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TOWLE, VERNON LEO. The Binocular Interaction of Size and 
Orientation Channels: Evoked Potentials and Observer 
Sensitivity. (1978) 
Directed by: Dr. M. Russell Harter. Pp. 83. 

The interaction between spatial frequency and 

orientation feature processing was investigated in the human 

visual system. The psychophysical (d') and visual evoked 

potential (VEP) responses to test gratings flashed to one 

eye were investigated as a function of the nature of a 

continuously presented suppressing grating viewed either 

ipsiocularly or contraocularly. The test and suppressing 

gratings were varied both in bar width (91 vs. 36') and 

orientation (vertical vs. horizontal). 

The specificity of the suppression of the monocular 

VEPs depended on the latency measured. Early latencies 

(100-125 msec) were suppressed only when the flashed and 

continuous gratings were the same orientation. Intermediate 

latencies (200-250 msec) were suppressed when the gratings 

were the same size or orientation. Late latencies (275-380 

msec) were suppressed only when the two gratings were the 

same size and orientation. The reduction in observer 

sensitivity (d1) paralleled the changes found in the late 

VEP measures. These effects were evident under both the 

intraocular and interocular suppressing conditions. 

The results were interpreted as supporting both 

sequential and parallel feature processing in human visual 

cortex with orientation being encoded before spatial 

frequency. 
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CHAPTER I 

INTRODUCTION 

During the last few years researchers have made 

significant advances in determining how the human visual 

system extracts pattern information from the environment. 

Most theoretical formulations have postulated that this is 

accomplished by a hierarchy of parallel feature detectors 

which signals the presence of features in the visual image 

to higher mechanisms, which then synthesize this information 

into visual percepts (e.g., Neisser, 1966; Selfridge, 

1959). Those detectors which respond to the same features 

can be thought of as comprising an information-processing 

channel. Appropriately, many visual neurophysiologists have 

attempted to define exactly which aspects of visual patterns 

serve as features and have sought to determine the charac­

teristics of the alleged feature detectors and channels. 

Evidence now indicates that these feature detectors 

may be single neurons, because cells in the cortices of infra-

human mammals have been shown to respond selectively to 

certain patterns of stimulation. In order to effectively 

drive most cortical neurons, such stimulus characteristics 

as the location, speed, shape, size, and orientation of 

patterns have to be optimized. Cells at all levels of the 

hierarchy responsive to a given size or orientation in a 
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visual pattern can be thought of as comprising the channel 

through which that aspect of the stimulus is processed. 

If the visual system is conceived of as being com­

prised of information channels, a number of questions arise 

as to how they might be organized. For example, is informa­

tion about the size of a stimulus extracted before information 

about orientation? Are these two features processed 

serially or in parallel? How selective are channels tuned 

to various sizes or orientations? To what degree does the 

activity in a given size channel affect processing in 

another size or orientation channel? 

Most experiments in this area have manipulated only 

one feature at a time to measure channel characteristics, 

and have demonstrated that two channels processing different 

values of the same type of feature interact only if the 

values are fairly close to each other. For example, the 

presence of a line of a given orientation might affect cells 

processing a line of a slightly different orientation but 

not one that was very different in orientation. Little 

research has been directed, however, to the question of 
4 

how activity in a channel processing one feature varies as 

a function of activity in channels tuned to another feature— 

that is, the independence of various kinds of channels. Are 

the cells which are activated by narrow horizontal lines 

also activated by both wide horizontal lines and narrow 

vertical lines? The experiment to be described was designed 
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to answer some of these questions. By examining how patterns 

of various sizes and orientations interact with each other, 

using psychophysical and evoked potential, techniques, it is 

possible to determine the degree to which size and orienta­

tion channels are independent, as well as the relative 

salience of these two visual features. The experiment was 

designed to determine whether size and orientation channels 

are organized in a serial or parallel manner and to what 

degree they act independently. 

The review of the related single unit, psychophysical, 

and evoked potential literature is organized as follows: 

The selectivity of cortical visual neurons for pattern size 

and orientation will first be described. The anatomical 

organization of these cells in cortex as a function of their 

size and orientation preferences will then be described, 

along with the implications this has in terms of information 

channels. Psychophysical experiments which have examined 

the bandwidths of size and orientation channels and their 

interactions will then be described. Finally, evoked 

potential studies which have addressed the issue of neural 

information channels will be reviewed. 

Single Unit Studies of Feature Selectivity 

The systemic properties related to orientation and 

spatial frequency (size) are most likely a function of 

channel characteristics, which are ultimately determined by 
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the stimulus specificity of the cortical cells comprising 

the channels. The first experiments to be described there­

fore deal with the orientation and spatial frequency 

selectivity of single cortical neurons. 

Orientation selectivity of single cortical cells. 

Hubel and Wiesel (1959, 1962) first demonstrated that cells 

in the visual cortex of cats showed selectivity for the 

orientation of bar or edge stimuli that fell in their 

receptive fields. While they did not try to quantify this 

selectivity, they noted that as a bar was moved away from 

its optimal orientation its ability to stimulate the cell 

markedly decreased. They proposed a model (Hubel & Wiesel, 

1962) in which a number of lateral geniculate nucleus (LGN) 

cells whose concentric center-surround receptive fields 

were in a row in the visual field might synapse on a single 

cortical cell, thus generating orientation selectivity in 

the cortical cell. 

A more quantitative empirical analysis of orientation 

selectivity was performed by Campbell, Cleland, Cooper, 

and Enroth-Cugell (1968), who measured the angular selecti­

vity of cortical cells in the cat using drifting square 

gratings. They found that their measure of responsiveness 

(the time required for the cell to generate 500 spikes) 

decreased linearly as the grating was moved progressively 

away from the cell's optimal orientation. The half-amplitude 

half-bandwidth of this orientation selectivity varied 
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considerably between cells, but most cells generated a 

value between 14-26°. They did not differentiate between 

simple and complex cells as Rose and Blakemore (1974) 

and Nelson, Kato, and Bishop (1977) subsequently did, who 

found the angular selectivity of complex cells to be less 

than that of simple cells. The latter authors found a weak 

and incomplete inhibition of the response to one eye when the 

orientation of the stimulus presented to the other eye 

was considerably discrepant. The significance of this 

finding will be more evident when the inter-ocular suppres­

sion observed in evoked potential studies is described. 

Using computer-driven stimuli of various orienta­

tions, Schiller, Finlay, and Volman (1976a) have extensively 

examined the orientation tuning of simple (S-type) and 

complex (CX-type) cells in monkey cortex. Like Rose and 

Blakemore (1974) and Nelson, Kato, and Bishop (1977), 

they found that orientation tuning was greater for S-type 

cells than for CX-type cells. The orientation preference and 

selectivity of cells was similar for both eyes, regardless 

of the ocular dominance classification of the cell, 

implying to them that orientation selectivity is generated 

by "intracortical circuitry," rather than being due to 

the nature of the input from the LGN, as hypothesized by 

Hubel and Wiesel (1962). They suggested that these proper­

ties could be generated by the geometry of the apical 

dendritic tree of cortical cells. If the apical dendrite 
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bifurcated and spread horizontally in two directions in 

cortex, a stimulus whose orientation caused it to fall 

into these two inhibitory fields would not produce as large 

a response as one whose orientation caused it to fall between 

the two fields. The same mechanism would work (but at an 

orthogonal orientation) if the dendritic trees had an 

excitatory effect instead of an inhibitory effect on the 

cell. 

Spatial frequency selectivity of single cortical cells. 

While cortical cells are very broadly tuned to the width 

of single bars, they are much more narrowly tuned to 

gratings of different spatial frequencies. Campbell, 

Cooper, and Enroth-Cugell (1969) recorded the responses of 

single units in the LGN and visual cortex of the cat to 

moving sine- and square-wave gratings of different spatial 

frequencies. All cells showed an inverted U-shaped response 

function or contrast threshold function whose high spatial 

frequency side decreased exponentially. While their measure 

of central tuning (where the function dropped one log unit) 

for cortical cells ranged from .18 to 1.6 c/deg, they did 

not determine the average bandwidth of tuning for individual 

cells. They did conclude, however, that this arrangement 

would support a model based on spatial frequency channels. 

Maffei and Fiorentini (1973) performed a similar 

analysis on ganglion, LGN, and cortical cells in the cat. 

The peak responsiveness of their 28 simple cells ranged from 
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.2 to 3 c/deg—values similar to those found by Campbell, 

Cooper, and Enroth-Cugell (1969). Additionally, cells were 

almost unresponsive to frequencies more than one octave 

away from their center frequency. Complex cells were more 

broadly tuned to lower spatial frequencies (.25 to .7 

c/deg). 

Interesting results were found by Schiller, Finlay, 

and Volman (1976b), who attempted to determine the mechanisms 

of spatial frequency specificity of monkey visual cortical 
* 

cells with computer-presented bars and sine- and square-wave 

gratings. They found that while most cells showed spatial 

frequency selectivity to sine gratings, they showed little 

selectivity for the width of bars or square-wave gratings, 

probably due to the fact that sharp edges are extremely 

potent stimuli and override the spatial frequency aspects 

of the stimulus. According to them, spatial frequency 

analysis may only be functionally important in analyzing 

stimuli in the visual field which are out of focus. 

