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This dissertation contains three essays on applied health economics.  Although 

each essay is independent of the others, all three address the issue of estimating models 

where the relationship of interest is confounded by factors that are unobservable to the 

researcher.  The first essay is an econometric simulation study while essays 2 and 3 

address behavioral health topics. 

Essay 1 compares the accuracy and efficiency of parametric count data 

specifications paired with the Extended Olsen Model (EOM; Terza, 1998, 2009).  The 

EOM is a nonlinear instrumental variables approach that allows for consistent estimation 

of model parameters when the data suffer from binary endogenous switching (e.g., 

endogenous sample selection or endogenous treatment).  Count data models are 

ubiquitous in the health literature for estimating non-negative, discrete outcomes such as 

physician visits, hospital admissions, cigarettes smoked, etc.  Essay 1 provides insight 

into the model selection process by informing practitioners which specification is likely 

to provide the most accurate parameter estimates under a variety of data configurations.  

Essay 1 also demonstrates the applicability of the Conway-Maxwell Poisson (CMP), a 

flexible count model developed in the field of industrial engineering that has yet to be 

utilized in the economic literature. 

In Essay 2, I apply a count version of the Extended Olsen Model to estimate the 

relationship between marijuana use disorder (MUD) and ER visits among US Medicaid 

recipients.  This essay is the first in the literature to estimate the relationship between 



marijuana consumption and the demand for ER visits in isolation from other illicit drugs, 

thus providing an important addition to the ongoing policy regarding the potential 

relaxation of marijuana regulation.  This study is also the first in the illicit substance 

literature to use an instrumental variables count data model to estimate the full 

distribution of ER visits, thus accounting for unobserved factors that may be jointly 

correlated between individual propensity for MUD and demand for ER visits.  I fail to 

find a positive relationship between MUD and ER visits, instead uncovering suggestive, 

but inconclusive, evidence that MUD and ER visits may rather be negatively correlated. 

Essay 3 considers the relationship between wages and obesity.  Although prior 

literature has firmly established a negative relationship between wages and obesity, it is 

equivocal with regard to the underlying pathway(s) through which obesity results in 

lower wages.  Using firm-level data that gives me unique access to proxies for 

productivity and discrimination against obese individuals, I find that inputs to 

productivity, particularly health, are important confounders of the wage-obesity 

relationship.  I fail to find any evidence of discrimination against obese employees, but I 

do find that among females the negative relationship between wages and obesity exists 

only among mothers. 

  



 
EXAMINING THE EFFECT OF HEALTH BEHAVIORS ON WAGES AND  

 
HEALTHCARE UTILIZATION IN MODELS 

 
WITH ENDOGENEITY 

 
 
 
 
 

by 
 

Matthew J. Trombley 
 
 
 
 
 

A Dissertation Submitted to 
the Faculty of The Graduate School at 

The University of North Carolina at Greensboro 
in Partial Fulfillment 

of the Requirements for the Degree 
Doctor of Philosophy 

 
 
 
 
 

Greensboro 
2014 

 
 
 
 
 

 Approved by 
 
 Christopher A. Swann    
 Committee Chair 

  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2014 Matthew J. Trombley 
 

  



ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To my parents, Larry and Jenny Trombley  



iii 

APPROVAL PAGE 
 
 
 This dissertation, written by Matthew J. Trombley, has been approved by the 

following committee of the Faculty of The Graduate School at The University of North 

Carolina at Greensboro. 

 

 
 Committee Chair  Christopher A. Swann  
 
 Committee Members  Jeremy W. Bray  
 
   Joseph V. Terza  
 
   Stephen P. Holland  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
October 13, 2014  
Date of Acceptance by Committee 
 
August 28, 2014  
Date of Final Oral Examination 
  



iv 

ACKNOWLEDGMENTS 
 

I would like to acknowledge the enormous effort, support, and patience of my 

dissertation advisor Christopher Swann.  Even if he were not my advisor I likely 

would’ve graduated saying that I learned more from him about economics than from 

anyone else.  I would like to thank my committee members for their hard work and 

dedication to my success: Dr. Jeremy Bray for his encouragement and advice, and for 

making Essay 3 possible with access to data; Dr. Joseph Terza for all that he taught me 

about econometrics, his guidance, and for his collaboration on essay 1; and Dr. Stephen 

Holland for his support, advice, and suggestions over the years. 

 I would like to acknowledge the contributions of Jean Rosales, who always made 

sure that all deadlines were met and all transitions went smoothly, and who also provided 

friendship and a listening ear.  I would like to acknowledge the Work, Family, and Health 

Network for providing data for Essay 3, and acknowledge the contributions of Jesse 

Hinde and Michael Mills towards Essay 3.  I would like to thank the remaining faculty, 

staff, and my friends in the program for all of their valuable assistance, with particular 

thanks to Matthew Rabbitt, who never hesitated to lend a hand or offer encouragement.   

 At Furman University I would like to thank Dr. Jeffrey Yankow for instilling in 

me a love of economics, Dr. Kenneth Peterson for all of his valuable advice, and Dr. 

Thomas Smythe for the opportunities he gave me and the belief he had in me.   

 Lastly, I would like to acknowledge all of the friends and family members who 

supported and encouraged me throughout the program.  Special thanks to my wife for all 



v 

she sacrificed while I was in graduate school, and to my parents, who instilled in me 

everything I needed to complete this dissertation. 

  



vi 

TABLE OF CONTENTS 
 

Page 
 

LIST OF TABLES ............................................................................................................. ix 
 
CHAPTER 
 
 I. ESSAY 1: EFFICIENT ESTIMATION OF PARAMETRIC  
   COUNT MODELS WITH ENDOGENEITY: A MONTE  
   CARLO ANALYSIS .......................................................................................1 

 
1. Introduction ..............................................................................................1 
2. Parametric Count Models ........................................................................3 

2.1. Poisson Specification and Dependence ....................................3 
2.2. Individual Heterogeneity and Dispersion .................................4 
2.3. Count Models with Statistical Dependence ..............................6 
2.4. Other Count Models ................................................................10 

3. Count Models in the Full-Information Extended Olsen  
 Framework ........................................................................................12 
4. Estimating Policy Effects in the Extended Potential  
 Outcomes Framework ........................................................................15 
5. Evaluation and Comparison of the Estimators.......................................20 

5.1. Count Models with Endogenous Heterogeneity .....................20 
5.2. Simulation Background ..........................................................21 
5.3. Simulation 1—Estimating “Small” and “Large”  
 Treatment Effects ................................................................26 
5.4. Simulations 2 & 3 – Positive and Negative  
 Dependence .........................................................................30 

6. Discussion ..............................................................................................36 
 

 II. ESSAY 2: ESTIMATING THE RELATIONSHIP BETWEEN  
   MARIJUANA USE DISORDER AND EMERGENCY  
   ROOM UTILIZATION AMONG MEDICAID RECIPIENTS ....................40 

 
1. Abstract ..................................................................................................40 
2. Introduction ............................................................................................41 
3. Prior Research ........................................................................................43 
4. Conceptual Model ..................................................................................45 
5. Data and Variables .................................................................................48 

5.1. NSDUH ...................................................................................48 
5.2. Variables and Summary Statistics ..........................................50 
5.3. Descriptive Analysis ...............................................................63 



vii 

6. Empirical Approach ...............................................................................65 
7. Results ....................................................................................................71 

7.1. Exogenous Model Development .............................................72 
7.2. Endogenous Model Development ...........................................79 
7.3. First-Stage Estimation .............................................................87 
7.4. Robustness Checks..................................................................96 

8. Discussion ............................................................................................108 
 

 III. ESSAY 3: INVESTIGATING THE NEGATIVE  
   RELATIONSHIP BETWEEN WAGES AND OBESITY:  
   NEW EVIDENCE FROM THE WORK, FAMILY, AND  
   HEALTH NETWORK .................................................................................116 

 
1. Abstract ................................................................................................116 
2. Introduction ..........................................................................................117 
3. Background and Previous Literature ...................................................120 
4. Econometric Model ..............................................................................125 
5. Data ......................................................................................................129 

5.1. Work, Family, and Health Network ......................................129 
5.2. Standard Variables ................................................................131 
5.3. Additional Controls for Productivity ....................................136 

6. Results ..................................................................................................141 
6.1. Baseline Results ....................................................................141 
6.2. Productivity ...........................................................................146 
6.3. Discrimination.......................................................................148 

7. Parenthood ...........................................................................................152 
8. Conclusion ...........................................................................................155 
 

REFERENCES ................................................................................................................157 
 
APPENDIX A. EXPECTED VALUE OF UNOBSERVED  
  CONFOUNDER IN CONWAY-MAXWELL  
  POISSON DISTRIBUTION ...........................................................168 
 
APPENDIX B. COMPARISON OF THE APPROXIMATED AND  
  “TRUE” TREATMENT EFFECTS FOR THE CMP .....................170 
 
APPENDIX C. MEANS FROM THE SUBSTANCE ABUSE  
  LITERATURE ................................................................................174 
 
APPENDIX D. CRITERIA FOR MARIJUANA DEPENDENCE OR  
  ABUSE ............................................................................................178 
 



viii 

APPENDIX E. CORRECTION OF SECOND-STAGE STANDARD  
  ERRORS TO ACCOUNT FOR FIRST-STAGE  
  ESTIMATION OF RELEVANT PARAMETERS 
  (TERZA, 2012) ...............................................................................179 
 
APPENDIX F. MISSING AND IMPUTED DATA......................................................180 
 
APPENDIX G. ROBUSTNESS CHECKS ....................................................................184 
 
APPENDIX H. ADDITIONAL FEMALE SUMMARY STATISTICS ........................185 
 
 
  
  



ix 

LIST OF TABLES 

Page 

Table 1. 10% Treatment Effect with Endogenous Treatment ........................................27 
 
Table 2. 100% Treatment Effect with Endogenous Treatment ......................................28 
 
Table 3. 10% Treatment Effect with Sample Selection .................................................28 
 
Table 4. 100% Treatment Effect with Sample Selection ...............................................29 
 
Table 5. CMP Generated Data with Endogenous Treatment and  
  Positive Dependence (ν = 0.281) ...............................................................31 
 
Table 6. NB Generated Data with Endogenous Treatment and Positive  
  Dependence (ν = 25.00) .............................................................................31 
 
Table 7. RGP Generated Data with Endogenous Treatment and Positive  
  Dependence (ν = .025) ...............................................................................32 
 
Table 8. CMP Generated Data with Endogenous Sample Selection and  
  Positive Dependence (ν = 0.281) ...............................................................32 
 
Table 9. NB Generated Data with Endogenous Sample Selection and  
  Positive Dependence (ν = 25.00) ...............................................................33 
 
Table 10. RGP Generated Data with Endogenous Sample Selection and  
  Positive Dependence (ν = 0.025) ...............................................................33 
 
Table 11. CMP Generated Data with Endogenous Treatment and  
  Negative Dependence (ν = 4.50) ...............................................................36 
 
Table 12. CMP Generated Data with Endogenous Sample Selection and  
  Negative Dependence (ν = 4.50) ...............................................................36 
 
Table 13. Weighted Sample Means by Gender ................................................................51 
 
Table 14. Weighted Distribution of Annual ER Visits ....................................................54 
 
Table 15. Comparison of Weighted Means by Marijuana Use Disorder .........................64 
 
 



x 

Table 16. Weighted Distribution of Annual ER Visits by Marijuana Use  
  Disorder ......................................................................................................65 
 
Table 17. NLS Estimates of ER Visits for Females .........................................................73 
 
Table 18. NLS Estimates of ER Visits for Males ............................................................76 
 
Table 19. 2SNLS Estimates of ER Visits for Females ....................................................81 
 
Table 20. 2SNLS Estimates of ER Visits for Males ........................................................84 
 
Table 21. First-Stage Probit Estimates of Marijuana Use Disorder for  
  Females .........................................................................................................88 
 
Table 22. First-Stage Probit Estimates of Marijuana Use Disorder for  
  Males ............................................................................................................91 
 
Table 23. 2SNLS Robustness Checks for Females ..........................................................97 
 
Table 24. 2SNLS Robustness Checks for Males ...........................................................101 
 
Table 25. Summary Statistics (Female) .........................................................................132 
 
Table 26. Summary Statistics (Male) .............................................................................134 
 
Table 27. The Relationship between Wages and Obesity with Standard  
  Control Variables (Model 1) .....................................................................141 
 
Table 28. Productivity Differences as a Potential Factor Underlying the  
  Wage-Obesity Relationship .......................................................................143 
 
Table 29. Discrimination as a Potential Factor Underlying the Wage- 
  Obesity Relationship ..................................................................................144 
 
Table 30. Parenthood as a Potential Factor Underlying the Wage-Obesity  
  Relationship ...............................................................................................145  
 
 
 
 



1 
 

 

 
CHAPTER I 

 
ESSAY 1: EFFICIENT ESTIMATION OF PARAMETRIC COUNT MODELS 

WITH ENDOGENEITY: A MONTE CARLO ANALYSIS 
 
 

1. Introduction 

Count data regression models are a popular method of estimation when the 

outcome of interest assumes only nonnegative integer values.  The standard specification 

for count data is the Poisson distribution.  Efficiency of a Poisson estimator requires the 

restrictive assumption that the conditional mean equals the conditional variance: the 

assumption of equidispersion.  This assumption is tenuous in most situations, and much 

of the count modeling literature consists of refinements to the basic Poisson in an effort 

to provide a more flexible, and therefore efficient, fit for count data that are not 

equidispersed. 

One issue that has received less attention is the modeling of count processes in the 

presence of endogenous switching.  Endogenous switching models are appropriate when 

(a) the outcome of interest occurs as one of two regimes, determined by a binary 

“switching” variable, and (b) the switching and outcome variables are correlated through 

unobserved confounders.  The following study utilizes Terza’s (2009) Extended Olsen 

Model (EOM) in order to account for endogenous switching in either of its two main 

incarnations: sample selection or endogenous treatment.  We compare the performance of 

the standard Poisson model to several generalizations, including the negative binomial 

(NB), restricted generalized Poisson (RGP) and the Conway-Maxwell Poisson (CMP).  
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Unlike the popular NB model that can fit overdispersed data (variance exceeds the mean) 

but not underdispersed data (mean exceeds the variance), the RGP and CMP are able to 

fit data under either dispersion condition. 

The RGP has featured sporadically in the economics literature (Price; 2009; Wang 

& Famoye, 1997) but failed to catch on as an alternative to the NB or Poisson 

specifications, likely due to the restricted range of underdispersion it is able to fit, and its 

similarity to the NB model in the case of overdispersion.  To date, the CMP has not 

penetrated the econometric literature, although it is increasingly applied in other 

disciplines.  Consequently, several papers have discussed the performance of the CMP 

relative to other models (Francis et al., 2012; Sellers & Shmueli, 2010; Zou, Lord, & 

Geedipally, 2011).  However, no study has yet investigated the efficacy of the CMP or 

RGP in the context of endogenous switching.  The purpose of this paper is to present the 

EOM framework, and compare the performance of the relatively unknown RGP and 

CMP to the widely used NB and Poisson models under conditions of endogeneity. 

Results suggest that in the case of endogenous treatment, the new CMP model is 

most robust to misspecification, and, in general, provides both the best overall fit of the 

data and the minimum bias of the treatment effect estimates.  However, the model 

typically performs poorly in accurately estimating coefficient values.  The NB and RGP 

models both perform well in the case of endogenous sample selection, and either is 

preferable to the CMP in cases of sample selection with positive dependence.  However, 

the CMP is the superior model in situations of negative dependence in both the 

endogenous treatment and endogenous sample selection cases.  The standard Poisson is 
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the least robust of the four models, performing relatively poorly when the data are not 

generated by a pure Poisson process. 

2. Parametric Count Models 

2.1. Poisson Specification and Dependence 

The standard econometric model for count data is the Poisson distribution.  The 

Poisson probability mass function (PMF) can be expressed as: 

 

P(Y = y|X) =  e
−λλy

y!
 y = 0, 1, 2 . . . (Eq. 1) 

 
where E[Y | X] V[Y | X] λ exp(Xβ)= = = , X is a (n x k) vector of covariates, and β is a (k 

x 1) vector of parameters to be estimated.  The primary shortcoming of the Poisson 

specification is the assumption of equidispersion, i.e., that the conditional variance is 

equal to the conditional mean.  Provided the conditional mean is correctly specified, 

Poisson estimates retain their consistency if this assumption does not hold.  However, the 

precision of the estimates is diminished, and making economic inferences may become 

problematic (Cameron & Trivedi, 2005). 

The assumption of equidispersion is identical to the assumption of independence 

of the events.  The independence assumption requires that the probability of successive 

events (e.g., physician visits) is conditionally independent of the number of events that 

have previously occurred (e.g., previous physician visits.) (This refers to the 

independence of events comprising a single count, rather than independence of 

successive counts over time.)  If prior events make successive events more likely, then 

the counts are said to have positive occurrence dependence, which results in 
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overdispersion: a variance greater than the mean.  If prior events make successive events 

less likely, then the counts are said to have negative occurrence dependence, which 

results in underdispersion: variance less than the mean (Winkelmann, 2008).1  The 

Poisson is thus troubling from a theoretical standpoint since any individual heterogeneity 

that is not controlled for by X will introduce dependence between outcomes, even if the 

heterogeneity is exogenous.  The potential problem with the Poisson then is not just that 

it is too restrictive of a statistical model to perfectly fit the data, but also too restrictive of 

a theoretical model to fit most economic events. 

2.2. Individual Heterogeneity and Dispersion 

One way to model overdispersion is to introduce a stochastic error term.  As 

mentioned previously, count regression typically assumes that the expectation of Y 

conditional on X is an exponential function of a linear index: E[Y|X] = exp(Xβ).  

However, it is standard econometric practice to model the linear expectation of Y as 

having an additive error, such that: E[Y|X] = exp(Xβ+ε).  The “unobserved 

heterogeneity” ε introduces positive dependence between outcomes since it increases the 

probability of all positive realizations of Y but is not conditioned out of the expectation 

by X.  Moreover, exponential transformation of the error will manifest as a positive 

                                                           
1 Another closely related statistical framework considers duration dependence rather than occurrence 
dependence.  In this case duration refers to the amount of “time” elapsed between successful outcomes (i.e., 
a count of failures), where “time” is measured as the number of binary draws from a distribution that could 
result in success or failure.  As discussed in Winkelmann (2008), the statistical consequences of this 
framework are essentially the same as occurrence dependence.  We choose to use the occurrence 
framework for the remainder of the study with the opinion that dependence of occurrence rather than 
duration is a more intuitive way to understand the relationship between count outcomes.  
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value, resulting in a variance larger than the mean.2  This helps demonstrate the 

relationship between positive dependence and overdispersion. 

  Models of continuous, unobserved heterogeneity are known as continuous 

mixture models, because they are generated as a mixture of a Poisson process and a 

second, continuous, positive distribution (typically Gamma or log-normal.)  The marginal 

density of Y can be recovered by integrating out ε over its assumed distribution, in which 

case the independence assumption is restored. 

 Practitioners typically avoid this necessity by assuming that the unobserved 

heterogeneity follows a gamma distribution.  Doing so allows for a closed-form solution 

to the marginal density of Y that may be expressed as 

 
 P(Y = y|X, ν) =  λ

y

y!
Γ(ν+y)

Γ(ν)Γ(y+1)
� λ
ν+λ

�
y
 (Eq. 2) 

  
The result is the popular Negative Binomial (NB) specification, which includes an 

additional parameter ν that models overdispersion, even if the assumed data generating 

process does not involve continuous heterogeneity.  ν is constrained to be ≥ 0, with the 

standard Poisson nested at ν = 0.  The conditional mean remains identical to the Poisson 

specification, but the variance is now permitted to deviate from the mean and may be 

expressed as Var[Y|X,ν] = λ(1+ν-1λ).  Although frequently appearing in the literature, the 

                                                           
2 The error is sometimes modeled as a multiplicative error, with mean 1, expressed as E[Y|X]=exp(Xβ)u.  It 
may be more sensible to use this notation in the case of a positively distributed error such as the Gamma.  
However, since exp(Xβ)u = exp(Xβ+ ε) with ε = ln(u) and E[ln(u)] = 0, the two notations are  essentially 
equivalent.  Rather than juggle two conventions I choose to use the additive linear error for parsimony with 
standard linear models. 
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NB is limited to modeling overdispersion, where the variance exceeds the mean.  If data 

are underdispersed, the NB will collapse to a nested standard Poisson. 

2.3. Count Models with Statistical Dependence 

Another group of count models includes an additional parameter that allows 

models to account for the variance of Y without making an assumption about the 

distribution of the error.  One example that is flexible enough to handle both over- and 

underdispersion is the restricted generalized Poisson (RGP) model (Famoye, 1993).  The 

PMF of the generalized Poisson model can be expressed: 

 
 P(Y = y|X, ν) =  � λ

1+νλ
�
y (1+νλ)y−1

y!
exp �−λ(1+νy)

1+νy
� (Eq. 3) 

 
with the dispersion parameter ν restricted to the range [min(-1/max(λ),-1/max(Y)),1), 

where λ is the conditional expectation of Y.  ν > 0 indicates the data are over-dispersed, 

while ν < 0 indicates under-dispersion: the standard Poisson distribution is nested at ν = 

0.  As in the case of the NB model, the conditional mean of Y remains the same as the 

Poisson specification and the variance is now a function of both λ and ν: V[Y|X,ν] = 

λ(1+νλ)2.  Although the RGP can model underdispersed data, the range of 

underdispersion it can fit is limited to the value min(-1/max(λ),-1/max(Y)).  This 

restriction is set because for values of ν < 0, the CDF does not sum to one.  So long as ν 

is constrained to fall within the restricted range, the truncation error will only be 

approximately 0.5%, and estimates will be consistent.  However, if the true value of ν 

falls below the restriction, then the size of the error will increase to the point that the 

model fails to converge.  This limitation means that the magnitude of underdispersion the 
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model can handle is inversely related to the maximum value of Y.  This is often not 

problematic as higher underdispersion typically results in shorter right tails of the 

distribution.  However, in cases where there is both overdispersion from unobserved 

heterogeneity, and negative statistical dependence, the RGP may have trouble fitting the 

data, an outcome that will be explored in Section 5.4. 

Another model of statistical dependence is the Conway Maxwell Poisson (CMP).  

The CMP was formulated by Conway and Maxwell (1962) in the context of queuing 

systems for engineering applications.  A reformulation of the CMP in the regression 

context was provided by Shmueli, Minka, Kadane, Borle, and Boatwright (2005), 

opening the door for additional applications of the model.  Recent analyses include the 

modeling of automobile accidents (Lord, Geedipally, & Guikema, 2010; Lord, Guimeka, 

& Geedipally, 2008), risk analysis (Guikema & Goffelt, 2008), and customer behavior 

(Borle, Dholakia, Singh, & Westbrook, 2007), among others (Sellers, Borle, & Shmueli, 

2011).  Despite the increasing popularity of the model, it has yet to be utilized in the 

economics literature. 

The CMP is a straightforward extension of the standard Poisson, with pmf 

 
 P(Y = y|X, ν) =  λy

(y!)νZ(λ,ν)
        for y = 0, 1, 2 . . .  (Eq. 4) 

 

where ν > 0, and Z(λ,ν) = ∑ λj

(j!)ν
∞
j=0 .  Like the NB and RGP, the CMP nests the standard 

Poisson (ν = 1).  In addition, the CMP nests two other common specifications: the 

geometric (ν = 0, λ < 1), and Bernoulli (ν → ∞ with probability λ/1+λ; Shmueli et al., 



8 
 

 

2005).  The nested Poisson allows for a simple statistical test of whether or not the 

specification varies significantly from the standard Poisson.  Unlike the RGP, the CMP is 

theoretically unlimited in the range of underdispersion it is able to fit and is even capable 

of modeling binary outcomes, giving it an unmatched flexibility among fully parametric 

models.  The CMP also differs from the NB and RGP models in that the dispersion 

parameter ν enters the expression for conditional variance, in addition to conditional 

mean. 

 According to Schemueli et al. (2005) the first two moments of the CMP are 

 
 E[Y|X, ν] =  ∂lnZ

∂lnλ
=  λ ∂lnZ

∂λ
 (Eq. 5) 

 
and 

 
 V[Y|X, ν] =  ∂

2lnZ
∂2lnλ

≈  λ ∂E[Y|X,ν]
∂lnλ

. (Eq. 6) 

 
An obvious concern with the CMP specification as presented is that Z(λ,ν) is an 

infinite summation with no closed form.  There are two possible approaches to this issue.  

The first is to use an approximation for Z(λ,ν) provided by Minka, Shmeuli, Kadane, 

Borle, and Boatwright (2003) who demonstrate that  

 

 Z(λ, ν) ≈  
exp �νλ

1
ν�

λ(ν−1)/2ν(2π)(ν−1)/2√ν
 (Eq. 7) 
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Given 7, the first two moments may then also be approximated: 

 
 E[Y|X, ν] =  λ1/ν − v−1

2ν
 (Eq. 8) 

 
and 

 
 V[Y|X, ν] =  λ

1/ν

ν
. (Eq. 9)  

 
The approximations come at the cost of accuracy.  Minka et al. (2003) warn that the 

approximated moments will not hold if ν > 1 (negative dependence) or λ < 10ν (small 

mean with marginal positive dependence).  The approximation for Z(λ,ν) is also biased.  

The approximated value is generally within 5% of the true value.  However, if λ falls 

below 1, or if the data are highly overdispersed (ν < 0.5) the absolute percentage error 

increases rapidly, ranging from 6% to 100% (Shmueli et al., 2005).  If this approximation 

is used in the calculation of the likelihood function, coefficient estimates will become 

biased, further undermining the estimated relationship between X and Y.   

 An alternative approach is to estimate Z(λ,ν) directly.  Due to the factorial term in 

the denominator, the summation is convergent.  This allows Z(λ,ν) to be calculated to 

within some acceptable truncation error.  Furthermore, since the Z-function is 

convergent, the derivative of the summation can be expressed as the summation of the 

derivative, which allows E[Y|X,ν] to be computed to within an acceptable truncation 

error, as well, so that 
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 E[Y|X, ν] =  λ�
∑ jλj−1

(j!)ν
∞
j=1

∑ λj

(j!)ν
∞
j=0

� (Eq. 10) 

 
2.4. Other Count Models 

 The literature contains several other parametric approaches that can model both 

over- and under-dispersed count data.  Efron’s (1986) double-Poisson model includes an 

additional parameter that can fit both types of dispersion.  However, the double-Poisson 

is problematic in that the PMF is not defined when Y = 0.  Additionally, the CDF of the 

model is not guaranteed to sum to one.  Although the double-Poisson has seen a great 

deal of application in the statistical literature, the model has failed to catch on in the 

applied econometrics literature, and we omit this model as a comparison against the 

CMP. 

Another branch of the parametric literature involves modeling dispersed Poisson 

data using a polynomial expansion around the standard Poisson distribution.3  The 

primary benefit of this class of models is the relaxing of the assumption that the expected 

value of Y is an exponential function of a linear index, i.e., that E[Y] = exp(Xβ+ε).  The 

converse is that the moments of the distribution become more complex, as does the 

computation of corresponding policy effects and standard errors.  The two main 

drawbacks are the additional parameter that must be estimated for each increased order of 

polynomial, as well as the fact that the correct polynomial order is unknown to the 

researcher a priori, and must be determined using various fit statistics.  Additionally, 

                                                           
3 A similar, semi-parametric approach uses series expansion to approximate the density of the unobserved 
heterogeneity, maintaining the assumption of a linear exponential index.  See Gurmu, Rilstone, and Stern 
(1999) for an example. 
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polynomial expansion models are not amenable to integration due to the higher order 

values of the expectation that must be computed.  This makes adapting the model to 

account for unobserved heterogeneity problematic.  Although a notable segment of the 

literature, polynomial expansion methods have not gained the traction enjoyed by the 

standard Poisson or continuous mixture models, particularly in the health 

economics/health services literature, and we also do not consider these models for 

comparison.  

 There are several special cases of count outcomes that appear frequently in the 

literature, that we do not consider in this study.  The finite mixture model assumes that 

the data belong to one of K discrete classes with unknown probability πk, each of which 

has a given count specification fk(Y|X) (Winkelmann, 2008).  The Zero-Inflated model 

fits count data when zeros may occur due to one of two processes: a binary 

“participation” process, as well as zeros occurring naturally as part of the assumed count 

specification (Lambert, 1992; Mullahy, 1986).  Endogenous sample selection is a special 

case of the Zero-Inflated model, where the errors of the participation equation and the 

count outcome remain correlated after controlling for observables.  The Zero-Inflated 

model is closely related to the Hurdle model (Mullahy, 1986).  The Hurdle model also 

assumes a binary determinant of participation: however, the Hurdle model assumes that 

all zeros are due to non-participation, while the count outcome is a truncated distribution 

that generates only non-zero values.  

These special cases provide an extension of a given count distribution (e.g., 

Poisson, CMP) rather than a replacement for them.  For this reason we do not compare 
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behavior of the various specifications under each of these frameworks (with the exception 

of the special Zero-Inflated case of endogenous selection).  Although there may be some 

merit in such an analysis, comparison of each count model under every scenario in the 

literature lies outside the scope of this study.   

3. Count Models in the Full-Information Extended Olsen Framework 

A common difficulty faced in applied research is the presence of endogeneity in 

the model.  No matter how robust, a count probability mass by itself is unable to correctly 

model the outcome of interest if the true data generating process suffers from 

endogeneity.  A frequently encountered incarnation of the endogeneity problem is the 

presence of a binary endogenous switching variable (Terza, 2009).  Switching refers to a 

situation where the outcome of interest, Y, occurs as one of two possible values 

depending on the value of a binary “switching” variable, Xs.  For instance, researchers 

interested in estimating the effect of insurance on the number of physician visits would 

have to account for the fact that they are unable to observe the number of physician visits 

that would have occurred if individuals were in the opposite insurance state from the one 

in which they are observed.  If the probability of obtaining insurance is related with the 

number of physician visits in ways unobservable to the researcher (e.g., underlying 

health) then the switching is said to be endogenous.  

Switching models are a variant of the Roy Model, where the observed outcome Y 

depends on the value of a latent variable Xs
*.  Two common manifestations of switching 

are sample selection and treatment.  Sample selection occurs when Xs places Y into one 

of two regimes so that Yi = y if Xsi = 1 and Yi = 0 if Xsi = 0.  In the treatment case, Y 
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occurs as being influenced by Xs(treated) or uninfluenced by Xs (untreated).  Then Yi = 

y1i if Xsi = 1, Yi = y0i if Xsi = 0.  In both instances of switching, the value of Y that could 

have occurred but did not, remains unobservable.  

Consistent estimation of Y requires accounting for the relationship between Y and 

Xs.  In the endogenous switching case, Y and Xs are correlated through both observed and 

unobserved attributes, so that controls for observable characteristics are insufficient to 

consistently estimate Y.  The following provides a framework for estimating count 

models in the presence of either endogenous sample selection or endogenous treatment. 

 Let Xu be an unobserved confounder through which Xs and Y are related.  We 

formalize the relationship between Xs and Xu as: 

 
 Xs = I(Wα + Xu > 0) (Eq. 11) 

 
Where W = [Xo W+], Xo is an observed vector of covariates, W+ is a vector of identifying 

instrumental variables, and (Xu|W) is a known binary distribution.  The count PMFs 

remain as before, except now 

 
 λ = exp(Xoβo + Xuβu). (Eq. 12) 

 
 Let f(Y,Xs) refer to the joint distribution of the outcome of interest (Y), and the 

(possibly endogenous) switching variable (Xs).  We can express the joint distribution of 

the two variables as 

 
 f(Y, Xs|W) =  ∫ f(Y, Xs, Xu|W)d(Xu|W) = ∫ f(Y|Xs, W, Xu)f(Xs, Xu|W)d(Xu|W).∞

−∞  ∞
−∞   (Eq. 13) 
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Since (Xu|W) is a known distribution, the form of f(Xs,Xu|W) is also known: 

 
 f(Xs, Xu|W) = Xsg[Xu>−Wα](Xu|W) + (1 − Xs)g[Xu<−Wα](Xu|W),  (Eq. 14) 

 
where g[q](Xu|W) is the conditional distribution of Xu over the interval q.  Using (Eq. 13) 

and (Eq. 14) we obtain 

 

f(Y, Xs|W) =  Xs � f(Y|Xs, W, Xu)g(Xu|W)d(Xu|W)  
∞

−Wα
 

 +(1 − Xs)∫ f(Y|Xs, W, Xu)g(Xu|W)d(Xu|W) −Wα
−∞  (Eq. 15)  

 
in the case of ET, and 

 
f(Y, Xs|W) =  Xs ∫ f(Y|Xs, W, Xu)g(Xu|W)d(Xu|W)  ∞

−Wα + (1 − Xs)G(−Wα)    (Eq. 16) 

 
in the SS case, where f(Y|Xs,W,Xu) is the PMF of the specified count distribution, with λ 

expressed as in (12).  The likelihood function follows simply from (15) or (16): 

 
 L(θ|Y, Xs, W) = ∏ f(Yi, Xsi|Wi)n

i=1  (Eq. 17) 

  
 The integration of the error term out of the PMF of Y is analogous to the 

integration of the heterogeneity term in the continuous mixture model.  However, Terza 

(2009) demonstrates that under the EOM framework, the exact form of the error of Y 

need not be specified so long as it is a linear function of Xu conditional on W.  Our model 

thus fits dispersion along two dimensions: by modeling unobserved heterogeneity (Xu) 

that is jointly correlated with Xs and Y, as well as modeling exogenous dependence with 
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the parameter ν.  Lastly, assuming the vector of instruments is valid, the estimated value 

of βu allows for straightforward testing of the null hypothesis that Xs is exogenous. 

 Since Xu only appears in the λ term, the expectation of λ can be recovered by 

integrating out Xu, so that 

 
 λ� =  ∫ exp (Xoβ�o +  Xuβ�u

∞
−∞ )g(Xu|W)d(Xu|W) (Eq. 18) 

 
If we assume that g(Xu|W) ~ N(0,1) then we can rewrite (1.18) as 

 
 λ� = exp�Xoβ�o� exp �β

�u2

2
� (Eq. 19) 

 
(We maintain the assumption of standard normally distributed errors for the remainder of 

the paper.  Proof of (Eq. 19) is contained in Appendix A).  Now E[Y|Xo,Xu,ν] can be 

expressed as in (Eq. 5) or (Eq. 8) where λ� replaces λ in the formulation. 

4. Estimating Policy Effects in the Extended Potential Outcomes Framework 

 Coefficient estimates of count data models are of limited usefulness, providing 

only the direction of the relationship between explanatory variables and the outcome of 

interest Y.  Often, of primary consideration to researchers is estimating the effect that the 

change in a specific variable exerts on Y.  Particularly, we assume that studies are 

focused on a certain variable (the policy variable - Xp) that is at present, or in the future 

will be, under the control of a policy-making entity.  In standard econometric models, 

estimating the effect that a change in Xp would have on Y (the policy effect - PE) is a 

straightforward exercise.  In the case of endogenous switching, outcomes occur in one of 

two regimes (e.g., treated or untreated) and directly observing outcomes in the opposite 
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regime from that which occurred is not possible.  Furthermore, assignment to regimes is 

considered to depend on both observed (Xo) and unobserved (Xu) confounders.  

Correcting for endogenous assignment is necessary to produce unbiased estimates of 

policy effects.   

