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Countless chemical compounds and their derivatives are present in wastewater (WW) 

systems and other environments due to anthropogenic inputs from a vast array of product 

ingredients. In streams and WW treatment plants (WWTPs), microbial communities thrive and 

can interact with these compounds in a variety of ways. Triclosan is an example of a synthetic 

chemical with expansive use which has, in half a century, become nearly ubiquitous in the 

environment. Investigating triclosan mitigation by periphyton from a WW-associated and a 

forested stream, the WW-associated periphyton showed evidence of mitigation. Similar 

triclosan levels were observed in both streams, in most samples of periphyton and water. 

Among water samples, higher triclosan concentrations were measured in samples collected 

nearest the WWTP. In microcosms, periphyton were exposed to an environmentally-relevant 

level (10 μg/L) of triclosan. Bacterial isolates were purified from the unexposed and triclosan- 

exposed periphyton from each stream. Isolates were assayed for susceptibility to triclosan and 

five antibiotics using broth microdilution and identified to genus level via 16S rRNA sequence 

analysis. Pseudomonas was the dominant genus among identified isolates from all treatment 

groups and exposed groups had lower genus richness than unexposed. Multidrug-resistant 

(MDRt) bacteria were detected in both streams, with more incidences of multidrug resistance 

(MDR) in the WW-associated stream. The environmentally-relevant triclosan exposure appeared 

to increase antibiotic resistance and MDR in the forested-stream periphyton community but not 

the WW-associated community. Due to the growing global challenge of MDR, the added 

contribution of triclosan is a noteworthy risk to human and environmental health. 
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PREFACE 
 
 

infinite chemicals  

exist in this world 

in various places 

 they mix and are swirled 

together with microbes 

and water and genes 

you’ll find much resistance 

if you run some screens 

see these microbes won’t be killed 

by this drug or that 

multidrug resistance 

 is growing, it’s bad 

I’d like to find better ways 

to ensure they won’t harm me 

instead we fight them with tools 

they use to beef up their army 
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CHAPTER I 

 
INTRODUCTION AND BACKGROUND 

 
 

Background on Triclosan and Related Antimicrobials 

Triclosan is a synthetic diphenyl ether derivative (Fig.1) manufactured globally for its 

antimicrobial properties. Triclosan is added to sanitary products often at levels around 0.1-0.5% 

(Halden 2014). Most triclosan found in the environment enters through WW-associated 

processes, via discharges of effluent to surface waters, as well as the application of biosolids to 

agricultural lands (Dann and Hontela 2011; Huang et al. 2014; Pintado-Herrera et al. 2014). 

 

 
          Figure 1. Structure of Triclosan, C12H7Cl3O2, a Chlorinated Biphenyl Ether.
 
 

Due to widespread use, triclosan is detectable in a multitude of samples including rivers, lakes 

and oceans (Dann and Hontela 2011; Singer et al. 2002; Xie et al. 2008). In surface waters, 

triclosan can be transformed through photodegradation and biodegradation, forming products 

such as chlorophenols, methyltriclosan (Chen et al. 2011; Tohidi and Cai 2017) and, occasionally, 

dioxins such as 2,8-Dichlorodibenzo-P-dioxin (Fang et al.  2010).
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Triclosan and related organohalide biocides have interesting histories of production, 

regulation and numerous discoveries of adverse effects. Substituting chlorines for hydrogens on 

aromatic rings was found to result in biocidal compounds around the late 1930s and early 

1940s. After large volume production of many of these compounds, detrimental impacts 

became apparent. Many of the compounds resulted in ecotoxic effects, human toxicity, 

bioaccumulation and environmental persistence. One example, hexachlorophene, was 

prominent during the first big push of antimicrobials in pharmaceutical and personal care 

products (PPCPs), being put into over 400 products in just a few years (Halden 2014). 

Hexachlorophene was soon banned (by the 1970s) from most uses because it was a suspected 

neurotoxin (N.W. 1972). In contrast, triclosan and the related compound, triclocarban, are less 

regulated, and have only very recently been banned in wash products (McNamara and Levy 

2016). Triclosan was patented in 1964 and 10 years later, in a U.S. Food and Drug Administration 

(FDA) draft of an Over-the-Counter (OTC) Drug Monograph it was noted that there was not 

evidence that triclosan was safe or effective. In an update of the still tentative FDA Draft 

Monograph in 1994, antibacterial soaps were removed from the drug category (Halden 2014). 

This change led to the second big push of antimicrobials in PPCPs in the United States, resulting 

in an expansion from several dozen antimicrobial products in this country, to more than 2000 

(Halden 2014). Triclosan has been added to antibacterial soaps and medical washes as well as a 

wide array of consumer products including carpets, clothes, cosmetics, deodorants, toothpastes, 

mouthwashes, detergents, paints, plastics for a plethora of uses: toothbrushes, tubs/showers, 

hot tubs, diaper changing stations, cutting boards, placemats and even items intended 

specifically for use by children like toys, school supplies and pacifiers (Dhillon et al. 2015; Halden 

2014; Saleh et al. 2011; Young 2013).  



 

3 
 

The European Commission disapproved use of triclosan as a biocide in human hygiene 

products (EC 2016). Soon after, the U.S. FDA issued a final rule to stop the marketing of most 

antimicrobials, including triclosan and triclocarban, in OTC washes and stated these were not 

recognized as generally safe and effective (FDA 2016). However, they maintained that OTC 

consumer antiseptic rubs or antibacterial wipes that do not require rinsing and OTC antiseptics 

that would be used in health care are generally safe and effective and were not covered in the 

ruling. The final rule only covered antiseptic washes for use with water and does not cover the 

vast multitude of triclosan-containing products not addressed in the FDA’s final rule (FDA 2016). 

Minnesota moved to ban triclosan in an effort to protect critical water resources when triclosan 

and polychlorodibenzo-p-dioxins (PCDDs) were detected in freshwater sediments (Anger et al. 

2013; Venkatesan et al. 2012). PCDDs can be formed via a photochemical cyclization reaction 

with triclosan and are compounds known to be toxic and carcinogenic (van den Berg et al. 

1998). 

A large proportion of triclosan-containing products travel down drains shortly after their 

intended use. From there triclosan continues its journey through waterways to the WWTP. In a 

study in South Africa, average measured triclosan concentrations ranged from 2.01-17.6 μg/L in 

WW influents, 0.990-13.0 μg/L in WW effluents (Table 1), and 0.880-8.72 μg/L in the receiving 

river (Lehutso et al. 2017). It has been measured in WW influents in the range of 52-86200 ng/L 

(Bedoux et al. 2012).  Varied WW treatment processes result in a range of removal efficiencies, 

generally 58-95% (Bester 2005; von der Ohe et al. 2012). Thus, triclosan is present in WW 

effluents and downstream waters (Table 1) (Barber et al. 2015; Gautam et al. 2014; Kumar et al. 

2010; Morrall et al. 2004; Ying and Kookana 2007; Zhao et al. 2013) and sediments (Anger et al. 

2013; Venkatesan et al. 2012).
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Table 1. Review of Measured Triclosan Concentrations. Examples of triclosan levels reported in scientific literature. All liquid sample types 
give triclosan concentrations in μg/L. Any row that does not have a reference listed has data from the source listed in the row above.  
 

 

Reference
Source min median mean(s) max

Wastewater Influent United States 13.703 86.161 Kumar et al. 2010
Wastewater Effluent United States 0.18 5.37
Wastewater Influent Spain 1.3 37.8 Agüera et al. 2003
Wastewater Effluent Spain 0.4 22.1
Wastewater Influent Greece 23.9 Stasinakis et al.  2008
Wastewater Effluent Greece 6.88
Wastewater Influent South Africa 2-17.6 Lehutso et al.  2017
Wastewater Effluent South Africa 0.99-13
Wastewater Influent United States 0.24 9.7 Barber et al. 2015
Wastewater Effluent United States <0.01 1.4
Wastewater Influent India 0.892 4.89 Balakrishna et al. 2017
Wastewater Effluent India 0.202 3.5
Wastewater Influent India 2.5 Balakrishna et al. 2017
Wastewater Effluent India 2.5
Wastewater Influent India 4.89 Balakrishna et al. 2017
Wastewater Effluent India 3.5
Wastewater Influent Germany 7.3 Bester et al. 2005
Wastewater Effluent Germany 0.3
Wastewater Influent Germany 4.8 Bester et al. 2005
Wastewater Effluent Germany 0.62
Wastewater Influent Spain 0.488 Ricart et al. 2010
Wastewater Effluent Spain 0.071
Wastewater France 3.45 5.26 Gasperi et al . 2014
Wastewater Effluent Australia 0.023 0.435 Ying and Kookana 2007

Sample Type
Sample Details Triclosan concentration (μg/L or μg/kg)
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Table 1. Review of Measured Triclosan Levels (continued). Examples of triclosan levels reported in scientific literature. Liquid sample types 
give triclosan concentrations in μg/L and solid samples give concentrations in μg/kg. Any row that does not have a reference listed has 
data from the source listed in the row above. 
 

 

Reference
Source min median mean(s) max

Wastewater Biosolids Australia 90 16790 Ying and Kookana 2007
Wastewater Biosolids United States 1170 10200 32900 Kinney et al.  2006
Wastewater Biosolids South Africa 2.16-13.5 Lehutso et al.  2017
Surface water WW-assoc. stream and AR River United States 0.0039 0.0283 Gautam et al.  2014
Surface water WW-associated river Germany 0 Bester et al.  2005
Surface water Germany <0.003 0.01
Surface water United States <0.01 0.28 Barber et al.  2015
Freshwater Bed sediment United States 85 Venkatesan et al.  2012
Urban Stream Sediment United States 107.0 Drury et al.  2013
Marine Sediment Spain 0.27 130.7 Agüera et al. 2003
Estuary Water Spain 0.3 Pintado-Herrera et al.  2014
Estuary Sediment Spain 9.6
Indoor Dust Classroom United States 1003 Hartmann et al. 2016
Human mothers Urine Puerto Rico 26.2 29.9 2000 Meeker et al. 2013
Human females (18-40 y) Urine United States 14 18.7 2780 Meeker et al. 2013
Human females (18-40 y) Urine United States 13 16.9 2690
Human mothers Urine (triclosan households) United States 916.1 Ribado et al. 2017
Human mothers Urine (non-triclosan households) United States 76
Human infants Urine (triclosan households) United States 43.0 Ribado et al. 2017
Human infants Urine (non-triclosan households) United States 10.1
Human mothers Urine United States 163.4 Pycke et al. 2014
Human children Urine India 0.2 9.55±314 2570 Xue et al. 2014

Sample Details Triclosan concentration (μg/L or μg/kg)
Sample Type
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A study conducted over 8 km of river downstream of a Texas WWTP showed declining levels of 

triclosan with distance (104, 223, and 431 ng/L at 0.2, 2, and 8 km respectively) (Morrall et al. 

2004). The group estimated approximately 19% loss due to sorption and settling. Different WW 

treatment processes can affect triclosan removal rates. Differences have been observed in 

triclosan removal efficiency through WW processing via Activated Sludge (96%) compared to 

Trickling Filter (71%) WW processes (McAvoy et al. 2002). There is a large variation in reported 

triclosan concentrations in WW effluents, which have been reported ranging from 23-22100 

ng/L (Agüera et al. 2003; McAvoy et al. 2002; Halden and Paull 2005; Ying and Kookana 2007; 

Lehutso et al. 2017). Representative examples of measured triclosan levels are shown in Table 1. 

River discharges can lead to triclosan’s presence in estuaries and oceans. Some reported values 

in estuarine waters range from 4.9-300 ng/L (Fair et al. 2009) and in seawater from 0.008-362 

ng/L (Xie et al. 2008; Lydon et al. 2017). Higher levels are detected in biosolids (Armstrong et al. 

2017; Kinney et al. 2006; Lehutso et al. 2017; Verlicchi and Zambello 2015; Ying and Kookana 

2007). In another study comparing how triclosan responds through different WW treatment 

practices, 24-27% adsorbed to sludge and varying proportions of triclosan were biotransformed 

to toxic/persistent compounds (Tohidi and Cai 2017). When chlorination and UV disinfection 

were employed, 13% of triclosan was transformed to 2,8-DCDD and more to other degradation 

products (Tohidi and Cai 2017). In aerobic digestion, about 7.4% of triclosan was converted to 

methyl-triclosan (Tohidi and Cai 2017). Globally, there are countless systems with even more 

variables in terms of treatment practices, environmental factors and triclosan inputs. Observed 

variations in triclosan’s fate from system to system and the broad ranges of detected 

concentrations in various environments are to be expected. Triclosan that remains in surface 

waters, or other environments such as agricultural fields, can interact with organisms found in 
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these environments causing a variety of impacts including endocrine disruption and contributing 

to increases in antimicrobial resistant microorganisms.  

Environmental Health Connections 

Triclosan is found in WW worldwide (Table 1) and is one of the most commonly 

detected organic WW contaminants in U.S. streams (Kolpin et al. 2002). Environmental presence 

of triclosan is widespread and exposures can impact organisms in a variety of ways. Lin et al. 

(2014) observed multiple toxic effects of triclosan in earthworms: reduced reproduction, 

upregulated expression of heat-shock protein gene, and increased DNA damage (Lin et al. 2014). 

Previous evidence of decreasing triclosan levels downstream of WWTPs (Morrall et al. 2004) and 

algal bioaccumulation (Coogan et al. 2007) motivated investigation of triclosan’s mitigatory role 

in streams. Evidence presented in Aim 1 is in line with the possibility of triclosan mitigation by 

periphyton. 

As both a broad-spectrum antimicrobial and an endocrine active compound, triclosan’s 

effects on organisms are numerous and varied. In streams, aquatic organisms can also interact 

with anthropogenic inputs, such as triclosan, affecting the fate of these compounds. The current 

study provides additional evidence for a few of the ways in which triclosan and stream 

periphyton interact. In a mesocosm study investigating mitigation of biocides and fungicides, 

retention of compounds taken up by macrophytes depended on how lipophilic the compounds 

were (Stang et al. 2013). These macrophytes acted as a sink for triclosan, with average mass 

retention of 56 ± 7% (Stang et al. 2013). Triclosan exposure can impact microbial communities 

and lead to altered susceptibilities to antimicrobials (Nietch et al. 2013), topics addressed in 

Aims 2 and 3 respectively. Results in Chapter III provide evidence of potentially decreased 

microbial diversity due to triclosan exposure. If microbial diversity is decreasing, this could 
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impact the microbial community’s contributions to ecosystem services, including mitigation. 

Some of the potential routes triclosan could travel in the environment are shown in Figure 2. 

 

 
Figure 2. Pathways of Triclosan Exposure. All arrows indicate potential movements of triclosan (and 
other organic contaminants with similar chemistry). Arrows pointing down indicate movements 
toward surface and/or groundwater such as runoff and leaching. Red/orange icon indicates 
photodegradation as an example of transformation, though other transformations occur. 

 
 
Microbial diversity and the assortment of factors within ecosystems that affect stream microbial 

communities vary widely from stream to stream (Jyrkänkallio-Mikkola et al. 2017; Vaz-Moreira 

et al. 2014). A decrease in microbial diversity can impact the community’s ability to metabolize 

xenobiotic compounds (Hernandez-Raquet et al. 2013). So, there exists the possibility that 

periphyton mitigate triclosan, yet impacts of triclosan on periphyton affect the mitigation 

potential of the community. 

Triclosan exposure has been shown to affect aquatic microbial communities in a variety 

of ways. In WW-associated stream microbial communities, exposure to 60 μg/L increased 
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bacterial mortality (45%) initially. Then after a week of exposure, bacterial mortality returned to 

normal values and diatom mortality was increased (41%) (Proia et al. 2011). Diatom and 

bacterial viability as well as photosynthetic efficiency were all decreased with triclosan exposure 

in another study on WW-associated river biofilms (Ricart et al. 2010). Investigations with 

chronically triclosan-exposed periphytic bacteria decreased cell densities were observed at 5 

and 10 μg/L but increased cell densities we observed at 0.1, 0.5, and 1 μg/L (Nietch et al. 2013). 

Changes in community structure occurred in other triclosan exposure studies, in both 

suspended algal communities (Wilson et al. 2003) and in non-WWTP-associated river biofilm 

communities (Lawrence et al. 2009). Through algal community studies, authors demonstrated 

that with exposure to increasing triclosan concentrations, algal genus diversity became reduced 

(Wilson et al. 2003). They also noted significant changes in community structure of both 

suspended and attached algae collected from sites upstream and downstream of a WWTP. 

Some examples of noted community structure alterations upon 12-day triclosan exposure were 

significant reductions in Chlamydomonas, Sphaerocystis, cyanobacteria and an increase in 

Synedra (Wilson et al. 2003). Responses of WWTP-associated stream periphyton communities to 

chronic exposure at environmentally-relevant levels of triclosan have not been extensively 

studied. As systems, communities, and triclosan levels vary widely, additional evidence of 

triclosan’s interactions with microbial communities will serve to provide a clearer picture of the 

possible outcomes of its presence in streams. Moreover, the environmentally-relevant exposure 

dose of 10 μg/L is useful for assessing potential effects of a level commonly occurring in the 

environment. 
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Background on Antimicrobial Resistance and Multidrug Resistance  
 
Sources of bacteria and their genetic elements that lead to MDR in the environment are 

disturbingly vast. Human practices drive evolution of microbes, yielding antibiotic resistant 

bacteria (ARB) exhibiting acquired resistance encoded in antibiotic resistance genes (ARGs) 

often on mobile genetic elements (MGEs) that can be exchanged between bacteria of different 

genera or species. Global antibiotic consumption, expressed in defined daily doses (DDD), 

increased 65% (21.1–34.8 billion DDDs) between 2000 and 2015. Projections of future 

consumption depend on anticipated changes in use. The baseline prediction assumed no policy 

changes and had constant consumption rates set at current use levels and predicted a 15% 

increase from 2015-2030, (Klein et al. 2018), while other methods of estimation predicted much 

higher increases than this. Antimicrobial compounds have been broadly employed for use in 

healthcare, agriculture, industy, hygiene, apparel, building and households. In addition to 

antimicrobials, several other contaminants show evidence of co-selection for ARB (Gorovtsov et 

al. 2018; McArthur and Tuckfield 2000). MDRt opportunistic pathogens from nonclinical 

environments (Quinn 1998; Gaynes and Edwards 2005) and increasing resistance to antibiotics 

pose healthcare challenges (Chang et al. 2015). 

Worldwide, MDR has been increasing as a result of extensive use of antimicrobials. 

Many more examples than have been studied surely exist as human systems create 

environmental situations well-suited for resistance emergence. Some examples are WWTPs 

receiving inputs from hospitals, residents, businesses and industry. Still other examples include 

agriculture, livestock, aquaculture and waste in landfills. In these environmental systems, 

microbial communities can interact with antimicrobials and other compounds present, with 

varied results. As we have seen, acquired resistance is often the result of these interactions. 
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There are a seemingly endless number of reported cases of ARB and MDR in the literature and a 

few examples are listed below. MDRt Klebsiella pneumoniae have spread globally and treatment 

options are limited. K. pneumoniae have shown resistance to colistin, a last resort antibiotic 

which had long been reserved mainly due to safety concerns of its nephrotoxicity and 

neurotoxicity (Granata and Petrosillo 2017).  

Widespread use of fluoroquinolones in both human medicine and livestock production 

has resulted in global emergence of fluoroquinolone-resistant Salmonella enterica Typhimurium 

strains. MDR incidence in Salmonella Typhi ranged from 64.8-66.0% while incidence of 

fluoroquinolone resistance in clinical isolates ranged from 84.7-91.7%. Salmonella exhibiting 

MDR appears to be rapidly increasing. From 1999 to 2005 in India, MDR in Salmonella Typhi 

strains increased from 34% to 66% (Kumar et al. 2008). One human response to this rising 

resistance has been increased use of ciprofloxacin in typhoid fever treatment. As a result, 

ciprofloxacin-resistant strains began to spread in the early 1990s (Rowe et al. 1995). Before the 

1990s came to a close, ciprofloxacin treatment failure reports followed (Maskey et al. 2008). In 

Salmonella typhimurium isolated from patients with infectious diarrhea, quinolone-resistant 

strains showed MDR and most of these harbored Class 1 integrons (Yuan et al. 2017). The 

spread of antimicrobial resistance is, in part, driven by horizontal gene transfer occurring 

between different bacterial species. ARGs can be transferred via mobile genetic elements 

(MGEs) such as plasmids and integrons (Gaze et al. 2011). Integrons are one type of MGE that 

can carry ARGs (Boucher et al. 2007; Wolters et al. 2015) and have been implicated in spreading 

ARGs in both environmental and clinical settings (Gillings 2014). 

Antimicrobials have been used extensively for growth promotion in food animals since 

the 1950s. The emergence of antimicrobial resistance in animal production can lead to the 
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spread of ARB to humans via contact or through the food chain (Xiong et al. 2018). Aerially 

dispersed particulate matter from cattle feed yards has been shown to harbor antibiotics, ARB 

and ARGs (McEachran et al. 2015) (Fig. 3). Antimicrobial use in food animals correlates to 

increased ARB in humans (Schechner et al. 2013). The broad use of antimicrobials in animal 

production promotes antimicrobial resistance and MDR which is a threat to human health 

(Xiong et al. 2018). Resistance in animals was reported in 1951 in turkeys fed streptomycin. 

Streptomycin-resistant coliform bacteria were observed (Starr and Reynolds 1951).         

 

Figure 3. Cycles Amplifying Multidrug Resistance. Figure shows example pathways of enrichment of 
MDRt bacteria due to triclosan exposure (and exposure to other anthropogenic inputs such as 
antibiotics and heavy metals). The collection of microbes, ARGs, and anthropogenic inputs shown 
beneath the WWTP is a relevant example. Similar scenarios occur in other environments as well. 
 
 
Afterwards, similar results were seen when tetracycline was used as a growth promoter in 

chickens and resistance developed (Barnes 1958; Elliott and Barnes 1959). ARB as well as ARGs 
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conferring resistance constantly cycle through environments in water, soil, plants and animals. 

Resistant pathogens and ARGs pass through the meat industry as well as through contaminated 

crops, water and soil (Xiong et al. 2018). Examples of ARB reported in food production include 

Escherichia coli and Salmonella exhibiting MDR, vancomycin-resistant Enterococcus, methicillin 

resistant Staphylococcus aureus (MRSA) and extended-spectrum β-lactamase producing bacteria 

(Barton 2014). Antimicrobial agent levels strongly correlate with corresponding resistance in 

commensal E. coli isolates in swine, chickens and cattle (Chantziaras et al. 2014). Contributions 

of antimicrobial use in animals to development of resistance in human commensal bacteria has 

been shown using metagenomic data at the population level (Forslund et al. 2013). The use of 

cephalosporins in chickens may contribute to the development of resistant E. coli which have 

led to mortality in humans (Collignon et al. 2013) Annually, in the U.S. alone, ARB infect over 2 

million people, resulting in over 23,000 deaths and $50 billion in management costs (CDC 2013). 

In stream periphyton communities (urban or forested), and possibly to a greater extent 

at WWTPs, ARB harboring ARGs are diverse. Soluble chemical contaminants and ARB gather at 

WWTPs. Some relevant contaminants include: biocides, heavy metals, and ARGs. WWTPs are 

hotspots of emergence, development and spread of antibiotic resistance and MDR. This is 

because the microbial community along with inputs of additional bacteria from humans/animals 

in the WW as well as all the chemical contaminants are collected, allowing for complex 

interactions and effects (Martinez et al. 2009; Michael et al. 2013). ARGs can be exchanged 

between different types of bacteria (Amábile-Cuevas and Chicurel 1993; Chee-Sanford et al. 

