mother carried two copies of usp
+
 (one copy on the duplication) and a single copy of usp

4
, the 

frequency of the phenotype among usp
4
/usp

4
; Dp(1;3)w

vco
 females was lower than when the mother was 

heterozygous for usp
4
 (Table 113), suggesting that maternal usp genotype affected the frequency of cleft thorax 

among progeny. This possibility was tested by observing the frequency of cleft thorax among the progeny of 

usp
4
/usp

6
; Dp(1;3)w

vco
 mothers crossed to usp

4
/Y; Dp(1;3)w

vco
 or usp

2
/Y: Dp(1;3)w

vco
 males (Table 2a). From 

these mothers, over 40% of the duplication-bearing adult female progeny who were homozygous for usp
4
 or 

heteroallelic for usp
4
 and usp

2
 developed this mutant phenotype, confirming that an increase in the relative 

dosage of mutant alleles in the mother increased the frequency of cleft thorax among progeny. Duplication-

bearing females homozygous for usp
3
 or heteroallelic for usp

3
 and usp

2
 also underwent defective disc 

development, but the frequency for both groups was lower than for usp
4
 (Table 2a). Maternal impairment of asp 

function alone infrequently led to the phenotype among progeny. Less than 2% of asp heterozygous females 

derived from usp
x
/usp

x
; Dp(1;3)w

vco
 mothers who had inherited usp

4
 paternally developed a cleft thorax (Table 

2b). In the two sustainable usp
x
/usp

x
/Y; Dp(1;3)w

vco
 strains, a noticeable fraction of individuals died during 

early stages of metamorphosis inside the pupal case. 

 

 
 

Aside from the nature of the duplication itself, several lines of evidence further suggest that this phenotype 

arises from position effect variegation involving the wild-type asp
+
 allele within the duplication, First, usp

4
 

homozygotic females carrying a transformed usp
+
 allele (Oro et al., 1990) produced a smaller proportion of 

progeny who developed the cleft thorax trait than similar females carrying the duplication, suggesting that the 

usp
+
 allele in the latter is not as active as the transformed usp allele (Table 3). Second, the phenotype is more 

prevalent in females than males, consistent with the suppressive effects of the Y chromosome on position effect 

variegation (Table 4; Henikoff, 1990). Attempts to produce XO males or XXY females with chromosomes 

carrying a usp mutation failed, however, preventing a more direct test of this hypothesis. Third, the phenotype is 



more frequent and severe at 18° than 29°C, as is also typical for position effect traits (Table 4; Fauvarque and 

Dura, 1993). 

 

Flies transferred from 18° to 29°C during the second or third larval in star develop cleft thorax as frequently as 

flies kept at 18°C throughout the life cycle (Table 4). Therefore, maintenance at 18°C only during the 

developmental period that precedes metamorphosis was sufficient to evoke the higher occurrence of adults with 

cleft thorax caused by low temperature. 

 

The presumed position effect trait was associated exclusively with individuals carrying Dp(1;3)w
vco

 and one or 

two usp mutations on the X chromosome. The phenotype was never found in stocks carrying either the 

duplication alone or only usp mutant alleles. Repeated attempts to segregate a second genetic factor responsible 

for the trait in either a wild-type or usp mutant background failed. Preliminary experiments also showed that 

flies are never homozygous for the duplication chromosome. 

 

 
 

Molecular Mapping of Mutations 

In order to ascertain more precisely the function(s) potentially disrupted by the two EMS-induced mutations, the 

mutational site was characterized for each one. This was accomplished by employing primers which flank the 

open reading frame of usp to amplify genomic DNA from homozygous usp mutant female flies who also 

carried Dp(1;3)w
vco

. For both usp
3
 and usp

4
, the c0mplete sequence of several individual clones from multiple 

PCR reactions was compared. Both mutations involved amino acid substitutions of universally conserved 

arginine residues in the DBD. In each case, these were the only substitutions within the entire open reading 

frame that occurred repeatedly among clones derived from separate PCR reactions (Fig. 6a). The usp
4
 mutation 

is caused by a C to T nucleotide transition and converts an arginine (Arg130; Henrich et al., 1990) to a cysteine 

residue in the linker region between the two zinc fingers (Fig, 6b) and lies within an a-helix implicated in DNA 

recognition (Freedman, 1992; Lee et al., 1993). The usp
3
 mutation is caused by a G to A nucleotide transition 

that results in the substitution of a histidine for an arginine (Arg160; Henrich et al., 1990) in another a-helix that 

resides in the second zinc finger (Fig. 6b; Lee et al., 1993). 