 In Terza’s (2012) Extended Potential Outcomes Framework, the expected value 

of Y is said to be “mean causal” if we can assume that the vector V = [Xo, Xu] is 

comprehensive: i.e., that V comprises all possible confounders for Xp and Y.  In this case, 

conditional on V, differences in the mean observed value of Y can be exclusively 

attributed to differences in the value of Xp.  In the extended POF, the policy effect of 

interest can be broadly stated as the difference between the distributions of YXp1  and, 

YXp2where Xp1 and Xp2 represent well-defined and distinct counterfactually imposed pre- 

and post-intervention versions of the policy variable, respectively.4  Without loss of 

generality, we represent the policy increment and pre- and post-policy scenarios as Δ, 

Xp1 =  Xp∗  and Xp2 =  Xp∗ +  ∆, respectively, where Xp∗  is a counterfactual version of Xp 

representing a (possibly degenerate) random variable.  For the remainder of the 

discussion we will focus on the following average incremental effect (AIE) as the policy 

effect of interest 

 
 AIE(∆) = E �YXp∗ +∆� − E �YXp∗ � (Eq. 20) 

                                                           
4 Simply put, the framework involves a thought experiment where we begin by assuming everyone in the 
population has Xp = Xp1 (a specific value or distribution of the treatment variable), with corresponding 
outcome YXp1.  We then assume that everyone is shifted to Xp = Xp2 by some exogenous force, and note the 
corresponding outcome YXp2.  With the assumption that V is comprehensive, the difference between YXp2 
and YXp1 can be casually interpreted as the effect of the “treatment” (i.e., the shifting of Xp1 to Xp2).  This 
reflects the total effect of both “prevention” (all individuals in the sample reporting Xp2 remain at Xp2) and 
“treatment” (all individuals in the sample reporting Xp1 are shifted to Xp2.) 
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 Expression (20) can be generalized to include binary or continuous changes in 

Xp1.  For example, when the policy variable is binary, if we set Xp∗  = 0 and Δ = 1 then 

(20) measures the average treatment effect (ATE).  When the policy variable is 

continuous and Δ approaches 0 then 
Δ 0
lim (AIE(Δ) / Δ)
→

 represents the average marginal 

effect (AME) of an infinitesimal change in the policy variable 

In the case of endogenous treatment, the endogenous variable Xs is also the policy 

variable of interest, Xp.  As a binary variable, the appropriate policy effect is the average 

treatment effect (ATE) that would occur if Xp was exogenously shifted from 0 to 1.  Let  

λ1 = exp�βp + Xoβo� exp �βu
2

2
� and λ0 = exp(Xoβo) exp �βu

2

2
�.  Then, given (Eq. 11) and 

(Eq. 19) we can write 

 
 ATE = EXo[λ1 − λ0] (Eq. 21) 

 
and 

 
 ATE� = 1

n
∑ λ�1i − λ�0in
i=1  (Eq. 22) 

 
Where λ� is the estimate of λ constructed using �β�p β�o β�u�, consistent estimators of 

�βp βo βu�. 

 In the SS case, we assume that Xp is exogenous.  Since the policy variable is not 

constrained to be binary as in the case of ET, all three policy effects discussed previously 

are feasible.  The estimator for the ATE remains as in (1.22).  Considering a non-binary 
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Xp, we can write λp2 = exp�Xp2βp2 + Xoβo� exp �βu
2

2
� and λp1 = exp�Xp1βp1 +

Xoβo� exp �βu
2

2
�.  The AIE can now be expressed as: 

 
 AIE = EXo,Xp1�λp2 − λp1� (Eq. 23) 

 
which can be estimated by 

 
 AIE� = 1

n
∑ λ�p2i − λ�p1in
i=1 . (Eq. 24) 

 
If Xp is continuous, and the researcher has no policy-relevant increment in mind, 

then the policy effect of interest is the AME. 

 
 AME =  EXo,Xp�βpλ� (Eq. 25) 

 
which can be consistently estimated by: 

 
 AME� = 1

n
∑ β�pn
i=1 λ�i . (Eq. 26)  

 
The previous formulations for the policy effects do not hold with the CMP 

distribution since the expected value of Y does not have a closed-form solution. 

With our assumption that Xu is standard normally distributed we can express (Eq. 18) as 

 
 λ =  ∫ exp (Xpβp + Xoβo +  Xuβu

∞
−∞ )φ(Xu)dXu. (Eq. 27) 
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Appendix A demonstrates that the endogenous version of λ has a closed-form solution.  

Unfortunately, (Eq. 10) does not hold if the closed-form solution is used when calculating 

the summation terms.  Instead, (Eq. 10) must be re-expressed as 

 

 E[Y|X, ν] =
∑

j�∫ exp�Xpβp+Xoβo+ Xuβu�φ(Xu)dXu
∞
−∞ �

j

(j!)ν
∞
j=1

∑
�∫ exp�Xpβp+Xoβo+ Xuβu�φ(Xu)dXu
∞
−∞ �

j

(j!)ν
∞
j=0

 (Eq. 28) 

(i subscripts here, and the in the remainder of the section, have been dropped for 
convenience.) 
 
 
If the distribution is assumed to be standard normal (28) can be computed using standard 

Gauss-Hermite quadrature.  Equation (28) forms the basis for the “true” CMP estimated 

policy effects. 

As discussed above, the ATE is equal to the difference between YXp2∗   and YXp1∗ .   

Let  

 
E[YXp2∗ |X, ν] equal (27) with λ2 =  ∫ exp (βp + Xoβo +  Xuβu

∞
−∞ )φ(Xu)dXu and 

E[YXp1∗ |X, ν] equal to (27) with λ1 =  ∫ exp (Xoβo +  Xuβu
∞
−∞ )φ(Xu)dXu.  Then  

 
 ATE = E[YXp2∗ |X, ν] - E[YXp1∗ |X, ν]. (Eq. 29) 

 
The AIE can be expressed identically to the ATE, except in this case  

λ2 =  ∫ exp (βp(Xp + Δ) + Xoβo +  Xuβu
∞
−∞ )φ(Xu)dXu and 

 λ1 =  ∫ exp (βpXp + Xoβo +  Xuβu
∞
−∞ )φ(Xu)dXu.  Calculation of the AIE using λ2 and 

λ1 remains the same in (Eq. 29). 
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The average marginal effect is the derivative of 10 with respect to βp, which is 

equal to 

 

 AME = ∂E[Y|X,ν]
∂βp

= Xp

∑ λj∞
j=0

∑ (j!)ν∞
j=0

∑ j2λj−1∞
j=0
∑ (j!)ν∞
j=0

−
∑ jλj−1∞
j=0
∑ (j!)ν∞
j=0

∑ jλj−1∞
j=0
∑ (j!)ν∞
j=0

∑ λj∞
j=0

∑ (j!)ν∞
j=0

 (30) 

 
where λ is the same as (Eq. 27). 

5. Evaluation and Comparison of the Estimators 

5.1. Count Models with Endogenous Heterogeneity 

In practice, dispersion is treated as a single statistical phenomenon to be fit by the 

selected specification.  Dependence models, rather than continuous mixture models, are 

the preferred method of fitting overdispersion since they do not require integration, nor 

do they require specifying a distribution for the dispersion.5,6  It is possible, however, that 

variance in the model could arise from both unobserved heterogeneity and other forms of 

dependence.  Individual-level heterogeneity (i.e., stochastic error) should be taken as 

given in any econometric model.  If theory also suggests another form of dependence, 

then dependence models alone may not provide the best fit for the data.  Moreover, if 

dependence does not follow the same distribution as the heterogeneity, then heterogeneity 

                                                           
5 Although technically the NB is a continuous mixture model, the closed form makes it functionally similar 
to a dependence model.  Chapter 2 of Winkelmann (2008) describes how the pure negative binomial model 
(as opposed to the Gamma-Poisson mixture expressed as a negative binomial) arises from a positive linear 
dependence process.  Although NB regression implicitly assumes that the heterogeneity is Gamma 
distributed, the simulations show that ν is functionally without an assumed distribution. 
 
6 Of the papers used to guide the simulation study (see Appendix C), virtually every parametric 
specification involves a negative binomial specification, while only two utilize a different continuous 
mixture model (log normal).  No studies utilize the RGP or CMP models. 
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models will misspecify the density of the dispersion.  In fact, it is possible for 

heterogeneity to increase the variance of the model, while negative dependence 

simultaneously decreases the variance of the model, an outcome that will be explored in 

Section 5.4.  As discussed in Section 3, one advantage of dependence distributions 

specified under Terza’s EOM is that the models account separately for both dependence 

and individual heterogeneity without the need to exactly specify the distribution of the 

heterogeneity.  This added flexibility should give the models more robustness than either 

mixture or dependence models in isolation, even allowing them to account for processes 

that pull the variance in opposite directions.  We explore this flexibility under various 

combinations of dependence in Section 5.4, and explore the ability of a heterogeneity 

model to properly account for multiple sources of dispersion. 

5.2. Simulation Background 

The estimation of treatment effects for count data under the EOM and EPOF can 

be executed with many parametric count specifications.  The following section 

characterizes the performance of the CMP, RGP, NB, and Poisson specifications under 

several distributions of data.  To the degree possible, our simulations are guided by the 

health economics literature.  Adapting the literature into a representative simulation 

scheme was conducted in an organized but unscientific manner.  Studies from the health 

economics literature ranging as far back as 20 years were collected.  Those that did not 

report a mean of the count variable, or that utilized a method other than parametric 

maximum likelihood (e.g., nonlinear least squares with an exponential mean) were not 

considered, leaving a total of 44 papers.  In general, count models are utilized within the 
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field to estimate healthcare demand (e.g., physician visits) or substance abuse (e.g., 

alcoholic drinks per week).  A majority of the count data literature is focused on the 

former, with physician/general practitioner (GP) visits being the primary variable of 

interest, and specialist visits, ER visits, prescription drug use, and inpatient hospital 

nights/weeks generally accounting for the rest of the healthcare demand literature. 

Mean averages of GP visits typically fell in a range between 1 and 6, while non-

GP visits generally had a mean less than 1.  Means from the substance abuse literature 

ranged anywhere between <1 and 99 (excepting a single outlier on each end, all other 

values were between 4 and 17).  (See Appendix C for details.)  Since GP visits comprise 

the bulk of the literature, the values drawn from these studies were selected to guide our 

simulation design.7  The data considered were drawn from myriad datasets, and were 

often separated by gender; some studies pooled multiple years and others only reported 

an annual mean across multiple years.  Rather than attempting to approximate an 

unweighted “mean of the means,” we simply chose a mean that we felt was 

representative of the data in general.  The mean selected is 3. 

In order to keep the study focused, we limit the policy effect estimated to the 

average treatment effect (ATE) rather than the average marginal (AME) or incremental 

effects (AIE) discussed earlier.  Current parametric methods of estimating nonlinear 

endogenous policy effects are intended to fit binary, rather than continuous (or multi-

                                                           
7 Although the substance abuse literature has higher means, we believe it is reasonable to assume that the 
behavior of the count models considered will not differ much between two means that are both relatively 
small.  Of more interest are the extremely small values of the healthcare demand studies.  Such small 
values are almost certainly created by dual data generating processes: a binary variable of requiring 
treatment, and a count of demand conditional on seeking treatment.  In general, studies did not report 
conditional means, but we feel safe assuming the mean conditional on requiring specialized treatment is 
roughly in line with that of the unconditional mean of GP visits. 
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level discrete) variables.  Although the AIE and AME can be computed in the 

endogenous sample selection case (under the assumption of exogeneity for the policy 

variables), estimating the ATE in the sample selection case is congruent with the binary 

policy effect estimated in the endogenous treatment case. 

The literature provides much less guidance regarding estimated policy effects.  

With few exceptions, results were reported as coefficient values rather than marginal or 

treatment effects.  We thus selected three “true” treatment levels for our simulations.  

Section 5.3 considers performance of the models estimating a “small” treatment effect 

(10% of the mean), and a “large” treatment effect (100% of the mean), generated using a 

standard Poisson distribution with log-normally distributed heterogeneity, and no 

dependence.  Ten percent is likely nearing the lower bound of what is economically 

significant in the case of a binary variable.  Although effect sizes greater than 100% of 

the mean are possible, it is likely that the magnitude of the 100% effect is sufficient to 

serve as a “large” treatment effect, and the ability of the various estimators to estimate the 

ATE would likely be similar for all values greater than 100%.  Section 5.4 considers data 

generated with both heterogeneity and dependence.  These data sets have a “moderate” 

treatment effect of approximately 25% of the mean. 

The four models are compared according to four criteria.  The relative accuracy of 

the models is determined by computing an absolute percent bias for the coefficients, as 

well as the expected value of Y and the ATE, where 
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 ABP(β) =  1
k
∑ �β

�i−β
β
�k

i=1  (Eq. 31) 

 
and k is the number of repetitions. 

 Relative efficiency of estimated treatment effects is compared using the Mean 

Squared Error (MSE) 

 
 MSE = Var�ATE� � + �ATE� − ATE�

2
. (Eq. 32) 

 
Goodness of fit is determined using the Akaike Information Criterion, a measure 

that penalizes for additional parameters, and then commonly appears in the literature 

when comparing count models.8 

 
 AIC = 2j – 2lnL, (Eq. 33) 

 
where j is the number of parameters in the model and lnL is the opmitized value of the 

log-likelihood function.  Although there is no test statistics to determine what a “good” fit 

is, the AIC provides a measure of relative fit, where smaller values indicate a superior fit 

of the data.9

  
 

All of the simulations have several components in common.  Recall that Xs is the 

binary selection/treatment variable, Xp represents the policy variable of interest (which 

may be endogenous), Xo is the remaining observed data, Xu is an unobserved (scalar) 

confounder that enters the equations for both Y and Xs, and W+ is an instrumental 
                                                           
8 For some examples of AIC in count model selection in health economics, see Deb and Trivedi (1997, 
2002), Gerdtham and Trivedi (2001), Liu and Gupta (2011), and Schmitz (2012). 
 
9 We calculated BIC for each model as well: however, the relative AIC and BIC values between models 
were virtually identical, and we do not report the BIC values. 
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variable for the binary selection/treatment equation.  The data are generated according to 

the following: 

Xo ~ U(0.5,1), W+ ~ U[0,1], Xu ~ N(0,1) 

Xp = 1(u > 0.45) if exogenous (where u is standard uniformly distributed) 

Xp = 1(αoXo + αwW+ + αc + Xu > 0) if endogenous and  

Xs = 1(αpXp + αoXo + αwW+ + αc + Xu > 0) for sample selection. 

In the case of endogenous selection, �αp αo αc αW� = [-0.5 1 1 0.5], resulting in a roughly 

64% probability of selection.  Endogenous treatment has participation coefficients α = [-

0.47 1 0.5] resulting in a 55% probability of treatment. 

 As demonstrated in 1.19, the expected influence of βu on the expected value of Y 

has a closed-form solution when Xu is standard normally distributed.  βu was selected so 

that unobserved heterogeneity served as “multiplier” of roughly 10%: i.e., exp �βu
2

2
� =1.1.  

For all simulations, βu = 0.437 in the Poisson, RGP, and NB cases, and βu = 0.437ν in the 

CMP scenario.  Where possible, the constant βc was selected to account for roughly 1/3 

of the effect of observables on the expected value of Y.  βc = 0.334 in the Poisson, RGP, 

and NB cases (except for the case of 100% treatment effect, where βc is adjusted to hold 

Y constant despite the larger βp value.)10 

 All CMP data is generated based on 4, with the true Z calculated to within a 

truncation error of 1e-5.  Estimation using the CMP model also computes the true Z to 

within 1e-5 of the “true” value, and post-estimation computation of the expectation of Y 

                                                           
10 Data generated according to a CMP process do not strictly follow this outline, since the model does not 
have a reliable closed-form solution to calculate the coefficient values.  The values assigned correspond as 
closely as possible to the plan of assignment discussed above. 
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and the ATE are calculated using 10 and 28 respectively.  (For comparison, estimations 

of Y and the ATE computed from 8 are reported in Appendix B.) 

 Each simulation is run 500 times with n = 5000.  All simulations are executed 

using Gauss-Legendre quadrature with ten points of support.  Since the focus of the 

analysis is on the performance of the count specification with regard to the β coefficients 

and ATE, we do not report the FIML estimations of the α parameters or the predicted 

probability of selection/treatment. 

5.3. Simulation 1—Estimating “Small” and “Large” Treatment Effects 

The first set of simulations compares the effectiveness of the models under 

endogenous sample selection or endogenous treatment with both small (10%) and large 

(100%) binary treatment effects (TE).  The data are generated according to a Poisson 

distribution with endogenous heterogeneity in the second stage equation as described in 

12.  Although the standard Poisson is the true data generating process, the CMP, RGP, 

and NB all nest the Poisson, and therefore should not be at a disadvantage.11  Estimated 

values are presented in Tables 1-4, with absolute percent bias in parentheses. 

The CMP produces the best estimate in the small TE case.  Both the CMP and 

Poisson have virtually identical bias and MSE values, but the CMP produces the most 

accurate point estimate of the four models.  Despite this, the log likelihood values 

generated by the CMP estimation do not reject the null hypothesis of a standard Poisson 

                                                           
11 The Poisson being described here is not technically a pure Poisson process, but a linear function of a log-
normal mixture of a Poisson specification (whereas the other three models are linear functions of a log-
normal mixture combined with a dependence specification).  This Poisson mixture is technically a model of 
overdispersion and is not subject to the same assumptions as a pure Poisson.  Therefore the standard errors 
used to calculate the MSE are not subject to the corrections necessary for a pure Poisson in the absence of 
equidispersion. 
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specification according to the likelihood ratio test.  The NB and RGP models both reject 

the standard Poisson model in favor of a dispersion model.  The RGP edges out the NB 

according to the information criterion, but the NB model has a slightly lower MSE.  Both 

distributions pay a small penalty in bias and MSE relative to the CMP and Poisson 

specifications. 

 
Table 1 

10% Treatment Effect with Endogenous Treatment 

 βp = 
.111 

βo = 
.720 

βc = 
.334 

βu = 
.437 

Y = 
3.00 

ATE = 
.330 

 
MSE 

 
AIC 

 
lnL 

Poisson .105 
(19.07) 

.718 
(1.30) 

.340 
(5.27) 

.442 
(2.70) 

2.99 
(1.02) 

.314 
(19.01) .062 23066.84 11529.42 

NB .119 
(22.17) 

.719 
(1.37) 

.335 
(5.31) 

.429 
(3.74) 

2.97 
(1.36) 

.353 
(21.86) .079 23027.99 11509.00 

RGP .121 
(21.79) 

.720 
(1.27) 

.334 
(5.14) 

.429 
(3.37) 

2.99 
(1.00) 

.362 
(21.82) .082 23002.19 11496.10 

CMP .112 
(17.80) 

.701 
(3.55) 

.312 
(11.36) 

.421 
(5.75) 

2.89 
(4.00) 

.334 
(18.82) .065 23071.87 11530.94 

 

In the large treatment effect case all four models perform substantially better, 

although the Poisson provides the best fit according to every metric.  None of the three 

dispersion models reject the null hypothesis that the standard Poisson is the best 

specification, and the Poisson also has the least bias and most accurate point estimate.   

The CMP performs slightly better than the NB and RGP in terms of bias and MSE, and 

has similar IC values to the NB.  The RGP, which had the best fit according to the AIC in 

the small TE case now has the worst. 
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In both sample selection models, the Poisson has the worst fit statistics, and is 

rejected in favor of all three dispersion models by a likelihood ratio test.  However, the 

Poisson also has the lowest MSE in both cases.  Although it has the lowest bias of the 

ATE estimate in the small TE case, it has the highest bias of the ATE estimate in the 

large TE case.  The CMP performs well in terms of bias, but has a higher MSE than the 

other three specifications.   

 
Table 2 

100% Treatment Effect with Endogenous Treatment 

 βp = 
1.331 

βo 
=.755 

βc =-
.621 

βu = 
.437 

Y = 
3.00 

ATE = 
3.15 

 
MSE 

 
AIC 

 
lnL 

Poisson 1.33 
(1.82) 

.754 
(1.24) 

-.615 
(3.58) 

.440 
(3.03) 

2.68 
(10.83) 

3.15 
(1.80) 5.103 21526.67 10759.34 

NB 1.351 
(2.41) 

.757 
(1.32) 

-.625 
(3.62) 

.419 
(4.91) 

2.66 
(11.47) 

3.19 
(2.33) 5.254 21701.92 10845.96 

RGP 1.351 
(2.29) 

.757 
(1.25) 

-.625 
(3.56) 

.418 
(4.89) 

2.69 
(10.71) 

3.21 
(2.55) 5.331 21724.52 10857.26 

CMP 1.290 
(3.77) 

7.25 
(4.53) 

-.624 
(3.55) 

.411 
(7.10) 

2.63 
(12.70) 

3.16 
(1.90) 5.223 21705.50 10847.75 

 

Table 3 

10% Treatment Effect with Sample Selection 

 βp = 
.111 

βo = 
.720 

βc = 
.334 

βu = 
.437 

Y = 
3.00 

ATE = 
.330 

 
MSE 

 
AIC 

 
lnL 

Poisson .109 
(18.34) 

.719 
(1.84) 

.365 
(10.59) 

.390 
(10.74) 

3.04 
(1.45) 

.329 
(18.35) .065 17963.88 8977.88 

NB .117 
(18.02) 

.703 
(2.53) 

.427 
(27.63) 

.358 
(19.18) 

3.09 
(3.07) 

.358 
(19.18) .073 17901.78 8945.89 

RGP .117 
(18.08) 

.703 
(2.54) 

.428 
(28.03) 

.300 
(31.21) 

3.09 
(3.15) 

.359 
(19.33) .074 17901.46 8945.73 

CMP .121 
(20.40) 

.756 
(5.15) 

.280 
(16.55) 

.349 
(20.07) 

2.89 
(3.66) 

.348 
(18.52) .076 17923.16 8956.58 
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 In all four models the CMP tends to do the worst job of estimating coefficient 

values.  This is to be expected since the CMP coefficient estimates must be rescaled as 

β�
ν��   in order to make a comparison to models with an exponential conditional mean.  The 

rescale is an approximation involving two estimated values, and is therefore subject to 

greater bias than the other models.  The CMP also performs the worst in estimating the 

true value of Y in three out of the four cases.  The NB, RGP, and Poisson produce very 

similar coefficient estimates in the endogenous treatment models, and similar Y estimates 

in all four cases.  The NB and RGP models do both fair slightly worse estimating the 

constant βc and the heterogeneity term βu in the sample selection case.  However, this 

does not affect the estimates of the coefficient of interest βp or the estimated ATE, which 

are fairly similar to the CMP and Poisson in the sample selection case. 

 
Table 4 

100% Treatment Effect with Sample Selection 

 βp = 
1.218 

βo = 
-.527 

βc = 
.334 

βu = 
.437 

Y = 
3.12 

ATE = 
3.22 

 
MSE 

 
AIC 

 
lnL 

Poisson 1.220 
(2.04) 

-.523 
(2.50) 

.330 
(7.40) 

.440 
(3.36) 

3.07 
(2.73) 

3.17 
(3.36) 2.383 15902.92 7947.46 

NB 1.225 
(2.06) 

-.531 
(2.48) 

.355 
(10.05) 

.406 
(7.78) 

3.17 
(2.15) 

3.28 
(2.97) 2.930 15693.86 7851.93 

RGP 1.224 
(2.04) 

-.529 
(2.20) 

.349 
(8.39) 

.415 
(5.71) 

3.16 
(1.76) 

3.26 
(2.57) 2.877 15695.90 7842.95 

CMP 1.257 
(3.63) 

-.541 
(3.46) 

.300 
(11.86) 

.423 
(4.39) 

3.10 
(1.51) 

3.27 
(2.53) 3.013 15695.91 7842.96 

 

None of the first set of simulations provides a clear recommendation for any of 

the four specifications.  However, all four specifications nest the true data generating 
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process, and none of the simulations introduces dependence.  Section 5.4 explores the 

performance of the specifications when they do not correspond exactly to the true data 

generating process, and when both heterogeneity and dependence cause dispersion.  The 

robustness of the various specifications to incorrect assumptions will provide a better 

demonstration of which model is preferable when the true distribution of the data is 

unknown. 

5.4. Simulations 2 & 3—Positive and Negative Dependence 

The second and third set of simulations compare the performance of the four 

models under conditions of positive and negative dependence in both the endogenous 

sample selection and endogenous treatment cases.  Data with positive dependence are 

generated using all three dependence models, while data with negative dependence are 

generated using the CMP specification.  All four count models are used to produce 

estimates from each of the three data configurations with positive dependence, in order to 

determine which model performs best when it is not the true data generating distribution.  

The NB is not considered in analyzing data with negative dependence since it collapses to 

the Poisson in this instance. 

The ATE is selected to be a “moderate” effect size of approximately 25% of the 

mean, and the mean remains at 3.  The dispersion is selected so that the conditional 

variance is approximately 7.3.  We target this variance with all three data generating 

processes in order to keep the comparison data sets as similar as possible.  Results are 

presented in Tables 5-10. 
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Table 5 

CMP Generated Data with Endogenous Treatment and Positive Dependence (ν = 0.281)12 

 βp = 
.141 

βo = 
-.005 

βc = 
.042 

βu =  
.123 

Y =  
3.13 

ATE = 
.917 

 
MSE 

 
AIC 

 
lnL 

Poisson -.097 
(168.95) 

-.025 
(457.71) 

.326 
(677.34) 

.202 
(65.44) 

3.80 
(21.44) 

-1.460 
(259.21) 5.741 27906.29 13948.15 

NB .094 
(33.14) 

-.002 
(76.67) 

.246 
(486.87) 

.065 
(47.06) 

3.36 
(8.15) 

1.187 
(29.95) .116 27207.99 13599.00 

RGP .097 
(31.03) 

-.002 
(81.70) 

.248 
(491.27) 

.065 
(47.27) 

3.17 
(3.91) 

1.09 
(20.63) .128 26742.13 13366.07 

CMP .141 
(11.05) 

-.005 
(103.79) 

.039 
(53.43) 

.122 
(9.89) 

3.05 
(2.33) 

.921 
(10.95) .024 26435.09 13212.55 

  

Table 6 
 
NB Generated Data with Endogenous Treatment and Positive Dependence (ν = 25.00) 
 

 βp = 
.281 

βo = 
.629 

βc = 
.334 

βu = 
.437 

Y = 
3.00 

ATE = 
.825 

 
MSE 

 
AIC 

 
lnL 

Poisson .214 
(23.71) 

.620 
(1.92) 

.365 
(9.55) 

.487 
(11.63) 

2.99 
(1.14) 

.637 
(22.88) .198 23676.38 11833.19 

NB .285 
(9.47) 

.629 
(1.57) 

.336 
(5.70) 

.432 
(3.68) 

2.97 
(1.31) 

.842 
(9.36) .285 23656.49 11823.25 

RGP .285 
(9.49) 

.629 
(1.57) 

.337 
(5.70) 

.433 
(3.68) 

2.97 
(1.31) 

.841 
(9.38) .285 23656.40 11823.20 

CMP .281 
(7.48) 

.632 
(3.36) 

.299 
(12.17) 

.466 
(6.82) 

2.53 
(15.65) 

.661 
(19.95) .092 23008.46 11499.23 

 
 
 One takeaway from all of the simulations with positive dependence is that in the 

case of endogenous treatment the standard Poisson with heterogeneity performs poorly 

when there is additional dependence.  The Poisson has the worst bias in estimating 

                                                           
12 Estimates of CMP coefficients produced by the NB, RGP, and Poisson models are multiplied by 0.281 
post-estimation in order to rescale them for comparison with the CMP.  This cannot be done in reverse 
since the “true” dispersion parameter from the CMP is unknown if the data are not generated by a CMP 
process. 
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treatment effects, even predicting a large effect in the wrong direction in the case of the 

CMP.  In all three cases the Poisson has the worst fit statistics, and the LR test correctly 

rejects it in favor of any of the three dependence models.  The one advantage the Poisson 

possesses is that it has the lowest variance of the estimates.  However, this cannot 

overcome its primary weakness of large and potentially catastrophic bias. 

 
Table 7 

RGP Generated Data with Endogenous Treatment and Positive Dependence (ν = .025) 

 βp = 
.281 

βo = 
.629 

βc = 
.334 

βu = 
.437 

Y = 
3.00 

ATE = 
.826 

 
MSE 

 
AIC 

 
lnL 

Poisson .193 
(31.36) 

.617 
(2.17) 

.374 
(11.93) 

.503 
(15.15) 

2.99 
(1.11) 

.574 
(30.46) .198 23764.23 11877.12 

NB .282 
(9.75) 

.628 
(1.55) 

.338 
(5.91) 

.434 
(3.74) 

2.97 
(1.32) 

.832 
(9.58) .280 23734.25 11862.13 

RGP .282 
(9.84) 

.628 
(1.55) 

.338 
(5.93) 

.437 
(3.77) 

2.97 
(1.31) 

.832 
(9.67) .280 23734.06 11862.03 

CMP .267 
(10.64) 

.654 
(4.15) 

.262 
(21.93) 

.473 
(8.37) 

2.97 
(1.30) 

.758 
(11.31) .249 23746.73 11868.37 

 
 
Table 8 
 
CMP Generated Data with Endogenous Sample Selection and Positive Dependence  
(ν = 0.281) 
 

 βp = 
.141 

βo = 
-.005 

βc = 
.042 

βu = 
.123 

Y = 
3.13 

ATE = 
.917 

 
MSE 

 
AIC 

 
lnL 

Poisson .075 
(46.67) 

.029 
(745.99) 

.153 
(264.42) 

.193 
(57.07) 

2.70 
(13.59) 

.709 
(22.93) .066 18931.99 9461.00 

NB .090 
(35.97) 

-.005 
(91.27) 

.261 
(523.59) 

.057 
(53.45) 

3.10 
(1.83) 

.971 
(9.59) .023 18545.38 9267.69 

RGP .091 
(35.63) 

-.006 
(94.15) 

.262 
(526.40) 

.054 
(55.73) 

3.11 
(1.86) 

.979 
(10.21) .025 18544.00 9267.00 

CMP .140 
(8.39) 

-.004 
(138.29) 

.037 
(46.80) 

.113 
(14.21) 

3.05 
(2.70) 

.925 
(8.05) .015 18529.36 9259.68 
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Table 9 
 
NB Generated Data with Endogenous Sample Selection and Positive Dependence  
(ν = 25.00) 
 

 βp = 
.281 

βo = 
.629 

βc = 
.334 

βu = 
.437 

Y = 
3.00 

ATE = 
.826 

 
MSE 

 
AIC 

 
lnL 

Poisson .277 
(7.86) 

.635 
(2.41) 

.335 
(7.54) 

.429 
(3.97) 

3.01 
(1.14) 

.817 
(7.78) .265 18214.33 9102.65 

NB .286 
(7.67) 

.616 
(2.63) 

.414 
(23.94) 

.322 
(26.22) 

3.09 
(2.93) 

.865 
(8.67) .282 18121.29 9055.65 

RGP .287 
(7.73) 

.616 
(2.66) 

.417 
(24.74) 

.317 
(27.30) 

3.09 
(3.06) 

.868 
(8.86) .284 18120.47 9055.24 

CMP .308 
(11.55) 

.805 
(8.60) 

.199 
(40.55) 

.376 
(13.95) 

3.49 
(14.06) 

.964 
(17.22) .557 18651.22 9320.61 

 
 
Table 10 
 
RGP Generated Data with Endogenous Sample Selection and Positive Dependence  
(ν = 0.025) 
 

 βp = 
.281 

βo = 
.629 

βc = 
.334 

βu = 
.437 

Y = 
3.00 

ATE = 
.826 

 
MSE 

 
AIC 

 
lnL 

Poisson .275 
(8.95) 

.641 
(2.93) 

.321 
(8.09) 

.442 
(4.03) 

3.02 
(1.10) 

.814 
(8.85) .271 18368.79 9179.40 

NB .286 
(7.77) 

.617 
(2.59) 

.411 
(23.02) 

.327 
(25.11) 

3.09 
(2.85) 

.862 
(8.66) .281 18175.59 9082.80 

RGP .287 
(7.85) 

.617 
(2.60) 

.414 
(23.90) 

.322 
(.263) 

3.09 
(2.98) 

.866 
(8.88) .284 18174.89 9082.45 

CMP .310 
(12.09) 

.814 
(9.80) 

.172 
(48.46) 

.387 
(11.40) 

3.50 
(13.95) 

.959 
(16.82) .560 18717.12 9353.56 

 

The CMP performs well in all three cases.  The CMP has the best fit statistics 

when it is the correctly specified distribution, and also when the data follow an NB 

distribution.  In the case of RGP data, the CMP has fit statistics comparable to the true 

RGP model.  The CMP also has a lower variance of the estimator than the RGP and NB 

models, resulting in a smaller MSE even when the data follow a NB or RGP 
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specification.  Although the CMP has somewhat high bias with NB distributed data, the 

bias of the NB model is even worse with CMP data.  The CMP also performs better on 

RGP data than the RGP performs with CMP data, although when both models are pitted 

against NB data, the RGP has the lowest bias of the two, landing in a virtual tie with the 

true NB model.  As in the case of simulations 1-4, the CMP does a relatively poor job 

fitting the coefficients compared to the NB and RGP models, although the Poisson fares 

the worst in this regard. 

 Although the CMP is arguably the superior model in the case of endogenous 

treatment, this advantage does not hold in the case of sample selection.  The CMP 

performs best across the board when it is the true data generating process, but the bias of 

the treatment effect estimates, and the mean squared error are the worst of all four models 

when the data are NB or RGP distributed.  Moreover, the CMP does substantially worse 

fitting the data than any of the other three models.  Contrary to the endogenous treatment 

case, the NB and RGP models perform fairly well (and nearly identically) when they do 

not reflect the true data generating process.     

The Poisson performs reasonably well in the CMP case, but is still the worst by 

every metric, indicating that it may have trouble handling dependence when it re-enters 

the conditional mean as it does in CMP distributed data.  The Poisson fares better with 

RGP and NB data, actually having the least bias and smallest MSE in the NB case, and 

fitting the data better than even the CMP in both cases.  Overall, the NB model edges the 

RGP slightly in fit and bias over the three models, although the two models are virtually 

interchangeable. 
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In case of negative dependence the mean remains at 3 and the ATE remains at 

25% of the mean.  However, the presence of the heterogeneity presents a problem, since 

it overdisperses the data relative to a basic specification.  In the case of the CMP, since 

the dependence parameter enters the conditional mean (including the heterogeneity term), 

it takes an extreme level of negative dependence (approaching a binary outcome) to make 

the conditional variance less than the conditional mean.  Rather, the model presented for 

simulation represents a case where individual heterogeneity increases the variance of the 

model, but negative dependence decreases the variance, leaving the model with net 

overdispersion.   

One interesting finding of the present study is the failure of the RGP model in the 

case of negative dependence with overdispersion induced by individual heterogeneity.  

The restrictions on the RGP force the dispersion parameter ν to be such that ν >  

min(-1/max(λ),-1/max(Y)) when the dependence is negative.  This is typically not a 

problem, but the mix of net overdispersion with negative dependence results in such large 

values of Y and/or λ that ν is constrained to be virtually 0.  Although in theory this should 

collapse the model to the Poisson, it rather prevents the model from achieving concavity 

and it is unable to converge consistently in this case.  As such, we do not consider the 

RGP for comparison with the CMP or Poisson models in the case of negative 

dependence. 