In summary, empirical investigations of the proper­

ties of single units in the visual cortex of the cat and 

monkey have shown that cortical cells, especially simple 

ones, tend to be selective to the orientation and spatial 

frequency of patterns. This arrangement is commensurate 

with models of visual organization which postulate the 

existence of channels selective to specific orientations 

and/or spatial frequencies. The anatomical arrangement 
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of cells in visual cortex also supports such an interpre­

tation, as the two studies described below will illustrate. 

Functional Organization of Cortical Cells 

It turns out that cortical cells are not randomly 

spaced in relation to their orientation and spatial fre­

quency tuning. Hubel and Wiesel (197*0 have examined how 

cells of different orientations are functionally organized 

in monkey cortex. They found that cells that lay above 

or below each other in cortex tended to have the same 

orientation preference, but that this preference gradually 

shifted as their microelectrode was moved tangentially 

across cortex. They concluded that monkey cortex is 

organized into orientation "sheets" or "columns" approximately 

25-50 y thick, which shift 180° across approximately 

.5-1 mm of cortex (a "hypercolumn"), comparable to the width 

of ocular dominance columns. This type of organization 

would simplify cortical wiring and could easily mediate 

the inhibition between orientation channels which has been 

postulated on the basis of psychophysical data from humans. 

In a more recent study, Maffei and Piorentini (1977) 

have shown that cortical cells are also organized in terms 

of their spatial frequency preference. Using mapping tech­

niques similar to those used by Hubel and VJiesel (197*0, 

they found that penetrations perpendicular to the surface 

of cortex revealed cells tuned to a wide range of spatial 

frequencies and that a cell's center frequency was a function 
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of its depth in cortex. Cells in layers II and III were 

generally tuned to intermediate spatial frequencies, while 

those in layer IV were generally tuned to higher ones and 

those of layers V and VI were the lowest. Tangential 

penetrations across orientation columns, on the other hand, 

revealed cells having similar preferred spatial frequencies 

and acuities. This spatial arrangement of cells in visual 

cortex is shown in Figure 1. With this arrangement each 

orientation column can analyze a range of spatial frequen­

cies and each spatial frequency layer can analyze a range 

of orientations. Each matrix of cells serves as a cortical 

unit which completely analyzes a given location of the visual 

field in terms of orientation and spatial frequency. This 

would be an efficient anatomical organization if information 

was processed in terms of orientation and spatial frequency 

channels; each would have its own anatomical location in 

cortex. 

Psychophysical Studies of Channel Characteristics 

Systemic data from psychophysical and evoked poten­

tial studies also support the channel hypothesis, as 

revealed in experiments which have ascertained the characteris­

tics of individual channels. Two paradigms have been used 

in psychophysical studies to isolate channels of a given 

size or orientation: adaptation and masking paradigms. 

Both of these paradigms have involved intraocular and 

interocular processes, which have indicated that the effects 

seem to be cortically generated. 
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Figure 1. Sketch of a coronal section of the cat striate 
cortex describing the 'possible arrangement of 
receptive fields according to their preferred 
stimulus size and orientation. ' The rectangles 
in each row have the same width (to indicate a 
constant preferred stimulus period) and the 
rectangles in each column have parallel sides 
(to indicate a constant preferred stimulus 
orientation). (Photographed from Maffei 8c 
Fiorentini, 1977, their Figure 12.) 



Orientation channels. The estimate of orientation 

channel bandwidth obtained by researchers seems to be a 

function of the paradigm which is employed. Kulikowski, 

Abadi, and King-Smith (1973) compared the results of three 

different psychophysical procedures and found that the 

narrowest half-amplitude half-bandwidth estimates were 

obtained with subthreshold summation techniques (3°); 

broader bandwidths were generated from adaptation proce­

dures (7°); and still broader estimates were found with 

masking procedures (12°). They suggested that interchannel 

inhibition may account for the broad tuning generated by 

masking techniques, but that this inhibition is not acti­

vated by subthreshold procedures. They concluded that 

estimates from subthreshold summation techniques most closely 

approximate the actual bandwidth of the detectors. 

Using a psychophysical masking paradigm, Campbell 

and Kulikowski (1966) examined the robustness of the tuning 

of human orientation channels. They found that the contrast 

threshold of a sinusoidal grating was a function of the 

orientation of a masking grating that they superimposed on 

top of it. The contrast threshold decreased exponentially 

as the angle between the gratings increased, regardless of 

the phase coherence, contrast of the masking grating, or 

focus. This paradigm does not produce the interocular 

rivalry seen at small angles when the gratings are presented 

to the two eyes separately (Campbell & Maffei, 1970). 
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Although the orientation bandwidth of the masking effect 

did not change as a function of the above variables, the 

magnitude of the effect did change—poor phase coherence 

reduced the effect more than the other manipulations. For 

similarly oriented gratings (at high contrasts), the change 

in threshold of the test grating was as much as 1.5 log 

units. 

Campbell and Kulikowski (1966) also found that if the 

test grating was presented at an oblique orientation 

(45°), the half-amplitude half-bandwidth of the effect 

increased from 12° to 15°; defocusing the vertical series 

indicated that this was not due to reduced acuity for 

oblique gratings. Interestingly, Rose and Blakemore 

(197^), who carefully measured the orientation tuning of 

cortical cells in the cat, found that simple cells were also 

significantly more broadly tuned if their orientation 

preferences were oblique rather than horizontal or vertical. 

Abadi (1976) has used a dichoptic viewing situation to 

psychophysical^ determine the orientation and spatial 

frequency specificity of the human visual system using a 

masking paradigm. Subjects were required to increase the 

contrast of a sinusoidal grating presented to one eye until 

rivalry was generated with another grating presented to the 

other eye. He examined the way in which the rivalry thresh­

old changed as a function of the orientation and spatial 

frequency of the two patterns. Orientation had its 
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half-amplitude half-bandwidth at around 19°. He interpreted 

the U-shaped curve as a function of the difference in 

orientation between the patterns presented to the two eyes 

as indicating inhibition between cells in nearby orientation 

columns. 

Other psychophysical studies have generated data 

consistent with the concept of orientation channels using 

various psychophysical techniques. Some spatial after­

effects and optical illusions can be explained in terms of 

adaptation of orientation channels (Coltheart, 1971; 

Sutherland, 1961). As will be seen below, many of the 

techniques used to study orientation channels have also been 

used to study size or spatial frequency channels. 

Spatial frequency channels. Many studies have 

obtained results commensurate with the hypothesis of spatial 

frequency channels, but only a few will be described here. 

The discussion of whether these should be called size 

channels or spatial frequency channels will not be entered, 

since for the most part the implications are the same for 

both types of model. The terms will therefore be used 

interchangeably. Campbell and Robson (1968) examined the 

contrast sensitivity of different types of gratings over a 

wide range of spatial frequencies. They attempted to 

demonstrate that the visual system analyzes patterns in 

terms of Fourier analysis. They found that the visual system 

is maximally sensitive to spatial frequencies around 
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4 c/deg, and that the sensitivity to a grating is determined 

by whether or not its fundamental frequency is above thresh­

old. For example, square waves (which are comprised of a 

sum of the odd harmonics of the fundamental spatial fre­

quency) are not detected as square-wave gratings until the 

third harmonic is above threshold. They proposed a model 

of visual system functioning based on independent detectors, 

each tuned to a different spatial frequency, which are 

preceded by filters that are about an octave wide. These 

detectors must feed into synthesis mechanisms that are 

binocular in nature, because Maffei and Piorentini (1972) 

presented sine-wave gratings of different spatial frequen­

cies to the two eyes and the subjects perceived pattern 

configurations that would be predicted by Fourier analysis. 

For example, when they presented a sine grating to one 

eye and its third harmonic to the other eye, the subject's 

perception was that of a square grating, as Campbell and 

Robson (1968) found using a dioptic viewing paradigm. 

Blakemore and Campbell (1969) performed similar 

experiments but used an adaptation paradigm. After adapta­

tion to a given spatial frequency, the threshold was raised 

as much as five times. Although the procedure did not work 

for spatial frequencies below 1.3 c/deg, the half-amplitude 

half-bandwidth of this change in threshold was about one 

octave (slightly less above 14 c/deg). 
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An interesting study reported by Blakemore, Nachmias 

and Sutton (1970) reveals how closely spatial frequency 

detectors may be related to perception. They found that 

after adapting to a given spatial frequency, nearby spatial 

frequencies seemed to be shifted away from the adapting 

spatial frequency. However, no distortion was seen for the 

adapting frequency nor those greater than two octaves away. 

The effect was also found to be orientation specific and 

transferred interocularly. These results imply that our 

perception of a grating is based on the activity in an 

array of medium-tuned spatial frequency detectors. Adapting 

to a given spatial frequency causes a decrease in the output 

of nearby detectors. When presented with a grating which 

normally activates some of these detectors, the peak of the 

distribution of activity is shifted away from the adapted 

spatial frequency detectors, causing a similar shift in 

perception. 

Orientation and spatial frequency interactions. 

Relatively few studies have taken the next logical step and 

examined interactions between spatial frequency and orienta­

tion channels. Parker (1972) tested whether the tilt 

after-effect was spatial frequency specific. He found no 

difference in the magnitude of the effect when the adapting 

and test stimuli were one octave apart in spatial frequency, 

and noted that this does not fit the predictions that would 

be made from the orientation and spatial frequency 
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characteristics of single units—which would predict a 

decrement in the effect for different spatial frequencies. 