 

Interactions between Usp Mutant Proteins and EcR-B Protein 

The functional ecdysteroid receptor is a heterodimer complex of the EcR and Usp proteins (Yao et al., 1992, 

1993; Thomas et al., 1993). In order to assess the effects of mutant Usp
3
 and Usp

4
 proteins, translation products 

were tested for their ability to form complexes with the EcR-B1 isoform and interact with the hsp27 EcRE. 

When tested with radiolabeled hsp27 EcRE on gel shift assays, wild-type Usp protein and EcR-B1 produced a 

prominent retarded complex after electrophoresis un- der nondenaturing conditions (Fig. 7a). Neither protein 

alone formed a retarded complex (data not shown). By contrast, almost no retarded Usp
3
/EcR-B1 complexes 

were observed, and the level of retarded Usp
4
/EcR-B1 complexes was reduced by over 60% as indicated by 

autoradiographic densitometry (Fig. 7b). These results were repeated with each of three constructs encoding 

each mutant protein. The reduced affinity of these complexes for an EcRE is predictable since both mutations 

cause amino acid substitutions in portions of the DBD implicated in DNA recognition. It was predicted, 

however, that these mutant proteins would retain the ability to form dimers with EcR-B1. When equal amounts 

of EcR-B1, Usp
+
, and Usp

3
 proteins were incubated together with the hsp27 EcRE, the intensity of the retarded 

complex was reduced from 93% in a control group to 42%, strongly suggesting that Usp
3
 protein retains 

completely normal dimerization function. Similarly, Usp
4
 apparently competes normally with Usp

+
 to form 

dimers with EcR-B1. 

 

DISCUSSION 

The profile of usp transcription and translation assembled here shows that while expression is not con- fined to 

developmental periods and cell types associated specifically with major ecdysteroid-induced events, it 

undergoes numerous and frequent changes during embryonic, larval, and adult development. In fact, the 

fluctuations observed in usp mRNA levels in other stages may partly reflect the heterogeneity of ecdysteroid-

regulated transcription that is already well-established for the third larval instar (Karim and Thummel, 1992; 

Andres and Cherbas, 1992; Andres et al., 1993; Huet et al., 1993) and/or ecdysteroid-independent functions of 

the Usp gene product. 

 

While usp transcript was evident thr0ughout embry- onic and larval development, its relative abundance in both 

total and polyadenylated RNA fractions was lowest during the early third larval instar and highest just prior to 

and through the white prepupal stage. The greatest rise in usp mRNA levels occurred between 94 and 106 hr 

after egg laying; Andres et al. (1998) have reported that this rise occurs primarily between 104 and 106 hr. The 

increase coincides with the greater abundance of Usp protein and the onset of ecdysteroid-induced events at 

metamorphosis. H0wever, it is currently unknown whether the accumulation of usp transcript and/or Usp 

protein in the late third larval instar is itself an ecdysteroid-induced response. 

 

 



 
 

The greatest degree of transcriptional complexity appeared in adult stages, although the biological significance 

of the shorter usp transcripts reported here will require more detailed molecular analysis. The relative 

abundance of usp mRNA in adult females is consistent with previous indications that the usp gene plays an 

essential role in oogenesis and subsequent embryonic development (Perrimon et al., 1985; Shea et al., 1990; 

Oro et al., 1992). It is uncertain whether the 1.2-kb adult female and early embryonic mRNA is a usp transcript 

that arises fr0m alternative splicing or an alternative promoter, although it is plausible that it is maternally 

sequestered into the egg. The signal may also represent a different gene, although the results of genomic 

Southern blots strongly argue that usp cDNA probes recognize a single gene (Oro et al., 1990; Szekely and 