In the ET case, the Poisson performed fairly poorly in terms of bias of the ATE 

estimate and the MSE.  As expected the CMP performed much better, but still had a 

fairly large bias and MSE in comparison to data with positive dependence.  Both models 
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performed better in the sample selection case, and the Poisson was actually more accurate 

in estimating the coefficient values.  However, the CMP still fit the data better, rejecting 

the null hypothesis of a Poisson specification, in addition to having both lower bias and 

MSE of the ATE.  (See Tables 11 and 12.) 

 
Table 11 
 
CMP Generated Data with Endogenous Treatment and Negative Dependence (ν = 4.50) 
 

 βp = 
1.023 

βo = 
2.506 

βc = 
2.540 

βu = 
1.965 

Y = 
3.03 

ATE = 
.766 

 
MSE 

 
AIC 

 
lnL 

Poisson 2.323 
(127.10) 

3.000 
(22.47) 

0.822 
(67.63) 

1.301 
(33.79) 

2.89 
(2.98) 

1.463 
(93.54) 1.384 21250.64 10620.32 

CMP 0.942 
(8.18) 

1.84 
(25.02) 

1.700 
(33.07) 

1.343 
(31.63) 

2.90 
(2.57) 

.939 
(24.21) .292 20398.54 10194.27 

 
 
Table 12 
 
CMP Generated Data with Endogenous Sample Selection and Negative Dependence  
(ν = 4.50) 
 

 βp = 
1.023 

βo = 
2.506 

βc = 
2.540 

βu = 
1.965 

Y = 
3.03 

ATE = 
.766 

 
MSE 

 
AIC 

 
lnL 

Poisson 1.213 
(18.82) 

2.599 
(6.06) 

2.224 
(12.43) 

1.184 
(39.75) 

3.12 
(4.78) 

.825 
(10.18) .228 16689.19 8339.60 

CMP .466 
(54.40) 

1.050 
(57.17) 

1.103 
(56.57) 

.634 
(67.75) 

3.03 
(1.98) 

.793 
(7.60) .184 16484.67 8237.34 

 

6. Discussion 

The results of the simulations did not overwhelmingly favor one model over the 

others.  All four models performed comparably well at estimating both “large” and 

“small” treatment effects when the data follow a Poisson distribution.  This result is not 

surprising given that all three of the dispersion models nest the standard Poisson. 
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The strongest conclusion to be drawn from the simulations is that the Poisson 

specification does not fare well when there is both unobserved heterogeneity and 

occurrence dependence (i.e., the Poisson is not robust to misspecification).  The three 

dependence models perform substantially better in terms of fit and bias of the treatment 

effect in virtually every case.  Although the Poisson does have a low variance of the 

estimate, and generally does a comparable job estimating coefficient values, it is also the 

only specification to fail catastrophically and predict a treatment effect that was both 

large and in the wrong direction. 

The simulations show that in the case of endogenous treatment, the CMP is the 

most robust to being the incorrect specification in terms of fit of the data and accuracy of 

the estimated ATE.  However, the CMP performs worse than the other two dispersion 

models in the sample selection case by virtually every metric.  Additionally, the CMP 

produces the worst coefficient estimates in nearly every model, in both the ET and SS 

case, and the approximation that re-scales the CMP to be comparable to the other models 

becomes less reliable the more dispersed the data become.   

 These results suggest that the CMP is the preferred specification if the data suffer 

from endogenous treatment, and the researcher is primarily interested in estimating 

treatment effects.  Under positive occurrence dependence, either the NB or RGP models 

are appropriate when the data involve endogenous sample selection, or when the 

researcher is primarily interested in coefficient estimates.  However, if there is suspected 

negative dependence, both the NB and RGP models will be inappropriate, and the CMP 

is preferred no matter what the objective.   
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 The primary shortcoming of the CMP model is the failure of the approximation 

for Z during integration.  Data that deviate significantly from a standard Poisson 

distribution result in unreliable estimates when the approximation is used.  This requires 

that Z be computed directly to within an acceptable truncation error, resulting in a 

massive penalty in computing time.  Running on Stata 12 MP with two processors, the 

Poisson, NB, and RGP endogenous treatment models each took less than ten seconds per 

repetition.  The CMP took roughly three minutes.  In the sample selection case, the 

Poisson, NB, and RGP models still took under ten seconds, whereas the time necessary 

for the CMP to execute rose to nearly 35 minutes.  These discrepancies arose with 

simulated data, and it’s likely that real data would exacerbate the differences in speed 

between the two models.  Despite this issue, the simulation results suggest that the CMP 

is a preferable model when the research goal is estimation of an endogenous treatment 

effect, or estimation of an effect with both unobserved heterogeneity and negative 

dependence.  

There are several potential approaches for increasing the scope of this study that 

we elected not to pursue.  In the case of endogeneity it may be helpful to test the response 

of the model to various levels of selection or treatment.  While characterizing the 

performance of the EOM under several proportions of selection/treatment may be 

beneficial, the relative performance of the various count specifications should remain 

constant under different conditions of endogeneity.  A more relevant extension would be 

to characterize the performance of the count models under a different parametric 

framework of endogeneity.  For instance, a growing literature has begun to approach 
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endogenous count models using a Copula specification, whereby the errors of Xs and Y 

are modeled as marginal distributions linked by a dependence parameter, rather than 

belonging to a joint distribution (Van Ophem, 2000; Zimmer & Trivedi, 2006).  This 

approach is advantageous in that it requires limited assumptions regarding the 

relationship between the errors of Y and Xs.  Moreover, Copulas do not force variance-

increasing heterogeneity on the model in order to account for endogeneity: omitting 

heterogeneity from the model may allow better comparisons of the specifications, 

particularly the CMP and RGP. 

However, Copula estimation of variables with discrete margins may encounter 

problems in convergence.  Methods to transform discrete marginals into a continuous 

distribution are available, but will introduce a small amount of additional bias to the 

model (Trivedi & Zimmer, 2005.)  Additionally, if there is reason to believe that there is 

both unobserved heterogeneity and latent dispersion in the model, the Copula approach 

will not provide a computational benefit as an integration of the PMF will still be 

required.  Regardless, the merits of the Copula framework relative to the EOM remain a 

topic for future review. 
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CHAPTER II 

 
ESSAY 2: ESTIMATING THE RELATIONSHIP BETWEEN MARIJUANA USE 
DISORDER AND EMERGENCY ROOM UTILIZATION AMONG MEDICAID 

RECIPIENTS 
 
 

1. Abstract 
 
 The study uses data from the National Survey of Drug Use and Health (NSDUH) 

across seven years (spanning 2005–2011) to investigate the relationship between 

marijuana use disorder and total emergency room (ER) visits in the past year among adult 

(age 18+) Medicaid recipients.  No economic study of demand for medical care has ever 

looked at marijuana use separate from other drugs to disentangle the effect of marijuana 

versus so-called “hard” drugs: this distinction is of growing policy-relevance as the 

national debate grows over the future of marijuana regulation, and states begin to 

consider the ramifications of relaxing current restrictions.  Consistent with previous 

literature I find a positive relationship between hard drug use disorder and ER visits.  

However, I fail to find  a positive relationship between marijuana use disorder and ER 

visits, conditional on hard drug use disorder  Using a two-stage nonlinear least squares 

approach, I estimate an average treatment effect ranging from roughly -0.62 to -1.23 

visits among females, and from -0.61 to -1.03 visits among males.  Although these 

estimates are generally not significantly different from zero, the preferred specification 

rejects an ATE greater than 0.24 for females and 0.23 for males at the 95% significance 

level, suggesting that if a positive relationship exists,  it is fairly small. 
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2. Introduction 

Marijuana is a topic of growing national interest: 20 states and the District of 

Columbia have legalized medical marijuana, while seventeen have decriminalized 

marijuana, and both Colorado and Washington recently legalized the limited sale and 

distribution of marijuana (Office of National Drug Control Policy, 2013).  As debate 

continues regarding the future of marijuana policy, it is important for policymakers to 

understand the potential ramifications of relaxing marijuana regulations.  In this study I 

use data from the National Survey of Drug Use and Health (NSDUH) to estimate the 

relationship between marijuana use disorder and total annual ER visits among Medicaid 

recipients.  Marijuana use disorder (MUD) refers to either dependence on or abuse of 

marijuana, as defined by the Diagnostic and Statistical Manual of Mental Disorders 

(Appendix D).  Given the heterogeneity of consumption among marijuana users, MUD 

provides a clinically significant definition of use that reflects severe levels of 

consumption.  While previous studies have investigated the effect of marijuana 

consumption on education or employment (e.g., Bray, Zarkin, Ringwalt, & Qi, 2000; 

McCaffrey, Pacula, Han, & Ellikson, 2010; Yamada, Kendix, & Yamada, 1996; Popovici 

& French, 2014) no study has investigated the effect of marijuana consumption on acute 

healthcare utilization.  Estimates of the relationship between MUD and ER visits will be 

of use to state and federal policymakers considering the potential costs of relaxed 

marijuana regulation. 

Although marijuana is typically considered less dangerous than so-called hard 

drugs (e.g., cocaine, heroin, methamphetamines, prescription narcotics), its consumption 
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is correlated with numerous health issues such as respiratory problems, liver disease, 

cardiovascular disease, sexually transmitted disease, and increased mortality among 

AIDS patients (Brook, Stimmel, & Brook, 2008; Gordon, Conley, & Gordon, 2013; 

Mittleman, Lewis, Maclure, Sherwood, & Mueller, 2001; Schuster, Crane, & Gonzalez, 

2012; Sidney, Beck, Tekawa, Quesenberry, & Friedman, 1997; Smith & Crespo, 2001).  

Marijuana consumption may also trigger or exacerbate schizophrenic episodes (Rey & 

Tennent, 2002), and daily smokers of marijuana are more likely than non-users to visit 

the physician for respiratory problems or injury (Polen, Sidney, Tekawa, Sadler, & 

Friedman, 1993).   

While several previous studies have investigated the potential causal impact of 

drug use on demand for acute medical care no study has specifically tried to isolate the 

effect of marijuana use.  This has left a need for marijuana-specific estimates that may 

inform the current policy debate regarding the relaxation of marijuana regulations at the 

state and federal level.  Moreover, no previous study has considered the effect of drug use 

(marijuana or otherwise) among Medicaid recipients.  Care covered by Medicaid derives 

from Federal and state discretionary budgets.  With the Affordable Care Act expanding 

Medicaid coverage to include all individuals under 65 earning less than 133% of the 

federal poverty limit beginning in 2014 (among participating states), information 

regarding demand for health services among Medicaid recipients may be especially 
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valuable to policymakers, particularly those from states considering Medicaid 

expansion.13 

            This study is also the first in the literature to utilize an instrumental variables 

count data model to estimate the relationship between marijuana dependence and ER 

visits, making estimates robust to both time-invariant and time-variant endogeneity.  This 

study is therefore the most econometrically rigorous study of the relationship between 

drug use and ER visits to date, and demonstrates an approach that may be used to 

estimate other healthcare outcomes among drug users.  

3. Prior Research 

Several individual-level economic studies have investigated the direct effect of 

marijuana use on physical or mental health.  Williams and Skeels (2006) estimate the 

joint impact of tobacco and marijuana use on self-reported health in Australia and find 

that weekly use of marijuana is associated with a 6-18 percentage point reduction in the 

probability of reporting excellent or very good health, conditional on smoking status.  

Marijuana users were also 22 percentage points more likely to have seen a doctor in the 

past twelve months.  A similar study by van Ours and Williams (2012) finds that 

marijuana use among citizens of Amsterdam is correlated with diminished physical 

functioning among males and diminished mental functioning among both males and 

females.   

                                                           
13 Estimates from current Medicaid recipients are not perfectly generalizable to individuals who are not 
currently covered by Medicaid.  However, since the influx of new beneficiaries will disproportionately 
consist of males and individuals without children, it is likely that estimates in this study will serve as a 
lower bound on the relationship between drugs and healthcare use. 
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Several previous studies have attempted to link the health effects of drug use to 

demand for medical care.  French, McGeary, Chitwood, and McCoy (2000) study the use 

of outpatient services, ER visits, and total hospital admissions among residents of Dade 

County Florida who use illicit drugs weekly or more.  They find that use of illicit drugs is 

significantly associated with fewer outpatient visits, but increased ER and hospital 

admissions.  However, the authors assume exogeneity of drug use, which may result in 

biased estimates if drug use is endogenous to health care utilization.  McGeary and 

French (2000) use the National Household Survey on Drug Abuse (NHSDA—

predecessor to the NSDUH) to investigate the relationship between weekly drug use and 

the probability of any ER services used in the last year, using a bivariate probit with 

instrumental variables to account for the potential endogeneity of drug use.  The authors 

find that the probability of ER utilization is significantly higher among both male and 

female drug users.  They also find that the error terms in the drug use and acute medical 

care equations are significantly negatively correlated, and results of a Hausman test reject 

the null hypothesis that drug use is exogenous to acute medical care.  French, Fang, and 

Balsa (2011) utilize a fixed effects regression in lieu of an instrumental variables 

approach to investigate the effect of “casual” (less than sample median) or “heavy” 

(greater than sample median) drug use frequency on the probability of any ER visit or 

hospital admission, and counts of ER visits and  hospital admissions.  Heavy drug use 

was correlated with a significantly higher probability of any ER use among both males 

and females, but only hospital stays for women.  Both heavy drug using males and 

females were admitted to the hospital more frequently, but drug use intensity had no 
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effect on the number of ER visits.  Drug use of any intensity was also significantly 

correlated with increased probability of and number of injuries among both males and 

females.  However, these studies fail to disentangle the effect of marijuana from other 

hard drugs, and the implications for states considering new marijuana policy is unclear. 

4. Conceptual Model 

Acute medical care is one service of many on which people are able to spend 

their time or money, and they will select a utility maximizing number of ER visits, 

subject to a budget constraint.  I assume that ER visits do not provide any utility in and of 

themselves, but rather, going to the ER restores utility by alleviating or eliminating 

disutility that is caused by an injury or illness.  To consume an ER visit, individuals incur 

a cost (e.g., time and money), and so only visit the ER when the utility restored by doing 

so exceeds the utility that could be purchased by using the same resources (e.g., time and 

money) on other goods or services.14  Therefore, demand for ER visits depends on the 

amount of utility that would be gained by going to the ER and the amount of utility that 

would be foregone by going.   

Consistent with French et al. (2011), I assume that individuals have a latent 

probability of negative health shocks determined by H(Xo, ,M(Xo,Xu),D(Xo,Xu), Xu , μ), 

where Xo is a vector of observable individual demographic and socioeconomic 

characteristics, M is a binary variable representing MUD, D is set of binary variables 

representing alcohol, nicotine, and/or hard drugs use disorders, Xu represents unobserved 

heterogeneity that may be jointly correlated with MUD and the probability of a negative 

                                                           
14 The monetary cost of visiting the ER is capped at $3.90 for Medicaid recipients, so time costs and 
“psychic” costs of going to the ER will be the primary costs associated with ER visits. 
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health shock (e.g., future discount rate, health knowledge), and μ is a stochastic error 

term capturing factors that may affect health but are assumed to be exogenous to 

substance use disorders. 

The probability of negative health shocks may be increased by MUD through 

illness (e.g., respiratory issues among marijuana smokers, or reduced time and money for 

investment in health stock), or through an increased probability of injury (e.g., driving 

while under the influence).  On the other hand, the probability of health events may be 

decreased if, for example, individuals with MUD are less likely to participate in activities 

that can result in injury (e.g., less time driving, less time pursuing outdoor activities).  If 

those with MUD are more likely to suffer adverse health events, then the expected benefit 

of going to the ER should be higher than among non-dependents, and ceteris paribus 

marijuana dependents should visit the ER more often.  Conversely, if those with MUD 

are less likely to suffer adverse health events then their expected benefit of going to the 

ER should be lower, and we should see fewer visits to the ER.      

While the demand for ER visits (ER) will partly (or even primarily) be 

determined by H, other inputs such as M, D, factors contained in Xo (e.g., relative 

income) or Xu (e.g., future discount rate) will also influence demand by determining the 

tradeoff in utility between the consumption of ER visits and the consumption of other 

goods (including marijuana), conditional on H.15  The full demand equation for acute 

medical care may thus be expressed as 

 

                                                           
15 Since data are not available on the price of acute medical care or marijuana, these factors are also 
contained in Xu. 
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 ER = f(H(Xo, Xu, M, D, μ), Xo, Xu, M, D). (Eq. 1) 

 
Since H is unobserved, the goal of the empirical model is to estimate the reduced-form 

equation 

 
 ER = f(Xo, Xu, M , D). (Eq. 2) 

 
The effect of MUD is considered independently of other illicit drugs for several reasons.  

First, marijuana is the most commonly used illicit drug in the United States: in 2012 

roughly 7% of Americans twelve and older had used marijuana at least once in the past 

month (National Institute on Drug Abuse, 2014).  Although the risk of dependence is 

estimated to be less than for other substances such as nicotine, alcohol, or other drugs, 

roughly one in ten individuals who ever try marijuana will at some point develop 

dependence: a risk that rises to one in two among daily users (Copeland & Swift, 2009).  

Second, marijuana is policy-relevant in isolation given the current political climate where 

the need to assess the potential costs of expanded marijuana use, and the subsequent 

potential for increased levels of marijuana use disorder, is a pressing issue at the state and 

federal level.  Finally, there is reason to believe that the effect of marijuana on demand 

for acute medical care may differ to that of other illicit drugs.  In general, marijuana is 

substantially cheaper in monetary terms than many other illicit drugs (Fries, Anthony, 

Cseko, Gaither, & Sculman, 2008) and due to the relative prevalence of marijuana is also 

likely cheaper in time costs to obtain.  Moreover, consumption methods for marijuana are 

generally less prone to directly cause disease (e.g., infection), or to result in direct health 
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shocks from accidental overdose or substance adulteration (Ashton, 2001; British 

Medical Association, 2013).   

One remaining identification issue is that Xu is not observed.  Since M is a 

function of Xu, failure to condition on these unobservable factors will produce estimates 

that are confounded by the joint relationship of Y and M to Xu.  To account for this, I 

utilize a nonlinear instrumental variables method introduced by Terza (1998, 2009).  By 

assuming that Xu is continuous and standard normally distributed conditional on 

observable covariates (and with at least one valid instrument that is correlated with M and 

independent of Y conditional on Xo), I am able to condition on Xu, which renders M 

exogenous to Y.  This approach will be addressed further in the empirical section. 

5. Data and Variables 
 
5.1. NSDUH 
 

The National Survey on Drug Use and Health (NSDUH) is a nationally 

representative sample of non-institutionalized Americans age twelve and older, funded by 

the Substance Abuse and Mental Health Services Administration.  The survey is a 

repeated cross-section conducted annually and includes approximately 70,000 

observations per year, of which roughly 55,000 are available in the public use data set.  

The observations not in the public use file are dropped at random to help ensure that 

responses are not identifiable, and the sampling weights are adjusted to account for their 

deletion.  Therefore, the available observations should retain their representativeness, and 

the randomness of the process should alleviate concern about the possibility of 

endogeneity being introduced into the sampling procedure.  
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The NSDUH is uniquely suited to the present study since it is administered with 

the primary intent of obtaining information regarding substance use, including marijuana 

and other illicit drugs, as well as licit substances like alcohol and nicotine.  In addition to 

information regarding annual ER visits, the data contain a rich collection of demographic 

and socioeconomic characteristics.  The data also provide information regarding 

respondent health, as well as personality traits that may be correlated with substance use 

or healthcare demand such as preferences for risk-taking or dangerous behavior.   

My analysis sample is limited to Medicaid recipients between 18 and 64 years of 

age.  From an initial sample of 30,893, roughly 6% of observations (1,575) report an 

annual family income of over $75,000.  There are several plausible explanations for 

receipt of Medicaid with such high income.  Financial eligibility for Medicaid is adjusted 

according to the number of children an individual has.  If a respondent has many 

children, then $75,000 may not exceed the threshold to surrender eligibility.  Another 

possibility is that an individual who qualifies for supplemental security income (SSI) may 

qualify automatically for Medicaid.  The family income may exceed $75,000 if one or 

more non-disabled family member(s) works.  However, in the data individuals reporting 

an income over $75,000 do not have more children, on average, nor are they more likely 

to report disability.  I therefore assume that individuals reporting such a high income are 

either incorrect about their income, or incorrect about qualifying for Medicaid, and 

anyone reporting over $75,000 in annual family income is dropped from the sample.  
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From the remaining sample of 29,318 respondents, I drop 1,392 observations due 

to missing responses.16  This leaves a final sample of 27,841 (19,766 females and 8,075 

males).  Sampling weights are provided with the data to ensure national 

representativeness and also to account for survey non-response that is potentially 

endogenous.  Unweighted data may also be heteroskedastic, in which case the sampling 

weights will improve the precision of the estimates (Cameron & Trivedi, 2005).  

Therefore, all regressions are weighted to account for both the sampling design, and the 

possibility of endogenous sampling.  It is also common in the economic literature to split 

the analysis between males and females when drug use is an independent variable of 

interest (French, Roebuck, & Alexandre, 2001; MacDonald & Pudney, 2000; Popovici & 

French, 2014) particularly when the dependent variable relates to health or healthcare 

(French et al., 2011; McGeary & French, 2000; Van Ours & Williams, 2012).  This 

approach has also recently been used when considering Medicaid recipients or potential 

Medicaid recipients (Brown & Finkelstein, 2008; Hamersma & Kim, 2013) and so I 

adopt this approach moving forward.   

5.2. Variables and Summary Statistics 

 The variables used in this analysis may be divided into five broad groups: the 

dependent variable, independent variable of interest, instruments, and controls.  Table 13 

describes the distribution of ER visits, while Table 14 provides weighted summary 

statistics for all five groups of variables. 

                                                           
16 This includes 849 missing responses for annual ER visits, 107 missing responses for the instrumental 
variable, and 436 missing responses for other independent variables.  Observations dropped due to missing 
data are assumed to be missing at random. 
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Table 13 

Weighted Sample Means by Gender 

 Female Male 
Dependent Variable   
ER Visits 1.455 (2.754) 1.202 (2.550) 
Independent Variable of Interest  
Marijuana Use Disorder 0.022 (0.146) 0.047 (0.212) 
     Dependence Only 0.016 (0.127) 0.032 (0.176) 
     Marijuana Abuse 0.005 (0.073) 0.015 (0.122) 
Instrumental Variables   
Neither Approve  0.506 (0.500) 0.579 (0.494) 
Nor Disapprove   
Somewhat Disapprove 0.102 (0.303) 0.111 (0.315) 
Strongly Disapprove 0.392 (0.488) 0.310 (0.462) 
Demographic and Household Characteristics  
White  0.441 (0.497) 0.480 (0.500) 
Black  0.268 (0.443) 0.237 (0.426) 
Asian  0.025 (0.155) 0.029 (0.169) 
Other  0.039 (0.194) 0.032 (0.176) 
Hispanic  0.228 (0.419) 0.222 (0.415) 
Age 18-24 0.219 (0.414) 0.208 (0.406) 
Age 25-29 0.189 (0.392) 0.123 (0.328) 
Age 30-34 0.125 (0.331) 0.095 (0.293) 
age 35-49 0.276 (0.447) 0.314 (0.464) 
age 50-64 0.191 (0.393) 0.261 (0.439) 
Married  0.248 (0.432) 0.305 (0.461) 
Not Married 0.280 (0.449) 0.200 (0.400) 
Never Married 0.472 (0.499) 0.495 (0.500) 
Kids  1.338 (1.127) 0.899 (1.111) 
Pregnant 0.070 (0.256) - 
No HH Member Over 65 0.917 (0.276) 0.885 (0.319) 
1 HH Member Over 65 0.072 (0.258) 0.095 (0.293) 
2+ HH Members Over 65 0.011 (0.105) 0.021 (0.142) 
CBSA Pop. > 1 Million 0.501 (0.500) 0.489 (0.500) 
CBSA Pop. < 1 Million 0.420 (0.494) 0.418 (0.493) 
Does Not Live in CBSA 0.072 (0.258) 0.094 (0.291) 
Human Capital and Financial Resources 
Less than High School 0.329 (0.470) 0.391 (0.488) 
High School 0.388 (0.487) 0.385 (0.487) 
Some College 0.229 (0.420) 0.166 (0.372) 
College Graduate 0.054 (0.226) 0.059 (0.235) 
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Table 13 

(Cont.) 

 Female Male 
Human Capital and Financial Resources (cont.) 
Full Time 0.192 (0.394) 0.241 (0.428) 
Part Time 0.142 (0.349) 0.115 (0.319) 
Disabled – No SSI 0.088 (0.283) 0.140 (0.346) 
Disabled and Collects SSI 0.155 (0.362) 0.214 (0.410) 
Did Not Work Last Week 0.422 (0.494) 0.291 (0.454) 
Family Income < $20,000 0.597 (0.491) 0.567 (0.495) 
Family Income $20-50,000 0.346 (0.476) 0.366 (0.482) 
Family Income > $50,000 0.058 (0.233) 0.067 (0.250) 
Private Insurance 0.070 (0.255) 0.090 (0.286) 
Family Collects Food Stamps 0.585 (0.493) 0.487 (0.500) 
Family Collects Public Asst 0.190 (0.392) 0.124 (0.329) 
Family Collects SSI 0.133 (0.339) 0.136 (0.343) 
0 Phone Lines 0.324 (0.468) 0.320 (0.466) 
1 Phone Line 0.644 (0.479) 0.646 (0.478) 
2 Phone Lines 0.032 (0.175) 0.035 (0.183) 
Other Substance Use Disorders 
Other Drug Use Disorder 0.031 (0.172) 0.048 (0.214) 
Alcohol Use Disorder 0.064 (0.245) 0.123 (0.329) 
Nicotine Use Disorder 0.276(0.447) 0.337 (0.473) 
Supplementary Control Variables - Health 
Asthma 0.131 (0.338) 0.080 (0.272) 
Bronchitis 0.068 (0.251) 0.044 (0.206) 
Pneumonia 0.022 (0.147) 0.016 (0.127) 
Sinusitis 0.050 (0.218) 0.017 (0.128) 
Stroke 0.008 (0.088) 0.011 (0.105) 
High Blood Pressure 0.141 (0.348) 0.153 (0.360) 
Heart Disease 0.034 (0.181) 0.045 (0.208) 
Diabetes 0.078 (0.268) 0.082 (0.274) 
Hepatitis 0.010 (0.098) 0.025 (0.156) 
STD 0.028 (0.164) 0.008 (0.089) 
HIV 0.003 (0.053) 0.014 (0.118) 
Ulcer 0.024 (0.054) 0.023 (0.149) 
Other Disease 0.009 (0.095) 0.016 (0.127) 
Depression 0.172 (0.378) 0.111 (0.314) 
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Table 13 

(Cont.) 

 Female Male 
Supplementary Control Variables – Attitudes and Beliefs 
Risk 0.106 (0.307) 0.195 (0.040) 
Danger  0.123 (0.329) 0.238 (0.043) 
Seatbelt  0.084 (0.277) 0.129 (0.396) 
Religion Important 0.783 (0.412) 0.700 (0.426) 
Service Attender 0.345 (0.475) 0.271 (0.444) 
Religious Friends 0.373 (0.484) 0.375 (0.375) 
Relig. Affects Decisions 0.727 (0.446) 0.657 (0.657) 
Supplementary Control Variables – Illegal Activities 
Ever Arrested 0.206 (0.404) 0.421 (0.494) 
Offered Drugs 0.120 (0.325) 0.194 (0.396) 
Time Control Variables   
2005 0.139 (0.346) 0.122 (0.327) 
2006 0.125 (0.331) 0.126 (0.332) 
2007 0.140 (0.347) 0.138 (0.345) 
2008 0.134 (0.340) 0.123 (0.329) 
2009 0.189 (0.346) 0.147 (0.354) 
2010 0.155 (0.362) 0.159 (0.366) 
2011 0.168 (0.374) 0.184 (0.388) 
Quarter 1 0.226 (0.418) 0.237 (0.426) 
Quarter 2 0.260 (0.438) 0.268 (0.443) 
Quarter 3 0.266 (0.442) 0.249 (0.432) 
Quarter 4  0.248 (0.432) 0.245 (0.430) 
N 19766 

[9,719,097] 
8,075 

[4,966,773] 
Notes.  Standard deviation in parentheses.  Brackets contain the population size represented by the 
weighted data.  Risk refers to often or always preferring to participate in risky behavior.  Danger refers to 
often or always preferring to participate in dangerous behavior.  No seatbelt indicates an individual rarely 
or never wears a seatbelt when riding as a passenger in a car.   
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Table 14 

Weighted Distribution of Annual ER Visits 

 Female Male 
0 0.473 0.550 
1 0.202 0.191 
2 0.159 0.131 
3 0.065 0.048 
4 0.030 0.027 

5-10 0.057 0.039 
11-15 0.015 0.010 
16-20 0.004 0.001 
21-25 0.004 0.002 
>25 0.002 0.002 
N 19,766 

[9,719,097] 
8,075 

[4,966,773] 
Notes.  Brackets contain the population represented by the weighted data.  Values in the table are collapsed 
due to the rarity of high-valued outcomes, but the analysis considers the full, unaltered distribution of ER 
visits. 
  

 The dependent variable is the count of total ER visits in the past twelve months.  

Females visited the ER approximately 1.5 times in the past year while males attended 1.2 

times.  Roughly half of respondents did not visit the ER in the past year, while 20% went 

one time, 15% went twice, and roughly 5% went more than 4 times.  Fewer than 2% of 

males or females went more than 10 times.  

The primary independent variable of interest is a binary indicator for marijuana 

use disorder (MUD), which refers to either abuse or dependence upon marijuana in the 

past twelve months.  Definitions of abuse and dependence are based on the Diagnostic 

and Statistical Manual of Mental Disorders Fourth Edition (DSM-IV).  The DSM-IV was 

published by the American Psychiatric Association in 1994 and serves as the medical 
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standard for diagnosing mental health disorders.17  According to the DSM-IV individuals 

are substance abusers if they meet 1 of 4 substance abuse measures but are not dependent 

on the substance.  Substance dependence indicates that they meet 3 of 6 DSM 

dependence criteria, and therefore the two diagnoses are mutually exclusive, with 

dependence being a more severe level of use than abuse.   Diagnostic criteria for abuse 

and dependence are listed in Appendix D.18   

Roughly 2% of females and 5% of males are classified as having MUD.  Rates of 

MUD among individuals who have used marijuana at least once in the past year are 15% 

and 21%, respectively.  A brief descriptive analysis comparing respondents with MUD to 

those without is presented in section 4.3.   

 When allowing for MUD to be endogenous, identification of the coefficient for 

marijuana dependence requires one or more variables that are excluded from the equation 

for ER visits—that is, instrumental variables.  Valid instruments must be both correlated 

with MUD conditional on Xo and also independent of acute medical care use conditional 

on Xo.  In the current data, one measure that is plausibly independent of the process 

generating ER visits is the respondent’s opinion of another adult trying marijuana once or 

twice.  Respondents were asked “How do you feel about adults trying hashish once or 

twice?”  Responses include “neither approve nor disapprove,” “somewhat disapprove,” 

and “strongly disapprove,” as well as “don’t know” and “refused.”  I create dummy 

                                                           
17 The DSM-V was published in 2013, but the updated version has not yet been adopted by the NSDUH 
survey.  Version V has eliminated the distinction between abuse and dependence, classifying both as “use 
disorder.” 
 
18 Alcohol and certain “hard drugs” (e.g., heroin, cocaine, painkillers, etc.) also have a 7th dependence 
criterion that refers to withdrawal symptoms.  This is not a determining factor for marijuana or nicotine 
dependence. 
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variables for both slight and strong disapproval, in reference to all other possible 

responses (roughly 1.3% of respondents did not know or refused).  Roughly 1/2 of 

respondents neither approved nor disapproved of adults trying marijuana, while 

approximately 1/3 strongly disapprove, and the remainder disapprove somewhat. 

The controls variables (Xo) are observable factors that may directly affect demand 

for medical care through their impact on health, or indirectly through their effect on the 

relative cost of ER visits.  Xo is split into four subsets of variables.  The organization of 

the variables is intended to group together measures that are in the same theoretical 

category (e.g., demographic controls vs. human capital controls).  The groups are also 

generally intended to correspond with the risk each set presents of introducing 

endogenous regressors to the model. 

The most basic subset of variables refers to controls for demographic and other 

household characteristics that are plausibly exogenous to ER visits, such as race/ethnicity 

(white, black, Hispanic, Asian, other).  This also includes categorical measures of age 

(18–24; 25–29; 30–34; 35–49; 50–64), which may enter the model both indirectly, as 

health stock is expected to decline with age, and directly, since risky behavior is expected 

to be negatively correlated with age.  Marital status, pregnancy status (for females), 

number of children under 18 living at home, and number of household members over age 

65 will directly affect demand for acute medical care by reducing the amount of 

household resources available for individual i.  These variables may also capture other 

types of heterogeneity, as married individuals and/or parents may behave differently to 
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single or childless individuals.19  The size of the Core Based Statistical Area (> 1 million, 

< 1 million, or no CBSA) in which the respondent lives controls for the access to both 

acute medical care as well as illicit drugs.   

Roughly 45% of the sample (both male and female) is white, with the other half 

being split between black and Hispanic.20  The demographic distribution of the sample is 

roughly consistent with national averages reported by CMS.  Nationwide in 2009, 

Medicaid beneficiaries were 59% female (41% male), and 41% white (23% black, and 

22% Hispanic).21  The sample is split roughly evenly among all age categories, with the 

exception of 30–34 year olds who comprise about 10%, and 35–49 year olds who 

comprise about 30% of the sample.  Only 25–30% of respondents are currently married, 

and the vast majority (roughly 90%) does not have any household members over 65 

living with them.  Seven percent of females are pregnant at the time of the survey, and on 

average, females have 1.4 children, while males have less than 1.22 

Another subset of control variables contains measures of human capital, 

employment, and financial resources.  Education (less than a high school diploma, high 

school, some college, and college graduate) provides a measure of human capital, which 

is expected to increase the efficiency with which individuals “produce” health 
                                                           
19 Whether these variables “cause” individual attributes to change or merely signal their presence (e.g., 
marriageability signals greater responsibility) is irrelevant to the current analysis. 
 
20 The NSDUH data are coded such that anyone who self-classifies as “white-Hispanic” or “black-
Hispanic” etc. is categorized as Hispanic, not white or black. 
 
21 CMS: Medicaid Statistical Information System, 2014.  Retrieved May 25, 2014, from 
http://www.cms.gov/Research-Statistics-Data-and-Systems/Computer-Data-and-
Systems/MedicaidDataSourcesGenInfo/MSIS-Tables.html 
 
22 The number of children in the public use data are top-coded at 2, which explains why the mean number 
of children in the sample may appear small. 
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(Grossman, 1972).  Employment status (full time, part time, or did not work last week) 

accounts for the opportunity cost of time spent investing in health as well as time spent 

receiving acute medical care.  Additional employment categories include individuals who 

reported that they did not work the previous week due to disability but did not collect 

supplemental security income (SSI), and those who reported that they did not work due to 

disability and do collect SSI.  Categorical family income (<$20,000; $20,000–$50,000; 

$50,001–$75,000) proxies for financial resources available to invest in health or to 

directly purchase acute medical care or drugs (recall that observations reporting more 

than $75,000 in annual family income were dropped from the sample).  Three additional 

proxies for financial resources include whether any member of the family collects food 

stamps, whether any member of the family collects welfare, job placement assistance, or 

childcare assistance, and whether anyone in the respondent’s family besides the 

respondent collects supplemental security income.23  I also include an indicator for 

possession of private insurance, which directly affects the price of visiting the ER.24  The 

number of phone lines (0, 1, or 2) in the house is included as a final proxy for financial 

resources.   