2001; Ciusa et al. 2012; Cooper et al. 2017; Salyers and Amábile-Cuevas 1997). In some cases, in 

what once was a strain of susceptible bacteria, these conditions lead to the production ARB. An 

extensive and growing list of ARGs have been detected in WW-associated systems (Berglund 
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2015; Chee-Sanford et al. 2009; Nnadozie et al. 2017). WW-associated microbial communities 

can show significant levels of ARB and MDR. In a WW-associated stream in New Jersey, ≈79% of 

fecal coliform isolates showed triclosan resistance and about 85% of these showed MDR to four 

classes of antibiotics (Middleton and Salierno 2013). WW-associated fecal coliform isolate 

samples from a nearby river showed a significant difference in multiple antibiotic resistance 

values between triclosan-sensitive and triclosan-resistant isolates with ≈90% of their samples 

containing triclosan-resistant isolates showing higher multiple antibiotic resistance values than 

those sensitive to triclosan (Middleton and Salierno 2013). This is indicative of cross-resistance 

development occurring in these WW-associated microbial communities, leading to triclosan 

resistance and MDR overlapping in environmental bacteria. 

In addition to municipal WWTP, there are other sources of contamination intensifying 

the problem of MDR development. As mentioned above, heavy metal contamination has been 

shown to correlate with antibiotic resistance. Co-selection of ARGs by presence of heavy metals 

may occur when the resistance genes reside on the same MGEs (Gorovtsov et al. 2018). Soil 

microbial communities have shown evidence of selection by presence of polyaromatic 

hydrocarbons (PAHs) for ARB, as well as higher levels of expression of ARGs (Gorovtsov et al. 

2018). Aquaculture also presents conditions favorable to the development and spread of ARB 

and MDR. In a study conducted in Brazil, bacteria from fish ponds had higher MDR when 

compared to those isolated from a water-fed canal. These bacteria showing MDR were more 

frequent and diverse in fish ponds than in the water-fed canal and there was also a positive 

correlation between antimicrobial resistance and metal tolerance (Alves Resende et al. 2012). 

Antibiotics used in aquaculture can persist and even at low concentrations, can select for ARB. 

This can lead to altering nearby microbial aquatic communities as well, impacting biodiversity in 



 

15 
 

sediment and water proximal to open aquaculture systems. Susceptible microbial communities 

can evolve to resistant ones (Watts et al. 2017).  

Separating effects of antimicrobials from other environmental factors poses a major 

research challenge. In these habitats, there are many other factors at play, including but not 

limited to: WW treatment practices, type of organic substrates, dissolved oxygen content, 

salinity and temperature (Wang et al. 2012; Zhang et al. 2012). As a result of selective pressures, 

antimicrobial use in human practices (household, healthcare, agriculture, aquaculture, industry 

and others) and their dispersal to surrounding environments require careful consideration and 

pose environmental and public health threats in the form of rising resistance. 

Public Health Connections 
 
Environmental and toxicological concerns related to triclosan compelled the FDA to 

restrict its use in liquid soaps (FDA, 2016) though triclosan is an ingredient in thousands of other 

products, as previously mentioned. Triclosan is detectable in human samples (Adolfsson-Erici et 

al. 2002; Allmyr et al. 2007; Meeker et al. 2013; Ribado et al. 2017; Pycke et al. 2014; Toms et al. 

2011; Xue et al. 2014) (Table 1). Epidemiological studies show correlations between increased 

urinary triclosan and a variety of detrimental health effects (Weatherly and Gosse 2017). 

Triclosan is associated with alterations of mammalian microbiomes (Bever et al. 2018; Hu et al. 

2016), endocrine disruption (Crofton et al. 2007; Dann and Hontela 2011; Paul et al. 2010; Paul 

et al. 2012; Rodríguez and Sanchez 2010; Veldhoen et al. 2006; Zorrilla et al. 2009), increases in: 

abnormal sperm (Jurewicz et al. 2018; Lan et al. 2015; Sachan et al. 2015), total T3 levels 

(Koeppe et al. 2013), oxidative stress (Han et al. 2016; Wang et al. 2014), allergy/food 

sensitization/asthma (Bertelsen et al. 2013; Clayton et al. 2011), and spontaneous abortion rates 

(Wang et al. 2016), as well as decreases in: fecundity (Vélez et al. 2015), BMI (body-mass index) 
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(Li et al. 2015), and newborn weight, length and head circumference (Lassen et al. 2016; 

Philippat et al. 2014; Etzel et al. 2017). Unintended outcomes associated with triclosan use are 

generally outside of the scope of the current study, though, additional knowledge on 

environmental levels of triclosan is provided and could relate to some of these negative health 

effects. Reports of environmental triclosan levels provide additional pieces of evidence that 

reaffirm the ubiquitous nature of this Contaminant of Emerging Concern (CEC). Motivation for 

the current study was drawn from the collective knowledge that triclosan is one of many man-

made compounds, disseminated into our environments via consumer/healthcare products, 

which poses risks to both environmental and human health. A major contributing factor to the 

presence of these compounds in the environment is the employment of products containing 

chemical ingredients, such as antimicrobials, in everyday household use. Production of triclosan 

by industry can also produce triclosan-containing waste, which can lead to contamination of 

water used for drinking or farming, representing another route of exposure to humans and 

other animals. Figure 2 shows some examples of ways anthropogenic contaminants may cycle 

through the environment. As the focal compound of this study, triclosan is highlighted in Figure 

2 and this body of research. However, there are many other persistent contaminants that may 

follow similar patterns, affecting their own varied outcomes along the way.  

In most cases there is no evidence of benefits of triclosan-containing products 

compared to products free of triclosan (Aiello et al. 2007). Many have weighed the effectiveness 

of triclosan in soaps and concluded that the risks of developing antimicrobial resistance 

outweigh potential benefits of use of these products (Giuliano and Rybak 2015; Halden et. al 

2017). Regardless, humans are using triclosan-containing products, many of which end up going 

down drains and to WWTPs. At the WWTP, much of the triclosan remains with the biosolids 
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where it can play parts in other toxicological tales of chaotic chemical cocktails. Still, some 

makes it through the plant’s processing and ends up in the downstream waterways. Here it can 

interact with the microbial community in several ways. Though the current study focused on 

stream bacteria, effects in related communities, such as in the biosolids (where a larger fraction 

of the triclosan ends up compared to effluents), may be of concern and show potential 

similarities. A key difference between the two, is where they go. Triclosan can travel from 

WWTPs to agricultural fields or sometimes forests or constructed wetlands via land application 

of biosolids (Figs 2 and 3). There, it can be taken up by plants, consumed by animals, and select 

for ARB and MDR. Multiple direct and indirect human health exposure pathways result from the 

practice of biosolid land application. 

Community structure shifts have been noted and in one study with triclosan-dosed WW 

anaerobic digesters, these communities differed from the control community in such a way that 

more clades containing commensal and pathogenic bacteria were dominant in triclosan exposed 

groups (Carey et al. 2016). This suggests that triclosan exposure may enrich ARB resulting from 

previous exposure to high concentrations of triclosan on or in the human body (Carey et al. 

2016). Community shifts increasing Vibrio were also observed in coastal microbial communities 

exposed to triclosan in seawater microcosms (Lydon et al. 2017). Results of environmentally-

relevant triclosan exposure in stream periphyton presented here also showed some evidence of 

shifts toward genera containing opportunistic pathogens such as Pseudomonas and Serratia. 

The exposure level used in the study presented in this dissertation (10 μg/L) is lower than 

concentrations found in many tested samples from a variety of environments. The wide array of 

environmental exposures potentially experienced by a random microbe opens doors to a 

complex web of possible outcomes. It is clear that triclosan has been in use for decades, is 
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ubiquitously present and is connected to a plethora of health related impacts. The fate of 

triclosan inputs to the environment varies but a fraction of it persists, while other fractions 

transform into compounds that likely have their own set of related concerns. If WWTP inputs of 

triclosan continue, reports of evidence of associated health impacts will continue to flow in turn. 

When triclosan is assayed in samples from humans, more often than not it is detected (Calafat 

et al. 2008; Pycke et al. 2014; Xue et al. 2015). In a recent study in children in India, a group 

studying urinary levels of EDCs found triclosan in 100% of the samples which ranged from 

0.220–2570 μg/L (Xue et al. 2015). In another example of microbial community shifts due to 

triclosan exposure (this time in humans), Proteobacteria species with broad antibiotic resistance 

were enriched in stool samples from mothers that used triclosan-containing toothpaste. Infants 

with higher triclosan levels showed an enrichment of Proteobacteria species as well (Ribado et 

al. 2017). Microbial community shifts are common with triclosan exposure as is development of 

MDR. Increases in MDR in the forested stream microbial community but not the WW-associated 

community may indicate that decades of chronic, low-level triclosan exposure in the urban 

community may have caused shifts prior to the study period. Though the forested stream 

contained comparable levels of triclosan, data on historical levels was not available. This work 

adds to the breadth of knowledge surrounding development of MDR related to low-level 

triclosan exposure. It appears that ARB and MDR are increasing and shifts to more commensal 

and pathogenic bacteria are occurring due to triclosan exposure. The collection of chemicals 

present in diverse and numerous environments is clearly cause for prudent pause.
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CHAPTER II 
 

AIM 1: TRICLOSAN DISTRIBUTION AND MITIGATION IN STREAMS 
 
 

Abstract  
 

Triclosan is nearly ubiquitous in the environment and is found in a broad range of 

concentrations in streams and other surface waters. Many organisms, including algae, have 

been shown to bioaccumulate triclosan. Community structure and function alterations have 

been observed in aquatic communities exposed to triclosan including stream periphyton 

communities. It is unclear to what extent these alterations affect potential ecosystem services 

provided by the periphyton community. The hypothesis that periphyton mitigate triclosan was 

tested in two stream periphyton communities: a non-urban, forested stream and an urban, 

WW-associated stream. A survey of triclosan occurrence in stream water and periphyton was 

also conducted along longitudinal gradients in the two study streams. Triclosan was detected in 

all samples from the two streams at levels in water ranging from 152-238 ng/L and in periphyton 

ranging from 71-1342 ng/L. In the WW-associated stream water, a higher concentration of 

triclosan after the outfall of the WW effluent was observed. WW-associated periphyton showed 

evidence of mitigation of triclosan while the forested-stream periphyton did not.  

Introduction 
 

 Triclosan has been utilized for its antimicrobial properties in a vast array of products 

(Adolfson-Erici et al. 2002; Bedoux et al. 2012; Fang et al. 2010). It is most often included as an 

ingredient in products that ultimately end up going down our drains. Ultimately, much of this 

triclosan is gathered with wastewater and biosolids, along with many other anthropogenic
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inputs, at WWTPs (Saleh et al. 2011; Singer et al. 2002; van Wijnen et al. 2018; Ying and 

Kookana 2007). Much of the triclosan adheres to the biosolids (Halden and Paull

 2005), while some is converted to other compounds such as methyl-triclosan (Chen et al. 2011). 

Triclosan has been shown to bioaccumulate in algae (Coogan et al. 2007) and other organisms 

(Adolfson-Erici et al. 2002; Coogan et al. 2008; Higgins et al. 2011; Kinney et al. 2008; Macherius 

et al. 2014; Pannu et al. 2012). Research groups around the planet have measured levels of 

triclosan in a multitude of sample types, biotic and abiotic (Dann and Hontela, 2011; Fair et al. 

2009 Fang et al. 2010; Heidler and Halden 2007; Kinney et al. 2008; Kolpin et al. 2002; Lawrence 

et al. 2009; Nietch et al. 2013; Ying and Kookana 2007). In surface waters, reported 

concentrations have a wide range from 1.4 ng/L to 40,000 ng/L triclosan (Montaseri and Forbes 

2016). Triclosan is often found at low levels and the concentration tends to be higher when the 

water sample is WW-associated (Table 1). For the current study, it was hypothesized that 

triclosan levels are higher in WW-associated streams compared to non-WW streams. 

Additionally, it was predicted that triclosan levels would be highest near the WWTP discharge 

point. In previous studies, declining levels of triclosan have been observed along a gradient 

downstream of a WWTP (Morrall et al. 2004). This pattern, along with the knowledge that algae 

bioaccumulate triclosan (Coogan et al. 2007), led to a hypothesis that periphyton mitigate 

triclosan downstream of WWTPs. The hypothesis was tested using stream microcosms amended 

with triclosan at the environmentally-relevant level of 10 μg/L triclosan. 

Triclosan is known to cause toxic effects and changes in periphyton communities (Drury 

et al. 2013; Eriksson et al. 2015; Johansson et al. 2014; Nietch et al. 2013; Proia et al. 2011; 

Ricart et al. 2010; Rosi-Marshal 2013; Wilson et al. 2003; Zhao et al. 2015). 48-hour exposures to 

increasing levels of triclosan decreased bacterial and diatom viability and photosynthetic 
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efficiency of a biofilm community (Ricart et al. 2010). If stream periphyton assist in mitigation of 

triclosan, but triclosan causes detrimental community shifts, then is chronic exposure to 

triclosan in the stream decreasing the community’s ability to regulate the compound? Have 

adaptations occurred in periphyton in streams receiving WW effluent that have affected the 

community’s ability to mitigate triclosan and/or other inputs? Further research is recommended 

to address these questions. The current study in periphyton communities from a forested and a 

WW-associated stream examines the distribution of triclosan in water and periphyton as well as 

the ability of periphyton to mitigate triclosan in stream water. 

Methods 
 
 Study streams and sampling sites 

Sampling sites were selected along longitudinal gradients for the triclosan distribution 

survey. The forested stream, North Double Creek, had three sampling sites. Sites 1, 2 and 3 were 

19.61, 10.62 and 8.55 stream km upstream of the confluence with the Dan River in Stokes 

County, North Carolina. For all exposure studies (including Aim 2 and Aim 3 studies on stream 

bacterial isolates), forested-stream periphyton were grown, fully submerged, on stone tiles at 

site 3 at Simmons Rd in Pinnacle, NC, 36°26'27.7"N 80°19'51.3"W. This collection site is in a 2nd 

order section of North Double Creek. The upstream section of North Double Creek travels 

through an area northeast of Pilot Mountain, NC, with the stream passing through mostly 

forested and rural residential areas of Quaker Gap, NC. 

The WW-associated stream had six sampling sites, two upstream and four downstream 

of North Buffalo Water Reclamation Facility (WWTP; now retired but active during study). The 

upstream sites, site 1 and site 2, are located 6.36 and 2.46 stream km upstream of the WWTP in 

the city of Greensboro in Guilford County, North Carolina. Site 3, just after the WWTP, is 0.20 
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stream km downstream of the effluent outfall. The other three downstream sites, sites 4, 5 and 

6, are 2.60, 5.97 and 10.08 stream km below the outfall of the WWTP. WW-associated 

periphyton used in laboratory studies (including Aim 2 and Aim 3 studies on stream bacterial 

isolates) were colonized on unglazed stone tiles at site 5 in North Buffalo Creek just downstream 

of Rankin Mill Road, Greensboro, North Carolina 36°07'11.8"N 79°42'28.1"W. This stream drains 

the northern part of the city of Greensboro, passing through urban areas. Greensboro spans 296 

km2 where originating headwaters for the Cape Fear River Basin are located. This stream has 

been recognized as impaired based on impaired biological communities, instream habitat 

degradation and the presence of fecal coliform bacteria (NCDENR 2000). The collection site is 

located in a 4th order section of North Buffalo Creek. 

 Periphyton colonization of tiles in streams 

Stone tiles (1 cm thick with colonization surface 2.3 cm x 3.9 cm) were adhered to bricks 

with Amazing Goop adhesive and left submerged in each stream for periphyton to grow on tiles 

for approximately one month (tiles were left in streams for the same number of days for both 

streams). Bricks with tiles were transported to the laboratory fully submerged in stream water 

from their source stream. 

 Periphyton collection  
 

Periphyton were scrubbed from a rectangular section of known surface area using a  

toothbrush and rinsed into pre-weighed vials, either with stream water or ultrapure water. For  

field samples used in the distribution survey, the area on submerged stream rocks was defined 

by an empty frame 24 mm by 36 mm and scrubbed to remove periphyton from the framed area. 

Three of these 864 mm3 frames, collected from different areas of rock or different rocks, were 

pooled into a single vial for each periphyton sample. Three samples at each site were collected 
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for extraction and mass spectrometry analysis. Unfortunately one sample of each was 

compromised. Therefore results are given for two samples at each site. For mitigation studies, 

the top surface of 3 unglazed, stone tiles used as growth substrate defined the periphyton 

sample size. The top surface of each tile is 23 mm by 39 mm, for a marginally larger (as 

compared to frames used in distribution survey) 897 mm3 colonization surface. Periphyton were 

rinsed with pure water from 3 tiles into a pre-weighed 50 ml screw cap tube with ultrapure 

water, periphyton were centrifuged at 4000 rpm for 5 minutes. Water was then removed prior 

to lyophilization (freeze-drying). Lyophilized samples were weighed and stored at -20° C until 

time of extraction. 

 Exposure to triclosan in microcosms 
 

All laboratory experiments were conducted at the University of North Carolina at 

Greensboro in the Department of Biology. Tiles colonized with periphyton were carefully 

removed from bricks without touching the top surface and evenly distributed into microcosms 

containing 1100 ml water from the forested stream, North Double Creek. Periphyton and water 

were collected from microcosms prior to triclosan addition (0 hour samples) and again 11, 22, 

and 33 hours after triclosan addition to microcosms for analysis of triclosan levels. Each 

microcosm initially contained 21 tiles and was made of plastic with a doughnut-shaped tray with 

30 cm diameter outer circle and a 12 cm inner circle. There were four air streams (2 on each side 

from 2 aquarium pumps) blowing across the surface of the water to keep the stream water 

circulating. Stream water was taken from North Double Creek on the day of periphyton 

collection. At the start of the exposure experiment, triclosan was added to raise the level of 

triclosan in the water to 10 μg/L above ambient stream level (ranging from undetectable to 
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0.175 μg/L, unpublished data). Microcosms were kept at 25°C with lights on in an 

environmentally-controlled room. 

 Triclosan extraction from water 

Amber glass bottles used for water collection had previously contained only HPLC-grade 

solvents: water, methanol, or acetonitrile. The bottles were rinsed completely two times with 

acetone and three times with pure, deionized water and also rinsed with stream water prior to 

collection of stream water. 1 L samples were filtered through glass fiber filters and 100 μL of 10 

ppm mass labeled internal standard, 13C-Triclosan (Wellington Laboratories), was added. The 

entire 1 L was loaded through HLB Oasis 12cc cartridges (Waters Corporation) which had been 

preconditioned with 10 ml HPLC-grade methanol and 10 ml ultrapure water by letting each drip 

through slowly. A vacuum manifold was used to assist each 1 L water sample in passing through 

the extraction cartridge. Cartridges were air dried for at least 1 hour and if not immediately 

eluted, were stored at -20° C until time of elution. Samples were eluted 3 times with 5 ml (15 ml 

total) of a mixture of 1:1 acetone: methanol with 10 mM acetic acid. 15 ml eluates were 

transferred to 20 ml amber vials and test tubes rinsed with methanol into the vial also. These 

eluates were dried at room temperature under N2 gas. Each extract was reconstituted in 1 ml 

HPLC-grade methanol through vortexing and sonication. These extracts were analyzed using 

mass spectrometry. As the extract of 1 L of water was concentrated into 1 ml of methanol, 

calculated amounts via mass spectrometry in the extracts in ppm range equate to the ppb range 

in the water sample (for example 1 ppm triclosan in extract shows there was 1 ppb triclosan in 

the water prior to extraction). 
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 Triclosan extraction from periphyton 
 

Lyophilized periphyton samples were combined with 1 ml ultrapure water and 100 μL of 

10 ppm 13C Triclosan as an internal standard for mass spectrometric analysis. Samples were 

homogenized with a tissue homogenizer. The following extraction process was repeated three 

times: samples were combined with 5 ml 1:1 acetone: methanol containing 10 mM acetic acid, 

vortexed for 1 minute, and sonicated for 15 minutes, then centrifuged at 2500 rpm for 5 

minutes. The extract/supernatant was filtered through glass wool and collected in an amber 

glass scintillation vial. As stated, two additional rounds of this were conducted for a total of ≈15 

ml extract per sample. Extracts were blown dry under nitrogen gas. Extracts were reconstituted 

in 1 ml HPLC-grade methanol each by vortexing and sonication, then analyzed using mass 

spectrometry. The extract of a known mass of periphyton was concentrated into 1 ml of 

methanol. The calculated triclosan concentrations measured through mass spectrometry (within 

the range of the standard curve) and the sample weights were used to calculate the triclosan 

concentration in each original sample. 

 Mass spectrometry analysis 

Triclosan analysis was performed on a Q Exactive Plus Orbitrap mass spectrometer 

(Thermo Fisher Scientific, Waltham, MA) with a heated electrospray source (HESI-II) coupled to 

an Acquity Ultra-performance liquid chromatography (UPLC) system (Waters Corpation, Milford, 

MA). A 5 μL injection of each sample was eluted from a 2.1 x 50 mm Acquity UPLC BEH C18 

column (Waters Corp.) using a binary solvent gradient consisting of Optima LC/MS grade water 

with 0.1% formic acid (solvent A) and Optima LC/MS grade methanol (solvent B) at a flowrate of 

0.3 ml/min. The gradient initiated at an isocratic composition of 80:20 (A:B) for 2.0 min, 

increased linearly from 2.0–8.0 min. to 5:95 (A:B), followed by an isocratic hold at 5:95 (A:B) 
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from 8.0–10.0 min, gradient returned to starting conditions of 80:20 (A:B) from 10.0–10.1 min, 

and was held at this composition from 10.1–11 min. The mass spectrometer was operated in 

negative ionization mode over a scan range of 150–1000 with the following setting: spray 

voltage set at 3.0 kV, capillary temperature set at 320°C, s-lens RF level set at 50.00, sheath gas 

flow set at 50, and auxiliary gas flow set at 15.  

Standard curves of triclosan and 13C-triclosan were prepared using standards mixed in 

methanol at the following concentrations: 8096 μg/L, 4048 μg/L, 2024 μg/L, 1012 μg/L, 506 

μg/L, 253 μg/L, and 126.5 μg/L. All samples were analyzed in triplicate and data processing was 

performed using the Xcalibur software (Thermo Fisher).  

Results 
 
 Triclosan distribution survey 

Both the forested North Double Creek and WW-associated North Buffalo Creek 

contained detectable levels of triclosan in both water (152-238 ng/L) (Fig. 4) and periphyton (71-

1342 ng/L) (Fig. 5). Comparing forested and WW-associated samples using t-tests, there was not 

a significant difference between streams in the overall levels of triclosan measured in water 

(p=0.577) or periphyton samples (p=0.195) in the triclosan distribution survey.  

Triclosan levels in stream water 

Surface water sampled from the forested stream contained triclosan levels in the range 

of 152-208 ng/L (Fig. 4A). The slightly wider range of 143-238 ng/L observed in the WW-

associated stream (Fig. 4B) reflects higher concentrations of triclosan found just downstream of 

the outfall of the WW effluent. These samples showed a characteristic peak of higher triclosan 

downstream of the WWTP, similar to previous studies (Morrall et al. 2004). Triclosan levels in 
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stream water were highest at the nearest sites downstream of the WWTP (218 ± 20 ng/L at site 

3; 223 ± 12 ng/L at site 4) (Fig. 4B). 

 
    A. Forested stream, N Double Creek      B. WW-associated stream, N Buffalo Creek 

 
 
 
 
 
 
 
   

Stream kilometers 
 
Figure 4. Triclosan Levels in Stream Water. (A) Triangles show average levels in water from North 
Double Creek. On the x-axis, negative distances indicate km upstream of the confluence with the Dan 
River (set at 0 km). (B) Squares show average levels in water from the North Buffalo Creek. On the x-
axis, negative distances indicate kilometers upstream of the WWTP (set at 0 km), and positive values 
show kilometers downstream of the WWTP. Error bars show standard errors. 
 
 
  Triclosan levels in periphyton  

 Periphyton samples from the forested stream contained triclosan levels in the range of  
 
178-1342 ng/g (Fig. 5A). WW-associated periphyton sampled from North Buffalo Creek showed  
 
a range of triclosan levels from 71-555 ng/g (Fig. 5B).  
 
