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 Diet-induced obesity (DIO) is linked to several adverse neurobiological and 

behavioral changes, including altered trace element homeostasis, dysregulated 

dopamine biology, increased anxiety, and reduced physical activity.  These DIO-

associated harmful effects on the brain can be influenced by sex and strain.  The studies 

presented in this dissertation address both main effects and interactions between diet, 

sex, and strain on the obesity-induced dysregulation of iron, manganese, copper, and 

zinc status in the brain, dopamine release and clearance, behavior related to physical 

activity, anxiety, motivation, and memory, and mRNA expression of genes related to 

trace element homeostasis, behavior, and neurodegenerative disease.  Male and female 

C57BL/6J (B6J) and DBA/2J (D2J) mice were fed either a low fat diet (LFD) with 10% kcal 

from fat or a high fat diet (HFD) with 60% kcal from fat for 16 weeks.  Our studies 

revealed a heterogeneous effect of DIO on many of the neurobiological variables that 

we evaluated.  For example, in the striatum, iron was significantly elevated in B6J female 

mice but not male mice due to DIO.  Similarly, in the hippocampus, zinc was increased in 

D2J males but deceased in D2J females.  There was also a dramatic induction of divalent 

metal transporter 1, alpha synuclein, and amyloid precursor protein in this brain region 

due to DIO, but only in the B6J males.  Behavior assessments demonstrated that B6J 

male mice fed a HFD were impacted the most through their display of significantly 



reduced locomotion, reduced rate of habituation, lack of motivation, and elevated 

anxiety levels.  Interestingly, these mice also showed a significant upregulation of 

dopamine receptor D2.  Dopamine clearance in the dorsal striatum was significantly 

reduced in both male and female D2J mice due to DIO, while in the nucleus accumbens 

core, reductions in dopamine clearance occurred for male mice of both strains fed HFD.  

Collectively, these data provide evidence for important sex and strain differences on the 

impact of DIO-associated behavior alterations and neurobiology dysregulation.  As the 

incidence of obesity continues to rise worldwide, these findings have key health 

implications related to debilitating behavior disorders and the development of 

neurodegenerative disease that can be triggered by an energy dense diet and a state of 

DIO.



THE INFLUENCE OF SEX AND STRAIN ON NEUROBIOLOGICAL AND BEHAVIORAL 

CHANGES DUE TO DIET-INDUCED OBESITY 

 

by 

Melissa Sardina Totten 

 

A Dissertation Submitted to 
 the Faculty of The Graduate School at 

 The University of North Carolina at Greensboro 
 in Partial Fulfillment 

 of the Requirements for the Degree 
 Doctor of Philosophy 

 

 

Greensboro 
2020 

 

 

Approved by 

 
_______________________________ 
Committee Chair 



ii 
 

APPROVAL PAGE 

 This dissertation written by Melissa Sardina Totten has been approved by the 

following committee of the Faculty of The Graduate School at The University of North 

Carolina at Greensboro. 

 

Committee Chair________________________________________ 

Committee Members________________________________________ 

________________________________________ 

________________________________________ 

 

 

Date of Acceptance by Committee 

Date of Final Oral Examination 

  



iii 
 

ACKNOWLEDGEMENTS 
 
 

During these last four years at UNC Greensboro, I have been very fortunate to 

work alongside several outstanding faculty, staff, graduate students, and undergraduate 

students.  I would like to first thank my research advisor and mentor, Dr. Keith Erikson, 

for his technical wisdom, encouragement, and patience.  I thank him for the opportunity 

to present our research at the Creativity Expo and ASN Nutrition 2019.  I also appreciate 

his trust in my teaching abilities, and for allowing me to teach a portion of Human 

Metabolism for the teaching practicum.  Furthermore, his timely and constructive 

feedback on my dissertation, poster presentations, and manuscript writing was 

invaluable.  I would also like to thank my committee members, Dr. Steven Fordahl, Dr. 

Ron Morrison, and Dr. Zhenquan Jia for their constant support and advice.  Additionally, 

I thank Dr. Deborah Kipp for her mentorship, and for treating me like a trusted colleague 

as we worked together on the Advanced Nutrition course during my teaching 

assistantship.   

Our staff in the nutrition department and animal facility are wonderful.  I am 

grateful for the help I received from Paula Cooney, Mary Martinez, and Sherry Ritter.  I 

also appreciate our building staff, Josephine and Robert, who greeted me with a smile 

and encouraging words every day.   



iv 
 

Outside the nutrition department, I appreciate the statistics advice I received 

from Dr. Devdass Sunnassee and Dr. Jeff Labban.  I am also thankful for the analytical 

troubleshooting assistance from Carl Cook and Dr. He in the chemistry department. 

Working as hard as we do in the lab, it helps to be a part of a great team of 

students.  I enjoyed working with Matthew Pierce, Elizabeth Muller, and Rachel Bondy 

on our “SGBIO” project.  I also enjoyed collaborating with Cherie Barnes and Conner 

Wallace on behavior and dopamine biology evaluations.  Special thanks to Matthew for 

being such a great lab partner, for his help with technology, and for being a trusted 

friend. 

Thank you to my family for supporting me through this process.  My husband, 

Brian, has always encouraged me to accomplish this goal of earning a Ph.D., and without 

him, I could not have gone back to school.  Thanks to my children, Kaylee and 

Mackenzie, for their love, patience, and understanding.  I am grateful for my Mom, who 

flew back and forth from Whitesboro, NY to Greensboro, NC to help watch my kids.  

Thanks to my dog Kobe, for being so happy to see me come home each day, and for 

staying right by my side during nights I stayed up late to get work done.  Finally, thank 

you to my Dad for always encouraging me to set goals and to never stop learning.   

We appreciate our research funding, as this research was supported by the 

University of North Carolina Greensboro Health and Human Sciences Research Grant 

and Faculty First Award.  Thank you, UNC Greensboro. 

  



v 
 

TABLE OF CONTENTS 

Page 

LIST OF TABLES .................................................................................................................... ix 

LIST OF FIGURES ................................................................................................................... x 

LIST OF ABBREVIATIONS IN FIGURE TITLES ........................................................................ xii 

CHAPTER 

 I.  INTRODUCTION .................................................................................................... 1 

 II. LITERATURE REVIEW ............................................................................................. 5 

 Significance ................................................................................................. 5 
 Trace Element Dysregulation in the Brain .................................................. 6 
 DIO Impact on Iron and Gene Expression in the Brain ............................... 7 
 Sex as a Biological Factor ............................................................................ 8 
 Genetics as a Biological Factor .................................................................... 9 
 Combined Sex and Genetic Factors ............................................................ 9 
 Behavior and DIO ...................................................................................... 10 
  DIO and Physical Activity .............................................................. 11 
  DIO and Anxiety ............................................................................ 12 
  DIO and Memory ........................................................................... 14 
  DIO and Dopamine ........................................................................ 15 
  Sex Factors in Murine Behavior .................................................... 16 
 Gene Expression Dysregulation in the Brain ............................................ 17 
  Divalent Metal Transporter 1 ....................................................... 17 
  Iron Regulatory Protein ................................................................. 20 
  Ceruloplasmin ............................................................................... 21 
  Copper Transporter 1 .................................................................... 24 
  Alpha Synuclein ............................................................................. 25 
  Amyloid Precursor Protein ............................................................ 29 
  Brain-Derived Neurotrophic Factor .............................................. 31 
  Tyrosine Hydroxylase .................................................................... 34 
  Dopamine Receptor D2 ................................................................. 36 
 Conclusion ................................................................................................. 38 
 



vi 
 

 III.  THE INFLUENCE OF SEX AND STRAIN ON TRACE ELEMENT  
   DYSREGULATION AND GENE EXPRESSION ALTERATIONS  
   IN THE BRAIN DUE TO DIET-INDUCED OBESITY ............................................. 39 

 
Abstract ..................................................................................................... 39 
Introduction .............................................................................................. 40 
Materials and Methods ............................................................................. 44 
 Animals and Diet ........................................................................... 44 
 Tissue Collection ........................................................................... 45 
 Trace Element Analysis ................................................................. 46 
 RNA Isolation and cDNA Synthesis ............................................... 46 
 Real Time Polymerase Chain Reaction (RT-PCR) .......................... 47 
 Statistical Analysis ......................................................................... 48 
Results ....................................................................................................... 48 
 A HFD Causes Significant Weight Gain in Male and Female 
      B6J and D2J Mice ...................................................................... 48 
 Female Mice Fed a HFD Have Increased Fe in the Striatum ......... 50 
 Midbrain Cu Decreases in D2J Mice Fed a HFD ............................ 51 
 B6J Mice Fed a HFD Have Increased Fe, Mn, Cu, and Zn in  
      the Hippocampus, While D2J Mice Fed a HFD Show  
      Opposite Trends in Zn Alterations ............................................ 52 
 Male B6J Mice Fed a HFD Have Increased Fe and Mn in the 
      Olfactory Bulb ........................................................................... 54 
 The Effect of HFD on Olfactory Bulb Zn Shows Opposite  
      Trends by Strain and Sex .......................................................... 55 
 Body Weight is Correlated to Striatal Fe and Hippocampal  
      Zn in Females ............................................................................ 56 
 D2J Female Mice Fed a HFD Have Increased Expression of  
      Ceruloplasmin in the Striatum ................................................. 57 
 DIO Significantly Impacts Gene Expression in the  
      Hippocampus of B6J Male Mice ............................................... 58 
 DIO Significantly Impacts Gene Expression in the Olfactory  
      Bulb of D2J Male Mice .............................................................. 59 
 Body Weight is Correlated with mRNA Expression of DMT1,  
      Alpha Synuclein, and APP in Female D2J Mice ......................... 61 
Discussion.................................................................................................. 62 
 Effect of HFD on DIO ..................................................................... 63 
 Effect of DIO in Striatum ............................................................... 64 
 Effect of DIO in Midbrain .............................................................. 68 
 Effect of DIO in Hippocampus ....................................................... 70 
 Effect of DIO in Olfactory Bulb ...................................................... 74 



vii 
 

   Conclusion ..................................................................................... 77 
 

 IV.  THE IMPACT OF SEX AND STRAIN ON THE DYSREGULATION  
   OF BEHAVIOR, DOPAMINE BIOLOGY, AND GENE EXPRESSION  
   IN THE BRAIN DUE TO DIET-INDUCED OBESITY ............................................. 79 
 
  Abstract ..................................................................................................... 79 
  Introduction .............................................................................................. 80 
  Materials and Methods ............................................................................. 88 
   Animals and Diet ........................................................................... 88 
   Open Field ..................................................................................... 89 
   Novel Object Recognition ............................................................. 90 
   Nestlet Shredding ......................................................................... 92 
   Tissue Collection ........................................................................... 92 
   RNA Isolation and cDNA Synthesis ............................................... 93 
   Real Time Polymerase Chain Reaction (RT-PCR) .......................... 94 
   Dopamine and Voltammetry ........................................................ 94 
   Statistical Analysis ......................................................................... 95 
  Results ....................................................................................................... 96 
   Mice Fed a HFD Gained a Significant Amount of Weight  
        Compared to Mice Fed a LFD ................................................... 96 
   B6J and D2J Mice Fed a HFD Travel Less Distance in the  
        Open Field ................................................................................ 99 
   B6J and D2J Mice Fed a HFD Have Reduced Velocity in the  
        Open Field .............................................................................. 101 
   Final Body Weight is Correlated to TDT and Velocity for  
        Females Fed a HFD ................................................................. 104 
   Male B6J Mice Fed a HFD Have a Slower Habituation Rate ....... 106 
   Male B6J Mice Fed a HFD Show Higher Anxiety-like  
        Behavior Through Fecal Boli ................................................... 106 
   DIO Did Not Impact Center Entries in the Open Field ................ 107 
   Male B6J Mice Fed a HFD Have Significantly Lower Levels  
        of Nestlet Shredding ............................................................... 107 
   DIO Did Not Impact Memory in NOR .......................................... 108 
   Dopamine Release in the Dorsal Striatum is Increased in  
        B6J Females Fed a HFD ........................................................... 109 
   Dopamine Reuptake in the Dorsal Striatum is Reduced for  
        D2J Mice Fed a HFD ................................................................ 110 
   Dopamine Reuptake in the NAc Core is Reduced for Male  
        Mice Fed a HFD ....................................................................... 110 
     



viii 
 

   In the Striatum, DRD2 Gene Expression was Upregulated 
        in B6J Males Due to DIO and TH Gene Expression was  
        Significantly Higher in the B6J Strain Compared to the  
        D2J Strain ................................................................................ 112 
   In the Hippocampus, Female D2J Mice Express Significantly  
        More BDNF Compared to D2J Males...................................... 113 
   In the Olfactory Bulb, DIO Caused an Upregulation of DRD2  
        and TH Gene Expression in Male D2J Mice and Induced  
        BDNF Gene Expression in Female B6J Mice ........................... 114 
  Discussion................................................................................................ 115 
   Weight Gain ................................................................................ 116 
   DIO and Locomotion ................................................................... 116 
   DIO and Habituation ................................................................... 118 
   DIO and Anxiety-like Behavior .................................................... 120 
   DIO Effect on Motivation and Welfare ....................................... 122 
   DIO and Memory ......................................................................... 123 
   Dopamine Release and Reuptake in the Dorsal Striatum .......... 124 
   Dopamine Release and Reuptake in the NAc Core of the  
        Ventral Striatum ..................................................................... 125 
   Effect of Diet, Sex, and Strain on DRD2 mRNA Expression ......... 127 
   Effect of Diet, Sex, and Strain on TH mRNA Expression ............. 129 
   Effect of Diet, Sex, and Strain on BDNF mRNA Expression ......... 130 
   Conclusion ................................................................................... 132 
 
 V.  EPILOGUE ......................................................................................................... 135

REFERENCES .................................................................................................................... 144 

APPENDIX A.  SUPPLEMENTARY DATA ........................................................................... 181 

APPENDIX B.  BEHAVIOR TESTING .................................................................................. 187  



ix 
 

LIST OF TABLES 

Page 

Table 3.1.  Study Design Based on Stain, Sex, and Diet .................................................... 45 

Table 3.2.  mRNA Transcripts Related to Trace Elements and Neurodegeneration ........ 47 

Table 3.3.  Initial and Final Body Weight .......................................................................... 49 

Table 3.4.  Correlation Between Final Body Weight and Gene Expression ...................... 62 

Table 4.1.  Study Design for Behavior, Gene Expression, and Voltammetry .................... 89 

Table 4.2.  mRNA Transcripts Related to Behavior and Dopamine .................................. 94 

Table 4.3.  Final Body Weight ........................................................................................... 97 

 

  



x 
 

LIST OF FIGURES 

Page 

Figure 3.1.  Weight Gain by Strain .................................................................................... 50 
 
Figure 3.2.  The Effect of HFD on Striatum Fe in B6J and D2J Male and Female  
      Mice ............................................................................................................ 51 

Figure 3.3.  Midbrain Cu and Mn Concentrations in B6J and D2J Mice ........................... 52 

Figure 3.4  Hippocampus Trace Elements......................................................................... 53 

Figure 3.5  Olfactory Bulb Iron and Manganese ............................................................... 54 

Figure 3.6  Olfactory Bulb Zinc Three-Way Interaction .................................................... 55 

Figure 3.7  Final Body Weight and Trace Element Concentration Correlations ............... 56 

Figure 3.8  Gene Expression Related to Trace Element Regulation and ND .................... 60 

Figure 4.1  Weight Gain by Strain and Sex ........................................................................ 98 

Figure 4.2  Total Distance Traveled Sex Effect with Time ............................................... 100 

Figure 4.3  Total Distance Traveled Diet Effect with Time.............................................. 101 

Figure 4.4  Velocity Sex Effect with Time ........................................................................ 102 

Figure 4.5  Velocity Diet Effect with Time ....................................................................... 103 

Figure 4.6  Relationships between Weight and Total Distance Traveled or  
      Velocity ..................................................................................................... 105 

Figure 4.7  DIO Impact on Various Behaviors in B6J and D2J Mice ................................ 108 

Figure 4.8  Novel Object Recognition in Male and Female B6J and D2J Mice................ 109 

Figure 4.9  Dopamine Release and Reuptake in the Striatum ........................................ 111 

Figure 4.10  Striatum DRD2 and TH Gene Expression .................................................... 112 



xi 
 

Figure 4.11  Influence of Sex on BDNF Gene Expression in the Hippocampus .............. 113 

Figure 4.12  DIO Impact on Olfactory Bulb DRD2, TH, and BDNF Gene Expression ....... 115 

 
 
  



xii 
 

LIST OF ABBREVIATIONS IN FIGURE TITLES 
 
 

 HFD = high fat diet 

 B6J = C57BL/6J 

 D2J = DBA/2J 

 Cu = copper 

 Mn = manganese 

 ND = neurodegenerative disease 

 DIO = diet-induced obesity 

 DRD2 = dopamine receptor D2 

 TH = tyrosine hydroxylase 

 BDNF = brain-derived neurotrophic factor 

 

 



1 
 

CHAPTER I 
 

INTRODUCTION 
 
 
 Obesity and overweight prevalence is escalating worldwide, with an estimated 

39% of adults classified as obese or overweight (Chooi et al., 2019).  The adverse effects 

of diet-induced obesity (DIO) have been linked to neurobiological disruptions, including 

altered trace element homeostasis (Han et al., 2019; Liu et al., 2016), dysregulated 

dopamine biology (Leite and Ribeiro, 2019), and gene expression alterations (Gan et al., 

2015; Huang et al., 2005; Wu et al., 2017).  Furthermore, DIO is associated with negative 

behavioral changes such as reduced physical activity (Sanyaolu et al., 2019), increased 

anxiety (Baker et al., 2017), and compromised memory (Davidson et al., 2014).  

Biochemical consequences of obesity include inflammation, oxidative stress, and 

mitochondrial dysfunction, all of which are common pathologies of neurodegenerative 

disease (Mazon et al., 2017).  Increasing evidence implicates obesity as a risk factor for 

two of the most common forms of neurodegenerative disease: Alzheimer’s disease and 

Parkinson’s disease (Martin-Jiménez et al., 2017; Mazon et al., 2017).  As conditions of 

overweight and obesity are increasing in both males and females worldwide, these 

alterations in neurobiology and behavior due to obesity can have serious consequences 

related to declining health, reduced productivity, and increased health care costs 

(Trogdon et al., 2008).   
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Sex and genetics are important biological factors to consider in the study of DIO.  

The inclusion of both males and females in research studies is a key initiative proposed 

by the National Institutes of Health (Clayton, 2018).  Supporting evidence for sex 

differences in response to a high fat diet and a state of DIO can be found in several 

recent human and rodent obesity reports (Bridgewater et al., 2017; Charradi et al., 

2017; Malpetti et al., 2018).  Furthermore, genetic background is an important biological 

variable, as several recent studies indicate that strain or genetic variation can influence 

the effect of DIO on disease risk (Palacios et al., 2011), gene expression (Norris et al., 

2016), and behavior (DeJesus et al., 2016).  These human and animal studies highlight 

the significant influence of sex and genetics on biological alterations and eventual health 

outcomes that can be triggered by DIO. 

Preclinical studies of DIO in rodents have provided a valuable model to elucidate 

the biological impact and health consequences of obesity (Barrett et al., 2016).  

Currently, there are very few rodent studies that address the influence of both sex and 

strain on DIO-associated alterations of neurobiology and behavior.  To address this gap 

in the literature, our study design used male and female C57BL/6J (B6J) and DBA/2J 

(D2J) mice fed either a low fat diet with 10% kcal from fat or a high fat diet with 60% 

kcal from fat for 16 weeks to study the impact of DIO on the brain.  These strains were 

selected based on their frequent use in behavioral neuroscience and prior studies 

exhibiting differential traits (Mozhui et al., 2010).  B6J and D2J mice represent key 

strains in the Mouse Phenome Project Database (Bogue et al., 2018; Grubb et al., 2014) 
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and are used as parental strains in the BXD recombinant inbred strain set for the 

GeneNetwork open source project (Philip et al., 2010).  Furthermore, these strains have 

been validated as appropriate models for DIO (Alexander et al., 2006; Montgomery et 

al., 2013; West et al., 1992). 

Our lab seeks to understand the influence of sex and strain on neurobiological 

and behavioral changes induced by DIO.  Our major study objectives included the 

following: 

1. Identify interaction effects between diet, sex, and strain on trace element 

dysregulation and gene expression due to DIO in specific brain regions.  We 

hypothesized that the influence of sex on DIO would impact the B6J strain more 

than the D2J strain based on a pilot study from our lab, and trace element 

dysregulation would be region-specific based on our previous published studies 

(Han et al., 2019; Liu et al., 2016).  We also hypothesized that DIO would cause 

increases in iron, zinc, and alpha synuclein gene expression in the olfactory bulb, 

as these physiological changes have been implicated in the pathogenesis of 

Parkinson’s disease (Adler and Beach, 2016; Gardner et al., 2017).  To test these 

hypotheses, we evaluated four trace elements (iron, manganese, copper, and 

zinc) and six genes for mRNA expression (divalent metal transporter 1, iron 

regulatory protein 1, ceruloplasmin, copper transporter 1, alpha synuclein, and 

amyloid precursor protein) in the following brain regions: hippocampus, 

midbrain, striatum, and olfactory bulb.  These brain regions were selected based 
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on their importance to trace element neurobiology.  The specific genes 

evaluated in our study were selected based on their role in trace element 

regulation in the brain and their potential connection to neurodegeneration. 

2. Investigate the impact of DIO on behavior change, gene expression, and 

dopamine release and reuptake using male and female B6J and D2J mice as a 

model to examine sex and strain influences.  We hypothesized that DIO would 

have a greater impact on males compared to females, and that D2J mice would 

be more resistant to behavior and neurobiological changes compared to the B6J 

strain based on previous studies (Bridgewater et al., 2017; Gelineau et al., 2017; 

Kulesskaya et al., 2014; Yin et al., 2011).  In this study, mRNA gene expression for 

brain-derived neurotrophic factor, dopamine receptor D2, and tyrosine 

hydroxylase was evaluated in the striatum, hippocampus, and olfactory bulb. 

Dopamine release and reuptake were assessed in the dorsal and ventral 

striatum.  Behavior assessments included the open field test (for locomotion, 

velocity, habituation, and anxiety), nestlet shredding (for motivation, 

compulsivity, and welfare), and novel object recognition (for learning and 

memory). 
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CHAPTER II 
 

LITERATURE REVIEW 
 
 

Significance 

The World Health Organization defines obesity as abnormal or excessive fat 

accumulation that may impair health.  Approximately 13% of the global adult population 

was obese in 2016, and worldwide prevalence of obesity has nearly tripled since 1975 

(“WHO | Obesity”).  In the United States, obesity prevalence since 2016 was 39.8%, 

affecting 93 million adults (Hales et al., 2017).  Biochemical consequences of obesity 

include inflammation, oxidative stress, and mitochondrial dysfunction, all of which are 

common pathologies of neurodegenerative disease (ND) (Mazon et al., 2017).  

Increasing evidence implicates obesity as a risk factor for two of the most common 

forms of ND: Alzheimer’s disease (AD) and Parkinson’s disease (PD) (Martin-Jiménez et 

al., 2017; Mazon et al., 2017).  The risk of developing a ND depends on a combination of 

genetic background and the environment (Brown et al., 2005).  The mechanisms by 

which environmental factors, such as diet-induced obesity (DIO), can lead to ND are not 

fully understood.  Trace element dysregulation and gene expression alterations have 

been associated with various NDs (Hwang et al., 2017; Mezzaroba et al., 2019) and with 

DIO (Han et al., 2019; Huang et al., 2005a; Lee et al., 2010), making it possible that these 

disease states share common mechanisms.  Furthermore, obesity has been linked to 
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various behavioral disorders (Baker et al., 2017; Davidson et al., 2014) and dysregulated 

dopamine metabolism (Leite and Ribeiro, 2019).  As conditions of overweight and 

obesity are increasing in both males and females worldwide, these alterations in 

behavior and biochemistry due to obesity can have serious consequences related to 

declining health, reduced productivity, and increased health care costs (Trogdon et al., 

2008). 

Trace Element Dysregulation in the Brain 

Trace elements iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) are 

essential for numerous physiological processes in humans and animals, such as energy 

production, synaptic transmission, and regulation of oxidative stress (Genoud et al., 

2017; Peres et al., 2016).  These metals participate in a variety of functions, serving as 

redox agents, enzyme cofactors, and stabilizers in protein structure (Genoud et al., 

2017; Mezzaroba et al., 2019).  The dysregulation of one or more of these trace 

elements can disrupt brain homeostasis and normal cellular processes, leading to 

neurodegeneration and disease (Mezzaroba et al., 2019).  For example, Fe, Cu, and Zn 

disruptions in the hippocampus have been associated with AD (Cristóvão et al., 2016; 

Mezzaroba et al., 2019; Sensi et al., 2018).  Fe accumulation and Cu depletion in the 

midbrain have been linked to PD (Belaidi and Bush, 2016; Liddell and White, 2018).  Mn 

deficiency and Fe overload in the brain have been implicated in the development of 

Huntington’s disease (HD) (Bryan and Bowman, 2017; P. Chen et al., 2019; Farina et al., 

2013).  In a study using post-mortem male and female human brain tissue, Fe 
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concentration was 25% higher in PD olfactory bulbs compared to controls (Gardner et 

al., 2017).  Furthermore, in a study using brain tissue from AD patients, Fe and Zn were 

significantly elevated in the olfactory bulb (Samudralwar et al., 1995).  Trace elements 

Fe, Cu, and Mn share some common transporters and enzymes, such as divalent metal 

transporter 1 and ceruloplasmin, allowing their uptake mechanisms to interact 

(Skjørringe et al., 2012; Ye et al., 2017).  Therefore, a disruption in homeostasis of one 

element can impact the other elements, leading to potentially detrimental effects on 

the brain (Herrera et al., 2014; Skjørringe et al., 2012; Ye et al., 2017).   

DIO Impact on Iron and Gene Expression in the Brain 

Recently it has been discovered that DIO can lead to Fe dysregulation and gene 

expression disruption in Fe-rich brain regions (Han et al., 2019; Liu et al., 2016).  In one 

study using male C57BL/6J (B6J) mice fed a high fat diet (HFD) for 20 weeks, DIO 

resulted in significant Fe reductions in the thalamus, increased Fe in the midbrain, and 

no effect on the hippocampus or striatum (Han et al., 2019).  The expression of alpha 

synuclein increased by threefold in the midbrain, and heavy chain ferritin was reduced 

in the hippocampus to almost half the amount of the control.  In another study using 

male B6J mice fed a HFD for 20 weeks, mice with DIO had significantly reduced Fe in the 

striatum, but no change in Fe in the hippocampus, midbrain, or thalamus (Liu et al., 

2016).  Total distance travelled, a measure of locomotion in rodents, was significantly 

reduced for DIO mice.  Additionally, there was a positive correlation between midbrain 

Fe and sleeping time for mice fed a HFD.  A survey of the current scientific literature 
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indicates that there is limited research regarding the effects of DIO on trace element 

status in the brain.  The studies described here provide preliminary evidence for region-

specific Fe dysregulation and gene expression alterations in the brains of male rodents 

fed a HFD, implicating DIO as a potential risk for neurodegeneration and behavior 

impediments. 

Sex as a Biological Factor 

The inclusion of sex as a biological factor in research studies is a key initiative 

proposed by the National Institutes of Health (Clayton, 2018).  Supporting evidence for 

sex differences in response to a HFD can be found in several recent obesity studies.  For 

example, in a study using male and female rats, males fed a HFD were found to be more 

prone to brain oxidative stress and trace element disruptions than females (Charradi et 

al., 2017).  Specifically, there was a reduction in whole brain Mn and an increase in 

plasma Mn for male rats only.  In a DIO study using male and female C57BL/6 (B6) mice, 

males fed a HFD displayed more anxiogenic behavior and had reduced locomotion 

compared to females (Bridgewater et al., 2017).  Another study that examined 

neurodegeneration and brain connectivity in a group of patients with probable AD 

found that the effect of obesity on brain metabolism was more significant in females 

versus males (Malpetti et al., 2018).  Based on research indicating sex differences in 

response to DIO, and in compliance with the NIH initiative, both males and females 

should be included in future DIO studies to evaluate sex as a biological variable.  
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Genetics as a Biological Factor 

Genetic background is another important factor to consider in the study of DIO.  