Over 60% of respondents reported that they did not work for pay in the previous 

week, and consequently about 60% of the sample reports an annual family income of less 
                                                           
23 Information is not provided on whether the respondent collects SSI him or herself.  Therefore, if an 
individual reports not working due to disability and also indicates that somebody in their family collects 
SSI, I code that individual as disabled and collecting SSI.  If an individual reports not working due to 
disability but also indicates that nobody in the family collects SSI, they are coded as disabled without SSI.  
Therefore the indicator for “family collects SSI” indicates that the family receives SSI and the respondent 
does not self-report a disability. 
 
24 Possession of private insurance does not automatically disqualify one from qualifying for Medicaid.  It is 
conceivable to envision low-income individuals (particularly those with children) receiving some form of 
employer-provided insurance but still falling below the income threshold for Medicaid. 
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than $20,000.  Only about 5% of respondents are college graduates, while roughly one-

third of the respondents have only a high school diploma, and another one-third of the 

respondents did not finish high school.  Approximately half the sample has at least one 

family member on food stamps, and 20% of families have at least one member collecting 

welfare, job placement assistance, or childcare assistance.  Over 60% of families have at 

least one phone line but nearly one-third of families have none.  Less than 10% of 

respondents report access to private insurance.  These results are consistent with the low-

income status expected among Medicaid recipients, and support the possibility that ER 

visits may be generated differently among this subsample compared to the US population 

at large. 

The set of controls most strongly suspected to be endogenous are indicators for 

alcohol use disorder, nicotine use disorder, and a use disorder for any illicit drug besides 

marijuana (so-called “hard” drugs).  Three percent of females and 5% of males have a 

hard drug use disorder, while 6% of females and 12% of males have an alcohol use 

disorder, and roughly 30% of males and females have a nicotine use disorder.  These 

other substance use disorders are expected to either reduce individual health stock, or to 

directly cause an adverse health event (e.g., alcohol poisoning or drug overdose), 

although they could have indirect effects on demand for ER visits.  Overall, substance 

dependence is expected to be positively correlated with ER visits. 

The fourth and final set of controls refers to additional variables used for 

robustness checks in Section 7.4.  These include variables controlling for the 
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respondent’s health, the respondent’s attitudes and beliefs, and the respondent’s 

participation in illegal activities. 

Measures of health include binary indicators for whether the respondent has been 

diagnosed by a physician with any of the following in the past year: asthma, bronchitis, 

pneumonia, sinusitis, stroke, high blood pressure, heart disease, diabetes, hepatitis, STD, 

HIV, ulcer, lung cancer, liver cirrhosis, pancreatitis, and tuberculosis.25  An indicator for 

depression is also included to account for potential mental health confounders.26  Health 

is considered to be the primary factor that affects demand for ER visits.  By controlling 

for as many diseases as possible, I am able to account for one of the key vectors through 

which MUD may influence demand for ER visits.  If marijuana consumption is positively 

correlated with disease as predicted by the medical literature (Brook et al., 2008; Gordon 

et al., 2013; Mittleman et al., 2001; Polen et al., 1993; Rey & Tennent, 2002; Schuster et 

al., 2012; Sidney et al., 1997; Smith & Crespo, 2001), then inclusion of these controls 

should decrease the value of the coefficient on MUD.  However, these variables may be 

endogenous to ER utilization since affirmative response requires diagnosis by a medical 

professional, which may occur as the result of an ER visits.   

Measures of attitudes and beliefs refer to the respondent’s preference for risky or 

dangerous behavior, as well as the importance they ascribe to their religious beliefs.  

Preference for risk-taking, preference for danger, and actual risky-taking (i.e., seat belt 

use) are measured as the response to the following questions: “How often do you like to 
                                                           
25 Due to the relatively rarity of lung cancer, cirrhosis, pancreatitis, and tuberculosis, these four diseases are 
lumped together into a single “other disease” category. 
 
26 Although a more specific mental health measure is also available, the questions and scoring vary 
significantly between survey years, prohibiting use of a single measure across the multiple survey years. 
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test yourself by doing something a little risky?”; “How often do you get a kick out of 

doing things that are a little dangerous?”; and “How often do you wear a seatbelt when 

you ride in the front passenger seat of the car?”27  Possible responses are “Never,” 

“Seldom,” “Often,” and “Always.”   Binary indicators were created for individuals who 

“Often” and “Always” seek risk or danger, and who “Seldom” or “Never” wear a 

seatbelt.   

Individual religiosity is determined by the response to four questions.  Three 

questions ask for agreement/disagreement with the following statements: “My religious 

beliefs are very important,” “My religious beliefs influence my decision making,” and “It 

is important that my friends share my religious beliefs.”  Responses range from strongly 

disagree to strongly agree.  The responses are transformed into binary variables reflecting 

agreement (1) or disagreement (0).  The final measure of religiosity is the number of 

religious services attended in the past 12 months.  Responses include six categories 

ranging from never to more than once per week.  Individuals who attended at least 6-24 

times in the past year are coded as attenders (1), while those attending fewer than 6 times 

are coded as non-attenders (0).28   

Risk-taking or dangerous behavior is expected to increase the demand for ER 

visits by increasing the probability of an adverse health event.  To the extent that 

                                                           
27 A separate question asked how often a seatbelt was worn when driving a car.  A possible response to this 
was “I do not drive.”  This was not a possible response to the passenger seat belt question.  Non-response to 
the passenger seatbelt question was less than for other questions regarding risk/danger suggesting that few 
if any non-drivers refused to answer the passenger question. 
 
28 The range 6–24 is a full response category.  Therefore the two alternatives were to say that attendance 
once every two months is the minimum for an attender or that twice in one month is the minimum.  I opted 
for the former. 
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individuals who develop MUD have different preferences for risky behavior, controlling 

for these preferences should help to eliminate omitted variables bias.  Religious beliefs 

may also affect behavior in ways that affect the demand for ER visits, and are expected to 

be negatively correlated with MUD since the moral code of many of the religions 

common in the United States prohibits the use of drugs. 

The controls for illegal activities consist of binary indicators for affirmative 

response to the questions “Not counting minor traffic violations, have you ever been 

arrested and booked for breaking the law?” and “In the past 30 days has anyone 

approached you to sell you an illegal drug?”  Both these variables may be endogenous to 

MUD.  Presumably individuals with high levels of marijuana use are frequently offered 

drugs, while in many states the use of marijuana can lead to arrest.  However, individuals 

with MUD may be involved in other risky or illegal activities besides drug use that could 

be correlated with demand for ER visits (whether or not they state a preference for risky 

activities).  Therefore, omission of these controls may bias estimates of the relationship 

between MUD and ER visits. 

Two control variables that are not available in the public use NSDUH data are 

state of residence or region of the country.  Although drug regulations and Medicaid 

participation criteria vary from state to state, the unobserved effect of state-specific and 

regional attributes should be absorbed by Xu, which should in turn be accounted for by 

the instrumental variables approach as detailed in Section 6.  Since the NSDUH data are 

intended to be nationally representative, the estimated relationship between marijuana 
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dependence and healthcare utilization should be consistent with the average relationship 

that would be observed if state indicators were available.  

5.3. Descriptive Analysis 

Table 15 presents the weighted mean of annual ER visits, rates of other substance 

use disorders (hard drugs, nicotine, alcohol), and opinion of other adults trying marijuana, 

by MUD.  The comparison shows that females with MUD visit the ER significantly more 

times than those without.  However, males and females with MUD are significantly more 

likely to be dependent on any of the three other substances, which may be correlated with 

negative health outcomes.  Table 15 also suggests that the instrumental variables are 

correlated with MUD, as expected.  Females with a marijuana use disorder are 30 

percentage points less likely to strongly disapprove of adults trying marijuana, while 

males with MUD are 25 percentage points less likely.  The difference is significant in 

both cases.  Females with MUD are also significantly less likely to somewhat disapprove, 

a difference of roughly 4 percentage points. 

Table 16 compares the full distribution of ER visits between those with and 

without MUD.  Among both males and females those with MUD are significantly more 

likely to visit the ER.  Females with MUD are significantly more likely to visit between 

11 and 20 times, while males with MUD are significantly more likely to visit the ER one 

time. 
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Table 15 

Comparison of Weighted Means by Marijuana Use Disorder 

 Females Males 
 No Marijuana 

Use Disorder 
Marijuana 

Use Disorder 
No Marijuana 
Use Disorder 

Marijuana 
Use Disorder 

Dependent Variable     

ER Visits 1.439 2.184** 1.189 1.478* 
 (2.715) (4.389) (2.541) (2.892) 

Other Substance Dependence    

Other Drug Dependence 0.025 0.260*** 0.037 0.270*** 
 (0.156) (0.441) (0.190) (0.444) 
Alcohol Dependence 0.058 0.334*** 0.107 0.461*** 
 (0.234) (0.472) (0.309) (0.499) 
Nicotine Dependence 0.271 0.509*** 0.327 0.548*** 
 (0.448) (0.500) (0.469) (0.498) 

Instrumental Variables     

Somewhat Disapprove 0.103  
(0.302) 

0.066*** 
(0.248) 

0.110 
(0.313) 

0.136 
(0.343) 

Strongly Disapprove 0.399 
(0.488) 

0.092*** 

(0.358) 
0.322 

(0.467) 
0.051*** 
(0.219) 

N 19,101 
[9,506,713] 

665 
[212,384] 

7,458 
[4,733,374] 

617 
[233,399] 

Notes.  Standard deviation in parentheses.  Brackets contain the population represented by the weighted 
data.  Asterisks denote significant difference in weighted means between those with and without MUD 
within a gender. *** p < 0.01 ** p < 0.05 * p < 0.10 

 

Overall, descriptive analysis suggests that those of either gender with MUD are 

generally more likely to use the ER.   However, both males and females with MUD are 

more likely to have other substance use disorders, which may be confounding the results.  

Marijuana use disorder and ER utilization are both complex processes and a more 

thorough analytic approach is necessary to disentangle the causal impact of MUD on ER 

utilization.  The empirical model used to estimate this causal effect is detailed in the next 

section.  
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Table 16 

Weighted Distribution of Annual ER Visits by Marijuana Use Disorder 

 Females 
With No 

Marijuana Use 
Disorder 

Females 
With 

Marijuana 
Use Disorder 

Males 
With No 

Marijuana Use 
Disorder 

Males 
With 

Marijuana Use 
Disorder 

0 0.477 0.327*** 0.559 0.426*** 
1 0.201 0.223 0.188 0.270** 
2 0.158 0.194 0.129 0.162 
3 0.064 0.111 0.047 0.061 
4 0.030 0.045 0.027 0.019 

5–10 0.058 0.052 0.039 0.049 
11–15 0.014 0.043** 0.010 0.004 
16–20 0.004 0.011*** 0.001 0.002 
21–25 0.004 0.002 0.002 0.005 
>25 0.002 0.004 0.002 0.003 
N 19,101 

[9,506,713] 
665 

[212,384] 
7,458 

[4,733,374] 
617 

[233,399] 
 

Notes.  Brackets contain the population represented by the weighted data.  Asterisks denote significant 
difference between marijuana dependents and non-dependents within a given gender.  Significance is 
determined by a survey-adjusted χ2 statistic. ***p < 0.01 **p < 0.05 *p < 0.10.  Values in the table are 
collapsed due to the rarity of high-valued outcomes, but the analysis considers the full, unaltered 
distribution of ER visits. 
 

6. Empirical Approach 

 The estimation objective is the average effect of M on ER where ER is the 

reduced form demand for emergency room visits as a function of Xo, Xu, M, and D.  This 

average “treatment” effect (ATE) of marijuana use disorder measures the partial change 

in demand for ER visits that occurs (or would occur) if an average individual in the 

population switched from a non-dependent to a dependent state.   The ATE can be 

defined as: 

 
 ATE = E[𝐸[𝐸𝐸1]–  𝐸[𝐸𝐸0]] = 𝐸[𝐸[𝐸𝐸|𝑋,𝑀 =  1] –  𝐸[𝐸𝐸|𝑋,𝑀 = 0]] (Eq. 3) 
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where ER1 is the count of ER visits that did (or would) occur if an individual suffers from 

MUD, and ER0 is the count that did (or would) occur if the same individual does not have 

a marijuana use disorder. 

 Estimation is complicated by the fact that for a given individual only one state is 

observed: individual i either suffers from MUD or not.  The observed value of M is not 

randomly assigned, but rather depends on characteristics of an individual or her 

environment (X) that may also affect demand for acute healthcare, some of which are 

observed (Xo) and some of which are not (Xu).  Failure to account for this “selection” into 

MUD will lead to biased and inconsistent estimates of the effect of MUD on healthcare 

utilization.   

 Consistent estimation of the ATE is possible given a vector of control variables X 

that contains all variables correlated with ER and M.  Following Terza (2009), I express 

these variables as X = [Xo D Xu] where Xo is a vector of observable characteristics, D is a 

vector of other possible substance use disorders (alcohol, nicotine, or hard drugs) and Xu 

is a continuous scalar representing the combined effect of unobservable characteristics 

(including measurement error).  As discussed in Section 4, Xo, D, and Xu may affect ER 

directly but may also operate indirectly through their effect on H.  

I allow for M to be endogenous to health (and therefore to utilization of medical 

care) since the consumption of marijuana and medical care may depend, in part, on 

common unobservable factors (Xu).  For example, potential marijuana users may discount 

the future higher than non-potential users, and consequently invest less in their health 

stock.  Use of illicit drugs may also reflect a low stock of knowledge, both about the 
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danger of illicit drug use and of other health behaviors that may change one’s stock of 

health (e.g., proper exercise or nutrition).29,30 

 Following the approach discussed in Terza (2009), the conditional expectation of 

ER can be expressed as 

 
 𝐸[𝐸𝐸|𝑀,𝑋]  =  1

𝑛
∑ 𝑒𝑒𝑒(𝑀𝑖𝛽𝑚 + 𝑋𝑜𝑜𝛽𝑜 + 𝐷𝑖𝛽𝐷 + 𝑋𝑢𝑜𝛽𝑢)𝑊𝑖𝑖

∑ 𝑊𝑖𝑖
 (Eq. 4) 

 
where Wi refers to the individual-level sampling weights. 

 Marijuana use disorder can be represented by a probit specification such that M = 

1(M* > 0) where: 

 
 M * = Wδ + Xu, (Eq. 5) 

 
W = [Xo D W+], W+ is a vector of identifying instruments and Xu is standard normally 

distributed conditional on W and independent of W.  Unobserved correlation between M 

and ER occurs due to a joint dependence upon Xu, and therefore M and ER are 

independent conditional on Xo, D, and Xu.   

 Xu can be conditioned out of the ATE by integrating over the assumed density.  

Since Xu is assumed to be standard normally distributed conditional on W the estimated 

ATE can be expressed as 

 

                                                           
29 For example, Smith and Crespo (2001) find that marijuana users consume more sodium, pork, and 
cheese, but less fruit than non-users. 
 
30 Individuals with a high propensity to consume marijuana may also have a less reliable 12-month recall, 
and therefore measurement error in Y may also be a function of Xu.  
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 𝐴𝐴𝐸� =  1
𝑛
∑ ∫ 𝐸�𝐸𝐸1𝚤�� − 𝐸[𝐸𝐸0𝚤�]]𝜑(𝑋𝑢)𝑑𝑋𝑢

∞
−∞

𝑛
𝑜=1  (Eq. 6) 

 
where φ(∙)is a standard normal density, E�Y1ı�� is equivalent to (4) with Mi = 1, and E[Y0ı� ] 

is equivalent to (4) with Mi = 0.  The ATE can be computed from (6) by obtaining 

consistent estimates for the parameters βm, βo, and βu. 

 To obtain parameter estimates, an estimator must be selected that appropriately 

accounts for the data generating process that produces ER visits.  Consistent with a 

traditional count measure, the number of ER visits is the sum of a number of binary 

outcomes.  Under the assumptions of the conceptual model, a severe enough health event 

will result in a visit to the ER.  While a single underlying condition may trigger repeated 

ER visits, a single ER visit cannot directly cause another one.  (That is, the condition may 

be severe enough that the patient will remain in the hospital but the severity of the shock 

cannot result in a repeat admission to the ER during the same trip to the hospital.)  ER 

visits may thus be modeled by a single count distribution.   

 I model ER visits using the two-stage nonlinear least squares (2SNLS) approach 

introduced by Terza (1998).  Although less efficient than the full information maximum 

likelihood (FIML) approach proposed by Terza (1998, 2009), 2SNLS is more robust to 

misspecification since only the conditional mean of ER visits needs to be specified rather 

than the entire conditional distribution (although both approaches requires that the 

distribution of Xu is correctly specified).  As discussed previously, I assume Xu is 

standard normally distributed conditional on W.  Then, as presented in Terza (1998) the 
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exponential conditional expectation of ER when Xu is standard normally distributed can 

be expressed as: 

 

E[ER|W,M]=𝑀 𝑒𝑒𝑒(𝑀𝛽𝑀  +  𝑋𝑜𝛽𝑜+ + 𝐷𝛽𝐷)𝛷�𝑊𝛿�+𝛽𝑢�
𝛷�𝑊𝛿��

+ (1 −𝑀)𝑒𝑒𝑒( 𝑋𝑜𝛽𝑜+ +

𝐷𝛽𝐷)𝛷�−𝑊𝛿�−𝛽𝑢�
𝛷�−𝑊𝛿��

   (7) 

 
where β𝑜+ contains a constant term that is shifted upward by �𝛽𝑢

2

2
� and δ� refers to estimates 

obtained from probit regression of M.  Applying NLS to (7) allows for consistent 

estimates of βM, βo, and βu, which may be substituted into (6) to produce estimates of the 

ATE with respect to ER visits.  The ATE thus captures the expected change in the 

number of ER visits that would occur if all individuals in the population switched from a 

state of no MUD to MUD.  Unfortunately, cluster identifiers are unavailable in the 

public-use data so standard errors are computed using the Huber-White sandwich 

estimator.31  Additionally, the covariance matrix must be adjusted for the first stage 

estimation of δ, an adjustment discussed further in Appendix E. 

 Specification of the model is complicated by the fact that elements of Xo may be 

endogenous to ER visits and/or marijuana use disorder (i.e., elements of Xo may also be 

functions of Xu).  For instance, educational and employment decisions may be correlated 

with unobservable factors (e.g., future discount rate) that are expected to influence the 

decision to consume drugs, or the decision to invest in one’s health stock.  Other 

                                                           
31 Estimates of the standard error should be clustered within sampling units.  However, sampling unit 
identifiers are not provided in the public use data file and estimation of clustered standard errors is thus 
impossible.   
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measures of substance use disorder (hard drugs, alcohol, and nicotine) are particularly 

problematic, since all forms of substance use are likely generated by similar processes.  

(This is especially true for hard drugs since in most states consumption of nicotine and 

alcohol is legal, while consumption of hard drugs or marijuana is prohibited.) 

 Estimates of parameters for endogenous variables will not be consistent.  

Moreover, any endogenous variable in the model for ER visits that is correlated with M 

will also render estimates of the coefficient for M inconsistent (and by extension, 

estimates of the ATE as well.)  Additionally, variables endogenously correlated with the 

probability of marijuana use disorder may lead to inconsistent estimates of δ that in turn 

affect second stage estimation of the model for ER visits.   

The solution is not as simple as omitting any variables that are considered to be 

endogenous.  Although the use of instrumental variables in the second stage should 

render the coefficient estimate for M consistent despite the omission of variables that 

belong in the second stage equation, the omission of variables that belong in the first-

stage probit equation for M will render estimates of δ inconsistent, and by extension 

affect second stage estimates.  However, in order for the instrumental variables strategy 

to be feasible, all variables included in the first stage that do not meet the criteria to be 

exclusion restrictions must also be included in the second stage, and so variables 

endogenous to ER visits that belong in the equation for M cannot simply be omitted from 

both stages without risking additional problems.  Moreover, it is neither known with 

certainty which variables in particular are endogenous, nor the severity of the 

endogeneity problem. 
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 The approach moving forward is intended to assess the tradeoffs between 

potential omitted variables bias on the one hand and inconsistencies potentially 

introduced by endogenous variables on the other.  Ideally, a specification that minimizes 

the likelihood of endogenous regressors while maximizing the possibility for omitted 

variables bias will produce estimates very similar to one that minimizes the risk of 

omitted variables bias but maximizes the number of potentially endogenous variables.  If 

this is the case, then it bolsters the credibility of the results and suggests that the estimates 

are reasonably close to the “true” parameter values.  However, if the estimates are highly 

unstable as tradeoffs are made between endogenous regressors and omitted variables bias, 

it may suggest that the empirical model is not a good match for the data.  The analytic 

strategy is described in more detail in the following section. 

7. Results 

In this section I present results for four sets of regression analyses.  These include 

NLS estimates of the demand for ER visits; 2SNLS estimates of the demand for ER 

visits, which account for the potential endogeneity of MUD; first-stage probit estimates 

for MUD; and follow-up 2SNLS estimates, which further investigate the results from the 

first set of 2SNLS estimates.  

For the first three sets of regressions I run three separate specifications for both 

males and females to determine the stability of the estimates under various combinations 

of potential omitted variables bias and potentially endogenous regressors.  This will 

inform not only on the robustness of the results, but also provide insight into which 

variables may be more damaging to include than exclude.  The analytic strategy consists 
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of moving along the spectrum from a large risk of omitted variables bias and small risk of 

endogenous regressors, to a larger risk of endogenous regressors and reduced risk of 

omitted variables bias.  The three specifications correspond to the initial three sets of 

control variables introduced in Section 5.  In each specification a new set of variables is 

added so that the third specification contains all three sets of variables.   

The three sets of variables include controls for demographic and household 

characteristics; education, employment, and financial resources; and whether the 

respondent has a substance use disorder for hard drugs, alcohol, or nicotine.  The 

variables are grouped in such a way as to balance theoretical considerations (i.e., what 

types of variables control for roughly the same type of characteristics) with the goal of 

moving from the most plausibly exogenous set of variables to the one most suspected to 

be endogenous.  Although a handful of variables could reasonably be assigned to other 

groups, the assigned categories and order of analysis are expected to fulfill the analytic 

objective. 

In the fourth set of regressions, I conduct robustness checks of the initial 2SNLS 

results by running 2SNLS models with additional controls for health, attitudes/beliefs, 

and participation in illegal activities, corresponding to the fourth set of controls described 

in Section 5.  I also conduct 2SNLS regression without the sampling weights.  The results 

are discussed below. 

7.1. Exogenous Model Development 

Exogenous results for females and males are presented in Tables 17 and 18, 

respectively.  Among females, MUD is positively and significantly correlated with ER 
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visits in the basic demographic model.  On average, respondents with MUD visit the ER 

0.7 more times than those without, a change of roughly 1/4 of a standard deviation.  

These results are robust to the inclusion of controls for human capital.  However, 

inclusion of controls for other substance use disorders attenuates the estimated ATE by 

nearly 50%, suggesting that the previous estimates were upward biased due to the high 

prevalence of other substance use disorders among those with a marijuana use disorder.  

This is consistent with the findings of William and Skeels (2006) who show that the 

positive correlation between tobacco and marijuana use confounds the predicted effect of 

marijuana on health when tobacco is not controlled for. 

 
Table 17 

NLS Estimates of ER Visits for Females 

 Demographic Human Capital Other Substances 

Variable of Interest 
MUD 0.399**  0.394** 0.250* 
 (0.121) (0.129) (0.132) 
ATE 0.701** 0.690** 0.407 
 (0.256) (0.270) (0.242) 
Demographics 
Black  0.127* 0.081 0.104 
 (0.069) (0.072) (0.070) 
Asian  -1.028*** -0.816*** -0.763*** 
 (0.164) (0.158) (0.156) 
Other  0.025 -0.011 0.005 
 (0.112) (0.113) (0.112) 
Hispanic  -0.373*** -0.407*** -0.373*** 
 (0.064) (0.071) (0.073) 
Age 18–24 0.036 0.475*** 0.467*** 
 (0.091) (0.095) (0.094) 
Age 25–29 0.085 0.416*** 0.375*** 
 (0.092) (0.101) (0.100) 
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Table 17 

(Cont.) 

 Demographic Human Capital Other Substances 

Demographics (cont.) 
Age 30–34 0.051 0.297** 0.265** 
 (0.100) (0.112) (0.115) 
Age 35–49 0.149 0.260** 0.232** 
 (0.094) (0.094) (0.095) 
Not Married 0.016 -0.113 -0.114 
 (0.083) (0.086) (0.086) 
Never Married -0.145* -0.252** -0.262** 
 (0.083) (0.083) (0.083) 
Kids  -0.164*** -0.118*** -0.109*** 
 (0.027) (0.029) (0.028) 
Pregnant -0.152** -0.110* -0.102 
 (0.071) (0.064) (0.064) 
1 HH Member > 65 -0.173 -0.155 -0.160 
 (0.107) (0.106) (0.105) 
2+ HH Members > 65 0.328 0.298 0.277 
 (0.446) (0.368) (0.357) 
Small CBSA 0.163** 0.130** 0.130** 
 (0.059) (0.063) (0.064) 
No CBSA 0.107 0.001 0.003 
 (0.102) (0.114) (0.111) 
Constant 0.525*** -0.074 -0.102 
 (0.123) (0.281) (0.282) 
Human Capital 
Less than  HS  0.049 0.028 
  (0.257) (0.266) 
High School  -0.159 -0.173 
  (0.257) (0.265) 
Some College  -0.091 -0.110 
  (0.260) (0.268) 
Full Time  -0.039 -0.034 
  (0.072) (0.071) 
Part Time  -0.223*** -0.211** 
  (0.066) (0.065) 
Disable No SSI  0.690*** 0.671*** 
  (0.096) (0.094) 
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Table 17 

(Cont.) 

 Demographic Human Capital Other Substances 

Human Capital (cont.) 
Disable Collects SSI  -0.066 -0.048 
  (0.101) (0.104) 
Income < $20,000  0.231** 0.228** 
  (0.111) (0.112) 
Income $20-50,000  0.223** 0.226** 
  (0.108) (0.109) 
Insurance  -0.123 -0.103 
  (0.085) (0.084) 
Food Stamp  0.187** 0.172** 
  (0.075) (0.074) 
Public Assistance  0.065 0.059 
  (0.079) (0.080) 
Family SSI  0.146** 0.154** 
  (0.063) (0.063) 
1 Phone  -0.032 -0.022 
  (0.059) (0.059) 
2+ Phones  0.186 0.181 
  (0.174) (0.172) 
Other Substances   

Alcohol    0.114 
   (0.111) 
Nicotine    0.086 
   (0.065) 
Hard Drugs   0.267** 
   (0.117) 
N 19,101 

[9,506,713] 
19,101 

[9,506,713] 
19,101 

[9,506,713] 
Notes.  The dependent variable is annual ER visit.  All models control for year and quarter of interview.  
Omitted categories include white, age 50-64, married, no household members over 65, respondent lives in 
CBSA with population over 1 million, college education, did not work last week, family income $50,000-
$75,000, and no phone lines in household.  Huber/White robust standard errors reported in parentheses.  
Standard errors for ATE computed using Delta Method.  Brackets contain “true” number of observations 
represented by weighted estimates. *p < 0.1 **p < 0.05 ***p < 0.01. 
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Table 18 

NLS Estimates of ER Visits for Males 

 Demographic Human Capital Other Substances 

Variable of Interest 
MUD 0.201 0.026 -0.253 
 (0.139) (0.144) (0.278) 
ATE 0.265 0.030 -0.229 
 (0.199) (0.173) (0.224) 
Demographics 
Black  0.073 0.101 0.081 
 (0.124) (0.136) (0.152) 
Asian  -0.858*** -0.661** -0.375 
 (0.245) (0.255) (0.274) 
Other  0.254* 0.170 0.173 
 (0.148) (0.150) (0.166) 
Hispanic  -0.149 -0.143 0.339** 
 (0.202) (0.210) (0.153) 
Age 18–24 -0.259* 0.187 -0.071 
 (0.139) (0.150) (0.190) 
Age 25–29 -0.114 0.164 0.015 
 (0.142) (0.169) (0.176) 
Age 30–34 -0.128 0.058 -0.121 
 (0.160) (0.176) (0.259) 
Age 35–49 -0.018 0.017 0.219* 
 (0.135) (0.137) (0.128) 
Not Married 0.387** 0.291* 0.068 
 (0.135) (0.158) (0.162) 
Never Married 0.103 -0.071 -0.002 
 (0.125) (0.136) (0.160) 
Kids  -0.083* 0.009 -0.047 
 (0.043) (0.049) (0.059) 
1 HH Member > 65 0.094 0.013 0.444*** 
 (0.193) (0.197) (0.133) 
2+ HH Members > 65 -0.127 -0.082 -0.153 
 (0.217) (0.226) (0.225) 
Small CBSA 0.376*** 0.357** 0.537*** 
 (0.112) (0.119) (0.115) 
No CBSA 0.109 -0.017 0.101 
 (0.127) (0.133) (0.164) 
Constant 0.233 -0.780** -1.689** 
 (0.209) (0.368) (0.598) 
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Table 18 

(Cont.) 

 Demographic Human Capital Other Substances 

Human Capital 
Less than  HS  0.165 0.483 
  (0.265) (0.442) 
High School  0.027 0.673 
  (0.270) (0.446) 
Some College  0.144 0.664 
  (0.281) (0.464) 
Full Time  -0.157 -0.279** 
  (0.118) (0.123) 
Part Time  -0.141 -0.112 
  (0.127) (0.142) 
Disable No SSI  0.676*** 0.783*** 
  (0.142) (0.154) 
Disable Collects SSI  0.719*** 0.822*** 
  (0.127) (0.136) 
Income < $20,000  0.353** 0.730** 
  (0.161) (0.274) 
Income $20–50,000  0.306* 0.879** 
  (0.159) (0.270) 
Insurance  -0.368* -0.304* 
  (0.220) (0.172) 
Food Stamp  0.071 0.047 
  (0.119) (0.110) 
Public Assistance  0.250 0.053 
  (0.177) (0.181) 
Family SSI  0.435*** 0.540*** 
  (0.101) (0.123) 
1 Phone  0.061 -0.265** 
  (0.124) (0.116) 
2+ Phones  -0.060 -0.386* 
  (0.247) (0.222) 
Other Substances 
Alcohol    0.727*** 
   (0.108) 
Nicotine    -0.202 
   (0.127) 
Hard Drugs   0.268 
   (0.195) 
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Table 18 

(Cont.) 

 Demographic Human Capital Other Substances 

N 8,075 
[4,966,773] 

8,075 
[4,966,773] 

8,075 
[4,966,773] 

Notes.  The dependent variable is annual ER visit.  All models control for year and quarter of interview.  
Omitted categories include white, age 50-64, married, no household members over 65, respondent lives in 
CBSA with population over 1 million, college education, did not work last week, family income $50,000-
$75,000, and no phone lines in household.  Huber/White robust standard errors reported in parentheses.  
Standard errors for ATE computed using Delta Method.  Brackets contain “true” number of observations 
represented by weighted estimates. *p < 0.1 **p < 0.05 ***p < 0.01. 

 

Among males, MUD is positively but insignificantly correlated with ER visits in 

the basic demographic model, resulting in roughly 0.25 additional ER visits per year.  

Inclusion of controls for human capital reduces the effect to essentially zero.  However, 

inclusion of controls for other substance use disorders renders the ATE negative such that 

respondents with MUD visit the ER roughly 0.25 fewer times per year, on average.  

Although this is not a significant result, it is consistent with the finding among females 

that the correlation between MUD and other substance use disorders may be upward 

biasing the relationship between MUD and ER visits. 

In general, the control variables are estimated to have the relationship with ER 

visits that would be expected a priori.  Among both males and females, respondents 

reporting a disability are significantly more likely to use the ER, while those with private 

insurance are significantly less likely.  Lower income is associated with more ER visits 

among both males and females, while employment is associated with fewer ER visits.  

Age is negatively correlated with ER visits among both males and females, although this 
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result is consistent with previous studies regarding drug use and ER visits (French et al., 

2000; McGeary & French, 2000). 

Among females hard drug use disorder is positively and significantly correlated 

with ER visits, and the coefficient is similar in magnitude to the coefficient for MUD  

(βM).  Among males, only alcohol use disorder is significantly correlated with ER visits, 

although hard drug use disorder is also positively correlated with ER visits, in contrast to 

the negative estimated correlation between MUD and ER visits.   

Progressing from the demographic model to the model controlling for other 

substance use disorders appears to reduce omitted variables bias, although it remains 

uncertain whether or not the estimates are biased by potential endogeneity of the control 

variables.  However, the relative stability of the estimates, particularly among females, 

suggests that the NLS model is robust to the tradeoffs between potential omitted variables 

bias and bias from potentially endogenous regressors.  At this stage it appears that MUD 

may have a small, positive correlation with ER visits, although the most comprehensive 

model suggests there may be a null, or even negative relationship among males.  As 

mentioned previously there is reason to believe that these estimates may be biased if there 

is correlation between MUD and the error term for ER visits that is not accounted for by 

the control variables.  In the next section I repeat the preceding set of specifications using 

a 2SNLS model, allowing me to control for the potential endogeneity of MUD.  

7.2. Endogenous Model Development 

 The direction and magnitude of the estimates from the 2-Stage Nonlinear Least 

Squares (2SNLS) model differ markedly from those produced by the exogenous model.  
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These results are reported in Tables 19 (females) and 20 (males).  Among females MUD 

is predicted to have a large and negative, but statistically insignificant relationship to ER 

visits.  The ATE ranges from -0.85 in the baseline demographic specification to -0.79 in 

the specification controlling for other forms of substance use disorder.  The estimate of 

βM is only significant in the specification controlling for other substance use disorders, 

and the ATE is not significant in any of the three models.  However, the coefficient for 

the unobserved heterogeneity, βu, is significant and positive in all three specifications.  

This indicates that the relationship between MUD and ER visits is significantly 

confounded by unobserved factors correlated with both MUD and the demand for ER 

visits.  As with the exogenous model, the demographic and human capital specifications 

produce similar estimates to each other, with controls for other substance use disorders 

slightly attenuating the estimates of βM and βu.     

 Among males, marijuana use disorder is also estimated to have a negative 

relationship with ER visits, although the relationship is only significant in the substance 

use disorder specification.  The estimated ATE ranges from -0.61 in the demographic 

model to -0.92 in the substance use disorder specification but is not significant in any of 

the three specifications.  βu is only significant in the substance use disorder specification, 

making it less clear than among females whether MUD is endogenous to ER visits.  

However, the sign and magnitude of the estimates for the ATE and βu are roughly similar 

to those for females, suggesting that the lack of significance may be partly due to the 

reduced sample size among males.  The pattern of 2SNLS coefficient estimates across 

specifications is similar to that from the exogenous model, with controls for human 
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capital and financial resources somewhat reducing the value of βM, and controls for 

substance use disorder substantially reducing the value of βM.   