 Triclosan mitigation study 

Trials of the mitigation study showed decreasing triclosan levels in water over 33 hours 

(Fig. 6) in all microcosms. Increases in triclosan observed in periphyton occurred with WW-

associated periphyton but not forested-stream periphyton (Fig. 7). 
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A. Forested stream, N Double Creek       B. WW-associated stream, N Buffalo Creek 

   Stream kilometers 
 
Figure 5. Triclosan Levels in Stream Periphyton. (A) Triangles show average levels in periphyton from 
rocks in the forested stream, North Double Creek. On the x-axis, negative distances indicate 
kilometers upstream of the confluence with the Dan River (set at 0 km). (B) Squares show average 
levels in periphyton from rocks in the WW-associated stream, North Buffalo Creek. On the x-axis, 
negative distances indicate kilometers upstream of the WWTP (set at 0 km), and positive values 
show kilometers downstream of the WWTP. Error bars show standard errors. 
 
 
  Triclosan levels in microcosm water 

At time zero, all microcosms had water from the forested stream, amended with 

triclosan to reach approximately 10 μg/L + ambient concentration (10.2 ± 0.2 μg/L in Trial A; 9.2 

± 0.2 μg/L in Trial B). Microcosms with no periphyton showed a slight decrease in triclosan levels 

in water over the time of the experiment in trial A, and a more substantial decrease in triclosan 

levels in water in trial B (Fig. 6). Microcosms with WW-associated periphyton showed decreases 

in triclosan levels to a greater extent than microcosms containing no periphyton or forested- 

stream levels in water in trial B (Fig. 6). Microcosms with WW-associated periphyton showed 

decreases in triclosan levels to a greater extent than microcosms containing no periphyton or 

forested-stream periphyton, which also showed decreased triclosan in the water over 33 hours. 
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Figure 6. Triclosan Loss in Microcosm Water. Each graph shows measured triclosan levels in 
microcosm water from one trial of the triclosan mitigation study. Control microcosm levels are 
represented with circles with solid trendlines, showing triclosan levels in microcosms with stone tiles 
that had no periphyton. Levels in water from microcosms containing periphyton from the forested 
stream are represented by triangles with dotted trendlines, while the WW-associated levels are 
shown with squares and dashed trendlines. 
 
 
  Triclosan levels in microcosm periphyton 

 Triclosan levels increased over time in periphyton from the WW-associated  

stream (Fig.7) with no clear pattern shown in triclosan levels in periphyton from the 

forested stream. Forested-stream periphyton showed a higher triclosan concentration 

after 22 hours of exposure in trial A, though the measured concentration in periphyton 

after 33 hours of exposure was lower (Fig. 7) and this was not seen in trial B, where the 

triclosan levels in forested-stream periphyton did not appear to fluctuate greatly.  



 

30 
 

 

Figure 7. Triclosan Levels in Microcosm Periphyton. Each graph shows measured triclosan levels in 
microcosm periphyton from one trial of the triclosan mitigation study. Levels in periphyton from the 
forested stream are represented by triangles, while the WW-associated levels are shown with 
squares. Trendlines and R2 values are shown for significant patterns (WW-associated stream only, 
with dashed trendlines). 
 
 
Discussion 

The highest measured triclosan levels observed in water samples in the current study 

were 238 ng/L and 235 ng/L, in water collected from 0.2 km and 2.6 km downstream of a WWTP 

on North Buffalo Creek. Peaks in levels of anthropogenic inputs at WWTPs, triclosan included, 

have been observed in previous studies (Barber et al. 2006; Coogan et al. 2007; Morrall et al. 

2004; Ricart et al. 2010; Ying and Kookana 2007). As an urban area with a higher population 

density combining many inputs at the WWTP, it is understandable why, despite the majority of 

triclosan inputs from WW influents being presumably removed from water through WW 

processing, triclosan levels would be higher just downstream of the WWTP. However, this level 

was only 30 ng/L higher than the maximum measured level in the studied forested stream. Also, 



 

31 
 

the mean triclosan level measured in forested water samples (across all sites) tested was slightly 

higher than the mean of all tested WW-associated samples (176 ± 9 ng/L forested, 167 ± 10 ng/L 

WW-associated). Although higher overall triclosan levels were expected in the WW-associated 

stream, the two streams showed comparable levels of triclosan in both water and periphyton 

samples. Comparing triclosan levels in periphyton from the two streams, the average of all 

analyzed forested samples was higher than that in WW-associated periphyton samples tested 

(435 ± 183 ng/g forested, 243 ± 47 ng/g WW-associated). This indicates that triclosan can be 

present in streams in forested and non-urban areas, and at levels similar to those observed in 

urban streams. The results of this study support the hypothesis that triclosan levels are highest 

near WWTPs but did not support the hypothesis that overall triclosan levels are higher in WW-

associated streams compared to non-WW streams.  

In addition to population density and WW-input, some relevant factors that may 

influence triclosan concentration in stream water and periphyton include: photodegradation 

rates, adsorption to stream sediments and to biosolids in the WWTP, uptake by organisms, and 

conversion to methyl-triclosan, which is known to occur during WW processing (Chen et al. 

2011). It is possible that despite higher inputs of triclosan at the WWTP, some of these 

processes are occurring to a greater extent in the WW-associated stream. Although outside of 

the scope of this study, photodegradation rates likely differ between the streams, as North 

Buffalo Creek is a 4th order stream with a more open canopy than the 2nd order, forested North 

Double Creek, which is mostly shaded at all sites along the study reach. There are various 

pathways through which triclosan can be transformed such as photodegradation and 

biotransformation. The amount of time it takes for triclosan breakdown to occur is highly 

dependent on the surrounding environmental conditions. The degradation time of triclosan 
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varies widely in different environments with estimated half-lives of: 1 day in air, 60 days in 

water, 120 days in soil and 540 days in sediment (Halden and Paull 2005). The half-life in other 

systems also vary. A study using water from the Tamar Estuary, UK showed a half-life of 4 days 

in seawater, as well as a half-life of 8 days in freshwater from St. John’s Lake (Aranami and 

Readman 2007). Yet another study calculated triclosan’s half-lives in two lakes to be 89 days and 

148 days and triclosan’s half-life in river water (Xiangxi River, China) to be 161 days (Huang et al. 

2014). It seems likely that both sorption to tiles or microcosm trays and photodegradation led to 

decreases in triclosan across all microcosms. Photodegradation may have been higher in 

microcosms than reports in literature due to the shallow nature of the microcosms as well as 

the lights remaining on throughout the experiment. Neither photodegradation nor 

biotransformation were directly investigated in this study. It would be interesting to conduct a 

study analyzing products of photodegradation and biotransformation and investigating possible 

differences between different periphyton communities. Uptake by organisms is also likely to 

differ between the two streams, and there is evidence of this shown by the periphyton in the 

triclosan mitigation study, in which WW-associated periphyton showed increasing triclosan 

levels in microcosms but forested-stream periphyton did not (Fig. 7). To better understand the 

extent to which community composition plays a role in the mitigation potential of a periphyton 

community, additional studies with higher sample numbers as well as community structure 

analyses are warranted. 

Chronic exposures to anthropogenic inputs such as triclosan may alter natural aquatic 

communities (Drury et al. 2013; Nietch et al. 2013; Proia et al. 2011; Ricart et al. 2010; Wilson et 

al. 2003; Zhao et al. 2015). Mitigation of triclosan is an ecosystem service that may be provided 

by some stream communities. However, there is also the potential that impacts of triclosan and 
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additional anthropogenic inputs alter effects on mitigation potential of these communities. The 

result that periphyton from the WW-associated stream took up triclosan more efficiently than 

the forested-stream periphyton invites further investigation. It is possible that different 

community compositions affect the mitigation potential of the communities, resulting in a 

difference between the WW-associated and forested stream. It is unclear why microcosms 

containing tiles only and no periphyton lost more triclosan over time in water in trial B relative 

to trial A. The setup was the same for both trials so photodegradation rates and adsorption 

rates (possibly to sides of microcosm trays as well as tiles) should have been similar.  

In summary, field and lab results were consistent with mitigation, but more samples and 

trials would need to be run for a definitive conclusion. In the WW-associated stream water, 

there was a sharp drop in triclosan between the downstream stations near the WWTP and those 

further down. In microcosms showing evidence for mitigation, triclosan loss over time in water 

was greater than that of other microcosms (Fig. 6) and increasing triclosan over time was 

observed in the WW-associated periphyton (Fig. 7). Although more evidence should be collected 

for a conclusive result, this provides some evidence that WW-associated periphyton can provide 

a mitigation service for triclosan in WW-associated streams. 
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CHAPTER III 
 

AIM 2: ANTIBIOTIC RESISTANCE GENES AND ISOLATE IDENTIFICATION 
 
 
Abstract 

Stream microbial communities and their ecosystems contain a complex mixture of 

components and inputs that can impact antibiotic resistance. Antimicrobial pollution, antibiotic 

resistance genes (ARGs) and antibiotic resistant bacteria (ARB) are found in both urban and non-

urban streams, though many are likely found at higher levels in WW- associated streams. The 

extent to which chronic, low-level exposures to triclosan affect microbial community 

composition and levels of ARGs in stream periphyton bacterial communities is not well 

understood. In stream periphyton communities (urban or forested), and possibly to a greater 

extent at waste water treatment plants (WWTPs), the combining ARB harboring ARGs, and 

antibiotics can lead to further development and dissemination of ARGs (Fig. 3). ARGs can be 

exchanged among different genera/species/strains of bacteria. In some cases, what once was a 

susceptible strain can develop into ARB. Chronic presence of triclosan may be exacerbating the 

issue of increasing antimicrobial resistance. To address the effects of triclosan on stream 

periphyton bacterial communities and ARG levels in these communities, stream bacterial 

isolates were cultured from periphyton communities sourced either from a WW-associated or a 

forested stream and with or without exposure to 10 μg/L triclosan in recirculating stream 

microcosms, and later identified to genus level. The endeavor to determine levels of triclosan 

resistance associated ARGs in these communities was met with limited procedural success. A 

single ARG target, mexB, was amplified in one of the exposed, forested-stream isolates. This 
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gene encodes a subunit of the MexAB–OprM efflux pump. 105 of 144 total stream bacterial 

isolates were identified to genus level via 16S rRNA sequencing and alignment using NCBI’s 

BLAST. Based on identified isolates, all four treatment groups appear to exhibit dominance of 

the genus Pseudomonas. This genus and two other genera represented by multiple isolates in 

the current study (Acinetobacter and Serratia) are included in the World Health Organization’s 

list of bacteria of critical concern (WHO 2017). 

Introduction 

 Bacteria existing in various environmental compartments are often transported through 

water. In urban ecosystems, countless different types of bacteria reside in and can be 

exchanged between environments such as surface waters, drinking water and wastewater (Vaz-

Moreira et al. 2014). In many cases, antibiotic resistant bacteria (ARB) are present and exhibit 

resistance to one or more antibiotics. The development and dissemination of ARB and ARGs in 

and between environmental compartments is considered a major threat to environmental 

health and the health and well-being of humans and other animals (Bush et al., 2011; Forsberg 

et al., 2012; Vaz-Moreira et al. 2014). Water systems are important microbial habitats and, in 

many cases, may act as sources of and reservoirs for ARGs. As an unwanted side-effect of 

human practices and product use, these habitats have developed into bioreactors where ARGs 

are exchanged between different types of bacteria (Baquero et al., 2008; Poirel et al., 2005; 

Rizzo et al., 2013). WWTPs are known hotspots for selection of antibiotic resistance and transfer 

of ARGs (Rizzo et al. 2013). A vast and growing list of ARGs have been detected in WW-

associated systems (Nnadozie et al. 2017; Tang et al. 2017; Xi et al. 2015). Among other genetic 

elements, integrons frequently carry ARGs (Boucher et al. 2007; Wolters et al. 2015) and have 

been implicated in spreading ARGs in both environmental and clinical settings (Gillings 2014). In 
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many cases, conventional treatment processes for wastewater are insufficient to reduce levels 

of ARB, often even increasing overall resistance in downstream effluents (Ferreira da Silva et al. 

2006; Łuczkiewicz et al., 2010; Novo et al., 2013). 

An array of routes resulting in triclosan resistance exist. Previous studies in pure cultures 

indicate that membrane resistance, target site modifications and efflux are the most common 

mechanisms of triclosan resistance (Carey and McNamara 2015). Properties of bacterial outer 

membranes can provide resistance to hydrophobic antimicrobials (Champlin et al. 2005; 

Tkachenko et al. 2007). In comparison between strains of P. aeruginosa possessing cell 

envelopes less permeable to hydrophobic chemicals and strains with highly permeable cell 

envelopes, those with the less permeable envelopes had higher intrinsic resistance (Champlin et 

al. 2005). Through investigations into a strain of S. aureus showing cross resistance with 

triclosan and ciprofloxacin, after eliminating several potential mechanisms of resistance, the 

authors attributed the cross resistance to altered gene expression affecting cell membrane 

structure and function (Tkachenko et al. 2007). The authors suggested that triclosan exposure 

elicits this gene expression response leading to possible increases in branched chain fatty acids 

in cell membranes that can help prevent agents from crossing the membrane. Any mechanism 

that indiscriminately inhibits hydrophobic chemicals from passing into cells could lead to 

resistance to triclosan and other antibiotics. There are numerous studies in bacterial isolates 

verifying the presence of triclosan-resistant isoenzymes for triclosan’s target, the enoyl-acyl 

carrier protein reductase (reviewed in Carey and McNamara 2015; Zhu et al. 2010). Aside from 

isoniazid, which shares triclosan’s target, resistant enoyl-acyl carrier protein reductases are not 

generally known to cause cross-resistance between triclosan and other antibiotics. This is still of 

concern as isoniazid is vital in tuberculosis management, and lower triclosan concentrations 
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specifically inhibit enoyl-acyl carrier protein reductase and resistance can develop (Giuliano and 

Rybak 2015). Export of antimicrobials via efflux pumps is a common adaptation. Triclosan 

resistance and resistance to antibiotics can be conferred through expression of efflux pumps 

such as AcrAB-TolC (Perez et al. 2007), MexAB–OprM (Carey et al. 2016; Yoneda et al. 2005), 

MexXY-OprM (Chuanchuen et al. 2008), and TriABC-OpmH (Mima et al. 2007). Associated genes 

targeted in the current study are: AcrA, mexB, mexX, and triB. Cross-resistance to other 

antibiotics, such as chloramphenicol and carbenicillin, has been observed in triclosan-resistant 

bacteria exhibiting constitutive upregulation of efflux pumps (Pycke et al. 2010). P. aeruginosa 

constitutively expresses two RND efflux pumps, MexAB–OprM and MexXY-OprM, and both of 

these systems can actively export fluoroquinolones, tetracycline and chloramphenicol (Sun et al. 

2014). MexAB–OprM is the homolog of an efflux pump system in E. coli called AcrAB-TolC and it 

can also export novobiocin and b-lactams, such as carbenicillin and MexXY system can also 

export aminoglycosides such as erythromycin, gentamicin, neomycin and tetracylcine 

(Chuanchuen et al. 2008). The gene, mexB, encodes a proton antiporter subunit of the MexAB–

OprM drug efflux pump that is known to confer MDR in Pseudomonas aeruginosa (Sun et al. 

2014). There exists a highly complex web of interactions among microbial communities, our 

understanding of which is drastically limited by culturability (or lack thereof) of a large fraction 

of the microorganisms in these communities. Microbial community diversity is potentially 

important because microbial diversity can impact the community’s ability to metabolize 

xenobiotic compounds (Hernandez-Raquet et al. 2013). 

With MDR on the rise and threatening our health and well-being, the World Health 

Organization (WHO) has issued a list of priority pathogens (WHO 2017). At the top of this list are 

MDRt bacteria posing threats in hospitals and among patients requiring care involving devices 
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such as ventilators and blood catheters. Genera on the most critical list include Acinetobacter, 

Pseudomonas and various Enterobacteriaceae including Klebsiella, E. coli, Serratia, and Proteus 

(WHO 2017). Broad-spectrum antimicrobials, such as triclosan, can act as selective agents for 

acquired resistance to triclosan as well as other antimicrobials. For example, in a study selecting 

for biocide-resistant strains of both E. coli and S. enterica, after only two sub-lethal exposures to 

triclosan, E. coli O157 strains acquired resistance to several antimicrobial agents such as biocides 

and antibiotics including chloramphenicol, erythromycin, imipenem, tetracycline, and 

trimethoprim (Braoudaki and Hilton 2004). Acquired resistance to triclosan and other antibiotics 

can be transferred to pathogenic bacteria and is a threat to human and environmental health 

(Ciusa et al.2012). If chronic, sublethal exposures to triclosan are impacting stream microbial 

communities and/or ARG levels within these communities, this contributes to the major global 

health challenge of increasing antibiotic resistance. 

Overall levels of ARGs may be higher in WWTP effluent compared to levels in sewage 

prior to treatment (Reinthaler et al., 2010; Uyaguari et al., 2011) due to selection of resistant 

bacteria during treatment processing. However, ARGs can also be found in stream communities 

not associated with WWTPs (Jacobs and Chenia 2007; Leff et al. 1993; Mohapatra et al. 2008; 

O’Flaherty and Cummins 2017). It was hypothesized that overall levels of ARGs would be higher 

in a WW-associated stream periphyton community compared to a forested stream periphyton 

community. It was also predicted that exposure to 10 μg/L triclosan would impact the 

distribution of ARGs in the stream periphyton community.  
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Methods 
 
 Sample sites, periphyton colonization and microcosm exposure 

Isolates investigated were sampled from North Double Creek (forested, not WW- 
 
associated) or North Buffalo Creek (WW-associated) and the collection sites and methods 

related to periphyton collection on stone tiles are described in detail in the methods section of 

Chapter II. Exposed isolates described herein refer to isolates from colonies isolated after 

exposure to 10 μg/L triclosan (+ambient triclosan in North Double Creek). Microcosm set up is 

also described in the methods section of Chapter II. 

Unexposed (0 hr) isolates were collected for pure culture isolation prior to addition of 

triclosan to microcosms. Exposed isolates were collected from microcosms at varying timepoints 

after addition of triclosan to microcosms (2, 11, 33 hours; 1, 2, 3, 4 weeks; with water replaced 

each week including a fresh addition of triclosan). Analyses described in study results group 

isolates as unexposed or exposed to 10 μg/L + ambient triclosan in microcosms and by 

periphyton source stream.  

 Bacterial culture conditions and DNA extraction 

Isolate purification and microbiological analysis for isolate identification were conducted 

aseptically using sterile, low-nutrient agar or broth. Single colonies were isolated after 

periphyton were collected, diluted in sterile water and spread-plated on sterile, low-nutrient 

agar. Individual colonies were selected at random (using a grid and random number generator) 

and streaked individually on sterile, low-nutrient agar plates. From each of these a single colony 

was isolated to begin a pure liquid culture. Stocks were maintained in slants on sterile, low-

nutrient agar containing 8% plate count agar. All liquid cultures were maintained in sterile, low-

nutrient Mueller-Hinton broth (50% MH broth) made by dissolving the solid MH broth powder in 
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twice the recommended volume of distilled, deionized water and autoclaving. Therefore, the 

low-nutrient broth used for this study had 50% the normal concentration of nutrients in an 

attempt to simulate more relevant environmental conditions. Prior to ARG targeting and 16S 

rRNA sequencing, genomic DNA was extracted from pure liquid bacterial cultures using CTAB 

extraction method (Schaefer 1997).  

 Isolate identification 

16S rRNA sequencing using universal primers (Table 2) was used to identify isolates to 

the genus level. Genomic DNA was extracted from pure liquid cultures using CTAB extraction 

method (Schaefer 1997). 16S rRNA sequencing was used to identify isolates to the genus level. 

Primers targeting the 16S gene are described in Table 2 (Barghouthi 2011; Klindworth et al. 

2013). Specific primer pairs used for identification of each isolate are listed in results. Primers 

were ordered from IDT (Integrated DNA Technologies, Inc.) and 2X PCR Master Mix (reaction 

buffer, Taq Polymerase, dNTPs, MgCl2) was obtained from Fisher Scientific (FERK0171). A given 

PCR well with a 31 μL total volume contained: 15.5 μL 2X master mix, 13.5 μL nuclease-free 

water, 0.5 μL forward primer, 0.5 μL reverse primer, and 1 μL genomic DNA. In some cases, 

larger volumes (up to 51 μL total volume) were set up when more product was needed. In these 

cases, proportions of ingredients were kept the same as the 31 μL reactions.  

All touchdown PCR methods began with a 3 minute initial denaturation hold at 96°C, 

followed by 40 cycles of 12 seconds each at 93°C, 12 seconds at the annealing temperature, and  

20 seconds at 72°C, with a final hold of 3 minutes at 72°C. Annealing temperatures vary with 

primer pairs, and were decreased by 1 degree per cycle from the first through the 19th cycle. 

Cycles 20-40 were repeated with the same low annealing temperature used at cycle 19. Initially, 

GM3/GM4 PCR was tested (Klindworth et al. 2013). 
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 Table 2. Primers Used for 16S rRNA Amplification and Sequencing.  
Table shows sequences and melting temperatures of universal 16S rRNA primers used for PCR and sequencing with the aim of 
identifying environmental isolates in this study. 
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Initial and final annealing temperatures were 54°C and 36°C for the GM3/GM4 PCR. 8 μL of each 

PCR product was run on a 1% agarose gel containing ethidium bromide via electrophoresis and 

viewed in UV light to determine success or failure of the PCR reaction. For those isolates that did 

not have successful 16S amplification with GM3/GM4, a mixture of primers was tested including 

equal amounts of each: F5, F6, R2 and R3 (Barghouthi 2011). Initial and final annealing 

temperatures were 69°C and 51°C for this mixture of 16S rRNA primer pairs. After analyzing the 

sizes of amplified products, PCRs with individual pairs of primers were run for the largest 

product amplified by the primer mixture for each isolate. PCRs with F5 /R3, F6/R2, F6/R3 and 

F6/R4 used the touchdown method described, with annealing temperatures declining from 69°C 

to 51°C. Any isolate that did not have successful amplification by methods described above was 

further tested with primer pairs: F3/R1 using initial and final annealing temperatures of 63°C 

and 45°C or F3/R2 using initial and final annealing temperatures of 66°C and 48°C. A PCR clean-

up kit (DNA Clean & Concentrator, Zymo Research) was utilized to purify successful reactions to 

prepare products for sequencing. Cleaned PCR product samples were analyzed on a NanoDrop 

ND1000 spectrophotometer and diluted (with nuclease-free water) or further concentrated if 

necessary to provide samples with the proper DNA concentration range for sequencing. 

Sequencing was conducted by Eurofins Genomics. Trimmed sequences were analyzed via 

alignment on NCBI nucleotide BLAST and the top identified match was taken as the top match. 

This top match was the highest ranking sequence that was identified at least to genus in the 

BLAST results from alignment of a given environmental isolate query sequence. This along with 

subsequent matches on the BLAST results were used to determine the most likely genus for 

each isolate. Acceptable criteria were 350+ bases with discernable peaks on the chromatogram 

provided by Eurofins Genomics. Reported genera are based on trimmed sequences at least 350 
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bases long. For some isolates, the 16S region was successfully amplified, but without a 

chromatogram of 350+ bases of discernable peaks, so these were not included in the report of 

identified isolates. 

 Statistical analysis 

 To investigate exposure effects within each stream, a chi-square test was conducted 

using genus richness of the unexposed group as the expected ratio. To compare proportions of 

identified isolates that were in the genus Pseudomonas (or additionally, in the WW-associated 

stream, Serratia), a Z Score Calculator for 2 Population Proportions was conducted using the 

Social Science Statistics calculator (Stangroom 2018). 