Despite several studies that support a link between obesity and PD risk, some human 

qualitative studies reveal conflicting results.  For example, obesity was associated with 

PD in both men and women in a Finnish cohort (Hu et al., 2006) and a South Korean 

cohort (Nam et al., 2018), yet no association was found in several large U.S. cohorts 

(Chen et al., 2004; Palacios et al., 2011).  These discrepancies could be attributed to 

genetics when studying diverse populations.  A DIO study using female B6J and DBA/2J 

(D2J) mice revealed distinct trends in gene expression in mice fed a HFD, with B6J mice 

upregulating glutathione peroxidase I and D2J mice downregulating glutathione 

reductase (Norris et al., 2016).  Another study using different strains of male mice, 

including B6J and DBA/2 (D2) strains, found that while all mice became obese when fed 

a HFD, biomarkers for glucose homeostasis differed by strain (Montgomery et al., 2013).  

These human and animal studies highlight the unique responses to DIO based on 

genetics and imply a gene-environment interaction effect that should be further 

explored.   

Combined Sex and Genetic Factors 

The combined influence of sex and genetics on trace element dysregulation and 

gene expression has been described in aging and DIO research.  For example, an aging 

study using male and female B6 and D2J mice found that aged D2J mice had greater 

whole-brain Fe levels compared to B6 mice, and sex differences were significant for D2J 
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mice only (Hahn et al., 2009).  In a systems genetics report, recombinant inbred BXD 

strains derived from B6J and D2J progenitors were fed low Fe diets and evaluated for Fe 

and gene expression changes in the midbrain and striatum (Jellen et al., 2012).  Fe was 

reduced in both brain regions but varied from 0-40% reduction depending on the strain.  

There was a diet by strain interaction in the midbrain, and a three-way interaction 

between diet, strain, and sex in the striatum.  Differences in gene expression between 

males and females can impact susceptibility to disease in a sex-dependent manner 

(Torres-Rojas and Jones, 2018).  For example, the Sry transcript, which regulates the 

enzyme tyrosine hydroxylase, is present in males but not females (Torres-Rojas and 

Jones, 2018).  Environmental exposure to toxins that can downregulate the Sry gene will 

affect males only and could explain the increased risk for PD in males versus females.  

Collectively, these studies provide evidence that DIO or HFD could be considered a 

potential environmental stimulus for neurophysiological dysregulation, and may exert 

its effects in a sex and genetic-dependent manner.  For this reason, the use of male and 

female subjects from different genetic backgrounds or strains should be considered for 

DIO investigations in the brain. 

Behavior and DIO 

Obesity has been linked to various behavioral and biochemical changes, such as 

reduced physical activity (Sanyaolu et al., 2019), increased anxiety (Baker et al., 2017), 

and compromised memory (Davidson et al., 2014).  Furthermore, DIO can lead to gene 

expression alterations in the brain (Gan et al., 2015; Huang et al., 2005a; Wu et al., 
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2017) and dysregulated dopamine metabolism (Leite and Ribeiro, 2019).  A brief review 

of the current literature describing the relationship between obesity and each of these 

categories is provided below. 

DIO and Physical Activity 

Physical activity or mobility can be impacted by a state of obesity in humans and 

rodents.  In humans, obesity has been associated with decreased fine motor control and 

speed (C. Wang et al., 2016), reduced functional mobility in adults (Forhan and Gill, 

2013; Trivedi et al., 2015), and decreased physical activity in children and adolescents 

(Sanyaolu et al., 2019).  In rodents, there are mixed results.  In some studies, B6J and B6 

mice fed a HFD show reduced locomotion due to HFD (Almeida-Suhett et al., 2017; 

Krishna et al., 2016; Tsai et al., 2018; Wu et al., 2018), while other studies show no 

impact of diet on physical activity (Bridgewater et al., 2017; Zilkha et al., 2017).  

Furthermore, there are known sex effects that impact mobility in humans and rodents 

(Rosenfeld, 2017).  In children and adolescents, boys generally show higher physical 

activity levels compared to girls (Rosenfeld, 2017).  On the contrary, female rodents 

tend to have higher activity levels compared to males.  Sex differences in physical 

activity or locomotion in the context of obesity have also been reported.  In a cross-

sectional study in 964 community dwelling older adults, obese women were found to be 

less active than obese men (Gretebeck et al., 2017).  In B6J and B6 mice, male mice fed a 

HFD are frequently reported as having reduced locomotion in an open field (Almeida-

Suhett et al., 2017; Gelineau et al., 2017; Tsai et al., 2018; Wu et al., 2018), while female 
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mice show mixed results, with some having decreased locomotion (Krishna et al., 2016), 

some increased locomotion (Krishna et al., 2015), and others with no effect 

(Bridgewater et al., 2017; Gelineau et al., 2017).  These discrepancies may be due to the 

duration of diet treatment, age of behavioral testing, and diet composition.   

The striatum is a primary regulator of spontaneous physical activity (Rosenfeld, 

2017).  Although the precise mechanisms of how DIO can impact mobility are not clear, 

it is possible that DIO may disrupt the expression of genes such as dopamine receptor 

D2 and tyrosine hydroxylase, which are associated with dopamine and physical activity 

(Gallo, 2019; Jang et al., 2017).  Furthermore, it is possible that DIO may disrupt 

dopamine signaling in the striatum.  A discussion of dopamine and dopamine-related 

genes is discussed in more detail later in this chapter. 

DIO and Anxiety 

Obesity has been associated with a higher prevalence of anxiety, as 

demonstrated in several human studies (Baker et al., 2017; Gariepy et al., 2010; Strine 

et al., 2008) and rodent studies (Almeida-Suhett et al., 2017; Krishna et al., 2016).  For 

example, a cross-sectional study of 217,379 adults in the United States found a positive 

association between obesity and anxiety (Strine et al., 2008).  Similarly, a study in the 

United States with 9125 adults found that obesity lead to an approximate 25% increase 

in odds of having an anxiety disorder (Simon et al., 2006).  In other populations, a meta-

analysis in China that included 17,894 children and adolescents found a significantly 

higher incidence of anxiety in obese and overweight subjects (40%) compared to normal 
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weight subjects (14%) (Wang et al., 2019).  Furthermore, anxiety was also found to be 

associated with obesity during pregnancy and the postpartum stage, increasing health 

risks for mothers who have gained excessive weight beyond normal pregnancy weight 

(Nagl et al., 2015).  In rodent DIO studies, B6J male mice (Almeida-Suhett et al., 2017) 

and B6 female mice (Krishna et al., 2016) fed a HFD displayed higher anxiety-like 

behavior in an open field as assessed by decreased center time.  Additionally, male 

Fischer 344 rats (Buchenauer et al., 2009) and female Long Evans rats (Sivanathan et al., 

2015) fed a HFD also exhibited more anxiety-like behavior compared to normal weight 

rats fed a control diet.  In contrast, there are other reports in humans and rodents that 

found no link between obesity and anxiety (Araujo et al., 2017; Gelineau et al., 2017; 

Tsai et al., 2018).  The relationship between obesity and anxiety is complex, often due to 

comorbidities and a potential bidirectional association (Baker et al., 2017).  More 

research is needed to understand the physiological mechanisms that may connect 

obesity to anxiety.  

While there is extensive research on sex differences regarding associations 

between obesity and depression, less is known about sex factors involved in 

relationships between obesity and anxiety (Tronieri et al., 2017).  Some studies show a 

more significant relationship between overweight or obesity and anxiety in females 

compared to males (Anderson et al., 2006; Barry et al., 2008; DeJesus et al., 2016; 

Hofmann et al., 2015; Svenningsson et al., 2012).  However, there are other reports that 

suggest a higher incidence of anxiety in obese males compared to obese females 
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(Bjerkeset et al., 2007; Bridgewater et al., 2017; Tronieri et al., 2017).   More work is 

needed to understand the physiological mechanisms involved and the influence of sex 

on this relationship between obesity and anxiety. 

The relationship between obesity and anxiety may also depend on genetics.  A 

cross-sectional study in the Midwest found a positive association between BMI and 

anxiety in Caucasians and African Americans, but not in Asians or Hispanics (DeJesus et 

al., 2016).  An epidemiological study in the United States found that the correlation 

between obesity and a specific form of anxiety depended on ethnicity (Rosen-Reynoso 

et al., 2011).  For example, obesity was associated with African Americans with general 

anxiety disorder, non-Latino whites with panic disorder, Latinos with agoraphobia 

without panic disorder, and Asians with post-traumatic stress disorder.  In contrast, one 

study found no significant difference across ethnic groups when comparing the 

association of obesity and anxiety in Caucasians, African Americans, and Latinos 

(Bodenlos et al., 2011).  Compared to literature that describes the influence of sex on 

the relationship between obesity and anxiety, there is less information available 

regarding the impact of ethnicity or genetics on this relationship.  More human studies 

on this topic should stratify by ethnicity, and more rodent studies should include strain 

comparisons to address this gap in the literature. 

DIO and Memory 

Obesity may also have a negative impact on memory.  In a study of 513 

Malaysian adolescents, high body mass index (BMI) was associated with poor working 
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memory (Tee et al., 2018).  A study in 60 adults <41 years old found that BMI was 

negatively associated with working memory, but not with learning and memory (Coppin 

et al., 2014).  In a secondary analysis of older adults (average age of 74) comprising 701 

normal weight, 1,082 overweight, and 902 obese individuals, the obese group had a 

statistically significant lower memory training score compared to the normal weight 

group (Clark et al., 2016).  An extensive review of the impact of HFD on learning and 

memory in rodent studies using various test measures found that most studies, but not 

all, found an association between HFD or DIO and memory decline (Cordner and 

Tamashiro, 2015).  Taken together, most of these studies show a pattern of obesity with 

reduced memory, but few distinguish between males and females or differences in 

genetics that may cause discrepancies in the results. 

DIO and Dopamine 

Dopamine plays an important role in regulating motor control, cognition, and 

motivation (Mishra et al., 2018).  Previous DIO studies in mice have found an inverse 

relationship between dopamine signaling with body weight (Zilkha et al., 2017) and DIO-

induced anxiety with dopamine turnover in the brain (Krishna et al., 2015).  In both the 

dorsal and ventral striatum, the regulation of dopamine neurotransmission is implicated 

as a modulator of DIO and food reward (Baik, 2013).  For example, in a study with male 

B6J mice fed a high fat/high sugar Western style diet for 16 weeks, dopamine release in 

the dorsal striatum was increased and dopamine clearance in the dorsal striatum was 

decreased in mice fed the Western style diet (Fritz et al., 2018).  In the nucleus 



16 
 

accumbens (NAc) core of the ventral striatum, dopamine release assessed by fast scan 

cyclic voltammetry was increased in male Sprague-Dawley rats when exposed to a 

sucrose-based food reward (Roitman, 2004).  In a study with male B6J mice fed a HFD 

for six weeks, voltammetry measurements revealed a significant decrease in dopamine 

reuptake in the NAc core (Fordahl and Jones, 2017).  The NAc core of the ventral 

striatum is involved in the mediation of reward, satisfaction, and motivation, and has 

been implicated in numerous behavioral disorders, such as anxiety, obsessive-

compulsive disorder, and addiction (Salgado and Kaplitt, 2015).  The dorsal striatum is 

involved in habitual and compulsive behaviors such as food-seeking and binge eating, 

and plays a role in homeostatic energy consumption (Fritz et al., 2018).  Both regions are 

important to consider when investigating dopamine metabolism as it relates to DIO. 

Sex Factors in Murine Behavior 

Research that includes both sexes in the study of DIO-impact on behavior in mice 

is limited.  In one study using male and female B6 mice fed a HFD (60% kcal fat) for 12 

weeks, males fed a HFD spent less time in the center zone of the open field compared to 

males fed a control diet and compared to all females, indicating increased anxiety-like 

behavior in males only due to HFD (Bridgewater et al., 2017).  Additionally, there was a 

sex difference in ambulation, with male B6 mice showing reduced locomotor activity 

compared to B6 females.  Interestingly, diet had no effect on locomotion for either sex.   

In contrast to these results, a study using male and female B6J mice fed a HFD (60% kcal 

from fat) for approximately 10 weeks found no significant difference in open field center 
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time due to diet or sex (Gelineau et al., 2017).  Male B6J mice fed a HFD had reduced 

locomotion compared to the male LFD group, yet there was no diet impact on female 

locomotion, and no overall sex differences in locomotion.  There was, however, a sex 

difference in protein expression of brain-derived neurotrophic factor (BDNF), with males 

exhibiting lower expression compared to females.  There was no significant impact of 

diet on BDNF expression for either sex.  While both studies report an impact of diet or 

sex on various behaviors, the results are not consistent.  Both studies initiated the HDF 

at a similar age (6-7 weeks), but the diet treatment duration was different (12 weeks 

versus 10 weeks).  The anxiety-like behavior in males was revealed after the 12-week 

diet treatment, which could be a result of increased body weight, older age, or extended 

exposure to the HFD.  

Gene Expression Dysregulation in the Brain 

 DIO has been associated with gene expression dysregulation in the brain, with 

implications for the development of ND or behavior impairments (Han et al., 2019; 

Huang et al., 2005; Lee et al., 2010).  There is also potential for a bidirectional 

relationship between gene expression alterations and trace element dysregulation.  The 

genes or proteins described here are relevant for the investigation of the impact of DIO 

on the brain, together with the sex and genetic factors that may influence the outcome. 

Divalent Metal Transporter 1  

Divalent metal transporter 1 (DMT1) acts as a transporter for several ions, 

including ferrous ion (Fe2+), manganese II (Mn2+), cobalt II (Co2+), cadmium II (Cd2+), 
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nickel II (Ni2+), lead II (Pb2+), and to a lesser extent zinc (Zn2+) (Mackenzie et al., 2007).  

Both cuprous (Cu+) and cupric ion (Cu2+) are transported by DMT1, although Cu+ has a 

higher affinity and can compete with Fe2+  (Arredondo et al., 2003).  There are four 

known isoforms of DMT1 with similar function, all of which transport Fe2+ with similar 

efficiency (Skjørringe et al., 2015).  DMT1 is mainly expressed in neurons, but the level 

of expression and compartmentalization of DMT1 within non-neuronal cells, such as 

astrocytes, is still controversial (Ingrassia et al., 2019; Skjørringe et al., 2015).  

Investigations are needed to learn more about the gene expression of DMT1 in the brain 

under DIO conditions, as the dysregulation of DMT1 and trace element homeostasis is 

associated with various NDs (Ingrassia et al., 2019; C.-W. Zhang et al., 2017). 

Several studies in rodents have shown an association between dysregulated 

DMT1 expression and alterations in Fe or Cu homeostasis in a brain region-specific 

manner.  A study using male Sprague-Dawley rats found that Fe-related protein 

expression changes with age at different rates depending on the brain area (Lu et al., 

2017).  In the striatum, substantia nigra, hippocampus, and cortex, the Fe importer 

DMT1 was upregulated with age.  While the increase in DMT1 in the striatum and 

hippocampus occurred mainly between three-12 months of age, the increase in the 

substantia nigra and cortex occurred between 12-24 months.  The accumulation of Fe in 

each region occurred over the entire time period (three–24 months), suggesting that 

DMT1 upregulation may influence Fe build up to some degree, but is not the only factor 

involved in Fe accumulation.  Unlike DMT1, transferrin receptor 1 (TfR1) was 
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downregulated with age.  These differences suggest that Fe accumulation over time is 

more likely to depend on the expression of DMT1 versus TfR1.  In a study using male +/b 

(control) and b/b (DMT1 mutated) Belgrade rats, DMT1-mutated rats displayed a 

reduction of Fe in the striatum, hippocampus, olfactory bulb, and cortex, as well as an 

increase in Cu in the striatum and hippocampus (Han et al., 2016).  It was found that 

transgenic mice overexpressing DMT1 in multiple brain regions (striatum, substantia 

nigra, hippocampus, olfactory bulb, and cortex) accumulated Fe in the substantia nigra 

when fed an Fe-supplemented diet (C.-W. Zhang et al., 2017).  Interestingly, there was 

no corresponding increase in alpha synuclein, and motor function was similar between 

the treatment group and control mice.  The results of this study show that an increase in 

Fe is only one factor that may contribute to the development of neurodegeneration, 

increasing the challenge of elucidating the pathological mechanisms of ND.   

The effect of DIO on DMT1 expression in the context of Fe metabolism has been 

studied systemically, yet there is limited research focused on the brain.  A recent study 

showed that DIO did not induce DMT1 gene expression changes in various brain regions 

in male B6J mice (Han et al., 2019).  In the system, it was found that male B6 mice fed a 

HFD (60% kcal fat) for eight weeks showed reduced plasma Fe and increased DMT1 

mRNA and protein expression in the duodenum compared to control mice, indicating a 

systemic Fe deficiency caused by DIO (Sonnweber et al., 2012).  In contrast, another 

study found that B6J male mice fed a HFD (54% kcal fat) for 30 weeks resulted in no 

change in duodenal DMT1 mRNA or protein expression, but had Fe accumulation in the 
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liver and spleen (Citelli et al., 2015).  In male Swiss mice fed a HFD (60% kcal fat), DMT1 

expression in adipose tissue was not affected (Gotardo et al., 2013).  Collectively, these 

results show that gene expression alterations and Fe dysregulation due to DIO may be 

tissue-specific, and may depend on the length of time exposed to HFD.  The effects of 

DIO on DMT1 gene expression reported in the literature have focused primarily on male 

rodents and the system, leaving a knowledge gap on DIO impact in the brain and the 

effect of sex on potential gene expression alterations. 

Iron Regulatory Protein 

Iron regulatory protein (IRP) is integral in the regulation Fe absorption, 

transportation, and storage at the cellular level (Zhou and Tan, 2017a).  The two 

isoforms, IRP1 and IRP2, are both involved in Fe homeostasis.  When intracellular Fe 

levels are low, IRP binds to an iron response element (IRE) on the mRNA transcripts of 

Fe-metabolism proteins, such ferritin, ferroportin, transferrin receptor1, and DMT1.  

The binding of IRP inhibits the translation of ferritin and ferroportin, and protects TfR1 

and DMT1 from degradation.  When Fe levels are high, Fe binds to IRP, causing the 

release of IRP from the IRE.  This leads to the synthesis of ferritin and ferroportin to 

stimulate Fe storage or cellular efflux, and promotes the degradation of TfR1 and DMT1 

mRNA transcripts.  Disruptions in gene expression of IRP1 or IRP2 can therefore impact 

Fe homeostasis, as these regulatory proteins control the synthesis of several Fe-related 

proteins.  
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It has been discovered that there is an IRE present in alpha synuclein mRNA 

transcripts (Cahill et al., 2009), and one in amyloid precursor protein mRNA transcripts 

that binds specifically with IRP1 (Bandyopadhyay and Rogers, 2014; Cho et al., 2010).  

IRP binding to either of these IREs suppresses protein translation (Cahill et al., 2009; 

Zhou and Tan, 2017a).  Fe overload can therefore lead to the translational upregulation 

of amyloid precursor protein (Cho et al., 2010) or alpha synuclein (Febbraro et al., 2012), 

increasing the risk for ND (Cahill et al., 2009).  An effect of sex for this relationship 

between IRP and alpha synuclein was found in rats, as females expressed more IRP1 in 

the hippocampus compared to males, and had reduced expression of alpha synuclein 

(Thulluri et al., 2012).  There is limited research on the effects of DIO on brain IRP 

expression.  In the system, it was found that IRP1 (but not IRP2) mRNA expression was 

upregulated in adipose tissue of male Swiss mice fed a HFD (60% kcal fat) (Gotardo et 

al., 2013).  Research on the effect of DIO on the gene expression of IRP1 should be 

pursued, as this protein is instrumental in Fe homeostasis through its impact on several 

Fe-related proteins.  Furthermore, the relationship between IRP1 and alpha synuclein or 

amyloid precursor protein may have important implications for the development of ND, 

and should be studied in the context of DIO. 

Ceruloplasmin  

Ceruloplasmin is a Cu-dependent protein that is expressed in astrocytes at the 

blood brain barrier and in dopaminergic neurons in the substantia nigra (Hellman and 

Gitlin, 2002).  It acts as a ferroxidase, allowing for the efflux of Fe from astrocytic cells to 
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neurons via transferrin.  Cu depletion can therefore lead to Fe dyshomeostasis, trapping 

the Fe within astrocytes, and depriving neurons of Fe.  This enzyme also acts as an 

oxidizing agent for Mn, and can function as a general endogenous antioxidant (Hellman 

and Gitlin, 2002; Jursa and Smith, 2009).  Ceruloplasmin is critical for the maintenance 

of Fe homeostasis, and can oxidize 6-hydroxydoapmine without producing reactive 

oxygen species as an end product (Vassiliev et al., 2005).  A deficiency in ceruloplasmin 

can lead to dysregulated Fe and production of reactive oxygen species (ROS) by either 

the Fenton reaction of Fe2+ with hydrogen peroxide to produce the deleterious hydroxyl 

radical, or by the nonenzymatic oxidation of 6-hydroxydopamine to produce hydrogen 

peroxide.  Consequently, aberrations in ceruloplasmin gene expression or protein 

synthesis have been associated with ND.  Murine ceruloplasmin is 90% similar to human 

ceruloplasmin and has similar gene expression patterns, allowing for the use of a mouse 

model to study human ND (Hellman and Gitlin, 2002).   

Ceruloplasmin levels tend to be higher in the plasma of obese individuals (Kim et 

al., 2011; Yang et al., 2019).  Although there is limited research on the impact of DIO on 

ceruloplasmin expression in the brain, there is extensive research using rodent and 

human models to investigate the role of ceruloplasmin in ND.  For example, a study 

using male Sprague-Dawley rats found that ceruloplasmin mRNA expression increased 

with age, with a more extensive induction in the midbrain and striatum compared to the 

hippocampus and cortex (Chang et al., 2005).  In male Wistar rats, ischemia led to 

decreased mRNA expression of ceruloplasmin in the hippocampus, with corresponding 
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accumulation of Fe in neurons (Li et al., 2008).  In mice, ceruloplasmin mRNA and 

protein was upregulated in the retinas of glaucomatous D2 mice, but not B6 control 

mice (Stasi et al., 2007).  A study using postmortem brain tissue from ND patients found 

increased levels of ceruloplasmin protein in AD striatum, HD midbrain, and the 

hippocampus for AD, PD, and HD tissue compared to elderly controls (Loeffler et al., 

1996).  Moreover, it was discovered that ceruloplasmin was depleted in the 

hippocampus of AD postmortem tissue and in an AD mouse model, and that restoration 

of ceruloplasmin alleviated neuronal damage (Zhao et al., 2018).  Collectively, these 

studies show that dysregulated ceruloplasmin expression is associated with the aging 

process and various forms of neurodegeneration.  It is possible that DIO may also 

disrupt the normal expression of ceruloplasmin in the brain.  

Ceruloplasmin dysregulation may also be related to behavior changes.  In 

ceruloplasmin knockout mice, Fe was reduced in the hippocampus and mice exhibited 

higher anxiety-like behavior in an open field test (Texel et al., 2012).  These mice also 

had a reduction in BDNF expression in the hippocampus.  In male and female patients 

with obsessive compulsive disorder (OCD), serum ceruloplasmin levels were found to be 

elevated, suggesting a potential association between ceruloplasmin homeostasis and 

OCD (Virit et al., 2008).  In a study with patients diagnosed with aceruloplasminemia, a 

serious ND involving the lack of synthesis of ceruloplasmin, nearly half of the patients 

presented with anxiety and depression (Vroegindeweij et al., 2017).  While none of 

these studies definitively tie ceruloplasmin to a specific behavior, the evidence suggests 
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that ceruloplasmin dysregulation and concomitant Fe accumulations may be associated 

with various psychotic disorders, warranting more research to be performed.   

Copper Transporter 1 

Copper transporter 1 (CTR1) is a plasma membrane protein expressed in the 

blood brain barrier (BBB), the blood cerebrospinal fluid barrier (BCB), neurons, and 

astrocytes (Skjørringe et al., 2012).  Through CTR1, Cu import occurs mainly at the BBB, 

and Cu export mainly at the BCB (Montes et al., 2014).  Previously, it has been shown 

that CTR1 expression correlates with increased Cu level in the substantia nigra in PD.  

Since Cu dysregulation has been implicated in the development of various NDs (Genoud 

et al., 2017; Mezzaroba et al., 2019; Sensi et al., 2018), the effect of DIO on gene 

expression of CTR1 and its potential link to DIO-induced neurodegeneration should be 

investigated. 

Although there is limited information available regarding the impact of DIO on 

CTR1 expression, studies using various models have shown connections between the 

dysregulation of CTR1 expression and Cu homeostasis with neurodegeneration.  In 

postmortem substantia nigra brain tissue from PD and AD patients, there were 

significant reductions in Cu, CTR1 protein, and superoxide dismutase 1 (SOD1) (Davies et 

al., 2014).  The reductions in SOD1 were positively correlated with Cu reductions, and Cu 

decline occurred before neuronal death.  This study provides evidence that the 

dysregulation of Cu and CTR1 are associated with oxidative stress and 

neurodegenerative damage.  Lang et al. used a Drosophilia AD model to evaluate the 
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impact of Cu and CTR1 gene expression on neurodegeneration (Lang et al., 2013).  

Downregulation of CTR1 resulted in reduced levels of Cu, but not Fe, Mn, and Zn.  Flies 

with higher Cu levels experienced more beta amyloid toxicity as assessed by locomotion 

and mortality.  CTR1 gene expression and Cu concentration did not, however, have an 

impact on memory.  Zheng et al. found that mouse BV-2 microglial cells treated with 

IFN-, a proinflammatory cytokine, resulted in Cu accumulation and induction of CTR1 

mRNA gene expression (Zheng et al., 2010).  The implications of this study are significant 

to the health field, as inflammation is associated with ND (Heneka et al., 2015; 

Ransohoff, 2016) and with DIO (Saltiel and Olefsky, 2017).  CTR1 and Cu homeostasis 

can also be influenced by Mn exposure.  In a study using the Z310 choroidalepithelial 

cell line from murine choroid plexus, exposure to Mn resulted in increased cellular Cu 

and upregulated CTR1 and DMT1 gene and protein expression (Zheng et al., 2010).  This 

study highlights the interplay between trace elements and their effect on gene 

expression and homeostasis.  Collectively, these studies provide evidence for the 

potential impact of CTR1 expression and Cu regulation in the development of ND.  The 

potential impact of DIO on CTR expression in the brain has not thus far been 

investigated.   

Alpha Synuclein 

Alpha synuclein, encoded by the SNCA gene (Fitzgerald et al., 2019), is expressed 

throughout several brain regions and is enriched within presynaptic terminals (Bridi and 

Hirth, 2018).  It acts as a negative modulator of dopamine by inhibiting enzymes that 
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synthesize dopamine, such as tyrosine hydroxylase.  The overexpression of alpha 

synuclein mRNA transcripts may lead to the aggregation of alpha synuclein protein 

(Fields et al., 2019), and can disrupt the function of the presynaptic SNARE complex, 

interfering with the positioning and fusion of synaptic vesicles (Bridi and Hirth, 2018).  

Additionally, accumulated alpha synuclein in the form of Lewy bodies can lead to the 

dysregulation of dopamine, synaptic dysfunction, and damaged neurons, provoking the 

development of neurodegenerative diseases such as PD (Bridi and Hirth, 2018; Fields et 

al., 2019; Fitzgerald et al., 2019). 

There are several biochemical interactions between alpha synuclein and Fe in 

the brain (B. Chen et al., 2019; Lingor et al., 2017).  Fe can regulate alpha synuclein 

levels post transcriptionally through the binding of IRP on the alpha synuclein IRE, and 

post translationally by interfering with the normal ubiquitination process of alpha 

synuclein protein (B. Chen et al., 2019).  It has been proposed that alpha synuclein can 

also regulate Fe levels through its ferroreductase activity, a process that depends on Cu 

as a cofactor.  Over expression of alpha synuclein in both cell and animal models 

increases the intracellular reduction of ferric ion to ferrous ion, thereby increasing the 

risk for ROS generation through the Fenton reaction.  Furthermore, the overexpression 

of alpha synuclein in midbrain neurons was reported to increase intracellular Fe (Ortega 

et al., 2016) and intracellular Mn (Dučić et al., 2015), but had no effect on Zn 

concentrations (Dučić et al., 2015). 
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Recent studies in rodents and cells demonstrate the impact of DIO on alpha 

synuclein expression and neuropathology.  For example, male B6J mice fed a HFD (60% 

kcal fat) for 20 weeks showed increased alpha synuclein mRNA and protein expression 

in the midbrain compared to LFD control mice (Han et al., 2019).  Additionally, Fe and 

F2-isoprostane (a biomarker for oxidative damage) levels were also elevated in this 

brain region.  A study using female C57BL/6J/129SVJ mice fed a HFD (58% kcal fat) for 12 

weeks found an upregulation of alpha synuclein mRNA in the hypothalamus (Lee et al., 

2010).  In a study using male ApoE-/- and ApoE-/-/Tollip-/- mice, HFD (42% kcal fat) led to 

the accumulation of alpha synuclein and beta amyloid protein in the hippocampus and 

increased neuronal death (Chen et al., 2017).  Together, these studies provide evidence 

that both male and female mice are prone to dysregulated alpha synuclein expression 

due to DIO.  Additionally, a HFD may instigate alpha-synucleinopathy in mice that are 

genetically predispositioned to age-dependent alpha synuclein pathology.  For example, 

a study using male B6 transgenic mice expressing human mutant [A30P] alpha synuclein 

fed a HFD (45% kcal fat) demonstrated that HFD-induced obesity accelerates alpha-

synucleiopathy and astrogliosis (Rotermund et al., 2014).  Cell studies also show a 

potential relationship between alpha synuclein dysregulation and HFD.  In a study using 

SH-SY5Y human neuroblastoma cells as a neuronal model, and T98G human 

glioblastoma cells as an astrocytic model, alpha synuclein unexpectedly reduced the 

cytotoxic effects of palmitic acid, a long chain saturated fatty acid (Ng and Say, 2018).   