According to Parker, the effect could be mediated by a set 

of neurons that are selective to orientation but not spatial 

frequency. The failure to demonstrate spatial frequency 

specificity for the tilt aftereffect suggests that orienta­

tion might be processed before spatial frequency is pro­

cessed, as suggested by Campbell and Maffei (1971). On 

the other hand, Georgeson (1973) has demonstrated spatial 

frequency specificity for a simultaneous tilt illusion which 

does not rely on adaptation. The mechanisms generating 

these two illusions are probably, therefore, quite different. 

Parker's finding that grating size is not important 

in an orientation illusion and the noncomplementary finding 

reported by Blakemore, Nachmias, and Sutton (1970) and Abadi 

(1976) that orientation is important in size illusions 

suggests a serial information-processing model. These 

findings would be expected if orientation is processed 

before size. The predictions of various models of size and 

information processing will be discussed when the rationale 

for the proposed study is explained. 

Before examining the evoked potential literature on 

this topic, it is interesting to speculate at what level 

in the visual system the adaptation described by these 

authors takes place. Maffei, Piorentini, and Bisti (1973) 

have examined the neural correlates of the adaptation to 
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gratings in cats. They sampled 101 single units from visual 

cortex and recorded the effects of a one-minute adaptation 

period to a drifting grating of the optimal size and orien­

tation for each cell. Simple cells showed a decreased 

firing rate for about 30 seconds after the adapting stimulus 

was terminated. Complex cells either adapted for only up 

to 15 seconds or did not adapt at all. They concluded that 

the adaptation which Blakemore and Campbell (1969) described 

was cortically generated because (1) geniculate fibers 

adapted for 2-3 seconds at most, and (2) the effect trans­

ferred interocularly. Adaptation to gratings is therefore 

probably mediated by simple cells. 

Evoked Potential Studies of Channel Characteristics 

A parallel literature using evoked potentials instead 

of psychophysical thresholds as the dependent measure to 

isolate the characteristics of individual channels has also 

evolved. For example, Campbell and Maffei (1970) demon­

strated orientation channel specificity with evoked poten­

tials using an adaptation procedure. They recorded VEPs 

to a low contrast reversing sine grating (12 c/deg) with 

a vertical orientation after adapting to high contrast 

gratings of various orientations for one minute. The 

adaptation caused virtually no decrease in VEP amplitude 

if the adapting grating was 15-20° or greater away from the 

vertical test grating. They performed the analogous 
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experiment adapting to a variety of spatial frequencies 

before testing and found the spatial frequency effect to be 

about an octave wide. 

A variety of techniques can be used to demonstrate 

channel specificity using visual evoked potentials. For 

example, using pattern reversal evoked potentials, Campbell 

and Maffei (1970) measured the selectivity of spatial 

frequencies in the upper, middle, and lower thirds of a 

display. The regression coefficient of the evoked potential 

contrast-amplitude function was 2.6 times that of a single 

spatial frequency presented in the same visual area. They 

interpreted the increased amplitude as resulting from the 

algebraic summation of activity from three different spatial 

frequency channels. This interpretation assumes that a 

spatial frequency channel is not localized to a particular 

area of the visual field, since they are seen to summate 

even though the three patterns are presented to different 

areas of the visual field. This is at variance with the 

model proposed by Maffei and Piorentini (1977) described 

earlier, in which each portion of cortex responds to a 

localized area in the visual field. 

Mecacci and Spinelli (1976) also examined the effects 

of adaptation to a specific spatial frequency on the 

amplitude of evoked potentials generated by a sinusoidal 

grating reversing at 8 Hz. After adapting to a 4 c/deg 

grating for 15 minutes, the evoked potential size-amplitude 
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function (which peaked at 4 c/deg in the unadapted state) 

showed a dip about two octaves wide in the region of the 

adapting stimulus. They also examined the parameters of 

the time course of adaptation of the evoked potential and 

corresponding contrast threshold increment. They found 

that in order to demonstrate stable adaptation effects they 

had to adapt subjects for about 15 minutes. The succeeding 

adaptation effects lasted for about five minutes. The 

bandwidth of adaptation was the same whether they adapted 

for 15 minutes or 60 minutes. However, whereas the evoked 

potential showed some adaptation for about 10-20 minutes 

until it completely recovered, the contrast threshold 

remained elevated for as long as two hours. At the peak 

of the function, adaptation caused an 80-90% reduction in 

the amplitude of the VEP. 

Interocular summation and suppression. Under normal 

circumstances information from the two eyes summates in 

visual cortex, resulting in higher acuity and contrast 

sensitivity under binocular as compared to monocular view­

ing conditions (Blake & Levinson, 1977; Campbell & Green, 

1965). However, since information must be time-locked to 

the averaging process if it is to contribute to the averaged 

evoked potential, a continuously presented pattern will not 

add to the neural activity generated by an identical pattern 

flashed to the other eye. For example, Harter, Seiple, and 

Salmon (1973) found that the information from the two eyes 
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summated, creating larger evoked potentials when both eyes 

were simultaneously flashed with the same pattern, as 

compared to when both eyes viewed the patterns but only one 

eye was flashed. If only one eye is flashed and the other 

eye is allowed to view the same pattern (but is not flashed), 

the evoked potential is suppressed, compared to when the 

nonflashed eye views diffuse light (Harter, Towle, & 

Musso, 1976; Harter, Towle, Zakrzewski, & Moyer, 1977) 

or darkness (Harter, Conder, & Towle, submitted for 

publication). Since the information processed by the 

nonflashed eye is not time-locked to the averaging process, 

it does not directly contribute to the evoked potential. It 

indirectly reduces evoked potential amplitude, apparently by 

saturating binocular neurons that would normally respond 

to the flashed pattern viewed by the other eye. For 

example, Spekreijse, Van der Tweel, and Regan (1972) found 

that presenting a high contrast, constantly illuminated 

checkerboard to one eye suppressed the response to an 

appearing-disappearing checkerboard presented to the other 

eye. However, if the continuous checkerboard was presented 

as a stabilized retinal image and was no longer visible, 

the interocular suppression effect disappeared. 

Binocular summation and suppression has been used to 

demonstrate channel specificity, as described below. Camp­

bell and Maffei (1970) obtained pattern reversal evoked 

potentials from a vertical sinusoidal grating presented to 
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the left eye and a horizontal grating presented to the right 

eye. When each eye was stimulated individually, the two 

contrast-amplitude functions had identical slopes. However, 

when evoked potentials were recorded from both patterns 

reversing simultaneously, the resulting contrast-amplitude 

function had twice the slope, implying that the two gratings 

were each stimulating different cortical neurons, the 

responses of which were summating in the evoked potential. 

This technique is more in line with the model of cortex 

presented in Figure 1 than was their prior technique of 

dividing the visual field into thirds. They also attempted 

to demonstrate the selectivity of these orientation channels 

by slowly decreasing the difference in orientation between 

the gratings presented to the two eyes and observing the 

decrease in evoked potential amplitude as the gratings 

presented to the two eyes approached the same orientation. 

They found, unfortunately, that rivalry interfered at small 

differences in orientation, and were forced to demonstrate 

channel specificity using an adaptation paradigm. 

In this situation, flashed patterns have a distinct 

advantage over constant luminance modes of stimulation: 

the brief nature of the flash does not allow enough time 

for rivalry to develop. Harter, Conder, and Towle (sub­

mitted for publication) were able to use a variation of this 

paradigm to demonstrate orientation channel specificity. 

By continuously presenting gratings of various orientations 
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to one eye they found that the evoked potential from a 

grating flashed to the other eye was gradually suppressed 

at 110 msec latency as the orientation of the two gratings 

became more similar (see Figure 2). They interpreted this 

as indicating that the binocular orientation channel common 

to the two eyes was saturated by the continuous grating, 

causing the evoked potential to the grating flashed to 

the other eye to be suppressed. The half-amplitude, 

half-bandwidth of the suppression was about 22°. 

Harter, Towle, and Musso (1976) have used VEPs to 

demonstrate the existence of size-specific binocular 

channels in the visual system of humans using the same 

technique. They probed one size channel by flashing a 

checkerboard of a given size to one eye and then saturated 

different size channels by continuously presenting various 

sized checkerboards to the other eye. As the channel that 

was saturated became closer to the probe stimuli (12' or 

35' checks) the amplitude of the VEP 160 msec after the 

flash was reduced (see Figure 3). The bandwidth of the 

suppression was on the order of an octave in this study. 

Both the study dealing with orientation and the 

study dealing with size yielded results commensurate with a 

channel hypotheses. Notwithstanding, there were differences 

in how the two variables manifested themselves in the evoked 

potential. The peak effect for size was at a latency of 

160 msec while the peak effect for orientation was at 110 
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Changes in monocular VEP amplitude as a function 
of the check size flashed to the left eye, 
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interocular effect due to the check size con­
tinuously viewed by the opposite (right) eye. 
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polarity and latency at which the amplitude 
measures were taken. . . Each plotted point 
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replications. (Photographed from Harter, Towle, 
& Musso, 1976, their Figure 4.) 
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msec. Does this imply that orientation is processed before 

size in the visual system? Furthermore, the effects due to 

size were much greater than the effects due to orientation 

(cf. Figures 2 and 3). Does this mean that size is a more 

potent variable than orientation? It is difficult to 

interpret differences in the results of these two studies 

because they differed in a number of aspects. The orienta­

tion study used gratings, while the size study used checker­

boards. There were also differences in luminance between 

the two studies. Is the fact that the size effect was 

stronger than the orientation effect perhaps due to the 

higher luminance of the suppressing checkerboards (35 mL) 

than the suppressing gratings (12 mL)? A subsequent 

study from this laboratory (Harter, Towle, Zakrzewski, & 

Moyer, 1977) demonstrated that interocular suppression was a 

function of both the luminance of the suppressing stimulus 

and the binocularity of the subject. The differences between 

the size and orientation effects in these two studies 

need to be examined under conditions in which both size and 

orientation are manipulated under identical stimulus condi­

tions within the same subjects. 