 
Table 19 
 
2SNLS Estimates of ER Visits for Females 
 

 Demographic Human Capital Other Substances 

Variable of Interest 
MUD -0.841 -0.847 -0.745* 
 (0.590) (0.515) (0.447) 
ATE -0.858 -0.862 -0.787 
 (0.711) (0.609) (0.522) 
Demographics 
Black  0.132* 0.088 0.126* 
 (0.068) (0.071) (0.069) 
Asian  -1.027*** -0.814*** -0.738*** 
 (0.164) (0.158) (0.156) 
Other  0.028 -0.009 0.016 
 (0.114) (0.114) (0.113) 
Hispanic  -0.387*** -0.425*** -0.368*** 
 (0.066) (0.072) (0.073) 
Age 18–24 0.131 0.597*** 0.554*** 
 (0.111) (0.116) (0.103) 
Age 25–29 0.155 0.515*** 0.441*** 
 (0.104) (0.111) (0.101) 
Age 30–34 0.101 0.373** 0.309** 
 (0.106) (0.115) (0.114) 
Age 35–49 0.168* 0.291** 0.237** 
 (0.093) (0.094) (0.094) 
Not Married 0.043 -0.090 -0.100 
 (0.087) (0.088) (0.088) 
Never Married -0.112 -0.225** -0.248** 
 (0.086) (0.084) (0.083) 
Kids  -0.178*** -0.136*** -0.118*** 
 (0.029) (0.031) (0.029) 
Pregnant -0.158** -0.116* -0.107* 
 (0.071) (0.064) (0.064) 
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Table 19 

(Cont.) 

 Demographic Human Capital Other Substances 

Demographics (cont.) 
1 HH Member > 65 -0.180* -0.160 -0.149 
 (0.107) (0.106) (0.105) 
2+ HH Members > 65 0.321 0.290 0.264 
 (0.442) (0.362) (0.350) 
Small CBSA 0.170** 0.135** 0.134** 
 (0.059) (0.063) (0.064) 
No CBSA 0.102 -0.006 0.003 
 (0.102) (0.113) (0.110) 
Constant 0.536*** -0.098 -0.141 
 (0.124) (0.284) (0.283) 
Human Capital 
Less than  HS  0.062 0.022 
  (0.261) (0.273) 
High School  -0.162 -0.190 
  (0.264) (0.275) 
Some College  -0.095 -0.123 
  (0.266) (0.278) 
Full Time  -0.042 -0.029 
  (0.071) (0.070) 
Part Time  -0.215** -0.202** 
  (0.067) (0.065) 
Disable No SSI  0.709*** 0.684*** 
  (0.099) (0.097) 
Disable Collects SSI  -0.069 -0.050 
  (0.104) (0.106) 
Income < $20,000  0.219** 0.215* 
  (0.111) (0.113) 
Income $20–50,000  0.210* 0.213* 
  (0.108) (0.109) 
Insurance  -0.107 -0.085 
  (0.087) (0.087) 
Food Stamps  0.205** 0.177** 
  (0.076) (0.074) 
Public Assistance  0.079 0.074 
  (0.082) (0.083) 
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Table 19 

(Cont.) 

 Demographic Human Capital Other Substances 

Human Capital (cont.) 
Family SSI  0.149** 0.160** 
  (0.064) (0.063) 
1 Phone  -0.011 0.003 
  (0.061) (0.061) 
2+ Phones  0.191 0.192 
  (0.170) (0.169) 
Other Substances 
Alcohol    0.237* 
   (0.132) 
Nicotine    0.120 
   (0.074) 
Hard Drugs   0.450*** 
   (0.131) 

βu 
0.617* 0.619** 0.523** 
(0.328) (0.279) (0.233) 

N 19,101 
[9,506,713] 

19,101 
[9,506,713] 

19,101 
[9,506,713] 

Notes.  The dependent variable is annual ER visit.  All models control for year and quarter of interview.  
Omitted categories include white, age 50-64, married, no household members over 65, respondent lives in 
CBSA with population over 1 Million, college education, did not work last week, family income $50,000-
$75,000, and no phone lines in household.  Huber/White robust standard errors reported in parentheses and 
corrected for 2-stage estimation.  Standard errors for ATE computed using Delta Method.  Brackets contain 
“true” number of observations represented by weighted estimates. *p < 0.1 **p < 0.05 ***p < 0.01. 
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Table 20 

2SNLS Estimates of ER Visits for Males 

 Demographic Human Capital Other Substances 

Variable of Interest 
MUD -0.659 -0.889 -1.490** 
 (1.158) (0.994) (0.595) 
ATE -0.610 -0.742 -0.920 
 (1.239) (1.017) (0.586) 
Demographics 
Black  0.079 0.108 0.049 
 (0.126) (0.139) (0.153) 
Asian  -0.900*** -0.716** -0.428 
 (0.257) (0.263) (0.268) 
Other  0.263* 0.177 0.153 
 (0.151) (0.155) (0.174) 
Hispanic  -0.157 -0.165 0.315** 
 (0.203) (0.207) (0.147) 
Age 18–24 -0.168 0.270 0.087 
 (0.209) (0.199) (0.192) 
Age 25–29 -0.036 0.242 0.156 
 (0.198) (0.211) (0.190) 
Age 30–34 -0.088 0.100 -0.169 
 (0.180) (0.192) (0.255) 
Age 35–49 0.015 0.049 0.255** 
 (0.144) (0.142) (0.129) 
Not Married 0.425** 0.339* 0.133 
 (0.158) (0.174) (0.170) 
Never Married 0.134 -0.045 0.026 
 (0.136) (0.138) (0.162) 
Kids  -0.086** 0.003 -0.057 
 (0.043) (0.050) (0.059) 
1 HH Member > 65 0.077 -0.011 0.382** 
 (0.199) (0.197) (0.135) 
2+ HH Members > 65 -0.147 -0.086 -0.155 
 (0.221) (0.229) (0.224) 
Small CBSA 0.371** 0.340** 0.536*** 
 (0.114) (0.121) (0.118) 
No CBSA 0.084 -0.053 0.025 
 (0.141) (0.150) (0.170) 
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Table 20 

(Cont.) 

 Demographic Human Capital Other Substances 

Demographics (cont.) 
Constant 0.250 -0.783** -1.780** 
 (0.208) (0.364) (0.602) 
Human Capital 
Less than  HS  0.228 0.666 
  (0.279) (0.485) 
High School  0.073 0.845* 
  (0.277) (0.487) 
Some College  0.193 0.799 
  (0.288) (0.501) 
Full Time  -0.194 -0.370** 
  (0.131) (0.140) 
Part Time  -0.169 -0.166 
  (0.133) (0.148) 
Disable No SSI  0.618*** 0.702*** 
  (0.158) (0.158) 
Disable Collects SSI  0.684*** 0.783*** 
  (0.131) (0.138) 
Income < $20,000  0.356** 0.711** 
  (0.158) (0.269) 
Income $20-50,000  0.302* 0.870** 
  (0.156) (0.269) 
Insurance  -0.385* -0.416** 
  (0.221) (0.186) 
Food Stamp  0.098 0.090 
  (0.121) (0.106) 
Public Assistance  0.224 -0.018 
  (0.182) (0.197) 
Family SSI  0.439*** 0.564*** 
  (0.100) (0.120) 
1 Phone  0.064 -0.275** 
  (0.120) (0.114) 
2+ Phones  -0.062 -0.399* 
  (0.245) (0.227) 
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Table 20 

(Cont.) 

 Demographic Human Capital Other Substances 

Other Substances 
Alcohol    0.943*** 
   (0.174) 
Nicotine    -0.198 
   (0.127) 
Hard Drugs   0.684** 
   (0.267) 
βu 0.473 0.508 0.849** 
 (0.685) (0.585) (0.395) 

N 8,075 
[4,966,773] 

8,075 
[4,966,773] 

8,075 
[4,966,773] 

Notes.  The dependent variable is annual ER visit.  All models control for year and quarter of interview.  
Omitted categories include white, age 50-64, married, no household members over 65, respondent lives in 
CBSA with population over 1 million, college education, did not work last week, family income $50,000-
$75,000, and no phone lines in household.  Huber/White robust standard errors reported in parentheses and 
corrected for 2-stage estimation.  Standard errors for ATE computed using Delta Method.  Brackets contain 
“true” number of observations represented by weighted estimates. *p < 0.1 **p < 0.05 ***p < 0.01. 
 

 In general, the coefficients on the control variables remain similar to the 

exogenous model.  However, the coefficients for the other substance use disorder 

variables shift substantially.  Among females the coefficient for alcohol nearly doubles 

and becomes significant, while the coefficient for hard drugs increases from 0.27 to 0.45 

and remains significant.  Among males the magnitude of the alcohol coefficient also 

increases (and remains significant), while the coefficient for hard drugs increases from 

0.27 to 0.68 and becomes significant.  The 2SNLS results also indicate that the average 

effect of MUD on total ER visits differs from the average effect of hard drug use 

disorders since the hard drug coefficient is large and positive, while the marijuana 

coefficient is large and negative.   
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Given the evidence that MUD is endogenously correlated with ER visits due to 

unobserved factors, at least among females, the 2SNLS model is preferred to NLS.  I 

select the final specification, which controls for demographics, human capital, and other 

substance use disorders, as the preferred specification for additional analysis.  In addition 

to being the most comprehensive model, the results from this specification among males 

warrant further attention.  Although the ATE is within the range of estimates from the 

female specifications, the estimate of βM seems implausibly large, which may indicate 

that the ATE is overestimated.  Therefore, this specification invites additional checks to 

determine whether this is a spurious result, or whether it reflects the true relationship 

between MUD and ER visits.  

7.3. First-Stage Estimation 

Although the endogeneity-corrected estimates differ from the exogenous ones, 

they are no more likely to be correct if the probability of MUD is not appropriately 

estimated in the first stage.  To address this concern I survey the general predictions of 

the first stage before turning to examine the validity of the instrumental variables.  Tables 

21 and 22 show the first-stage estimation results for females and males, respectively.  

Asian males are less likely than whites to suffer from MUD, while black females 

are more likely.  Among both males and females age is negatively correlated with the 

probability of having MUD, while individuals who are not currently married or never 

have been married are significantly more likely to have MUD.  Living outside of a core-

based statistical area (i.e., rural residence) is also negatively correlated with MUD among 

both genders.  For males, college graduates and full time workers are significantly less 
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likely to have MUD.  For females, having children is negatively associated with MUD.  

However, among females education is uncorrelated with MUD, and income is 

uncorrelated with MUD among both genders.32  The only control for financial resources 

that is significant among females is whether the respondent’s current household has a 

single phone line, an outcome that is positively correlated with MUD.  Whether or not the 

respondent reports a disability is uncorrelated with MUD, which helps to alleviate 

concerns of reverse-causality (i.e., that chronic poor health causes marijuana use that 

leads to MUD). 

 
Table 21 
 
First-Stage Probit Estimates of Marijuana Use Disorder for Females 
 

 Demographic Human Capital Other Substances 

Instrumental Variables 
Slightly Disapprove -0.426*** -0.434*** -0.408*** 
 (0.079) (0.079) (0.086) 
Strongly Disapprove -0.710*** -0.716*** -0.623*** 
 (0.117) (0.118) (0.121) 
IV Significance 57.93*** 58.24*** 41.22*** 
1st Stage {0.000} {0.000} {0.000} 
IV Significance 2.67 1.940 1.890 
2nd Stage {0.263} {0.379} {0.389} 
Demographics 
Black  0.134* 0.120 0.282*** 
 (0.076) (0.077) (0.085) 
Asian  0.034 0.068 0.272 
 (0.232) (0.231) (0.251) 

                                                           
32 Although it may seem odd that human capital is uncorrelated with MUD among females, these results are 
consistent with McGeary and French (2000) who find that education is uncorrelated with chronic drug use 
among both males and females, and that neither income nor employment status is correlated with chronic 
drug use among females.  The negative correlation between employment and MUD among males is also 
consistent with McGeary and French (2000).   
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Table 21 

(Cont.) 

 Demographic Human Capital Other Substances 

Demographics (cont.) 
Other  0.063 0.074 0.187 
 (0.120) (0.116) (0.128) 
Hispanic  -0.041 -0.046 0.105 
 (0.091) (0.089) (0.095) 
Age 18–24 0.847*** 0.985*** 1.035*** 
 (0.197) (0.188) (0.188) 
Age 25–29 0.721*** 0.860*** 0.850*** 
 (0.204) (0.195) (0.190) 
Age 30–34 0.661** 0.783*** 0.806*** 
 (0.212) (0.201) (0.202) 
Age 35–49 0.282 0.345* 0.319* 
 (0.186) (0.180) (0.184) 
Not Married 0.302** 0.274** 0.247* 
 (0.128) (0.125) (0.129) 
Never Married 0.294** 0.272** 0.213* 
 (0.111) (0.108) (0.111) 
Kids  -0.141*** -0.153*** -0.102** 
 (0.033) (0.037) (0.038) 
Pregnant -0.037 -0.020 0.035 
 (0.082) (0.083) (0.087) 
1 HH Member > 65 -0.093 -0.097 -0.047 
 (0.130) (0.132) (0.143) 
2+ HH Members > 65 -0.023 -0.039 -0.035 
 (0.189) (0.191) (0.216) 
Small CBSA 0.033 0.025 0.016 
 (0.066) (0.065) (0.071) 
No CBSA -0.089 -0.107 -0.116 
 (0.109) (0.112) (0.121) 
Constant -2.461*** -2.878*** -3.199*** 
 (0.204) (0.275) (0.308) 
Human Capital 
Less than  HS  0.249 0.119 
  (0.152) (0.171) 
High School  0.124 0.030 
  (0.148) (0.170) 
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Table 21 

(Cont.) 

 Demographic Human Capital Other Substances 

Human Capital (cont.) 
Some College  0.111 0.017 
  (0.158) (0.177) 
Full Time  -0.055 -0.034 
  (0.083) (0.089) 
Part Time  0.084 0.141* 
  (0.074) (0.081) 
Disable No SSI  0.172 0.103 
  (0.150) (0.164) 
Disable Collects SSI  -0.008 0.059 
  (0.176) (0.186) 
Income < $20,000  -0.012 -0.048 
  (0.103) (0.113) 
Income $20–50,000  -0.048 -0.068 
  (0.107) (0.116) 
Insurance  0.113 0.201* 
  (0.109) (0.118) 
Food Stamp  0.088 0.039 
  (0.074) (0.081) 
Public Assistance  0.074 0.057 
  (0.071) (0.074) 
Family SSI  0.022 0.059 
  (0.080) (0.087) 
1 Phone  0.143** 0.167** 
  (0.069) (0.073) 
2+ Phones  -0.070 -0.101 
  (0.173) (0.203) 
Other Substances 
Alcohol    0.605*** 
   (0.082) 
Nicotine    0.314*** 
   (0.076) 
Hard Drugs   0.956*** 
   (0.106) 
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Table 21 

(Cont.) 

 Demographic Human Capital Other Substances 

N 19,101 
[9,506,713] 

19,101 
[9,506,713] 

19,101 
[9,506,713] 

Notes.  The dependent variable is a binary indicator for marijuana use disorder.  All models control for year 
and quarter of interview.  Omitted categories include white, age 50-64, married, no household members 
over 65, respondent lives in CBSA with population over 1 million, college education, did not work last 
week, family income $50,000-$75,000, and no phone lines in household.  Omitted IV category refers to 
“Neither agree nor disagree.” { } Indicates p-value for joint test of variable significance.  2nd-Stage 
Significance refers to the results of a heuristic test for excludability of the IVs from the 2nd stage, in which 
the IVs are included in an NLS regression of ER visits and tested for joint significance.  Brackets contain 
“true” number of observations represented by weighted estimates.  Standard errors are in parentheses.  
*p < 0.1 **p < 0.05 ***p < 0.01. 

 

Table 22 

First-Stage Probit Estimates of Marijuana Use Disorder for Males 

 Demographic Human Capital Other Substances 
Instrumental Variables 
Somewhat Disapprove -0.090 -0.092 -0.055 
 (0.108) (0.109) (0.109) 
Strongly Disapprove -0.896*** -0.887*** -0.826*** 
 (0.106) (0.105) (0.105) 
IV Significance 72.36*** 71.26*** 63.57*** 
1st Stage [0.000] [0.000] [0.000] 
IV Significance 2.49* 7.98*** 6.90*** 
2nd Stage [0.083] [0.000] [0.001] 
Demographics 
Black  0.163 0.116 0.157 
 (0.100) (0.097) (0.102) 
Asian  -0.651** -0.621** -0.561** 
 (0.240) (0.250) (0.257) 
Other  0.149 0.126 0.165 
 (0.161) (0.150) (0.171) 
Hispanic  0.065 0.054 0.138 
 (0.128) (0.125) (0.124) 
Age 18–24 0.900*** 0.876*** 1.008*** 
 (0.194) (0.187) (0.189) 
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Table 22 

(Cont.) 

 Demographic Human Capital Other Substances 
Demographics (cont.) 
Age 25–29 0.818*** 0.825*** 0.820*** 
 (0.197) (0.188) (0.198) 
Age 30–34 0.641** 0.653** 0.629** 
 (0.208) (0.199) (0.205) 
Age 35–49 0.331* 0.349** 0.283 
 (0.189) (0.178) (0.181) 
Not Married 0.485** 0.451** 0.365** 
 (0.158) (0.158) (0.161) 
Never Married 0.256** 0.233* 0.131 
 (0.118) (0.120) (0.127) 
Kids  -0.043 -0.050 -0.031 
 (0.035) (0.037) (0.038) 
1 HH Member > 65 -0.196 -0.198 -0.234 
 (0.133) (0.140) (0.156) 
2+ HH Members > 65 -0.015 0.019 0.076 
 (0.274) (0.283) (0.329) 
Small CBSA -0.003 -0.027 -0.047 
 (0.092) (0.088) (0.092) 
No CBSA -0.251** -0.275** -0.318** 
 (0.119) (0.121) (0.135) 
Constant -2.526*** -3.068*** -3.581*** 
 (0.187) (0.406) (0.478) 
Human Capital 
Less than  HS  0.928** 0.876** 
  (0.303) (0.361) 
High School  0.812** 0.790** 
  (0.304) (0.364) 
Some College  0.834** 0.857** 
  (0.311) (0.374) 
Full Time  -0.234** -0.241** 
  (0.098) (0.102) 
Part Time  -0.085 -0.008 
  (0.099) (0.111) 
Disable No SSI  -0.240 -0.229 
  (0.150) (0.181) 
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Table 22 

(Cont.) 

 Demographic Human Capital Other Substances 
Human Capital (cont.) 
Disable Collects SSI  -0.039 -0.041 
  (0.139) (0.138) 
Income < $20,000  -0.035 -0.008 
  (0.129) (0.138) 
Income $20–50,000  -0.093 -0.090 
  (0.119) (0.127) 
Insurance  -0.082 -0.024 
  (0.109) (0.125) 
Food Stamp  0.036 -0.022 
  (0.089) (0.092) 
Public Assistance  -0.057 -0.095 
  (0.105) (0.111) 
Family SSI  -0.052 -0.094 
  (0.098) (0.107) 
1 Phone  -0.111 -0.107 
  (0.078) (0.082) 
2+ Phones  -0.024 0.054 
  (0.196) (0.246) 
Other Substances 
Alcohol    0.737*** 
   (0.091) 
Nicotine    0.336*** 
   (0.081) 
Hard Drugs   0.960*** 
   (0.147) 

N 8,075 
[4,966,773] 

8,075 
[4,966,773] 

8,075 
[4,966,773] 

Notes.  The dependent variable is a binary indicator for marijuana use disorder.  All models control for year 
and quarter of interview.  Omitted categories include white, age 50–64, married, no household members 
over 65, respondent lives in CBSA with population over 1 Million, college education, did not work last 
week, family income $50,000-$75,000, and no phone lines in household.  Omitted IV category refers to 
“Neither agree nor disagree.” { } Indicates p-value for joint test of variable significance. 2nd-Stage 
Significance refers to the results of a heuristic test for excludability of the IVs from the 2nd stage, in which 
the IVs are included in an NLS regression of ER visits and tested for joint significance.  Brackets contain 
“true” number of observations represented by weighted estimates.  Standard errors are in parentheses.   
*p < 0.1 **p < 0.05 ***p < 0.01. 
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All three other forms of substance use disorder are strongly and positively 

correlated with MUD, which is consistent with the positive omitted variables bias on βM 

observed in the second stage.  Given the large magnitude of these three coefficients 

relative to the other controls, it is likely that inclusion of the substance use disorder 

controls improves the accuracy of estimates of the linear index for MUD at the individual 

level, which should in turn improve the second stage estimates.  This bolsters the case for 

the comprehensive substance use disorder specification being preferred to the human 

capital and demographic specifications.   

Overall, the coefficients for the controls in the first stage do not seem 

problematic.  However, consistency of the 2SNLS estimates requires that the 

instrumental variables (IVs) are valid.  Validity of the IVs requires both that they strongly 

correlated with the probability of MUD, conditional on all other control variables, and 

that conditional on all other control variables, they are uncorrelated with the error term 

for ER visits.  Recall from section 4 that the single instrument (measured by two 

variables) is the respondent’s opinion of another adult trying marijuana once or twice.  

Responses include “neither approve nor disapprove,” “somewhat disapprove,” and 

“strongly disapprove.”  Indicators for “somewhat” and “strong” disapproval are included 

in the first stage, with “neither approve nor disapprove” as the omitted category.   

The first stage results suggest that the IVs are jointly significant among males and 

females.  The chi-squared value for females is roughly 58 for both the demographic and 

human capital models, and diminishes to 41 in the substance use disorder specification.  

For males the IVs have even more predictive power, with a chi-squared value of 71–72 in 
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the demographic and human capital specifications and 64 in the substance use disorder 

specification.  These results suggest that the IVs are sufficiently strong. 

The theoretical justification for exclusion of the IVs from the equation for ER 

visits rests on the assertion that conditional on all of the available controls it is reasonable 

to assume that one’s opinion of adults trying marijuana is independent of health or of 

other behavior that may lead to ER visits.  Unfortunately, when the model is just-

identified, there is no formal empirical test that the instrumental variables are excludable 

from the equation for ER visits.  One heuristic test used previously in the substance use 

literature is to include the instruments directly in an exogenous version of the second 

stage NLS model and test whether the IVs are jointly significant (see e.g., Kenkel & 

Terza, 2001).  Among females the IVs are jointly insignificant, with a p-value ranging 

from 0.26 to 0.39.  However, among males the IVs are jointly significant in all three 

models.  Interestingly, the IVs become more strongly correlated with ER visits after 

controls for human capital are added, and the controls for other forms of substance use 

disorder barely diminish this joint significance, such that the statistical case for 

excludability is greatest in the least comprehensive model.   

These results provide only circumstantial rather than direct evidence in favor of 

the instrument (for females) or against them (for males).  However, the response of the 

IVs to the inclusion of additional controls among males suggests that the instrument is 

capturing statistical noise rather than any true underlying information about individual 

demand for ER visits.  Moreover, the evidence suggests that the IVs are excludable 

among females, and the female estimates are broadly similar to those for males (with the 
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exception of βM in the final specification.)  Therefore, I continue under the assumption 

that the IVs are valid.  To provide more support for the 2SNLS estimates, I run several 

additional specifications.  Results of these robustness checks are presented in the next 

section. 

7.4. Robustness Checks 

 The purpose of the analyses in this section is to not only demonstrate the 

robustness of the results from the preferred specification, but also to try to determine if 

there are any previously omitted factors that may explain why marijuana is negatively 

correlated with ER visits (and for males, why the estimated coefficient is improbably 

large).  The first of the extended specifications includes disease indicators that proxy for 

individual health.  The second extended specification includes measures of 

attitudes/beliefs, consisting of measures of preference for risky and dangerous behavior, 

as well as religiosity.  The third extended specification includes controls for illegal 

behavior.  Unlike the first set of specifications, each additional set of controls enters in 

isolation, rather than building on the previous set of controls (i.e., the “illegal activities” 

controls are introduced separately from the “attitudes” controls).  As a final robustness 

check, I re-run the substance use disorder specification without weighting the first or 

second stage.  Results are presented in Table 23 for females and Table 24 for males.  

 Among females, inclusion of controls for health slightly increases the magnitude 

of βM and βu although βM becomes insignificant.  Four diseases, including asthma, 

bronchitis, ulcers, and “other diseases” are positively correlated with ER visits, while 

none are significantly negatively correlated with ER visits.  The increasing coefficient 
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magnitude for βM and βu is consistent with the assumed positive correlation between 

negative health events (i.e., disease) and MUD, although the effect does not seem to be 

particularly large.   

 
Table 23 

2SNLS Robustness Checks for Females 

 Other 
Substances 

 
Health 

 
Attitudes 

Illegal 
Activities 

 
Unweighted 

Variable of Interest 

MUD -0.745* -0.789 -0.528 -1.467** -0.625** 
 (0.447) (0.497) (0.410) (0.619) (0.204) 
ATE -0.780 -0.867 -0.615 -1.245* -0.629** 
 (0.561) (0.607) (0.530) (0.721) (0.273) 

Demographics 

Black  0.126* 0.123 0.101 0.133* 0.098** 
 (0.069) (0.098) (0.075) (0.073) (0.031) 
Asian  -0.738*** -0.655*** -0.759*** -0.691*** -0.672** 
 (0.156) (0.173) (0.165) (0.157) (0.220) 
Other  0.016 -0.019 -0.020 0.015 0.001 
 (0.113) (0.125) (0.120) (0.113) (0.047) 
Hispanic  -0.368*** -0.347*** -0.384*** -0.358*** -0.248*** 
 (0.073) (0.100) (0.076) (0.074) (0.042) 
Age 18-24 0.554*** 0.576*** 0.504*** 0.540*** 0.480*** 
 (0.103) (0.119) (0.101) (0.110) (0.060) 
Age 25-29 0.441*** 0.500*** 0.396*** 0.405*** 0.387*** 
 (0.101) (0.117) (0.105) (0.100) (0.060) 
Age 30-34 0.309** 0.300** 0.253** 0.252** 0.315*** 
 (0.114) (0.121) (0.121) (0.115) (0.067) 
Age 35-49 0.237** 0.261** 0.217** 0.150 0.113** 
 (0.094) (0.104) (0.099) (0.101) (0.053) 
Not Married -0.100 -0.070 -0.090 -0.125 -0.012 
 (0.088) (0.095) (0.090) (0.094) (0.039) 
Never Married -0.248** -0.113 -0.245** -0.275** -0.197*** 
 (0.083) (0.109) (0.083) (0.088) (0.034) 
Kids  -0.118*** -0.075* -0.112*** -0.134*** -0.060*** 
 (0.029) (0.039) (0.029) (0.033) (0.013) 
1 HH Member > 65 -0.107* -0.129* -0.103 -0.096 -0.129** 
 (0.064) (0.072) (0.066) (0.065) (0.043) 
2+ HH Members > 65 0.264 0.197 0.272 0.154 -0.028 
 (0.350) (0.309) (0.337) (0.343) (0.129) 
Small CBSA 0.134** 0.089 0.147** 0.164** 0.141*** 
 (0.064) (0.072) (0.066) (0.072) (0.027) 
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Table 23 

(Cont.) 

 Other 
Substances 

 
Health 

 
Attitudes 

Illegal 
Activities 

 
Unweighted 

Demographics (cont.) 

No CBSA 0.003 0.019 0.021 0.043 0.013 
 (0.110) (0.111) (0.110) (0.108) (0.045) 
Constant -0.141 -0.249 -0.142 -0.079 -0.306** 
 (0.283) (0.322) (0.286) (0.273) (0.123) 
Less than  HS 0.022 0.087 -0.032 -0.095 0.219** 
 (0.273) (0.279) (0.289) (0.295) (0.080) 
High School -0.190 -0.160 -0.234 -0.294 0.081 
 (0.275) (0.277) (0.291) (0.301) (0.080) 
Some College -0.123 -0.159 -0.167 -0.231 0.082 
 (0.278) (0.283) (0.295) (0.311) (0.081) 
Full Time -0.029 -0.035 -0.024 0.016 -0.075** 
 (0.070) (0.061) (0.071) (0.084) (0.038) 
Part Time -0.202** -0.214*** -0.209** -0.192** -0.179*** 
 (0.065) (0.064) (0.067) (0.066) (0.043) 
Disable No SSI  0.684*** 0.483*** 0.701*** 0.700*** 0.653*** 
 (0.097) (0.105) (0.099) (0.109) (0.043) 
Disable Collects SSI -0.050 0.078 -0.072 -0.103 -0.007 
 (0.106) (0.122) (0.111) (0.120) (0.043) 
Income < $20,000 0.215* 0.098 0.252** 0.207* 0.096 
 (0.113) (0.155) (0.109) (0.119) (0.066) 
Income $20–50,000 0.213* 0.074 0.254** 0.228* 0.096 
 (0.109) (0.147) (0.107) (0.118) (0.066) 
Insurance -0.085 -0.151 -0.107 -0.098 -0.011 
 (0.087) (0.114) (0.088) (0.094) (0.053) 
Food Stamp 0.177** 0.093 0.182** 0.197** 0.178*** 
 (0.074) (0.107) (0.075) (0.075) (0.030) 
Public Assistance 0.074 0.113 0.079 0.108 0.067** 
 (0.083) (0.101) (0.091) (0.095) (0.028) 
Family SSI 0.160** 0.179** 0.149** 0.159** 0.191*** 
 (0.063) (0.069) (0.062) (0.066) (0.036) 
1 Phone 0.003 0.056 0.004 0.051 -0.022 
 (0.061) (0.066) (0.062) (0.074) (0.026) 
2+ Phones 0.192 0.167 0.201 0.294 0.090 
 (0.169) (0.144) (0.176) (0.209) (0.074) 
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Table 23 

(Cont.) 

 Other 
Substances 

 
Health 

 
Attitudes 

Illegal 
Activities 

 
Unweighted 

Other Substances 

Alcohol  0.237* 0.263** 0.163 0.255* 0.174*** 
 (0.132) (0.116) (0.118) (0.131) (0.051) 
Nicotine  0.120 0.049 0.138* 0.112 0.154*** 
 (0.074) (0.091) (0.079) (0.090) (0.028) 
Hard Drugs 0.450*** 0.435** 0.381** 0.421** 0.451*** 
 (0.131) (0.142) (0.130) (0.141) (0.058) 

Health Controls 

Asthma  0.292***    
  (0.078)    
Bronchitis  0.457***    
  (0.125)    
Pneumonia  -0.078    
  (0.135)    
Sinusitis  0.007    
  (0.122)    
Stroke  0.248    
  (0.220)    
High BP  0.033    
  (0.089)    
Heart Disease  0.170    
  (0.123)    
Diabetes  -0.104    
  (0.112)    
Hepatitis  -0.097    
  (0.232)    
STD  0.075    
  (0.148)    
HIV  -0.072    
  (0.237)    
Ulcer  0.624***    
  (0.152)    
Other Disease  0.560**    
  (0.236)    
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Table 23 

(Cont.) 

 Other 
Substances 

 
Health 

 
Attitudes 

Illegal 
Activities 

 
Unweighted 

Health Controls (cont.) 

Depression  0.061    
  (0.101)    

Attitude Controls 

Risk   0.008   
   (0.089)   
Danger   0.102   
   (0.076)   
Seatbelt   0.112   
   (0.082)   
Religion Important   0.030   
   (0.073)   
Service Attender   0.094   
   (0.068)   
Religious Friends   0.181**   
   (0.068)   
Religious Decisions   -0.165**   
   (0.070)   

Illegal Activity Controls 

Ever Arrested    0.193**  
    (0.068)  
Offered Drugs    0.439**  
    (0.180)  

βu 
0.523** 0.553** 0.409** 0.898** 0.396*** 
(0.233) (0.259) (0.203) (0.335) (0.106) 

N 19,101 
[9,506,713] 

19,101 
[9,506,713] 

19,101 
[9,506,713] 

19,101 
[9,506,713] 

19,101 
[9,506,713] 

Notes.  Dependent variable is annual ER visits.  All models control for year and quarter of interview.  
Omitted categories include white, age 50-64, married, no household members over 65, respondent lives in 
CBSA with population over 1 Million, college education, did not work last week, family income $50,000-
$75,000, and no phone lines in household.  Huber/White robust standard errors reported in parentheses and 
corrected for 2-stage estimation.  Standard errors for ATE computed using Delta Method.  *p < 0.1 **p < 
0.05 ***p < 0.01. 
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Table 24 

2SNLS Robustness Checks for Males 

 Other 
Substances 

 
Health 

 
Attitudes 

Illegal 
Activities 

 
Unweighted 

Variable of Interest 

MUD -1.490** -1.678*** -1.304** -1.533** 0.041 
 (0.595) (0.451) (0.591) (0.612) (0.284) 
ATE -0.920 -1.032 -0.853 -0.956 0.047 
 (0.586) (0.444) (0.564) (0.582) (0.327) 

Demographics 

Black  0.049 0.050 -0.023 -0.010 0.113** 
 (0.153) (0.126) (0.156) (0.139) (0.054) 
Asian  -0.428 -0.359 -0.528** -0.225 -0.358 
 (0.268) (0.239) (0.265) (0.240) (0.280) 
Other  0.153 0.188 0.021 0.123 0.064 
 (0.174) (0.151) (0.193) (0.174) (0.073) 
Hispanic  0.315** 0.281** 0.168 0.202 -0.093 
 (0.147) (0.142) (0.149) (0.135) (0.072) 
Age 18-24 0.087 0.367** 0.130 0.095 0.262** 
 (0.192) (0.182) (0.193) (0.190) (0.095) 
Age 25-29 0.156 0.400** 0.154 0.189 0.276** 
 (0.190) (0.190) (0.185) (0.194) (0.090) 
Age 30-34 -0.169 0.258 -0.148 -0.160 0.003 
 (0.255) (0.276) (0.230) (0.237) (0.113) 
Age 35-49 0.255** 0.344** 0.202 0.190 0.074 
 (0.129) (0.119) (0.133) (0.125) (0.078) 
Not Married 0.133 0.114 0.164 0.089 0.024 
 (0.170) (0.135) (0.175) (0.162) (0.072) 
Never Married 0.026 0.051 0.023 -0.043 -0.196** 
 (0.162) (0.126) (0.158) (0.149) (0.062) 
Kids  -0.057 -0.025 -0.065 -0.048 0.009 
 (0.059) (0.049) (0.056) (0.060) (0.023) 
1 HH Member > 65 0.382** 0.339** 0.306** 0.367** 0.053 
 (0.135) (0.126) (0.130) (0.129) (0.079) 
2+ HH Members > 65 -0.155 -0.201 -0.393* -0.129 -0.138 
 (0.224) (0.277) (0.233) (0.234) (0.212) 
Small CBSA 0.536*** 0.472*** 0.516*** 0.526*** 0.198*** 
 (0.118) (0.113) (0.123) (0.116) (0.050) 
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Table 24 

(Cont.) 

 Other 
Substances 

 
Health 

 
Attitudes 

Illegal 
Activities 

 
Unweighted 

Demographics (cont.) 