In contrast, a study using U373 MG human astrocytoma cells found that overexpression 
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of alpha synuclein triggered oxidative stress and cell death in these glial cells (Stefanova 

et al., 2001).  While these cell studies show direct effects of saturated fat or alpha 

synuclein overexpression on brain cell viability, further studies are required to 

understand the effect of HFD-feeding on the mRNA expression of alpha synuclein and its 

potential connection to trace element dysregulation and neurodegeneration. 

The dysregulation of alpha synuclein, particularly in the hippocampus,  has been 

implicated in the disruption of normal behavior.  Alpha synuclein pathology in the 

hippocampus was associated with memory loss in patients with Dementia with Lewy 

Bodies (Adamowicz et al., 2017).  In rodents, it was found that when comparing Lewis 

rats to spontaneously hypertensive rats, the Lewis rats expressed higher levels of 

anxiety in an open field test and had higher concentrations of alpha synuclein and beta 

amyloid in the hippocampus (Chiavegatto et al., 2009).  Moreover, alpha synuclein was 

inversely correlated to dopamine turnover.  This study suggests that alpha synuclein 

may be involved in regulating anxiety-like behaviors in rodents through dopaminergic 

mechanisms. 

PD is characterized by intracellular aggregates of alpha synuclein in the form of 

Lewy bodies, localized in the substantia nigra (Ubeda-Bañon et al., 2013).  It has been 

discovered recently that alpha synuclein accumulates in the olfactory bulb long before it 

does in the substantia nigra, and is associated with the loss of olfactory sense in PD 

(Adler and Beach, 2016; Fullard et al., 2017) and AD (Attems et al., 2014).  Analysis of 

postmortem brain tissue revealed that alpha synuclein was accumulated in male and 
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female olfactory bulbs in patients with PD patients and confirmed Lewy body formation 

(Braak et al., 2003; Mazurskyy and Howitt, 2019).  Additionally, the olfactory bulb was 

determined in autopsy studies to be the first brain region affected by Lewy type alpha 

synucleinopathy (Adler and Beach, 2016).  The effect of DIO on alpha synuclein 

expression or trace element dysregulation in the olfactory bulb is unknown, but could 

potentially provide valuable information regarding the development of ND in the 

context of obesity.   

Amyloid Precursor Protein 

Amyloid precursor protein (APP) is a transmembrane protein associated with 

several biological functions, including cellular proliferation and differentiation, cell-fate 

specification, and neurite outgrowth (S. Wang et al., 2016).  The overexpression of APP, 

however, has been implicated in the progression of AD (Roher et al., 2017).  Common 

features of AD include extracellular accumulation of senile plaques, intracellular 

neurofibrillary tangles, and loss of neurons and synapses in the brain (Zhang et al., 2011; 

Zheng and Koo, 2011).  The senile plaques consist mainly of beta amyloid protein, which 

is derived from the proteolytic cleavage of APP.  Disruptions in normal gene expression 

of APP can therefore lead to the potential buildup of beta amyloid, promoting the 

conditions for neurodegeneration. 

APP is highly expressed in both the hippocampus and olfactory bulb in rodents 

(S. Wang et al., 2016).  The hippocampus is particularly vulnerable to beta amyloid 

protein aggregation and senile plaque formation (Zhang et al., 2011).  While there are 
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several studies examining the effects of aging on APP gene expression and beta amyloid 

production in the brain, only a few studies have focused on the effects of diet and 

obesity.  In one report using male B6J mice fed a HFD based on palmitic acid for 16 

months, beta amyloid protein was found to accumulate in the hippocampus (Busquets 

et al., 2017).  The authors suggest that the beta amyloid accretion may be due to 

impeded autophagy of this protein.  In another study using male B6J mice fed a HFD 

based on milk fat for 22 weeks, mice fed the HFD had elevated APP expression in the 

hippocampus (Puig et al., 2012).  Beta amyloid aggregation in the olfactory bulb is also 

implicated in the progression of neurodegenerative disorders based on post mortem 

studies (Attems et al., 2014).  In a study using Tg2576 AD mice, APP gene overexpression 

in the olfactory bulb impaired the function of protein kinase A between 6-18 months 

(Lachen-Montes et al., 2019).  The authors speculate that this dysregulation of 

biochemical activities in the olfactory bulb supports the early progression of AD.  There 

is limited data for the expression of APP in the human olfactory bulb (Rey et al., 2018), 

and no reports on the effect of obesity or diet on APP expression in the olfactory bulb.  

There are conflicting reports concerning the relationship between Cu 

concentration in the brain with APP gene expression.  In mouse neuroblastoma N2a 

cells, Cu treatments promoted an increase in APP mRNA expression and beta amyloid 

synthesis in a dose-dependent manner (Hou et al., 2015).  Cu overload was associated 

with APP upregulation in fibroblast cells from B6 mutants (Armendariz et al., 2004), and 

depleted Cu was correlated to reduced APP expression in human fibroblast cells with 
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MNK deletion (Bellingham et al., 2004).  In contrast, a study using SH-SY5Y neuronal 

cells found that a Cu surplus causes a delocalization of APP by increased exocytosis and 

reduced endocytosis, but not via APP gene expression (Acevedo et al., 2011).  

Additionally, this study showed that Fe and Zn did not impact APP homeostasis.  Taken 

together, these studies provide evidence that APP and beta amyloid homeostasis can be 

disrupted by different mechanisms, warranting more research to understand the 

neuropathology behind DIO and APP dysregulation.   

Brain-Derived Neurotrophic Factor 

Brain-derived neurotrophic factor (BDNF) is a protein and growth factor involved 

in neuronal survival and brain plasticity (Bathina and Das, 2015; Miranda et al., 2019).  

The role of this neurotrophin in brain plasticity is correlated with learning, memory, and 

cognition in humans and rodents (Miranda et al., 2019).  Protein and mRNA expression 

of BDNF has been identified in brain regions such as the hippocampus, cortex, and 

olfactory bulb (Bathina and Das, 2015).  High levels of BDNF are associated with 

neuronal protection (Almeida et al., 2005), while low levels have been associated with 

normal aging and pathological conditions such as AD, PD, and HD (Bathina and Das, 

2015; Miranda et al., 2019).  In a study using postmortem brain tissue from AD patients, 

BDNF mRNA expression was downregulated in the hippocampus and cortex compared 

to age-matched controls (Hock et al., 2000).  Furthermore, BDNF is involved in the 

regulation of energy balance, and may act as an anorexigenic signaling molecule (Liu et 
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al., 2014; Rios et al., n.d.).  As such, decreased levels of BDNF have been associated with 

obesity (Genzer et al., 2016). 

Several reports using male rodents indicate that BDNF expression can be 

influenced by a HFD.  One study using B6 male mice fed two types of HFD (41% kcal fat 

for 21 weeks or 60% kcal fat for 16 weeks) discovered that while BDNF expression and 

cognition were not impacted with the 41% HFD treatment, mice fed the 60% HFD had 

reduced levels of BDNF protein in the cortex and poor cognition performance compared 

to mice fed a control diet (Pistell et al., 2010).  Another study using B6 males fed a HFD 

(42% kcal fat) for 12 weeks found deceased BDNF expression in whole brain tissue, but 

found no change in cognition or memory (Wang et al., 2017).  In contrast, some rodent 

studies show an upregulation of BDNF due to HFD.  For example, a study using male B6 

mice fed a HFD (42% kcal fat) for eight weeks found that BDNF mRNA and protein was 

upregulated in whole brain tissue and in HT-4 hippocampal neurons (Genzer et al., 

2016).  In a study using male Long-Evans rats fed a HFD (45% kcal fat) for a short time 

frame of 72 hours, the mRNA expression of BDNF was upregulated in the hippocampus 

(Gan et al., 2015).  Although there are discrepancies revealed here showing either 

induction or repression of BDNF, overall there is a consistent dysregulation in BDNF 

expression when rodents are fed a HFD.  Likewise, behavior tests show that cognition is 

not always impacted by HFD and may depend on the age of the rodents, duration of the 

HFD, and type of assessment used. 
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Fewer investigations have been performed with female rodents.  One study 

using female Fisher 344 rats fed a diet high in fat (39% kcal fat) and sugar evaluated 

BDNF expression in the hippocampus and caudal cerebral cortex after two months, six 

months, and two years of diet treatment (Molteni et al., 2002).  At all three time points, 

mRNA expression was reduced in the hippocampus for rats fed a high fat and sugar diet 

compared to the control diet.  Protein was also repressed in the hippocampus after six 

months of diet treatment.  There was no impact of diet on mRNA or protein expression 

in the cortex.  Additionally, rats fed the high fat and sugar diet had poor performance in 

spatial learning tasks. 

There are notable sex differences in the distribution of BDNF within different 

brain structures (Chan and Ye, 2017).  In rats, females have higher levels of BDNF in the 

hippocampus and cortex.  In humans, there is no difference in BDNF levels in the 

hippocampus, but females have higher levels of BDNF in the prefrontal cortex compared 

to males.  A study using Long-Evans male and female rats fed a control diet or HFD (45% 

kcal fat) for four days and four weeks compared BDNF mRNA expression in the 

ventromedial nucleus of the hypothalamus (Liu et al., 2014).  At both time points, the 

expression of BDNF was higher in females compared to males, regardless of diet.  After 

four days of HFD-feeding, there was no impact on BDNF expression.  However, after 

four weeks, BDNF mRNA was repressed only in male rats fed a HFD.    

There are very few studies that address the influence of strain and sex on DIO-

induced BDNF gene expression dysregulation, and no reports describing the effects of 
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HFD on BDNF expression in the olfactory bulb.  An evaluation of HFD impact on BDNF 

mRNA expression in the hippocampus and olfactory bulb in male and female mice of 

different strains would address these gaps in the literature. 

Tyrosine Hydroxylase  

Tyrosine hydroxylase (TH) is a rate limiting enzyme that requires Fe as a cofactor 

for the synthesis of catecholamines such as dopamine, epinephrine, and norepinephrine 

(Daubner et al., 2011).  These catecholamines serve brain functions such as attention, 

memory, and cognition.  TH is present within the neurons of the dopaminergic pathway 

that extends from the substantia nigra to the striatum, which is imperative for proper 

motor function (Jang et al., 2017).  Obesity has been shown to have a negative impact 

on mobility (Forhan and Gill, 2013) and has been associated with changes in TH gene 

expression in different brain regions (Huang et al., 2005a; Lee et al., 2010; Ong et al., 

2013; Wu et al., 2017). 

Several studies have used animal models to investigate the impact of DIO on TH 

mRNA and protein expression.  In a study using male B6 mice fed a HFD (40% kcal fat) 

for 20 weeks, there was an upregulation of TH mRNA in the midbrain for mice fed a 

HFD, and a positive correlation between final body weight and TH gene expression in 

this brain region (Huang et al., 2005a).  In contrast, a study that also used B6 males fed a 

HFD (40% kcal fat) for 14 weeks found that mice fed a HFD had downregulated TH in the 

midbrain (Li et al., 2009).  Both studies originated from the same lab and both began the 

diet treatment at 12 weeks of age, but the duration of HFD feeding differed (20 weeks 



35 
 

versus 14 weeks), as well as the age of mice at the time of tissue analysis.   Another 

study using male B6 mice fed a HFD (60% kcal fat) for 13 weeks found that TH protein 

expression was downregulated in the midbrain and striatum for mice fed a HFD (Jang et 

al., 2017).  Additionally, these mice had 60% reduced movement in the open field test.  

Corroborating these results, B6J male mice fed a HDF (58% kcal fat) for just 6 weeks also 

showed a decrease in TH protein expression in the striatum and midbrain, along with 

increased anxiety-like behavior in mice fed a HFD (Sharma et al., 2013).  A study using 

female C57BL6/129SVJ mice fed a HFD (58% kcal fat) for 12 weeks discovered an 

induction of TH mRNA expression in the hypothalamus using microarray analysis and 

real time polymerase chain reaction techniques (Lee et al., 2010).   

TH gene expression dysregulation has also been examined in humans with 

overweight and obesity.  In a study using postmortem brain tissue from male and 

female Caucasians and African Americans, TH mRNA was downregulated in the 

substantia nigra in obese tissue, but not overweight or control tissue (Wu et al., 2017).  

Additionally, TH mRNA was negatively correlated with BMI, but not with age, sex, or 

race.  In this same study, there was no significant change in dopamine receptor D2 

mRNA expression. 

Sex differences have been reported for the dysregulation of TH gene expression 

due to HFD.  In male and female Albino Wistar rats fed a cafeteria style HFD (43% kcal 

fat), there was a diet by sex interaction for the expression of TH mRNA in the NAc core 

(Ong et al., 2013).  TH was downregulated in males but upregulated in females.  
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Additionally, there was no significant difference in dopamine receptor D2 expression for 

males, but a repression in females was approaching statistical significance.  

While several reports provide information about DIO-induced dysregulation of 

TH mRNA expression in the midbrain or TH protein expression in the striatum and 

midbrain, there is very little information regarding TH mRNA expression in the striatum, 

or other brain regions such as the olfactory bulb in the context of HFD.  Furthermore, 

most studies with rodents are focused on males, and sex and strain differences are 

generally not addressed. 

Dopamine Receptor D2 

There are five major dopamine receptor subtypes, D1-D5, which belong to either 

the D1-like or D2-like receptor family (Baik, 2013; Gallo, 2019).  Dopamine receptor D2 

(DRD2) is a member of the D2-like receptor family, along with D3 and D4.  DRD2 is 

expressed both pre- and postsynaptically in various brain regions, such as the striatum, 

midbrain, cortex, and olfactory bulb (Gallo, 2019; Mishra et al., 2018).  The main 

function of DRD2 is to modulate dopamine synthesis and release through the 

intracellular inhibition of cAMP (Baik, 2013).  In the striatum, DRD2 mediates the actions 

of dopamine that control both movement and reward-seeking (Gallo, 2019). 

Excessive energy consumption and DIO may be contributed in part to 

dysregulated dopamine metabolism and food reward systems in the brain (Berridge et 

al., 2010).  Reduced DRD2 activity or expression is often, but not always, associated with 

DIO (Baik, 2013).  For example, an imaging study in men and women discovered that 
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striatal DRD2 receptor availability was reduced in obese individuals compared to 

controls, and that BMI was negatively correlated with DRD2 concentration (Wang et al., 

2001).  In corroboration using similar test methods, striatal DRD2 receptor availability 

was reduced in obese women compared to controls (van de Giessen et al., 2014).  

However, another imaging study in obese women found no change in DRD2 receptor 

availability when examining several brain regions, including the striatum, and found no 

correlation between DRD2 and BMI (Karlsson et al., 2015).  In a study using male 

Sprague-Dawley rats fed a HFD (32% kcal fat) for eight weeks, there was a 42% decrease 

in DRD2 density in the dorsal striatum (Narayanaswami et al., 2013).  Furthermore, 

when male and female offspring of female B6J mice bred with D2J males were fed a HFD 

(60% kcal fat) for 12 weeks, both males and females showed a downregulation of DRD2 

mRNA in the NAc core (Carlin et al., 2013).   

In contrast to these reports, there is also evidence that DRD2 may be 

upregulated due to DIO.  In a study using male B6 mice fed a HFD (40% kcal fat) for 20 

weeks, there was an induction of DRD2 mRNA in the NAc core for mice fed a HFD, and a 

positive correlation between final body weight and DRD2 gene expression in this brain 

region (Huang et al., 2005b).  Another study using male B6 mice fed a HFD (58% kcal fat) 

for 12 weeks showed that mice fed a HFD had increased DRD2 protein expression in the 

NAc (Sharma and Fulton, 2013).  Furthermore, when male B6 mice were fed a HFD (40% 

kcal fat) for only 20 days, the DRD2 binding density was increased in the dorsal and 

ventral striatum (South and Huang, 2008).  Interestingly, a human imaging study 
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demonstrated that DRD2 binding potential was positively correlated to BMI in the dorsal 

striatum, yet negatively correlated to BMI in the ventral striatum (Guo et al., 2014).  

Collectively, these studies provide evidence that DRD2 dysregulation is involved as 

either a cause or consequence of DIO, however the direction of DRD2 alteration and 

pathophysiological mechanisms are poorly understood.  Furthermore, the ability to 

measure the precise location of DRD2 dysregulation within specific brain regions and 

cell compartments would be ideal for elucidating these neurophysiological mechanisms. 

Conclusion 

 The impact of DIO on neurobiology dysregulation and behavior changes has been 

described in the current literature.  There is evidence that DIO can alter gene expression 

and trace element homeostasis in the brain.  Furthermore, DIO can disrupt dopamine 

biology and can lead to unfavorable behaviors such as a reduced physical activity, 

anxiety, and compromised memory.  Sex and genetic factors that influence these DIO-

associated alterations in the brain are not well understood.  Further research is needed 

to elucidate the influence of sex and genetic factors on neurobiological and behavioral 

disturbances induced by an energy dense diet and a state of DIO.  The development of 

future treatment and rehabilitation programs could become more effective when 

accounting for fundamental differences in sex and genetics. 
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CHAPTER III 
 

THE INFLUENCE OF SEX AND STRAIN ON TRACE ELEMENT DYSREGULATION AND GENE 
EXPRESSION ALTERATIONS IN THE BRAIN DUE TO DIET-INDUCED OBESITY 

 
 

Abstract 

Diet-induced obesity (DIO) can disrupt trace element homeostasis and gene 

expression in the brain, increasing the risk for neurodegeneration.  Genetics and sex are 

biological factors that can influence these disruptions.  The aim of this study was to 

identify main effects and interaction effects between diet, sex, and mouse strain on 

trace element dysregulation and gene expression due to DIO.  Male and female 

C57BL/6J (B6J) and DBA/2J (D2J) mice were fed either a low fat diet (10% kcal from fat) 

or a high fat diet (60% kcal from fat) for 16 weeks, then assessed for gene expression 

patterns and trace element concentrations in four brain regions.  In the striatum, iron 

was significantly elevated in B6J female mice and ceruloplasmin mRNA was significantly 

upregulated in D2J female mice due to DIO.  In the hippocampus, zinc was substantially 

increased in D2J males fed a high fat diet, but substantially deceased in D2J females fed 

a high fat diet.  There was also a dramatic induction of divalent metal transporter 1, 

alpha synuclein, and amyloid precursor protein for the B6J strain in this brain region due 

to DIO.  In the olfactory bulb, there was a significant elevation of iron and manganese in 

male B6J mice, and an upregulation of divalent metal transporter 1, amyloid precursor 

protein, and alpha synuclein mRNA in male D2J mice.  In the midbrain, copper was    
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depleted in D2J males and females fed a high fat diet.  In summary, we found that the 

disruption of trace element homeostasis and gene expression due to DIO was brain-

region dependent, and was highly influenced by sex and strain.  These results emphasize 

the importance of considering sex and genetics as biological factors when investigating 

potential associations between DIO and neurodegenerative disease. 

Introduction 

The World Health Organization defines obesity as abnormal or excessive fat 

accumulation that may impair health.  Approximately 13% of the global adult population 

was obese in 2016, and worldwide prevalence of obesity has nearly tripled since 1975 

(“WHO | Obesity”).  Biochemical consequences of obesity include inflammation, 

oxidative stress, and mitochondrial dysfunction, all of which are common pathologies of 

neurodegenerative disease (ND) (Mazon et al., 2017).  Increasing evidence implicates 

obesity as a risk factor for two of the most common forms of ND: Alzheimer’s disease 

and Parkinson’s disease (Martin-Jiménez et al., 2017; Mazon et al., 2017).  The risk of 

developing a ND depends on a combination of genetics and the environment (Brown et 

al., 2005).  Our lab seeks to determine the mechanisms by which environmental factors, 

such as diet-induced obesity (DIO), can lead to ND. 

Dysregulation of trace element homeostasis (Ferreira and Gahl, 2017) and gene 

expression (Hwang et al., 2017) in the brain is associated with neurodegeneration.  For 

example, iron (Fe) accumulation and copper (Cu) deficiency are commonly found in the 

substantia nigra pars compacta of Parkinson’s disease patients (Genoud et al., 2017).  
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Disruptions in Fe and manganese (Mn) homeostasis can lead to several NDs, such as 

Parkinson’s disease and Huntington’s disease (P. Chen et al., 2019).  Trace elements Fe, 

Cu, and Mn share some common transporters and enzymes, such as divalent metal 

transporter 1 (DMT1) and ceruloplasmin, allowing their uptake mechanisms to interact 

(Skjørringe et al., 2012; Ye et al., 2017).  Therefore, a disruption in homeostasis of one 

element can impact the other elements, leading to potentially detrimental effects on 

the brain (Herrera et al., 2014; Skjørringe et al., 2012; Ye et al., 2017).  Disruptions in 

gene expression are also evident in ND, such as the upregulation of amyloid precursor 

protein (APP) in Alzheimer’s disease (Roher et al., 2017), and induction of alpha 

synuclein in Parkinson’s disease (Tagliafierro and Chiba-Falek, 2016).  Interestingly, it 

has been discovered that alpha synuclein accumulates in the olfactory bulb long before 

it does in the substantia nigra, and is associated with the loss of olfactory sense (Adler 

and Beach, 2016).  Loss of olfaction is an early symptom of Alzheimer’s disease (Attems 

et al., 2014) and Parkinson’s disease (Fullard et al., 2017), and usually occurs years 

before disease onset.  While trace element homeostasis and gene expression in the 

context of ND have been studied extensively in the substantia nigra (Dusek et al., 2015; 

Friedman and Galazka-Friedman, 2012), hippocampus (Fjell et al., 2014), and striatum 

(Mezzaroba et al., 2019) using human and animal models, it has not received the same 

attention in the olfactory bulb.  Therefore, we included an examination of the olfactory 

bulb in this study, along with other Fe-rich brain regions. 
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Our lab recently published two articles related to the effects of DIO on Fe 

dysregulation and gene expression in Fe-rich brain regions in C57BL/6J (B6J) male mice 

(Han et al., 2019; Liu et al., 2016).  DIO significantly reduced Fe in the striatum, but had 

no impact on the hippocampus or midbrain for mice fed a high fat diet (HFD) in one 

study (Liu et al., 2016).  In another study, DIO resulted in elevated Fe and upregulated 

alpha synuclein in the midbrain, with no effect in hippocampus or striatum (Han et al., 

2019).  In the present study, we evaluated multiple trace elements in the context of DIO, 

including Fe, Mn, Cu, and Zn.  Additionally, we assessed gene expression of mRNA 

transcripts for proteins involved in trace element homeostasis, such as DMT1 and 

ceruloplasmin (Lu et al., 2017), and proteins that have been implicated in the 

development of ND, such as alpha synuclein (Bridi and Hirth, 2018) and amyloid 

precursor protein (Roher et al., 2017). 

The influence of sex and genetics on trace element dysregulation and gene 

expression has been reported in recent literature.  For example, when B6J and D2J mice 

were exposed to paraquat, the B6J strain had elevated Fe in the midbrain and more 

differentially expressed genes compared to the D2J strain (Yin et al., 2011).  A DIO study 

using female B6J and D2J mice revealed distinct trends in gene expression fed a HFD, 

with an upregulation of glutathione peroxidase I in B6J mice and a downregulation of 

glutathione reductase in D2J mice (Norris et al., 2016).  A study that examined 

neurodegeneration and brain connectivity in a group of suspected Alzheimer’s disease 

patients found that the effect of obesity on brain metabolism was more significant in 
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females versus males (Malpetti et al., 2018).  Differences in gene expression between 

males and females can impact susceptibility to disease in a sex-dependent manner 

(Torres-Rojas and Jones, 2018), which is important to recognize when studying the 

biochemical mechanisms of ND development.  To address these important sex and 

genetic factors, our obesity model will include male and female B6J and D2J mouse 

strains.  These widely used inbred strains are commonly studied based on their defined 

genetic profiles and unique response to environmental stress (Jellen et al., 2012; Yin et 

al., 2011), and have proven to be appropriate models for DIO (Alexander et al., 2006; 

Montgomery et al., 2013; West et al., 1992). 

The objective of this study was to identify interaction effects between diet, sex, 

and strain on trace element dysregulation and gene expression due to DIO in specific 

brain regions.  Based on a pilot study of trace element dysregulation in B6J and D2J mice 

in our lab (results not published), we hypothesized that the influence of sex on DIO 

would impact the B6J strain more than the D2J strain, and trace element dysregulation 

would be region-specific.  We also hypothesized that DIO would cause increases in Fe, 

zinc (Zn), and alpha synuclein gene expression in the olfactory bulb, as these 

physiological changes have been implicated in the pathogenesis of Parkinson’s and 

Alzheimer’s disease (Adler and Beach, 2016; Gardner et al., 2017; Samudralwar et al., 

1995).  To test these hypotheses, we evaluated gene expression and trace elements Fe, 

Mn, Cu, and Zn in the following brain regions due to their importance to trace element 

neurobiology: hippocampus, midbrain, striatum, and olfactory bulb.  The specific genes 
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evaluated in our study were selected based on their role in trace element regulation in 

the brain and their potential connection to neurodegeneration. 

Materials and Methods 

Animals and Diet 

A total of 72 male and female mice from the C57BL/6J (B6J) and DBA/2J (D2J) 

strains were purchased from Jackson Laboratory (Bar Harbor, ME, USA) at post-natal 

day 21.  After a three-day acclimation period in the animal care facility, mice were 

randomly assigned a control low fat diet (LFD) with 10% kcal fat/g (Research Diets, 

D12450J) or mineral-matched high fat diet (HFD) with 60% kcal fat/g (Research Diets, 

D12492) for 16 weeks (see Supplementary Table A1).  Previously, it was established that 

a diet high in fat is successful for inducing obesity in both the B6J and D2J strains (Hu et 

al., 2018).  Similarity in trace element content for each diet was confirmed using 

graphite furnace atomic absorption spectrometry (GFAAS) (Model AA240, Agilent 

Technologies Inc, USA).  Each treatment group comprised n=9 (Table 3.1).  

Determination of the number of animals required for each experiment in this study was 

based on a power analysis using an estimated variance from preliminary studies from 

our laboratory.  Ad libitum feeding of the assigned diets was provided with free access 

to deionized water 24 hours/day.  For the duration of the 16-week treatment, mice 

were weighed once per week, and food weight was recorded three days/week.  Mice 

were housed three per cage with males and females stationed on opposite sides of a 

temperature-controlled room (25°C) maintained on a 12-hour light/dark cycle. 
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This study was conducted in an American Association for Laboratory Animal Care 

accredited facility following a protocol approved by the Institution of Animal Care and 

Use Committee at the University of North Carolina Greensboro.  Procedures were 

performed by the principles and guidelines established by the National Institutes of 

Health for the ethical care and use of laboratory animals.  One mouse was humanely 

euthanized during week 10 of the diet treatment due to lack of movement and food 

consumption.   

 
Table 3.1.  Study Design Based on Strain, Sex, and Diet 

 B6J D2J 
Diet Male Female Male Female 

LFD 9 9 9 9 
HFD 9 9 9 9 

 

Tissue Collection 

At the end of the 16-week dietary treatment, 44 mice were humanely 

anesthetized with isoflurane followed by rapid decapitation.  The remaining mice were 

reserved for a separate behavioral study (data reported elsewhere).  Brains were 

dissected sagitally into right and left hemispheres on an ice-cold stainless-steel platform 

into the following brain regions: olfactory bulb, hippocampus, midbrain, and striatum.  