Summary 

In summary, the converging lines of evidence from 

single unit, evoked potential, and psychophysical experi­

ments indicate that both the spatial frequency and orientation 
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of visual patterns are important features to which the visual 

system responds. Much effort has been devoted to determin­

ing how selectively the visual system responds to these 

variables at both the cellular and systemic levels. 

Although channels selectively responding to size and 

orientation have been isolated in a number of experiments, 

the independence of these channels has not been clarified. 

Can the spatial frequency of a stimulus be changed without 

affecting processing taking place in cells tuned to a 

different orientation? Does the activity of different 

channels manifest itself in different components of the 

VEP? Are manipulations of spatial frequency more powerful 

than manipulations of orientation? It is to these questions 

that the following experiment is addressed. 
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CHAPTER II 

METHOD 

Subjects 

Five males and one female (ages 14-50) volunteered 

to serve as subjects in the experiment. All six subjects 

had visual acuities correctable to 20/20 or better, 

stereoacuities better than twenty sec of arc as measured 

with a Bausch-Lomb Ortho-rater, and no detected astigmatism 

(except MRH, who had a slight amount in the vertical plane). 

Three of the six subjects had served in previous experiments 

in this laboratory, two of which (MRH and VLT) were aware 

of the experimental hypotheses under investigation. 

Visual Stimulation 

The visual patterns used in this experiment were 

black and white square-wave gratings photographically 

reproduced on transparency film (contrast = .9). Two sizes 

of gratings were presented at vertical and horizontal 

orientations, one with 9' bars (3.3 c/deg) and another with 

36' bars (.83 c/deg). These sizes were chosen because they 

were four octaves apart in terms of their fundamental 

spatial frequencies and, therefore, activated different size 

channels. Likewise, the 90° difference in orientation was 

sufficient to activate different orientation channels. 
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Independent stimulation of each eye was obtained by 

means of a haploscope (see Figure 4). Monocular evoked 

potentials were obtained by flashing either 9' vertical or 

36' horizontal square-wave gratings (7° dia. field) to the 

right eye. Plashed patterns were back-illuminated with a 

10 ysec light flash generated by a Grass Model PS-2 Photo-

stimulator. Plashes occurred once every 750 msec and were 

2 log units above psychophysical threshold (as measured with 

neutral density filters). 

The flashed gratings were superimposed on continuously 

illuminated 8° x 10° stimuli viewed by both eyes. These 

continuous stimuli were either a 91 vertical (9V), 361 

vertical (36V), 9' horizontal (9H), 36' horizontal (36H) 

grating, or a diffuse field. All stimuli were of equal 

space-average luminance (4 ± 1 mL).^ There were two viewing 

conditions in this experiment: the intraocular suppression 

condition where both the flashed gratings and the continuously 

presented (non-flashed) gratings were viewed by the same 

(right) eye, while the left eye continuously viewed diffuse 

light; and the interocular suppression condition where 

^"To compensate for the 50% reduction in light flux 
due to the beam splitter in the right half of the haploscope, 
either a checkerboard or 9' grating was placed behind the 
diffusing screen in the left eye. It was later discovered 
that the luminance transmittance of these two patterns 
was not exactly the same. When the grating was positioned 
behind the diffusing screen, the display was about 1 mL 
brighter than when the checkerboard was in position. The 
net effect was to make the continuous grating slightly 
brighter when it was being viewed by the left eye. 
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Figure M. Experimental apparatus used to present stimuli. 
(Subjects dichoptically viewed suppressing 
stimuli (S), a grating for one eye and a diffuse 
field of equal luminance for the other, illumi­
nated by a continuous incandescent light source 
(C) behind a diffusing screen (D). A beam 
splitter (BS) caused flashed stimuli (P) from 
the random access stimulator (M) to appear 
superimposed on continuous stimuli (S) viewed by 
the right, eye. Subjects viewed the stimuli 
through +1 D spherical lenses, 8 A prisms, 
and 1 mm artificial pupils from- a distance of 
53 cm.) 
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the flashed and continuous gratings were viewed by the right 

and left eye respectively, while the right eye continuously 

viewed diffuse light. The ambient illumination of the 

subject cubicle was 1 mL. The subjects viewed the display 

through 1 mm artificial pupils, +1 D spherical lenses, and 

8AD prisms (base out) from a distance of 53 cm. 

Procedure 

The data collection for each subject was divided into 

two phases. In an initial two-hour session the subject 

became familiar with the laboratory situation, the labora­

tory recording procedures, and the reaction time (RT) 

task. In addition, the visual characteristics of the subject 

were ascertained and some preliminary control data were 

collected. VEPs were obtained to each of the two flashed 

gratings while the subject simultaneously viewed (1) an 

identical grating with the nonflashed eye (interocular 

suppression), (2) an identical grating with the flashed eye 

(intraocular suppression), and (3) diffuse light with both 

eyes (no suppression). Control conditions also were 

investigated to insure the relative phase of the flashed 

and nonflashed grating under the intraocular viewing 

condition would not account for the suppression effects. 

The second phase of data collection, the main part 

of the experiment, consisted of the subjects*receiving 

four one-hour replications (on separate days) of the 16 main 
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experimental conditions (four continuous gratings x two 

flashed gratings x two viewing conditions) in a completely 

counterbalanced Latin square design. The continuous gratings 

were changed after a block of 32 flashed gratings (taking 

about 45 seconds). After all four continuous gratings had 

been viewed in this manner, they were again viewed in the 

reverse order. A response to a total of 64 flashed gratings 

was obtained under each continuous grating condition. After 

a five-minute rest period the procedure was repeated for 

the other flashed grating and viewing condition. Subjects 

initiated the train of flashes at the beginning of each 

condition and could stop them if they needed to blink or 

rest their eyes. 

Psychophysical Task 

Randomly interspersed among the 64 flashed gratings 

were 64 flashes of diffuse light of equal space-average 

luminance. The subject's task was to perform a finger-lift 

reaction time (RT) response to the patterned flashes but 

not to the diffuse flashes. If the subject didn't respond 

by 375 msec after the flash, feedback was given in the form 

of a "click" 25 msec later via a speaker in the ceiling 

of the subject cubicle. The detectability of the flashed 

grating, as a function of the intraocular and interocular 

suppression effects of the continuous grating, was calculated 

from the subject's "hits" and "false alarms" using signal 

detection theory. Evoked potentials were not obtained to the 

diffuse flashes. 
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Visual Evoked Potentials 

Recording procedures were identical to those of 

previous studies from this laboratory (Harter, Towle, & 

Musso, 1976; Harter, Towle, Zakrzewski, & Moyer, 1977). 

Evoked cortical potentials from the two gratings flashed to 

the right eye were recorded monopolarly by means of a 9 mm 

Grass gold-cup scalp electrode placed 2.5 cm above the inion 

on the midline (0Z) referenced to the right earlobe (A2). 

Electroencephalograms were amplified with a Grass Model 

7WC Polygraph with 1/2 amplitude high and low frequency 

filters set at 35 and 1 Hz respectively. BRS/LVE solid-state 

equipment was used to randomize the order of the diffuse 

flash and flashed grating and trigger a Pabritek 1062 

signal-averaging computer. EEGs were monitored for move­

ment and other artifacts on an oscilloscope. The subject 

was situated in an electrically shielded, partially 

soundproofed cubicle into which a sufficient level of white 

noise was piped to mask extraneous equipment noises. 

Statistical Analyses 

The ANOVA program from the UCLA Biomedical statistical 

package (BMD-08V) was used to analyze the psychophysical 

and evoked potential data (Dixon, 1973). A fixed effect 

2x2x4x4 repeated measures analysis of variance 

(flashed gratings x viewing conditions x continuous gratings 

x replications) with subjects used as a random error term 
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was chosen as most appropriate for the design used. When 

a significant effect was found which involved the continuous 

gratings, a Newman-Keuls multiple range test was used to 

determine which treatment means were significantly different 

(Weiner, 1965). The factor analysis program from this 

package (BMD-08M) was used to obtain the principal factors 

and factor scores. 
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CHAPTER III 

RESULTS 

Psychophysical Data 

The detectability (d1) of the 9V and 36H flashed grat­

ings under each of the four intraocular and interocular 

suppression conditions was calculated using signal detec­

tion theory (Green & Swets, 1966) from the percentage of 

"hits" and "false alarms." The data were summed across 

the four replications of each condition before the d's were 

calculated (n = 512). The average observer sensitivity 

for the six subjects combined is shown in Figure 5, all 

subjects having shown the same general effect. Since the 

differences between the intraocular and interocular sup­

pression conditions did not approach statistical signifi­

cance, the data were averaged across these conditions. The 

9V flashed grating was harder to detect than the 36H 

grating (Fp(l, 5) = 14.5, £ < .025). More importantly, 

the effects of the continuous suppressing grating reflected 

a pattern-specific interaction with the flashed gratings 

(PpC(3, 15) = 69.2, £ < .01). Newman-Keuls multiple range 

tests applied separately to the 9V and 36H flashed gratings 

revealed that when the flashed and continuous (suppressing) 

gratings were identical in size and orientation, the 

detectability of the flashed gratings was significantly 
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lower than under the other suppression conditions (see 

Figure 5). The implications of this pattern of results in 

terms of information processing models will be discussed 

later (see Discussion). 