No CBSA 0.025 -0.116 -0.061 0.030 0.048 
 (0.170) (0.183) (0.178) (0.170) (0.078) 
Constant -1.780** -1.675*** -1.648** -1.668*** -0.491** 
 (0.602) (0.434) (0.510) (0.497) (0.221) 

Human Capital 

Less than  HS 0.666 0.583* 0.438 0.425 0.137 
 (0.485) (0.303) (0.399) (0.360) (0.160) 
High School 0.845* 0.672** 0.609 0.628* 0.228 
 (0.487) (0.300) (0.398) (0.355) (0.158) 
Some College 0.799 0.730** 0.479 0.649* 0.219 
 (0.501) (0.325) (0.417) (0.376) (0.164) 
Full Time -0.370** -0.340** -0.289** -0.356** -0.085 
 (0.140) (0.127) (0.131) (0.133) (0.074) 
Part Time -0.166 -0.160 -0.208 -0.170 -0.015 
 (0.148) (0.130) (0.151) (0.158) (0.079) 
Disable No SSI 0.702*** 0.586*** 0.722*** 0.718*** 0.845*** 
 (0.158) (0.143) (0.152) (0.150) (0.074) 
Disable Collects SSI 0.783*** 0.596*** 0.775*** 0.761*** 0.731*** 
 (0.138) (0.132) (0.131) (0.140) (0.070) 
Income < $20,000 0.711** 0.575** 0.559** 0.703** 0.106 
 (0.269) (0.206) (0.227) (0.271) (0.105) 
Income $20–50,000 0.870** 0.529** 0.724*** 0.811** 0.013 
 (0.269) (0.185) (0.218) (0.264) (0.107) 
Insurance -0.416** -0.457** -0.524** -0.337* 0.000 
 (0.186) (0.188) (0.187) (0.197) (0.087) 
Food Stamp 0.090 0.057 0.103 0.095 0.145** 
 (0.106) (0.103) (0.101) (0.102) (0.048) 
Public Assistance -0.018 0.130 0.058 0.064 0.003 
 (0.197) (0.163) (0.196) (0.182) (0.057) 
Family SSI 0.564*** 0.446*** 0.596*** 0.508*** 0.445*** 
 (0.120) (0.105) (0.113) (0.119) (0.062) 
1 Phone -0.275** -0.194* -0.201* -0.156 -0.106** 
 (0.114) (0.111) (0.104) (0.105) (0.045) 
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Table 24 

(Cont.) 

 Other 
Substances 

 
Health 

 
Attitudes 

Illegal 
Activities 

 
Unweighted 

Human Capital (cont.) 

2+ Phones -0.399* -0.259 -0.293 -0.326 -0.131 
 (0.227) (0.245) (0.202) (0.236) (0.136) 

Other Substances 

Alcohol  0.943*** 0.908*** 0.836*** 0.738*** 0.318*** 
 (0.174) (0.124) (0.156) (0.151) (0.063) 
Nicotine  -0.198 -0.115 -0.213* -0.320** 0.097** 
 (0.127) (0.118) (0.127) (0.125) (0.048) 
Hard Drugs 0.684** 0.767*** 0.519** 0.451** 0.394*** 
 (0.267) (0.165) (0.239) (0.221) (0.090) 

Health Controls 

Asthma  0.243    
  (0.168)    
Bronchitis  -0.451*    
  (0.231)    
Pneumonia  0.461**    
  (0.221)    
Sinusitis  0.541    
  (0.330)    
Stroke  0.078    
  (0.289)    
High BP  0.210*    
  (0.114)    
Heart Disease  0.403**    
  (0.136)    
Diabetes  0.525***    
  (0.119)    
Hepatitis  -0.237    
  (0.172)    
STD  -0.636**    
  (0.286)    
HIV  -0.191    
  (0.202)    
Ulcer  0.147    
  (0.230)    
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Table 24 

(Cont.) 

 Other 
Substances 

 
Health 

 
Attitudes 

Illegal 
Activities 

 
Unweighted 

Health Controls (cont.) 

Other Disease  0.216    
  (0.244)    
Depression  -0.124    
  (0.155)    

Attitude Controls 

Risk   -0.044   
   (0.127)   
Danger   0.424***   
   (0.117)   
Seatbelt   -0.142   
   (0.161)   
Religion Important   -0.178   
   (0.127)   
Service Attender   -0.027   
   (0.136)   
Religious Friends   0.300**   
   (0.112)   
Religious Decisions   0.253*   
   (0.133)   

Illegal Activity Controls 

Ever Arrested    0.379***  
    (0.114)  
Offered Drugs    0.648***  
    (0.150)  
βu 0.849** 0.970*** 0.729* 0.822** -0.038 
 (0.395) (0.248) (0.383) (0.377) (0.154) 

N 8,075 
[4,966,773] 

8,075 
[4,966,773] 

8,075 
[4,966,773] 

8,075 
[4,966,773] 

8,075 
[4,966,773] 

Notes.  Dependent variable is annual ER visits.  All models control for year and quarter of interview.  
Omitted categories include white, age 50-64, married, no household members over 65, respondent lives in 
CBSA with population over 1 million, college education, did not work last week, family income $50,000-
$75,000, and no phone lines in household.  Huber/White robust standard errors reported in parentheses and 
corrected for 2-stage estimation.  Standard errors for ATE computed using Delta Method.   
*p < 0.1 **p < 0.05 ***p < 0.01. 
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Inclusion of the attitudes/beliefs controls among females attenuates βM and βu by 

roughly 20–25% relative to the substance use disorder specification, indicating an 

(insignificant) ATE of -0.62, compared to the -0.78 predicted by the preferred 

specification.  Controls for risk and danger preference, as well as seatbelt use are 

insignificantly correlated with ER visits.  Preferring one’s friends to share one’s religion 

is positively correlated with ER visits, while allowing one’s religion to affect one’s 

decisions is negatively correlated with ER visits.  This suggests that among females, 

religious beliefs, but not attitudes towards risk-taking, are a significant confounder of the 

relationship between MUD and ER visits.  However, it is also possible that the potential 

endogeneity of beliefs to MUD or health is downward biasing the estimates. 

Including controls for illegal activities nearly doubles the magnitude of both βM 

and βu, rendering both coefficients roughly equivalent to the estimates from the preferred 

specification among males.  βM and the ATE are both significant, although the coefficient 

estimate is an implausibly large -1.47 (the next largest coefficient in magnitude is 0.700 

for individuals who report disability but do not collect SSI).  Being arrested and being 

offered drugs are both positively and significantly correlated with ER visits.  Although 

both variables are likely confounders of the relationship between MUD and ER visits, the 

magnitude of the new coefficient estimate for MUD suggests that these variables may be 

endogenous to the model and therefore biasing the coefficient estimates.  Regardless of 

the source of the error, it seems implausible that the inflated estimates reflect the true 

relationship between MUD and ER visits.   
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Lastly, in the unweighted model, βM and βu are both attenuated.  However, 

dropping the weights also decreases the standard errors so that βM and the ATE are both 

significant.  The unweighted model predicts that individuals with MUD utilize the ER -

0.69 times per year on average, compared to the estimated ATE of -0.79 from the 

weighted model.  In general, the other coefficients from the unweighted model are fairly 

consistent with those from the weighted model, suggesting that the weights do not have a 

dramatic effect on the results among females. 

Among males inclusion of the health variables increases the magnitude of both βM 

and βu, consistent with the female results.  Pneumonia, high blood pressure, heart disease, 

and diabetes are all positively and significantly correlated with ER visits, although 

bronchitis and sexually transmitted diseases are both significantly negatively correlated 

with ER visits.  The downward shift in the value of βM and βu supports the assumed 

positive relationship between MUD and negative health events, but as with females the 

magnitude of the shift remains comparatively small.  Considering that health should be 

one of the key, if not primary, determinants of ER visits, this suggests that the 

relationship between MUD and health events (as I am able to measure them) is not 

particular large. 

 Inclusion of controls for attitudes/beliefs attenuates βM and βu, which is also 

consistent with the female results.  However, βM remains an implausibly large -1.30, 

indicating that this set of variables cannot explain the inflation of the coefficient caused 

by inclusion of the substance use disorder controls.  A preference for dangerous behavior 

is significantly positively correlated with ER visits, as is the preference that one’s friends 
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share one’s religious beliefs, and whether one allows religion to influence decision 

making.  This, coupled with the attenuation of βM and βu, indicates that attitudes toward 

risky behavior, as well as religious beliefs, are significant confounders of the relationship 

between MUD and ER visits (although preferring one’s friends to share one’s religious 

beliefs has the opposite sign as in the results for females).  However, these confounders 

cannot account for the inflated estimate of βM and βu. 

 In contrast to the female specification, including controls for illegal activities has 

virtually no effect on βM or βu.  Although being arrested or offered drugs are both 

positively and significantly correlated with ER visits, it appears that these variables are 

not significant confounders of the model among males, and provide no new information 

regarding the accuracy of the coefficient estimates among males. 

 In another contrast to females, the unweighted model differs drastically from the 

weighted model among males.  βM and βu both become essentially 0, while many of the 

other coefficients shift substantially (although no coefficients that are significant in the 

weighted model become significant with an opposing sign).  It is still the case that the 

weighted results for males are considered closer to the “true” result since the weighting 

accounts for potentially endogenous sampling, and also makes the sample more closely 

correspond to the true population.  However, the unweighted results may reflect the 

possibility that the male subsample is more heterogeneous than the female subsample, 

such that the weights have a greater influence on the results. 

 In general, the extended specifications support the finding that MUD and ER 

visits are negatively correlated, although the results are not consistently significant for 
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females, and questionably large among males.  However, with the exception of the 

controls for illegal activities among females, no set of variables drastically affects the 

results.  Even this inflated estimate, though potentially inconsistent, is larger in 

magnitude than the preferred model, and thus cannot account for the negative estimate of 

βM.  Although βM is not consistently significant for females, βu remains significant in all 

models, supporting the hypothesis that MUD and ER visits are endogenously correlated 

through unobservable factors.  

8. Discussion 

 In this study I find evidence that marijuana use disorder is not positively 

correlated with ER visits, and may actually be negatively correlated with ER visits.  The 

precise effect is uncertain as estimates of the ATE are generally insignificant, but 

weighted 2SNLS estimates range from roughly -0.62 to -1.23 visits among females, and 

from -0.61 to -1.03 visits among males (although the upper bound estimates are 

considered to be implausibly large, a result I will return to shortly).  Although MUD and 

ER visits are predicted to have a positive relationship among females in the exogenous 

specifications, all 2SNLS models for females reject the null hypothesis that MUD is 

exogenous to ER visits, suggesting that the exogenous estimates are biased.  Among 

males exogeneity of MUD is rejected in the substance use disorder specification (and all 

subsequent weighted robustness checks) although this may be attributable to an inflated 

coefficient estimate for the unobserved heterogeneity rather than a true effect.  However, 

the coefficient estimates for unobserved heterogeneity among males are roughly similar 

to that among females, and the lack of significance may be partly due to the fact that the 
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male subsample is less than half the size of the female subsample.  This result, along with 

the theoretical considerations discussed in Section 4, suggests that unobservable factors 

jointly correlated with MUD and ER visits are significantly confounding the estimated 

relationship between these two outcomes.  This result is consistent with McGeary and 

French (2000) who find that chronic drug use (marijuana and/or hard drugs) is 

endogenous to the probability of any ER visit, and French et al. (2011) who find that 

time-invariant endogeneity may be biasing estimates of the effect of heavy drug use on 

total ER visits and hospital admissions.  In all weighted models, for both genders, 

unobserved heterogeneity is positively correlated with ER visits, suggesting an upward 

omitted variables bias for the relationship between MUD and ER visits.  Thus, while the 

true relationship between MUD and ER visits may be null, the evidence suggests that 

even the most comprehensive NLS specification considered is positively biased by 

omitted variables.   

The validity of the 2SNLS results, and subsequent rejection of exogeneity, rests 

on the validity of the instrumental variables (IVs) utilized in the first stage.  In all 

specifications the instrumental variables are significantly correlated with the probability 

of MUD with a chi-squared statistic over 40 for females and over 60 for males.  This 

indicates that the IVs are sufficiently strong.  Although I cannot directly test for the 

excludability of the IVs, I perform a heuristic test by including the IVs in an  NLS model 

for ER visits.  Among females the IVs are insignificantly correlated with ER visits.  

Among males the IVs are jointly significant with ER visits, although the largest F-

statistic is less than 8.0 in magnitude.  The IVs become more significant when controls 
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for human capital and financial resources are added, and controls for other substance use 

disorders barely attenuates these significant results.  This suggests that among males the 

IVs may be capturing statistical noise rather than a true relationship between the 

instrument and ER visits, particularly given the theoretical argument in support of the 

IVs.33  Moreover, the similarity of the estimates for males and females suggests that the 

estimates for males are not being substantially biased by potentially invalid instruments. 

(Put another way, it would seem odd for the instruments to bias the estimates so similarly 

for both males and females when the IVs seem to have a different relationship to ER 

visits among males compared to females.  On the other hand, the true relationship 

between MUD and ER visits being similar for males and females is not particularly odd).    

Another result of interest is the difference in effect between hard drugs and 

marijuana.  In all 2SNLS models hard drug use disorder is positively and significantly 

correlated with ER visits, a result consistent with the previous literature.  However, the 

predicted relationship between MUD and ER visits is negative in all of the 2SNLS 

models (except for the unweighted male specification).  In the NLS model for males, the 

coefficient for hard drug use is positive and significant, while the coefficient for MUD is 

negative and insignificant.  This suggests that even if the exogenous model is correct, the 

effect of MUD still differs from that of other drugs among males. 

The most troubling result is the large discrepancy between the weighted and 

unweighted model for males.  The most likely explanation is simply that the male 

                                                           
33 In an unreported specification I repeat the test with all control variables simultaneously, including the 
controls for health, attitudes/beliefs, and illegal activities.  The instruments remain jointly significant at the 
0.001 level.  This provides further evidence that these results may be spurious. 
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subsample is more heterogeneous than the female subsample.  Although the unweighted 

model differs from the weighted model among males, the weighted models for males 

produce broadly similar results to the weighted models among females.  This suggests 

that, rather than the heterogeneity of the male subsample rendering the weights invalid, 

the heterogeneity of the male subsample makes the weighs even more important, since 

the heterogeneity is exacerbated by the failure to appropriately weight the estimates.  

Even in the “worst case” scenario that the unweighted model is the correct one, this 

would still indicate a null result for MUD, which would remain in contrast both to the 

positive and significant coefficient for hard drugs indicated by the unweighted model, 

and to the previous literature.  

 An additional pair of other results stands out as requiring additional discussion.  

The first is the inflated estimates of βM and βu in the substance use disorder specification 

of the 2SNLS model among males.  In this specification, inclusion of controls for 

alcohol, nicotine, and hard drug use disorders increases βM by more than 50%.  

Moreover, the magnitude of the inflated coefficient is nearly twice the size of the next 

largest control variable coefficient, indicating that it is likely inaccurate.  Additional 

controls for health, attitudes/beliefs, and illegal activities fail to reduce the estimates of 

βM or βu to the more reasonable (though still large) values observed for males in the 

demographic and human capital specifications.  This suggests that the substance use 

disorder model among males may be suffering bias from endogenous regressors.  This 

possibility is supported by the fact that numerous coefficients were inflated compared to 

the demographic and human capital specifications (see e.g., Age 35-49, 1 household 
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member over 65, all education controls, full time work, both income variables, and the 

constant).  This across-the-board inflation did not occur among females, so whatever 

caused these other coefficients to be inflated is likely the same factor that inflated βM and 

βu.  One additional possibility is that the model is not over-inflated relative to the other 

models.  The estimate of ATE, -0.92, is nearly identical to the estimate among females in 

the model which only controlled for demographic and human capital control.  It is 

possible that the inflation of the other coefficients (some negative some positive) offset 

the inflation of βM, such that the predicted ATE remained roughly consistent.   

A similar inflation of βM and βu occurs among females with the inclusion of 

controls for ever being arrested, and being offered drugs in the past 30 days.  Unlike with 

males, the ATE estimate of -1.23 for this “inflated” model is nearly 1/3 larger than 

estimates from any of the other specifications among either gender, and is therefore 

unlikely to be correct.  Also in contrast to males, this model did not experience across-

the-board inflation.  However, several of the coefficients that inflated among males (e.g., 

education controls) shift upward noticeably compared to other weighted specifications 

among the robustness checks.  The control for age 35-49 deflates noticeably, which is in 

contrast to the results among males but consistent with overall bias, which may lend more 

credence to the possibility that the “illegal activities” variables are endogenous to ER 

visits and therefore biasing the estimates. 

It is uncertain exactly why βM and βu are inflated to implausibly large values in 

certain specifications, although bias from endogenous regressors is a likely culprit.  In 

both cases estimates become substantially more negative, rather than flipping signs and 
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becoming positive.  Moreover, among males, the “inflated” estimate is not substantially 

attenuated by controls for health, attitudes/beliefs, or illegal activities.  Therefore, it 

seems reasonable to assert that these models provide evidence against a positive 

relationship between MUD and ER visits, even if they cannot conclusively demonstrate a 

negative relationship. 

To summarize, in the preceding analyses I find that marijuana use disorder is not 

positively correlated with ER visits and may be negatively correlated.  Among females, 

hard drug use disorder is significantly positively correlated with ER visits in the NLS 

specification, while among both males and females hard drug use disorders are 

significantly and positively correlated with ER visits in 2SNLS models that correct for 

the endogeneity of MUD.  This result is consistent with previous literature regarding drug 

use and acute healthcare utilization (McGeary & French, 2000; French et al., 2000; 

French et al., 2011).  This suggests that the effect of marijuana use disorder on ER visits 

does, in fact, differ meaningfully from the effect of hard drug use disorders. 

I also find evidence that the relationship between MUD and ER visits is 

confounded by unobserved heterogeneity, particularly for females.  The results suggest a 

positive relationship between unobserved heterogeneity and ER visits that is significant 

in all specifications for females.  Although insignificant for males, the magnitude of the 

coefficients remains large and roughly consistent with the estimates for females, and it’s 

possible that the insignificance is due to the small size of the male subsample relative to 

the female subsample.  The positive coefficient for unobserved heterogeneity suggests 

that βM is being upward biased in the exogenous model, which supports the argument that 
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a null effect is the lower bound for the relationship between MUD and ER visits.  The 

endogeneity of MUD, like the negative relationship between MUD and ER visits, 

depends on the validity of the instrumental variables used in the first stage.  Although the 

validity of the instruments remains unprovable, an inconsistent 2SNLS would not 

undermine the evidence suggesting that MUD is uncorrelated with ER visits among 

males, a finding at odds with the previous literature.  

 These findings do, however, come with several caveats and shortcomings.  As 

discussed in Section 5, the lack of state-level controls introduces omitted variables bias 

that may not be completely accounted for by the instrumental variables.  The study also 

lacks controls for the sampling units, which prevents me from estimating clustered 

standard errors.  Thus it is possible that the estimated standard errors are too small.  

However, even using potentially deflated standard errors, all exogenous models among 

males fail to reject the null hypothesis that MUD and ER visits are uncorrelated, while 

the most comprehensive exogenous model among females is only significant at the 10% 

level.  Therefore, it is unlikely that the use of clustered standard errors would alter the 

evidence that the lower bound of the relationship between MUD and ER visits is zero.   

Lastly, despite the evidence that MUD is uncorrelated with ER visits, this result 

only refers to the partial relationship between MUD and ER visits.  It cannot, for 

instance, account for the effect of MUD on education, income, or probability of 

dependence upon other substances, which all may in turn affect demand for ER visits.  I 

also cannot control for the duration of the marijuana use disorder.  While it appears that 

MUD is positively correlated with negative health events, reduction in the health stock 
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may be gradual, and therefore those with longer spells of MUD may have a stronger 

demand for medical care.  A corollary to this is that I cannot control for heterogeneous 

effects of marijuana dependence within the population.  Although the estimation goal is 

an average for the entire population of Medicaid recipients, the magnitude of the 

relationship between marijuana dependence and acute medical care may differ between 

young and old, white and nonwhite, etc.  Such differences may be relevant to policy 

considerations.  

Ideally, future research will not only incorporate state-level controls, but also 

leverage state-level policy regarding marijuana, alcohol, or tobacco, into viable 

instruments that would allow the model to be overidentified, and shore up the 2SNLS 

results.  Future research should also focus on examining whether the results differ 

between individuals by age or race.  These effects will help policymakers to have a 

clearer understanding of the expected long-term ramifications of marijuana policy. 
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CHAPTER III 

 
ESSAY 3: INVESTIGATING THE NEGATIVE RELATIONSHIP BETWEEN 

WAGES AND OBESITY: NEW EVIDENCE FROM THE WORK, FAMILY, AND 
HEALTH NETWORK  

 
 

1. Abstract 

A substantial literature has established that obesity is negatively associated with 

wages, particularly among females.  However, prior research has found limited evidence 

in support of the factors hypothesized to underlie this relationship.  Utilizing data from a 

single U.S. telecommunications firm I add to the literature by exploring the influence of 

productivity and discrimination on wages for workers who are and who are not obese, 

using control variables that are typically unavailable in national-level datasets.  

Consistent with previous research, I find that obesity is negatively associated with wages 

among females.  Results suggest that differences in productivity attributable to human 

capital accumulation and health account for approximately half of this wage penalty.  I 

find no evidence of coworker or manager discrimination against obese employees among 

males or females.  However, I find evidence that the wage-obesity penalty among 

females occurs only among obese mothers, a result that may suggest differences in 

unobserved productivity between obese and non-obese mothers.  
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2. Introduction 

Obesity is a substantial health issue in the United States, affecting 35 percent of 

adults in 2010—a proportion projected to increase to 51% by 2030 (Ogden, Carroll, Kit, 

& Flegal, 2012; Finkelstein et al., 2012).34  Finkelstein, Trogdon, Cohen, and Dietz 

(2009) estimate that in 2008 obesity accounted for 10 percent of medical spending in the 

US at a cost of $147 billion.  In addition to direct medical costs, obesity may incur 

significant economic costs through lost productivity.  Numerous studies link obesity to 

greater rates of both absenteeism and presenteeism (i.e., reduced work effort while 

present on the job), and it is estimated that in 2008 obesity-related absenteeism and 

presenteeism cost employers $42.8 billion in lost productivity (Finkelstein, 

DiBonaventura, Burgess, & Hale, 2010).35  Perhaps unsurprisingly, obesity has been 

linked to lower wages across the demographic spectrum in the United States, Europe, and 

even China.36  Subsequent studies using instrumental variables suggest that the 

relationship between obesity and wages is not attributable to reverse causality.37  This has 

                                                           
34 Body Mass Index (BMI) is the standard scale for establishing a healthy weight to height ratio.  BMI is 
defined as the ratio of kilograms of weight to squared-meters of height.  Healthy BMI is classified within 
the range [18.5, 25), while [25, 30) is classified as overweight, and people with BMI ≥ 30 are classified as 
obese. 
 
35 For examples of studies regarding obesity and absenteeism/presenteeism, see Howard and Potter (2012); 
Goetzel et al. (2010); Ricci and Chee (2005); Tsai, Ahmed, Wendt, Bhojani, and Donnelly (2008); Burton 
et al. (1998); Tucker and Friedman (1998); Schmier, Jones, and Halpern (2006); Finkelstein et al. (2010); 
Gates, Succop, Brehm, Gillespie, and Sommers (2008); and Pronk et al. (2004). 
 
36  See for example Register and Williams (1990); Loh (1993); Pagan and Davila (1997); Averett and 
Korenmann (1999); Cawley (2004); Garcia and Quintana-Domeque (2007); Lundborg, Bolin, Hojgard, and 
Lindgren (2007); Greve (2008); and Shimokawa (2008). 
 
37 For a thorough review of the wage-BMI instrumental variables literature, see Kortt and Leigh (2010). 
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led researchers to attempt to uncover the factors that could be underlying or confounding 

the wage-obesity relationship.  There are two primary hypotheses. 

The first hypothesis is that obese workers are less productive than non-obese 

workers in some way that is not captured in standard wage equations.  These differences 

are typically attributed to differences in human capital accumulation or differences in 

underlying health.  The second primary hypothesis is that the residual wage penalty for 

obesity that remains unexplained after controlling for typical human capital and 

demographic variables may be attributable to discrimination against obese employees.  

While the potential presence of systematic discrimination may seem more of a legal or 

ethical dilemma than an economic one, the socio-economic implications are significant.  

Nonwhites, less-educated individuals, and low-income females are more likely to be 

obese than others (Flegal, Carroll, Kit, & Ogden, 2012; Ogden, Carroll, Kit, & Flegal, 

2010).  To the extent that vulnerable populations are more likely to be obese, the wage 

effects of discrimination may have repercussions on income equality or equity of 

opportunity.  Additionally, discrimination may exacerbate productivity losses, for 

instance if it limits beneficial cooperation in the workplace.  Discrimination against obese 

individuals has also been shown to increase the negative health effects of obesity 

(Schafer & Ferraro, 2011) which may increase absenteeism or presenteeism costs to 

employers. 

The current study considers both the productivity and discrimination hypotheses.  

The study utilizes employee-level data from a US IT firm that provide measures of health 

and human capital accumulation unavailable in previous studies.  Information about the 
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organization of the firm also allows us to directly test for the possibility of discrimination 

against obese employees.  In addition to these two hypotheses, I investigate the 

previously unconsidered possibility that children are confounding the wage-obesity 

relationship.  While children are a standard inclusion in previous wage equations, our 

study is the first to interact children with obesity to test whether the wage penalty varies 

between parents and non-parents, a possibility that could explain why the estimated 

penalty for obesity is consistently larger among females than among males. 

 The data provide other advantages over previous datasets.  All employees in the 

dataset are high-income earners relative to the US population at large (the median annual 

salary is $85,000), which greatly alleviates concerns about possible reverse causality 

between low income and obesity.  Measures of annual salary used to construct hourly 

wages are retrieved from administrative records, and BMI measures are directly gathered 

by trained data collectors.  By eliminating self-reports of BMI and salary, the dependent 

variable and independent variable of interest should be less subject to measurement error 

than in previous studies.38 

Consistent with previous research I find that obese females earn significantly less 

than normal-weight females: a penalty of nearly 7%.  Obese males earn a roughly 4 

percent wage premium compared to normal-weight males, although this result is not 

statistically significant.  Results indicate that human capital accumulation explains a 
                                                           
38 As acknowledged by previous studies (e.g., Burkhauser & Cawley, 2008), BMI is an imperfect measure 
of health, as ratios of weight to height do not perfectly account for body frame or muscle mass.  To 
circumvent this issue, several recent studies have substituted percent body fat or waist size for BMI in the 
regression equation (Bozoyan & Wolbring, 2011; Johansson, Bockerman, Kiiskinen, & Heliovaara, 2009; 
Wada & Tekin, 2010).  Unfortunately the available data do not contain measures of body fat or waist 
circumference.  Since the majority of the literature uses the BMI measures previously described rather than 
waist size, using BMI is consistent with providing the best comparison possible. 
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significant amount of the difference in wages between obese and normal-weight 

employees among both males and females.  Contrary to previous research, I find 

evidence that health is an important confounding factor among males, which suggests 

that efforts to improve employee health may yield significant gains in productivity.  I do 

not find evidence of peer or supervisor discrimination against obese employees, but I do 

find that the wage penalty for obese females only occurs among obese mothers, and that 

obese females with no children actually earn wage premiums similar to obese males. 

The remainder of the paper is as follows.  Section 3 discusses previous attempts to 

explain the well-documented negative relationship between wages and obesity.  Section 4 

introduces the econometric model, while Section 5 describes the data in detail.  Section 6 

reports the results of tests for differences in productivity and for the possibility of 

discrimination.  Lastly, Section 7 explores the possibility that the wage-obesity 

relationship is confounded by unobserved factors related to parenthood. 

3. Background and Previous Literature 
 
As evidence has mounted in support of the negative wage-obesity relationship, a 

subset of the literature has shifted focus from estimating the relationship between obesity 

and wages to identifying the possible factors(s) that may be underlying this relationship 

(hereafter referred to as the “wage penalty”).  There are two broad hypotheses for the 

underlying source of the wage penalty.  The first hypothesis is that obese employees are 

less productive than normal-weight ones for reasons that are not captured by standard 

wage equations.  These differences are typically attributed to either differences in human 

capital accumulation or differences in health.  This is an important distinction.  
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Differences in human capital are typically attributed to differences in unobserved 

individual attributes that could be correlated with both human capital investment and the 

probability of becoming obese (such as time-preference or intrinsic motivation).  In this 

case obesity is a confounding rather than a causal mechanism: it is not causing lower 

wages but is merely the physical manifestation of other attributes that lead to lower 

wages.  Moreover, these attributes are considered immutable.  One’s time preference or 

ambition is not likely to respond to intervention at the public or private level.  On the 

other hand, differences in underlying health may reflect a causal relationship.  Even if 

obesity and reduced health occur simultaneously, reduced wages attributed to reduced 

health would signal the possibility of restoring lost productivity through appropriate 

health intervention at the public or private (i.e., firm) level. 

Support for the human capital hypothesis is offered by Baum and Ford (2004), 

who find that obese U.S. workers earn significantly lower returns to tenure on the job, a 

result which they attribute to differences in investment in the on-the-job training.  Atella, 

Pace, and Vuri (2008) attempt to recreate this result among European employees but find 

no difference in returns to participation in training programs between obese and normal-

weight workers.  

The literature provides less support for the health hypothesis.  Brunello and 

D’Hombres (2007) and Baum and Ford (2004) control for health using a binary indicator 

for “poor health” or “health limitations,” respectively, while Atella et al. (2008) use a 

measure of absenteeism (days of work missed in the last four work weeks due to illness).  

All three studies fail to find evidence that obese workers are less productive due to lower 
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average health.  Johansson et al. (2009) do find that a binary indicator for “good health” 

is significantly correlated with wages among Finnish workers, but inclusion of the 

measure only slightly attenuates the observed wage penalty for obesity.  Similarly, 

Lundborg et al. (2007) find that controlling for chronic conditions, mobility, and self-

reported health status partially attenuates the wage penalty among European workers over 

50 years of age, but leaves a significant wage penalty unaccounted for.  Gregory and 

Ruhm (2009) point out that medical expenditures do not begin to increase with increasing 

BMI until well after the point at which BMI begins to adversely affect wages, casting 

further doubt on the health hypothesis.  Ultimately, no supplemental control for 

productivity has been able to fully account for the observed wage penalty, leading 

researchers to consider alterative explanations. 

The second primary hypothesis for the wage penalty is that obese workers are 

subject to workplace discrimination.39  Two recent wage studies have found evidence in 

support of this hypothesis.  Han, Norton, and Stearns (2009) find that the wage penalty 

for obese employees is higher in jobs that require higher levels of interpersonal skill.  A 

similar study by Johar and Katayama (2012) finds that obese employees in socially-

oriented jobs (those requiring “authority” or “nurturance”) also face a higher wage 

penalty than those in non-social jobs.  However, these studies cannot differentiate 

between possible customer and employer discrimination (although Baum and Ford, 2004 

                                                           
39 A third hypothesis posits that total compensation for obese employees is consistent with normal-weight 
employees, but that wages decrease as employers shift compensation to cover higher insurance premiums 
incurred by obese workers but borne by the firm.  Bhattacharya and Bundorf (2009) find strong evidence 
for this effect in the US, but Baum and Ford (2004) find that obese American workers with employer-
provided insurance actually earn more than obese workers without it.  Atella et al. (2008) also fail to find 
evidence for the insurance hypothesis among European workers. 
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find that obese workers in customer-oriented occupations do not face a higher wage 

penalty than those outside of such occupations suggesting that the results may be driven 

by employer discrimination).  Moreover, in both of these studies, obese employees in the 

less-social jobs still face a wage penalty.  This suggests that even if discrimination is 

occurring, it cannot fully account for the observed wage penalty.  

In the current study I consider two types of employer discrimination: direct and 

indirect.  Direct discrimination refers to obese employees being paid less simply because 

they are disliked by their employers.  Standard economic theory posits that competitive 

markets should eliminate this type of behavior, although evidence for labor market 

discrimination according to gender, race, or sexual orientation remains, suggesting that 

this type of discrimination cannot be ruled out (see e.g., Biddle & Hamermesh, 2013; 

Laurent & Mihoubi, 2012). 

Indirect discrimination is more subtle.  In this case, non-obese employees may 

mistreat their obese coworkers, or refuse to cooperate with them to the same degree they 

would their non-obese peers.  Due to this negative behavior, obese employees will be less 

effective at their jobs, therefore “earning” their reduced wages, even though the effect is 

still attributable to discrimination.  Several studies have found qualitative evidence for 

this type of discrimination.  Carr and Friedman (2005) report that BMI is positively 

correlated with perceived workplace discrimination (e.g., rudeness, being treated as less 

intelligent, etc.), and that such workplace discrimination is more prevalent among white 

collar workers.  Obese workers are also more likely to be perceived by their coworkers as 
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lazy, lacking in self-control, of lower ability, and less likely to get along with and be 

accepted by coworkers and subordinates (Rudolph, Wells, Weller, & Baltes, 2009). 

In addition to the previously considered hypotheses, I also consider one 

possibility that has not been previously addressed in the literature: that having children is 

a factor that may both increase BMI and decrease wages.  This would help to explain the 

discrepancy in results between obese males and females sometimes encountered in the 

literature (see e.g., Cawley, 2004; Greve, 2008; Johansson et al., 2009; Hildebrande & 

Van Kern, 2010).  Women have larger biological roles in pregnancy and childbirth that 

may affect body mass or disrupt human capital accumulation, and in the US women still 

handle the majority of child care responsibilities (Craig, 2006).  Children are a standard 

control variable in the literature and therefore not the source of any omitted variables 

bias.  What has not been accounted for is the possibility that the relationship between 

children and wages differs between obese and normal-weight women, or that the 

relationship between wages and obesity differs between mothers and non-mothers. 

Research has suggested that women who are obese in early adulthood are less 

likely to ever have children and that those who do will have fewer children than mothers 

who were not obese in early adulthood (Frisco & Weden, 2013; Frisco, Weden, Lippert, 

& Burnett, 2012).  Therefore the presence of children may provide information on the 

timing of obesity.  The timing of obesity may influence the wage-obesity relationship in 

ways that can be captured by this variation, something that I consider in Section 7. 
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4. Econometric Model 

Following the classic Mincer (1975) approach, wages may be modeled as 

 
 W = exp(X′β + δ1OV + δ2OB + ε) (Eq. 1) 

 
where OV and OB refer to indicators for overweight and obese, with BMI < 25 (normal 

weight) serving as the reference category,  and X is a set of control variables available in 

national-level datasets, including demographic and occupational controls, as well as basic 

measures of human capital accumulation (e.g., experience, education).40   

In general, the aim of regressing wages on obesity is to estimate the average 

percentage difference in wages between obese and normal-weight (or non-obese) 

individuals conditional on X (hereafter referred to as the average “treatment” effect of 

obesity [ATEOB]).  This ATE may be defined as 

 
 ATEOB = exp(δ2) – 1.41 (Eq. 2) 

 
Practitioners generally make several additional assumptions about the model.  The first is 

that  

 
 ε =   Z′γ + ν (Eq. 3) 

 

                                                           
40 I omit the “underweight” category in the analysis as only 5 respondents meet this definition.  Therefore 
the normal-weight category refers to anyone with a BMI of less than 25, rather than the strict definition of 
individuals with a BMI between 18.5 and 25. 
 
41 In the literature ATEOB is often approximated by δ2 itself.  This distinction is unimportant for the present 
analysis. 
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where Z is a vector of explanatory variables that are not contained in X.  The second is 

that corr(OB,Z|X) ≠ 0, so that estimates of δ2 are biased due to the omission of Z.  