Brain tissues were snap frozen in liquid nitrogen, placed on dry ice, then stored in the -

80°C freezer until further processing.  Right and left hemispheres were randomly 

assigned for analysis of trace element analysis or mRNA gene expression. 
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Trace Element Analysis 

Trace elements Fe, Cu, Mn, and Zn were evaluated using GFAAS with 

concentrations reported as micrograms of metal per gram of protein.  A sample size of 

n=5 per group was used based on a power analysis from our previous studies (Han et al., 

2019; Liu et al., 2016). Total protein was analyzed using a Pierce™ bicinchoninic acid  

(BCA) protein quantitation assay (Thermo Fisher Scientific, Inc., USA).  Brain samples 

were sonicated in cold radioimmunoprecipitation assay buffer (RIPA) containing 

protease inhibitors.  Homogenates were digested in ultrapure nitric acid as a 1:1 ratio 

for 24 hours in a sand bath between 60-80°C.  Aliquots were diluted with 2% nitric acid 

for use on the GFAAS.  Bovine liver (NBS standard reference material, USDC, Washington 

DC, USA) digested in ultrapure nitric acid was used as an internal standard.   

RNA Isolation and cDNA Synthesis 

RNA was isolated from frozen tissue (n=3-5 per group) with the RNeasy® Plus 

Mini Kit (Qiagen Inc., Germantown, MD, USA) following manufacturer’s protocol.  RNA 

concentration and purity were confirmed with a NanoDrop™ 1000 spectrophotometer 

(Thermo Fisher Scientific, Inc., USA).  Reverse transcription of RNA was performed on 

Applied Biosystems GeneAmp® PCR System 9700 using Applied Biosystems High 

Capacity cDNA Reverse Transcription Kit (Life Technologies, Carlsbad, CA, USA) to 

prepare 20 L samples for the thermocycler.  Reaction conditions were as follows: 25°C 

for 10 minutes, 37°C for 120 minutes, 85°C for five seconds, and 4°C holding 
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temperature at completion.  Samples were stored at -20°C until further evaluation.  

Specific mRNA transcripts measured in this study are listed in Table 3.2. 

 
Table 3.2.  mRNA Transcripts Related to Trace Elements and Neurodegeneration 

mRNA Transcript mRNA Abbreviation Gene  

Divalent Metal Transporter 1  DMT1 SLC11A2 
Iron Regulatory Protein 1  IRP1 ACO1 
Ceruloplasmin  Cp CP 
Copper Transporter 1 CTR1 SLC31A1 
Alpha Synuclein aSyn SNCA 
Amyloid Precursor Protein  APP APP 

Genes were selected for evaluation based on their relevance to the neurobiology of Fe, Mn, Cu, and Zn 
and their implication in neurodegeneration. 

 

 

Real Time Polymerase Chain Reaction (RT-PCR) 

Relative gene expression was determined by RT-PCR on a 7500 Fast Real-Time 

PCR System from Applied Biosystems under the following conditions: incubation for two 

minutes at 50°C, polymerase activation for two minutes at 95°C, and 40 cycles of PCR 

(denature for three seconds at 95°C and anneal/extend for 30 seconds at 95°C).  Gene 

assays were supplied from Life Technologies (Carlsbad, CA, USA) and are listed in Table 

3.2.  Each assay was prepared for RT-PCR using Applied Biosystems™ Taqman™ Fast 

Advanced Master Mix.  Expression of each gene was normalized using 18S as the 

endogenous control.  Normalized cycle threshold (Ct) values were used to determine 

interactions and main effects of diet, sex, and strain.  The comparative Ct method was 

used to determine fold change in gene expression comparing LFD (control) to HFD for 

each sex and strain, or to compare males (control) to females. 
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Statistical Analysis 

The effects of diet, sex, and strain on trace element concentration and gene 

expression were assessed using a three-way analysis of variance (ANOVA).  Statistically 

significant interaction effects were evaluated further for simple main effects.  In cases of 

no interactions, statistically significant main effects are reported.  Differences between 

treatment groups at each level were determined by pairwise comparisons with a 

Bonferroni adjustment applied. Normality and homogeneity of variance of data were 

confirmed using the Shapiro-Wilk test and Levene’s test respectively.  Pearson 

correlations were used to determine relationships between final body weight and trace 

element concentrations or gene expression.  If equal variances could not be achieved to 

perform a three factor ANOVA, independent t tests were used to compare differences 

between groups.  Statistical significance was accepted at p<0.05 and differences were 

considered approaching significance between p=0.05-0.10.  Data are reported as means 

± standard error of the mean (SEM). Statistical analysis was performed using IBM SPSS 

Statistics 26. 

Results 

A HFD Causes Significant Weight Gain in Male and Female B6J and D2J Mice 

The 16-week HFD treatment led to significant weight gain for both strains and 

sexes.  At the start of the dietary treatment (approximately three weeks old), there 

were no significant differences between body weight when comparing the LFD group 

and the HFD group for each sex and strain (Table 3.3).  By the end of the 16-week diet 
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treatment (approximately 18 weeks old), there was a significant difference between 

body weight when comparing the same groups (Table 3.3).  Since there are natural body 

weight differences between the two sexes and strains, independent t tests were used 

for this comparison between diet treatment groups.                                                 

 
Table 3.3.  Initial and Final Body Weight 

 
Strain/Sex Initial Body Weight (3 weeks old) Final Body Weight (18 weeks old) 

 LFD HFD Significance LFD HFD Significance 

BM 14.30 ± 0.32 14.37 ± 0.54 p = 0.917 28.72 ± 0.41 48.16 ± 0.36 p < 0.0001 
BF 13.38 ± 0.38 12.80 ± 0.26 p = 0.231 21.58 ± 0.21 41.16 ± 1.38 p < 0.0001 

DM 13.14 ± 0.57 13.24 ± 0.38 p = 0.855 28.14 ± 0.78 43.91 ± 1.81 p < 0.0001 
DF 12.38 ± 0.30 11.51 ± 0.37 p = 0.089 23.26 ± 0.75 34.53 ± 1.45 p < 0.0001 

Body weight comparisons are between LFD groups and HFD groups for male and female B6J and D2J mice 
at the beginning and end of the 16-week diet treatment.  Data are represented as mean ± SEM.  Weight is 
in units of grams. BM = B6J males, BF = B6J females, DM = D2J males, DF = D2J females. 

 

Changes in body weight over the full 16-week diet treatment for each strain and 

sex are shown in Figure 3.1.  The percent weight gain over the 16-week diet treatment 

was significantly higher for mice in the HFD treatment groups compared to the LFD 

treatment groups for each strain and sex.  Since equal variances could not be achieved 

to run a three-factor ANOVA, comparisons between week-1 weight and week-16 weight 

were made using independent t tests.  B6J males fed a LFD gained 102% ± 17% grams in 

weight while the HFD group gained 246% ± 26% (t15=14.019, p < 0.0001).  For the B6J 

females, mice fed a LFD gained 62% ± 12% weight and mice fed a HFD gained 225% ± 

32% weight (t14=14.211, p < 0.0001).  D2J males fed a LFD gained 117% ± 27% weight 

while the HFD group gained 235% ± 27% weight (t15=8.951, p < 0.0001).  The D2J female 

group fed a LFD gained 88% ± 17% weight and the HFD group gained 181% ± 37% weight 
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(t14=6.693, p < 0.0001).  There was no significant difference between grams of food 

eaten when comparing the LFD and HFD groups, indicating that any alterations in trace 

element concentration would not be due to differences in dietary intake. 

 

 

Figure 3.1. Weight Gain by Strain.  Weight gain for B6J mice (A) and D2J mice (B) throughout the diet 
treatment.  Letter codes are as follows: M=male, F=female, L=low fat diet, H=high fat diet. Data are 
represented as mean ± SEM. ****p<0.0001.  Statistical significance refers to between-group differences. 

 
 
Female Mice Fed a HFD Have Increased Fe in the Striatum 

 There was a significant interaction between diet and sex on Fe in the striatum 

(F1,16= 4.584, p=0.048), with a simple main effect of diet for female mice (F1,16= 8.140, 

p=0.012), but not for males (F1,16= 0.031, p=0.863) (Figure 3.2A).  Female mice (B6J and 

D2J combined) fed a HFD show a 27% increase in Fe.  Pairwise diet comparisons for each 

strain and sex showed a significant increase in striatum iron by 27% for B6J female mice 

(F1,16= 7.064, p=0.017) and a 20% increase for D2J mice, although not statistically 

significant for D2J mice (F1,16= 1.896, p=0.188) (Figure 3.2B). 
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Figure 3.2.  The Effect of HFD on Striatum Fe in B6J and D2J Male and Female Mice.  A diet by sex 
interaction (A) and pairwise diet comparisons (B) both show an increase in striatum Fe in females.  Data 
are represented as mean ± SEM. *p<0.05. 

 
 

There were no statistically significant differences in Mn, Cu, or Zn in the striatum 

due to DIO.  However, a 20% increase in Mn in female B6J mice was approaching 

significance (F1,32= 2.845, p=0.101).  Trace element concentrations for all treatment 

groups in this study can be found in the appendix as Supplementary Table A2.  

 Midbrain Cu Decreases in D2J Mice Fed a HFD 

There was a significant main effect of diet on Cu in the midbrain (F1,30=13.645, 

p=0.001). When fed a HFD, D2J males had a 48% reduction in Cu compared to the LFD 

group (F1,30=7.759, p=0.009), and D2J females had a 37% reduction in Cu compared to 

the control group (F1,30=5.139, p=0.031) (Figure 3.3A).  Although diet did not have a 

significant impact on Fe, Mn, and Zn in the midbrain, the D2J strain had 24% higher Mn 

compared to the B6J strain (F1,32=6.380, p=0.017) (Figure 3.3B). 

  



52 
 

 
 
Figure 3.3. Midbrain Cu and Mn Concentrations in B6J and D2J Mice.  Midbrain Cu was reduced in male 
and female B6J and D2J mice fed a HFD (A). The effect of strain on midbrain Mn (B) shows elevated Mn 
levels in the D2J strain compared to the B6J strain.  Data are represented as mean ± SEM. *p<0.05, **p<0.01. 

 
 
B6J Mice Fed a HFD Have Increased Fe, Mn, Cu, and Zn in the Hippocampus, While D2J 
Mice Fed a HFD Show Opposite Trends in Zn Alterations 
 
 For the B6J strain, there was an overall trend of increasing Fe, Cu, Mn, and Zn 

concentration in the hippocampus for mice fed a HFD (Figure 3.4A-D), with a substantial 

increase in Cu by 39% in B6J female mice (F1,29 = 9.192, p=0.005) (Figure 3.4C).  

Additionally, there was a diet by strain interaction on Cu (F1,29 = 6.704, p=0.015) which 

showed a 27% increase in Cu for B6J mice fed a HFD compared to the control LFD (F1,29 = 

7.056, p=0.013), and an 11% decrease in Cu for D2J mice fed a HFD, although not 

statistically significant (F1,29 = 1.059, p=0.312).  There was a three-way interaction effect 

between diet, sex, and strain on Zn in the hippocampus (F1,28 = 9.849, p=0.004), which 

comprised a significant simple two-way interaction between diet and sex for the D2J 

strain (F1,28 = 12.281, p=0.002), but not for the B6J strain.  The simple main effects from 

this interaction show a significant 48% increase in Zn for D2J males fed a HFD (F1,28 = 
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5.443, p=0.027) and a significant 44% decrease in Zn for D2J females fed a HFD (F1,28 = 

7.045, p=0.013) (Figure 3.4D).   

 

 
 
Figure 3.4. Hippocampus Trace Elements.  The effect of diet, sex, and strain on hippocampus Fe (A), Mn 
(B), Cu (C), and Zn (D).  Data are represented as mean ± SEM. *p<0.05, **p<0.01 

 
 

It was also discovered that female mice have higher levels of Fe and Cu in the 

hippocampus, regardless of strain or diet.  Specifically, female mice had 13% higher 

levels of Fe (F1,30 = 6.750, p=0.014) and 16% higher levels of Cu (F1,29 = 5.384, p=0.028) in 

this brain region compared to male mice. 
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Male B6J Mice Fed a HFD Have Increased Fe and Mn in the Olfactory Bulb 

There was a significant two-way interaction between diet and sex on Fe in the 

olfactory bulb (F1,29= 6.241, p=0.018), with a simple main effect of diet in male mice only 

(F1,29= 9.169, p=0.005).  Male mice (B6J and D2J combined) fed a HFD diet had an overall 

increase in Fe by 41% while female mice showed a decrease in Fe by 6%.  The impact of 

diet on Fe in this brain region was greatest for B6J male mice, with an estimated 75% 

increase in Fe (F1,29 = 12.987, p=0.001) (Figure 3.5A).  There were no interaction effects 

for Mn in the olfactory bulb, however, there was a statistically significant increase in Mn 

by 50% in B6J male mice fed a HFD (F1,30 = 4.675, p=0.039) (Figure 3.5B).  Cu in the 

olfactory bulb was not significantly impacted by DIO.  However, the Cu/Zn ratio in B6J 

females was 24% higher in the HFD group.  This result was approaching statistical 

significance (F1,31= 2.937, p=0.097). 

 

 
 
Figure 3.5. Olfactory Bulb Iron and Manganese.  The effect of diet, sex, and strain on olfactory bulb Fe 
and Mn in male and female B6J and D2J mice.  Male B6J mice fed a HFD have increased levels of both Fe 
(A) and Mn (B).  Data are represented as mean ± SEM. *p<0.05, **p<0.01. 
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The Effect of HFD on Olfactory Bulb Zn Shows Opposite Trends by Strain and Sex 

An evaluation of Zn in the olfactory bulb revealed a significant three-way 

interaction between diet, sex, and strain on Zn concentration (F1,30 = 6.329, p=0.017) 

(Figure 3.6).  Zinc increased by 21% in B6J male mice fed a HFD, but decreased by 28% in 

B6J female mice.  The opposite trend occurred in D2J mice, with a 26% decrease in Zn 

for D2J male mice fed a HFD, but a 17% increase for D2J females.  While this three-way 

interaction was statistically significant, individual differences based on pairwise diet 

comparisons were not significantly different due to high variance. 

 

 
 
Figure 3.6. Olfactory Bulb Zinc Three-Way Interaction.  Three-way interaction between diet, sex, and 
strain on Zn in the olfactory bulb of male and female B6J and D2J mice.  
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Body Weight is Correlated to Striatal Fe and Hippocampal Zn in Females 

 The relationship between final body weight and trace element concentration 

was measured using the Pearson product-moment correlation.  In the striatum, there 

was a strong positive correlation between Fe and female body weight (R=0.70, p=0.011) 

Figure 3.7A).  In the hippocampus, there was a strong negative correlation between Zn 

and D2J female body weight (R= -0.80, p=0.009) (Figure 3.7B).  The corresponding 

coefficient of determination (R2) for each correlation is shown in Figure 3.7.  In the 

striatum of female B6J and D2J mice, 49% of the variance in Fe concentration can be 

explained by body weight.  In the hippocampus, 64% of the variance in Zn for D2J 

females can be explained by body weight. 

 

 

Figure 3.7. Final Body Weight and Trace Element Concentration Correlations.  Body weight after the 16-
week diet treatment is positively correlated to striatum Fe in female mice (A) and negatively correlated to 
hippocampus Zn in D2J female mice (B).  
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D2J Female Mice Fed a HFD Have Increased Expression of Ceruloplasmin in the Striatum 

 The influence of diet, sex, and strain on gene expression in the striatum was 

evaluated for DMT1, IRP1, ceruloplasmin, and alpha synuclein.  The expression of 

ceruloplasmin mRNA in the striatum was significantly impacted by HFD  (Figure 3.8A).  

Specifically, ceruloplasmin was upregulated 1.6-fold for female D2J mice fed a HFD 

(F1,30=6.511, p=0.016) compared to mice fed a LFD.  The influence of diet was not 

significant for B6J mice or D2J male mice.  When evaluating sex and strain as factors that 

may influence gene expression, there was a significant sex difference in mRNA 

expression for DMT1, alpha synuclein, and ceruloplasmin in the striatum.  Compared to 

B6J males, female B6J mice had 1.3-fold increased expression of DMT1 mRNA 

(F1,30=7.848, p=0.009) and nearly 20-fold decreased expression of alpha synuclein mRNA 

(F1,30=916.922, p<0.0001).  While the sex effect was not significant in D2J mice for DMT1 

and alpha synuclein, there was a significant sex effect in the D2J strain for the 

expression of ceruloplasmin.  Compared to D2J males, ceruloplasmin expression in D2J 

females is 1.4-fold less (F1,30=11.685, p=0.002).  When examining the impact of sex by 

diet for ceruloplasmin, this repression was only significant for female D2J mice fed a 

LFD, with a 1.9-fold reduction in mRNA compared to males (F1,30=13.014, p=0.001).  The 

effect of sex on DMT1 and alpha synuclein expression was not analyzed separately by 

diet since there was no diet effect for either gene.  IRP1 showed no significant 

difference in mRNA expression by diet, sex, or strain.  Gene expression data for the 

striatum is included in the appendix as Supplementary Table A3.  
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DIO Significantly Impacts Gene Expression in the Hippocampus of B6J Male Mice 

 There were significant three-way interaction effects between diet, sex, and 

strain for the mRNA expression of DMT1 (F1,30=31.955, p<0.0001) , ceruloplasmin 

(F1,32=4.629, p=0.039), alpha synuclein (F1,28=6.988, p=0.013), and APP (F1,30=31.322, 

p<0.0001).  The impact of the HFD on the expression of these genes is shown in Figure 

3.8B.  For DMT1, there was an upregulation by 5-fold for B6J male mice fed a HFD 

(F1,30=77.306, p<0.0001), but only a slight downregulation for D2J male mice, and no 

change in expression for females of either strain due to diet.  For ceruloplasmin, there 

was a downregulation of mRNA expression in B6J male mice fed a HFD by 1.5-fold 

(F1,32=6.911, p=0.013), a slight induction for D2J male mice, and no change for females.  

For alpha synuclein, both male and female B6J mice fed a HFD showed a significant 

upregulation in mRNA, with a 7-fold increase in B6J males (F1,28=41.805, p<0.0001) and a 

1.7-fold increase for B6J females (F1,28=4.486, p=0.043).  The expression of alpha 

synuclein in D2J mice was not impacted by the HFD.  For APP, only the B6J male mice 

were significantly impacted by the HFD, with a 10-fold upregulation (F1,30=96.038, 

p<0.0001).  Female mice of both strains showed a slight upregulation in APP.  Although 

diet did not have an impact on any of the mice for the expression of CTR1 (Figure 3.8B), 

there was a significant two-way interaction between sex and strain (F1,32=21.415, 

p<0.0001) for the expression of this gene.  The effect of strain was only significant for 

females, with D2J female mice showing a 2-fold decrease in expression compared to 

female B6J mice (F1,32=28.570, p<0.0001).  The effect of sex was only significant in the 
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D2J s, with D2J females showing a 2-fold decrease in expression compared to D2J males 

(F1,32=23.768, p<0.0001).  Gene expression data for the hippocampus is included in the 

appendix as Supplementary Table A4. 

DIO Significantly Impacts Gene Expression in the Olfactory Bulb of D2J Male Mice 

 The expression of mRNA in D2J male mice was influenced by exposure to a 

chronic high fat diet.  DMT1 mRNA expression increased by 2-fold (F1,23=4.608, p=0.043), 

alpha synuclein was upregulated by 1.5-fold (F1,22=4.805, p=0.039), and APP was 

upregulated by nearly 3-fold ((F1,23=7.436, p=0.012) (Figure 3.8C).  Each gene measured 

in this brain region also showed a significant sex by strain interaction effect.  For DMT1, 

the effect of sex was significant for B6J mice only (F1,23=23.708, p<0.0001), with B6J 

females expressing 3-fold higher mRNA compared to B6J males.  Alpha synuclein 

showed a similar pattern of a sex effect that was evident in B6J mice only (F1,22=32.455, 

p=0.0001), with B6J females expressing 2.4-fold higher mRNA compared to B6J males.  

The sex by strain interaction was different for APP mRNA expression, with a significant 

sex effect for D2J mice only (F1,23=158.745, p<0.0001).  In this case, D2J males had a 23-

fold higher expression level compared to D2J females.  Gene expression data for the 

olfactory bulb is included in the appendix in Supplementary Table A5. 
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Figure 3.8.  Gene Expression Related to Trace Element Regulation and ND.  Fold change comparisons by 
diet for these genes are shown for the striatum (A), hippocampus (B), and olfactory bulb (C). The LFD 
mRNA expression was established as the control (set to 1).  Fold change compared to each control was 

determined using the 2-Ct method. Data are represented as mean ± SEM. *p<0.05, ****p<0.0001. 
DMT1=divalent metal transporter 1, IRP1=iron regulatory protein 1, Cp=ceruloplasmin, aSyn=alpha 
synuclein, CTR1=copper transporter protein 1, APP = amyloid precursor protein, BM=B6J males, BF=B6J 
females, DM=D2J males, DF=D2J females. 
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Body Weight is Correlated with mRNA Expression of DMT1, Alpha Synuclein, and APP in 
Female D2J Mice 
 
 To understand the relationship between body weight and gene expression in the 

brain, Pearson correlations were evaluated using the final weight of each mouse after 

the 16-week diet treatment with delta Ct values from the RT-PCR experiment.  Since 

there is an inverse relationship between delta Ct values and gene expression, positive R 

values indicate a decrease in mRNA expression and negative R values indicate an 

increase in mRNA expression.  Correlation data with statistical significance for DMT1, 

alpha synuclein, and APP in the striatum, hippocampus, and olfactory bulb for both 

strains and sexes are summarized in Table 3.4.  Correlations were only statistically 

significant for D2J females after examining scatter plots for linearity.  In the striatum, 

DMT1 expression increases as body weight increases for D2J females (p=0.001).  In the 

hippocampus, as body weight increases for D2J females, gene expression increases for 

DMT1 (p=0.042), alpha synuclein (p=0.045), and APP (p=0.002).  Furthermore, in the 

striatum there were no significant correlations found for IRP1 or ceruloplasmin with 

body weight.  In the hippocampus, there were no significant correlations found for CTR1 

or ceruloplasmin with body weight. 
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Table 3.4.  Correlation Between Final Body Weight and Gene Expression  

Gene Strain/Sex Striatum Hippocampus Olfactory Bulb 
  R p R p R p 

DMT1 BM 0.38 0.283 -0.86 0.026 0.43 0.291 
BF 0.30 0.396 -0.04 0.922 -0.06 0.885 

DM 0.02 0.973 0.60 0.088 -0.89 0.018 
DF -0.91 0.001 -0.65 0.042 -0.44 0.277 

aSyn BM 0.47 0.168 -0.92 0.004 0.88 0.009 
BF 0.65 0.044 -0.63 0.072 0.21 0.619 

DM 0.10 0.824 -0.17 0.658 -0.77 0.044 
DF 0.22 0.577 -0.64 0.045 -0.24 0.567 

APP BM   -0.92 0.001 -0.040 0.925 
BF   -0.58 0.080 0.149 0.726 

DM   0.33 0.382 -0.984 0.0004 
DF   -0.84 0.002 0.134 0.752 

Positive correlations indicate a decrease in gene expression and negative correlations indicate an increase 
in gene expression.  Blue text indicates no correlation due to clustering of data or nonlinear scatterplot.  
Red text indicates a statistically significant correlation.  BM = B6J males, BF = B6J females, DM = D2J 
males, DF = D2J females, DMT1 = divalent metal transporter, aSyn = alpha synuclein, APP = amyloid 
precursor protein. 

 
 

Discussion 

The goal of our study was to understand the impact of DIO on trace element 

homeostasis and mRNA gene expression in multiple brain regions, and to identify 

interactions between diet, sex, and strain.  Dysregulation of trace element homeostasis 

and gene expression in the brain has been associated with a number of NDs, such as 

Alzheimer’s disease and Parkinson’s disease (Cicero et al., 2017; Cristóvão et al., 2016; 

Ferreira and Gahl, 2017; Hwang et al., 2017).  We have shown here that DIO disrupts Fe, 

Mn, Cu, and Zn concentrations and mRNA gene expression in the brain in a sex and 

strain-dependent fashion.  Additionally, we found that obesity-induced alterations in 

trace element concentrations and gene expression were brain region-dependent, which 
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is consistent with our previous work (Han et al., 2019; Liu et al., 2016).  The impact of 

DIO on each brain region was unique, ranging from simple cases of no effect (e.g., 

hippocampus Mn) to complex three-way interactions between diet, sex, and strain (e.g., 

olfactory bulb Zn).  Although we hypothesized that the factor of sex would be more 

prominent in the B6J strain based on our previous pilot study, we found that sex was 

often a critical factor for both strains.  We also hypothesized that Fe, Zn and alpha 

synuclein mRNA expression would increase in the olfactory bulb due to DIO.  We found 

that Fe was in fact elevated, but for males only.  The Zn outcome in this brain region 

depended on both sex and strain, and alpha synuclein was upregulated only in D2J 

males.  As DIO provoked differerent responses in trace element homeostasis and gene 

expression based on sex and strain, we speculate that these biological factors are 

instrumental in elucidating the precise mechanisms of neurodegeneration, with 

potential for targeted  therapeutics based on sex or genetic profile.  Our research 

provides a snapshot of DIO effects at a particular timepoint in mice (18 weeks old), and 

lays the foundation for future sex and strain based DIO studies.   

Effect of HFD on DIO 

Our experimental design included male and female B6J and D2J mouse strains 

which were randomly assigned to a LFD or HFD for the duration of the study.  As with 

our previous studies, there was a marked difference in the volume of adipose tissue 

while harvesting organs from our mice, with HFD mice consistently exhibiting greater 

volumes of fat tissue.  Males and females from both the B6J and D2J strains fed a HFD 
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had significantly higher body weight at the end of the diet treatment (Figure 3.1).  This 

weight gain corroborates previous reports of DIO in B6J and D2J mouse strains 

(Alexander et al., 2006; Montgomery et al., 2013; West et al., 1992).  In contrast, there 

are previous reports that indicate D2J mice as responding less efficiently to a HFD, 

including lack of weight gain (Kirk et al., 1995), delayed weight gain (Norris et al., 2016), 

or similar weight gain compared to a control LFD (Funkat et al., 2004).  These studies 

either initiated their diet treatments later than three weeks of age (typically 8-10 weeks 

old), or used a fat source other than lard in their HFD.  Our male and female D2J mice 

fed a HFD all gained significantly more weight compared to mice fed a LFD, likely due to 

early initiation of the HFD treatment at approximately three weeks old and the 

incorporation of 60% lard as the source of fat.  The DIO model used in our study allowed 

us to fully determine the influence of sex and genetics on brain regional trace element 

homeostasis and gene expression in the obese state. 

Effect of DIO in Striatum 

In the striatum, a brain region involved in controlling movement, responding to 

environmental stimuli (Rolls, 1994), and learning (Graybiel and Grafton, 2015), we 

report increased concentrations of Fe in female mice (Figure 3.2A) and upregulated 

gene expression of ceruloplasmin in D2J female mice (Figure 3.8A) due to DIO. To the 

best of our knowledge, our study is the first to show that a persistent HFD is associated 

with an accumulation of Fe in the female striatum.  This significant increase in Fe for 

females strongly supports the role of DIO in the disruption of trace element homeostasis 
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(Figures 3.2A, 3.7A).  While both the B6J and D2J female strains did show an increase in 

Fe, the results were more significant in the B6J strain (Figure 3.2B).  Previous reports 

comparing C57BL/6 and DBA/2 strains have shown differences in biological response 

due to Fe-rich or Fe-poor diets.  For example, in a study using male C57BL/6Ibg and 

DBA/2JIbg strains fed a high-Fe diet for four months, the C57BL/6Ibg strain experienced 

increased hepatic lipid hyrdoperoxide levels and increased glutathione S-trasnferase 

activity compared to the DBA/2JIbg strain (Tjalkens et al., 1998).  In a study using male 

and female mice from the BXD recombinant inbred strains and their parental strains 

(B6J and D2J) fed an Fe-deficient diet for approximately 3.5 months, there was a 

significant diet by strain interaction on Fe concentrations in the striatum and midbrain 

ranging from no change to 37% change across strains (Jellen et al., 2012). In contrast to 

these findings in females, we found no significant change in striatum Fe status in B6J 

males, which is consistent with our previous work using exclusively male B6J mice (Han 

et al., 2019).  Interestingly, it has been reported that Fe can accumulate in the striatum 

of multiple sclerosis patients due to inflammation of brain tissue and the attraction of 

Fe-rich microglia (Mezzaroba et al., 2019).  During a state neuroinflammation, microglia 

become activated to sequester extracellular iron to protect surrounding tissues, thereby 

increasing intracellular iron in this mode of defense (Nnah and Wessling-Resnick, 2018).  