Visual Evoked Potentials 

The X-Y plots of the data from the four replications 

of each experimental condition were traced onto graph paper 

in such a way that the average voltage of the first 50 

msec of the waveform from each replication was superimposed. 

All amplitude measurements were made by hand relative to this 

baseline. The VEPs in Figure 6, which depicts all of the 

data from two of the six subjects, are representative of 

the VEP waveform of all subjects. The most consistent and 

recognizable deflection was a negative peak between 

125-195 msec (N150) which was identifiable in each VEP 

waveform of all subjects. It was followed by a relatively 

long duration positive deflection which had either a single 

peak (MRH, Figure 7), or, more frequently, took the form 

of a "w-shaped" complex with two positive peaks (see Figure 

6). These two positive peaks ranged in latency from 

200-250 msec and 280-380 msec for P2 30 and P3?0 respectively. 

The amplitudes and latencies of these two peaks were 

measured using 50 msec windows. Since P32"0 was not easily 

identifiable under all conditions, its window was from 

280-380 msec, the exact latency being defined by the 
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greatest amplitude positive peak (negative-to-positive and 

positive-to-negative deflection) in all the VEPs for each 

subject. 

Since evidence has been offered indicating that the 

peaks of raw VEP waveforms may not be the most appropriate 

VEP measure of information processing (Harter & Salmon, 

1972; Donchin & Heffley, in press), additional measures were 

obtained based on the changes in VEP waveform due to the 

experimental manipulations. A second measurement technique 

was used in which changes in amplitude at fixed latencies 

were quantified. The specific latencies were chosen by 

subtracting the VEPs obtained from one continuous grating 

condition from those obtained in another condition (Harter 

& Salmon, 1972). The peaks of the resulting "difference 

potentials" indicated the points in time at which the VEP 

waveforms were most affected by changes in the continuous 

gratings (see Figure 7). Any deviations from a straight 

line in these difference potentials indicated the effect of 

changing the size, orientation, or size and orientation 

of the continuous gratings. These difference potentials 

reflect "functional components" in the VEP. On the basis 

of the latency of the peaks in the difference potentials 

for each subject, and latencies measured in previous 

experiments (Harter, Conder, & Towle-, submitted for publica­

tion; Harter, Towle, & Musso, 1976; Harter, Towle, 

Zakrzewski, & Moyer, 1977), VEP amplitude was measured from 
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baseline at 75, 100, 125, 275, and 425 msec. Careful 

inspection of Figure 7 reveals that the points which differ 

most in amplitude between experimental conditions (peaks 

in the difference potentials) do not necessarily correspond 

to peaks in the raw waveforms. 

Principal Component Analysis 

In order to determine whether the suppression of 

VEPs evident in Figures 5 and 6 was reflecting a single 

underlying process or a number of separate processes, a 

principal component (factor) analysis of the 11 VEP parame­

ters was performed. This procedure groups variables into 

orthogonal components on the basis of their covariance. 

The components generated by this procedure represent 

independent sources of variation in the data and are one 

rationale for identifying the different neural processes 

which underlie the VEP. 

The first step in this kind of analysis is to . 

normalize all of the data and create a correlation matrix 

of the variables. The result of this first step is shown 

in Table 1, which gives the average amplitude and latency 

of the 11 measures, along with their standard deviations. 

The correlation matrix for the 11 parameters is shown in 

Table 2. A number of characteristics of VEPs in general 

are evident in this matrix. Points that were close to each 

other on the waveform and were of the same polarity tended 
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Table 1 

Means and Standard Deviations of 11 VEP Parameters 

Amplitude (uV) Latency (msec) 

VEP Measure X S.D. X S.D. 

75 msec .21 1.54 75* 0* 

100 msec -.20 2.20 100* 0* 

125 msec -2.79 2.58 125* 0* 

nT5U -7.16 6.12 151 9.25 

P7W 6.16 3.76 230 15.49 

275 msec 4.24 3.47- 275* 0* 

PITS' 5.10 2.74 320 22.49 

425 msec -1.39 3.78 425* 0* 

*by definition 



Table 2 

Correlation Matrix for 11 YEP Parameters* 

Amplitude Latency 

75 100 125 N150 P230 275 P320 425 N150 P230 P320 

75  1 .00*  

f l l  100  . 37  1 .00  
Us 
tJ 
3  125  . 19  . 69  1 .00  
-P 
•H _ i  N150  . 44  . 53  1 .00  • 

n 
% P230  - . 41  - . 41  - . 35  1 .00  
< 

275  - . 29  - . 34  - . 42  . 71  1 .00  

P320  - . 39  . 42  . 71  •
 

O
 

o
 

4 25  . 36  . 25  . 54  - . 32  - . 33  - . 22  1 .00  
>> o  N150  . 24  . 44  - . 17  
c  a)  xs P230  - . 14  . 24  - . 15  
<d P320  . 28  . 25  . 64  - . 54  - . 62  - . 50  . 51  

1.00 

.14 1.00 

1.00 

Correlations below .10 are not statistically significant and have been omitted 

for the sake of clarity. 
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to be correlated. The amplitudes of the measures at 100 

and 125 msec and N150 were all positively correlated, as 

were P230, P320, and the measure at 275 msec. Interestingly, 

the amplitude and latency of N150 and P230 were not signifi­

cantly correlated, as has been observed previously (Bennett, 

Macdonald, Drance, & Uenoyama, 1971), but the amplitude and 

latency of P320 was correlated (r = -.50). That the 

processes underlying the two early peaks in the VEP waveform 

are relatively fixed in time is implied by their small 

standard deviations relative to that of P320. On the other 

hand, the processes signified by P320, which has been 

associated with the time required to make a decision 

regarding the nature of the stimulus (Kutas, McCarthy, & 

Donchin, 1977) had a greater standard deviation. Fixed 

latency measures, therefore, appear more appropriate for 

the early components, while variable latency measures 

appear more appropriate for the later components of the 

evoked potential. 

The "grand mean" waveform constructed from the means 

in Table 1 is shown in Figure 8 (top). The loadings of the 

eight amplitude measures on the two largest principal 

components of variation identified by a factor analysis are 

shown in Figure 8 (bottom). The three principal components 

(varimax rotation) were respectively associated with (1) 

the positive portion of the waveform between 200-400 

msec, (2) the surface negative shift between 100-125 msec, 
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and (3) the latency of the peaks at 150 and 230 msec. 

These three components are identified by the shaded areas 

in the grand mean waveform and accounted for 65$ of the total 

variance of the 11 VEP parameters. As will be seen below, 

measures associated with the same component tended to be 

correlated and reacted in the same manner to the experimental 

manipulations. Measures associated with different principal 

components were poorly correlated and responded in different 

manners to the experimental manipulations. 

The numerical loading of each VEP parameter on each 

of the three factors is given in Table 3. These loadings 

were used to compute a "factor score" for each of the 384 

observations of each factor. When the factor scores for 

each condition were submitted to analysis of variance, the 

experimental manipulations which were associated with each • 

factor were identified. Factor I, which accounted for 3&% 

of the total variance of the 11 VEP parameters, and which 

loaded most heavily on the late positive portion of the 

waveform between 200-400 msec, showed a pattern-specific 

interaction (Fpc(3, 15) = 34.9, £ < .01) similar to that 

found for P230, P320, and 275 msec (discussed below). A 

Newman-Keuls multiple range test revealed, as can be seen 

in Figure 9, that the condition in which the flashed and 

continuous patterns were identical in both size and orienta­

tion was different from the others. 
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Table 3 

Loadings of the 11 VEP Parameters on the Three Factors 

After Varimax Rotation 

Parameter Factor I Factor II Factor III 

75 msec .20 .54 .02 

100 msec -.22 .85 -.04 

125 msec -.30 .81 .11 

275 msec .88 -.10 .04 

425 msec -.40 .38 -.55 

N150 amp -.58 .42 -.38 

P2 30 amp .76 -.27 -.19 

P320 amp .82 .22 .04 

N150 latency -.13 .40 . 65 

P230 latency .05 .00 .62 

P320 latency -.77 .15 -.28 
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Factor II, on the other hand loaded most heavily 

on the early amplitude measures (75, 100, 125 msec) and 

accounted for 16% of the total variance. The significant 

pattern-specific interaction exhibited by this factor 

(Pfc(3, 15) = 4.83, £ < .025) differed from that seen for 

Factor I, in that there was a significant difference when 

the flashed and continuous gratings shared the same orienta­

tion, compared to when they were of different orientations, 

regardless of size (see Figure 9). As will be seen later, 

the differences between the interactions for Factor I and II 

suggest different information processing models. 

The third factor identified by the analysis accounted 

for only 11% of the total variance, only 2% more than the 

variance due to each measure by itself. The analysis of 

variance of the factor scores for this factor revealed 

that it was sensitive to whether the viewing condition 

was inter- or intraocular (Fv(l, 5) = 26.9, £ < .01). The 

latency of N150 and P230 loaded most heavily on this factor 

(see Table 3). 