Finally, it is assumed that ν is exogenous and mean zero conditional on both X and Z, so 

that estimates of δ2 would be consistent if Z was included in the model. 

Previous studies (e.g., Atella et al., 2008; Baum & Ford, 2004; Cawley, 2004) 

have utilized a mixture of instrumental variables and individual fixed effects in order to 

condition out Z and retrieve consistent estimates of δ2.  As discussed in Section 3, a 

segment of the literature has recently shifted from consistently estimating the wage-

obesity relationship (δ2) towards uncovering the elements of Z.  However, previous 

studies have not utilized a rigorous approach to achieving this goal.  Typically, if 

inclusion of a new variable set (Zk) appears to substantially attenuate the estimate of δ2 or 

renders the estimate insignificant, then the new set is deemed to be an element of Z.  In 

this study I take this approach a step further by using a generalized Hausman test to test 

the null hypothesis that the estimate of δ2 from the regression equation excluding Zk is 

identical to that produced by the equation that includes Zk (δ2′ ).  Although motivated by 

Baron and Kenny’s (1986) test for mediating effects, our approach is virtually identical to 

previous efforts in the literature to classify Z, except I rely on a statistical rather than 

“eyeball” test.42   

 Let Wij be the hourly wage rate of individual i in work group j.  In our sample a 

work group refers to a collection of employees who all report to the same manager.  

                                                           
42 This approach is similar to the test for collapsibility proposed by Clogg, Petkova, and Shihadeh (1992).  
Their approach requires the assumption of normally distributed and homoscedastic errors.  I assume that 
errors are clustered, and therefore the assumptions necessary for that test are not met. 
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Virtually all collaboration at the firm occurs within a work group and I assume that both 

observed and unobserved work group attributes may influence the wages of employee i.  

I express the true wage equation for our sample as: 

 
 Wij = exp(Xij′ β + Zij′ γ + λ1OVi + λ2OBi + uj + ξi) (Eq. 4) 

 
where Xij are individual and group-level control variables consistent with those drawn 

from national-level datasets; Zij are individual and group-level variables that remain 

jointly correlated with Wij and OBi conditional Xij; λ2 is the true value of the regression 

parameter for obesity; uj is a work-group level random effect and ξi is an individual-level 

stochastic shock, both of which are exogenous and mean zero conditional on Xij and Zij.   

I define a “potentially consistent” estimator of λ2 as one that would consistently 

estimate λ2 if the regression contained the entire vector Z (i.e., every possible variable 

jointly correlated with wages and obesity not contained in X) and that would consistently 

estimate the appropriate standard error 𝜎𝜆2 .  Furthermore, estimates of λ2 produced by 

this estimator would consistently estimate the true population ATEOB if λ�2 was inserted 

into equation (2).  I define the estimator as “potentially” consistent since I do not assume 

that the set of k variables ZK available in our data represents the full set of potentially 

omitted variables jointly correlated with wages and obesity (that is, I do not assume that I 

ever successfully estimate the “true” relationship between wages and obesity).  

The previous literature almost universally utilizes OLS on a log-transformed 

model of wages.  However, I deviate from this approach since it may not fulfill the 

assumptions of the potentially consistent estimator.  As discussed by Blackburn (2007) 
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and Manning and Mullahy (1998), estimates of λ2 from a log-wage model may not 

recover the true ATEOB if there is heteroskedasticity in the error term.  Moreover, due to 

the presence of uj, a log-wage model will not produce the correct residuals to construct 

cluster-robust standard errors since 

 
E[yj – exp(Xij′ β + Zij′ γ + λ1OVi + λ2OBi)] ≠ E[ln(yj) - Xij′ β + Zij′ γ + λ1OVi + λ2OBi]. 

 
Therefore, I utilize a generalized linear model with a log link function as a potentially 

consistent estimator in place of OLS.43   

 If Z is jointly correlated with wages and obesity, and Zk is some subset of Z, then 

including Zk in the regression should reduce (or potentially eliminate) omitted variables 

bias that is present, such that δ2′  is different in magnitude to δ2, and λ2 - δ2′  < λ2 - δ2 

(i.e. δ2′  is closer to the “true” parameter value than is δ2).  Our estimation goal then is 

neither λ2 nor ATEOB but Δ, where Δ = δ2′ - δ2.  I assert that the greater the magnitude of 

Δ, the greater the confounding effect of Zk.  By imposing a “potentially” consistent 

estimator of ATEOB, I ensure that Δ is a consistent estimate of the confounding effect of 

Zk, and that the cluster robust standard errors are not underestimated.   

I use a generalized Hausman test to determine whether Δ is statistically 

significant.44  If so, then I can reject the null hypothesis that δ2′  = δ2.  Although rejecting 

                                                           
43 When dealing with clustered as opposed to panel data with nonlinear outcomes, random effects will only 
improve efficiency and will not affect the consistency of the estimates (Cameron & Trivedi, 2005).  On the 
other hand, integration of the random effect requires the assumptions that the errors are normally 
distributed and homoscedastic within a cluster.  Failure of these assumptions will render the model 
inconsistent.  This, coupled with the practical shortcomings of the nonlinear random effects model makes 
us opt to construct clustered standard errors rather than cluster random effects. 
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the null of a statistical test cannot prove that the omission of Zk was causing omitted 

variables bias, such a rejection when coupled with valid theoretically consideration 

allows us to make a compelling case that Zk is an explanatory factor underlying the wage-

obesity relationship.  Elements of Zk include controls for employee productivity (human 

capital accumulation and health) as well as controls for peer or supervisor discrimination.  

These elements will be detailed in Sections 5.3 and 6.3. 

5. Data 
 

5.1. Work, Family, and Health Network 
 
The data were obtained from the Work, Family, and Health Network (WFHN).  

The WFHN was created by the National Institutes of Health (NIH) and Centers for 

Disease Control and Prevention (CDC) to study the relationship between work, family 

life, and health outcomes.  The WFHN is comprised of four research centers, a 

translational coordinating center (TCC), and a data and methods coordinating center 

(DCC).  The four research centers are the University of Minnesota, Penn State 

University, Harvard University, and Portland State in conjunction with Purdue 

University.  The Kaiser Permanente Center for Health Research serves as the TCC, and 

RTI International serves as the DCC.  Members of the WFHN were tasked with 

determining the health effects of an intervention intended to:  (a) increase employees’ 

control over their work time, and (b) improve supervisor and coworker support for 

employees’ family and personal lives.  Two firms were selected for intervention, one of 

                                                                                                                                                                             
44 Tests are 1 tailed with p ≤ 0.1 as the cutoff for “significant” difference.  The residuals used to estimate 𝜎�2 
are clustered at the work group level.  
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which is an American telecommunications firm.  A single cross-section of data from this 

firm, collected prior to the intervention, is utilized in the present study. 

The sample is limited to full-time, permanent (non-contractor) employees, each of 

whom belongs to one of 106 “work groups.”45  The work groups are collections of 

employees who report to the same manager and may collaborate with each other 

frequently.  Employees operate at one of thirteen sites, and all sites are located in one of 

two urban locations in two separate states.46  The mean work group size in the sample is 

approximately 12, and the average work site hosts about 58 employees.   

Employees are classified by the firm’s human resources (HR) department as 

either support personnel (e.g., network administrators, administrative assistants) or core 

personnel (those directly involved in the firm’s core business).  Within the firm there are 

also four broad occupational classes based on primary job function.  Each work group 

emphasizes or is entirely devoted to one of the four functions.  Each employee in the 

sample is designated by HR as belonging to one of four job categories based on the 

function emphasized by her or his work group (that is, occupational controls are at the 

work group rather than individual level).  The support/core and occupational categories 

are utilized as additional controls in the wage equation as discussed in Section 5.2.47  

 
                                                           
45 The data do not contain any “blue collar” support personnel (e.g., custodians, security). 
 
46 In addition to work site indicators, all models include an indicator for those who did not report a work 
site. 
 
47 The distinction between core/support and occupation assignment are defined for the benefit of 
researchers and are not official administrative divisions.  However, these divisions represent real and 
significant differences between tasks performed and potentially the compensation that accompanies each 
task.  Disclosure of details regarding the four job functions is prohibited. 
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5.2. Standard Variables 

The dependent variable is a constructed measure of hourly wages.  Annual 

income is obtained from administrative records.  Annual hours are constructed by 

multiplying self-reported average weekly hours by 52 and subtracting out the number of 

vacation hours taken by the employee that year (which is also recorded in the 

administrative data).  Hourly wages (Wij) are the ratio of annual income to annual 

hours.48  Controls for the hourly wage, indicated by the vector Xij, include age, squared 

age, tenure with the firm, tenure squared, education, race, nativity, married/cohabitating 

status, number of children, occupation, an indicator to differentiate between support and 

core employees, and indicators for state and worksite.49,50  Following the literature, 

separate models are run for males and females.    

                                                           
48 Using an hourly wage measure as the dependent variable raises the concern that low wages are a 
consequence of long hours rather than reduced compensation, and that long hours could be correlated with 
obesity.  However, constructed hourly wage is an issue with all data.  For instance, in the 2010 wave of the 
NLSY79, 56 percent of employed respondents reported a time-unit of compensation other than hourly 
(Bureau of Labor Statistics, 2013).  Thirty-seven percent of employed respondents reported compensation 
as an annual value.  Moreover, a relationship between longer hours and obesity is consistent with a 
productivity hypothesis.  Salaried compensation is offered with the expectation of a certain level of output 
per unit of time (e.g. every week).  Individuals who take more hours to produce that level of output are, by 
definition, less marginally productive.  Therefore long hours “causing” obesity over time still indicates that 
reduced productivity is confounding the wage-obesity relationship.  One other possibility is that individuals 
put in longer hours than necessary in order to signal commitment with the hope of higher future salary.  If 
this is the case I should see that obese employees have higher returns to tenure than normal-weight 
employees.  However, as reported in Appendix G, this is not the case. 
 
49 The binary division between support and core workers is a qualitative distinction in job type not captured 
by the four job categories.  The difference between staff and senior workers may reflect differences in 
ability or human capital accumulation and therefore this distinction is not considered until later models in 
Section 6.2. 
 
50 Race enters the equation as a binary white/nonwhite variable.  Roughly half of non-whites are Indian-
Asians, while about 20% are “Other Asian,” 10% are African American, and the remainder self-identify as 
Pacific Islander, Native American, or “Other.” 
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Observations with missing data for BMI or salary are dropped from the sample.51  

All missing observations are assumed to be missing at random (Rubin, 1976), and the 

observed subsample is thus representative of the full population of non-executive, white-

collar employees within the firm.  Due to the small sample size, extra attention is paid to 

outliers that may have an undue influence on the parameter estimates, and I drop any 

observation that fulfills both of two conditions: belonging to either the top or bottom 1-

percentile of BMI, and belonging to either the top or bottom 1-percentile of hourly 

wages.  This resulted in two additional males and one additional female being dropped, 

leaving a final sample of 452 men and 295 women.  Summary statistics are provided in 

Tables 25 and 26 for females and males, respectively. 

 
Table 25 

Summary Statistics (Female) 

  Full Sample 
(n = 295) 

Obese 
(n = 92 ) 

Normal Weight 
(n = 111) 

  M SD M SD M SD 
Standard 
Variables 

 

BMI 28.28 6.61 36.05*** 5.68 22.44 1.75 

Overweight 31.18% 0.46     

Obese 31.18% 0.46     
 Hourly Wage 38.76 7.85 37.00*** 7.96 40.35 7.61 
 Married or 

Cohabitating 70.85% 0.46 54.34%*** 0.50 72.97% 0.45 

 Total 
Number of 
Children 

1.63 1.24 1.73* 1.34 1.48 1.19 

                                                           
51 See Appendix F for information regarding missing data. 



133 
 

 

Table 25 

(Cont.) 

  Full Sample 
(n = 295) 

Obese 
(n = 92 ) 

Normal Weight 
(n = 111) 

  M SD M SD M SD 
 Nonwhite 24.07% 0.43 17.39%* 0.38 27.03% 0.45 
 Born Abroad 19.32% 0.40 8.70%*** 0.28 27.03% 0.45 
 College 

Graduate  
(4-year) 

66.44% 0.47 55.43%*** 0.50 75.68% 0.43 

 Age 46.88 8.38 48.49** 7.68 45.11 9.14 
 Tenure with 

Firm (years) 16.04 9.94 17.66** 10.19 15.01 9.96 

 Support 
Personnel 5.76% 0.23 8.70% 0.28 5.41% 0.23 

Productivity 
Controls 

(Z) 

Staff 36.27% 0.48 38.04% 0.49 32.43% 0.47 

Senior 57.97% 0.49 53.26%** 0.50 62.16% 0.49 

Physical 
Function 92.63% 13.38 87.14*** 17.69 96.00 7.61 

Loud Snoring 25.76% 0.44 40.22%*** 0.49 10.82% 0.31 

C-Reactive 
Proteina 3.06 4.34 5.74*** 6.24 1.53 2.25 

Cholesterol 
Ratiob 3.87 1.09 4.17*** 1.18 3.61 0.94 

Hypertension 31.18% 0.46 43.48%*** 0.50 18.92% 0.39 

Heart Rate 72.35 11.10 73.66* 12.39 71.37 10.58 
Notes:  a: C-Reactive Protein concentration is measured in mg/L. For reference, CRP levels below 1.0 are 
considered low-risk for heart disease, 1.0-2.99 is considered average risk, and greater than 3.0 is high risk.  
b: A cholesterol ratio below 3.5 is considered optimal, 3.5-5 is normal, and >5 is considered high.   
* Indicates obese employees are significantly different from normal-weight employees at the 0.1 level. ** p 
< 0.05  ***  p < 0.01 
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Table 26 

Summary Statistics (Male) 

  Full Sample 
(n = 452) 

Obese 
(n = 135 ) 

Normal Weight  
(n = 123) 

  M SD M SD M SD 

Standard 
Variables 
 

BMI 28.10 4.90 33.74*** 4.38 23.04 1.55 
Overweight 42.92% 0.50     
Obese 29.87% 0.46     

 Hourly Wage 41.02 8.23 42.20* 9.23 40.24 8.51 

 Married or 
Cohabitating 84.74% 0.36 85.93% 0.35 81.30% 0.39 

 Total Number 
of Children 1.64 1.43 1.83** 1.49 1.32 1.25 

 Nonwhite 29.20% 0.46 17.04%*** 0.38 45.53% 0.50 
 Born Abroad 31.89% 0.44 16.30%*** 0.37 47.97% 0.50 

 
College 
Graduate  
(4-year) 

83.63% 0.37 73.33%*** 0.44 91.87% 0.27 

 Age 45.12 8.70 46.96*** 9.04 43.24 9.38 

 Tenure with 
Firm (years) 12.07 8.16 12.60** 8.11 10.82 7.35 

 Support 
Personnel 6.86% 0.25 4.44%* 0.21 10.47% 0.31 

Productivity 
Controls 
(Z) 

Staff 33.41% 0.47 34.07% 0.48 33.33% 0.47 
Senior 59.73% 0.49 61.48% 0.49 56.10% 0.50 
Physical 
Function 95.28 10.21 92.96*** 12.30 97.02 6.57 

Loud Snoring 32.74% 0.47 40.00%** 0.49 23.58% 0.43 
C-Reactive 
Proteina 1.87 2.32 2.53*** 2.86 1.04 1.08 

 

Cholesterol 
Ratiob 4.47 1.35 4.60** 1.11 4.31 1.68 

Hypertension 45.35% 0.50 55.56%*** 0.50 29.27% 0.45 
Heart Rate 69.75 11.33 73.40*** 11.96 68.26 10.73 

Notes: a: C-Reactive Protein concentration is measured in mg/L. For reference, CRP levels below 1.0 are 
considered low-risk for heart disease, 1.0-2.99 is considered average risk, and greater than 3.0 is high risk.  
b: A cholesterol ratio below 3.5 is considered optimal, 3.5-5 is normal, and >5 is considered high. 
* Indicates obese employees are significantly different from normal-weight employees at the 0.1 level.  
** p < 0.05  ***  p < 0.01 
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Respondents’ annual salaries average about $82,000 for females and $88,000 for 

males: equivalent to hourly wages of roughly $39 for females and $41 for males.  The 

majority of the sample has at least a four-year degree with virtually the entire remainder 

having some college education and only a few holding just a high school diploma.52  

Employees are generally mid-career with a mean age of about 46 (minimum 26, 

maximum 64) and 12–15 years of experience with the current company.  Roughly 25 

percent of the sample is nonwhite, while about 32 percent of males and 19 percent of 

females were born abroad.  Approximately 85 percent of males and 71 percent of the 

females are married or cohabitating, and both subsamples have slightly less than two 

children, on average. 

Both men and women have an average BMI of 28, about 1.5 units higher than the 

national average, with females having a slightly higher variance.  Approximately 32 

percent of females and 42 percent of males are clinically overweight (≤ 25 BMI < 30), 

while about 30 percent of males and 32 percent of females are clinically obese (BMI ≥ 

30).  The proportions overweight and obese are roughly consistent with unadjusted 

national averages (except for the slightly high proportion of overweight males).53   

                                                           
52 Testing found no significant difference in wages between those with just a high school diploma and those 
with some college but no bachelor’s degree.  Individuals without a bachelor’s degree do not appear to have 
diminished standing with the firm.  Employees without a degree are more likely to be classified as senior 
than staff, and are represented across all four job classes.  The primary difference is that employees without 
a degree have been with the company longer, suggesting a longer path to promotion, or the possibility that 
older employees were “grandfathered” in before more rigorous selection was enacted. 
 
53 Parametric studies typically model the relationship between BMI and wages by utilizing a linear measure 
of BMI, possibly paired with a quadratic term, or by creating a set of categorical BMI indicator variables 
defined as underweight (BMI < 18.5), overweight (25 ≤ BMI < 30), or obese (BMI ≥ 30), with the normal 
range (18.5 ≤ BMI < 25) as the reference group.  Testing suggests a nonlinear relationship between wages 
and BMI that is best captured by the categorical measures. 
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 Comparisons between obese and normal-weight employees indicate significant 

differences between the two subsamples.  Relative to their normal-weight coworkers, 

obese females are significantly less likely to be married, nonwhite, or born abroad.  The 

average obese female is also about three years older than her normal-weight peers, with 

an extra two years of tenure with the present firm.  Despite the additional experience, 

obese females earn nearly $3 less per hour than normal-weight women, a significant 

difference equivalent to nearly one-half of a standard deviation.  However, obese females 

are nearly 20 percent less likely to have completed a 4-year degree and 10 percentage 

points less likely to be “senior” core personnel.  Among males, obese workers actually 

earn significantly more than their normal-weight peers, a difference of $1.50, or about 

one-fifth of a standard deviation.  Obese males are significantly less likely to be nonwhite 

or born abroad, and also significantly less likely to have finished college.  Like females, 

obese males in the sample are roughly three years older with an additional two years of 

experience with the firm. 

5.3. Additional Controls for Productivity 

The control variables (Xij) in Section 5.2 are those that are included as standard in 

previous wage models in the wage-obesity literature.  However, these controls may be 

insufficient to fully account for differences in productivity between obese and normal-

weight workers (as evidenced by the significant wage-obesity relationship typically 

estimated in the literature).  The WFHN data include additional controls (Zij) for 

employee productivity that allow me to more precisely account for differences in 
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productivity that may remain after accounting for the standard controls, either due to 

differences in human capital accumulation or health.54   

The first set of variables controls for possible differences in accumulation of 

occupation-specific human capital, i.e., skills and abilities that directly translate to the job 

(and which should entail a mixture of workplace experience and natural ability).  Core 

personnel in the data are differentiated between “staff” and “senior” level workers.  

Senior level workers do not possess administrative authority over staff workers.  Rather, 

senior status indicates a meaningful accumulation of human capital that has resulted in 

one or more promotions. 55  Indicator variables accounting for this division should 

capture potential differences in human capital accumulation between obese and non-

obese employees.  Among both males and females roughly 60 percent of employees have 

reached senior status, and approximately 35 percent are staff level (with the remainder 

belonging to support positions).  Obese females are significantly less likely to be senior-

level employees, a difference of nearly 10 percentage points, although this discrepancy 

does not hold among males. 

The second set of variables contains proxies for facets of health that may affect 

productivity, including physical function, sleep, and cardiovascular health.  The first 

health proxy is a comprehensive measure of physical function, rated on a scale from 0-

100.  This variable is constructed from nine separate questions, which assess self-reported 

                                                           
54 Tests for discrimination rely on organizational data rather than specific variables.  The approach for these 
methods will be outlined in Section 6.3. 
 
55 Staff may be either “Staff I” or “Staff II” and seniors as “Senior I” or “Senior II.”  Therefore someone 
joining the firm as a Staff I would need two promotions to reach Senior I, while someone hired as a Senior 
I could be promoted and still appear in the data as a “Senior.”  The distinction between sub-levels I and II is 
unavailable in the data. 
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limitations on everyday activities such as walking up stairs, carrying groceries, and 

bending/stooping, among others.  Responses may be either “Yes, limited a lot”; “Yes, 

limited some” or “No, not limited at all.”  The responses are transformed by the DCC 

(RTI, International) into a 0-100 scale based on scoring devised by the RAND 

Corporation. 56 A score of 100 reflects full functionality (able to run and play sports) and 

0 is barely functional (health severely limits all everyday activities).  Although software 

development is not a physically strenuous job, it is still reasonable to assume that 

diminished physical function may affect on-the-job performance.  In general, the sample 

is highly functional, with average ratings over 90 percent.  However, obese employees 

are significantly limited compared to their normal-weight coworkers, a difference of 10 

percentage points (roughly one standard deviation) among females and 5 percentage 

points (roughly one-half a standard deviation) among males. 

Another way in which obesity may result in reduced productivity is if obesity 

substantially disrupts sleep.  Obesity is significantly correlated with obstructive sleep 

disorder (aka “sleep apnea”), which in turn has been associated with decreased cognitive 

function (Engleman & Douglas, 2004; Ulfberg, Carter, Talback, & Edling, 1996; 

Vgontzas et al., 1994).  Although the data lack an exact measure of sleep apnea, they do 

contain a self-reported indicator variable for “loud snoring.” The indicator denotes 

positive response to the question “During the past month, have you ever snored loudly, or 

                                                           
56 The questions comprising the physical limitations measure are derived from the Medical Outcomes Study 
36-Item Short-Form Survey (Ware & Sherbourne, 1992).  Scoring from 0-100 is based on the RAND 36-
Item Health Survey 1.0 (www.rand.org/health/surveys_tools/mos/mos_core_36item_scoring.html). 
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been told you were snoring loudly?”57  Severity of snoring has been identified as one of 

the primary predictors of sleep apnea among obese patients (Vgontzas et al., 1994).  

Therefore, controlling for loud snoring may serve as a proxy for the effect of obesity on 

sleep.  Approximately one-fourth of females and one-third of males report loud snoring.  

Obese females are more likely to snore heavily by 30 percentage points, while for males 

the differences is 15 percentage points. 

The final set of health variables contains four measures of cardiovascular health 

including blood serum levels of C-reactive protein (CRP), a biomarker for inflammation; 

blood serum levels of cholesterol; blood pressure; and heart rate.58  All four of these 

measures capture elements of risk for cardiovascular disease, as well as overall 

cardiovascular fitness.  Measures of cholesterol are transformed into a ratio of total to 

HDL (“good”) cholesterol, a measure that is more strongly correlated with heart disease 

than total cholesterol or LDL (“bad”) cholesterol and that may better capture the negative 

lifestyle behaviors associated with BMI (Kinosian et al., 1994).  Measures of both CRP 

and the cholesterol ratio appear to follow a lognormal distribution (and to be 

heteroskedastic in relation to log wages), and so these variables are transformed by the 

natural log before entering the model.  Measures of blood pressure and heart rate refer to 

                                                           
57 This question distinguishes people who have reported snoring (but not loudly) from people who have 
reported “loud” snoring.  Nested within the “loud snoring” indicator are respondents who have 
“snorted/gasped” or “stopped breathing/struggled for breath.”  These sub-measures are not considered 
separately due to the small number of respondents (particularly females) who suffer from these conditions.  
Moreover, analysis by Maislin et al. (1995) suggests that loud snoring is nearly as correlated with apnea as 
snorting/gasping, and more correlated with apnea than stopped breathing/struggled for breath. 
 
58 Data for C-Reactive protein and cholesterol are missing for 7% and 13% of the sample, respectively.  
Several observations were also missing data on heart rate.  Since these are not the variables of interest and 
are assumed to be missing at random, missing values were imputed using a modified regression-based EM 
algorithm.  See Appendix F for details. 
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the mean value of three measures obtained on three separate days.  The average blood 

pressure measure is used to construct an indicator for high blood pressure (hypertension), 

which refers to systolic pressure greater than 140 mmHg or diastolic pressure greater than 

90 mmHg.   

Among both males and females, obese employees have significantly worse 

measures of cardiovascular health compared to their normal-weight coworkers.  Obese 

females measure nearly one standard deviation higher in their cholesterol ratio and CRP 

levels, and are approximately 25 percentage points more likely to have clinically high 

blood pressure.  Females also have significantly higher heart rates, although the 

difference is not substantial (about 2.5 beats per minute [BPM]: less than one-fifth a 

standard deviation).  Obese males also have higher measures of inflammation and 

cholesterol ratio compared to normal-weight males, equal to approximately one-half of a 

standard deviation.  Obese males are also 25 percentage points more likely to have high 

blood pressure, and have a heart rate approximately 5 BPM (one-half standard deviation) 

higher than normal-weight employees.  Taken together, the set of health variables 

suggests that obese workers are less healthy than normal-weight employees in physical 

function, cardiovascular health, and potentially in quality of sleep.  Incorporating these 

measures should capture differences in productivity that are attributable to health.  Tests 

for differences in productivity between obese and normal-weight workers attributable to 

differences in health and human capital are provided in Section 6.2. 
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6. Results 

6.1. Baseline Results 

Results from the initial model containing only standard control variables 

(equation 1) are reported in Table 27.  Among females, overweight employees earn 

approximately 5.5 percent less than those in the normal-weight category, while obese 

employees earn roughly 6.8 percent less, on average.  Neither overweight nor obese 

males earn significantly different wages compared to their normal-weight coworkers.  

The lack of a significant wage-obesity relationship for males is consistent with the 

literature, which has found mixed results regarding the wage-obesity relationship among 

men.  The simplest explanation is that obesity is a more imperfect measure of physical 

health for males, since body mass index (BMI) does not distinguish muscle from other 

body mass.  It may also be the case that the wage-obesity pathway operates differently for 

males versus females, a possibility that will be explored further in the remainder of 

Section 6. 

 
Table 27 

The Relationship between Wages and Obesity with Standard Control Variables (Model 1) 

 Female (n = 295) Male (n = 452) 

Obese -0.068** 
(0.033) 

0.039 
(0.025) 

Overweight -0.055* 
(0.032) 

-0.003  
(0.022) 

Married or Cohabitating 0.026  
(0.032) 

0.018  
(0.026) 



142 
 

 

Table 27 

(Cont.) 

 Female (n = 295) Male (n = 452) 

Total Number of Children -0.002  
(0.012) 

0.008  
(0.008) 

Nonwhite -0.046  
(.029) 

-0.026  
(0.025) 

Born Abroad 0.025  
(0.034) 

0.039  
(0.027) 

College Graduate (4-year) 0.060**  
(0.025) 

0.057*  
(0.033) 

Age (10 years) 0.285**  
(0.125) 

0.342***  
(0.092) 

Age Squared (100 squared years) -0.027**  
(0.013) 

-0.032***  
(0.010) 

Tenure with Firm (10 years) -0.157***  
(0.062) 

-0.020  
(.045) 

Tenure Squared (100 squared years) 0.042***  
(0.015) 

0.011  
(0.011) 

Core (Staff and Senior) 0.185**  
(0.076) 

0.231***  
(0.038) 

Note: The dependent variable is hourly wages. The overweight and obese coefficients report wages relative 
to normal-weight employees (BMI < 25).  Estimates are obtained using a generalized linear model with a 
log link function.  The model includes indicators for worksite, state, and job category. Standard errors are 
clustered at the work group level and reported in parentheses. 

 

Table 28 reports the results of tests for the hypothesized productivity mechanisms 

(human capital accumulation and health).  Results examining possible peer or supervisor 

discrimination are reported in Table 29, while Table 30 shows results for models that test 

whether parenthood is a confounding factor of the wage-obesity relationship among 

females.  For the sake of brevity, only results for obese workers relative to normal-weight 
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workers will be reported in results tables moving forward.  All subsequent models 

include indicators for overweight, and all interaction models include an overweight 

interaction term in addition to the reported obese interaction term.  Results for overweight 

employees are qualitatively similar to those for obese ones. 

 
Table 28 

Productivity Differences as a Potential Factor Underlying the Wage-Obesity Relationship 

  
Baseline 

Human 
Capital 

 
Health 

 
Combined 

Female     

Obese -0.068** 
(0.033) 

-0.054* 
(0.033) 

-0.049 
(0.035) 

-0.039 
(0.032) 

Δ 
 
 

0.014 # 
[0.065] 

0.019 
[0.157] 

0.029# 
[0.066] 

Male     

Obese 0.039 
(0.025) 

0.016 

(0.024) 
0.79*** 
(0.027) 

0.045* 
(0.026) 

Δ 
 
 

-0.023 # 
[0.010] 

0.040 # 
[0.000] 

0.006 
[0.318] 

Note: The dependent variable is hourly wage.  Estimates are obtained using a generalized linear model with 
a log link function.  Models control for employee’s state, site, age, age2, race, nativity, marital status, 
number of children, tenure with the firm (in years), tenure2, and job category, unless reported otherwise.  
All models also contain an indicator for overweight.  The normal-weight category therefore serves as the 
point of reference for all obesity and obesity-interaction coefficients.  Standard errors are clustered at the 
work group level and reported in parentheses.  The p-value for the chi-squared statistic from a generalized 
Hausman test is reported in brackets. 
# Signifies that the obesity coefficient is significantly different from the Baseline coefficient estimate. 
* p < 0.1, ** p < 0.5, *** p < 0.1 
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Table 29 
 
Discrimination as a Potential Factor Underlying the Wage-Obesity Relationship 
 

  Health and 
Human 
Capital 

 
Opposite 
Gender 

 
Obese 

Coworkers 

 
Workgroup 

Fixed Effects 

Females Obese -0.039 
(0.032) 

-0.045 
(0.078) 

-0.005 
(0.048) 

-0.060* 
(0.033) 

 Proportion Opposite 
Gender  -0.088 

(0.98)   

 
Obese X Proportion OG  0.005 

(0.123)   

 
Proportion Obese   0.129 

(0.102)  

 Obese x Proportion 
Obese   -0.124 

(0.114)  

 
Δ  -0.006 

[0.434] 
0.034 

[0.176] 
-0.021 
[0.390] 

Males Obese 0.045* 
(0.026) 

0.032 
(0.039) 

0.121*** 
(0.034) 

0.039 
(0.025) 

 Proportion Opposite 
Gender  -0.050 

(0.047)   

 
Obese X Proportion OG  0.030 

(0.085)   

 Proportion Obese 
   

 
0.177** 
(0.079)  

 Obese x Proportion 
Obese   

 
-0.259*** 
(0.105)  

 
Δ 

 -0.013 
[0.318] 

0.076# 
[0.009] 

-0.006 
[0.202] 

Note: The dependent variable is hourly wage. Estimates are obtained using a generalized linear model with 
a log link function.  Models control for employees’ state, site, age, race, nativity, marital status, number of 
children, tenure with the firm (in years), job category, indicators for staff and senior, an indicator for loud 
snoring, as well as log cholesterol ratio, log CRP plasma concentration, hypertension, and heart rate.  All 
models also contain an indicator for overweight, and overweight is interacted with proportion opposite 
gender in model (9) and proportion obese in model (10).  The normal-weight category therefore serves as 
the point of reference for all obesity and obesity-interaction coefficients. Standard errors clustered at work 
group level and reported in parentheses.  The p-value for the chi-squared statistic from a generalized 
Hausman test is reported in brackets.  # Signifies that the obesity coefficient is significantly different from 
the obesity coefficient in model (5), the preferred productivity model. 
 * p < 0.1, ** p < 0.5, *** p < 0.1 
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Table 30 
 
Parenthood as a Potential Factor Underlying the Wage-Obesity Relationship 
 

  Health and 
Human 
Capital 

 
Child-

Interaction 

 
Single- 
Parent 

Females Obese -0.039 
(0.032) 

0.051 
(0.041) 

0.041 
(0.053) 

 
Children -0.007 

(0.012) 
0.009 

(0.014) 
0.012 

(0.013) 
 

Obese x Children  -0.053*** 
(0.016) 

-0.070*** 
(0.024) 

 
Obese x Married x Children   0.027 

(0.024) 
 

Δ  0.090# 
[0.001] 

0.080# 
[0.007] 

Males Obese 0.045* 
(0.026) 

0.046 
(0.031) 

0.044 
(0.032) 

 Children 0.008 
(0.006) 

0.018 
(0.013) 

0.018 
(0.013) 

 Obese x Children  -0.002 
(0.012) 

0.019 
(0.037) 

 Obese x Married x Children   -0.022 
(0.035) 

 Δ  0.001 
[0.492] 

-0.001 
[0.458] 

Note: The dependent variable is hourly wages. Estimates are obtained using a generalized linear model 
with a log link function.  Models control for employee’s state, site, age, race, nativity, marital status, 
number of children, tenure with the firm (in years), job category, indicators for staff and senior, physical 
function, an indicator for loud snoring, as well as log cholesterol ratio, log CRP plasma concentration, 
hypertension, and heart rate.  All models also contain an indicator for overweight, and overweight is 
interacted with children in models (12) and (13).  The normal-weight category therefore serves as the point 
of reference for all obesity and obesity-interaction coefficients.  Standard errors are clustered at the work 
group level and reported in parentheses. The p-value for the chi-squared statistic from a generalized 
Hausman test is reported in brackets. # signifies that the obesity coefficient differs significantly from model 
(11) – which is identical to the preferred productivity model (model 5).   Models 12 and 13 are re-runs of 
Model (5) – the preferred productivity model - with and without a control for children. 
* p < 0.1, ** p < 0.5, *** p < 0.1 
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6.2. Productivity 

To control for differences in underlying human capital I replace the indicator for 

“core” jobs with two indicators differentiating between staff and senior positions.  Since 

transition from staff to senior requires one or more promotions, achieving senior level 

indicates a demonstrable level of human capital accumulation that has been recognized 

by the firm.  This may provide a more precise measure of overall human capital 

accumulation than simple years of tenure with the firm.  If obese employees accumulate 

human capital at a different rate than normal-weight employees (or if they are 

discriminated against in promotion), they may be disproportionately represented at the 

staff level.  If this is the case, controlling for the staff/senior distinction should attenuate 

the coefficients for the overweight and obese indicators. 