Triggers for neuroinflammation can include proinflammatory cytokines, pathogens 

(Nnah and Wessling-Resnick, 2018), or protein deposits such as beta amyloid (Gold and 

El Khoury, 2015) or alpha synuclein (Ferreira and Romero-Ramos, 2018; Q.-S. Zhang et 
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al., 2017).  Systemically, it has been reported that DIO elicits a redistribution of Fe 

(increased Fe in adipose tissue and decreased Fe in liver), accompanied by upregulation 

of inflammatory cytokine and reduced ferromagnetic adipose tissue macrophages (Orr 

et al., 2014).  As obesity is related to a heightened state of inflammation, it is possible 

that the increase in Fe that we see in our study may be related to this attraction and 

activation of microglia, with females being more susceptible than males for reasons that 

should be futher investigated.   

Based on these striatal Fe alterations in females, we predicted that the gene 

expression of DMT1 or IRP1 would be impacted by DIO in the female striatum.  Although 

ANOVA showed no difference in mRNA expression of either gene due to DIO (Figure 

3.8A), there was a significant positive correlation between body weight and DMT1 

mRNA expression in D2J females (Table 3.4).  Furthermore, there was a significant sex 

effect for the expression of DMT1, with B6J females expressing 1.3-fold higher levels of 

this gene compared to males.  DMT1 is a ubiquitous transporter for several trace 

elements, including Fe, Mn, and Cu (Mezzaroba et al., 2019; Skjørringe et al., 2015).  The 

higher expression levels of DMT1 in B6J females may explain the susceptibility of female 

mice to increases in striatal Fe particularly due to HFD.  While the specific mechanism 

driving HFD-associated increased Fe is unknown, these data provide a platform to direct 

future studies designed to identify the mechanism(s).  Our previous study examining 

DIO in B6J males looked at an array of Fe-regulating proteins such as hepcidin, 

ferroportin, transferrin receptor and ferritin and found no effect of HFD on any of them.  
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Due to limited tissue in the current study, we selected DMT1, IRP1, and ceruloplasmin 

based on their contribution to Fe homeostasis (Lu et al., 2017; Skjørringe et al., 2015; 

Zhou and Tan, 2017), as well as their relationship to other trace elements (Cu, Mn, and 

Zn) (Han et al., 2016; Jursa and Smith, 2009; Martelli and Moulis, 2004).  Additionally, 

we evaluated alpha synuclein in the striatum, as this protein is known to aggregate with 

Fe during the process of neurodegeneration (B. Chen et al., 2019).  Consistent with our 

previous work with male B6J mice fed a HFD (Han et al., 2019), alpha synuclein gene 

expression in males was not impacted in the striatum.  Our data support that future 

studies looking at the impact of DIO on brain iron metabolism should include both sexes 

and a wider array of Fe-regulating genes to further our understanding of Fe-related 

neurodegenerative processes. 

The gene expression of ceruloplasmin was also evaluated in the striatum.  

Ceruloplasmin is a Cu-dependent protein that acts as a ferroxidase, enabling cellular 

export of Fe into the blood via the binding to transferrin in the Fe3+ oxidation state 

(Hellman and Gitlin, 2002).  This protein also acts as an oxidizing agent for Mn (Hellman 

and Gitlin, 2002; Jursa and Smith, 2009).  Although DIO did not have an impact on the 

gene expression of DMT1 or IRP1 in the striatum, we found that DIO disrupted mRNA 

expression of ceruloplasmin in D2J female mice (Figure 3.8A), with a statistically 

significant upregulation by 1.6-fold.  Previous studies have shown evidence of 

ceruloplasmin upregulation associated with neurodegenerative disease in humans and 

rodents.  For example, postmortum brain tissue ceruloplasmin levels were elevated in 
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the striatum of Alzheimer’s disease patients compared to young adult and elderly 

controls (Loeffler et al., 1996).  Moreover, ceruloplasmin mRNA and protein was 

upregulated in the retinas of glaucomatous DBA/2 mice, but not C57BL/6 control mice 

(Stasi et al., 2007).  In this same study, ceruloplasmin concentration was elevated in 

human eye tissue of patients with glaucoma.  Further studies are needed to determine if 

the induction of ceruloplasmin that we found in the striatum of D2J females with DIO 

could impact Fe or Mn homeostasis with age and continued HFD feeding, or if this 

upregulation is associated with neurodegeneration.   

In addition to the sex effect that we found on DMT1 mRNA expression, there 

was also a sex effect for the expression of ceruloplasmin and alpha synuclein.  D2J 

females expressed 1.4-fold lower levels of ceruloplasmin than D2J males, and B6J 

females expressed 20-fold lower levels of alpha synuclein compared to male B6J mice.  

Collectively, these results show that the impact of DIO on trace element homeostasis 

and gene expression in the striatum is influenced by sex and strain.  Furthermore, even 

when diet had no impact on biochemical parameters, the sex and strain differences that 

we have discovered here are important to consider when studying the 

pathophysiological mechanisms of ND. 

Effect of DIO in Midbrain 

The midbrain is of particular interest for the study of Parkinson’s disease, as this 

brain region is known to accumulate Fe and alpha synuclein as neurodegeneration 

progresses (P. Chen et al., 2019; Lingor et al., 2017).  Furthermore, Cu depletion in the 
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midbrain is a hallmark of this disease (Dusek et al., 2015; Liddell and White, 2018).  In 

our previous work, we found that both Fe and alpha synuclein increased in the midbrain 

of B6J male mice fed a HFD (Han et al., 2019).  In our current study using male and 

female B6J and D2J mice, we report that Cu was significantly reduced in male and 

female D2J mice, but only slightly reduced in B6J mice (Figure 3.3A).  This decline in Cu is 

consistent with characteristics of Parkinson’s disease, supporting the role of DIO as a 

potential trigger for trace element dysregulation and neurodegeneration. Although Cu 

homeostasis was altered, the mice in our study did not show significant changes in Fe, 

Mn, or Zn due to DIO.  This may be due to the age of our mice (18 weeks old) at the time 

of trace element analysis, compared to our previous study that examined mice at 24 

weeks old.  Fe is known to accumulate in the brain with normal aging and during cases 

of neurodegeneration (Ward et al., 2014), and we propose that DIO can exacerbate this 

accumulation with time.  Since mRNA concentrations were unusually low in our 

midbrain samples, gene expression data were limited to males only.  We found that 

ceruloplasmin and alpha synuclein gene expression was slightly upregulated due to DIO, 

however these differences were not statistically significant.  Gene expression data for 

the midbrain is included in the appendix as Supplementary Table A6.  Taken together, 

our trace element and gene expression results show that at 18 weeks of age, B6J and 

D2J mice fed a HFD do not yet experience significant Fe accumulation nor alpha 

synuclein induction in the midbrain.  Additionally, the substantial Cu reductions in D2J 

mice due to DIO emphasize the importance of evaluating genetics as a factor in trace 
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element dysregulation, and indicate that D2J mice may be impacted at an earlier age 

compared to the B6J strain.   

Effect of DIO in Hippocampus 

Several interactions between diet, sex, and strain on trace element homeostasis 

were discovered in the hippocampus.  The hippocampus is a brain region involved in 

learning, memory, and cognition (Toda et al., 2019).  Alterations in Cu and Zn due to DIO 

were more prevalent in this brain region compared to Fe and Mn.  For example, female 

B6J mice fed a HFD had a significant 39% increase in Cu (Figure 3.4C), and there was a 

three-way interaction between diet, sex, and strain for Zn, affecting mainly the D2J 

strain (Figure 3.4D).  The effect of DIO revealed a striking difference between Zn levels 

within the D2J strain.  D2J males had a significant 48% increase in Zn, while females had 

a significant 44% decrease in Zn (Figure 3.4D).   Additionally, D2J female body weight 

was negatively correlated to Zn concentration (Figure 3.7B).  In the literature, there are 

several conflicting reports of Zn concentration in the hippocampus of Alzheimer’s 

disease patients, with some showing increases and others reporting decreases (Panayi 

et al., 2002).  We speculate that the sex-dependent dysregulation of Zn could be due to 

altered gene expression provoked by DIO.  In a study that evaluated Zn-related gene 

expression patterns in the cortex of post mortem tissue, ZNT3 and ZNT4 mRNA 

expression was downregulated, while ZIP1, ZIP9, and ZIP3 were upregulated in brain 

tissue of obese individuals (Olesen et al., 2016).  Additionally, BMI was correlated with 

repression of both ZNT1 and ZNT6.  This study also measued the effects of sex and race, 
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and found that men had a higher expression of ZNT4, women had lower expression of 

ZIP1, and African Americans had higher expression of ZIP14 compared to Caucasians.   

Although these results are for cortex, it is possible that Zn dysregulation in the 

hippocampus may also depend on ZIP and ZNT gene expression.  The activity of Cu-Zn 

superoxide dismutase (SOD) in postmortem brain tissue of Alzheimer’s patients was also 

found to be sex-dependent (Schuessel et al., 2004).  Cu-Zn SOD activity was higher 

overall in Alzheimer’s brain tissue versus control tissue, but females with Alzheimer’s 

disease had higher activity of Cu-Zn SOD than males with Alzheimer’s.  No sex difference 

in Cu-Zn SOD activity was found in the control samples.  Dysregulation of Cu and Zn 

homeostasis is a hallmark of Alzheimer’s disease, as both ions can interact with beta 

amyloid protein in the formation of senile plaques (Mezzaroba et al., 2019; Sensi et al., 

2018), occurring mainly in the hippocampus (Cristóvão et al., 2016; Deibel et al., 1996; 

Tamano and Takeda, 2019).  In the current study, we found a diet by strain interaction 

for Cu in this brain region, with B6J mice showing an increase in Cu while D2J mice 

showed a decrease in concentration.  These strain differences suggest that genetics 

have a strong influence on biochemical response to DIO, and may help to explain the 

disparity in results regarding Cu increases or decreases reported in the literature 

(Mezzaroba et al., 2019).  Furthermore, the opposite effects in Zn concentration for D2J 

males and females emphasize that sex is a critical factor when studying the impact of 

DIO on trace element dysregulation. 
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Gene expression in the hippocampus was also influenced by diet, sex, and strain.  

Based on our results of increased Cu levels, we speculated that there may be 

disturbances in CTR1 expression, a major transporter for Cu in the brain (Sharp, 2003).  

Contrary to our prediction, there was no impact of DIO on CTR1 expression (Figure 

3.8B), however, there were significant three-way interactions between diet, sex, and 

strain for the mRNA expression of ceruloplasmin, DMT1, alpha synuclein, and APP.  

These interactions showed a greater impact on males compared to females.  For 

example, the expression of DMT1 and ceruloplasmin had opposite effects, with DMT1 

expression increasing for B6J males but decreasing for D2J males, while ceruloplasmin 

showed a decrease in expression for B6J males and an increase in D2J males.  Expression 

of these two genes for females of both strains was unaffected by DIO.  This leads us to 

infer that the increase in Cu for B6J females that we found is not directly related to the 

mRNA gene expression of DMT1 or ceruloplasmin.  Future studies will include protein 

expression measurement to investigate other potential mechanisms of Cu dysregulation 

in B6J female mice.  For alpha synuclein, there was an upregulation for both male and 

female B6J mice due to DIO (Figure 3.8B), but no change in D2J mice, highlighting the 

influence of genetics on gene expression.  In the hippocampus, alpha synuclein can form 

protein aggregates called Lewy bodies, which are characteristic of dementia and 

Alzheimer’s disease (Adamowicz et al., 2017).  Our results suggest that the B6J strain is 

more susceptible to Lewy body formation in the hippocampus when fed a HFD.  The 

effect of DIO on APP expression had the most significant impact on B6J males, with a 10-
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fold increase in mRNA expression (Figure 3.8B).  Amyloid precursor protein (APP) is a 

transmembrane protein associated with several biological functions, including cellular 

proliferation and differentiation, cell-fate specification, and neurite outgrowth (S. Wang 

et al., 2016).  The overexpression of APP, however, has been implicated in the 

progression of Alzheimer’s disease (Roher et al., 2017) since the senile plaques in this 

disease consist mainly of beta amyloid protein, which is derived from the proteolytic 

cleavage of APP.  Disruptions in normal gene expression of APP can therefore lead to the 

potential build-up of beta amyloid, promoting the conditions for neurodegeneration.  

The hippocampus is particularly vulnerable to beta amyloid protein aggregation and 

senile plaque formation (Zhang et al., 2011).  Our results are consistent with other DIO 

studies involving male B6J mice fed a HFD that found either beta amyloid accumulation 

(Busquets et al., 2017) or APP induction (Puig et al., 2012) in response to DIO.   

Overall, our findings in the hippocampus demonstrate that sex and strain 

strongly influence the impact of DIO on Cu and Zn homeostasis and gene expression 

alterations in DMT1, ceruloplasmin, alpha synuclein, and APP.  Sex differences were 

prominent in the D2J strain for Zn, while strain differences are highly pronounced for 

DMT1 and ceruloplasmin expression in males.  Genes related to neurodegenerative 

pathologies, alpha synuclein and APP, show a dramatic upregulation only in male B6J 

mice and corroborate with previous studies in male B6 mice (Busquets et al., 2017; Puig 

et al., 2012).  These data provide a foundation for future studies examining sex and 

strain influences on the effects of DIO and neurodeneration.    
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Effect of DIO in Olfactory Bulb 

The impact of diet, sex, and strain was also evident in the olfactory bulb, a brain 

region involved in the detection of odor (Nagayama et al., 2014).  Compared to other 

brain regions, it has less protection by the blood brain barrier and more exposure to the 

environment through the nasal cavity, providing a potential route for toxins, or a 

beneficial entry for therapeutics (Crowe et al., 2018).  In our study, we found a diet by 

sex interaction for Fe that showed an increase in Fe in males but a decrease in Fe in 

females due to DIO.  The impact of DIO was greatest in B6J males, which showed a 75% 

higher concentration of Fe (Figure 3.5A) and a 50% elevation in Mn (Figure 3.5B) in the 

HFD group versus the LFD group.  Although there were no differences in Cu 

concentrations in the olfactory bulb due to DIO, the Cu/Zn ratio for female B6J mice was 

24% higher for the HFD group compared to the LFD group and was trending toward 

statistical significance (p=0.097).  Elevated blood Cu/Zn ratios have been reported 

previously in cases of autism spectrum disorders (Bjørklund, 2013), aging (Giacconi et 

al., 2017), and inflammation (Malavolta et al., 2015).  For Zn, there was a significant 

three-way interaction between diet, sex, and strain in the olfactory bulb (Figure 3.6).  

Concentrations of Zn were increased in B6J males and D2J females but were decreased 

in B6J females and D2J males by a similar magnitude.  Interestingly, the Zn results in D2J 

mice in the olfactory bulb were opposite of the Zn results in the hippocampus (Figure 

3.4D).  It is possible that Zn may be redistributed within brain regions during obesity-

induced dysregulation, causing increases in one region and decreses in others.  This 
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highlights the importance of evaluating individual brain regions versus whole brain 

analysis.  Our trace element results were similar in some aspects to a study using post-

mortem male and female human brain tissue, which found that Fe concentration was 

25% higher in Parkinson’s disease olfactory bulbs compared to controls (Gardner et al., 

2017).  In another study using brain tissue from Alzheimer’s disease patients, Fe and Zn 

were significantly elevated in the olfactory bulb (Samudralwar et al., 1995).  Collectively, 

these studies demonstrate that DIO and common neurodegenerative diseases may be 

associated with trace element dysregulation in the olfactory bulb. 

Alterations in gene expression due to DIO in the olfactory bulb were assessed for 

DMT1, alpha synuclein, and APP (Figure 3.8C).  Considering the significant Fe and Mn 

alterations due to DIO found in male B6J mice, we expected to find an impact on gene 

expression in B6J males as well.  Unexpectedly, only the D2J males were highly 

impacted, with a significant upregulation in all three genes due to DIO.  Previous studies 

have also shown B6 and D2 strain differences in APP and DMT1 expression.  For 

example, one study found that under conditions of stress, APP mRNA in the 

hypothalamus was upregulated in D2J mice but not in B6J mice (Tsolakidou et al., 2010).  

Another study found that APP protein levels were upregulated in D2J glaucomatous 

retinas, but not in B6 controls (Goldblum et al., 2007).  In the duodenum, there were 

significant diet by strain interactions on the mRNA expression of DMT1 for D2 and B6 

mice which showed that mRNA was upregulated more in D2 mice fed an Fe-deficient 

diet compared to B6 mice, while an Fe-supplemented diet resulted in a downregulation 
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of DMT1 in D2 mice, but had no effect on B6 mice (Dupic, 2002).  In future studies, we 

will examine both mRNA and protein expression together to understand the 

downstream effects of gene expression alterations.  In the current study, the increase in 

Fe that we found in B6J males in the olfactory bulb were not associated with an 

induction of alpha synuclein mRNA in B6J males.  Although Fe overload is known to 

promote alpha synuclein aggregation (B. Chen et al., 2019), and alpha synuclein 

upregulation has been associated with synucleinopathies (Tagliafierro and Chiba-Falek, 

2016), other studies have shown that alpha synuclein mRNA expression is unchanged or 

reduced in Parkinson’s disease brains, with Fe inducing alpha synuclein protein synthesis 

at the translational level rather than the transcriptional level (Febbraro et al., 2012; 

Zhou and Tan, 2017).  This helps to explain why we did not see an upregulation of alpha 

synuclein mRNA in the olfactory bulb of B6J mice fed a HFD, even though Fe was 

elevated in this brain region. 

To summarize our results in the olfactory bulb, we found that DIO led to 

alterations in trace element homeostasis predominantly in male B6J mice, and gene 

expression dysregulation mainly in male D2J mice.  While these changes in 

neurobiological conditions due to DIO may not be related, our results show that DIO has 

the potential to disrupt homeostasis by various methods in the olfactory bulb, with 

effects that depend on sex and genetics. 
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Conclusion 

In conclusion, our study provides unique information regarding the impact of 

DIO on trace element homeostasis and mRNA gene expression in multiple brain regions, 

with sex and genetic factors influencing the outcome.  In the striatum, Fe was 

significantly increased in B6J females and ceruloplasmin was significantly upregulated in 

D2J females.  In the midbrain, there was a substantial decrease in Cu for the D2J strain 

only.  In the hippocampus, there was a dramatic upregulation of DMT1, alpha synuclein, 

and APP for B6J males.  Moreover, there was an opposite trend of Zn dysregulation in 

this brain region for the D2J strain that showed a significant increase in Zn for males but 

a major decrease in Zn for females.  In the olfactory bulb, Fe and Mn were significantly 

increased for B6J males and there was a significant induction of DMT1, alpha synuclein, 

and APP for D2J males.  A major strength of our study includes the use of two murine 

strains and both sexes, allowing for the evaluation of sex and genetics as biological 

variables.  Additionally, we examined the effects of DIO in a brain region-specific 

manner.  Limitations of our study include the lack of protein expression data and mRNA 

expression data for the midbrain.  Although we processed the midbrain to collect mRNA, 

the concentrations were too low for RT-PCR analysis for most samples.   

Overall, our findings provide evidence that sex and strain factors influence the 

effect of DIO on the brain.  While we hypothesized that the effect of sex would be 

greater in the B6J strain, we found that sex was often a significant factor for both 

strains.  Our hypothesis for elevated Fe levels and alpha synuclein gene expression in 
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the olfactory bulb was confirmed in male B6J mice and male D2J mice respectively.  

Consistent with our previous work (Han et al., 2019; Liu et al., 2016), we found that 

trace element dysregulation and gene expression alterations due to DIO were brain 

region-specific.  The biochemical disruptions that we discovered in each brain region 

often differed in magnitude and direction depending on sex and strain, highlighting the 

important influence of sex and genetics on the impact of DIO in the brain.  Considering 

the staggering escalation of obesity prevalence for males and females with various 

genetic backgrounds, these data have important health implications regarding the 

development of effectively tailored therapeutics. 
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CHAPTER IV 
 

THE IMPACT OF SEX AND STRAIN ON THE DYSREGULATION OF BEHAVIOR, DOPAMINE 
BIOLOGY, AND GENE EXPRESSION IN THE BRAIN DUE TO DIET-INDUCED OBESITY 

 
 

Abstract 

Obesity is linked to several adverse behavioral and biochemical changes, such as 

reduced physical activity, increased anxiety, and compromised memory.  Furthermore, 

diet induced obesity (DIO) can lead to gene expression alterations in the brain and 

dysregulated dopamine biology.  The objective of our study was to determine the 

impact of DIO on behavior, dopamine biology, and gene expression in male and female 

C57BL/6J (B6J) and DBA/2J (D2J) mice.  Mice were fed either a low fat diet with 10% kcal 

from fat or a high fat diet (HFD) with 60% kcal from fat for 16 weeks.  Behavior 

assessments demonstrated that B6J male mice fed a HFD were impacted the most 

through their display of significantly reduced locomotion, reduced rate of habituation to 

a novel environment, lack of motivation, and elevated anxiety levels in the open field.  

Dopamine clearance in the dorsal striatum was significantly reduced in both male and 

female D2J mice due to DIO, while in the nucleus accumbens core, reductions in 

dopamine clearance occurred for male mice of both strains fed HFD.  Our evaluation of 

mRNA gene expression showed that dopamine receptor D2 (DRD2) was significantly  

upregulated in the striatum of B6J males.  In the olfactory bulb, DIO caused a significant
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upregulation of DRD2 and tyrosine hydroxylase in D2J males, and an induction of brain-

derived neurotrophic factor expression in B6J females.  In summary, our study provides 

evidence for important sex and strain differences on the impact of DIO-induced 

behavior alterations and neurobiology dysregulation.  As the incidence of obesity 

continues to rise worldwide, these data have key health implications related to 

debilitating behavior disorders that can be triggered by a HFD and a state of DIO. 

Introduction 

Obesity and overweight prevalence is escalating worldwide, with an estimated 

39% of adults classified as obese or overweight (Chooi et al., 2019).  The adverse effects 

of obesity have been linked to various behavioral and biochemical changes, such as 

reduced physical activity (Sanyaolu et al., 2019), increased anxiety (Baker et al., 2017), 

and compromised memory (Davidson et al., 2014).  Furthermore, diet induced obesity 

(DIO) can lead to gene expression alterations in the brain (Gan et al., 2015; Huang et al., 

2005a; Wu et al., 2017) and dysregulated dopamine biology (Leite and Ribeiro, 2019).  

As conditions of overweight and obesity are increasing in both males and females 

worldwide, these alterations in behavior and biochemistry due to obesity can have 

serious consequences related to declining health, reduced productivity, and increased 

health care costs (Trogdon et al., 2008). 

It has been demonstrated that physical activity or mobility can be impacted by a 

state of obesity in humans and rodents.  In humans, obesity has been associated with 

decreased fine motor control and speed (C. Wang et al., 2016), reduced functional 
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mobility in adults (Forhan and Gill, 2013; Trivedi et al., 2015), and decreased physical 

activity in children and adolescents (Sanyaolu et al., 2019).  In rodents, there are mixed 

results.  In some studies, C57BL/6J (B6J) and C57BL/6 (B6) mice fed a high fat diet (HFD) 

show reduced locomotion due to HFD (Almeida-Suhett et al., 2017; Krishna et al., 2016; 

Tsai et al., 2018; Wu et al., 2018), while other studies show no impact of diet on physical 

activity (Bridgewater et al., 2017; Zilkha et al., 2017).  Sex differences in physical activity 

or locomotion in the context of obesity have also been reported.  In a cross-sectional 

study in 964 community dwelling older adults, obese women were found to be less 

active than obese men (Gretebeck et al., 2017).  In B6J and B6 mice, male mice fed a 

HFD are frequently reported as having reduced locomotion in an open field (Almeida-

Suhett et al., 2017; Gelineau et al., 2017; Tsai et al., 2018; Wu et al., 2018), while female 

mice show mixed results, with some having decreased locomotion (Krishna et al., 2016), 

some increased locomotion (Krishna et al., 2015), and others with no effect 

(Bridgewater et al., 2017; Gelineau et al., 2017).  These discrepancies may be due to the 

duration of dietary treatment, age of behavioral testing, and diet composition.  

Although the precise mechanisms of how DIO can impact mobility are not clear, it is 

possible that DIO may disrupt the expression of genes such as dopamine receptor D2 

(DRD2) and tyrosine hydroxylase (TH), which are associated with dopamine biology and 

physical activity (Gallo, 2019; Jang et al., 2017).  Furthermore, it is possible that DIO may 

disrupt dopamine release and clearance in the striatum, as this brain region is known to 

be a primary regulator of spontaneous physical activity (Rosenfeld, 2017).   
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Obesity has been associated with a higher prevalence of anxiety, as 

demonstrated in several human studies (Baker et al., 2017; Gariepy et al., 2010; Strine 

et al., 2008) and rodent studies (Almeida-Suhett et al., 2017; Krishna et al., 2016).  For 

example, a cross-sectional study of 217,379 adults in the United States found a positive 

association between obesity and anxiety (Strine et al., 2008).  Similarly, a study in the 

United States with 9125 adults found that obesity lead to an approximate 25% increase 

in odds of having an anxiety disorder (Simon et al., 2006).  A meta-analysis in China that 

included 17,894 children and adolescents found a significantly higher incidence of 

anxiety in obese and overweight subjects (40%) compared to normal weight subjects 

(14%) (Wang et al., 2019).  In rodent DIO studies, B6J male mice (Almeida-Suhett et al., 

2017) and B6 female mice (Krishna et al., 2016) fed a HFD displayed higher anxiety-like 

behavior in an open field as assessed by decreased center time.  Additionally, male 

Fischer 344 rats (Buchenauer et al., 2009) and female Long Evans rats (Sivanathan et al., 

2015) fed a HFD also exhibited more anxiety-like behavior compared to normal weight 

rats fed a control diet.  In contrast, there are other reports in humans and rodents that 

found no link between obesity and anxiety (Araujo et al., 2017; Gelineau et al., 2017; 

Tsai et al., 2018).  The relationship between obesity and anxiety is complex, often due to 

comorbidities and a potential bidirectional association (Baker et al., 2017).  More 

research is needed to understand the physiological mechanisms that may connect 

obesity to anxiety.  
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Research that includes both sexes in the study of DIO-impact on behavior in 

rodents is limited.  In one study using male and female B6 mice fed a HFD for 12 weeks, 

males fed a HFD spent less time in the center zone of the open field compared to males 

fed a control diet and compared to all females, indicating increased anxiety-like 

behavior in males only due to HFD (Bridgewater et al., 2017).  Additionally, there was a 

sex difference in ambulation, with male B6 mice showing reduced physical activity 

compared to B6 females.  Interestingly, diet had no effect on locomotion for either sex.   

In contrast to these results, a study using male and female B6J mice fed a HFD for 

approximately 10 weeks found no significant difference in open field center time due to 

diet or sex (Gelineau et al., 2017).  Moreover, male mice fed a HFD had reduced 

locomotion compared to the male low fat diet (LFD) group, yet there was no diet impact 

on female locomotion, and no overall sex differences in locomotion.  In this same study, 

males expressed less brain-derived neurotrophic factor (BDNF) compared to females, 

but there was no significant impact of diet on BDNF expression for either sex.  While 

both studies report an impact of diet or sex on various behaviors, the results are 

inconsistent, which may be due to genetic differences between B6 and B6J mice.  Both 

studies initiated the HDF at a similar age (6-7 weeks), but the diet treatment duration 

was different (12 weeks versus 10 weeks).  The anxiety-like behavior in males was 

revealed after the 12-week diet treatment, which could be a result of increased body 

weight, older age, or extended exposure to the HFD.  
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Obesity can also have a negative impact on memory.  In human studies, a high 

body mass index (BMI) was associated with poor memory in adolescents (Tee et al., 

2018) and adults (Coppin et al., 2014).  Seniors with obesity were also found to have 

compromised memory when compared to a normal weight group (Clark et al., 2016).  

An extensive review of the impact of HFD on learning and memory in rodent studies 

using various test measures found that most studies, but not all, found an association 

between HFD or DIO and memory decline (Cordner and Tamashiro, 2015).  Collectively, 

most of these studies show a pattern of obesity with reduced memory, but few 

distinguish between males and females or differences in genetics that may cause 

discrepancies in the results. 