Analysis of Pattern-Specific Interactions 

Separate ANOVAs performed on each of the 11 VEP 

measures revealed a number of statistically significant 

effects due to the relationship between the flashed and 

continuous gratings, the viewing conditions, and replica­

tions (see Table 4). The interaction effects between the 



Table 4 

Summary of the Significance Levels of the Pattern-Specific Interactions 

of the 11 VEP Parameters (df = 3, 15) 

Interaction Effect 

VEP 

Measure 

Viewing Condition 
x flashed x 
continuous 

Plashed x 
continuous 

Flashed x 
continuous 

(intraocular) 

Flashed x 
continuous 

(interocular) 

F p < 

Amplitude 

75 msec 2.20 (ns) < 1 (ns) (na) (na) (na) (na) 

100 msec 2.65 .05 (na) (na) 9.19 .01 3.55 .05 

125 msec 9.04 .01 (na) (na) 21.01 .01 1.69 (ns) 

Nl50 3.9^ .05 (na) (na) 3.81 .05 3.02 (ns) 

P230 2.48 (ns) 30.51 .01 (na) (na) (na) (na) 

275 msec 2.29 (ns) 27.80 .01 (na) (na) (na) (na) 

P320 4.58 .025 (na) (na) 3.53 .05 3.22 (ns) 

425 msec 1.10 (ns) 5.18 .025 (na) (na) (na) (na) 

itency 

NT5TT 3.67 .05 (na) (na) 8.72 .01 1.97 (ns) 

P21RT 1.65 (ns) 1.73 (ns) (na) (na) (na) (na) 

P320 < 1 (ns) 15.02 .01 (na) (na) (na) (na) 
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flashed and continuous gratings on measures of the VEP 

at different latencies after the flash will now be described. 

Amplitude between 75-150 msec. The 75, 100, and 125 

msec amplitude measures and the amplitude of N150 all 

reacted in a similar manner to the pattern manipulations. 

These amplitude measures were sensitive to the relative 

orientation of the flashed and continuous gratings, but not 

to the relative size of the gratings. Newman-Keuls multiple 

range tests performed separately on VEPs to the two flashed 

gratings revealed that when the flashed and continuous 

gratings were of the same orientation the amplitude of these 

measures was less negative than when the flashed and con­

tinuous gratings were of different orientations (see Figure 

10). The relative size of the two gratings had no statis­

tically significant effect on VEP amplitude at these 

latencies. The effect of relative grating orientation on 

the VEP was stronger in the intraocular viewing conditions 

than in the interocular viewing conditions, as can be seen by 

comparing the changes in amplitude depicted in Figure 10 

with their corresponding probability levels shown in Table 

4. While none of the effects reached statistical significance 

for the 75 msec measure, the preceding factor analysis 

revealed that this measure responded to the experimental 

manipulations in a similar manner to these other 

measures. The pattern of suppression reflected by the 75, 



FLASHED GRATING 

9V 

100msec 

36H 

B 1  

I25msec 

NI50 

r -  I  

r o 
r I 

. . N i l  

•ill II 

L~ 

E H  

L f t  
9 36 9 36 
V V H H 

9 36 9 36 
V V H H 

INTRAOCULAR 

9V 36H 

-5 

- 2  

O J 

-10 
] 

•  - 8  

- "7 -
-  - 6  

- -5 
% } i- 0 -J 

M i l  I l l i  

•111 Bill 
9 36 9 36 
V V H H 

9 36 9 36 
V V H H 

INTEROCULAR 

Figure 10. 

CONTINUOUS GRATING 

Early VEP measures. (Average VEP amplitude (yV) at 100, 125 msec and 
N150 as a function of flashed grating, continuous grating, and viewing 
condition. Data have been averaged across 4 replications and 6 
subjects (n = 1,536). See Figure 5 for explanation of grating 
abbreviations.) V_n 



52 

100, 125, and N150 measures is the same as that of Factor II 

of the principal component analysis (see Figure 9). 

P230 amplitude. The large positive peak between 

200-250 msec (P230) showed the largest changes in voltage 

as a result of changes in the continuous grating as well 

as reaching the highest level of statistical significance. 

These changes are seen as large deflections in the difference 

potentials at about this latency (see Figure 7). The pattern-

specific interaction observed for this measure was different 

than that of the earlier measures in that changing the 

size, as well as the orientation, of the continuous grating 

had an effect on VEP amplitude (see Figure 11). P230 was 

smaller (less positive) when the flashed and continuous 

gratings.were the same orientation or the same size. In 

further contrast to the earlier measures, there were no 

statistically significant differences in this interaction 

between the intraocular and interocular viewing conditions. 

Amplitude between 275-380 msec. The pattern-specific 

interactions at 275 msec and for P320 were different from 

those found for the earlier measures. Compared to the other 

suppressing conditions, the amplitudes of these measures 

were significantly less positive only when both the size 

and orientation of the flashed and continuous gratings were 

the same. Changes in the amplitude of these two measures 

were most similar to changes in observer sensitivity 

(see Figure 11) and Factor I (see Figure 9). Separate 

analyses of the intraocular and interocular viewing conditions • 
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for P320 reached statistical significance for the intra­

ocular viewing condition only (see Table 4). 

Amplitude at 425 msec. The amplitude of the VEP 

at 425 msec showed a pattern-specific interaction that 

resembled the one observed for P230, but was of the opposite 

polarity. It became progressively more positive as the 

flashed and continuous gratings were made the same orienta­

tion, size, and then size and orientation, respectively 

(see Figure 11). 

Pattern-specific latency changes. The latency of 

N150 varied as a function of the relationship between the 

flashed and continuous gratings under the intraocular viewing 

condition (FpC(3, 15) = 8.72, p < .01). It peaked signifi­

cantly later when both the flashed and continuous patterns 

were 91 vertical gratings as compared to the other suppress­

ing conditions (see Figure 12). P320 increased in latency 

under both viewing conditions when the continuous and flashed 

gratings were identical (PpC(3, 15) = 15.02, p < .01). 

Summary of Changes Over Time 

The pattern-specific interactions resulting from 

changes in the suppressing gratings gradually increased 

and then decreased in strength as a function of the latency 

at which VEP amplitude was measured. The F ratios for the 

five successive fixed-latency measures of VEP amplitude 

gradually increased until 275 msec and then declined. 
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Furthermore, the relative contributions of size and orienta­

tion effects to the interactions varied differentially over 

time (see Figure 13). Overall, changing the orientation 

of the continuous gratings from different to the same as 

the flashed gratings had a greater suppression effect on VEP 

amplitude than did the comparable effect due to changing 

the size of the continuous gratings. Orientation suppres­

sion had its maximum effect between 100-125 msec, and then 

gradually decreased until 320 msec. Changes in the size 

of the continuous grating were beginning to affect VEP 

amplitude at 125 msec, but had their strongest effect at 

230 msec. At 320 msec only changing both the size and 

orientation of the continuous grating to match the con­

tinuous grating affected VEP amplitude. At 425 msec 

changes in the size or orientation alone were again observed 

to influence VEP amplitude (see Figure 13). 

Additional Findings 

The analyses of each VEP parameter also revealed a 

number of effects that were not due to the relationship 

between the flashed and continuous gratings. N150 showed 

a gradual monotonic decrease in latency of 5 msec across 

the four replications (FR(3, 15) - 5.06, £ < .025). The 

latency of N150 also differed under the two viewing condi­

tions. On the average, Nlt)0 peaked 3 msec earlier under 

the intraocular viewing conditions than it did under the 

interocular viewing conditions (Fy(l, 5) = 9.29, £< .05). 
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The latency of P230 was also shorter In the intraocular 

viewing conditions, except when the subjects continuously 

viewed the 9V grating (Fvc(3, 15) = 7.35, £ < .01). A 

similar interaction was found for the amplitude at 275 

msec, which tended to be more positive in the interocular 

viewing conditions, except when the 9V grating was continu­

ously being viewed (FyC(3, 15) = 7.10, £ < .01). There was 

also an Interaction between the flashed grating, continuous 

grating, viewing condition, and replication at 100 msec 

(FVPCRC9, 45) = 2.15, £ < .05) and 125 msec (FVFCRC9, 45) = 

4.92, £ < .01). 

Summary 

In summary, the VEPs in this experiment seem to 

reflect at least three underlying processes, or components: 

The largest one (Factor I) was related to the late positive 

portion of the waveform (230-320 msec) and was sensitive 

to the condition in which the flashed and continuous gratings 

were identical. A second component (Factor II) was asso­

ciated with the early negative portion of the waveform 

(75-125 msec) and was sensitive to the relative orientation 

of the gratings. A third component (Factor III) was 

primarily associated with the latency of the two major peaks 

in the waveform (Ni50 and P230) and was sensitive to the 

viewing condition. 
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CHAPTER IV 

DISCUSSION 

The data indicate that the monocular evoked potential 

elicited by flashing a grating to one eye is influenced 

by the nature of a grating that is being continuously 

viewed either by the same or opposite eye. In this experi­

ment both the relative size and orientation of the flashed 

and continuous gratings influenced VEP amplitude. The 

suppression effects due to the relative size and orienta­

tion of the flashed and continuous gratings varied as a 

function of the latency of the evoked potential at which 

the effect was measured. These changes in the VEP will be 

discussed in terms of the possible organization of the 

neural channels that process size and orientation informa­

tion in the human visual system. 

VEP Suppression 

The changes in VEPs observed in this experiment are 

interpreted as being due to the suppression of information 

processing in monocular and binocular information channels. 