PCR targeting of ARGs 

Antibiotic Resistance Genes (ARGs) related to triclosan resistance mechanisms were 

chosen for targeting (Table 3). Based on alignments of between 3 and 5 reference sequences 

from the NCBI database, primers were designed to target a portion of each of the chosen genes. 

Primers were ordered from IDT and 2X PCR Master Mix was obtained from Fisher Scientific. A 

given PCR well with a 21 μL total volume contained: 10.5 μL 2X master mix, 8.5 μL nuclease-free 

water, 0.5 μL forward primer, 0.5 μL reverse primer, and 1 μL genomic DNA. Attempting to 

make the primers more universal and work with more isolates from the environmental sample, 

bases showing mismatches in the alignments were designated as ambiguous bases and a 

mixture of primers varying at those positions was used. Touchdown methods were designed for 

primer pairs. All began with a 3 minute initial denaturation hold at 96°C, followed by 33 cycles of 

12 seconds at 93°C, 12 seconds at the annealing temperature, and 20 seconds at 72°C, and 

finally a hold of 3 minutes at 72°C. Annealing temperatures vary with the different primer pairs, 

and were decreased by 1 degree per cycle from the first through the sixteenth cycle. 
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 Table 3. Degenerate Primers Designed to Target ARGs.  
 Sequences for primers used to target ARGs are shown. Minimum, mean and maximum melting temperatures 

 are shown as well as the probable length of product that would be amplified using the Forward primer and  
 Reverse primer that is listed in the next row down. 
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Table 3 continued. Degenerate Primers Designed to Target ARGs. Sequences for primers used to target ARGs are shown. 
Target length is the expected length of PCR product that would be amplified using the F and R primer that is listed in the 
next row down.
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Cycles 17-33 were repeated with the same low annealing temperature used at cycle 16. Initial 

and final annealing temperatures were 53°C and 38°C for FabGyF16 and FabGpR17. Initial and 

final annealing temperatures were 61°C and 46°C for: AcrAF18 and AcrAoR19, FabIgF17 and 

FabIbR19, FabVbF23 and FabVoR17, mexBgF17 and mexBoR16. Initial and final annealing 

temperatures were 65°C and 50°C for FabIgF17 and FabIyR20, FabKgF20 and FabKgR17, 

FabVrF20 and FabVpR16, FabVrF20 and FabVpR18, mexBaF21 and mexBbR20. Initial and final 

annealing temperatures were 67°C and 52°C for ErmXpF22 and ErmXoR20, MexXrF19 and 

MexXpaR17. Initial and final annealing temperatures were 67°C and 52°C for MexXgF22 and 

MexXpaR17, triBoF24 and triByR20, triByF19 and triBgR18. 24 isolates that showed some 

tolerance to triclosan (see Chapter IV) were used to test the primer pairs.  

After touchdown PCR, products were separated through gel electrophoresis. 10 μL of 

each PCR was mixed with loading dye and separated on a 2% agarose gel containing ethidium 

bromide alongside a GeneRuler 1 kb Plus DNA Ladder, then visualized using UV light. Isolates 

used for testing all pairs of ARG primers were: WWun-4, WWun-7, WWun-8, WWun-10, WWun-

11, WWun-14, WWun-16, WWun-17, WWun-18, WWun-19, WWun-20, WWx-2, WWx-3, WWx-

4, WWx-5, WWx-35, FSx-1, FSx-5, FSx-6, FSx-7, FSx-23, FSx-39, FSx-41 and FSx-44. Additionally, 

WWun-3, WWun-24, WWx-1, WWx-6, WWx-16, WWx-19, WWx-21, WWx-23, WWx-27, WWx-

36, WWx-38, WWx-39, WWx-40, WWx-46, FSun-3, FSun-11, FSun-15, FSun-21, FSx-4, FSx-5, FSx-

19, FSx-24, FSx-34, FSx-36, FSx-42, FSx-46 and FSx-48 were used to test the primers mexBaF21 

and mexBbR20. 
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Results  
 
 Isolate identification 

Of 144 stream bacterial isolates cultured in the study, 105 were identified to genus  
 

level. Over a third of all identified isolates were found to be in the genus Pseudomonas (Table 4).  
 
Acineotebacter and Plantibacter were also dominant genera among identified isolates sampled.  

Many genera detected were found in both streams, while some were only found in one stream 

(Table 4). Citrobacter, Rhizobium, Rhodococcus, Sphingobium and Sphingomonas were only 

found in the forested stream community (Table 4). Enterobacter, Plantibacter, Serratia, and 

Stenotrophomonas were only found in the WW-associated community (Table 4). Of those 

genera unique (in this study) to the WW-associated stream, Plantibacter and Serratia were also 

among dominant genera. 18.8% (unexposed) to 20.6% (exposed) of identified WW-associated 

isolates were Plantibacter while 17.7% of identified exposed WW-associated isolates were 

Serratia. There were no identified members of Serratia in any of the other 3 treatment groups. 

Genera unique (in this study) to the forested stream did not show dominance, as each had a 

single representative in any given treatment group. Identification information on individual 

isolates, their genus, and the primer pair that gave successful 16S amplification are shown in 

Tables 5-8. There were no trends associated with exposure time that appeared to suggest 

increased effects on community diversity or dominant genera with exposure time over the 

timepoints used in this study, so any isolate exposed to triclosan in a microcosm, regardless of 

hours of exposure, was assigned to the exposed group. In the forested stream without triclosan 

microcosm exposure, genus richness was 52% while the exposed group of identified isolates 

from this stream showed only 29% genus richness. This suggests that triclosan exposure may 

have reduced diversity. A similar pattern was also seen in the WW-associated stream isolates 
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where genus richness in the unexposed group of isolates was 50% with that of the exposed 

group being lower at 35%.  

Of the identified unexposed forested-stream isolates, less than a quarter were 

pseudomonads. Of the identified forested-stream isolates which underwent exposure to 

triclosan in microcosms, half were pseudomonads.   

 
Table 4. Identified Isolate Genera. 
Table shows number of isolates in the study of each identified genus. The most likely genus was 
determined by analysis and alignment of a partial 16S rRNA sequence. 
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Table 5. Unexposed Forested Stream Isolates. Table shows identified unexposed, forested 
isolates’ genera and primer pair used for 16S amplification and sequencing. 
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Table 6. Exposed Forested Stream Isolates. Table shows identified exposed, forested isolates’ 
genera and primer pair used for 16S amplification and sequencing. 

 

This indicates an increased dominance of Pseudomonas species in the exposed isolates from the 

forested periphyton community (Z-Score = -2.1084; p=0.035). In contrast, for the WW-

associated isolates sampled and identified, less than a third were pseudomonads in both 

exposed and unexposed isolate groups (slightly less in the exposed group at 23.5%). In this 

study, triclosan exposure did not significantly affect dominance of pseudomonads in the WW-
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associated stream (Z-Score = 0.5806; p=0.562). Additionally, isolates in the genus, Serratia, were 

detected among exposed (17.6% of identified isolates) but not unexposed WW-associated 

isolates. This difference, however, was not significant (Z-Score = -1.7912; p= 0.073). 

 
Table 6. Exposed Forested Stream Isolates, continued from previous page.  
Table shows identified exposed, forested isolates’ genera and primer pair used for 16S 
amplification and sequencing. 
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Table 7. Unexposed WW-associated Isolates. Table shows the identified genus and 16S rRNA 
primer pair used for amplification and sequencing of each of the unexposed WW-associated 
(WW) isolates. 

 
 

There were 27 other isolates for which sequences were obtained and analyzed and, 

although deemed insufficient to confidently determine identity, alignment with NCBI’s BLAST 

indicated a likely genus for each isolate. Of these 27, 14 appear to be Pseudomonads (FSun-5, 

FSx-13, FSx-19, FSx-26, FSx-32, FSx-46, WWun-1, WWun-3, WWun-13, WWun-16, WWx-19, 

WWx-23, WWx-36, WWx-40).  
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Table 8. Exposed WW-associated Isolates. (continued on next page) Table shows identified 
exposed, WW-associated isolates’ genera and primer pair used for 16S amplification and 
sequencing. Table 8 is continued on the next page. 
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Table 8 (continued). Exposed, WW-associated Isolates. This table shows identified exposed, 
WW-associated isolates’ genera and primer pair used for 16S amplification and sequencing. 

 
 
Possible genera also represented in the group of isolates with sequences that did not quite fit 

the set of acceptable sequence quality criteria include Acidovorax (WWx-42, FSx-31), 

Acinetobacter (WWun-4), Chromobacterium (WWun-8), Clavibacter (WWun-21), 

Comamonadaceae (WWx-8), Flavobacterium (WWun-22), Janthinobacterium (WWx-34 and FSx-

14), Lysinibacillus (FSun-22),  Microbacterium (FSx-48) and Pedobacter (FSx-25 and FSx-37). 
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 PCR targeting of ARGs 

Due to PCR methods development complications, hypotheses regarding ARG levels were 

not successfully tested. Degenerate primers designed and tested through touchdown PCR on 24 

or more isolates, for the most part, did not yield products. One exposed, forested isolate, FSx-

34, revealed the presence of mexB. The portion of mexB flanked by mexBaF21 and mexBbR20  

primers was amplified and sequenced (Eurofins). BLAST (NCBI) analysis showed a multitude of 

top matches with multidrug efflux pump genes, often encoding a permease subunit of an efflux  

pump, in varied species of Pseudomonas. 

Discussion  

There is evidence in the current study that triclosan exposure to stream periphyton has 

an effect on microbial diversity. Results among the isolates sampled indicate that triclosan 

exposure leads to loss of diversity regardless of the water source of the periphyton community. 

However, to obtain stronger evidence that triclosan exposure resulted in a reduction in diversity 

or clarify specific community shifts, a larger number of isolates should be isolated and identified. 

Environmental changes in microbial habitats are known to affect community structures and 

diversity. Salination of industrial wastewater evaporation ponds led to increased microbial 

diversity (Ben-Dov et al. 2008). In detrital food-web experiments, increased fungicide 

concentrations led to decreased species richness (Gardeström et al. 2016) which is similar to 

results presented here with triclosan exposure. WW-associated river sediments have been 

shown to have decreased microbial diversity in downstream waters as well (Drury, Rosi-

Marshall, and Kelly 2013; Lu and Lu 2014). Though many factors are surely at play, it is likely that 

the presence of triclosan in the mix is one of the factors impacting microbial communities, and 

quite possibly through various mechanisms.  
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An increase in dominance of potentially pathogenic genera was observed in triclosan 

exposed periphyton bacteria. Measurements of P. aeruginosa have shown their presence in 

WW-associated river water, with higher levels in WW effluent and even higher levels in clinical 

WW (Schwartz et al. 2006). In dairy farm WW-associated river water, 5 common pathogens (E. 

coli, Enterococcus, S. aureus, Shigella, and Salmonella) were measured with decreasing levels 

downstream of the point pollution sources (Xi et al. 2015). In experimental anaerobic digesters 

containing triclosan, observed community shifts led toward clades containing commensal and 

pathogenic bacteria (Carey et al. 2016). It is possible that the presence of triclosan may enrich 

resistant organisms previously exposed to higher levels of triclosan or other antimicrobials used 

by humans. It would be interesting to see if Serratia enrichment in the exposed, WW-associated 

group would be observed in investigations using larger sample sizes. Although it is often present 

without causing problematic infections in individuals with competent immune systems, P. 

aeruginosa is known for its ability to resist a wide range of antimicrobials and can cause 

infection and conditions leading to mortality (Huhulescu et al. 2011; Micek et al. 2015). This 

species grows well under marginal conditions, in diverse environments including hot tubs 

(Crnich et al. 2003; Huhulescu et al. 2011; Yu et al. 2007), hand lotion (Becks and Lorenzoni 

1995), cosmetics (Lundov and Zachariae 2008) and has even been observed colonizing 

apparatuses in hospitals such as respiratory equipment (Jadhav et al. 2013). P. aeruginosa is 

difficult to eradicate in places that have become contaminated. In a study on contamination of 

respiratory equipment in hospitals, 24.6% (15/61) of samples revealed the presence of 

pseudomonads (Jadhav et al. 2013). The authors, sampling inner surfaces of oxygen humidifiers 

and chambers of nebulizers, found other fungal and bacterial contaminants, including 

Acinetobacter species in 16.3% (10/61) of samples. P. aeruginosa is one of the organisms that 
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commonly causes nosocomial pneumonia which is associated with increased healthcare cost 

and prolonged hospitalization as well as mortality (Micek et al. 2015). P. aeruginosa nosocomial 

pneumonia patients with MDRt strains showed higher hospital mortality rates compared to 

patients infected with non-MDRt strains (Micek et al. 2015). In  

another hospital study, Pseudomonas stutzeri was detected in air samples in the bedside 

environment for patients using nebulizers in ICUs in South Africa (Van Heerden et al. 2017).  

Much like P. aeruginosa, Serratia marcescens is a known nosocomial pathogen and is 

associated with mortality in immunocompromised patients (Hejazi et al.1997; Šiširak and Hukić 

2013). Serratia was once thought to be nonpathogenic, but now exists in many MDRt forms 

(Moradigaravand et al. 2016; Šiširak and Hukić 2013) and has contaminated triclosan-containing 

soap in a hospital setting (Barry et al. 1984). Some of the most at-risk patients of Serratia 

infections are those who have been treated with broad spectrum antimicrobials (Hejazi et al. 

1997). Among other medical and military experimentation, it was dispersed by the US Navy in 

1950 in San Francisco for monitoring as a biological warfare test agent (Mahlen 2011). 

MDR efflux pumps are a common tool utilized by microbes to resist antimicrobials 

(Strateva and Yordanov 2009). mexB encodes the transporter of the MexAB-OprM efflux pump 

(Sun et al. 2014), known to export triclosan and certain antibiotics. Overexpression of mexAB-

oprM can be prevalent in P. aeruginosa isolates resistant to carbapenems, ciprofloxacin, 

levofloxacin, and triclosan (Chuanchuen et al. 2001; Goli et al. 2016; Pan et al. 2016). In 

anaerobic digester reactors fed triclosan, relative abundance of mexB was increased compared 

to control digesters (Carey et al. 2016). In another study, 76% of MDRt isolates showed 

overexpression of mexB (Goli et al. 2016). Attempts were made to amplify mexB and other 

ARGs, and mexB amplified in one isolate only. In the current study, it is unclear why the 
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designed primers and touchdown methods failed to amplify the targeted ARGs aside from mexB, 

or why mexB did not amplify in any of the other tested isolates. Previous studies have shown 

successful detection of mexB in clinical isolates with qPCR (Yoneda et al. 2005). The mexB 

sequences in sampled environmental isolates may vary from those aligned during the primer 

design, rendering the designed primers inadequate to assess presence/absence or quantity of 

mexB in these environmental samples in most cases. One Pseudomonas spp. isolate (FSx-34) 

from North Double Creek revealed the presence of mexB. Some examples of species showing 

matches to this mexB segment are P. antarctica, P. brenneri, P. extremaustralis, P. fluorescens, 

P. mucidolens, P. orientalis, P. palleroniana, P. poae, P. trivialis, P. veronii and P. yamanorum 

(NCBI). Detection of a multidrug efflux pump gene in a forested-stream bacterial isolate calls for 

additional study. Initially, more stream bacterial isolates should be tested. More extensive 

troubleshooting of PCR methods should be conducted, as well as development of quantitative 

PCR methods utilizing the FSx-34 mexB product as a DNA standard for the calibration curve. 

It is possible that the small number of reference sequences (at the loci of the primers) 

used in each case did not happen to match well enough with sequences of environmental 

isolates chosen for initial testing; meaning, the designed primers were incompatible with 

sequences in isolates, even if genes were present. Of course, in some cases, the gene may not 

have been present and the lack of product is the correct result in those cases. 

In diverse environments and with a complex assortment of antimicrobials, microbial 

species and resistance mechanisms, there exists the potential for enrichment of certain tolerant 

species and possibly bacteria harboring ARGs. Such occurrences in stream environments as well 

as many other environmental and clinical settings can increase difficulty of treating infectious 

disease. Additional discussion on these topics is found in Chapter I and Chapter IV.
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CHAPTER IV 
 

AIM 3: MULTIDRUG RESISTANCE AND SUSCEPTIBILITY OF STREAM BACTERIAL ISOLATES 
TO TRICLOSAN AND SELECTED ANTIBIOTICS 

 
 
Abstract 
 

Development and transmission of multidrug-resistant (MDRt) pathogens is a major 

global health challenge. The potential for commonly used antimicrobials such as triclosan to 

increase levels of antimicrobial resistance and multidrug resistance (MDR) in environmental 

bacteria adds to this challenge. This study investigates antibiotic susceptibility profiles within 

two stream microbial communities and whether overall susceptibility is affected by exposure to 

10 μg/L triclosan. It was predicted that triclosan exposure can impact susceptibility, not only to 

triclosan, but also to other antibiotics. 

Wastewater-associated (WW-associated) and forested-stream microbial communities 

were hypothesized to have different overall susceptibility profiles. Susceptibility to triclosan and 

five antibiotics of different classes was assessed in isolates purified from these communities, 

with or without exposure to environmentally-relevant triclosan concentrations. Overall 

resistance and MDR was compared between triclosan-exposed and unexposed isolates and 

between WW-associated and forested-stream communities. Prior to experimental exposure to 

triclosan in microcosms, overall greater antimicrobial susceptibility was observed in the 

forested-stream community compared to the WW-associated community. Within the forested-

stream microbial community, there was more overall resistance in the triclosan-exposed isolates 

compared to unexposed isolates. A higher proportion of isolates with 10% or less inhibition to 2   
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or more of the high doses of antimicrobial agents was observed in the exposed group of 

forested isolates compared to that in the unexposed group, indicating possible impacts of the 

triclosan exposure leading to increased resistance to multiple agents. No such significant 

difference between triclosan-exposed and unexposed isolates was noted for the WW-

associated microbial community, where unexposed isolates showed high proportions of 

resistant isolates and MDR (3% or less inhibition to 3 or more agents). Triclosan is nearly 

ubiquitous in our surface waters and is an agent which has the potential to alter susceptibility 

patterns in stream environmental bacteria. Findings of the current study highlight the presence 

of MDRt bacteria in both a forested and WW-associated stream, with more MDR in the WW-

associated stream. Furthermore, some of the results draw links between environmentally-

relevant triclosan exposure and possible increased antibiotic resistance and MDR in a forested-

stream periphyton community. 

Introduction 
 
As a global community, we are confronted with numerous difficult to treat MDRt 

pathogens, which can negatively impact our livelihood and survival. MDRt bacteria have been 

increasing worldwide, and this trend is expected to continue. A contributing factor to this rising 

resistance is the over-utilization of broad spectrum antimicrobial agents such as triclosan, which 

bacteria often develop resistance to, sometimes in the process gaining co/cross resistance to 

additional antibiotics (Aiello et al. 2004; Braoudaki and Hilton 2004; Chuanchuen et al. 2001; 

Ciusa et al. 2012; Khan et al. 2016; McMurry et al. 1998; McMurry et al. 1999; Pi et al. 2017; 

Sanchez et al. 2005; Schmid and Kaplan 2004). Human practices can affect the development and 

transmission of bacteria and the resistance genes many of them carry. Each year, the global 

human community consumes roughly 70 billion standard units of antibiotics (Van Boeckel et al. 
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2014). Additionally, we use 63,151 ± 1560 tons/year for livest ock (Van Boeckel et al. 2015). It’s 

been predicted that those numbers will increase by 30% in humans and by 67% in other animals 

within 15 years (Gelbrand et al. 2015). In addition to antibiotics used in human and veterinary 

medicine and animal husbandry, there is widespread use of broad spectrum antimicrobials. 

Triclosan is often found listed under other names such as Irgasan or Microban and is in 

thousands of products from antibacterial soaps and other personal care products to medical 

products and a wide array of plastic and textile goods. Triclosan is known to bioaccumulate in 

organisms, such as algae, fish, dolphins, and terrestrial animals (Chalew and Halden 2009; 

Coogan et al. 2007; Coogan and LaPoint 2008; Fair et al. 2009; Higgins et al. 2011; Miyazaki et al. 

1984; Pannu et al. 2012; Tamura et al. 2013). Triclosan was the most commonly detected 

antimicrobial agent in a thorough investigation of surface waters and freshwater streams 

conducted by USGS (Kolpin et al. 2002). Samples tested from humans or from natural and 

engineered environments, typically contain detectable levels of triclosan (Bedoux et al. 2012; 

Benotti et al. 2009; Calafat et al. 2008; Gautam et al. 2014; Geer et al. 2017; Koeppe et al. 2013; 

Kolpin et al. 2002; Kumar et al. 2010; Mavri et al. 2012; Meeker et al. 2013; Miller et al. 2008; 

Pycke et al. 2014; Singer et al. 2002; Venkatesan et al. 2012; Weiss et al. 2015; Welsch and 

Gillock 2011; Xia et al. 2010; Ying and Kookana 2007). 

There is a growing body of evidence indicating that the presence of commonly used 

antimicrobials in streams and at wastewater treatment plants (WWTPs) is a contributing factor 

to globally rising MDR. There are numerous avenues for transport of triclosan and other 

antimicrobials, MDRt bacteria as well as antibiotic resistance genes (ARGs), into and around the 

environment where they can interact with various organisms including stream bacteria. MDRt 

bacteria and ARGs have been detected in diverse environments (Graham et al. 2011; Jahne et al. 
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2015; Magalhães et al. 2016; Middleton and Salierno 2013; Osinska et al. 2016; Sapkota et al. 

2006; Sayah et al. 2005; Schreiber and Kistermann 2013; Sjölund et al. 2008).  

Genetic elements can be passed between different types of bacteria and viability of cells 

is not required for these elements to persist in the environment (Chee-Sanford et al. 2009). 

Studies have shown development of triclosan resistance and associated co/cross-resistance to 

other antibiotics in clinical isolates (Aiello et al. 2004; Braoudaki and Hilton 2004; Chuanchuen et 

al. 2001; Karatzas et al. 2007; Khan et al. 2016; McMurry et al. 1998; Pi et al. 2017; Sanchez et 

al. 2005; Schmid and Kaplan 2004). Regulatory mutations have occurred with triclosan exposure 

resulting in upregulation of multidrug efflux pumps (Chuanchuen et al. 2001). A study in New 

Jersey found high proportions (up to 89%) of MDR in highly triclosan-resistant isolates from 

WW-associated streams (Middleton and Salierno 2013). There is evidence that triclosan in the 

environment can alter antimicrobial resistance in stream periphyton bacteria (Drury et al. 2013; 

Lawrence et al. 2009; Nietch et al. 2013). In lab-scale anaerobic digester microbial communities, 

exposure to triclosan resulted in increases in mexB, a gene providing triclosan resistance 

(McNamara et al. 2014). Some bacteria have developed a multitude of mechanisms to combat 

antimicrobials, in some cases there are clusters of ARGs co-localized and ready to help the 

organism withstand a multitude of antimicrobial agents (Khan et al. 2016). For example, one 

observed ARG cluster included genes encoding: a triclosan-resistant enoyl-acyl carrier protein 

reductase, two multidrug efflux pump family proteins, and an aminoglycoside modifying enzyme 

(Khan et al. 2016). Triclosan-derived proliferation of MDRt bacteria is a substantial threat to 

human and environmental health. 

There are certain environments that can act as bioreactors for antibiotic resistance, such 

as WWTPs where a vast number of microbes and contaminants come together regularly. In 
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many cases, high levels of resistance and prevalence of diverse ARGs at/near WWTPs has been 

observed (Graham et al. 2011; Magalhães et al. 2016; Middleton and Salierno 2013) and higher 

triclosan signatures are generally found at WWTPs (Coogan et al. 2007; Venkatesan et al. 2012; 

Ying and Kookana 2007). Through an antibiotic risk assessment approach which reviewed 

multiple studies on antimicrobial resistance and environmental levels of common antibiotics and 

antimicrobials, triclosan was deemed the antimicrobial of greatest concern (Scott et al. 2016). 