Dopamine plays an important role in regulating motor control, cognition, and 

motivation (Mishra et al., 2018).  Previous DIO studies in mice have found an inverse 

relationship between dopamine signaling with body weight (Zilkha et al., 2017) and DIO-

induced anxiety with dopamine turnover in the brain (Krishna et al., 2015).  In both the 

dorsal and ventral striatum, the regulation of dopamine neurotransmission is implicated 

as a modulator of DIO and food reward (Baik, 2013).  For example, in a study with male 

B6J mice fed a high fat/high sugar Western style diet for 16 weeks, dopamine release in 

the dorsal striatum was increased and dopamine clearance in the dorsal striatum was 

decreased in mice fed the Western style diet (Fritz et al., 2018).  In the nucleus 

accumbens (NAc) core of the ventral striatum, dopamine release assessed by fast scan 

cyclic voltammetry was increased in male Sprague-Dawley rats when exposed to a 
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sucrose-based food reward (Roitman, 2004).  In a study with male B6J mice fed a HFD 

for six weeks, voltammetry measurements revealed a significant decrease in dopamine 

reuptake in the NAc (Fordahl and Jones, 2017).  The NAc of the ventral striatum is 

involved in the mediation of reward, satisfaction, and motivation, and has been 

implicated in numerous behavioral disorders, such as anxiety, obsessive-compulsive 

disorder, and addiction (Salgado and Kaplitt, 2015).  The dorsal striatum is involved in 

habitual and compulsive behaviors such as food-seeking and binge eating, and plays a 

role in homeostatic energy consumption (Fritz et al., 2018).  Both regions are important 

to consider when investigating dopamine biology as it relates to DIO. 

DIO has been associated with gene expression dysregulation in the brain, with 

implications for the development of various behavior impairments, such as increased 

anxiety, reduced motor function, or compromised memory (Almeida-Suhett et al., 2017; 

Krishna et al., 2016; Lee et al., 2010).  In our study, we examined the impact of DIO on 

the mRNA expression of BDNF, TH, and DRD2.  The role of BDNF in brain plasticity is 

correlated with learning, memory, and cognition in humans and rodents (Miranda et al., 

2019).  In previous rodent studies, a HFD was associated with reduced BDNF expression 

in some cases (Molteni et al., 2002; Pistell et al., 2010; Wang et al., 2017), but showed 

an increase in expression in other cases (Gan et al., 2015; Genzer et al., 2016).  TH is a 

rate limiting enzyme required for the synthesis of catecholamines such as dopamine, 

epinephrine, and norepinephrine (Daubner et al., 2011).  These catecholamines serve 

brain functions such as attention, memory, and cognition.  TH is present within the 
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neurons of the dopaminergic pathway that extends from the substantia nigra to the 

striatum, which is imperative for proper motor function (Jang et al., 2017).  Obesity has 

been shown to have a negative impact on mobility (Forhan and Gill, 2013) and has been 

associated with changes in TH gene expression in different brain regions (Huang et al., 

2005a; Lee et al., 2010; Ong et al., 2013; Wu et al., 2017).  DRD2 is a member of the D2-

like receptor family, and is expressed both pre- and postsynaptically in various brain 

regions, such as the striatum, midbrain, cortex, and olfactory bulb (Gallo, 2019; Mishra 

et al., 2018).  The main function of DRD2 is to modulate dopamine synthesis and release 

through the intracellular inhibition of cAMP (Baik, 2013).  In the striatum, DRD2 

mediates the actions of dopamine that control both movement and reward-seeking 

(Gallo, 2019).  Reduced DRD2 activity or expression has been associated with DIO in 

some human studies (van de Giessen et al., 2014; Wang et al., 2001) and rodent studies 

(Carlin et al., 2013; Narayanaswami et al., 2013).  However, conflicting reports show an 

increase in DRD2 in mice (Huang et al., 2005a; Sharma and Fulton, 2013; South and 

Huang, 2008), or no change in humans (Karlsson et al., 2015).  Interestingly, a human 

imaging study demonstrated that DRD2 binding potential was positively correlated to 

BMI in the dorsal striatum, yet negatively correlated to BMI in the ventral striatum (Guo 

et al., 2014).  Collectively, these studies provide evidence that BDNF, TH, and DRD2 

dysregulation may be involved as either a cause or consequence of DIO, however the 

direction of alteration and pathophysiological mechanisms are poorly understood.  
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There are very few rodent studies that address the influence of both strain and 

sex on behavior changes and gene expression alterations due to DIO.  The aim of this 

study was to investigate the impact of DIO on behavior change, gene expression, and 

dopamine release and reuptake using male and female B6J and DBA/2J (D2J) mice as a 

model to examine sex and strain influences.  These strains were selected based on their 

frequent use in behavioral neuroscience and prior studies exhibiting differential traits 

(Mozhui et al., 2010).  B6J and D2J mice represent key strains that are represented in 

the Mouse Phenome Project Database (Bogue et al., 2018; Grubb et al., 2014) and are 

used as parental strains in the BXD recombinant inbred strain set used as genetic 

reference populations to evaluate genetic determinants of correlated phenotypes for 

the GeneNetwork open source project (Philip et al., 2010).  Furthermore, these strains 

have been validated as appropriate models for DIO (Alexander et al., 2006; Montgomery 

et al., 2013; West et al., 1992).  In the current study, gene expression was evaluated in 

the striatum, hippocampus, and olfactory bulb, and dopamine release and reuptake 

were assessed in the dorsal and ventral striatum.  We hypothesized that DIO would have 

a greater impact on males compared to females, and that D2J mice would be more 

resistant to behavior and biochemical changes compared to the B6J strain based on 

previous studies (Bridgewater et al., 2017; Gelineau et al., 2017; Kulesskaya et al., 2014; 

Yin et al., 2011). 
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Materials and Methods 

Animals and Diet 

Male and female mice from the C57BL/6J (B6J) (n=36) and DBA/2J (D2J) (n=36) 

strains were purchased from Jackson Laboratory (Bar Harbor, ME, USA) at post-natal 

day 21.  After three days of acclimation in the animal care facility, mice were randomly 

assigned a control LFD with 10% kcal fat/g (Research Diets, D12450J) or mineral-

matched HFD with 60% kcal fat/g (Research Diets, D12492) for 16 weeks (see 

Supplementary Table A1).  Each diet treatment group comprised n=9, with a total of 

n=72.  Ad libitum feeding of the assigned diets was provided with free access to 

deionized water 24 hours per day.  All mice were weighed once per week during the 16-

week diet treatment, and food weight was recorded three days per week.  Mice were 

housed three per cage by strain with males and females positioned on opposite sides of 

a temperature-controlled room (25°C) maintained on a 12-hour light/dark cycle.  Sample 

size for the analysis of behavior, gene expression, and voltammetry (Table 4.1) was 

determined based on a power analysis from previous studies in our lab.   

This study was conducted in an American Association for Laboratory Animal Care 

accredited facility following a protocol approved by the Institution of Animal Care and 

Use Committee at the University of North Carolina Greensboro.  Procedures were 

performed by the principles and guidelines established by the National Institutes of 

Health for the ethical care and use of laboratory animals.  One mouse was humanely 

euthanized during week 10 of the diet treatment due to failure to thrive. 
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Table 4.1.  Study Design for Behavior, Gene Expression, and Voltammetry 

Test 
B6J D2J 

Male Female Male Female 

Behavior 18 18 17 18 
Gene Expression 14 10 10 10 

Voltammetry 4 8 7 8 
Sample size for each group was determined using a power analysis based on previous data from our lab.  
Behavior testing occurred during weeks 14-15 of the diet treatment.  Gene expression was measured 
after 16 weeks of diet treatment.  Voltammetry experiments were conducted over a 14-day period after 
the 16-week diet treatment.  

 
 
Open Field   

The open field test was conducted during week 14 of the diet treatment and was 

used to evaluate locomotion and anxiety.  Our test design for open field was based on 

published protocols (Gellért and Varga, 2016; Seibenhener and Wooten, 2015) and 

current literature (Almeida-Suhett et al., 2019; Bridgewater et al., 2017; Krishna et al., 

2016).  Mice were acclimated to the behavior test room for a minimum of 30 minutes 

before each experiment.  Clear acrylic 29 cm x 29 cm x 38 cm cubes covered with 

opaque white paper on all sides were used as the test arena.  Cubes were cleaned with a 

disinfectant spray after each test and allowed to dry for 10 minutes before starting the 

next test.  Recording software (TopScan Lite Version 2.00, Clever Systems, Inc.) and 

video camera equipment were used for each recording.  There were four separate test 

arenas (cubes) in the behavior test room, allowing for four mice to be tested at one time 

(see Supplementary Figures B1 and B2).  Cube assignments were rotated to prevent 

proximity to the door from being a confounding factor.  Mice had free access to food 

and water in their home cages, but did not have access to food or water in the testing 
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arena.  All open field testing was conducted between 9am-1pm.  Mice were placed in 

the center of the cube at the start of each test, and activity was recorded for 30 

minutes.  At the end of each test, mice were transferred from the test cube to a 

separate polycarbonate cage to avoid inducing anxiety in the cage of remaining mice.  

Fecal boli were counted manually at the end of each test as an additional measure of 

anxiety.  

Open field videos were analyzed using TopScan Lite Version 2.00, Clever 

Systems, Inc.  Five-minute intervals were analyzed for each 30-minute video to measure 

changes in behavior over time.  Data from these videos were used to evaluate 

differences in total distance travelled (TDT), velocity, habituation, and center entries.  

Rate of habituation was calculated by regressing distance travelled versus time during 

each five-minute interval with regression coefficients (slopes) used to determine the 

rate.  A center zone of 30% was delineated to measure center entries (center entries are 

inversely proportional to anxiety-like behavior).  The first five-minute time segment (0-5 

minutes in the open field) was used for center entry analysis for the B6J strain, and the 

second five-minute time segment (5-10 minutes in the open field) was used for center 

entry analysis for the D2J strain.  These specific time frames were selected based on the 

activity level of each strain. 

Novel Object Recognition  

The novel object recognition (NOR) test was used to evaluate memory, and was 

designed based on published protocols (Antunes and Biala, 2012; Paola, 2011).  This test 
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comprised of three phases:  habituation, familiarization, and testing.  The open field test 

described above was used as the habituation phase (phase I).  All NOR testing was 

conducted between 1pm-6pm, with each test starting approximately 24 hours after the 

corresponding open field test.  The objects used were nonporous figures with similar 

size and color, but distinct shape (Supplementary Figure B3).  Objects were placed five 

centimeters from the back and side wall of each cube (Supplementary Figure B4).  Mice 

were placed in the cubes facing away from the objects on the opposite wall.  During the 

familiarization phase (phase II), mice were introduced to two identical objects and 

allowed to explore for five minutes.  Cubes and figures were cleaned with a disinfectant 

after each test.  The testing phase (phase III) began two hours after the familiarization 

phase.  During this last phase, one of the familiar objects was replaced with a new 

object.  Placement of the new object was alternated between left and right side of the 

cube to counterbalance any preference for cube location.  Mice were given five minutes 

to explore the new and familiar objects during this testing phase. 

Videos were analyzed manually for the entire five-minute video per mouse.  

Hand counters were used to determine the amount of time spent exploring each object.  

The mouse was considered exploring the object when the nose was touching the object.  

Results are reported here using the discrimination index as recommended in NOR 

protocols (Antunes and Biala, 2012; Krishna et al., 2015).  The formula used to calculate 

discrimination index is as follows: (Tnew - Tfamiliar)/(Tnew + Tfamiliar).  Rodents are naturally 

curious animals and will explore new objects as a normal process.  Therefore, a positive 
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discrimination index  value indicates normal behavior (exploring the new object more 

than the familiar object). 

Nestlet Shredding  

Nestlet shredding tests were conducted during week 15 of the diet treatment for 

the evaluation of motivation (Nichols et al., 2016), compulsivity (Angoa-Pérez et al., 

2013), and overall welfare (Gaskill et al., 2013).  All mice were acclimated to the 

behavior test room for 30 minutes prior to assessment.  Each nestlet was made from 

standard cotton material and measured 5.8 cm x 5.8 cm x 0.2 cm.  Nestlets were 

acclimated to the behavior room for three days prior to testing to allow for adjustments 

to humidity.  Each nestlet was then weighed on an analytical balance on the day that 

testing began.  Polycarbonate mouse cages with a fitted filter-top cover were filled with 

fresh bedding to a depth of 0.5cm (Supplementary Figure B5).  One nestlet was placed in 

the center of each cage.  Screening dividers were placed between test cages to avoid 

distractions from other mice.  Each mouse was placed in a cage by itself with a nestlet 

and allowed to shred for 30 minutes.  After each test, shredded nestlet material was 

carefully removed from each nestlet square.  Nestlets were dried for 24 hours, then 

reweighed to determine the degree of shredding.  Results are reported here as percent 

nestlet shredded.   

Tissue Collection 

After the 16-week diet treatment, 44 mice were humanely anesthetized with 

isoflurane followed by rapid decapitation.  Brains were dissected sagitally into right and 
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left hemispheres on an ice-cold stainless-steel platform.  The following brain regions 

were isolated for this study: olfactory bulb, hippocampus, and striatum.  Brain tissues 

were snap frozen in liquid nitrogen, placed on dry ice, then stored at -80°C.  Brain tissue 

for the remaining 27 mice was obtained over a 14-day period after the 16-week diet 

treatment for voltammetry experiments (described below).   

RNA Isolation and cDNA Synthesis 

RNA was isolated from brain tissue samples (n=3-5 per group) with the RNeasy® 

Plus Mini Kit (Qiagen Inc., Germantown, MD, USA) following manufacturer’s protocol.  

RNA concentration and purity were determined using a NanoDrop™ 1000 

spectrophotometer (ThermoFisher Scientific, Inc., USA).  Reverse transcription of RNA 

was conducted on Applied Biosystems GeneAmp® PCR System 9700 using Applied 

Biosystems High Capacity cDNA Reverse Transcription Kit (Life Technologies, Carlsbad, 

CA, USA) to prepare 20 L samples for the thermocycler.  Reaction conditions were 

applied as follows: 25°C for 10 minutes, 37°C for 120 minutes, 85°C for five seconds, and 

4°C holding temperature at completion.  Samples were stored at -20°C until further 

evaluation of relative gene expression.  Specific mRNA transcripts measured in this 

study are listed in Table 4.2. 
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Table 4.2.  mRNA Transcripts Related to Behavior and Dopamine 

mRNA Transcript mRNA Abbreviation Gene  

Brain derived neurotrophic factor BDNF BDNF 
Dopamine receptor D2 DRD2 DRD2 
Tyrosine hydroxylase TH Th 

Genes were selected for evaluation based on their relevance to behavior and dopamine biology. 

 

 

Real Time Polymerase Chain Reaction (RT-PCR) 

Relative gene expression was determined by RT-PCR on a 7500 Fast Real-Time 

PCR System from Applied Biosystems using the following conditions: incubation for two 

minutes at 50°C, polymerase activation for two minutes at 95°C, and 40 cycles of PCR 

(denature for three seconds at 95°C and anneal/extend for 30 seconds at 95°C).  Gene 

assays were purchased from Life Technologies (Carlsbad, CA, USA) and are listed in 

Table 4.2.  Each assay was prepared for RT-PCR using Applied Biosystems™ Taqman™ 

Fast Advanced Master Mix.  The endogenous control 18S was used to normalize the 

expression of each gene.  Normalized cycle threshold (Ct) values were used to 

determine interactions and main effects of diet, sex, and strain.  The comparative Ct 

method (2-ΔΔCt ) was used to determine fold change in gene expression comparing LFD 

(control) to HFD for each sex and strain, or to compare males (control) to females. 

Dopamine and Voltammetry 

Dopamine release and uptake were evaluated using ex-vivo fast scan cyclic 

voltammetry.  This technique has been used previously to determine dopamine terminal 

function in mice fed a HFD (Fordahl and Jones, 2017).  Male and female B6J (n=12) and 

D2J (n=15) mice were evaluated over a two-week time period after the 16-week diet 
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treatment.  During this time, mice were fed their respective LFD or HFD.  Mice were 

rendered unconscious using isoflurane, decapitated, and the brain quickly removed.  

The brain was sliced (300µm width) on the coronal plane, and slices containing the 

dorsal and ventral striatum were incubated in artificial cerebral spinal fluid until and 

throughout voltammetry recordings. The remaining brain tissue was dissected into 

olfactory bulb, cortex, dorsal striatum, and ventral striatum, and stored at -80°C.  

Carbon fiber electrodes were used to record dopamine release and pre-synaptic uptake 

in the following regions: dorsal striatum, NAc core, and NAc shell.  Dopamine release 

was evoked with either a single pulse (1P) stimulation (350µA) to measure tonic activity 

or a phasic burst of five stimulations (350µA, each at a frequency of 20Hz) (5P) to 

simulate physiological firing rate of dopamine neurons.  Data was recorded as the 

maximal rate of dopamine uptake (Vmax), 1P dopamine release, and 5P dopamine 

release.  The percent 5P to 1P dopamine release was calculated to provide information 

about the dynamic capacity to release dopamine from specific brain regions.  Our lab 

used data from the dorsal striatum and NAc core to determine relationships among DIO-

impacted dopamine biology and behavior.   

Statistical Analysis 

Statistical analysis was conducted using IBM SPSS Statistics 26.  A three-factor 

mixed plot analysis of variance (ANOVA) for each strain was used to assess behavior 

changes over time, with time as the within subject factor and sex and diet as between 

subject factors.  This test was applied to TDT and velocity.  A three-factor ANOVA with 
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diet, sex, and strain as between subject factors was used to evaluate gene expression 

(with Ct values), Vmax, dopamine release, and fecal boli.  Since ambulatory 

characteristics of each strain differed significantly, a two-factor ANOVA was used for 

each strain with diet and sex as between subject factors for the evaluation of 

habituation rate, center entries, and NOR.  Statistically significant interactions were 

evaluated for simple main effects.  If no interactions were present, significant main 

effects are reported.  Differences between treatment groups at each level were 

determined by pairwise comparisons with a Bonferroni adjustment applied.  

Independent t tests were used to compare weight gain and weight differences between 

the LFD and HFD groups for each strain and sex.  A Welch’s test for unequal variances 

was used for nestlet shredding.  Pearson correlations were used to determine 

relationships between final body weight and TDT or velocity.   

Normality was confirmed using the Shapiro-Wilk test, and homogeneity of 

variance was assessed using Levene’s test.  Statistical significance was accepted at 

p<0.05 and differences were considered approaching significance between p=0.05-0. 10.  

Data are reported as means ± standard error of the mean (SEM).   

Results 

Mice Fed a HFD Gained a Significant Amount of Weight Compared to Mice Fed a LFD 

All male and female B6J and D2J mice fed a HFD gained a significant amount of 

weight by the end of the 16-week diet treatment.  Since there are natural body weight 

differences between the two sexes and strains, independent t tests were used to 
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compare weight gain between diet treatment groups of the same sex and strain.  Before 

starting the diet treatment (approximately three weeks old), there were no significant 

differences between body weight when comparing the LFD group and the HFD group for 

each sex and strain.  At the end of the 16-week diet treatment (approximately 18 weeks 

old), there was a significant difference between body weight (Table 4.3).   

 
Table 4.3.  Final Body Weight 
 

Strain/Sex Final Body Weight (g) Significance 
 LFD Group HFD Group  

BM 28.72 ± 0.41 48.16 ± 0.36 p < 0.0001 
BF 21.58 ± 0.21 41.16 ± 1.38 p < 0.0001 

DM 28.14 ± 0.78 43.91 ± 1.81 p < 0.0001 
DF 23.26 ± 0.75 34.53 ± 1.45 p < 0.0001 

Body weight comparisons are between LFD groups and HFD groups for male and female B6J and D2J mice 
at the end of the 16-week diet treatment.  Data are represented as mean ± SEM.  BM = B6J males, BF = 
B6J females, DM = D2J males, DF = D2J females. 

 
 

Changes in body weight over the 16-week diet treatment for male and female 

B6J and D2J mice are shown in Figure 4.1.   
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Figure 4.1. Weight Gain by Strain and Sex.  Weight gain throughout the 16-week diet treatment for B6J 
males (A), B6J females (B), D2J males (C), and D2J females (D).  Letter codes are as follows: B=B6J, D=D2J, 
M=male, F=female, L=low fat diet, H=high fat diet. Data are represented as mean ± SEM. ****p<0.0001. 

 
 

The percent weight gain for each group over the 16-week diet treatment was 

described previously in a companion study.  Briefly, percent weight gain was 

significantly higher for mice in the HFD treatment groups compared to the LFD 

treatment groups for each strain and sex (p<0.0001 for each comparison: CML vs CMH, 

CFL vs CFH, DML vs DMF, DFL vs DFH).  There was no significant difference between 

grams of food eaten when comparing the LFD and HFD groups, indicating that all groups 

consumed similar levels of vitamins and minerals in the diet. 
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B6J and D2J Mice Fed a HFD Travel Less Distance in the Open Field  

 A three-factor mixed ANOVA was used to evaluate the effects of time, diet, and 

sex on TDT, with diet and sex as the between subject factors and time as the within 

subject factor.  B6J and D2J strains were analyzed separately due to differences in 

ambulation.  Distance traveled was analyzed in six 5-minute time intervals for a total of 

30 minutes.  In the repeated measures within-subject analysis, there was a statistically 

significant two-way interaction between time and sex in B6J mice (F5,160=2.408, 

p=0.039).  B6J males and females travel a similar distance for the first 15 minutes in the 

open field, however, after 15 minutes, the sex differences become apparent with 

females traveling more than males (Fig 4.2A).  Between 15-20 minutes, B6J females 

travel 1.74m ± 0.57m more than B6J males (F1,32=9.407, p=0.004), and between 25-30 

minutes, B6J females travel 1.69m ± 0.070m more than B6J males (F1,32=5.931, p=0.021).  

Overall, there is a steady decline in TDT over the 30-minute time period for both sexes.  

For the D2J strain, there was a statistically significant three-way interaction between 

time, sex, and diet in D2J mice (F5,145=2.930, p=0.015).  Unlike the B6J strain, the D2J 

strain increased their TDT between 5-10 minutes in the open field, then displayed a 

steady decline in TDT after 10 minutes (Figure 4.2B).  Differences between D2J males 

and females emerge between 10-15 minutes in the open field, with males traveling 

more distance overall than females.  Specifically, between 10-15 minutes in the open 

field, D2J males traveled 2.05m ± 0.80m more than D2J females (F1,29=6.493, p=0.016), 
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and between 20-25 minutes, D2J males traveled 2.06m ± 0.81m more than D2J females 

(F1,29=6.433, p=0.017). 

 

 

Figure 4.2.  Total Distance Traveled Sex Effect with Time.  The effect of sex on TDT for B6J mice (A) and 
D2J mice (B).  * p<0.05, ** p<0.01.  Abbreviations: B=B6J, D=D2J, M=male, F=female. 
 
 

For the between-subjects analysis, there was a main effect of diet for both the 

B6J strain (F1,32=42.648, p<0.0001) and the D2J strain (F1,29=13.700, p=0.001).  For B6J 

males, there was a statistically significant decrease in TDT for mice fed a HFD at each 

recorded time interval (Figure 4.3A).   For B6J female mice fed a HFD, TDT was 

significantly reduced at all time points except for the first 5 minutes, which was 

approaching significance (Figure 4.3B).  For D2J males, there was an overall reduction in 

TDT for mice fed a HFD, but the reduction was not as significant compared to B6J males 

(Figure 4.3C).  For D2J females, only the last five minutes in the open field revealed a 

statistically significant decrease in TDT for mice fed a HFD, although the time period of 

10-15 min was approaching significance (Figure 4.3D).  Mean TDT data for each 

treatment group at each time interval are included in Supplementary Table A7. 
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Figure 4.3.  Total Distance Traveled Diet Effect with Time.  The effect of diet on TDT for B6J male mice 
(A), B6J female mice (B), D2J male mice (C), and D2J female mice (D).  * p<0.05, ** p<0.01, *** p<0.001, 
**** p<0.0001, † approaching significance.  Abbreviations: B=B6J, D=D2J, M=male, F=female, L=LFD, 
H=HFD. 

 
 
B6J and D2J Mice Fed a HFD Have Reduced Velocity in the Open Field 

 A three-factor mixed ANOVA was used to evaluate the effects of time, diet, and 

sex on velocity, with diet and sex as the between subject factors and time as the within 

subject factor.  Velocity was analyzed in six 5-minute time intervals for a total of 30 

minutes.  In the repeated measures within-subject analysis, there was a statistically 

significant main effect of time on velocity in B6J mice (F5,160=51.492, p<0.0001).  Two 

interactions for the B6J strain were approaching significance: time by diet (F5,160=2.053, 

p=0.074) and time by sex (F5,160=1.971, p=0.086).  B6J females traveled 5.67 mm/s ± 1.90 

mm/s faster than B6J males between 15-20 minutes in the open field (F1,32=8.936, 
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p=0.005) and 5.39 mm/s ± 2.33 mm/s faster than B6J males between 25-30 minutes 

(F1,32=5.374, p=0.027) (Figure 4.4A).  For the D2J strain, there was a statistically 

significant three-way interaction between time, sex, and diet on velocity (F5,140=3.358, 

p=0.007).   In contrast to the B6J strain, D2J males traveled 6.06 mm/s ± 2.62 mm/s 

faster than D2J females between 10-15 minutes in the open field (F1,28=5.362, p=0.028) 

and 6.69 mm/s ± 2.83 mm/s faster than D2J females between 20-25 minutes 

(F1,28=5.605, p=0.025) (Figure 4.4B). 

 

 

Figure 4.4.  Velocity Sex Effect with Time.  The effect of sex on velocity for B6J mice (A) and D2J mice (B).  
* p<0.05, ** p<0.01.   

 
 

For the between subject analysis, there was a significant effect of diet for both 

the B6J strain (F1,32=42.956, p<0.0001) and the D2J strain (F1,28=10.674, p=0.003).  

Additionally, an interaction between diet and sex that was approaching significance for 

the B6J strain (F1,32=2.939, p=0.096).   B6J males fed a HFD had a substantial reduction in 

velocity at each time interval in the open field (Figure 4.5A).  B6J females fed a HFD also 

had a reduction in velocity at most time intervals, although not as significant of a change 

compared to male B6J mice (Figure 4.5B).  D2J male mice fed a HFD had reduced 
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velocities for three time intervals midway through testing (Figure 4.5C).  Female D2J 

mice fed a HFD only had a significantly reduced velocity during the last time interval (25-

30 minutes), although reductions in velocity between 5-15 min were approaching 

significance (Figure 4.5D).  Mean velocity data for each treatment group at each time 

interval are included as Supplementary Table A8. 

 

 

Figure 4.5.  Velocity Diet Effect with Time.  The effect of diet on velocity for B6J male mice (A), B6J female 
mice (B), D2J male mice (C), and D2J female mice (D).  * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001, † 
approaching significance.  Abbreviations: B=B6J, D=D2J, M=male, F=female, L=LFD, H=HFD. 
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Final Body Weight is Correlated to TDT and Velocity for Females Fed a HFD 

 Pearson correlation tests were used to assess relationships between final body 

weight and TDT or velocity.  When evaluating all mice combined, there was a moderate 

negative correlation between body weight and TDT (R= -0.40, p=0.001) (Figure 4.6A) and 

a moderate negative correlation between body weight and velocity (R= -0.38, p=0.001) 

(Figure 4.6B).  However, when splitting the data by strain, sex, and diet, the correlations 

are only significant for females fed a HFD.  D2J females fed a HFD had a strong negative 

correlation between weight and TDT (R= -0.82, p=0.007) (Figure 4.6C) and a strong 

negative correlation between weight and velocity (R= -0.79, p=0.011) (Figure 4.6D).  A 

similar trend was approaching significance for B6J females with a strong negative 

correlation between weight and TDT (R= -0.66, p=0.054) (Figure 4.6E) and a strong 

negative correlation between weight and velocity (R= -0.66, p=0.052) (Figure 4.6F).   
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Figure 4.6.  Relationships between Weight and Total Distance Traveled or Velocity.  Pearson correlations 
are pictured here for body weight with the following variables: TDT for all mice (A), velocity for all mice 
(B), TDT for D2J females fed a HFD (C), velocity for D2J females fed a HFD (D), TDT for B6J females fed a 
HFD (E), and velocity for B6J females fed a HFD (F).   
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Male B6J Mice Fed a HFD Have a Slower Habituation Rate  

The habituation rates in the open field were analyzed separately for each strain 

due to major differences in locomotion.  For the B6J strain, there was a significant main 

effect of diet on habituation rate.  B6J mice fed a HFD had a 35% lower habituation rate 

compared to B6J mice fed a LFD (F1,32=4.289, p=0.047).  Pairwise comparisons showed 

that the simple main effect of diet was significant for B6J male mice (F1,32=5.446, 

p=0.026) with a 47% reduction in habituation rate for the HFD group (Figure 4.7A).  