When tie flashed grating was identical to the continuous 

grating, the components which have previously been demon­

strated to reflect pattern information processing exhibited 

amplitudes characteristic to those of VEPs elicited by 
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diffuse flashes. The amplitude at about 100 msec, for 

example, has been found to be negative in response to 

flashed patterns and positive in response to diffuse 

flashes (Harter & White, 1968, 1970; Heitveld, Tordior, 

Hagenouw, Lubbers, & Spoor, 1967; Towle & Harter, 1977). 

At about 200 msec the situation is reversed. More positive 

amplitudes indicate pattern processing and less positive 

or negative amplitudes at this latency indicate a reduction 

of pattern in the flash. When the flashed and continuous 

patterns were different in both size and orientation 

these two pattern components were not suppressed (N100 

was negative and P200 was positive). When the flashed and 

continuous patterns were the same size and orientation, 

however, these two pattern components were suppressed 

(i.e., N100 was pushed positive and P200 was pushed negative). 

Further support for the interpretation of these 

changes in amplitude as indicating suppression of pattern 

processing is found in psychophysical data. In the present 

experiment, the detectability of the flashed gratings was 

poorest when they were identical to the continuous gratings 

in size and orientation. Also, the negative peak at 150 

msec peaked later under these two conditions, a finding 

which is usually associated with less salient stimuli 

(Kulikowski, 19 77). 
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Size and Orientation Channels and the VEP 

The suppression observed here is interpreted in the 

same manner as in previous studies where the flashed and 

continuous gratings were assumed to be processed in either 

the same size channel (Harter, Towle, & Musso, 1976) or 

the same orientation channel (Harter, Conder, & Towle, 

submitted for publication). The reductions in observer 

sensitivity and the suppression of pattern components of 

the VEP imply that information processing in binocular 

information channels was being suppressed. When the visual 

system was processing the 9V continuous grating and the 

9V grating was also flashed, the information from the two 

eyes was presumably processed by the same binocular neurons, 

and the response to the relatively weak flash was partially 

"occluded" or suppressed, because these neurons were already 

processing the continuous grating. On the other hand, if 

the two gratings differed in both size and orientation, 

as when the 36H grating was being continuously viewed and 

the 9V grating was flashed, the two gratings were processed 

in different size and orientation channels, and the neurons 

comprising the 9V channel were free to process the flashed 

grating. At every latency of the VEP measured (except 

75 msec) there was suppression when identical gratings were 

being processed, relative to when the two gratings differed 

in both size and orientation. Different results were 
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obtained at various latencies, however, when the two gratings 

differed in size or orientation only. 

The size-specific suppression obtained in this study 

was generally similar to that that has been obtained in a 

previous study by Harter, Towle, and Musso (1976). In 

that experiment, suppression was first evident between 120 

and 160 msec, was greatest at about 160 msec, and then 

disappeared by 210 msec. In the present data size-specific 

suppression was first evident between 125-150 msec and was 

greatest at 230 msec. This 70 msec difference in the latency 

of the maximum effect might be due to the different stimuli 

used in the two experiments (checks vs. gratings) or to the 

fact that the flashed eye was in darkness during the inter-

flash interval in the previous study. A more likely 

explanation is the difference in relative luminance of the 

flashed and continuous gratings in the two studies. The 

suppressing checkerboards were 35 mL and the flashed checker­

boards were only 1.5 log units above threshold in the 

previous study, while the suppressing gratings were only 

5 mL and the flashed gratings were 2 log units above threshold 

in this study. The relative luminance of the flashed and 

continuous patterns has been shown to influence inter-

ocular suppression of VEPs in a similar study by Harter, 

Towle, Zakrzewski, and Moyer (1977). They obtained 

size-specific suppression for the negative peak between 

150-250 msec. Size-specific suppression was indicated 
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by a reduction in the amplitude of the negative peak in 

both that experiment and a previous experiment (Harter, 

Towle, & Musso, 1976). It was not evident until 230 msec 

in the present experiment, and was expressed by a reduction 

in the amplitude of a positive, rather than negative, peak 

in the raw waveforms. 

In a study by Harter, Gonder, and Towle (submitted 

for publication) orientation-specific suppression was found 

to be most prominent at 110 msec and, to a lesser degree, 

at 200 msec after the flash. This was partially replicated 

in the present experiment, where the maximum orientation-

specific suppression (a positive shift) was found at 

100-125 msec. However, the suppression at 230 msec in 

the present study was of the opposite polarity. 

The reason for the differences in suppression for 

the later measures in the four experiments is probably the 

nature of the behavioral tasks that were required of the 

subjects. Harter, Conder, and Towle (submitted for publica­

tion) only required their subjects to count the flashes. 

Harter, Towle, and Musso (1976) and Harter, Towle, 

Zakrzewski, and Moyer (1977) required their subjects to 

respond to every flash with a finger-lift response. In 

the present experiment the subjects were required to make 

a psychophysical judgment concerning the nature of each 

flash and give a "go no-go" finger-lift response within 

375 msec after the flash. Accordingly, the waveforms in 
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these experiments were quite different at later latencies. 

It seems that the effect of the task in the present study 

was to mask the effects of suppression at later latencies, 

as compared to the earlier studies. 

The factor analysis of all 11 VEP parameters revealed 

that there were components associated with two kinds of 

pattern-specific interactions. One, associated with the 

early measures of VEP amplitude (Factor II), indicated 

that the relative orientation of the two gratings was the 

primary feature that determined suppression. If the 

patterns were processed in the same orientation channel, 

the VEP to the flashed grating was suppressed, regardless 

of the relative size of the two gratings. The other 

component, associated with the later measures of the VEP 

(Factor I), indicated suppression only when the two gratings 

were identical. These two types of pattern-specific 

suppression are predicted by different information-processing 

models, as discussed below. 

Information-Processing Models 

Channels processing size and orientation information 

may be organized in a variety of ways. Figure 14 shows 

four basic models: two involving only parallel processing 

and two with hierarchical schemes. Different patterns of 

suppression are predicted from these four models (right 

portion of Figure 14). In the interest of parsimony it will 

be assumed here that channels are completely selective to 
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their feature and that the processing of a continuous 

grating by a channel completely occludes (100$ suppression) 

processing of a flashed grating by that channel. 

Model A in Figure 14 is a completely parallel 

processing model in which each channel is tuned to a 

specific size and orientation. Since the channels are 

completely independent, each channel would process a separate 

grating in this experiment. This model has many of the 

characteristics of the template models of pattern recogni­

tion described by Neisser (1966). In this scheme of 

information processing only an identical grating would 

suppress a flashed grating. This was the pattern of sup­

pression that was observed for Factor I, which was associated 

with the late positive portion of the VEP (cf. Figure 9). 

As will be discussed in the next section, interpretations 

not based on neural channels also predict this pattern of 

suppression for the late positive portion of the VEP 

waveform. 

Model B (Figure 14) is a hierarchical model in which 

first the orientation of the grating is encoded and then 

its size, as has been suggested by Campbell and Maffei 

(1971). Here, gratings of different sizes would initially 

be processed in the same channel. The response to a 9V 

grating, for example, would be suppressed by both a 9V 

and 36V grating. This pattern of suppression was exhibited 

by Factor II, which was associated with the early negative 

portion of the VEP waveform (cf. Figures 8 and 9). 



67 

In Model C size channels precede orientation channels. 

The opposite pattern of suppression would be predicted: 

continuous gratings of the same size as the flashed grating 

would be suppressed. This pattern of suppression was not 

observed in this experiment. 

The model of information processing depicted in 

part D of Figure 14 is a parallel model, but in this case 

the channels are specific to a single feature, rather than 

to both features of the gratings. Each grating would be 

processed through two channels, one processing its size and 

another processing its orientation. A given orientation 

channel would process gratings of all sizes and a given 

size channel would process gratings of all orientations. 

In this model the response to a flashed grating would be 

partially suppressed by a continuous grating of the same 

size or orientation. The pattern of suppression exhibited 

by P230 resembled the pattern predicted by this model when 

the 9V grating was flashed. 

Unfortunately, the strict application of Models 

B, D, and A to 75-150 msec, P230, and 275-320 msec, 

respectively leads to some logical inconsistencies unless 

additional assumptions are made. For example, if size-

specific suppression is absent during the first stage of 

processing—all gratings of the same orientation initially 

being suppressed—how do their VEPs recover at later 

stages of processing? Namely, how would the response to a 
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9V grating recover after it had been suppressed at an early 

latency by a 36V grating? This could only happen if 

additional parallel channels which do not contribute to the 

evoked potential carry the "suppressed" information. A 

more parsimonious interpretation of the pattern-specific 

interaction evidenced by the late positive portion of the 

waveform, and one that does not have to deal with temporary 

suppression of the evoked potential is that the late 

portion of the waveform is being influenced by the behavioral 

task, as described below. 

P300 and Task Variables 

The psychophysical data indicated that the flashed 

gratings were most difficult to discriminate from diffuse 

flashes when the flashed and continuous gratings were the 

same. Similarly, the late VEP measures, especially 

P320, were smaller in amplitude and peaked later in time 

in these conditions. This replicates many studies which 

have found that P300 latency increases with the difficulty 

of auditory (Adams & Benson, 1973; Ford, Roth, & Kopell, 

1976; Ritter, Simpson, & Vaughn, 1972; Squires, Hillyard, & 

Lindsay, 1973) and visual (Squires, Donchin, Squires, & 

Grossberg, 1977) discriminations. The increased latency 

of P300 under these conditions most probably reflects the 

increased latency of the decision process (Kutas, McCarthy, 

& Donchin, 1977; Ritter, Simpson, & Vaughn, 1972). 
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Unfortunately, the latency of the reaction time, usually 

considered an indication of processing time, was not 

measured in this experiment. For the reaction time to have 

occurred before 375 msec, the response in the motor cortex 

may be assumed to have occurred 80-100 msec earlier 

(Ritter, Simpson, & Vaughan, 1972). The "decision" to 

respond, therefore, must have occurred before about 295 

msec after the stimulus, at the approximate time of 

P320 onset. 