Based on the excessive risk associated with ratios of measured exposure concentrations (MEC) 

to concentrations not known to affect organisms (the No observed effect concentration or 

NOEC) (MEC/NOEC > 1), monitoring this CEC in future studies was strongly recommended (Scott 

et al. 2016). Considering constantly evolving bacterial strains and genetically acquired 

resistance, our increasing knowledge on rising MDR, and the ability for different types of 

bacteria to exchange genetic material, there are major concerns surrounding impacts of 

anthropogenic antimicrobial pollutants such as triclosan on susceptibilities in stream microbial 

communities. 

This study compares responses to triclosan exposure in microbial communities from two 

streams in the North Carolina Piedmont: one urban, WW-associated stream, North Buffalo 

Creek, and one non-urban, forested stream, North Double Creek. The forested-stream 

community was expected to be more sensitive to antibiotics than the WW-associated stream. 

This expectation led to the hypothesis that the microbial communities differ in their ambient 

level of antimicrobial resistance. Based on this hypothesis, it was predicted that there would be 

different responses to triclosan exposure from the WW-associated and forested-stream 

microbial communities. It was further predicted that more pronounced effects such as increased 

resistance would occur in the forested-stream community following triclosan exposure. 
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Triclosan resistance and MDR were hypothesized to be associated with triclosan exposure. 

Triclosan-resistant isolates were predicted to be more likely to show MDR. Susceptibility to 

triclosan and five antibiotics was assessed in isolates sampled from the two communities both 

before exposure and after microcosm exposure to 10 μg/L triclosan 

Methods  

 Study streams, collection sites and periphyton colonization of tiles in streams 

Stream and collection site locations and associated details, as well as methods for 

colonization of periphyton on stone tiles are described in detail in the methods section of Aim 1.  

 Exposure to triclosan in microcosms 

Laboratory microcosm experiments were conducted at the University of North Carolina 

at Greensboro in the Department of Biology and microcosm set up is described in detail in the 

Methods section of Chapter II. Unexposed (0 hr) isolates were collected for pure culture 

isolation prior to addition of triclosan to microcosms. Exposed isolates were collected from 

microcosms at varying timepoints after addition to triclosan to microcosms (2, 11, 33 hours; 1, 2, 

3, 4 weeks; with water replaced each week including a fresh addition of triclosan) and isolated in 

the manner described below. Analyses described in study results group isolates as unexposed or 

exposed to 10 μg/L ambient triclosan in microcosms and by periphyton source stream.  

 Bacterial strains and culture conditions 

Isolate purification, antibiotic susceptibility testing and microbiological analysis for 

isolate identification were conducted aseptically after growth on or in sterile, low-nutrient agar 

or broth. Random selection of stream bacterial isolates and culturing methods are described in 

detail in the methods section of Chapter III. For susceptibility tests, 2 ml liquid cultures in 50% 
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MH broth in sterile, glass test tubes were cultured overnight in a shaker incubator at 200 rpm at 

25°C. 

 Susceptibility tests 

Pure cultures of stream bacteria were used for susceptibility testing with 6 agents: 

triclosan, carbenicillin, chloramphenicol, trimethoprim, erythromycin, and ciprofloxacin. Two 

doses of each agent were tested, in each case the high dose was 8-fold the concentration of the 

low dose. Low doses for each agent are as follows: 0.125 μg/ml Triclosan, 0.25 μg/ml 

Carbenicillin, 0.5 μg/ml Chloramphenicol, 1 μg/ml Trimethoprim, 0.625 μg/ml Erythromycin, and 

0.125 μg/ml Ciprofloxacin. High doses for each agent are as follows: 1 μg/ml Triclosan, 2 μg/ml 

Carbenicillin, 4 μg/ml Chloramphenicol, 8 μg/ml Trimethoprim, 5 μg/ml Erythromycin, and 1 

μg/ml Ciprofloxacin. Doses were chosen based on published Epidemiologic Cutoff (ECOFF) 

values (EUCAST 2016), with the aim of selecting doses that were near published minimum 

inhibitory concentration (MIC) values and at intermediate levels that would inhibit some isolates 

and be tolerated by others. Clinical Laboratory Standards Institute methods (Wikler et al. 2009) 

were used as guidance and modified as follows. Broth microdilution tests for susceptibility to 

antimicrobial agents were performed using 50% MH broth. Overnight cultures were diluted with 

sterile 50% MH broth to OD600 ≈0.257 to mimic a number 1 McFarland standard (approximately 

3 x 108 CFU/ml). Isolate cultures were diluted to the range of 0.274 > OD600 > 0.240 immediately 

before the start of the susceptibility assay.  

Broth microdilution assays for susceptibility were conducted by preparing solutions in 

96-well plates with a final well volume of 250 μL, 2% DMSO in 50% MH broth, and antimicrobial 

agent at the dose being tested. Antimicrobial solutions were added to 96-well plates in triplicate 

and at two concentrations for each antimicrobial agent tested. Vehicle only (2% DMSO in sterile 
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50% MH broth) was the negative control, and DMSO content was fixed at 2% in all wells. In a 

given culture well, 50 μL of a 24-hr 2 ml liquid culture of a single colony isolate (adjusted to 

OD600 ≈0.257 as described above) was added to the plate and grown at 25°C at 200 rpm for 

approximately 18 hours. Turbidity at 600nm (OD600) was measured with a BioTek SynergyH1 

microplate reader. To correct for background due to absorbance of the antimicrobial agent, the 

mean OD600 for each treatment without addition of bacteria (broth, antimicrobial agent at the 

given concentration, 2% DMSO) was subtracted from the mean OD600 of treated wells. This 

calculates the difference in absorbance due to the bacterial growth in presence of agent (Δ 

Agent). Turbidity of vehicle only wells (broth, 2% DMSO) was subtracted from that of wells 

containing bacterial culture and DMSO only to get absorbance of bacterial growth without agent 

(Δ Vehicle). The final calculation for % inhibition is [(Δ Vehicle - Δ Agent) / Δ Vehicle]*100. 

Any isolate response showing more growth in wells containing an antimicrobial agent as 

compared to the vehicle-only liquid culture wells had their % inhibition values set to 0% 

inhibition. Any calculations that came out greater than 100 were set to 100% inhibition. % 

inhibition reported for each isolate in the study is the average of 3 wells and calculated as the 

percentage of growth prevented by the tested dose of antimicrobial agent.  

 Statistical analysis 

 There was not a significant trend associated with exposure time that would suggest 

increased effects on susceptibility over longer exposures in the course of this study. Therefore, 

analyses described in study results group isolates as unexposed or exposed to 10 μg/L ambient 

triclosan in microcosms and by periphyton source stream.  

Mean percent inhibition in the four treatment groups was compared via 2-way ANOVA 

for each dose of each agent. The four treatment groups are: Unexposed Forested, Exposed 
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Forested, Unexposed WW-associated, and Exposed WW-associated. There were six agents each 

with two doses tested, so there are twelve 2-way ANOVAs run in total. 2-way ANOVAs and all t-

tests were conducted utilizing statistical calculators (Lowry 2018). Results of t-tests comparing 

mean % inhibition were reported in cases where the 2-way ANOVA comparison showed no 

significant stream or exposure effects but the t-test for independent samples conducted 

comparing unexposed/exposed groups within one stream were significant. Paired t-tests were 

conducted comparing all isolate responses to the high dose of a particular agent to responses to 

the low dose of that agent. To compare proportions of isolates completely resistant to the given 

dose, isolates with low susceptibility to two or more agents, and MDRt isolates, a Z Score 

Calculator for 2 Population Proportions was conducted using the Social Science Statistics 

calculator (Stangroom 2018). 

Results 

Susceptibility profiles of all 144 isolates revealed that the assortment of isolates 

sampled and tested for susceptibilities to six antimicrobial agents have varying responses to 

these agents. In many cases isolates were tolerant to more than one of the agents tested. Two 

thirds of the isolates resistant to triclosan (0-3% inhibition by 1 μg/ml) were also resistant to   

one or more of the other agents tested (Fig. 8). Identification of isolates revealed that a 

substantial number of pseudomonads were sampled (Table 4). Though these also showed 

variable susceptibility profiles, many were resistant to multiple antimicrobial agents. 

 Comparisons of mean % inhibition of treatment groups by each agent 
 
Comparisons were made using 2-way ANOVAs comparing mean % inhibition in the four 

treatment groups (unexposed/exposed forested/WW-associated) by each dose of each agent.
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Figure 8. Percent Inhibition Profiles of Triclosan-resistant Isolates. Each set of 6 bars extending into 
the z-axis represents a susceptibility profile of a single isolate. The susceptibility profiles in this graph 
show the isolates’ % inhibition responses to the high doses of each of the 6 antimicrobial agents 
(triclosan and 5 antibiotics). Only isolates in the study which showed less than or equal to 3 percent 
inhibition by 1 μg/ml triclosan are shown. 

 
 

 
Figure 9. Mean Percent Inhibition by Triclosan. Figure shows mean % inhibition of each treatment 
group: unexposed (U) or triclosan-exposed (E) isolates from North Double Creek (Forested U: n=25; 
E: n=49) or North Buffalo Creek (WW-associated U: n=24; E: n=46). NS indicates no significant 
difference between means in these groups, while * indicates a significant difference and the p-value 
from 2-way ANOVA analysis is shown. 
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In susceptibility assays with 0.125 μg/ml triclosan, forested isolates were more susceptible 

overall compared to WW-associated isolates (p=0.0359), regardless of exposure (p=1; Fig. 9A). 

This was not the case with the higher dose of triclosan (1 μg/ml), in which there was no overall 

difference in susceptibility between streams (p=0.8627) or exposure status (p=0.8877; Fig. 9B).  

There were no highly susceptible isolates (>50% inhibition) to 0.25 μg/ml carbenicillin in 

the WW-associated exposed group, and overall, there was no significant effect of stream 

(p=0.4399) or exposure (p=0.1495) in tests with this lower dose of carbenicillin (Fig. 10A). 

Susceptibility tests with 2 μg/ml carbenicillin showed significantly lower mean % inhibition in 

forested isolate groups compared to WW-associated groups (p=0.0232) but no effect of the 

microcosm exposure was noted (p=0.5666) (Fig. 10B). 

Analyzing responses to chloramphenicol using 2-way ANOVA, there were not significant 

differences between streams (0.5 µg/ml chloramphenicol p=0.6398 Fig. 11A, 4 µg/ml p=0.6109 

Fig. 11B) or exposure groups (0.5 µg/ml chloramphenicol p=0.1918, 4 µg/ml p=0.3553). 

However, t-tests on only the forested isolate groups show higher % inhibition in the unexposed 

group compared to the exposed group (0.5 µg/ml chloramphenicol p=0.036, 4 µg/ml p=0.019) 

indicative of higher resistance to chloramphenicol in the group that was exposed to triclosan in 

microcosms. 

A similar trend was also noted in the forested isolate responses to trimethoprim, with 

the unexposed group showing significantly less resistance compared to the triclosan-exposed 

forested isolates when analyzed alone in a t-test (1 µg/ml Trimethoprim p=0.004 Fig. 12A, 8 

µg/ml Trimethoprim p=0.025 Fig. 12B). 
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Figure 10. Mean Percent Inhibition by Carbenicillin. Figure shows mean % inhibition of each 
treatment group: unexposed (U) or triclosan-exposed (E) isolates from North Double Creek (Forested 
U: n=25; E: n=49) or North Buffalo Creek (WW-associated U: n=24; E: n=46). NS indicates no 
significant difference between means in these groups, while * indicates a significant difference and 
the p-value from 2-way ANOVA analysis is shown. 
 
 

 
 
Figure 11. Mean Percent Inhibition by Chloramphenicol. Figure shows mean % inhibition of each 
treatment group: unexposed (U) or triclosan-exposed (E) isolates from North Double Creek (Forested 
U: n=25; E: n=49) or North Buffalo Creek (WW-associated U: n=24; E: n=46). NS indicates no 
significant difference between means in these groups. The given p-values refer to differences in 
unexposed forested isolates compared to exposed forested isolates via a t-test analysis. 
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When all four treatment groups are analyzed with 2-way ANOVA, no significant stream (1 µg/ml 

p=0.6898 Fig. 12A; 8 µg/ml p=0.1412 Fig. 12B) or exposure (1 µg/ml p=0.2094; 8 µg/ml p=0.1544 

Fig. 12B) effects with these doses of trimethoprim were observed. However, there was a 

significant interaction effect with the lower dose (1 µg/ml Trimethoprim: Stream x Exposed 

p=0.015 Fig. 12A). The interaction effect occurred because the forested isolate mean % 

inhibition was lower in the exposed group but WW-associated isolate mean % inhibition was 

lower in the unexposed group.  

 

Figure 12. Mean Percent Inhibition by Trimethoprim. Figure shows mean % inhibition of each 
treatment group: unexposed (U) or triclosan-exposed (E) isolates from North Double Creek (Forested 
U: n=25; E: n=49) or North Buffalo Creek (WW-associated U: n=24; E: n=46). NS indicates no 
significant difference between means in these groups. The given p-values refer to differences in 
unexposed forested isolates compared to exposed forested isolates via a t-test analysis. 
 
 

Isolate responses to 0.625 µg/ml Erythromycin showed higher mean % inhibition in the 

exposed forested isolates when comparing to unexposed forested isolates in a t-test (p=0.0134 

Fig. 13A) but this trend was not repeated with the higher dose (p=0.225 Fig. 13B). There was no 

exposure effect in the WW-associated isolate groups. In comparisons between all treatment 
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groups via 2-way ANOVA, mean % inhibition differences were not statistically significant. 

Isolates from the WW-associated stream showed a trend toward higher mean % inhibition by 

0.625 µg/ml Erythromycin compared to forested-stream isolates but it was not statistically 

significant (0.1 > p >0.05) (p=0.0505) and this trend was not repeated with the higher dose (5 

µg/ml p=0.1737). 2-way ANOVA analysis did not uncover any exposure effects (0.625 µg/ml 

p=0.8877, 5 µg/ml p=0.093). 

 

 
Figure 13. Mean Percent Inhibition by Erythromycin. Figure shows mean % inhibition of each 
treatment group: unexposed (U) or triclosan-exposed (E) isolates from North Double Creek (Forested 
U: n=25; E: n=49) or North Buffalo Creek (WW-associated U: n=24; E: n=46). NS indicates no 
significant difference between means in these groups. The given p-value refers to the difference in 
unexposed forested isolates compared to exposed forested isolates via a t-test analysis. 
 
 

Ciprofloxacin doses used in this study more effectively inhibited isolates than doses of 

the other five agents. Tests with both doses of ciprofloxacin showed a significant exposure 

effect with higher mean % inhibition in the triclosan exposed groups triclosan (0.125 µg/ml 

Ciprofloxacin p=0.0395 Fig. 14A, 1 µg/ml Ciprofloxacin p=0.0056 Fig. 14B) suggesting that if the 

triclosan exposure affects susceptibility to ciprofloxacin, it does so in a counter-intuitive way, 

showing more ciprofloxacin susceptibility after exposure to triclosan. There were no significant 
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differences in ciprofloxacin susceptibility between the two streams (0.125 µg/ml Ciprofloxacin 

p=0.0702 Fig. 14A, 1 µg/ml Ciprofloxacin p=0.4851 Fig. 14B). 

In paired t-tests, isolate responses to the high versus low dose of each antimicrobial 

agent were compared and generally, higher doses of agents were more effective at inhibiting 

growth than lower doses (triclosan p=0.008, carbenicillin p=0.057, chloramphenicol p<0.0001, 

trimethoprim p=0.022, erythromycin p=0.052, ciprofloxacin p=0.005). 

 

Figure 14. Mean Percent Inhibition by Ciprofloxacin. Figure shows mean % inhibition of each 
treatment group: unexposed (U) or triclosan-exposed (E) isolates from North Double Creek (Forested 
U: n=25; E: n=49) or North Buffalo Creek (WW-associated U: n=24; E: n=46). * indicates a significant 
difference and p-values from 2-way ANOVA are shown, here comparing unexposed vs exposed 
isolates (regardless of source stream). 
 
 
 Exposure effects on antibiotic resistance for each dose and stream  

Proportions of isolates that showed more or equal growth in the presence of an 

antimicrobial agent (0% inhibition, thus isolates completely resistant to the given dose) within 

each treatment group were compared to one another. Comparisons between these proportions 

showed several noted differences between treatment groups based on exposure status or 



 

74 
 

stream source. The group of unexposed WW-associated isolates had a higher proportion (45.8% 

Fig. 15A) of isolates completely resistant to 0.125 μg/ml triclosan than exposed WW-associated 

group (17.4% p=0.011 Fig. 15A) and a similar pattern was also apparent in these isolates' 

responses to 1 μg/ml triclosan (unexposed: 16.7%; exposed 2.2%; Fig. 15A). The group of 

exposed WW-associated isolates had a lower proportion (2.2%) of completely resistant isolates 

to 1 μg/ml triclosan compared to exposed forested isolate group (16.3% p=0.019 Fig. 15A). The 

proportion of isolates able to grow as well or better with 1 μg/ml triclosan in susceptibility tests 

significantly differed between unexposed and exposed treatment groups in each stream 

(p=0.032 Forested, p=0.026 WW Fig. 15A). There were no unexposed forested isolates that 

showed complete resistance to the 1 μg/ml dose of triclosan, while in the exposed forested 

group, 16.3% of the isolates were completely resistant to this dose. Comparing proportions of 

completely resistant isolates between unexposed and exposed forested isolates with other 

agents did not reveal significant differences (Fig. 15B-F). WW-associated, unexposed isolates 

showed a trend toward high proportions of completely resistant isolates in all tests. These 

differences were significantly higher compared to the exposed WW-associated group in 

susceptibility tests with triclosan (Fig. 15A), 0.25 μg/ml carbenicillin (p=0.049 Fig. 15B) and 0.5 

μg/ml chloramphenicol (p=0.003 Fig. 15C). Comparisons of proportions of 0% inhibited 

unexposed isolates sourced from the forested versus WW-associated stream show that among 

cultured, unexposed isolates, the WW-associated community showed higher proportions of 

completely resistant (0% inhibition) isolates than the forested community in susceptibility assays 

with triclosan (0.125 p=0.023, and 1 μg/ml p=0.033 Fig. 15A) and with 0.25 μg/ml carbenicillin 

(p=0.047 Fig. 15B) and 0.5 μg/ml chloramphenicol (p=0.008 Fig. 15C) and did not appear to be 

significantly different with other doses/agents (Fig. 15B-F). 
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Figure 15. Percent of Isolates with 0% Inhibition. Figure shows % of isolates within each treatment 
group showing 0% inhibition to the given dose of agent. In each graph, white bars show unexposed 
forested isolates, black bars show exposed forested isolates, lighter patterned bars show unexposed 
WW-associated isolates, and darker patterned bars show exposed WW-associated isolates. Differing 
letters (a/A or b/B) above bars within the graph for a given dose of agent indicate significant 
differences between those groups’ proportions (from z-test) with 2-tailed p-values shown. A brace 
pointing to a p-value is showing the comparison between the two groups below the two ends of the 
brace (not including the group in between). 
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 Multidrug resistance (MDR)   

Of all stream bacterial isolates in this study, 33.3% had low susceptibility (0-10% 

inhibition) to 2 or more of the higher doses and 58.3% exhibited 10% or less inhibition by 2 or 

more of the lower doses of antimicrobial agents. There were no significant differences between 

proportions of isolates in each treatment group showing low susceptibility to 2 or more of the 

low doses of antimicrobial agents (Fig. 16A). In response to the higher doses of agents, the 

exposed group of forested isolates exhibited a higher proportion (38.8%) of isolates with low 

susceptibility (0-10% inhibition) to 2 or more antimicrobial agents compared to that in the 

unexposed group (16%) (p=0.0455) (Fig. 16B) but there were no differences in susceptibility to 2 

or more of the higher doses of agents due to triclosan exposure in the WW-associated isolates 

(p=0.7642).  

 

 
Figure 16. Percent of Isolates with Low Susceptibility to 2 or More Agents. Figure shows % of isolates 
within each treatment group exhibiting 0-10% inhibition by 2 or more of the given doses of 
antimicrobial agents. Bars represent treatment groups which were unexposed (U) or triclosan-
exposed (E) isolates from North Double Creek (Forested) or North Buffalo Creek (WW-associated). 
Results from susceptibility assays with all low-dose agents are shown in the graph on the left (A), 
while results from high dose susceptibility assays are shown in the graph on the right (B). 
Comparisons of proportions were made through z-tests. Differing letters (A or B) above bars indicate 
significant differences between those groups’ proportions, with the 2-tailed p-value shown.  
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Comparing proportions of MDRt isolates showing 3% or less inhibition to 3 or more of 

the 6 agents, the unexposed WW-associated isolate group showed the highest proportions 

(29.2% with low doses Fig. 17A; 20.8% with high doses Fig. 17B) of MDRt isolates. These 

proportions differed from the proportions in the exposed WW-associated group (8.7% MDRt to 

low doses p=0.026 Fig. 17A; 4.4% MDRt to high doses p=0.029 Fig. 17B). The difference in 

proportions of MDRt isolates between unexposed isolates from the forested stream (0%) and 

WW-associated stream (20.8%) was more pronounced with high doses of antimicrobial agents 

(p=0.016) than with the low dose responses, where this difference was nearly significant (8.0%  

in forested versus 29.2% in WW-associated, p=0.05146).    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17. Percent of Isolates with Multidrug Resistance. Figure shows % of isolates in each 
treatment group showing 0-3% inhibition by 3 or more of the given doses of antimicrobial agents. 
Isolates were either unexposed (U) or triclosan-exposed (E) and from North Double Creek (Forested) 
or North Buffalo Creek (WW-associated). MDR results from susceptibility assays with all low-dose 
agents are shown in the graph on the left (A), while results from high-dose susceptibility assays are 
shown in the graph on the right (B). Comparisons of proportions were made through z-tests, each 
comparing only two groups. Differing letters (a/A or b/B) above bars indicate significant differences 
between those 2 groups’ proportions, with the 2-tailed p-value shown. 
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 Summary of results 
 
In the sampled WW-associated microbial community, unexposed isolates showed as 

many or more instances of resistance and MDR compared to exposed isolates (Fig. 11, Fig. 12, 

Fig. 16B, Fig. 17B). While in the microbial community sampled from the forested-stream, there 

were more pronounced differences in antibiotic susceptibility with more instances of higher 

resistance and MDRt isolates in the group of isolates collected from triclosan exposure 

microcosms revealing possible decreased susceptibility due to the triclosan exposure (Fig. 11, 

Fig. 12, Fig. 16B, Fig. 17B). Within the groups of isolates collected from the two streams that had 

no microcosm exposure to triclosan, high-dose MDRt isolates (3% or less inhibition by high doses 

of 3 or more agents in this study) were collected from the WW-associated stream but not from 

the forested stream (Fig. 17B). There were low-dose MDRt isolates collected from both streams 

(Fig. 17A). Susceptibility profiles (Figs. 18-27) and associated data tables for all isolates’ % 

inhibition by the six agents tested are shown (Tables 9A-9D), as well as descriptive statistics and 

summaries of percent inhibition comparisons by ANOVA (Tables 10A-10L).  
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Figure 18. Susceptibility Profiles of Pseudomonads in Response to Low Doses of Agents.  
Figure shows percent inhibition profiles of isolates identified to belong to the genus Pseudomonas. Each set of 6 bars extending into the 
z-axis represents a susceptibility profile of a single isolate. The susceptibility profiles shown here illustrate the isolates’ % inhibition 
responses to the lower doses of each of the 6 antimicrobial agents (triclosan and 5 antibiotics).
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Figure 19. Susceptibility Profiles of Pseudomonads in Response to High Doses of Agents 
Figure shows percent inhibition profiles of isolates identified to belong to the genus Pseudomonas. Each set of 6 bars extending into the 
z-axis represents a susceptibility profile of a single isolate. The susceptibility profiles shown here illustrate the isolates’ % inhibition 
responses to the high doses of each of the 6 antimicrobial agents (triclosan and 5 antibiotics).
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 Figure 20. % Inhibition of Unexposed Forested Isolates by Low Doses of Agents 