Henrich, unpublished). If the 1.2-kb signal indicates a usp transcript, it does not include the entire open reading 

frame of Usp, which is approximately 1.6 kb in length (Oro et al., 1990; Henrich et al., 1990). In fact, the AB11 

antibody employed in this study recognizes smaller proteins in ovarian nuclear extracts that are more 

concentrated for Usp than whole body extracts (Khoury Christianson et al., 1992). Interestingly, truncated 

versions of Usp recognize a regulatory region of the s15 chorion gene promoter and short asp transcripts have 

been reported in follicle cell preparations (Shea et al., 1990), although it remains to be seen whether any of the 

short transcripts described here encode one or more truncated forms of Usp (Khoury Christianson et al., 1992). 



It is important to note that usp is transcribed in both sexes and that the expression profile changes with age, 

meaning the gene likely plays other roles not related to female reproduction. For example, Usp is present in 

male accessory organs (Kim and Gilbert, unpublished). 

 

Indications of Usp Translational Regulation 

A 48-kDa Usp protein was also detected repeatedly on whole body Western blots primarily during the late third 

larval instar and prepupal stage, whereas the 54-kDa form predominated in embryonic and early larval stage 

preparations. The smaller protein apparently lacks the most N-terminal portion of Usp, a domain associated 

with trans-activation (Khoury Christianson et at, 1992; Beato, 1989). Both in vitro translated forms arise from a 

single usp mRNA transcribed in vitro, suggesting the possibility that an alternative translational start site is 

involved in the synthesis of these forms which may be regulated developmentally (Chao and Gilbert, 

unpublished). The disparity which sometimes existed between transcript and protein levels, particularly in the 

early second larval instar, further suggests that Usp may undergo some form of translational regulation. 

 

Developmental Basis for the Cleft Thorax Phenotype 

Based on all available information, the cleft thorax phenotype arises from the cumulative effects of both 

maternal and early postzygotic underrepresentation of normal usp transcript caused by position effect 

variegation, leading to a deficit of normal Usp product. Presumably, variegated expression of the usp
+
 allele is 

adequate to rescue some developing flies, but does not completely overcome the deleterious effects of mutant 

Usp product in some disc anlage, resulting in abnormal wing disc development. The failure to observe this 

presumed variegating phenotype in endogenous usp
+
 transformants and heat shock-induced usp

+
 transformants 

probably stems from the relatively high levels of usp
+
 expression these constructs confer to all cells (Oro et al., 

1990, 1992). 

 

The wing disc abnormalities reported here may involve the failure of an EcR interaction. More often than 

predicted from results described here, usp
+
 /usp

4
 ; EcR

+
/ EcR

-
 females (EcR

–
 refers either to a chromosomal 

deletion or a lethal mutation of the EcR locus kindly provided by M. Bender and D. S. Hogness) derived from 

usp
4
/usp

4
; Dp(1;3)w

vco
 mothers developed a cleft thorax and hemizygous usp

4
/Y; EcR

+
/EcR

-
; Dp(1;3)w

vco
 males 

rarely survived to adulthood (Henrich, unpublished). Presumably, the proportion of functional Usp/EcR 

complexes was reduced below a critical threshold in the double heterozygotic females, thus leading to the 

abnormalities typically seen only in usp hemizygotes or homozygotes carrying the duplication. In males whose 

only source of normal Usp activity was derived from the variegating usp
+
 allele, the failure to form a critical 

number of normal EcR/Usp heteromers resulted in lethality. The visible adult abnormalities caused by allelic 

combinations of other EcR lethal mutations and the usp lethal mutations described here have been confined to 

wing and leg discs (Talbot et al., 1993). 

 

The early critical period associated with the cleft thorax phenotype and the presence of a 1.2-kb usp transcript 

that is confined to mature females and early embryos together suggest that important aspects of usp regulation 

remain to be identified at this stage. It cannot be surmised whether ecdysteroids mediate any aspect of this 

process, although strong alleles of the ecdysoneless gene locus, originally defined by an ecdysteroid-deficient 

conditional mutation, also fulfill a maternally derived vital function during embryogenesis (Hen- rich et al., 

1993). 