The decreased amplitude and increased latency of 

P300 obtained under the conditions which were difficult 

to discriminate also may be due to the increased number 

of VEPs associated with misses and false alarms that were 

averaged into the waveform during these conditions. 

Evidence has been offered that misses and false alarms 

are associated with decreased amplitude and increased 

latency of P300 (Hillyard, Squires, Bauer, & Lindsay, 

1971; Parasuramen & Davies, 1975; Squires, Hillyard, & 

Lindsay, 1973; Squires, Squires, & Hillyard, 1975). 

This considerable evidence that indicates P30Q is 

influenced by errors in decision (misses and false alarms) 

and the duration of processing time suggests the changes 

in amplitude and latency of P320 in the present study may 

more appropriately be interpreted within the framework of 

task and cognitive demands than within the framework of 

sensory information channels. 
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Locus of the Experimental Effects 

Since pattern-specific suppression was observed 

in the interocular as well as the intraocular viewing 

conditions, it is reasonable to conclude that the locus 

of the suppression is cortical, rather than retinal 

(Blakemore & Campbell, 1969; Campbell & Maffei, 1971; 

Gilinsky & Doherty, 1969; Harter, Conder, & Towle, submitted 

for publication; Harter, Towle, & Musso, 1976; Harter, 

Towle, Zakrzewski, & Moyer, 1977; Maffei & Piorentini, 1972; 

Ware & Mitchell, 1974). The binocular interaction observed 

in the LGN cells of the cat (Noda, Tamaki, & Iwama, 1972) 

is not orientation specific, and therefore could not have 

mediated the suppression observed here. This, along with 

the evidence that the components of the VEP between 

75-160 msec are generated in striate cortex (Jeffreys & 

Axford, 1972a,b) leads to the conclusion that the suppres­

sion observed in this experiment is mediated by binocular size 

and orientation channels in visual cortex. 

About 80# of the simple cells in cat visual cortex 

are binocular in the sense that they can be driven by either 

eye (Hubel & Wiesel, 1962). In contrast, only about 12$ 

of the simple cells in monkey visual cortex are binocular 

(Schiller, Finlay, & Volman, 1976a), the proportion being 

unknown in humans. The interpretation of the present data 

does not depend on the existence of cells that are binocular 

in the Hubel and Wiesel sense (i.e., cells that can be driven 
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by either eye and therefore fall in ocular dominance cate­

gories 2-6). There are many cells which can only be driven by 

one eye—and are "monocular" in the Hubel and Wiesel sense— 

but whose response can be modified or inhibited by the nature 

of the stimulus presented to the opposite eye (Bishop, 

1970; Nelson, Kato, & Bishop, 1977). This influence is pre­

sumed to be due to indirect, intracortical circuitry, rather 

than being due to a direct input from the opposite eye, as 

Hubel and Wiesel have theorized. It is therefore possible to 

have "monocular neurons" mediating the present suppression 

of the evoked potential. 

There were systematic differences between the 

intraocular and interocular viewing conditions. The 

orientation-specific suppression was stronger when the 

flashed and continuous gratings were presented to the same 

eye, especially between 100-150 msec. Also, N150 peaked 

earlier under the intraocular conditions. This difference 

in latency was most likely related to whether or not the 

flashed eye was undergoing sustained perceptual suppres­

sion when the continuous grating was being viewed by the 

opposite eye (Spekreijse, van der Tweel, & Regan, 1972). 

Cobb, Ettlinger, and Morton (1968) also have reported that 

monocular VEPs were consistently smaller when perceptually 

suppressed, as compared to when unsuppressed, under 

conditions of rivalry. If the flashed eye may be assumed 
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to have been perceptually suppressed between flashes In 

the lnterocular viewing condition, the increased latency 

under the lnterocular viewing conditions may be the result 

of sustained inhibition generated by the continuous pattern 

presented to the opposite eye. 

If, as is the case with other sensory qualities, 

such as color (DeValois, 1965), the nervous system encodes 

a parameter by making a comparison of the activity in 

different channels (Erickson, 1968), the finding that 

orientation-specific suppression precedes size-specific 

suppression in time may be the result of the functional 

organization of size and orientation channels in cortex. 

If the model proposed by Maffei and Piorentini (1977) 

(see Figure 1) is interpreted in terms of channels, and 

the same organization exists in man, an interesting 

possibility arises. Since LGN afferents in the cat are 

known to synapse almost exclusively in layer IV neurons 

in striate cortex, visual information may initially arrive 

in many orientation channels but in only one size channel. 

Activity may then spread to the cells in other layers of 

cortex (and other size channels). Theoretically, this 

type of organization would enable comparisons between 

orientation channels before size channels. 

YEP Measurement Techniques 

Two kinds of amplitude measures were employed in 

the analysis: fixed-latency functional measures and 
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variable-latency peak amplitude measures. Many quantifica­

tion techniques have been used to describe transient 

evoked potential data, including peak-to-peak (Buchsbaum, 

1970), prestimulus baseline-to-waveform (Towle & Harter, 

1977), average voltage-to-waveform (Donchin & Heffley, 

in press), area-under-the-curve (Squires, Hillyard, & 

Lindsay, 1973), and even the total excursion of the wave­

form (Dustman & Beck, 1969) measures. The proliferation of 

VEP measurement techniques (each with its own theoretical 

assumptions) is due, in part, to our lack of a basic under­

standing of the underlying generators which create VEP 

waveforms (Schlag, 1973) and the variable relationship 

observed between the excitability of single cells and 

simultaneously recorded field potentials (Elul, 1972; 

Pox & Norman, 1968). Most researchers believe that VEPs 

are "signs" of neural processing, but are not the actual 

"codes" used by the nervous system (Uttal, 1966). This 

viewpoint has been adopted here. The average waveform 

is thought to be the algebraic summation of many generators, 

following the principles of volume conduction theory 

(Brazier, 19^9). The VEP waveform is therefore not viewed 

here as a unitary phenomenon, and measures which treat it 

as such are bound to confound or miss its more subtle 

changes. The use of multiple, independent measures, in 

conjunction with statistical, functional, and topographical 

methods for isolating the various components in VEP 
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waveforms, has resulted in considerable progress toward 

restricting the time course and locus of processes 

underlying pattern effects in VEPs. 

Unresolved Issues 

One of the issues left unresolved by this experiment 

is the extent to which the early and late latencies of the 

evoked potential reflect stimulus or task manipulations. 

Clearly, the factor analysis of the data demonstrated two 

patterns of suppression which differentiated the early and 

late components of the VEP. If there had not been a psycho­

physical task in the present experiment, size and orientation t 
suppression in the later measures would probably have been 

more similar to the suppression observed in the earlier 

studies (Harter, Conder, & Towle, submitted for publication; 

Harter, Towle, & Musso, 1976; Harter, Towle, Zakrzewskl, & 

Moyer, 1977). Most likely, the pattern of suppression asso­

ciated with Factor I would not have been so predominant if 

the subjects had passively observed the stimuli. The inter­

actions between components related to stimulus and task mani­

pulations (Harter & Previc, in preparation) could be better 

understood if a follow-up study were conducted comparing one 

group of subjects which made a difficult psychophysical judg­

ment about the VEP eliciting stimuli with another group that 

did not. The use of electrodes over the vertex, and perhaps 

over motor cortex would enable a comparison with other 

studies more directly concerned with cognitive variables. 
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A second issue which merits further investigation 

is the differential effects of adaptation on VEP and 

psychophysical measures of pattern sensitivity reported 

by Mecacci and Spinelli (1976). They found that after a 

prolonged adaptation to a high contrast grating their 

steady-state VEPs recovered in amplitude after only a few 

minutes, but that the subject's contrast sensitivity 

thresholds remained elevated for a much longer period of 

time. They suggested that these two measures of systemic 

sensitivity were probably mediated by different neural 

processes. 

There are also differences between simultaneous 

(masking) and successive (adaptation) induction techniques 

which are not yet understood. Adaptation to gratings 

has been shown to result in both contrast threshold 

increases and orientation aftereffects by Gilinski and 

Mayo (1971). Similarly, both threshold increases and 

spatial frequency aftereffects have been reported as a 

result of adaptation by Klein, Stromeyer, and Ganz (197*0* 

The latter authors reported, however, that simultaneous 

induction caused spatial frequency aftereffects but did not 

cause corresponding increases in psychophysical thresholds. 

They concluded that these two phenomena were mediated by 

different neural mechanisms. 
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Conclusion 

Monocular visual evoked potential and psychophysical 

responses to flashed gratings were recorded as a function 

of their relative size and orientation, compared to con­

tinuous gratings viewed by either the flashed or nonflashed 

eye. The psychophysical responses indicated that identical 

gratings were more difficult to detect. The visual evoked 

potential, on the other hand, which has the advantage of 

reflecting the temporal sequence of neural events which 

lead up to the psychophysical response, indicated' that 

first the orientation and then the size of the flashed 

gratings was encoded, and only after both features of the 

gratings had been identified by the nervous system was 

the psychophysical response initiated. 
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