Figure shows percent inhibition profiles of all forested-stream, unexposed isolates in the study (n=25). Each set of 6 bars extending into 
the z-axis represents a susceptibility profile of a single isolate. The susceptibility profiles in this graph show the isolates’ % inhibition 
responses to the low doses of each of the 6 antimicrobial agents (triclosan and 5 antibiotics). 
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 Figure 21. % Inhibition of Exposed Forested Isolates by Low Doses of Agents 

Figure shows percent inhibition profiles of all forested-stream, triclosan-exposed isolates in the study (n=49). Each set of 6 bars extending 
into the z-axis represents a susceptibility profile of a single isolate. The susceptibility profiles in this graph show the isolates’ % inhibition 
responses to the low doses of each of the 6 antimicrobial agents (triclosan and 5 antibiotics). 
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 Figure 22. % Inhibition of Unexposed WW-associated Isolates by Low Doses of Agents 

Figure shows percent inhibition profiles of all WW-associated, unexposed isolates in the study (n=24). Each set of 6 bars extending into 
the z-axis represents a susceptibility profile of a single isolate. The susceptibility profiles in this graph show the isolates’ % inhibition 
responses to the low doses of each of the 6 antimicrobial agents (triclosan and 5 antibiotics).  
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 Figure 23. % Inhibition of Exposed WW-associated Isolates by Low Doses of Agents 

Figure shows percent inhibition profiles of all WW-associated, triclosan-exposed isolates in the study (n=46). Each set of 6 bars extending 
into the z-axis represents a susceptibility profile of a single isolate. The susceptibility profiles in this graph show the isolates’ % inhibition 
responses to the low doses of each of the 6 antimicrobial agents (triclosan and 5 antibiotics). 
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Figure 24. % Inhibition of Unexposed Forested Isolates by High Doses of Agents 
Figure shows percent inhibition profiles of all forested-stream, unexposed isolates in the study (n=25). Each set of 6 bars extending into 
the z-axis represents a susceptibility profile of a single isolate. The susceptibility profiles in this graph show the isolates’ % inhibition 
responses to the high doses of each of the 6 antimicrobial agents (triclosan and 5 antibiotics). 
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Figure 25. % Inhibition of Exposed Forested Isolates by High Doses of Agents 
Figure shows percent inhibition profiles of all forested-stream, triclosan-exposed isolates in the study (n=49). Each set of 6 bars extending 
into the z-axis represents a susceptibility profile of a single isolate. The susceptibility profiles in this graph show the isolates’ % inhibition 
responses to the high doses of each of the 6 antimicrobial agents (triclosan and 5 antibiotics).  
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Figure 26. % Inhibition of Unexposed WW-associated Isolates by High Doses of Agents 
Figure shows percent inhibition profiles of all WW-associated, unexposed isolates in the study (n=24). Each set of 6 bars extending into 
the z-axis represents a susceptibility profile of a single isolate. The susceptibility profiles in this graph show the isolates’ % inhibition 
responses to the high doses of each of the 6 antimicrobial agents (triclosan and 5 antibiotics). 
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Figure 27. Susceptibility Profiles of Exposed WW-associated Isolates in Response to High Doses of Agents 
Figure shows percent inhibition profiles of all WW-associated, triclosan-exposed isolates in the study (n=46). Each set of 6 bars extending 
into the z-axis represents a susceptibility profile of a single isolate. The susceptibility profiles in this graph show the isolates’ % inhibition 
responses to the high doses of each of the 6 antimicrobial agents (triclosan and 5 antibiotics). 
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 Tables 9A-9D. % inhibition data for all isolates 
 
 

Table 9A. % Inhibition of Unexposed Forested Isolates by 6 Antimicrobial Agents 
Columns headed with dose concentration show the mean % inhibition of that isolate (row) by that dose of agent (column) as calculated 
from 3 replicate wells. SE shows the standard error. 
 
 

 

 

 

 

 

 

 

 
 
 

Isolate
0.125 
μg/mL SE

1 
μg/mL SE

0.25 
μg/mL SE

2
μg/mL SE

0.5 
μg/mL SE

4
μg/mL SE

1
μg/mL SE

8
μg/mL SE

0.625 
μg/mL SE

5
 μg/mL SE

0.125 
μg/mL SE

1 
μg/mL SE

FSun-1 100.0 0.3 100.0 0.1 8.0 0.4 0.0 2.6 25.7 3.2 99.1 0.2 58.9 0.6 99.8 0.0 11.2 2.1 13.7 3.8 100.0 0.1 100.0 0.0
FSun-2 26.5 3.0 99.5 0.1 12.3 1.9 6.4 1.0 9.9 5.3 23.9 2.5 11.0 5.1 19.1 4.0 16.3 3.2 19.5 2.3 100.0 0.0 100.0 0.0
FSun-3 100.0 2.9 95.7 1.4 3.8 4.3 26.1 15.2 53.8 14.7 98.4 1.9 60.3 8.2 39.1 5.2 7.6 5.6 76.1 13.2 70.7 16.0 91.8 0.5
FSun-4 99.8 0.1 100.0 0.1 4.1 3.8 15.8 1.7 82.5 1.3 99.8 0.1 19.3 3.4 4.2 2.3 15.2 3.3 78.0 1.4 98.8 0.4 100.0 0.0
FSun-5 0.0 3.6 11.6 6.8 0.0 3.4 0.0 19.9 0.0 8.8 74.0 3.8 96.7 0.7 100.0 0.1 7.0 5.0 57.3 2.9 82.6 4.9 98.1 0.5
FSun-6 96.8 1.6 100.0 0.2 0.0 1.3 0.0 4.4 13.6 4.3 88.9 0.8 0.0 6.8 20.1 10.4 32.8 1.4 97.5 0.2 16.9 6.5 100.0 0.0
FSun-7 99.0 0.7 100.0 0.2 0.0 3.0 0.0 0.0 28.7 5.2 90.6 0.2 0.0 7.6 29.0 10.4 42.6 1.8 98.3 0.0 27.5 4.7 100.0 0.2
FSun-8 8.8 2.8 3.2 3.9 1.0 1.7 0.0 2.4 8.3 4.9 22.0 2.2 0.0 5.5 0.0 2.8 19.0 3.4 21.4 4.3 99.2 0.1 100.0 0.0
FSun-9 98.5 0.2 99.4 0.0 91.2 1.3 99.8 0.1 35.6 1.6 74.9 2.3 99.6 0.0 99.5 0.1 22.3 3.0 21.4 0.9 94.2 0.4 100.0 0.0
FSun-10 0.0 0.4 14.4 3.1 0.0 8.6 2.7 4.2 22.9 0.8 76.5 1.4 92.9 0.4 98.4 0.2 0.0 1.0 9.6 9.3 89.9 0.6 98.8 0.1
FSun-11 36.9 2.0 97.4 0.5 98.9 0.9 100.0 0.1 13.5 1.2 94.5 1.8 99.5 0.2 98.2 0.1 20.0 2.8 15.7 5.7 99.3 0.3 100.0 0.2
FSun-12 0.0 7.4 2.1 9.5 9.6 12.9 38.7 6.2 18.7 0.3 79.9 2.9 96.6 1.3 98.8 0.8 4.8 4.5 33.9 10.4 85.0 4.4 98.9 0.3
FSun-13 21.5 3.9 18.1 1.0 18.4 3.5 14.2 1.6 23.9 5.3 48.7 3.6 38.6 2.8 63.9 4.2 4.3 0.6 14.6 1.0 35.1 2.7 97.5 0.9
FSun-14 18.3 2.4 14.9 2.3 15.2 4.0 13.6 2.0 16.7 0.7 32.9 2.1 38.2 0.5 71.2 1.0 3.8 0.3 22.1 0.4 43.6 2.0 98.3 0.4
FSun-15 5.5 0.5 22.4 4.0 11.8 3.1 8.4 0.6 9.4 2.6 24.4 2.3 2.9 1.3 6.0 0.3 2.0 0.7 7.4 0.3 83.4 0.7 99.0 0.2
FSun-16 16.2 1.8 61.2 2.6 91.8 3.8 80.4 10.8 92.8 0.9 99.5 0.4 48.2 2.2 99.6 0.1 27.2 3.7 82.3 4.2 2.8 4.6 17.2 2.3
FSun-17 3.2 0.8 25.7 0.4 7.5 4.7 4.3 3.1 4.8 0.9 19.4 2.6 0.0 2.2 0.0 2.3 0.0 0.8 0.0 0.4 67.4 1.3 95.6 0.4
FSun-18 10.4 2.4 16.9 0.6 8.3 0.2 5.9 0.7 16.9 1.8 26.1 0.4 13.4 0.5 12.7 0.3 8.0 2.5 13.8 0.7 100.0 0.0 100.0 0.0
FSun-19 0.0 6.2 5.0 3.0 11.5 3.7 17.0 3.6 99.8 0.1 99.5 0.0 100.0 0.0 99.3 0.6 8.4 1.4 33.0 1.4 99.9 0.0 100.0 0.0
FSun-20 11.4 2.8 28.7 1.0 15.9 2.3 15.3 0.5 25.9 1.1 81.1 0.1 99.9 0.1 99.9 0.1 11.2 0.3 18.0 0.8 100.0 0.0 100.0 0.0
FSun-21 6.0 1.4 83.9 2.2 1.6 1.6 68.0 2.8 78.9 1.9 98.3 0.1 70.1 6.4 95.5 3.6 37.8 3.2 99.3 0.2 11.5 5.2 60.8 2.7
FSun-22 1.3 1.8 9.1 1.6 22.4 1.9 15.0 6.1 99.5 0.1 99.9 0.0 97.4 2.1 100.0 0.1 3.5 3.4 16.1 0.6 100.0 0.0 99.9 0.1
FSun-23 7.3 2.9 23.6 1.7 14.6 0.5 13.2 1.2 13.5 1.0 26.6 0.8 11.0 0.3 12.2 2.6 8.1 0.4 10.0 0.5 79.1 0.5 94.6 0.5
FSun-24 8.6 2.1 29.5 1.2 22.7 3.0 20.2 1.7 31.1 1.8 97.2 0.4 98.6 0.3 85.8 10.7 10.6 1.1 20.3 0.3 99.9 0.1 99.9 0.0
FSun-25 11.6 0.2 28.9 2.2 17.0 1.5 17.2 0.5 22.5 0.5 88.2 0.4 99.6 0.1 99.9 0.1 9.4 0.8 14.4 2.1 99.8 0.1 100.0 0.0

Triclosan Carbenicillin Chloramphenicol Trimethoprim Erythromycin Ciprofloxacin



 

 
 

90

Table 9B. % Inhibition of Triclosan-Exposed Forested Isolates by 6 Antimicrobial Agents 
Columns headed with dose concentration show the mean % inhibition of that isolate (row) by that dose of agent (column) as calculated 
from 3 replicate wells. SE shows the standard error. The table is continued on the next page. 
 
  

Isolate
0.125 
μg/mL SE

1 
μg/mL SE

0.25 
μg/mL SE

2
μg/mL SE

0.5 
μg/mL SE

4
μg/mL SE

1
μg/mL SE

8
μg/mL SE

0.625 
μg/mL SE

5
 μg/mL SE

0.125 
μg/mL SE

1 
μg/mL SE

FSx-1 0.0 3.6 0.0 2.6 0.0 1.4 0.0 2.1 0.0 1.4 19.3 1.3 0.0 1.3 2.3 2.1 97.4 1.2 0.0 2.4 100.0 0.0 100.0 0.1
FSx-2 1.3 1.9 0.0 0.9 1.9 2.3 0.0 3.3 4.6 1.4 19.9 2.5 1.2 1.8 6.6 3.2 83.4 9.6 1.9 1.8 99.9 0.0 100.0 0.1
FSx-3 10.8 1.9 8.5 1.2 6.1 2.0 6.8 0.8 16.0 3.7 30.2 1.2 8.3 0.7 8.8 0.3 49.7 9.6 4.6 2.9 100.0 0.0 100.0 0.1
FSx-4 23.0 4.4 22.5 2.9 16.0 2.4 16.5 0.1 21.4 1.1 38.5 3.1 21.9 2.0 23.4 0.8 41.1 6.0 14.2 2.5 99.9 0.0 100.0 0.0
FSx-5 0.0 1.1 0.0 0.3 0.0 0.8 0.0 1.1 4.4 0.9 18.3 1.1 1.4 1.1 2.4 0.3 26.8 3.1 3.5 0.9 99.9 0.0 100.0 0.1
FSx-6 0.0 1.4 0.0 2.8 0.0 0.6 0.0 0.9 2.0 1.0 11.9 1.1 0.0 1.2 1.1 1.6 19.1 1.3 4.8 1.1 99.9 0.0 100.0 0.0
FSx-7 0.0 1.7 0.0 1.5 0.0 1.3 0.0 0.5 0.0 0.5 6.6 0.5 100.0 0.1 66.1 33.9 5.6 0.8 3.7 1.3 99.9 0.1 99.9 0.2
FSx-8 29.4 13.1 99.9 0.1 16.8 2.1 34.9 2.3 15.9 3.2 36.9 1.9 22.1 0.6 35.4 3.7 20.0 4.0 26.6 1.5 99.8 0.1 100.0 0.0
FSx-9 80.0 0.7 94.6 0.2 8.8 0.3 53.0 0.8 35.4 2.5 76.6 0.8 33.5 1.2 97.6 0.2 21.2 2.4 62.5 1.1 99.7 0.0 100.0 0.0
FSx-10 28.2 14.3 100.0 0.0 14.6 3.9 31.0 0.3 13.0 2.4 29.9 3.8 15.7 0.8 28.8 2.1 16.7 4.6 17.5 0.1 100.0 0.0 100.0 0.0
FSx-11 57.2 20.1 93.9 0.2 14.1 3.9 57.2 0.5 20.5 4.0 72.8 1.4 28.1 5.5 71.1 1.2 21.0 7.7 45.3 1.1 69.7 2.5 99.9 0.0
FSx-12 27.1 26.2 37.6 2.7 0.0 2.1 70.2 2.8 6.1 3.9 74.8 3.3 93.3 0.1 99.6 0.1 0.0 1.9 35.7 7.1 33.8 3.4 99.9 0.1
FSx-13 30.2 25.2 37.3 4.7 1.4 1.3 78.2 2.9 17.1 0.6 73.2 2.3 93.5 0.4 99.4 0.1 2.1 2.4 33.8 5.8 48.4 4.3 99.8 0.0
FSx-14 36.5 26.4 37.2 4.2 16.7 0.5 50.7 1.0 26.0 2.3 83.7 2.4 96.0 0.1 99.9 0.0 10.9 3.6 33.4 1.3 79.7 1.2 99.9 0.0
FSx-15 27.9 0.9 33.9 3.0 47.2 1.5 59.6 0.5 37.0 1.2 39.0 1.7 43.9 1.9 85.8 1.1 15.9 0.4 45.0 5.0 32.7 16.7 76.5 3.6
FSx-16 97.2 0.3 98.7 0.1 30.1 2.1 32.6 4.1 89.8 0.7 99.7 0.1 26.4 2.7 67.8 0.6 44.5 0.6 98.0 0.5 99.2 0.3 100.0 0.1
FSx-17 25.1 5.7 41.3 4.7 0.0 0.8 0.0 0.4 21.8 2.4 38.1 1.0 4.9 3.6 8.0 5.2 22.8 0.4 23.4 4.6 0.5 1.6 74.9 0.8
FSx-18 84.2 13.3 98.5 0.2 32.1 3.7 35.3 3.6 89.7 0.6 92.6 7.1 30.3 2.2 75.5 1.6 43.6 0.4 97.3 0.2 99.3 0.1 99.7 0.4
FSx-19 25.3 0.5 100.0 0.0 21.5 3.2 22.8 2.4 19.4 0.3 32.5 0.5 19.2 2.3 23.7 2.4 9.9 0.6 10.1 0.5 99.1 0.1 100.0 0.0
FSx-20 96.6 0.1 98.8 0.0 29.2 5.7 42.5 1.1 87.3 0.6 99.4 0.0 30.3 0.6 63.5 3.2 42.7 0.8 94.7 1.4 99.4 0.1 100.0 0.0
FSx-21 23.8 5.5 44.5 2.4 0.4 0.8 0.0 1.9 24.8 2.0 34.8 4.3 5.9 1.7 9.5 2.9 19.7 3.0 22.8 4.9 4.5 2.2 71.0 1.0
FSx-22 8.2 3.7 48.8 3.3 20.0 2.3 25.5 2.0 10.9 1.9 27.1 2.3 8.9 1.7 15.3 0.9 13.0 1.0 14.4 2.1 12.9 5.5 95.4 0.5
FSx-23 0.0 0.3 0.0 2.6 0.0 0.8 0.0 2.0 0.0 0.2 8.6 0.5 0.0 3.3 0.0 1.1 0.0 0.3 0.0 9.6 99.9 0.1 100.0 0.0
FSx-24 0.0 5.9 3.2 2.5 8.9 2.6 12.9 1.6 9.0 1.1 27.0 1.6 10.5 1.0 10.5 1.5 2.1 0.4 5.6 1.3 99.9 0.0 100.0 0.0
FSx-25 47.6 5.0 99.8 0.1 20.7 1.9 22.2 2.0 14.5 1.4 55.7 1.1 23.2 0.4 13.8 5.6 8.8 3.2 80.3 2.0 24.5 1.3 44.5 0.8
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 Table 9B continued. % Inhibition of Triclosan-Exposed Forested Isolates by 6 Antimicrobial Agents  
Columns headed with dose concentration show the mean % inhibition of that isolate (row) by that dose of agent (column) as calculated 
from 3 replicate wells. SE shows the standard error. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

Isolate
0.125 
μg/mL SE

1 
μg/mL SE

0.25 
μg/mL SE

2
μg/mL SE

0.5 
μg/mL SE

4
μg/mL SE

1
μg/mL SE

8
μg/mL SE

0.625 
μg/mL SE

5
 μg/mL SE

0.125 
μg/mL SE

1 
μg/mL SE

FSx-26 52.3 0.4 100.0 0.1 22.5 6.2 24.0 5.9 26.7 3.5 33.7 0.8 16.6 5.8 27.9 3.0 4.3 2.4 3.6 2.1 99.5 0.4 100.0 0.3
FSx-27 24.4 2.1 25.2 4.8 36.3 2.9 48.0 2.5 33.2 1.5 67.4 1.1 98.2 0.1 99.3 0.2 18.1 0.5 21.9 2.8 87.9 1.3 99.8 0.1
FSx-28 37.6 6.3 29.8 2.8 13.2 3.6 25.5 6.4 42.0 1.4 83.8 0.7 76.1 0.2 80.1 0.6 45.5 2.7 22.0 14.5 60.0 2.8 99.6 0.1
FSx-29 31.7 3.2 24.5 7.0 4.6 2.2 27.3 2.7 39.9 2.5 80.7 0.9 70.4 0.9 75.4 1.1 44.0 2.2 19.7 14.5 69.6 1.3 99.4 0.2
FSx-30 67.5 2.3 87.2 1.1 34.0 2.9 88.7 0.7 50.2 4.3 99.4 0.0 36.7 3.5 75.0 13.0 9.8 2.1 28.5 3.6 58.9 2.9 100.0 0.1
FSx-31 51.7 1.1 85.9 0.2 0.8 0.7 0.0 1.2 19.2 1.6 100.0 0.1 5.7 2.0 13.4 3.6 18.7 0.1 25.0 3.8 99.7 0.1 100.0 0.1
FSx-32 6.4 1.7 2.8 0.3 9.1 0.2 8.2 2.8 6.9 1.8 75.1 1.2 11.4 4.5 10.7 1.8 5.0 1.5 4.1 1.4 100.0 0.0 100.0 0.1
FSx-33 12.0 0.2 3.4 1.1 12.4 1.4 7.3 2.3 4.9 1.6 68.6 1.8 6.4 1.5 13.7 3.1 7.5 0.3 3.5 1.8 100.0 0.0 100.0 0.0
FSx-34 9.2 0.9 2.9 3.2 16.5 0.8 11.7 0.6 8.0 2.2 75.1 1.0 13.2 1.5 18.3 3.1 7.4 2.0 5.5 1.0 100.0 0.0 100.0 0.0
FSx-35 5.1 0.1 3.8 1.1 13.4 2.0 9.3 1.5 7.7 1.1 73.7 1.4 8.7 1.3 11.4 3.0 3.9 1.2 2.8 1.0 100.0 0.0 100.0 0.0
FSx-36 13.1 1.4 6.4 2.7 17.6 0.6 8.3 1.7 12.7 1.7 47.1 1.8 15.3 1.5 20.1 2.3 10.6 0.4 9.8 1.7 100.0 0.0 100.0 0.0
FSx-37 7.7 1.3 6.3 1.3 16.0 2.0 13.4 1.5 10.8 0.6 30.3 1.3 19.8 0.6 19.6 1.9 9.7 1.9 7.3 2.9 100.0 0.0 100.0 0.0
FSx-38 8.5 1.3 2.3 1.5 13.1 0.9 6.0 2.6 5.7 0.7 25.4 1.3 9.6 1.7 19.8 0.5 8.5 0.2 4.1 1.6 100.0 0.0 100.0 0.0
FSx-39 0.0 8.9 0.0 8.7 0.0 7.2 0.0 6.3 2.1 8.2 5.2 2.3 0.0 10.8 3.8 1.5 35.7 32.0 9.4 4.5 99.8 0.0 99.9 0.0
FSx-40 25.7 1.4 21.0 3.9 22.2 2.7 24.4 0.2 22.6 1.4 73.2 1.7 83.1 3.0 98.4 0.2 15.6 4.4 19.3 1.2 66.7 2.7 97.9 0.6
FSx-41 0.0 3.6 63.7 0.8 4.4 5.7 27.8 9.6 0.0 4.2 42.0 3.8 0.0 2.0 0.0 4.9 43.4 3.8 98.9 0.7 47.3 5.8 98.4 0.1
FSx-42 13.4 1.1 99.6 0.1 17.4 1.9 13.8 2.8 16.2 2.1 42.6 1.1 15.8 1.0 17.2 2.4 13.1 2.7 8.2 0.9 99.8 0.1 99.9 0.0
FSx-43 99.9 0.2 100.0 0.1 15.4 4.5 28.7 4.4 40.4 2.3 99.0 0.1 40.0 0.9 97.1 0.1 21.6 6.0 89.9 1.2 98.2 0.3 99.0 0.2
FSx-44 0.0 4.4 0.0 5.2 5.8 1.7 4.4 2.1 3.8 2.6 18.6 6.0 11.8 1.3 5.7 2.8 35.3 32.2 0.0 5.5 99.8 0.0 99.9 0.0
FSx-45 40.1 1.9 58.0 2.3 0.0 1.2 0.0 3.1 21.3 1.3 99.3 0.3 0.0 3.9 52.5 21.4 0.0 2.8 27.7 1.2 51.0 1.2 99.4 0.0
FSx-46 32.7 1.2 33.6 0.7 37.0 3.8 32.6 3.7 25.9 2.4 49.9 0.6 38.7 0.7 37.3 4.8 56.3 21.9 37.6 3.1 99.8 0.1 99.9 0.0
FSx-47 99.9 0.2 100.0 0.1 15.4 4.5 28.7 4.4 40.4 2.3 99.0 0.1 40.0 0.9 97.1 0.1 21.6 6.0 89.9 1.2 98.2 0.3 99.0 0.2
FSx-48 26.0 4.7 76.9 2.6 37.6 2.2 100.0 0.0 58.9 0.4 99.7 0.1 53.3 4.4 100.0 0.1 99.9 0.0 100.0 0.0 29.5 13.0 99.7 0.1
FSx-49 46.3 0.8 66.0 1.4 99.3 0.1 99.7 0.0 16.5 1.1 42.7 0.4 99.7 0.1 99.8 0.2 27.9 0.1 40.2 1.9 98.8 0.1 99.0 0.2
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 Table 9C. % Inhibition of Unexposed WW-associated Isolates by 6 Antimicrobial Agents 
Columns headed with dose concentration show the mean % inhibition of that isolate (row) by that dose of agent (column) as calculated 
from 3 replicate wells. SE shows the standard error. 