 

The morphology of cleft thorax itself resembles the effects of a nonlethal mutation within the decapentaplegic 

complex (Segal and Gelbart, 1985) and also the effects of heat shock-induced expression of Antennapedia in the 

late third larval instar (Gibson and Gehring, 1988). The gnarled legs observed in the posterior legs of some 

"position effect flies" closely resembles the malformed phenotypes evoked by specific mutant alleles of BR-C, 

an early ecdysteroid-responsive gene (Kiss et al., 1988). The phenotypic similarity could reflect a mutationally 

induced impairment of BR-C transcription in the leg disc or an aberrant interaction between the BR- C gene 

product and Usp. 

 



The early critical period for the cleft thorax phenotype suggested by these experiments leaves unknown the 

functional significance of Usp's presence in the late third instar wing disc. It is possible that the cleft thorax 

phenotype could be evoked at metamorphosis by position effect variegation, but the ability to produce usp 

mutant clones in the wing disc that are normal in appearance and frequency suggest that this will not be the case 

(Oro et at, 1992). Ecdysteroid-induced genes activated by the EcR/Usp complex in the larval salivary gland are 

also transcriptionally induced in the wing imaginal disc (DiBello et al., 1991; Boyd et al., 1991; Huet et al., 

1993). Additionally, usp behaves as an organismal lethal mutation at metamorphosis, an observation con- 

firmed both by previous studies which showed that conditional expression of usp
+
 during early larval lethal 

phases allowed survival only into the third larval instar and early pupal period (Oro et al., 1992) and the pupal 

lethality observed among some flies with the cleft thorax genotype. Apparently, the variegating usp
+
 allele does 

not always express an adequate amount of product at metamorphosis to permit survival through this period. 

 

Lethal Mutations of usp Are Not Equivalent 

Both genetic and in vitro gel shift results indicate that the usp
3
 and wsp

4
 missense mutations encode products that 

retain partial function. The Usp
3
 protein heterodimerized normally with EcR, but this complex displayed very 

little recognition for hsp27 EcRE in vitro. Usp
4
/EcR complexes retained partial ability to recognize the hsp27 

EcRE in vitro. Paradoxically, usp
4
 caused the appearance of the cleft thorax in vivo more frequently than usp

3
. 

The greater frequency of the cleft thorax phenotype caused by usph could stem from the ability of the Usp
4
/EcR 

complexes to interfere with the recognition of EcREs by normal Usp/EcR complexes in aneuploid cells carrying both 

mutant and wild-type Usp proteins. This antirnorphic effect probably does not occur in cells containing Usp
+
 and 

Usp
3
 proteins, since Usp

3
/EcR complexes show little affinity for EcREs in vitro. Of course, the severity and 

frequency of the phenotype also depend upon the extent to which the usp
+
 allele in Dp(1;3)w

vco
 variegates. 

 

This explanation rests largely on the assumption that mutant Usp proteins significantly disrupt transcription. 

When either of the conserved residues affected by usp
3
 and usp

4
 are mutated in other nuclear receptors, affinity 

for DNA response elements is reduced to varying de- grees (Hollenberg and Evans, 1988; Schena et al., 1989; 

Sone et al., 1990; Saijo et al., 1991) and transcriptional activation by the mutated receptor is virtually 

eliminated. Neither mutation affects an ahelical structure adjacent to the carboxyl side of the DNA-binding 

domain which may be essential for RXR and Usp heteromerization (Lee et al., 1993), nor do these mutations lie 

in portions of the cysteine-cysteine zinc finger associated with dimerization (Freedman, 1992), consistent with 

the results of the gel shift experiments reported here. 

 

In summary, these studies reveal that the usp gene plays an important role maternally and during early 

development for eventual mesothoracic disc development, although the mutations responsible for this effect are 

not equivalent. The regulation of usp transcription during this period also may be more complex than 

anticipated. Changes in usp abundance and the appearance of short and/or alternative forms of both usp mRNA 

and Usp protein indicate that the gene and its product undergo changes that are important for hormonal 

processes during Drosophila development. 
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