Additionally, there was a main effect of sex on habituation rate for the B6J strain.  B6J 

female mice had a 42% lower habituation rate compared to B6J males (F1,32=5.928, 

p=0.021).  The simple main effect for sex was significant at the level of LFD (F1,32=6.713, 

p=0.014) with B6J females displaying a 53% lower habituation rate compared to males.  

For the D2J strain, there were no main effects or interactions.  Mean habituation rates 

for each treatment group are provided in Supplementary Table A9. 

Male B6J Mice Fed a HFD Show Higher Anxiety-like Behavior Through Fecal Boli 

 Fecal boli were counted at the end of each open field test as a measure of 

anxiety level.  A three-way ANOVA was used to evaluate differences.  Male B6J mice fed 

a HFD had 37% higher fecal boli compared to B6J mice fed a LFD (F1,63=5.620, p=0.021) 

(Figure 4.7B).  There was a significant main effect of sex (F1,63=5.377, p=0.024), with 

males showing 22% greater fecal boli counts compared to females.  This effect of sex 

was greatest for B6J mice fed a HFD, with a 50% difference between sexes (F1,63=9.103, 
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p=0.004).  There was no impact of diet or sex on fecal boli for the D2J strain.  Mean fecal 

boli counts for each treatment group are provided in Supplementary Table A9. 

DIO Did Not Impact Center Entries in the Open Field 

 A two-way ANOVA was used to evaluate the impact of sex and diet on 

the number of center entries in the open field.  Center entries are inversely proportional 

to anxiety-like behavior in rodents.  There were no interaction effects on center entries.  

For B6J mice, the main effect of diet was approaching significance (F1,32=3.232, p=0.082), 

as was the main effect of sex (F1,32=3.759, p=0.061).  Center entries for each treatment 

group are shown in Figure 4.7C.  Data for mean center entries for each treatment group 

are provided in Supplementary Table A9. 

Male B6J Mice Fed a HFD Have Significantly Lower Levels of Nestlet Shredding 

Nestlet shredding was measured as an assessment of motivation, compulsivity, 

and general welfare.  An example of a shredded nestlet square is provided as 

Supplementary Figure B6.  Since the data within each treatment group was normal but 

did not pass the test for homogeneity of variance, an unequal variance t test (Welch’s 

test) was used to compare differences in shredding between diet groups.  Male B6J mice 

fed a HFD had 183% less nestlet shredding compared to male B6J mice fed a LFD 

(t8.041=3.001, p=0.017) (Figure 4.7D).  Female D2J mice fed a HFD had 79% less shredding 

compared to the LFD group, which was approaching statistical significance (t15=1.963, 

p=0.068).  Data for mean percent nestlet shredding for each treatment group are 

provided in Supplementary Table A9. 
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Figure 4.7.  DIO Impact on Various Behaviors in B6J and D2J Mice.  Behavior testing was assessed using 
habituation rate (A), fecal boli in the open field (B), center entries into the open field (C), and nestlet 
shredding (D).  Graphs A and B show a sex effect in the B6J strain and a diet effect in male B6J mice for 
both habituation and fecal boli.  Graph C shows trends in center entries with no statistically significant 
differences.  Graph D shows a diet effect for nestlet shredding in B6J males and a diet effect that is 
approaching significance in D2J females.   Data are represented as mean ± SEM. *p<0.05, **p<0.01, 
†approaching significance. LF=low fat diet, HF=high fat diet. 

 
 
DIO Did Not Impact Memory in NOR  

 The NOR test was performed to assess memory in male and female B6J and D2J 

mice.  A two-factor ANOVA was used to evaluate the effects of diet and sex within each 

strain separately due to heterogeneity of variance between strains.  There were no 

statistically significant main effects or interactions for either strain.  All treatment 

groups except for the D2J females fed a HFD had a positive discrimination index score 
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(Figure 4.8).  Mean discrimination index values with SEM are reported in Supplementary 

Table A9. 

 

 

 
Figure 4.8.  Novel Object Recognition in Male and Female B6J and D2J Mice.  Positive discrimination 
index values indicate normal behavior.  Data are represented as mean ± SEM. 

 
 
Dopamine Release in the Dorsal Striatum is Increased in B6J Females Fed a HFD 

Dopamine biology was evaluated in the dorsal striatum, a brain region involved 

in locomotion and habitual behaviors.  There was a statistically significant three-way 

interaction between diet, sex, and strain on relative dopamine release in the dorsal 

striatum (F1,40=5.426, p=0.025).  Upon further analysis, there was a statistically 

significant simple two-way interaction between diet and sex for B6J mice (F1,40=7.125, 

p=0.011), with a 24% increase for B6J females and a 10% decrease for B6J males due to 

HFD.  Pairwise comparisons reveal that this 24% increase for female B6J mice was 

statistically significant (F1,40=10.142, p = 0.003) but the 10% decrease for male B6J mice 

was not (F1,40=0.954, p=0.335) (Figure 4.9A). 
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Dopamine Reuptake in the Dorsal Striatum is Reduced for D2J Mice Fed a HFD  

A three-factor ANOVA was used to evaluate differences between strain, sex, and 

diet on dopamine transporter Vmax to assess dopamine reuptake.  There was a 

statistically significant two-way interaction between diet and strain on Vmax in the 

dorsal striatum (F1,40=4.880, p=0.033).  For the D2J strain, mice fed a HFD had a 

significant 33% reduction in Vmax compared to D2J mice fed a LFD (F1,40 =8.505, 

p=0.006).  However, the B6J strain Vmax differed by only 0.5% (F1,40=0.096, p=0.758).  

Pairwise comparisons show that the DIO-induced reduction in Vmax for D2J mice was 

significant for both males and females, with a 34% reduction for male D2J mice 

(F1,40=4.122, p = 0.049) and a 32% reduction for female D2J mice (F1,40=4.431, p=0.042) 

(Figure 4.9B).  Dopamine release and reuptake data in the dorsal and ventral striatum 

are reported in Supplementary Table A10. 

Dopamine Reuptake in the NAc Core is Reduced for Male Mice Fed a HFD  

Dopamine biology was also evaluated in the NAc core of the ventral striatum, a 

brain region involved in motivation, anxiety, and addictive behaviors.  Dopamine release 

in the NAc was not significantly impacted by DIO, however there was a main effect of 

strain (F1,44=4.891, p=0.032), with D2J mice showing an 11% greater dopamine release 

compared to B6J mice.  Dopamine release in the NAc core for each treatment group is 

shown in Figure 4.9C.  There was a significant diet by sex interaction on Vmax 

(F1,44=4.645, p=0.037), with males showing a significant reduction in Vmax (F1,44=9.252, 

p=0.004) compared to females (F1,44=0.059, p=0.810) due to HFD.  Pairwise comparisons 
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show that this obesity-induced decrease is statistically significant in D2J males with a 

49% reduction in Vmax (F1,44=6.932, p=0.012) and approaching significance for B6J 

males with a 56% reduction (F1,44=3.300, p=0.076) (Figure 4.9D).  Furthermore, there 

was a main effect of strain (F1,44=7.209, p=0.010), with D2Js exhibiting a 26% higher 

Vmax compared to the B6J strain.   

 

 

Figure 4.9.  Dopamine Release and Reuptake in the Striatum.  This figure shows the impact of diet on 
dopamine release in the dorsal striatum (A), DAT-mediated dopamine reuptake (Vmax) in the dorsal 
striatum (B), dopamine release in the NAc core (C), and DAT-mediated dopamine reuptake (Vmax) in the 
NAc core (D).  Data are represented as mean ± SEM. *p<0.05, †approaching significance. DA = dopamine, 
DAT = dopamine transporter, NAc = nucleus accumbens, Vmax = maximal rate of dopamine reuptake. 
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In the Striatum, DRD2 Gene Expression was Upregulated in B6J Males Due to DIO and TH 
Gene Expression was Significantly Higher in the B6J Strain Compared to the D2J Strain 
 
 DRD2 and TH mRNA expression were measured in the striatum.  Male B6J mice 

fed a HFD showed a 2.40 ± 0.70 fold increase in gene expression compared to B6J males 

fed a LFD (F1,24=4.241, p=0.049) (Figure 4.10A).  DIO did not have an impact on mRNA 

expression of DRD2 in the other treatment groups.  Furthermore, DIO had no impact on 

tyrosine hydroxylase mRNA expression in the striatum (Figure 4.10A).  However, there 

was a significant main effect of strain (F1,30=173.528, p<0.0001), with B6J mice 

expressing 8.08 ± 0.76 fold more tyrosine hydroxylase compared to D2J mice (4.10B).  Ct 

values for DRD2 and TH gene expression in the striatum are provided in Supplementary 

Table A3. 

 

 

Figure 4.10.  Striatum DRD2 and TH Gene Expression.  The effect of diet on DRD2 and TH mRNA gene 
expression (A) and the effect of strain on TH mRNA gene expression (B) in the striatum as fold change 
compared to a reference.  Fold change compared to each control was determined using the comparative 
Ct method. For the diet effect, the LFD mRNA expression was established as the control (LFD reference = 1 
as indicated by the horizontal bar).  For the strain effect, the D2J strain was set as the control.  Data are 
represented as mean ± SEM. *p<0.05, ****p<0.0001.  DRD2 = dopamine transporter D2, TH = tyrosine 
hydroxylase, BM=B6J males, BF=B6J females, DM=D2J males, DF=D2J females. 
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In the Hippocampus, Female D2J Mice Express Significantly More BDNF Compared to D2J 
Males 
 
 In the hippocampus, the mRNA expression of BDNF was evaluated.  There was 

no effect of DIO on BDNF expression in this brain region.  However, D2J females 

expressed 2.54 ± 0.19 fold more BDNF compared to D2J males (F1,30=32.677, p<0.0001) 

(Figure 4.11).  Ct values for BDNF gene expression in the hippocampus are provided in 

Supplementary Table A4. 

 

 

Figure 4.11.  Influence of Sex on BDNF Gene Expression in the Hippocampus.  Fold change comparisons 
by sex are shown for BDNF in the hippocampus.  Male mRNA expression for each strain was established as 
the control.  Fold change in female mRNA expression compared to each control was determined using the 
comparative Ct method.  Data are represented as mean ± SEM. ****p<0.0001.  BDNF = brain-derived 
neurotrophic factor, BM=B6J males, BF=B6J females, DM=D2J males, DF=D2J females. 
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In the Olfactory Bulb, DIO Caused an Upregulation of DRD2 and TH Gene Expression in 
Male D2J Mice and Induced BDNF Gene Expression in Female B6J Mice 
 
 In the olfactory bulb, mRNA expression was evaluated for DRD2, TH, and BDNF.  

There was a statistically significant induction of DRD2 in D2J male mice fed a HFD by 

3.52 ± 1.03 fold (F1,24=5.879, p=0.025) and a downregulation of DRD2 in B6J male mice 

fed a HFD by 0.48 ± 0.16 relative to control (approximately 2-fold decrease) was 

approaching significance (F1,24=3.868, p=0.064) (Figure 4.12).  For TH gene expression, 

there was a diet by strain interaction in the olfactory bulb (F1,16=7.213, p=0.016).  

Pairwise comparisons showed that the diet effect was significant only for D2J males, 

with a 3.78 ± 1.26 fold upregulation due to HFD (F1,16=6.444, p=0.022) (Figure 4.12).  For 

BDNF expression, there was a diet by sex interaction (F1,24=4.378, p=0.047).  Female 

mice fed a HFD had 1.87 ± 0.39 fold higher BDNF expression compared to female mice 

fed a LFD (F1,30=7.811, p=0.10), but there was no significant difference in expression for 

males.  Pairwise comparisons revealed that B6J females fed a HFD were impacted the 

greatest, with an upregulation of BDNF by 2.08 ± 0.39 fold (Figure 4.12).  Ct values for 

DRD2, TH, and BDNF gene expression in the olfactory bulb are provided in 

Supplementary Table A5. 
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Figure 4.12.  DIO Impact on Olfactory Bulb DRD2, TH, and BDNF Gene Expression.  Fold change 
comparisons by diet for these genes are shown for the olfactory bulb. The LFD mRNA expression was 
established as the control (LFD reference = 1 as indicated by the horizontal bar).  Fold change compared 
to each control was determined using the comparative Ct method. Data are represented as mean ± SEM. 
*p<0.05, †approaching significance. DRD2 = dopamine transporter D2, TH = tyrosine hydroxylase, BDNF = 
brain-derived neurotrophic factor, BM=B6J males, BF=B6J females, DM=D2J males, DF=D2J females. 

 
 

Discussion 

 The objective of our study was to determine sex and strain differences on  

behavior, dopamine biology, and gene expression in normal and obese male and female 

B6J and D2J mice.  Our main findings were as follows: 1) mice with DIO had reduced 

motor activity, 2) B6J male mice with DIO displayed reduced habituation, decreased 

motivation, and increased anxiety-like behavior, 3) dopamine clearance in the dorsal 

striatum was reduced in D2J mice with DIO, 4) dopamine clearance in the NAc core was 

reduced in male mice with DIO, 5) DRD2 was upregulated in male B6J mice with DIO in 

the striatum, 6) DRD2 and TH were upregulated in male D2J mice with DIO in the 

olfactory bulb.  Our hypothesis that DIO would have a greater impact on the B6J strain 
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compared to the D2J strain was confirmed for several behavior tests, however, the 

dopamine biology dysregulation and gene expression alterations impacted both strains.   

Likewise, our hypothesis that DIO would impact males more than females was validated 

for behavior testing, dopamine uptake in the NAc core, and gene expression of DRD2 

and TH.    

Weight Gain 

 In the current study, all mice fed a lard-based HFD with 60% kcal from fat gained 

a significant amount of weight compared to mice fed a LFD (Figure 4.1).  This weight 

gain is consistent with previous reports using B6J and D2J strains for DIO investigations 

(Alexander et al., 2006; Montgomery et al., 2013; West et al., 1992) and previous DIO 

studies from our lab using male B6J mice (Han et al., 2019; Liu et al., 2016).  The diet 

treatment was initiated at a young age of approximately three weeks old and continued 

for 16 weeks.  Based on the significant weight gain that we observed and measured in 

both male and female B6J and D2J mice, we can conclude that this diet regimen 

provided a successful model for the study of DIO on brain and behavior dysregulation. 

DIO and Locomotion 

 Obesity has been associated with reduced physical activity in both humans 

(Forhan and Gill, 2013; Trivedi et al., 2015) and rodents (Almeida-Suhett et al., 2017; 

Krishna et al., 2016).  In our study, we measured TDT and velocity in five-minute time 

bins over a period of 30 minutes in the open field for each treatment group.  Overall, 

TDT and velocity decreased over time for all treatment groups as expected (Figures 4.3 
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and 4.5).  We found a significant time by sex interaction on TDT for B6J mice, with 

females traveling more than males during the last 15 minutes of the test (Figure 4.2A).  

The D2J strain displayed different locomotor behavior compared to the B6J strain.  D2J 

mice travel minimally during the first five minutes, then proceed to travel more 

between 5-10 minutes followed by a steady decline in TDT over the remaining 20 

minutes.  Furthermore, there was a significant three-way interaction between time, sex 

and diet on TDT for D2J mice.  Unlike the B6J strain, male D2J mice traveled more than 

female D2J mice, most notably between 10-15 minutes and 20-25 minutes in the open 

field (Figure 4.2B).  For both strains, there was a main effect of diet on reducing TDT, 

however this effect was more significant for the B6J males and females (Figures 4.3A 

and B) compared to the D2J males and females (Figures 4.3C and 4.3D).  The impact of 

DIO on reducing TDT in male B6J mice in our study (Figure 4.3A) was consistent with 

other DIO studies using male B6J or B6 mice (Almeida-Suhett et al., 2017; Gelineau et 

al., 2017; Tsai et al., 2018; Wu et al., 2018).  TDT was also significantly reduced in our 

female B6J mice fed a HFD at most time intervals (Figure 4.3B).  Additionally, there was 

a negative correlation between body weight and TDT that was significant for female D2J 

mice (Figure 4.6C) and trending toward significance for female B6J mice (Figure 4.6E).  In 

other studies using both male and female B6 or B6J mice fed a HFD (60% kcal fat), there 

was no effect of DIO on TDT in the female mice (Bridgewater et al., 2017; Gelineau et 

al., 2017).  However, these studies initiated their HFD at approximately six weeks of age 

(compared to ours at three weeks of age) with a diet duration of 10-12 weeks 
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(compared to ours for a 16-week duration).  Furthermore, a study using female B6 mice 

fed a 60% HFD starting at 6-7 weeks old found that mice with DIO showed reduced 

locomotion after approximately 32 weeks of HFD feeding, but not at 21 weeks of HFD 

feeding (Krishna et al., 2016).  Again, this study initiated the HFD at a later age, and used 

a substrain of B6 mice with a different genetic background compared to our B6J mice.  

Early initiation of the HFD to produce the DIO state could explain the overall reduction 

in TDT that we see in both sexes and both strains in our study, indicating a more serious 

health threat to physical activity when a HFD begins early in life.  

DIO and Habituation 

 Habituation in rodents represents a natural reduction in locomotor activity after 

an initial period of exploration in a novel environment.  This learning behavior allows 

mice to discriminate between novel and normal stimuli.  Abnormal habituation behavior 

has been associated with lesions in the hippocampus and disruptions in dopamine 

biology (Leussis and Bolivar, 2006).  In our study, B6J and D2J habituation data were 

analyzed separately due to major differences in ambulation and heterogeneity of 

variance.  Habituation was determined using two methods: first by visual inspection of 

TDT over time (Figure 4.3) and second by regressing distance traveled over time and 

using the regression coefficients (slopes) to determine habituation rates (Figure 4.7A).  

Over the 30-minute testing period, both strains and sexes showed an overall reduction 

in locomotion as assessed by total distance traveled (Figure 4.3), indicating normal 

habituation trends.  This is consistent with other studies using male B6J and D2J mice 



119 
 

(Anisman et al., 1976; Cabib et al., 1990; Kafkafi et al., 2003) and a combination of male 

and female B6J and D2J mice (Koyner et al., 2000).  One study using a shorter open field 

session found D2J activity to increase over time, while B6J activity decreased (Logue et 

al., 1997).  This is also consistent with our data, which show an increase in activity for 

D2J mice over the first 5-10 minutes.  During the open field test, we observed that the 

D2J strain often remained still for several minutes before starting to explore, explaining 

the rise in activity during the first 10 minutes.  Remaining still is a reflection of anxiety 

when first introduced to the open field environment (Gould et al., 2009).  Nevertheless, 

all mice in our study habituated to the open field when accounting for the full 30-minute 

test session.  Specific habituation rates for each treatment group were calculated based 

on the overall 30-minute open field test (Figure 4.7A).  Our data reveal a main effect of 

diet in B6J mice, with mice fed a HFD displaying a 35% reduction in habituation rate.  

Furthermore, pairwise comparisons showed that the diet effect had the biggest impact 

on male B6J mice, with a 47% reduction in habituation rate due to DIO.  This significant 

result in male B6J mice indicates potential disruptions in the hippocampus, as this brain 

region is associated with the habituation process (Bolivar, 2009; Leussis and Bolivar, 

2006).  In a previous study from our lab using the same mice, we reported a significant 

upregulation in alpha synuclein (7-fold) and amyloid precursor protein (APP) (10-fold) 

mRNA transcripts in the hippocampus of B6J mice fed a HFD.  Although we did not 

measure protein expression in that study, it is possible that the upregulation of alpha 

synuclein and APP could potentiate neurodegeneration in this brain region, thus 
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impacting habituation.  In addition to the diet effect on habituation in our current study, 

we also found a significant sex effect in B6J mice, with females habituating at a 42% 

reduced rate compared to males.  There were no significant diet or sex effects within 

the D2J strain, indicating that the D2J strain is more resistant to sex and diet effects 

compared to the B6J strain when comparing the rate of habituation. 

DIO and Anxiety-like Behavior 

There is evidence in humans (Baker et al., 2017; Gariepy et al., 2010; Strine et al., 

2008) and in rodents (Almeida-Suhett et al., 2017; Krishna et al., 2016) that suggests a 

relationship between obesity and anxiety.  In the current study, we assessed anxiety in 

the open field arena by measuring avoidance of center entries and fecal boli quantity.  

Evading the center area and fecal boli are common behavioral assays for determining 

anxiety-like behavior in mice that are introduced to a novel environment (Seibenhener 

and Wooten, 2015).  Our data revealed a significant 37% increase in fecal boli produced 

by male B6J mice fed a HFD compared to mice fed a LFD (Figure 4.7B).  There was also a 

significant sex effect in the B6J strain, with males producing 50% more fecal boli 

compared to females (Figure 4.7B).  The impact of DIO on the B6J strain is consistent 

with another study that reported an increase in fecal boli for male and female SM/J 

mice fed a HFD, however, this study showed no sex effect with the SM/J strain (Keleher 

et al., 2018).  In our study, there was no sex or diet effect on fecal boli in the D2J strain, 

which highlights the influence of genetics on the impact of DIO on specific types of 

behavior.  Evaluation of center entries in the present study showed only a slight 
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decrease for mice fed a HFD in most treatment groups.  It is interesting to note the 

disparities in the literature regarding center entries and percent center time for the 

assessment of DIO impact on anxiety-like behavior in B6J or B6 mice.  For example, one 

study in male B6J mice found a negative correlation between weight gain and center 

entries (Almeida-Suhett et al., 2017), while others using B6 (Tsai et al., 2018) or B6J 

(Zilkha et al., 2017) mice found no effect of DIO on center entries.  In a study with 

female B6 mice, there was no impact of DIO on center entries after 12 and 21 weeks of 

HFD feeding, but DIO mice had reduced center entries after 32 weeks of HFD feeding 

(Krishna et al., 2016, 2015).  There are several factors that may explain these different 

results, such as the size of the open field, the age at which HFD is initiated, diet 

duration, and the use of different substrains of B6 mice.  Although it is recommended by 

some protocols to test for anxiety within the first 5-10 minutes of the open field test 

(Gould et al., 2009; Seibenhener and Wooten, 2015), a wide variety of time frames are 

used in DIO studies.  In our study, we used the first five-minute time bin (0-5min) for the 

B6J strain and the second five-minute (5-10) for the D2J strain in order to capture the 

most active time for each strain, as shown in the TDT and velocity plots (Figures 4.3 and 

4.5).  Considering the discrepancies in center time or center entry results in DIO studies 

listed here, it is possible that other behavioral assays for anxiety in rodents may be more 

accurate predictors of anxiety in obese mice, such as the elevated plus maze, which has 

been used previously in DIO studies in mice and rats (Agrimi et al., 2019; Bax et al., 

2019). 
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While there is extensive published research on sex differences regarding 

associations between obesity and depression, less is known about sex factors involved 

in relationships between obesity and anxiety (Tronieri et al., 2017).  Some studies show 

a more significant relationship between overweight or obesity and anxiety in females 

compared to males (Anderson et al., 2006; Barry et al., 2008; DeJesus et al., 2016; 

Hofmann et al., 2015; Svenningsson et al., 2012).  However, there are other reports that 

suggest a higher incidence of anxiety in obese males compared to obese females 

(Bjerkeset et al., 2007; Bridgewater et al., 2017; Tronieri et al., 2017).  Our fecal boli 

data show that only male B6J mice fed a HFD displayed higher anxiety-like behavior.  

These results indicate that sex is an influential factor regarding the impact of DIO on the 

development of anxiety. 

DIO Effect on Motivation and Welfare 

 The nestlet shredding test has been used to evaluate a variety of behaviors, 

including obsessive-compulsive behavior (Angoa-Pérez et al., 2013), motivation or 

apathy (Nichols et al., 2016), and general welfare (Gaskill et al., 2013).  It has also been 

used to assess the efficacy of anxiolytics (Li et al., 2006).  Nestlet shredding for the 

purpose of nest building, warmth, or protection is a natural, spontaneous behavior in 

laboratory mice of both sexes (Gaskill et al., 2013; Jirkof et al., 2013; Nichols et al., 

2016).  Excessive shredding indicates repetitive, compulsive behaviors (Angoa-Pérez et 

al., 2013), while latency to shred can be a sign of apathy, depression, or poor health 

associated with disease progression (Jirkof, 2014; Nichols et al., 2016).  In the present 
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study, we reveal that DIO caused a significant reduction in shredding behavior for male 

B6J mice (Figure 4.7D).  This latency to shred could indicate a lack of motivation caused 

by chronic exposure to a HFD, or could be a sign of declining nervous system health.  

Impaired nestlet shredding has been associated with hippocampal dysfunction and 

neurodegenerative disease, specifically with mouse models of Alzheimer’s disease 

(Jirkof, 2014).  Furthermore, mice with hippocampal lesions have performed poorly in 

nest building tasks and show a similar latency in shredding (Deacon and Rawlins, 2005).  

Although we did not see any differences in BDNF mRNA expression in the hippocampus 

in the present study, we did see a significant upregulation of alpha synuclein and APP in 

the hippocampi of these mice in a companion study.  As mentioned above with 

habituation deficits in male B6J mice, this upregulation of alpha synuclein and APP may 

be a sign of neurodegeneration in the hippocampus.  Interestingly, a recent study in 

mice exposed to lead (Pb) in drinking water found that the Pb-exposed mice presented 

with latency to shred (Chang et al., 2014), providing more evidence that the nestlet 

shredding test is a potential indicator of hippocampal dysfunction.  Based on the data 

presented here and in our previous work with DIO mice, we propose that DIO generated 

by a HFD acts as an environmental stress that can increase the risk for 

neurodegeneration and negative behavior transformations. 

DIO and Memory 

 There is evidence in humans that a diet high in saturated fat can lead to memory 

impairment and an increased risk for Alzheimer’s disease (Eskelinen et al., 2008; 
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Pasinetti and Eberstein, 2008).  In rodents, there are mixed results regarding the effect 

of DIO or HFD on memory.  For example, memory was compromised in young male B6J 

mice fed a HFD (60% kcal fat) for a short duration of one week, with the diet treatment 

initiated at three weeks old (Kaczmarczyk et al., 2013).  A similar result was reported for 

middle-aged (11 months old) male B6J mice fed a HFD (60% kcal fat) for four months 

(Carey et al., 2014).  In contrast, male B6J mice fed a moderately HFD (32% kcal fat) at 

11 weeks old for 6.5 months showed no difference in short- or long-term memory 

(Tucker et al., 2012).  Female B6 mice at age 6-7 weeks old fed a 60% HFD for 12, 22, 

and 36 weeks also showed that diet had no impact on memory (Krishna et al., 2016, 

2015).  Under normal diet conditions, there are natural strain differences in memory 

which show that the B6J strain has superior memory compared to the D2J strain 

(Lenselink et al., 2015).  Our results show that DIO did not have a statistically significant 

impact on memory as assessed by the novel object recognition test.  It is interesting, 

however, that the discrimination index for female D2J mice fed a HFD was negative, 

indicating a possible disturbance of normal behavior due to DIO.   

Dopamine Release and Reuptake in the Dorsal Striatum 

Fast scan cyclic voltammetry was used to measure real-time dopamine release 

and reuptake by dopamine transporter (DAT) in the striatum.  We found that dopamine 

release in the dorsal striatum was significantly increased by 24% in female B6J mice fed 

a HFD (Figure 4.9A).  Additionally, our data reveal a diet by strain interaction for 

dopamine reuptake in the dorsal striatum, specifically both male and female D2J mice 
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fed the HFD showed a decreased rate of dopamine reuptake whereas the B6J were 

unaffected (Figure 4.9B).  In another study with male B6J mice fed a high fat/high sugar 

Western style diet for 16 weeks, dopamine release in the dorsal striatum was increased 

and dopamine clearance was decreased in mice fed the Western style diet (Fritz et al., 

2018).   Although our results were consistent with this study in the direction of change 

for dopamine release and reuptake, we did not observe these changes in B6J males.  

DIO studies using male and female rats have consistently reported decreases in 

dopamine clearance in this subregion of the striatum (Geiger et al., 2009; Morris et al., 

2011; Patel et al., 2019), which is similar to what we discovered for the D2J strain.  

These same rat studies also report decreases in dopamine release; however, we found 

an increase in release for B6J females, and no change for the other treatment groups.  It 

is possible that the dopamine response is different for mice compared to rats in the 

dorsal striatum, although research in mice on this topic, especially in females, is 

currently limited.    