 
 

Isolate
0.125 
μg/mL SE

1 
μg/mL SE

0.25 
μg/mL SE

2
μg/mL SE

0.5 
μg/mL SE

4
μg/mL SE

1
μg/mL SE

8
μg/mL SE

0.625 
μg/mL SE

5
 μg/mL SE

0.125 
μg/mL SE

1 
μg/mL SE

WWun-1 0 19.3 37 18.6 0 28.6 100 0.1 62.6 0.9 99.2 0.4 82.4 0.2 99.8 0.1 100 0.1 100 0.1 34.5 13 99.7 0
WWun-2 0 22.4 13.3 6.8 0 27.8 99.4 0.4 43.9 5.8 99 0.3 74.1 1.5 99.3 0.5 99.9 0.2 99.8 0 16.2 9.1 99.7 0.1
WWun-3 21.7 12.2 50.3 14.9 7.8 9.6 99.7 0.3 73.6 0.8 100 0 64.4 9 99.8 0.1 100 0.1 100 0.1 32.1 18.5 99.8 0
WWun-4 0 34.5 0 16.9 0 30.8 100 0 50 0.6 99.2 0.4 24.7 4.4 99.5 0.2 100 0.1 100 0 0 32.9 99 0.4
WWun-5 0 20.9 0 15.3 0 23.6 100 0.1 50.3 0.6 99.4 0.2 4.1 10.3 99.7 0.1 100 0.1 100 0.2 3.9 12.3 99.2 0.1
WWun-6 6.3 9.6 20.6 3.6 46 1.8 81.1 1.4 0 0 0 0 4.5 6.9 37.7 1.7 13.9 6.1 75.1 0.1 16.5 6.1 24.1 4.4
WWun-7 12.7 1.2 73.3 0.4 93.9 1.3 97.9 1 88.8 1.1 98.9 0.7 99.7 0 99.9 0 89.6 1 98.4 0.7 9.9 0.5 9.8 0.6
WWun-8 0 6.6 61.6 4.5 0 0.2 4.5 1.7 0 8.3 96.8 0.3 99.5 0.2 99.4 0 0 7.7 94.9 0.4 0 3.7 0 2.1
WWun-9 26 4.7 76.9 2.6 37.6 2.2 100 0 58.9 0.4 99.7 0.1 53.3 4.4 100 0.1 99.9 0 100 0 29.5 13 99.7 0.1
WWun-10 0 7.6 98.3 0.6 0 6.5 0 13.3 0 2.8 4.6 7.2 0 1.5 0 13.5 0 20.3 0 9.4 99.2 0.3 99.7 0.8
WWun-11 0 2.3 0 0.9 0 3.9 0 7.6 0 3.8 0 5.7 0 2.3 0 7.1 0 1.2 0 0.5 100 0.1 100 0.1
WWun-12 0 2.6 69.2 2.4 0 1.5 0 2.6 0 1 5.6 4.8 0 7.7 0 4 0 3.2 0 5 100 0.1 100 0.1
WWun-13 0 1.5 0 1.2 0 12.5 0 8 0 7.8 0 9 0 4.1 0 6.3 0 3.6 7.6 8.9 100 0.1 100 0.1
WWun-14 0 1.2 76.6 2.1 0 6.5 0 2.3 0 8.1 10.9 3.2 0 2.7 0 8.5 0 3.3 0 4 94.9 5.1 100 0.1
WWun-15 9.3 3.4 37.6 9.3 38.5 7.5 99.5 0.1 43.6 3.6 98.1 0.3 0 1 9 8.4 97.7 1.3 96.5 1.2 29.7 2.5 99.5 0
WWun-16 38.8 2.6 100 0.9 95.3 0.8 100 0.6 0 11.9 98.9 0.6 88.1 1.9 100 0.4 0 3.4 28.2 13.1 99.8 0.4 100 0.2
WWun-17 97.1 0.4 98 0.1 36.8 1.8 35 7.9 66.7 2.7 99.2 0.1 49.9 1.7 92.8 0.2 23.5 12.1 46.4 1.1 97.6 0.5 97.7 0
WWun-18 4.9 0.1 5.8 0.2 5.6 0.6 7.1 2.3 8.7 0.9 16.7 0.6 4.2 1.3 4.8 1.6 4.2 1.4 6 0.7 99.9 0.1 100 0.3
WWun-19 32.4 2.5 100 0.1 18.4 5.6 19.1 2.9 9.3 2.1 34 1.1 15.1 3.5 17.7 3.7 22.5 2.8 18.3 0.8 100 0 100 0
WWun-20 29.1 1.9 19.4 3.8 12.3 2.6 7.2 2.6 19.3 1.3 62.3 0.2 29.7 2.5 55.3 3.3 11.3 5.1 10.8 1.6 23.9 1.4 72.3 0.5
WWun-21 100 0 100 0.1 29.5 0.9 17.5 9.9 75.7 3.5 100 0.1 35.3 3 91.6 0.7 16.8 9.9 48.8 1.6 99.5 0.3 100 0.2
WWun-22 35.6 1.5 29.7 3.7 4.2 1.2 9.2 2.3 6.4 0.7 23.4 1.4 0.5 0.7 73.8 16 4.1 1.9 32.7 0.8 31.4 1.4 74.2 0.9
WWun-23 37.5 2.8 33.4 2.7 8.2 1.6 6.7 0.8 8.8 1.7 27.6 2 30.2 0.9 63.1 2.1 8.1 3 38.9 1.8 31.4 0.7 78.7 1.2
WWun-24 0 0.5 7 2 16.9 3.5 3.6 3.2 28 0.8 45.7 2.2 91.7 0.3 99.9 0 5.1 0.1 4.5 1.8 99.9 0.1 100 0
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Table 9D. % Inhibition of Triclosan-Exposed WW-associated Isolates by 6 Antimicrobial Agents 
Columns headed with dose concentration show the mean % inhibition of that isolate (row) by that dose of agent (column) as calculated 
from 3 replicate wells. SE shows the standard error. The table is continued on the next page. 

 
 
  

Isolate
0.125 
μg/mL SE

1 
μg/mL SE

0.25 
μg/mL SE

2
μg/mL SE

0.5 
μg/mL SE

4
μg/mL SE

1
μg/mL SE

8
μg/mL SE

0.625 
μg/mL SE

5
 μg/mL SE

0.125 
μg/mL SE

1 
μg/mL SE

WWx-1 4.7 1.0 4.2 1.0 3.6 1.4 6.4 1.0 5.1 1.9 22.1 1.6 0.5 1.8 3.6 1.2 4.9 1.0 2.8 0.4 99.8 0.3 100.0 0.1
WWx-2 0.0 17.6 66.0 2.4 1.3 9.0 98.7 0.3 62.1 0.4 98.9 0.2 58.2 3.0 99.8 0.7 98.3 0.4 97.8 0.5 3.7 12.4 100.0 0.2
WWx-3 0.0 8.8 43.4 8.3 4.2 2.8 99.2 0.2 59.5 3.8 98.6 0.7 55.9 1.9 99.2 0.0 98.5 0.3 99.1 0.2 32.4 3.1 100.0 0.4
WWx-4 0.0 17.3 31.4 10.9 0.0 3.3 99.1 0.5 65.3 2.0 98.9 0.7 56.3 3.0 99.3 0.2 98.5 0.4 98.0 0.7 23.1 3.0 100.0 0.5
WWx-5 0.0 69.7 53.1 5.6 0.0 4.4 98.9 0.5 58.9 3.7 97.8 1.2 68.8 4.5 99.5 0.4 98.0 0.3 99.4 0.0 17.9 2.4 100.0 0.0
WWx-6 1.9 0.8 3.5 2.6 13.3 4.7 5.6 1.4 99.7 0.0 99.2 0.2 99.8 0.1 100.0 0.0 28.8 24.3 17.8 1.9 99.8 0.0 100.0 0.1
WWx-7 0.0 16.8 28.5 14.0 0.0 7.8 98.6 0.3 54.3 0.7 98.0 0.2 21.8 10.6 99.0 0.3 96.4 0.5 98.8 0.5 0.0 40.8 100.0 0.7
WWx-8 9.9 6.9 35.5 5.2 0.0 16.8 98.0 1.6 58.2 0.7 98.3 0.1 33.7 3.3 99.9 0.2 98.5 0.2 99.9 0.1 20.0 2.6 100.0 0.1
WWx-9 40.6 5.0 78.7 2.9 25.7 2.6 94.4 3.1 67.5 4.1 99.5 0.2 68.3 1.1 99.9 0.1 92.8 3.2 96.3 1.3 32.4 3.6 100.0 0.1
WWx-10 6.7 0.8 7.1 2.0 8.9 1.5 7.6 1.2 3.7 3.2 62.2 0.2 99.8 0.0 100.0 0.1 0.0 0.4 0.0 3.8 99.9 0.1 100.0 0.0
WWx-11 14.9 3.2 16.0 0.8 16.0 2.6 11.8 1.9 6.4 3.0 72.3 0.7 99.9 0.0 100.0 0.0 1.1 1.1 0.0 1.5 100.0 0.1 100.0 0.0
WWx-12 16.5 4.5 11.2 6.1 14.2 2.6 12.4 1.5 0.0 3.3 10.8 1.4 0.0 1.7 0.0 3.0 0.0 0.9 0.0 1.7 89.1 0.1 90.0 0.6
WWx-13 10.1 5.7 13.2 1.8 12.1 3.4 10.4 2.3 7.5 2.0 64.4 1.3 18.1 2.4 20.0 1.0 3.8 0.4 2.1 1.6 99.9 0.0 100.0 0.1
WWx-14 9.6 4.7 6.9 1.5 14.7 0.9 13.2 0.5 7.8 0.6 67.1 2.6 99.6 0.0 99.9 0.2 0.0 1.8 1.2 1.5 100.0 0.0 100.0 0.0
WWx-15 24.2 3.4 17.2 4.4 31.0 4.0 40.2 0.2 5.8 5.2 69.3 1.6 99.8 0.1 100.0 0.1 3.4 0.9 19.3 2.0 60.2 4.9 99.0 0.2
WWx-16 38.0 1.3 100.0 0.1 9.3 1.0 0.4 6.8 17.2 1.9 36.6 0.6 4.0 13.1 11.0 3.5 17.0 4.6 22.3 3.3 99.2 0.2 99.5 0.1
WWx-17 18.2 1.7 20.6 3.9 17.8 3.5 56.6 0.7 29.8 0.3 76.1 0.0 93.4 1.8 99.1 0.0 23.5 2.0 30.3 2.3 57.9 9.8 99.4 0.2
WWx-18 17.1 2.4 29.1 3.7 10.8 1.1 8.0 0.7 23.4 3.2 88.5 1.0 11.4 1.1 13.6 1.6 24.3 3.5 34.7 0.9 42.2 1.4 99.4 0.1
WWx-19 14.7 3.6 13.2 2.7 17.4 3.9 13.9 0.1 16.8 3.1 44.6 0.8 15.7 2.5 22.5 0.5 13.5 1.4 26.4 0.7 99.7 0.1 99.9 0.2
WWx-20 0.0 7.2 48.5 4.9 20.1 3.6 99.3 0.1 71.9 7.7 96.9 1.1 70.2 3.5 99.0 0.4 96.8 0.5 98.7 0.3 31.0 7.0 99.4 0.3
WWx-21 19.2 3.6 10.3 0.8 3.0 2.3 0.0 1.4 17.9 2.0 24.5 1.9 4.3 1.5 6.2 4.2 21.5 3.7 19.1 1.8 99.5 0.3 99.8 0.1
WWx-22 13.8 5.7 2.6 3.4 0.0 0.6 2.8 0.9 21.6 1.4 62.6 0.6 98.7 0.1 99.1 0.0 19.0 2.9 17.0 5.5 53.2 0.7 99.6 0.2
WWx-23 18.8 5.6 99.5 0.4 0.0 3.3 0.0 0.3 5.7 1.2 18.7 3.8 0.0 3.8 1.7 2.6 18.7 2.0 11.4 1.3 99.8 0.1 99.9 0.1
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 Table 9D continued. % Inhibition of Triclosan-Exposed WW-associated Isolates 
Columns headed with dose concentration show the mean % inhibition of that isolate (row) by that dose of agent (column) as calculated 
from 3 replicate wells. SE shows the standard error.

Isolate
0.125 
μg/mL SE

1 
μg/mL SE

0.25 
μg/mL SE

2
μg/mL SE

0.5 
μg/mL SE

4
μg/mL SE

1
μg/mL SE

8
μg/mL SE

0.625 
μg/mL SE

5
 μg/mL SE

0.125 
μg/mL SE

1 
μg/mL SE

WWx-24 13.2 2.8 100.0 0.1 1.8 0.5 3.0 2.6 0.0 1.9 13.9 0.8 4.9 1.9 5.8 0.6 3.5 2.1 2.9 1.7 99.9 0.1 99.9 0.3
WWx-25 0.0 7.2 58.2 1.8 6.0 1.9 11.4 5.4 14.8 6.3 96.8 0.1 3.6 3.9 21.3 1.4 0.0 1.8 21.5 2.6 98.8 0.4 99.9 0.2
WWx-26 21.4 5.4 8.5 1.4 0.0 10.9 72.0 2.2 18.1 2.3 88.1 0.2 94.2 0.3 94.8 0.5 10.9 4.3 8.7 10.3 71.2 2.1 100.0 0.1
WWx-27 4.6 2.1 8.6 3.1 0.0 4.8 0.0 1.6 3.9 1.4 44.9 2.1 0.0 4.1 0.0 1.0 0.0 1.0 1.3 0.5 98.9 1.2 100.0 0.0
WWx-28 80.7 2.6 96.2 0.6 7.4 2.8 13.3 4.1 15.8 3.7 85.0 1.1 9.5 5.2 65.5 1.7 14.8 1.1 68.2 0.6 99.7 0.1 99.9 0.2
WWx-29 47.1 26.7 99.9 0.0 2.6 0.8 9.1 0.9 10.9 1.5 59.3 1.3 5.5 2.0 35.1 0.8 1.5 0.9 4.3 0.6 99.8 0.1 100.0 0.0
WWx-30 17.7 3.2 100.0 0.1 4.5 1.8 8.2 1.4 12.3 1.7 59.0 3.4 6.5 1.5 33.0 1.8 0.4 0.6 1.3 0.7 99.8 0.0 100.0 0.1
WWx-31 28.1 10.4 18.5 8.6 9.4 1.2 35.4 2.8 32.2 5.3 98.1 0.2 94.6 2.9 99.7 0.1 1.6 1.7 24.3 2.1 70.6 1.4 99.9 0.0
WWx-32 15.2 4.3 20.1 4.3 18.6 1.7 22.9 4.9 14.5 2.8 80.6 1.3 99.6 0.1 99.3 0.2 8.0 1.7 18.7 2.7 71.5 3.2 100.0 0.0
WWx-33 24.0 10.9 22.4 3.0 18.8 3.2 21.7 5.3 24.7 1.2 49.3 0.8 95.5 0.4 100.0 0.0 16.2 2.5 16.1 0.8 100.0 0.0 100.0 0.0
WWx-34 15.0 0.5 21.9 6.1 25.5 4.8 43.7 3.5 6.1 8.2 64.6 1.2 90.6 0.6 98.3 0.3 8.3 1.1 26.6 2.1 57.2 3.2 99.5 0.2
WWx-35 0.0 1.7 0.0 2.5 0.0 4.0 2.1 2.9 0.0 3.1 0.0 2.0 0.0 2.6 0.0 3.3 0.0 2.0 1.8 3.1 100.0 0.1 100.0 0.0
WWx-36 3.2 1.6 14.4 1.3 9.7 0.4 15.0 1.8 13.2 0.3 42.6 0.5 10.1 0.9 23.3 1.2 4.4 1.2 5.6 2.9 100.0 0.0 100.0 0.0
WWx-37 99.7 0.1 100.0 0.1 49.4 1.3 99.9 0.0 45.3 4.1 99.6 0.1 29.9 1.5 55.3 17.2 53.8 3.6 94.1 0.3 99.9 0.1 100.0 0.1
WWx-38 13.4 3.5 100.0 0.1 13.3 5.1 19.4 2.6 10.2 3.7 32.0 1.7 12.3 1.0 24.0 2.3 0.0 2.0 1.9 2.2 100.0 0.1 100.0 0.0
WWx-39 27.5 3.5 100.0 0.0 23.2 4.1 25.1 3.5 9.3 0.7 38.4 2.8 18.5 0.5 33.4 2.2 0.0 1.3 12.2 7.4 100.0 0.0 100.0 0.0
WWx-40 59.9 2.2 100.0 0.0 14.9 3.6 30.8 2.4 16.3 0.8 50.2 2.0 18.8 0.4 27.8 1.9 0.7 1.2 6.6 1.7 100.0 0.0 100.0 0.0
WWx-41 15.1 2.1 87.5 1.7 34.2 2.1 100.0 0.4 83.8 4.8 97.7 0.3 55.6 3.7 97.8 0.1 44.3 2.9 98.4 0.2 13.9 2.1 50.3 0.6
WWx-42 99.4 0.2 100.0 0.1 44.7 0.8 63.4 0.6 79.7 1.0 99.8 0.1 52.4 0.2 97.1 0.1 29.4 0.6 63.5 1.1 100.0 0.3 100.0 0.1
WWx-43 44.7 5.5 82.2 2.1 32.0 2.4 37.2 10.2 84.0 5.0 97.0 0.8 93.7 0.8 96.1 0.3 73.1 4.2 100.0 0.5 32.9 9.4 100.0 0.9
WWx-44 21.5 1.6 99.9 0.0 3.4 0.9 1.4 0.5 10.7 0.5 25.7 1.5 10.5 0.6 10.9 1.3 8.3 0.3 5.2 1.4 99.7 0.2 100.0 0.0
WWx-45 17.0 2.0 97.5 0.1 4.0 1.1 1.3 0.6 12.2 0.6 27.0 1.7 11.7 2.0 14.8 1.8 10.5 1.0 6.0 1.4 98.6 0.4 100.0 0.0
WWx-46 4.1 4.7 3.2 2.9 7.9 1.5 3.3 2.8 13.6 2.4 23.5 1.1 12.7 3.0 18.3 0.9 14.7 0.6 12.9 1.7 99.8 0.1 100.0 0.0

Triclosan Carbenicillin Chloramphenicol Trimethoprim Erythromycin Ciprofloxacin
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 Tables 10A-10L ANOVA summaries of percent inhibition comparisons  
 
 
Table 10A. Descriptive Statistics for 0.125 μg/ml Triclosan (TCS) 
______________________________________________________________________________ 
Stream Exposure status Mean Std Error N 
______________________________________________________________________________ 
Forested Unexposed 31.50 7.94 25 
 Exposed (10 ng/ml TCS) 30.02 4.2 49  
   
WW-associated Unexposed 18.83 5.78 24 
 Exposed (10 ng/ml TCS) 20.68 3.51 46  
  
______________________________________________________________________________ 
 
ANOVA Summary Table for 0.125 μg/ml Triclosan 
______________________________________________________________________________ 
Source df MS F p  
______________________________________________________________________________ 
Stream 1 3950.03 4.49 0.0359  
Exposure Status 1 1.44 0 1  
Str x Exp Interaction 1 90.6 0.1 0.7523  
Error 140 880.36  
Total 143   
______________________________________________________________________________ 
Note.—MS = Mean squares 
 
 
Discussion 
 
  Low-level, chronic exposures to triclosan can drive evolution of bacteria. Triclosan 

exposure can lead to upregulation of multidrug efflux pumps (Chuanchuen et al. 2001; 

Chuanchuen et al. 2002) thus increasing MDR. When the minimum exposure levels in the 

environment are just above the NOEC, sensitive isolates of a given bacterial population will die, 

leaving behind the resistant isolates to persist within the environment. Additionally, exposure 

levels below the NOEC could lead to increased resistance as there is a higher potential for 

sublethal responses to the antimicrobial agent (Scott et al. 2016). The current study provides 
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additional evidence of triclosan’s effects on stream microbial communities that can lead to 

increased resistance to antimicrobial agents. Several results herein indicate that an 

environmentally-relevant exposure to triclosan can affect a sensitive microbial community, 

while a WW-associated community showed resistance prior to microcosm exposure to triclosan. 

Despite only one unexposed, forested isolate showing triclosan resistance (an isolate 

sensitive to the other five agents’ high doses) (Fig. 8), over half (61%) of triclosan-resistant 

isolates in this study were cultured from the exposed, forested-stream periphyton. The higher 

proportion of exposed isolates showing triclosan resistance compared to unexposed isolates 

from the forested stream community suggests the microcosm exposure may have affected the 

composition of this community, leaving a higher proportion of triclosan-resistant isolates.  

 
Table 10B. Descriptive Statistics for 1 μg/ml Triclosan 
______________________________________________________________________________ 
Stream Exposure status Mean Std Error N 
______________________________________________________________________________ 
Forested Unexposed 47.65 7.96 25 
 Exposed (10 ng/ml TCS) 44.86 5.71 49  
   
WW-associated Unexposed 46.17 7.64 24 
 Exposed (10 ng/ml TCS) 47.36 5.75 46  
  
______________________________________________________________________________ 
 
ANOVA Summary Table for 1 μg/ml Triclosan 
______________________________________________________________________________ 
Source df MS F p  
______________________________________________________________________________ 
Stream 1 47.47 0.03 0.8627  
Exposure Status 1 23.29 0.02 0.8877  
Str x Exp Interaction 1 127.66 0.08 0.7777  
Error 140 1538.89  
Total 143   
______________________________________________________________________________ 
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Table 10C. Descriptive Statistics for 0.25 μg/ml Carbenicillin 
______________________________________________________________________________ 
Stream Exposure status Mean Std Error N 
______________________________________________________________________________ 
Forested Unexposed 19.50 5.79 25 
 Exposed (10 ng/ml TCS) 15.72 2.46 49  
   
WW-associated Unexposed 18.79 5.65 24 
 Exposed (10 ng/ml TCS) 12.06 1.78 46  
  
______________________________________________________________________________ 
ANOVA Summary Table for 0.25 μg/ml Carbenicillin 
______________________________________________________________________________ 
Source df MS F p  
______________________________________________________________________________ 
Stream 1 249.61 0.6 0.4359  
Exposure Status 1 876 2.1 0.1495  
Str x Exp Interaction 1 75.44 0.18 0.672  
Error 140 417.77  
Total 143   
______________________________________________________________________________ 
Note.—MS = Mean squares  
 
 

Among cultured isolates from these two streams, two thirds of the triclosan-resistant 

isolates were also resistant to at least one other high dose agent tested (Fig. 8). This includes the 

majority (8/11) of the exposed, forested triclosan-resistant isolates, half (2/4) of the unexposed, 

WW-associated and both of the exposed, WW-associated triclosan-resistant isolates. This 

supports the hypothesis that triclosan resistance and resistance to additional antimicrobials are 

associated with triclosan exposure. Among forested isolates cultured in this study, more 

resistance and more MDR in exposed versus unexposed isolates (Fig. 11, Fig. 12, Fig. 13A) 

provides additional evidence in support of this hypothesis. Results among the isolates sampled 

show differences in responses between the two microbial communities (Fig. 12) which may be 

due to the forested-stream community being more sensitive to antimicrobials than the 
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pollution-tolerant community that resides in the urban, WW-associated stream. Overall, these 

more pronounced differences in measured susceptibilities between triclosan-exposed versus 

unexposed isolates observed in the forested-stream community suggest possible decreased 

susceptibility due to the microcosm exposure. Environmentally-relevant exposure leading to 

changes in susceptibilities of environmental bacteria highlights one of the key health risks 

associated with this chemical. 