As shown in the second column of Table 27, accounting for the distinction 

between staff and senior employees significantly reduces the obesity coefficient among 

males, suggesting that obese males actually have greater accumulated human capital 

relative to normal-weight males.  Inclusion of these variables decreases the magnitude of 

the estimated wage penalty among females from -6.8 percent to -5.4 percent, a 

statistically significant reduction.  This result suggests that differences in human capital 

accumulation are a significant confounder of the wage-obesity relationship, a finding 

consistent with Baum and Ford (2004).59   

                                                           
59 However, as seen in Appendix G, neither obese males nor females have significantly lower returns to 
years of tenure, despite not controlling for the staff/senior distinction.  This may suggest that the 
staff/senior distinction is a better measure of human capital accumulation than are years of tenure. 
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 In the health model in Table 28, I test whether differences in productivity 

attributable to underlying health may be biasing the estimated relationship between 

wages and obesity.  This model omits the controls for staff and senior and introduces a 

measure of physical function, a proxy for sleep quality, and proxies for cardiovascular 

fitness.  Proxies for cardiovascular health include log C-Reactive Protein concentration, 

log cholesterol ratio, resting heart rate, and an indicator for hypertension.  Contrary to 

previous research, controlling for employee health reveals a large negative bias in the 

obesity coefficient among males, suggesting that health is a key omitted variable.  The 

wage penalty for females is attenuated from -6.8 percent to -4.9 percent while the male 

wage premium from obesity increases significantly from 3.9 percent to 7.9 percent.   

 The combined model in Table 28 contains both the health controls and the 

staff/senior indicators to determine if a joint model of productivity is able to explain the 

entire wage-obesity relationship.  Among males the health and human capital variables 

essentially cancel each other out.  Controlling for human capital accumulation reduces 

the wage premium significantly, whereas including controls for cardiovascular health 

significantly increases the wage premium.  The net effect is a small positive increase that 

leaves a large and significant wage premium of 4.5 percent.  For females the combined 

model reduces the obesity penalty from -6.8 percent to -3.9 percent, a large and 

significant reduction.  The magnitude of the coefficient shift in the combined model of 

health and human capital is roughly consistent with the sum of the coefficient shifts from 

the individual health and human capital models.  This suggests that the two sets of proxy 

variables are capturing different elements of the wage function rather than jointly 
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measuring the same element.  For instance, health stock could be correlated with the 

same unobservable attributes (e.g., time-preference or motivation) that are intended to be 

captured by the proxy for human capital.  If this were the case then lost wages 

attributable to lower health would not be recoverable through health intervention, since 

the underlying individual traits causing the health disparities would remain.  However, 

the health variables do not seem to be capturing the same unobservable attributes 

supposed to be captured by the human capital model, suggesting that employee 

productivity could be enhanced if employee health was improved. 

Although the remaining female wage penalty and male wage premium are 

statistically insignificant, the sign and magnitude of the estimates are not inconsistent 

with the previous literature, suggesting that meaningful unexplained wage differences 

may still exist between obese and normal-weight employees.  Consistent with prior 

research, I next consider the possibility that the remaining differences in wages may be 

attributable to discrimination.   

6.3 Discrimination 

This section utilizes three approaches to test for two possible sources of 

discrimination.  The first two approaches use work group-level measures to test for 

coworker discrimination.  Work group-level measures include the proportion of obese 

coworkers in an employee’s work group, and the proportion of the work group of 

opposite gender in each employee’s work group.60,61  Research has shown that 

                                                           
60 The sample mean of the work group characteristics is consistent with the sample mean of the 
characteristics themselves (i.e., the mean proportion of obese coworkers across work groups equals the 
proportion of the overall sample that is obese). 
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individuals are more likely to discriminate publicly when it is considered socially 

acceptable to do so (Crandall, Eshelman, & O’Brien, 2002).  Presumably as the 

proportion of obese workers in a work group increases, the acceptability of 

discrimination towards obese members of that work group will diminish.  The proportion 

of work group members of the opposite gender is also hypothesized to affect the 

probability of discrimination again obese employees, as social norms of body size may be 

enforced more rigidly by members of the same sex, or members of the opposite sex.  The 

peer discrimination models include an interaction between the indicators for 

overweight/obese and the measures of proportion opposite gender and proportion obese.  

This provides a test of whether the wage penalty varies based on either work group 

characteristic.  The third discrimination model utilizes work group fixed effects to test 

whether unobserved work group attributes are driving the wage penalty among obese 

workers.  Recall that each work group reports to a single manager.  Therefore key 

unobserved work group characteristics include the attributes of the manager and her or 

his potential attitude towards obese subordinates.  The first two discrimination models 

should account for the primary channels through which indirect, coworker discrimination 

would manifest.  Therefore the work group fixed effects model can be thought of as a 

manager fixed effects model that is able to account for direct supervisor discrimination.62  

                                                                                                                                                                             
61 An attempt was made to generate gender-specific obesity proportions, but there were several work 
groups that had only one male or female, making this approach infeasible. 
 
62 In order to compute work group-level fixed effects males and females are combined into a single 
regression.  This avoids dropping observations for individuals who do not have another member of the 
same gender in their work group (all observations belong to work groups of at least two individuals, but 
within gender-specific regressions several individuals do not have any other within-group observations to 
provide variation).  This strategy also boosts the number of observations per workgroup helping to alleviate 
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All models condition on the controls for human capital and health from the combined 

productivity model.   

 The results in Table 29 show that among females there is no evidence for 

coworker discrimination.  The proportion of male coworkers in a work group is 

insignificantly correlated with wages, and the coefficients on the interaction terms do not 

indicate that the relationship between work group gender composition and wages varies 

by BMI category.  Controlling for the proportion of obese coworkers in one’s work group 

reduces the observed wage penalty to zero, although this is not a significant change from 

the combined productivity specification.  The proportion of obese coworkers is 

insignificantly correlated with wages, and the coefficient for the obesity interaction is 

also insignificant.  Moreover, the sign of the interaction coefficient for both overweight 

and obese employees is the opposite of the hypothesized direction.  The wages for both 

obese and overweight females diminishes as the proportion of obese coworkers increase.   

Among males the proportion of females in the work group has no effect on the 

wage of overweight or obese males.  However, as the proportion of obese workers in a 

group increases, the wages of overweight and obese males actually fall significantly.  An 

obese male with no other obese group members earns a significant wage premium of 

approximately 12 percent, while obese males in a group comprised entirely of obese 

coworkers face a nearly 14 percent wage penalty.    

                                                                                                                                                                             
the potential incidental parameters problem that arises when using least squares dummy variables to 
estimate a nonlinear fixed effects model.  Heckman (1981) suggests that having 8 observations per unit is 
sufficient to mitigate the problem.  In the combined sample the average group size is 12, which should be 
sufficient to allow for consistent estimation of the parameter of interest (δ2).  Based on differences between 
coefficient estimates by gender in the previous regression analyses, gender-interactions are included for 
age, age2, tenure, tenure2, log C-reactive protein, log-cholesterol ratio, hypertension, and tiers 2 and 3, in 
addition to interactions for overweight and obese. 
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It is unclear what is causing this result.  If work groups comprised almost entirely 

of obese workers are less productive as a group, or reflect over-representation of obese 

employees in lower-paying positions, then higher proportions of obesity should be 

negatively correlated with wages among normal-weight workers as well, which is not 

what the model predicts.  An alternative explanation is that normal-weight workers are 

able to outperform more of their immediate peers if they are in a work group with a high 

proportion of obese coworkers.  If this were the case, then overweight workers should 

also perform better in comparison to obese employees.  However, the overweight 

interaction term is actually more negative than the obesity interaction for both males and 

females, suggesting that whatever factor is diminishing wages for heavier employees has 

a greater effect for overweight compared to obese employees.  While the underlying 

explanation for these results is uncertain, the direction of the effect does not suggest that 

indirect, peer-level discrimination is an issue within the sample.  I turn next to the 

possibility of supervisor discrimination. 

 Controlling for unobserved work group (manager) attributes decreases the wage 

premium among obese males from 4.5 percent to 3.9 percent.  The difference is 

statistically insignificant and the change in coefficient is the opposite direction to what 

would be expected if unobserved discrimination was occurring.  Controlling for work 

group fixed effects among female employees increases the magnitude of the wage penalty 

roughly 2.1 percentage points for obese employees.  This result is also insignificant and 

suggests that the coefficients from the pooled work group models are positively biased 

among females, which is the opposite of what would be expected if manager 
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discrimination was a dominant factor.  Ultimately, though the possibility of 

discrimination cannot be completely ruled out, the results from the previous analyses do 

not uncover any evidence in support of this hypothesis.   

7. Parenthood 

The final set of analyses investigates the possibility that the female wage penalty 

and male wage premium that remains unaccounted for may be attributable to parenthood.  

Although this is expected to affect females more than males, males are included in the 

analysis for comparison of the results.  To test this possibility I augment the health and 

human capital model with interactions between children and the overweight/obesity 

indicators.   

Including an interaction between children and obesity does not produce any 

significant results among males.  However, the results show a significant difference in the 

wage-obesity relationship between obese mothers and non-mothers.  Obese females 

appear to pay a significant penalty of over 5 percent for each additional child.  Obese 

females without children no longer face any wage penalty, and may in fact earn a wage 

premium.   The results appear to be nonlinear.  Obese mothers with one child face no 

penalty, while those with two children face a penalty of roughly 17%, and those with 

three or more children face a penalty of roughly 15% compared to normal weight 

mothers.  These results do not hold for overweight females, who face no additional wage 

penalty for fertility.  Moreover, overweight females without children continue to incur a 

wage penalty of approximately 4 percent, although the estimate remains insignificant. 
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 The difference in wages between obese mothers and non-mothers likely has a 

straightforward explanation.  Non-mothers may have a preference for market production 

over non-market production.  Or perhaps the absence of children allows obese non-

mothers to prioritize their careers, regardless of preference.  However, the discrepancy in 

wages between normal-weight and obese mothers is more unusual.   

The results indicate that there are important underlying differences between 

mothers who are obese and those who are not since there is no wage penalty associated 

with children among normal-weight mothers.  This may suggest underlying differences in 

productivity that are not captured by other control variables.  For example, females who 

are more efficient at work may also receive greater returns to investment in health and 

thus be less likely to become obese.  It is also possible that the underlying differences 

between obese and normal-weight mothers is a manifestation of differences in human 

capital accumulation, although accounting for the distinction between staff and senior 

employees cannot account for the wage penalty attributed to obese mothers.  It may also 

be the case that obese mothers are more likely to be single mothers, which may influence 

both body mass and productivity.  However, controlling for single-motherhood does not 

significantly change the coefficient on the child-obesity interaction, suggesting that 

having a spouse present is not the primary factor that differentiates obese mothers from 

normal-weight mothers.  The result is also not attributable to a wage penalty that is 

increasing in BMI.  Obese Mothers with two children have the same mean BMI as those 

with one child.  Although obese mothers with three or more children have a slightly 
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higher BMI (1.5 units) compared to those with only one child, all obese mothers have a 

lower mean BMI than non-mothers (Appendix H). 

The one outstanding characteristic of obese mothers who are penalized is their 

age.  On average, obese mothers with two children are five years older than normal-

weight mothers with two children (48 vs. 43).  The same pattern holds among mothers 

with three or more children (52 vs. 47), and in both cases the difference is statistically 

significant.  Obese mothers with one child (who face no wage penalty) are not 

significantly older.  Although data are not available for all children, the age of the 

youngest child among obese mothers is, on average, five years older than that for normal-

weight mothers.  This suggests that obese mothers have older children at home rather 

than the possibility that obese females delay having children.  Findings from the labor 

literature regarding the motherhood wage penalty indicate that the penalty may fade with 

time (Baum, 2003; Buligescu, de Crombrughe, Mentesoglu, & Montizaan, 2009), which 

suggests that normal weight mothers, with younger children, should have a higher penalty 

compared to older (obese) mothers rather than no penalty.  It is possible that the negative 

health associated with obesity does not begin to have adverse effects on productivity until 

a more advanced age.  Yet, obese non-mothers also have an average age of 47, roughly 

equivalent to obese mothers with two children.  It also does not appear that having 

children significantly reduces health among obese females (Appendix H), although it is 

possible that the dual burden of childrearing and low average health are what cause 

productivity to be reduced.  However, this cannot be conclusively demonstrated in the 
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current data, and the exact mechanism underlying this result remains an issue for future 

research. 

8. Conclusion 

 Consistent with previous literature I find a significant negative relationship 

between wages and obesity among females.  I also find that obese males earn a wage 

premium, although this result is not significant.  To explain these results, I test for 

differences in productivity between obese and normal-weight employees.  I find evidence 

that human capital accumulation and health are both confounding the wage-obesity 

relationship, although neither factor can account for the full difference in wages between 

obese and non-obese employees.  Results suggest that differences in measured health are 

not attributable to unobserved individual attributes that are correlated with wages (e.g., 

time-preference, ambition), which suggests that a substantial portion of productivity 

losses attributable to obese workers may be recoverable through appropriate health 

intervention.   

I find no evidence for peer or supervisor discrimination among males or females.  

Subsequent analyses indicate that obese females with children are the primary recipients 

of the wage-penalty for obesity in the sample.  Obese mothers incur a significant wage 

penalty of roughly 5 percent per additional child, on average.  Estimates also suggest that 

obese females without children may actually earn more than normal-weight females, 

although this result is not statistically significant.   

The wage difference between obese mothers and normal-weight mothers may be 

attributable to unobserved differences in productivity.  However, this discrepancy cannot 
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be ascribed to human capital accumulation, delayed child-bearing, or single-

parenthood.63  Uncovering the exact mechanism driving the productivity difference 

between obese and normal-weight females is a promising avenue for future research: a 

better understanding of this mechanism could yield valuable information for employers 

or policymakers wishing to improve maternal health and well-being. 

These results may also inform research on women’s wages in other branches of 

the literature.  For instance, the motherhood wage penalty established in the labor 

literature (see Budig & England, 2001) may fall more heavily on obese than normal-

weight women.  Lastly, these results may provide guidance for future wage-obesity 

analyses at the national level.  If the frequently observed wage penalty for obese women 

is primarily attributable to obese mothers across region and industry, this may provide 

justification for public policy aimed at promoting maternal health.  Such policy could 

help to recover some of the lost productivity and medical spending currently attributable 

to obesity. 

  

                                                           
63 Although without a full panel of adulthood it is impossible to account for past spells of single-
motherhood that may have affected investments in health or interruptions in work experience. 
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APPENDIX A 
 

EXPECTED VALUE OF UNOBSERVED CONFOUNDER IN CONWAY-
MAXWELL POISSON DISTRIBUTION 
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When a and b are negative and positive infinity (respectively), the second multiplicand is 

1, proving the result. 
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EXPECTED VALUE OF UNOBSERVED CONFOUNDER IN 
(APPROXIMATED) CONWAY-MAXWELL POISSON DISTRIBUTION 
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When a and b are negative and positive infinity (respectively), the second multiplicand is 

1, proving the result. 
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APPENDIX B 
 

COMPARISON OF THE APPROXIMATED AND “TRUE” TREATMENT 
EFFECTS FOR THE CMP 

 
 

As discussed in Section 1 there are two expressions for the conditional mean of Y in the 

CMP specification.  The approximated value is expressed as 

 

E[Y|X, ν] =  λ1/ν −
v − 1
2ν

 

 
 

whereas the “true” conditional mean can be expressed as 
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∑ jλj−1

(j!)ν
∞
j=1

∑ λj

(j!)ν
∞
j=0
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Using the approximation typically results in additional bias of both the estimated 

treatment effect derived from the conditional expectation, and of the expectation itself.  

Comparison of the two methods is presented in the following tables.  Absolute percentage 

bias is reported in parentheses.  Mean squared error is shown in brackets for the estimated 

treatment effects. 
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Comparison of Estimated Y with Positive Dependence 
  

Model 
 

Actual Value 
“True” 
estimate 

 
Approximation 

Endogenous 
Treatment 

CMP 3.13 3.05 
(2.33) 

2.91 
(6.84) 

NB 3.00 2.53 
(15.65) 

2.50 
(16.65) 

RGP 3.00 2.97 
(1.30) 

2.91 
(3.07) 

Endogenous 
Sample 

Selection 

CMP 3.13 3.05 
(2.70) 

2.93 
(6.42) 

NB 3.00 3.49 
(14.06) 

3.40 
(10.75) 

RGP 3.00 3.50 
(13.95) 

3.38 
(10.31) 

 
 

Comparison of Estimated Y with Negative Dependence 
  

Model 
 

Actual Value 
“True” 
estimate 

 
Approximation 

Endogenous 
Treatment CMP 3.03 2.90 

(2.57) 
3.62 

(21.52) 

Endogenous 
Sample 

Selection 
CMP 3.03 3.03 

(1.98) 
3.23 

(8.30) 
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Comparison of Estimated ATE with Positive Dependence 
  

Model 
 

Actual Value 
“True” 
estimate 

 
Approximation 

Endogenous 
Treatment 

CMP .917 
.921 

(10.95) 
[.024] 

.770 
(16.97) 
[.042] 

NB .826 
.661 

(19.95) 
[.092] 

0.655 
(20.69) 
[.037] 

RGP .826 
.758 

(11.31) 
[.249] 

0.743 
(12.23) 
[.230] 

Endogenous 
Sample 

Selection 

CMP .917 
.925 

(8.05) 
[.015] 

.774 
(15.90) 
[.033] 

NB .826 
.964 

(17.22) 
[.557] 

.936 
(14.34) 
[.026] 

RGP .826 
.793 

(7.60) 
[.184] 

.923 
(13.65) 
[.025] 

 
 

Comparison of Estimated ATE with Negative Dependence 
  

Model 
 

Actual Value 
“True” 
estimate 

 
Approximation 

Endogenous 
Treatment CMP 0.766 

.939 
(24.21) 
[.292] 

1.13 
(48.92) 
[.143] 

Endogenous 
Sample 

Selection 
CMP 0.766 

.793 
(7.60) 
[.184] 

0.829 
(10.70) 
[.013] 
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While the comparison tables suggest that the approximation performs worst when the 

data are CMP distributed, a closer look at the data generating processes paints a slightly 

different picture.  The CMP data with positive dependence were generated using ν = 

0.281.  The estimated dispersion parameter values for the NB and RGP models were 

roughly 0.9 and 0.8, respectively.  This suggests that the approximation breaks down 

when the positive dependence becomes too great, rather than being specific to a particular 

specification.  The results from the tables of negative dependence also suggest the 

approximation does not perform well when the counts are negatively dependent.  It is 

unclear at what level of positive dependence the approximations begin to increase 

substantially in bias, but it is recommended that the “true” conditional mean be used to 

produce estimates for any data that reject a standard Poisson distribution as the baseline 

specification (i.e., ν̂  is significant). 

  



174 
 

 

APPENDIX C 
 

MEANS FROM THE SUBSTANCE ABUSE LITERATURE 
 
 

Study Outcome Measure Means 

Atella and Deb (2008) Primary care visits last 4 
weeks 0.235 

 
Public specialist visits last 4 

weeks 0.096 

 
Private specialist visits last 4 

weeks 0.136 

Ayyagari et al. (2011) Drinks per day 0.68 

Bauer, Gohlmann, and 
Sinning (2007) Cigarettes per Day 3.63–8.10 

Birch, Eyles, and Newbold 
(1993) Physician visits last year 2.79 

Brown, Scheffler, Seo, and 
Reed (2006) Cigarettes per month 99.38 

Davalos, Fang, and French 
(2012) 

Days of binge drinking last 
year 12.8 

Deb and Holmes (2000) Mental health visits last year 3.88 

Deb and Trivedi (2002) Physician visits last year 2.861 

 Outpatient visits last year 3.546 

Deb et al. (2006) Physician visits last year 2.83–3.56 

 Non-physician visits last year 0.18–1.87 

 ER visits last year 0.13–0.28 

Deb and Trivedi (2008) Physician visits last year 3.52 

 Non-physician visits last year 0.26 

 Surgery last year 0.18 

 ER visits last year 0.26 
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Study Outcome Measure Means 

 
Inpatient hospital visits last 

year 0.11 

Decker et al. (2011) Inpatient hospital visits last 
year 0.18–0.28 

Farbmacher (2012) Physician visits last three 
months 1.325 

Gerdtham (1997) Physician visits last year 2.06 

 Weeks in hospital 0.3 

Gerdtham and Trivedi 
(2001) Physician visits last year 2.06 

 Weeks in hospital last year 0.3 

Greene (2009) Physician visits last three 
months 3.18 

 Hospital visits last year 0.14 

Grootendorst (1995) Prescription drugs in last 
month 2.02–2.11 

Gupta and Greeve (2011) Physician visits last year 5.19 

Gustavsen, Nagya, and Wu 
(2010) Physician visits last year 4.03 

Hyppolite and Trivedi 
(2012) Physician visits last year 2.35–2.66 

Jimenez-Martin, Labeaga, 
and Martinez-Granado 

(2002) 
Physician visits last year 3.39–3.53 

 Specialist visits last year 1.07 

Jochman and Leon-
Gonzalez (2004) 

Physician visits last four 
months 4.12 

Lee and Kobayashi (2001) Physician visits last year 3.34–3.64 

 Hospital visits last year 0.60–0.65 
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Study Outcome Measure Means 

Lourenco and Ferreira 
(2005) Physician visits last year 5.52 

Madden, Nolan, and Nolan 
(2005) Physician visits last year 2.30–6.50 

McLeod (2011) Physician visits last year 3.26 

Meyerhoeffer and Zuvekas 
(2009) Physician visits last year 2.76 

 Mental health visits last year 0.23 

Moreira and Barros (2010) Physician visits last three 
months 1.01 

Mullahy (1998) Physician visits last year 4.91 

Nolan (2007) Physician visits last year 3.4 

Ovrum (2004) Physician visits last year 4.94 

Saez et al. (2006) Physician visits last year 1.00–1.33 

 Specialist visits last year 1.13–1.31 

Sari (2009) Physician visits last year 3.03–3.68 

 Specialist visits last year 0.68–0.85 

 
Inpatient hospital visits last 

year 0.40–0.82 

Sarma and Simpson (2006) Physician visits last year 3.49 

 Specialist visits last year 0.72 

 
Inpatient hospital visits last 

year 0.62 

Schellhorn (2001) Physician visits last year 2.15–2.77 

 Specialist visits last year 1.12–2.19 

Shafrin (2010) Inpatient surgery last year 0.50 

 Outpatient surgery last year 1.37 
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Study Outcome Measure Means 

Sheu et al. (2004) Cigarettes per day among daily 
smokers 16.10 

Windmeijer and Silva 
(1997) Physician visits last month 0.40 

Winkelmann (2004) Physician visits last year 2.39–2.69 

Winkelmann (2006) Physician visits last three 
months 2.46–2.96 

Van Ourti (2004) Physician visits last year 4.94 

Yen and Jones (1996) Cigarettes per day among daily 
smokers 9.38 

Yen, Tang, and Su (2001) Traditional medicine visits per 
month 0.22 

Zhong (2010) Physician visits last month 0.40 

 Inpatient days last year 0.06 

Zimmer and Trivedi (2006) Physician visits last year 2.33–3.92 

 Specialist visits last year 1.03–1.70 

 ER visits last year 0.10–0.11 
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APPENDIX D 
 

CRITERIA FOR MARIJUANA DEPENDENCE OR ABUSE 
 
 

Dependence: 
 

1. Spent a great deal of time over a period of a month getting, using, or getting over 
the effects of substance 

2. Unable to keep set limits on substance use or used more often than intended. 
3. Needed to use substance more than before to get desired effects or noticed that 

using the same amount had less effect than before. 
4. Unable to cut down or stop using the substance every time he or she tried or 

wanted to. 
5. Continued to use substance even though it was causing problems with emotions, 

nerves, mental health, or physical problems. 
6. Reduced or gave up participation in important activities due to substance. 

 
Abuse: 
 

1. Respondent reported having serious problems due to substance use at home, 
work, or school. 

2. Respondent reported using substance regularly and then did something where 
substance use might have put them in physical danger. 

3. Respondent reporting substance use causing actions that repeatedly got them in 
trouble with the law. 

4. Respondent reported having problems caused by substance use with family or 
friends and continued to use substance even though it was thought to be causing 
problems with family and friends.  
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APPENDIX E 
 

CORRECTION OF SECOND-STAGE STANDARD ERRORS TO ACCOUNT 
FOR FIRST-STAGE ESTIMATION OF RELEVANT PARAMETERS 

(TERZA, 2012) 
 
 

Let q represent the function that is to be optimized in the second-stage (the square of the 
residuals in the case of NLS).  Then define the following: 
 
∇δq = gradient of the second-stage optimization function with respect to the first-stage 
estimates 
∇βq = gradient of the second-stage optimization function with respect to the second-stage 
estimates 
∇δβq = cross-partial derivative of second-stage optimization function with respect to the 
first and second-stage estimates 
∇ββq = Hessian matrix of the second-stage optimization function 
Ω1 = variance-covariance matrix from estimation of first-stage 
Ω2 = variance-covariance matrix from estimation of second-stage 
 
When the second stage is estimated via NLS, as in the present case, the corrected 
variance-covariance matrix Ω* can be computed as: 
 
Ω* = E[∇ββq]-1E[∇δβq]’Ω1E[∇δβq] E[∇ββq]-1 + Ω2 
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APPENDIX F 
 

MISSING AND IMPUTED DATA 
 
 

Omitted Observations 

Reason Omitted Females Males 

Salary nonresponse 19 (5.9%) 36 (7.2%) 

BMI nonresponse 6   (2.0%) 5   (1.1%) 

TOTAL 25 (7.9%) 41 (8.4%) 
Note. Values in parentheses refer to percentage of original (full) sample dropped for each reason  

 
Observations were dropped from the analysis sample if respondents did not 

provide their salary or a BMI value.  Nineteen females and 36 males failed to provide 

salary data.  This represents approximately 6 percent of all females and 7 percent of all 

males.  Six females and five males failed to provide their BMI.  This represents 2 percent 

of females and 1 percent of males.  Among the remainder of the control variables in 

Model (1) no nonresponses are recorded.  The following table reports differences in 

means between non-respondents and respondents.  On average, non-responding females 

have less tenure, and are more likely to be nonwhite or foreign. Male non-respondents 

also have less tenure, and more likely to be nonwhite or foreign.  They are also 

significantly younger, on average.  These marginal differences do not suggest that weight 

or salary-level are correlated with item non-response.   
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Summary Statistics for Observations with Omitted Data 
 Females Males 
 Omitted Retained Omitted Retained 

Married or 
Cohabitating 

60.00% 
(0.50) 

70.85% 
(0.46) 

85.37% 
(0.34) 

84.74% 
(0.36) 

Total Number of 
Children 

1.52 
(1.45) 

1.63 
(1.24) 

1.61 
(1.28) 

1.64 
(1.43) 

Nonwhite 36.00%* 
(0.49) 

24.07% 
(0.43) 

48.78%* 
(0.49) 

29.20% 
(0.46) 

Born Abroad 32.00%* 
(0.48) 

19.32% 
(0.40) 

53.65%* 
(0.53) 

31.89% 
(0.44) 

College Graduate 
(4-year) 

76.00% 
(0.44) 

66.44% 
(0.47) 

88.80% 
(0.32) 

83.63% 
(0.37) 

Age 46.52 
(12.56) 

46.88 
(8.38) 

41.95* 
(9.20) 

45.12 
(8.70) 

Tenure with Firm 
(years) 

11.12* 
(10.87) 

16.04 
(9.94) 

8.80* 
(8.60) 

12.07 
(8.16) 

Support Personnel 12.00% 
(0.33) 

5.76% 
(0.23) 

9.75% 
(0.30) 

6.86% 
(0.25) 

Staff 24.00% 
(0.44) 

36.27% 
(0.48) 

29.27% 
(0.46) 

33.41% 
(0.47) 

Senior 64.00% 
(0.50) 

57.97% 
(0.49) 

60.98% 
(0.49) 

59.73% 
(0.49) 

* Indicates significant difference in means between omitted and retained observations (p < 0.1).  
 Omitted observations were left out of the sample due to missing salary or missing BMI. 
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Comparison of Means Between Imputed and Reported Health Variables 

 Females Males 

 Imputed Non-imputed Imputed Non-imputed 

C-Reactive 
Protein 

1.65* 
(2.10) 
[15] 

3.14 
(4.42) 
[280] 

1.88 
(0.84) 
[34] 

1.87 
(2.41) 
[418] 

Cholesterol 
Ratio 

3.76 
(0.25) 
[30] 

3.88 
(1.15) 
[265] 

4.48 
(0.26) 
[58] 

4.47 
(1.44) 
[394] 

Heart Rate 
73.40 
(0.43) 

[2] 

72.35 
(11.14) 
[293] 

68.85 
(3.88) 

[4] 

69.76 
(11.38) 
[448] 

Standard errors in parenthesis. N in brackets. 
* Indicates significant difference between imputed and non-imputed means (p < 0.1). 
 
 

Among control variables the only item non-response occurred among biological 
measures that proxy for cardiovascular health.  Due to the relatively high number of non-
responses values were imputed for missing observations rather than dropping the entire 
observation from the sample.  Imputation followed the modified regression-based EM 
algorithm detailed in Cameron and Trivedi (2005) Section 27.5 (pp. 931–932).  X1 refers 
to control variables for observations with no missing responses.  X2 indicates control 
variables for observations with a missing response for one of the above biological 
variables.  There are N1 complete observations and N2 incomplete observations.  The 
algorithm is as follows: 
 

1. Estimate β� using the N1 complete observations. 
2. Estimate 𝑠2 using only N1 complete observations. 
3. Generate N2 estimates of the missing values:𝑦�MIS = X2β� 
4. Estimate 𝑉� [𝑦�MIS] = 𝑠2(𝐼𝑁2+ X2[X1ʹX1]-1X2ʹ) 
5. Generate adjusted values 𝑦𝑀𝑀𝑀𝑎� = (𝑉� -1/2𝑦�MIS) ° um where um is a Monte Carlo draw 

from the N(0, s2) distribution and ° denotes element by element multiplication. 
6. Using the augment sample (y1 and 𝑦𝑀𝑀𝑀𝑎� )obtain a revised estimate of β� . 
7. Repeat steps 1-6 using the revised β� in step 1 for each iteration. 
 

Consistent with Aitkin and Aitkin (1996), this algorithm is cycled until the difference 
between successive log likelihood values is less than 10-5 
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The Relationship Between Wages and Obesity with Standard Control Variables 
Weighted for Nonresponse 

 Female (n = 295) Male (n = 452) 

Obese -0.065** 
(0.033) 

0.039 
(0.025) 

Overweight -0.051 
(0.034) 

-0.004 
(0.022) 

Married or Cohabitating 0.027 
(0.032) 

0.017 
(0.026) 

Total Number of Children -0.002 
(0.012) 

0.008 
(0.008) 

Nonwhite -0.055* 
(0.030) 

-0.025 
(0.025) 

Born Abroad 0.030 
(0.034) 

0.037 
(0.026) 

College Graduate (4-year) 0.054** 
(0.025) 

0.060* 
(0.033) 

Age (10 years) 0.305** 
(0.124) 

0.337*** 
(0.093) 

Age Squared (100 squared years) -0.029** 
(0.014) 

-0.032*** 
(0.011) 

Tenure with Firm (10 years) -0.148*** 
(0.062) 

-0.027 
(.043) 

Tenure Squared (100 squared years) 0.039*** 
(0.015) 

0.012 
(0.011) 

Core (Staff and Senior) 0.208** 
(0.078) 

0.229*** 
(0.038) 

Note. Dependent variable is hourly wages. The overweight and obese coefficients report wages relative to 
normal-weight employees (BMI < 25).  Estimates are obtained using a generalized linear model with a log 
link function. The model includes indicators for worksite, state, and job category. Standard errors are 
clustered at the work group level and reported in parentheses.  
* p < 0.1, ** p < 0.5, *** p < 0.1  
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APPENDIX G 
 

ROBUSTNESS CHECKS 
 
 

Returns to Job Tenure Among Obese Employees 
 Female (n = 295) Male (n = 452) 
 Linear Quadratic Linear Quadratic 

Obese * Tenure  
(Years) 

0.005 
(0.030) 

-0.001 
(0.005) 

-0.009 
(0.027) 

-0.005 
(0.005) 

Obese * Tenure2 
(10 years)  0.008 

(0.094)  0.081 
(0.092) 

Note. Dependent variable is hourly wage.  Estimates are obtained using a generalized linear model with a 
log link function.  Models control for employee’s state, site, age, age2, race, nativity, marital status, number 
of children, job category, and an indicator for core vs. support employee, unless reported otherwise.  All 
models also contain an indicator for overweight and all interactions are interacted with overweight.  The 
normal-weight category therefore serves as the point of reference for all obesity and obesity-interaction 
coefficients.  Standard errors are clustered at the work group level and reported in parentheses.  
* p < 0.1, ** p < 0.5, *** p < 0.1 
 

Nonlinear Wage Penalty of Children 
 Female (n = 295) Male (n = 452) 

Obese 0.062 
(0.051) 

0.036 
(0.049) 

Obese * 1 Child 0.007 
(0.068) 

0.010 
(0.059) 

Obese * 2 Children -0.171*** 
(0.060) 

0.026 
(0.0960) 

Obese * 3+ Children -0.150** 
(0.064) 

-0.050 
(0.061) 

Note. Dependent variable is hourly wage.  Estimates are obtained using a generalized linear model with a 
log link function .  Models control for employee’s state, site, age, age2, race, nativity, marital status, 
number of children, and job category, and an indicator for core vs. support employee, unless reported 
otherwise.  All models also contain an indicator for overweight and all interactions are interacted with 
overweight.  The normal-weight category therefore serves as the point of reference for all obesity and 
obesity-interaction coefficients.  Standard errors are clustered at the work group level and reported in 
parentheses.  
* p < 0.1, ** p < 0.5, *** p < 0.1 
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APPENDIX H 
 

ADDITIONAL FEMALE SUMMARY STATISTICS 
 
 

BMI of Obese Females by Number of Children 

No Children (n = 24) 37.71 
(5.93) 

1 Child (n = 12) 34.99 
(4.12) 

2 Children (n = 33) 34.95 
(4.02) 

3+ Children (n = 56) 35.56 
(5.80) 

Note. Standard errors in parentheses 
 

Age of Obese Mothers Compared to Obese Non-Mothers and Normal-weight Mothers 

 Obese Normal Weight 

No Children 47.04 (6.36) 45.52 (10.51) 

1 Child 44.75 (6.45) 45.76 (9.31) 

2 Children 48.06** (8.75) 43.25 (7.91) 

3+ Children 51.38* (7.01) 47.09 (9.71) 
Note. Standard errors in parentheses 
* Indicates obese mothers significantly older than normal-weight mothers at 10% significance level 
** Indicates obese mothers significantly older than normal-weight mothers at 5% significance level 
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Health Status of Obese Females by Number of Children 
 No Children 1 Child 2 Children 3+ Children 

C-Reactive Protein 6.57 (5.43) 7.85 (4.59) 3.93 (3.03)* 6.32 (9.91) 

Cholesterol Ratio 4.17 (0.65) 3.97 (1.25) 4.17 (1.50) 4.18 (1.03) 

Hypertension 0.33 (0.48) 0.42 (0.52) 0.36 (0.49) 0.65 (0.49)* 

Heart Rate (BPM) 71.86 (12.85) 78.25 (10.40) 73.31 (13.43) 73.66 (11.43) 

Physical Function 88.43 (13.40) 93.51 (11.56) 84.51 (22.81) 86.23 (15.70) 

Heavy Snoring 0.33 (0.48) 0.42 (0.51) 0.39 (0.50) 0.48 (0.51) 
Note. Standard errors in parentheses 
* Indicates significant difference in health measure between mothers and non-mothers at 5% level 
 