 
Table 10D. Descriptive Statistics for 2 μg/ml Carbenicillin 
______________________________________________________________________________ 
Stream Exposure status Mean Std Error N 
______________________________________________________________________________ 
Forested Unexposed 23.29 6.07 25 
 Exposed (10 ng/ml TCS) 26.32 3.84 49  
   
WW-associated Unexposed 45.31 9.4 24 
 Exposed (10 ng/ml TCS) 35.11 5.55 46  
  
______________________________________________________________________________ 
 
ANOVA Summary Table for 2 μg/ml Carbenicillin 
______________________________________________________________________________ 
Source df MS F p  
______________________________________________________________________________ 
Stream 1 47.47 0.03 0.8627  
Exposure Status 1 23.29 0.02 0.8877  
Str x Exp Interaction 1 127.66 0.08 0.7777  
Error 140 1538.89  
Total 143   
______________________________________________________________________________ 
 
 
 There were also differences based on exposure status or stream source in proportions 

of completely resistant isolates (0% inhibition) (Fig. 15). No unexposed forested isolates showed 

complete resistance to 1 μg/ml triclosan, while 16.3% of the isolates in the exposed forested 
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group were completely resistant. The trend was the opposite for WW-associated groups, where 

unexposed WW-associated isolates showed higher proportions of completely resistant isolates 

(45.8% with 0.125 μg/ml triclosan and 16.7% with 1 μg/ml triclosan) than the exposed WW-

associated group (17.4% with 0.125 μg/ml triclosan and 2.2% with 1 μg/ml triclosan Fig. 15). This 

result follows with the idea that the urban, WW-associated microbial community has become 

more tolerant of antimicrobial agents over time due to exposure to many anthropogenic inputs, 

while the forested stream community is more sensitive. Unexposed WW-associated isolates 

exhibited significantly higher proportions of completely resistant isolates than any other group 

in some susceptibility tests (Fig. 15).   

 
Table 10E. Descriptive Statistics for 0.5 μg/ml Chloramphenicol 
______________________________________________________________________________ 
Stream Exposure status Mean Std Error N 
______________________________________________________________________________ 
Forested Unexposed 33.96 6.23 25 
 Exposed (10 ng/ml TCS) 22.5 3.16 49  
   
WW-associated Unexposed 28.94 6.18 24 
 Exposed (10 ng/ml TCS) 28.21 4.06 46  
  
______________________________________________________________________________ 
 
 
ANOVA Summary Table for 0.5 μg/ml Chloramphenicol 
______________________________________________________________________________ 
Source df MS F p  
______________________________________________________________________________ 
Stream 1 157.1 0.22 0.6398  
Exposure Status 1 1256.17 1.72 0.1918  
Str x Exp Interaction 1 924.04 1.27 0.2617  
Error 140 728.61  
Total 143   
______________________________________________________________________________ 
Note.—MS = Mean squares 
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Table 10F. Descriptive Statistics for 4 μg/ml Chloramphenicol 
______________________________________________________________________________ 
Stream Exposure status Mean Std Error N 
______________________________________________________________________________ 
Forested Unexposed 70.57 6.25 25 
 Exposed (10 ng/ml TCS) 54.67 4.34 49  
   
WW-associated Unexposed 59.13 8.79 24 
 Exposed (10 ng/ml TCS) 64.76 4.57 46  
  
______________________________________________________________________________ 
 
ANOVA Summary Table for 4 μg/ml Chloramphenicol 
______________________________________________________________________________ 
Source df MS F p  
______________________________________________________________________________ 
Stream 1 280.46 0.26 0.6109  
Exposure Status 1 948.13 0.86 0.3553  
Str x Exp Interaction 1 3739.9 3.41 0.0669  
Error 140 1096.61  
Total 143   
______________________________________________________________________________ 
 
 
In this pollution-tolerant, WW-associated microbial community, 10 μg/L triclosan did not lead to 

a shift to more resistance to agents tested in this study. Instead, lower proportions of 

completely resistant isolates and MDR were seen in the triclosan-exposed WW-associated 

group, suggesting that the microcosm exposure could somehow lower representation of 

resistant bacteria. Another possibility is that there is not a substantial effect on susceptibility 

levels in this tolerant community and the random selection of a relatively small sample of 

unexposed WW-associated isolates (n=24) led to a higher proportion of resistant isolates by 

chance. These possibilities could be clarified with an expanded study as mentioned above. 

Exposed WW-associated isolates had significantly lower proportions of resistant isolates to 1 

μg/ml triclosan compared to exposed forested isolates, highlighting the different responses to 
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10 μg/L triclosan in the more sensitive, forested stream versus those of the pollution-tolerant, 

WW-associated community. 

 In addition to triclosan, the agents used for susceptibility tests were selected to 

represent different classes of antibiotics. Previous studies have shown development of cross-

resistance between triclosan and these other agents. In one study, low-level triclosan resistance 

conferred through constitutive upregulation of various efflux pumps resulted in cross-resistance 

to chloramphenicol and carbenicillin, in some cases. They found that the degree of triclosan 

resistance was dependent upon the initial level of exposure (Pycke et al. 2010). A study that 

selected biocide-resistant strains of E. coli, found high levels of resistance after two sub-lethal 

exposures to triclosan.  

  
Table 10G. Descriptive Statistics for 1 μg/ml Trimethoprim 
______________________________________________________________________________ 
Stream Exposure status Mean Std Error N 
______________________________________________________________________________ 
Forested Unexposed 54.11 8.28 25 
 Exposed (10 ng/ml TCS) 30.39 4.53 49  
   
WW-associated Unexposed 35.48 7.55 24 
 Exposed (10 ng/ml TCS) 43.67 5.77 46  
  
______________________________________________________________________________ 
ANOVA Summary Table for 1 μg/ml Trimethoprim 
______________________________________________________________________________ 
Source df MS F p  
______________________________________________________________________________ 
Stream 1 217.7 0.16 0.6898  
Exposure Status 1 2153.33 1.59 0.2094  
Str x Exp Interaction 1 8220.44 6.06 0.015  
Error 140 1356.02  
Total 143   
______________________________________________________________________________ 
Note.—MS = Mean squares 
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These strains then also showed decreased susceptibilities to several antimicrobial agents 

including chloramphenicol, erythromycin and trimethoprim (Braoudaki and Hilton 2004). 

Exposure to triclosan in grass shrimp led to increases in MDRt Vibrio species, which showed 

resistance to six antibiotics, including erythromycin (DeLorenzo et al. 2014). Cross-resistance has 

also been detected between triclosan and quinolones such as ciprofloxacin (Hernandez et al. 

2011; Sanchez et al. 2005). 

  
Table 10H. Descriptive Statistics for 8 μg/ml Trimethoprim 
______________________________________________________________________________ 
Stream Exposure status Mean Std Error N 
______________________________________________________________________________ 
Forested Unexposed 62.09 8.31 25 
 Exposed (10 ng/ml TCS) 43.05 5.34 49  
   
WW-associated Unexposed 60.13 8.93 24 
 Exposed (10 ng/ml TCS) 59.22 6.19 46  
  
______________________________________________________________________________ 
 
ANOVA Summary Table for 8 μg/ml Trimethoprim 
______________________________________________________________________________ 
Source df MS F p  
______________________________________________________________________________ 
Stream 1 3630.49 2.19 0.1412  
Exposure Status 1 3396.74 2.05 0.1544  
Str x Exp Interaction 1 2615.73 1.58 0.2109  
Error 140 1655.72  
Total 143   
______________________________________________________________________________ 
Note.—MS = Mean squares 
 
 
Several results supported the hypothesis that the forested and WW-associated community’s 

ambient levels of antimicrobial resistance differed, leading to the two communities having 
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different responses to triclosan exposure. In the forested-stream community, but not the WW-

associated community, there was increased overall resistance in the exposed group. 

Comparing mean % inhibition, regardless of exposure, there were a couple instances (0.125 

µg/ml triclosan Fig. 9A and 2 µg/ml carbenicillin Fig. 10B) showing more resistance in the WW-

associated community than the forested community. It is likely that WW-associated stream 

bacteria have had chronic exposure to low levels of triclosan and other antimicrobials in their 

stream environment.  

 
Table 10I. Descriptive Statistics for 0.625 μg/ml Erythromycin 
______________________________________________________________________________ 
Stream Exposure status Mean Std Error N 
______________________________________________________________________________ 
Forested Unexposed 13.32 2.31 25 
 Exposed (10 ng/ml TCS) 24.52 3.33 49  
   
WW-associated Unexposed 37.36 9.11 24 
 Exposed (10 ng/ml TCS) 27.43 5.24 46  
  
______________________________________________________________________________ 
ANOVA Summary Table for 0.625 μg/ml Erythromycin 
______________________________________________________________________________ 
Source df MS F p  
______________________________________________________________________________ 
Stream 1 3666.89 3.89 0.0505  
Exposure Status 1 22.35 0.02 0.8877  
Str x Exp Interaction 1 3607.27 3.82 0.0526  
Error 140 943.2  
Total 143   
______________________________________________________________________________ 
Note.—MS = Mean squares 
 
 
There are numerous documented cases of triclosan’s presence in WW effluents (Gautam et al. 

2014; Kolpin et al. 2002; Kumar et al. 2010; Middleton and Salierno 2013; Singer et al. 2002; 
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Ying and Kookana 2007) and based on its widespread use and incomplete removal in WW 

treatment processes, the likelihood of triclosan’s presence in North Buffalo Creek over recent 

decades is high. Though this could also be the case with the forested stream, it is plausible that 

environmental exposures in the more rural, forested North Double Creek may have been lower 

than exposures in the urban, WW-associated stream. North Buffalo Creek has been shown to be 

impaired. From before triclosan use through completion of this study (1938 through October 

2017) North Buffalo Water Reclamation Facility served the northern half of Greensboro, a city of 

about 281 thousand people at the time of this study. Pinnacle, NC had about 902 residents at 

the time of the study (U.S. Census Bureau 2016). This potentially higher and/or longer, chronic 

exposure to antimicrobials and other anthropogenic inputs may have led to higher antimicrobial 

resistance in this community, thus developing more tolerant bacteria.   

  
Table 10J. Descriptive Statistics for 5 μg/ml Erythromycin 
______________________________________________________________________________ 
Stream Exposure status Mean Std Error N 
______________________________________________________________________________ 
Forested Unexposed 35.75 6.5 25 
 Exposed (10 ng/ml TCS) 29.76 4.55 49  
   
WW-associated Unexposed 50.29 8.66 24 
 Exposed (10 ng/ml TCS) 34.66 3.61 46  
  
______________________________________________________________________________ 
ANOVA Summary Table for 5 μg/ml Erythromycin 
______________________________________________________________________________ 
Source df MS F p  
______________________________________________________________________________ 
Stream 1 2442.59 1.87 0.1737  
Exposure Status 1 3727.25 2.86 0.093  
Str x Exp Interaction 1 717.46 0.55 0.4596  
Error 140 1304.64  
Total 143   
______________________________________________________________________________ 
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This could explain why the unexposed isolates found in this WW-associated community show 

high levels of antimicrobial resistance and MDR. 

 The issue of rising antimicrobial resistance and increases in MDRt bacteria is one of the 

greatest health challenges faced by today’s world. There are many studies showing increasing 

MDR in bacterial pathogens (Andersen et al. 2015; Mahlen et al. 2011; reviewed in Chang et al. 

2015) with less available data on MDRt environmental bacteria, though there are many 

documented cases there as well.  

 
Table 10K. Descriptive Statistics for 0.125 μg/ml Ciprofloxacin 
______________________________________________________________________________ 
Stream Exposure status Mean Std Error N 
______________________________________________________________________________ 
Forested Unexposed 75.46 6.47 25 
 Exposed (10 ng/ml TCS) 80.96 4.28 49  
   
WW-associated Unexposed 56.24 8.45 24 
 Exposed (10 ng/ml TCS) 75.50 4.91 46  
  
______________________________________________________________________________ 
 
ANOVA Summary Table for 0.125 μg/ml Ciprofloxacin 
______________________________________________________________________________ 
Source df MS F p  
______________________________________________________________________________ 
Stream 1 3747.68 3.33 0.0702  
Exposure Status 1 4863.47 4.32 0.0395  
Str x Exp Interaction 1 1484.46 1.32 0.2526  
Error 140 1124.85  
Total 143   
______________________________________________________________________________
Note.—MS = Mean squares  
 
 
Bacteria are known to have the ability to share genetic information and ARGs can spread 

between different types of bacteria (Amábile-Cuevas and Chicurel 1993; Chee-Sanford et al. 
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2001; Ciusa et al. 2012; Cooper et al. 2017; Salyers and Amábile-Cuevas 1997). Often in nature, 

antimicrobial resistances initially increase in commensal bacteria to later be transferred to 

pathogens (Salyers et al. 2004; Sørum and L'Abée-Lund 2002). WW-treatment facilities are 

known hotspots of increasing antibiotic resistance and MDR (Graham et al. 2011; Magalhães et 

al. 2016; Middleton and Salierno 2013). Occurrences through wastewater treatment processing 

could be selecting for more resistant bacteria, as levels of ARGs can be higher in WWTP effluent 

than in pretreated sewage (Reinthaler et al. 2010; Uyaguari et al. 2011). In this study, only the 

WW-associated community revealed the presence of MDRt isolates (3% or less inhibition by high 

doses of 3 or more agents) in the unexposed isolate group (Fig. 17B).  

 
Table 10L. Descriptive Statistics for 1 μg/ml Ciprofloxacin 
______________________________________________________________________________ 
Stream Exposure status Mean Std Error N 
______________________________________________________________________________ 
Forested Unexposed 94.02 3.57 25 
 Exposed (10 ng/ml TCS) 96.98 1.41 49  
   
WW-associated Unexposed 85.56 6.14 24 
 Exposed (10 ng/ml TCS) 98.59 1.09 46  
  
______________________________________________________________________________ 
ANOVA Summary Table for 1 μg/ml Ciprofloxacin 
______________________________________________________________________________ 
Source df MS F p  
______________________________________________________________________________ 
Stream 1 124.59 0.49 0.4851  
Exposure Status 1 2015.35 7.93 0.0056  
Str x Exp Interaction 1 815.39 3.21 0.0754  
Error 140 254.13  
Total 143   
______________________________________________________________________________ 
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This plus evidence presented above suggest that a substantial portion of environmental bacteria 

inhabiting North Buffalo Creek can tolerate multiple antimicrobial agents. This is cause for 

concern for numerous reasons and anywhere downstream of a WWTP is likely to present similar 

issues. North Buffalo Creek is in the Cape Fear River basin and is upstream from many areas 

used for recreation and fishing. Its downstream waters also flow through farmlands, so even 

food sources aside from local fish could be at risk. The Haw River is also downstream and flows 

into Jordan Lake, an important drinking water resource. This study can serve as an example 

reporting on MDR in environmental stream bacteria with the knowledge that this is a global 

issue. 

In this study, a forested stream microbial community exposed to an environmentally-

relevant level of triclosan generally had increased MDR. The microcosm exposure level in this 

study, slightly higher than levels generally measured in streams, is lower than measured levels in 

some WW influents and effluents (reviewed in Chalew and Halden 2009; Kumar et al. 2010; 

Lehutso et al. 2017; Stasinakis et al. 2008) and substantially lower than many levels that have 

been measured in sediments (Agüera et al. 2003; Hale et al. 2000; Miller et al. 2008; Morales et 

al. 2005; Singer et al. 2002; Wilson et al. 2008), biota (Coogan et al. 2007; Coogan and LaPoint 

2008; Mottaleb et al. 2009) and biosolids (Higgins et al. 2011; Pannu et al. 2012; Xia et al. 2010; 

Ying and Kookana 2007). Naturally, there is a complicated balance of microbial life, chemicals 

and other abiotic factors leading to different responses and various potential outcomes as these 

factors connect to direct development of resistance. Conducting a larger study on MDRt 

environmental isolates would be ideal as it is quite clear this is not an issue unique to North 

Buffalo Creek or its watershed. Further studies with bigger sample sizes per sampling site and 

with a design that incorporates additional sampling sites such as more streams, additional 
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aquatic environments, pre-and post-treatment sewage samples and possibly expanding to 

terrestrial samples as well are recommended. Measuring responses from a wider range of 

environmentally-relevant exposure levels would further enhance our knowledge of what is 

occurring in natural microbial communities as a result of triclosan’s presence. 

In the current study, more pseudomonads were detected than other genera, and the 

majority (9/12) of MDRt isolates were of this genus with another identified to the genus Serratia. 

Further study sampling larger numbers of isolates and expanding to add other streams (both 

WW-associated and forested) and additional sample types and testing susceptibilities to 

additional antimicrobial doses is warranted. It would also be interesting to expose the 

unexposed isolates in the study to triclosan then conduct susceptibility assays on them post-

exposure to get a clearer picture of how specific environmental isolates respond to the 10 μg/L 

triclosan or to additional exposure levels. Additional testing of a larger selection of antimicrobial 

agents and antibiotics for MDRt isolate screening would also provide further needed evidence of 

this global phenomenon. 

Results of the current study show cases of tolerance to multiple antimicrobials in 

isolates from both streams. In response to the higher doses of antimicrobial agents tested, a 

third of all tested isolates showed either low to no susceptibility (0-10% inhibition) to at least 

two of the six agents, with over half of all isolates falling into this category when grown in the 

presence of the lower doses of antimicrobial agents. Among forested isolates, the fraction of 

exposed isolates showing low to no susceptibility (0-10% inhibition) to 2 or more of the high 

doses of antimicrobial agents is more than 2-fold that of the unexposed group (Fig. 16B). This 

adds to the evidence that there are more instances of resistance and MDR post-triclosan 

exposure in the forested microbial community. These results suggest that this environmentally-
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relevant exposure has impacted the microbial community, driving up MDR. Comparing 

proportions of MDRt isolates showing 3% or less inhibition to 3 or more agents, the unexposed 

WW-associated isolate group showed the highest proportions of MDR, with approximately one 

out of every five isolates exhibiting MDR at this level with the high doses (even higher 

proportion with low doses) (Figure 17). This group’s higher proportions of MDR differed from 

the proportions in both exposed WW-associated isolates and unexposed forested isolates but 

did not significantly differ from the proportion of MDRt triclosan-exposed forested isolates. Such 

a result could occur if exposure to triclosan is impacting the forested community, increasing 

their level of tolerance and inspiring more bacteria to acquire MDR, while the unexposed WW-

associated group already had a higher subset of MDRt isolates. Triclosan appears to be an agent 

of microbial evolution; instead of halting microbial growth, for many bacterial strains it has led 

to an increased ability to tolerate antimicrobial agents. From a human perspective, increases in 

MDR resulting from triclosan exposure are of concern as part of the global health issue of 

collectively rising MDR. MDR has become one of myriad threats to our health and well-being 

(Bertelsen et al. 2013; Cherednichenko et al. 2012; Crawford and Catanzaro 2012; Gee et al. 

2008; Hu et al. 2016; Ishibashi et al. 2004; Jackson-Browne et al. 2018; James et al. 2010; Jung et 

al. 2012; Jurewicz et al. 2018; Kumar et al. 2009; Macedo et al. 2017; Matsumura et al. 2005; 

Raut and Angus 2010; Regnault at al. 2016; Rodríguez and Sanchez 2010; Savage et al. 2012; 

Stoker et al. 2010; Veldhoen et al. 2006; Wang et al. 2014; Zhang et al. 2017) associated with 

triclosan, which has been manufactured and distributed in goods in the interest of improved 

health and hygiene.  

The WW-associated stream in the current study exhibits the presence of environmental 

stream bacteria with tolerance to multiple antimicrobial agents. Data herein also show higher 
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overall resistance and MDR after triclosan exposure in a more sensitive, forested stream 

microbial community, which was not observed in the WW-associated community. This highlights 

triclosan’s potential for altering aquatic microbial communities as well as providing further 

evidence that MDRt bacteria are present in our environment and typically found at greater 

levels downstream of where anthropogenic inputs combine at WWTPs. It is clear that the 

products we are using and the way our WW inputs are combining and being processed can 

contribute to the overall rise in MDR, but that MDRt bacteria can also occur in streams not 

receiving WW due to triclosan exposure. This study is one of many demonstrating unintended 

impacts of a man-made chemical, designed and disseminated to improve our standard of living, 

which may be contributing to a major public health threat.
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CHAPTER V 
 

  CONCLUSIONS  
 

 
Results of the current study provide a clearer picture of some of the potential outcomes 

of environmental exposures to triclosan. Triclosan was detected at comparable levels at most 

sites in both a forested and an urban stream and results were in alignment with the hypothesis 

that triclosan levels peak at WWTPs (Fig. 4). WW-associated periphyton showed evidence of 

triclosan mitigation, with increasing levels in periphyton over time in microcosms (Fig. 7). 

Triclosan’s interactions with stream microbial communities can lead to changes in diversity as 

well as development of antimicrobial resistance and MDR. A major aim of the current study was 

to gauge overall levels of antimicrobial resistance and MDR in a WW-associated periphyton 

community and a forested-stream periphyton community. Another goal was to draw 

comparisons between responses of isolates from these communities that were exposed to 

triclosan in microcosms and responses from isolates that were not exposed. The exposure dose 

of 10 μg/L was useful for investigating effects that could occur through exposures in natural or 

built environments. Results suggest that this environmentally-relevant exposure to triclosan 

could alter microbial communities by enriching genera containing opportunistic pathogens. 

Higher proportions of Pseudomonas (in the forested-stream) and Serratia (in the WW-

associated stream) were observed in treatment groups from these microbial communities which 

had been exposed to triclosan in microcosms. In the WW-associated microbial community, 

Pseudomonas was equally dominant in both exposed and unexposed groups of isolates and it is 

possible that chronic exposure to anthropogenic inputs, likely including low-levels of triclosan,
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could have impacted the microbial community structure prior to this exposure study. 

Additionally, the WW-associated microbial community showed higher levels of overall 

resistance and MDR in isolates that were not exposed to triclosan in microcosms. In contrast, 

the forested microbial community showed higher overall resistance and MDR in exposed 

isolates compared to unexposed isolates, suggesting that environmentally-relevant triclosan 

exposures may lead to altered susceptibility levels in more sensitive microbial communities. In 

both built and natural environments, microbial communities are experiencing chronic, sublethal 

exposures to triclosan which threaten human and environmental health as these exposures can 

drive evolution, leading to increased ARB and MDR in these communities. Assessing MDR in 

triclosan-resistant isolates, the majority were resistant to one or more additional agents tested 

(Fig. 8), highlighting the overlap of triclosan resistant and MDRt bacteria in these stream 

microbial communities. Levels of exposure in certain environments are comparable to the level 

used in microcosm exposures here. It is clear that triclosan’s presence and interactions with 

environmental bacteria are critical concerns. Environmental exposures to triclosan are 

potentially amplifying MDR in numerous bacteria residing in a wide variety of locations across 

the world. MDR has been observed in environmental bacteria from many sample types: streams 

(Magalhães et al. 2016), rivers (Graham et al. 2011; Mohanta and Goel 2014; Osinska et al. 

2016), WW from drug manufacturing plants (Marathe et al. 2013), sediments (Graham et al. 

2011; Morroni et al. 2016; Vignaroli et al. 2012), estuaries (Kim et al. 2011), marine shrimp 

(Kitiyodom et al. 2010), groundwater (Mohanta and Goel 2014), constructed wetlands for WW 

treatment processing from cattle feedlots (Jahne et al. 2015), pig manure (Zhu et al. 2013), and 

even in arctic birds (Sjolund et al. 2008). Globally, between the prevalence of MDR, continued 

everyday use of antimicrobials and the ability of bacteria to transfer ARGs, extensive monitoring 
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and reporting is needed. Additional strategies should be developed beyond use of products that 

provide selective pressures that aid microbial communities in expanding their arsenals of 

resistance mechanisms. The collective knowledge on development of MDR from this study and 

many others calls for improved monitoring, reporting, problem solving, and alternate solutions 

as we move forward and continue to explore ways to improve health worldwide. 
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