Dopamine Release and Reuptake in the NAc Core of the Ventral Striatum 

  Dopamine release and reuptake were also assessed in the NAc core.  In this brain 

region, we found no impact of DIO on dopamine release in either strain or sex.  There 

was, however, a diet by sex interaction for Vmax, with male mice fed a HFD exhibiting a 

decreased rate of dopamine clearance compared to female mice.  Although the 

magnitude of reduction was greater in the B6J males (56% less) compared to the D2J 

males (49% less), the D2J male result was statistically significant, while the B6J male 
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result was trending toward significance.  This decrease in NAc Vmax in male mice is 

consistent with several other reports.  For example, in three separate studies using male 

B6J mice fed a HFD for six weeks, the use of fast scan cyclic voltammetry revealed a 

significant decrease in dopamine reuptake in the NAc core (Barnes et al., 2020; Fordahl 

et al., 2016; Fordahl and Jones, 2017).  In the present study, it is interesting that DIO 

only had an impact on dopamine clearance in males from each strain.  It is possible that 

estrogen has a neuroprotective effect on dopamine biology (Dluzen and McDermott, 

2000), specifically in the NAc core of females (Thompson, 1999), which would explain 

the diet by sex interaction.  Our results that show no change in dopamine release in the 

NAc core are consistent with another study in B6J mice fed a 60% HFD for six weeks 

(Fordahl et al., 2016), however, other reports in mice and rats fed a HFD have found a 

decrease in dopamine release in this region (Barnes et al., 2020; Geiger et al., 2009; 

Patel et al., 2019).  It has been reported that DAT may regulate diurnal oscillations of 

dopamine release in mice and rats (Ferris et al., 2014) and that ovarian hormones in rats 

can impact circadian variation of dopamine release in the striatum (Becker et al., 1984), 

which could explain the discrepancies in dopamine release that have been reported in 

the striatum of rodents.  Nevertheless, we show here that DIO has an impact on 

dopamine biology in a strain- and sex-dependent manner which should be further 

investigated. 
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Effect of Diet, Sex, and Strain on DRD2 mRNA Expression 

DRD2 has an important role in dopamine biology, facilitating the actions of 

dopamine that control both movement and reward-seeking (Gallo, 2019).  In the current 

study, we discovered dysregulations in DRD2 mRNA gene expression in the striatum and 

olfactory bulb due to DIO.  For this evaluation, the striatum was not divided into dorsal 

and ventral subregions, but included the entire brain region.  We found a significant 

upregulation of DRD2 by 2.4-fold in the striatum of B6J males (Figure 4.10A).  In the 

olfactory bulb, we found a significant 3.5-fold upregulation in DRD2 mRNA in male D2J 

mice, and a 2-fold downregulation in male B6J that was approaching significance (Figure 

4.12).  DIO did not impact the gene expression in females of either strain.    

There are conflicting reports regarding DRD2 expression dysregulation due to 

DIO, with some reporting downregulation, some upregulation, and a few reporting no 

change.  For example, an imaging study in men and women discovered that striatal 

DRD2 receptor availability was reduced in obese individuals compared to controls, and 

that BMI was negatively correlated with DRD2 concentration (Wang et al., 2001).  In 

corroboration using similar test methods, striatal DRD2 receptor availability was 

reduced in obese women compared to controls (van de Giessen et al., 2014).  However, 

another imaging study in obese women found no change in DRD2 receptor availability 

when examining several brain regions, including the striatum, and found no correlation 

between DRD2 and BMI (Karlsson et al., 2015).  In a study using male Sprague-Dawley 

rats fed a HFD for eight weeks, there was a 42% decrease in DRD2 density in the dorsal 
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striatum (Narayanaswami et al., 2013).  Furthermore, when male and female offspring 

of female B6J mice bred with D2J males were fed a HFD for 12 weeks, both males and 

females showed a downregulation of DRD2 mRNA in the NAc core (Carlin et al., 2013).  

In contrast to these studies demonstrating a downregulation or no change in DRD2 

expression, several labs have reported an upregulation in DRD2 due to DIO.  In a study 

using male B6 mice fed a HFD for 20 weeks, there was an induction of DRD2 mRNA in 

the NAc core for mice fed a HFD, and a positive correlation between final body weight 

and DRD2 gene expression in this brain region (Huang et al., 2005b).  Another study 

using male B6 mice fed a HFD for 12 weeks showed that mice fed a HFD had increased 

DRD2 protein expression in the NAc (Sharma and Fulton, 2013).  Furthermore, when 

male B6 mice were fed a HFD for only 20 days, the DRD2 binding density was increased 

in the dorsal and ventral striatum (South and Huang, 2008).  Collectively, these studies 

provide evidence that DRD2 dysregulation is involved as either a cause (in humans) or 

consequence of DIO, however the direction of DRD2 alteration and pathophysiological 

mechanisms are poorly understood.  The DRD2 upregulation we discovered in male B6J 

mice in the striatum is consistent with reports in B6 mice described here.  Although we 

did not measure protein or binding density, our mRNA expression results are a unique 

and valuable contribution for understanding sex and strain differences in the study of 

DIO impact on neurobiology.  To the best of our knowledge, there are no prior published 

results regarding the impact of DIO on DRD2 expression in the olfactory bulb.  As with 

the striatum, we found that males were susceptible to mRNA dysregulation in the 
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olfactory bulb, but not females, possibly due to the protective effects of estrogen.  The 

opposite trends in mRNA dysregulation in the olfactory bulb for the B6J and D2J strains 

also highlight the important influence of genetics on the brain’s response to a state of 

DIO.   

Effect of Diet, Sex, and Strain on TH mRNA Expression 

TH is a rate limiting enzyme for the synthesis of dopamine, an important 

neurotransmitter involved in attention, memory, and cognition (Daubner et al., 2011).  

Furthermore, TH is required for proper motor function (Jang et al., 2017).  In the present 

study, we found a significant 3.8-fold upregulation of TH mRNA in the olfactory bulb for 

male D2J mice (Figure 4.12).  In the striatum, there was no impact of DIO on TH gene 

expression (Figure 4.10A).  However, we found a significant 8-fold increase in TH mRNA 

expression in the B6J strain compared to the D2J strain (Figure 4.10B).  Previous rodent 

studies have reported an upregulation in TH mRNA expression due to DIO in other brain 

regions.  For example, in a study using male B6 mice fed a HFD for 20 weeks, there was 

an upregulation of TH mRNA in the midbrain for mice fed a HFD, and a positive 

correlation between final body weight and TH gene expression in this brain region 

(Huang et al., 2005a).  A study using female C57BL6/129SVJ mice fed a HFD for 12 weeks 

discovered an induction of TH mRNA expression in the hypothalamus using microarray 

analysis and real time polymerase chain reaction techniques (Lee et al., 2010).  In 

contrast, other human and rodent studies have found a downregulation of TH 

expression due to DIO in various brain regions.  In a study using postmortem brain tissue 
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from male and female Caucasians and African Americans, TH mRNA was downregulated 

in the substantia nigra in obese tissue, but not overweight or control tissue (Wu et al., 

2017).  A study using male B6 mice fed a HFD for 13 weeks found that TH protein 

expression was downregulated in the midbrain and striatum for mice fed a HFD (Jang et 

al., 2017).  Furthermore, B6J male mice fed a HDF for just 6 weeks showed a decrease in 

TH protein expression in the striatum and midbrain, along with increased anxiety-like 

behavior in mice fed a HFD (Sharma et al., 2013).  The induction of TH mRNA that we 

found in the olfactory bulb of male D2J mice fed a HFD for 16 weeks indicates that the 

impact of DIO in this brain region is influenced by sex and strain.  Moreover, we reveal a 

substantial 8-fold strain effect in the striatum for this gene, emphasizing the influence of 

genetics on the expression of genes that are related to dopamine biology.  While we do 

not fully understand the neurophysiological mechanisms behind these sex and strain 

influences in TH gene expression, our preliminary findings provide a foundation for 

future work involving the impact of DIO on gene expression dysregulation in the brain. 

Effect of Diet, Sex, and Strain on BDNF mRNA Expression  

Brain-derived neurotrophic factor (BDNF) is a protein and growth factor involved 

in neuronal survival and brain plasticity (Bathina and Das, 2015; Miranda et al., 2019).  

The role of this neurotrophin in brain plasticity is correlated with learning, memory, and 

cognition in humans and rodents (Miranda et al., 2019).  High levels of BDNF are 

associated with neuronal protection (Almeida et al., 2005), while low levels have been 

associated with normal aging and pathological conditions such as Alzheimer’s disease 
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and Parkinson’s disease (Bathina and Das, 2015; Miranda et al., 2019).  Furthermore, 

BDNF is involved in the regulation of energy balance, and may act as an anorexigenic 

signaling molecule (Liu et al., 2014; Rios et al., n.d.).  As such, dysregulated levels of 

BDNF have been associated with obesity (Genzer et al., 2016).  In our study, DIO led to a 

2-fold increase in BDNF mRNA expression in B6J females in the olfactory bulb (Figure 

4.12).  Previous studies in rodent models have also shown an upregulation of BDNF 

mRNA or protein due to DIO, however, these results were in males and in different brain 

regions.  For example, a study using male B6 mice fed a HFD for eight weeks found that 

BDNF mRNA and protein was upregulated in whole brain tissue and in HT-4 

hippocampal neurons (Genzer et al., 2016).  In a study using male Long-Evans rats fed a 

HFD for 72 hours, the mRNA expression of BDNF was upregulated in the hippocampus 

(Gan et al., 2015).  In contrast, a study using female Fisher 344 rats fed a diet high in fat 

and sugar found that BDNF protein and mRNA expression in the hippocampus was 

reduced after 6 months of diet treatment (Molteni et al., 2002).  In our mice, we found 

no effect of DIO on hippocampal BDNF gene expression.  However, there was a 

significant sex effect in the D2J strain, with D2J female mice expressing 2.5-fold higher 

levels of BDNF mRNA compared to D2J males (Figure 4.11).  It has been reported 

previously that female rats express higher levels of BDNF in the hippocampus and cortex 

(Chan and Ye, 2017).  A study using Long-Evans male and female rats fed a control diet 

or HFD for four days and four weeks compared BDNF mRNA expression in the 

ventromedial nucleus of the hypothalamus (Liu et al., 2014).  At both time points, the 
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expression of BDNF was higher in females compared to males, regardless of diet.  In a 

study with male and female Wistar rats exposed to an enriched environment, females 

expressed higher levels of BDNF protein compared to males in both the control and 

enrichment-treated groups (Bakos et al., 2009).  The D2J strain in our study follow a 

similar pattern of increased hippocampal BDNF expression in females, however we did 

not observe the same effect in the B6J strain.  To gain a better understanding of these 

sex- and strain-dependent gene expression trends in different brain regions, future 

investigations could include an evaluation of BDNF expression levels for both mRNA and 

protein in several brain regions or subregions.  To the best of our knowledge, our study 

is the first study to reveal DIO-induced alterations in BDNF mRNA expression in the 

murine olfactory bulb.  As BDNF has an important role in neural plasticity and neuronal 

protection in several brain regions, including the olfactory bulb, this could have 

important health implications regarding the development of behavior disorders and 

neurodegenerative disease. 

Conclusion 

 In conclusion, the results from this study provide evidence that the impact of DIO 

on behavior, dopamine biology, and gene expression is influenced by sex and strain.   

Behavior evaluations showed that the B6J male mice fed a HFD were impacted the most 

through their display of reduced TDT throughout the entire open field test, reduced rate 

of habituation to a novel environment, lack of motivation to shred, and elevated anxiety 

levels in the open field.  Furthermore, DRD2 was upregulated only in male B6J mice in 
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the striatum due to DIO.  These results confirmed our hypothesis that male mice would 

be impacted more than females, and that the B6J strain would be less resistant to the 

effects of DIO compared to the D2J strain.  We did find, however, that dopamine biology 

alterations and gene expression dysregulation due to DIO were present in females and 

the D2J strain.  Dopamine clearance in the dorsal striatum was significantly reduced in 

both male and female D2J mice due to DIO, while in the NAc core, reductions in 

dopamine clearance occurred for male mice of both strains.  Our evaluation of mRNA 

gene expression demonstrated that DRD2 in the striatum and olfactory bulb and TH in 

the olfactory bulb were only dysregulated in males due to DIO.  BDNF mRNA expression, 

however, was only impacted by DIO in B6J females in the olfactory bulb.  The major 

strengths of this study were the inclusion of two strains and both sexes for the 

evaluation of sex and genetic influences on DIO impact in the brain, the use of multiple 

performance tests to assess the impact of DIO on a variety of behaviors, and the use of 

real time ex-vivo fast scan cyclic voltammetry to evaluate dopamine biology.  Moreover, 

we have provided novel information regarding the neurobiological impact of DIO on the 

olfactory bulb, a brain region that previously has not been investigated in the context of 

DIO with sex and strain influences.  In terms of study limitations, we measured mRNA 

expression exclusively, but not protein expression due to lack of tissue availability.  

Furthermore, while we carefully planned our behavior tests and tissue collection 

schedule to limit variability due circadian variation and estrous cycle, we could not 

perform all measurements at the same time of day due to the number of mice involved.  
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To account for this, we used a Latin square technique for all measurements and 

procedures to counterbalance potential variations that could impact our data.  In 

summary, our study provides evidence for important sex and strain influences on the 

impact of DIO-induced behavior alterations and neurobiology dysregulation.  As the 

incidence of obesity continues to rise worldwide, these data have key health 

implications related to debilitating behavior disorders.  The development of treatment 

and rehabilitation programs should therefore account for these apparent 

neurobiological differences in sex and genetics. 
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CHAPTER V 
 

EPILOGUE 
 
 

 The overarching goal of this research was to identify sex and strain influences on 

neurobiological and behavioral changes due to DIO.  In our first study (Chapter III), we 

investigated main effects and interactions between diet, sex, and strain on Fe, Mn, Cu, 

and Zn homeostasis and mRNA gene expression for proteins related to trace element 

metabolism and neurodegeneration.  In our second study (Chapter IV), we examined 

main effects and interactions between diet, sex, and strain on behavior, dopamine 

release and reuptake, and mRNA gene expression for proteins related to behavior and 

dopamine biology.  These studies revealed a heterogeneous effect of DIO on many of 

the neurobiological variables that we evaluated.  For example, in the striatum, Fe was 

significantly elevated in B6J female mice but not male mice due to DIO.  Similarly, in the 

hippocampus, Zn was increased in D2J males but deceased in D2J females.  There was 

also a dramatic induction of DMT1, alpha synuclein, and APP in this brain region due to 

DIO, but only in the B6J males.  Behavior assessments demonstrated that B6J male mice 

fed a HFD were impacted the most through their display of significantly reduced 

locomotion, reduced rate of habituation, lack of motivation, and elevated anxiety levels.  

Interestingly, these mice also showed a significant upregulation of DRD2.  Dopamine 

clearance in the dorsal striatum was significantly reduced in both male and female D2J
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mice due to DIO, while in the NAc core, reductions in dopamine clearance occurred for 

male mice of both strains fed HFD.   

In order to establish an effective DIO model in rodents, it is important to select   

appropriate diets and mouse strains.  Our experimental design included male and 

female B6J and D2J mouse strains which were randomly assigned to a LFD (10% kcal fat) 

or HFD (60% kcal lard-based fat) for 16 weeks.  These strains have been shown to 

respond efficiently to a HFD to create the DIO state (Alexander et al., 2006; 

Montgomery et al., 2013; West et al., 1992).  Our data corroborates with these reports, 

as males and females from both the B6J and D2J strains fed a HFD had significantly 

higher body weight and greater volume of adipose tissue at the end of the diet 

treatment.  There are other reports in the literature, however, that show D2J mice  

respond less efficiently to a HFD, including lack of weight gain (Kirk et al., 1995), delayed 

weight gain (Norris et al., 2016), or similar weight gain compared to a control LFD 

(Funkat et al., 2004).  These studies either initiated their diet treatments later than 

three weeks of age (typically 8-10 weeks old), or used a fat source other than lard in 

their HFD.  Using a diet with 60% lard as the source of fat and initiating our diet at 

approximately three weeks old provided a quick and effective DIO model for our study.  

It should be noted that other diets, such as a 45% HFD or a cafeteria style diet may 

mimic the human HFD more closely, however, the 60% HFD is widely used in animal 

research and produces physiological responses that are relevant to human physiology 

(Lutz and Woods, 2012). 
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 A limitation of our study is that our experimental design did not allow for the 

partitioning of effects of DIO versus HFD.  Instead, we can conclude that the impact we 

observed on trace element homeostasis, gene expression, etc., was due to a state of 

DIO induced by a high saturated fat diet, or restated, a combination of HFD and DIO.  To 

determine if the neurobiological and behavioral changes were due to components of 

the HFD and not a state of DIO, a future experimental design using a LFD and HFD 

treatment could incorporate a mouse strain that is resistant to weight gain, such as the 

AJ or Mbd2 -/- strains (Cheng et al., 2016; Surwit et al., 1995).  Furthermore, there are 

alternative methods to induce dietary obesity, such as a 45% HFD, cafeteria style diet, or 

high fat diets containing different unsaturated and saturated fatty acid blends (Barrett 

et al., 2016; Speakman, 2019).  Future experiments could utilize these different diets to 

provide a comparison of DIO states with different origins.   

Reviewing our findings from both studies, it is interesting that B6J male mice 

displayed significant behavior changes, increased Fe and Mn in the olfactory bulb, and 

dysregulation of mRNA expression of genes related to neurodegeneration.  These mice 

had significantly reduced locomotion throughout the open field test, decreased 

motivation in the nestlet shredding test, and increased anxiety-like behavior assessed by 

fecal boli quantity.  Furthermore, B6J males had significantly reduced habituation, a 

measure of learning and memory, which could indicate hippocampal impairment.  It is 

possible that these behavior changes are related to the dysregulated mRNA expression 

that occurred in B6J males due to DIO.  For example, there was a substantial induction 
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of DMT1, alpha synuclein, and APP in the hippocampus for B6J males, and an 

upregulation of DRD2 in the striatum.  The induction of alpha synuclein and APP could 

be a sign of early neurodegeneration, which could manifest as reduced habituation rate.  

A follow up experiment should include protein testing for alpha synuclein and APP in the 

hippocampus.  Furthermore, an evaluation of oxidative stress, such as the F2-

isoprostane test for lipid peroxidation, should be performed in the hippocampus to test 

for signs of neurodegeneration.  The upregulation of DRD2 in the striatum indicates 

dysregulation of dopamine biology, which may be associated with the reduction of 

motor activity in the open field and lack of motivation to shred.  Moreover, B6J males 

had a reduced rate of dopamine reuptake in the NAc core, indicating a disruption of the 

reward circuitry in these mice.  Future work with B6J mice should include behavior 

testing using the elevated plus maze, which may be a more accurate test for anxiety 

compared to center entries in an open field.  The nestlet test for motivation could be 

modified to extend the time from 30 minutes to 1-2 hours, which may provide a better 

determination of latency to shred.  Additionally, this test can be recorded to monitor 

other behaviors such as locomotion, grooming, and rearing.  Since the nestlet shredding 

test is relatively easy to set up and provides a quantitative measurement to reduce 

subjectivity, this test is recommended for future behavior assessments.  The open field 

test also provides several useful behavior assessments; however, our current apparatus 

is not large enough for the obese mice.  Most labs use a 40” x 40” surface area made of 

opaque plastic for easy cleaning.  Our surface measures 29” by 29” and is lined with 
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paper.  Although the paper creates an opaque arena, the mice can dig into the paper, 

which occurred often with the D2J strain.  Furthermore, the sides of our testing cubes 

displayed a reflection, which could impact the behavior of the mice.  Nevertheless, our 

findings demonstrate that B6J male mice are a good model for evaluating the effects of 

DIO on behavior change and neurobiological alterations. 

In Chapters III and IV, our results demonstrate that D2J females have a unique 

response to DIO.  D2J females fed a HFD were the only group to display a decrease in Zn 

in the hippocampus and the only group to have a negative discrimination index in the 

learning and memory test.  For the assessment of correlations with body weight, the D2J 

females had a positive correlation between weight and Fe and weight and DMT1 

expression in the striatum.  In the hippocampus, D2J females showed positive 

correlations between weight and alpha synuclein and weight with APP expression, and 

showed a negative correlation with weight and Zn.  Furthermore, the D2J group had a 

negative correlation between weight and TDT and weight with velocity.  These 

correlations are useful for understanding relationships between weight and 

neurobiological changes, and provide evidence that excess body weight could be a 

direct cause of these alterations.  Although other treatment groups appeared to have 

statistically significant correlations between body weight and different neurobiological 

variables, the data were often clustered and could not be characterized as a linear 

relationship.  The Zn reduction in the hippocampus of female D2J mice with the negative 

discrimination index for learning and memory could be investigated further in future 
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studies.  It is possible that dysregulated Zn due to DIO is associated with reductions in 

cognition.  There are alternative methods for evaluating memory and cognition that 

may provide a better understanding of the effects of DIO on the hippocampus, including 

the Morris water maze test (Cordner and Tamashiro, 2015).  Moreover, the novel object 

test can be modified to change the spatial arrangement of objects rather than 

introducing a new object, which has also been shown to reflect neurobiological changes 

in the hippocampus (Cordner and Tamashiro, 2015).  Future work could also include an 

evaluation of the prefrontal cortex for trace element dysregulation and gene expression 

alterations, as this brain region is also involved in memory, learning, and cognition 

(Cordner and Tamashiro, 2015).  Furthermore, the impact of DIO on gene and protein 

expression for ZIP and ZRT transporters could be investigated in the hippocampus and 

prefrontal cortex to explore potential links to dysregulated Zn in the brain. 

The olfactory bulb is a brain region that has not been studied extensively in the 

context of DIO.  A recent study in Parkinson’s disease patients found that Fe was 

elevated in this brain region (Gardner et al., 2017).  In a study using brain tissue from 

Alzheimer’s disease patients, both Fe and Zn were increased in the olfactory bulb 

(Samudralwar et al., 1995).  Another study reported alpha synuclein upregulation in the 

olfactory bulb in the early development of Parkinson’s disease (Adler and Beach, 2016).  

In our lab, we found previously that DIO in male B6J mice can lead to upregulated alpha 

synuclein and increased Fe in the midbrain, both of which are hallmarks of 

neurodegeneration (Han et al., 2019).  Based on these studies, we were interested in 
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exploring the effects of DIO on olfactory bulb neurobiology.  We found a significant 

increase in Fe and Mn in B6J male mice fed a HFD, but no increases in Zn in this brain 

region.  It is interesting that the dysregulation of trace elements in the olfactory bulb 

only impacted the male B6J mice.  In contrast, the impact of DIO on gene expression 

alterations in the olfactory bulb predominantly affected D2J males.  D2J males fed a HFD 

exhibited significantly upregulated DMT1, alpha synuclein, APP, DRD2, and TH in this 

brain region.  The only other treatment group that was also affected was the B6J 

females with an upregulation of BDNF in the olfactory bulb for mice fed a HFD.  These 

studies provide evidence that the olfactory bulb is a brain region that is impacted by a 

state of DIO in sex and strain dependent manner.  The olfactory bulb is relatively easy to 

separate from the rest of the brain during the dissection process, making it simple to 

isolate and store for future DIO studies.  Future work could include an evaluation of DIO-

associated trace element dysregulation and gene expression alteration over time to 

study the effects of DIO on aging in this brain region.  Since there were clear differences 

in neurobiological disturbances between males and females and between the B6J and 

D2J strain, both sexes of these strains could be used for future work.  However, since 

female mice appeared to be more resistant to DIO-associated alterations in the 

olfactory bulb, it may be justified to use only males for the comparison of strain 

differences. 

In our study of gene expression, we selected the gene that was recommended 

for best coverage to obtain a broad scope understanding of each gene.  However, this 
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does not differentiate between different isoforms that may exist for each gene.  Future 

work in our lab may include an assessment of DIO-associated alterations of specific 

isoforms.  For example, DRD2 has two isoforms, D2L and D2S, with the long D2L 

predominantly expressed in the brain (Baik, 2013).  Recent studies in humans and mice 

show that these isoforms are differentially expressed in addiction studies (Moyer et al., 

2011) and may have different functions in vivo (Usiello et al., 2000; Wang et al., 2000).  

DMT1 has four known isoforms: 1A/(+IRE), 1A/(-IRE),  1B/(+IRE), 1B/(-IRE) that are 

expressed at different levels (Skjørringe et al., 2015), however, the trace element 

transport function of all four isoforms is similar (Mackenzie et al., 2007).  Nevertheless, 

a more comprehensive examination of DMT1 gene expression based on specific 

isoforms may provide a better understanding of the specific mechanisms involved in 

obesity-induced gene expression alteration.  Furthermore, future studies with IRP in the 

brain should include IRP2, which has been found recently to have a critical impact on 

brain iron metabolism (Zhang et al., 2014), neurodegeneration (Ghosh et al., 2015), and 

behavior (Zumbrennen-Bullough et al., 2014).  A case study performed on a 16-year-old 

male with evidence of neurodegeneration was found to lack the gene coding for IRP2 

(Costain et al., 2019), and is the first study to show IRP2 dysregulation in the human 

brain. 

In summary, our findings provide evidence for important sex and strain 

differences on the impact of DIO-associated behavior alterations and neurobiology 

dysregulation.  As the incidence of obesity continues to rise worldwide, these findings 
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have key health implications related to debilitating behavior disorders and the 

development of neurodegenerative disease that can be triggered by an energy dense 

diet and a state of DIO.  Future targeted therapies for obesity, behavior impediments, 

and brain diseases may need to be specifically tailored to account for sex and genetics 

as key biological factors. 
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APPENDIX A 
 

SUPPLEMENTARY DATA 
 
 

Supplementary Table A1.  Rodent Diets D12450J and D12492 from Research Diets, Inc. 

Ingredient 
D12450J (10% kcal from fat) D12492 (60% kcal from fat) 

Grams Kilocalories Grams Kilocalories 

Casein, Lactic, 30 mesh 200.00 800.00 200.00 800.00 
L-Cysteine 3.00 12.00 3.00 12.00 
Cornstarch 506.20 2024.80 - - 
Lodex 10 125.00 500.00 125.00 500.00 

Fine granulated sucrose 72.80 291.20 72.80 291.20 
Solka Floc fiber, FCC200 50.00 200.00 50.00 200.00 

Soybean oil, USP 25.00 225.00 25.00 225.00 
Lard 20.00 180.00 245.00 2205.00 

Mineral mix S10026B 50.00 - 50.00 - 
Choline bitartrate 2.00 - 2.00 - 

Vitamin mix V10001C 1.00 - 1.00 - 
Yellow dye FD&C #5 0.04 - - - 
Blue dye FD&C #1 0.01 - 0.05 - 

     
Total 1055.05 4233.00 773.85 4233.20 

Caloric Summary     

Fat  10% kcal  60% kcal 
Carbohydrate  70% kcal  20% kcal 

Protein  20% kcal  20% kcal 
Energy Density  3.82 kcal/g  5.21 kcal/g 

A description of diets used for the 16-week treatment.  D12450J (10% kcal from fat) represents the LFD 
and D12492 (60% kcal from fat) represents the HFD.  Saturated fat in the form of lard is the major source 
of fat in this study. 
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Supplementary Table A2.  Trace element Concentrations in Specific Brain Regions of 
Male and Female B6J and D2J Mice 
 

Brain Region 
Treatment 

Group 
Iron Manganese Copper Zinc 

Hippocampus BML 373 ± 3 6.82 ± 0.48  118.5 ± 1.3 367 ± 32 
 BMH 431 ± 32 7.28 ± 0.41 134.3 ± 11.3 409 ± 75 
 BFL 435 ± 22 7.00 ± 0.58 119.4 ± 16.6 350 ± 27 
 BFH 470 ± 35 8.81 ± 1.19 176.7 ± 20.4 473 ± 59 
 DML 357 ± 24 7.41 ± 0.96 122.1 ± 6.3 338 ± 36 
 DMH 386 ± 24 6.95 ± 0.81 118.3 ± 15.8 549 ± 94 
 DFL 452 ± 34 8.03 ± 0.59 157.0 ± 8.3 581 ± 73 
 DFH 405 ± 36 6.76 ± 0.83 131.6 ± 12.6 370 ± 11 

Midbrain BML 479 ± 96 10.00 ± 0.96 109.0 ± 17.0 400 ± 95 
 BMH 369 ± 34 7.72 ± 0.69 82.0 ± 7.2 251 ± 27 
 BFL 444 ± 24 10.58 ± 1.09 98.4 ± 5.5 340 ± 11 
 BFH 443 ± 49 9.43 ± 1.46 88.5 ± 10.0 314 ± 49 
 DML 551 ± 85 12.59 ± 1.83 125.2 ± 16.5 543 ± 118 
 DMH 470 ± 83 11.53 ± 2.27 76.9 ± 3.0 403 ± 118 
 DFL 473 ± 105 12.58 ± 1.49 124.8 ± 13.5 407 ± 81 
 DFH 402 ± 38 11.49 ± 1.30 85.6 ± 11.9 379 ± 103 

Olfactory Bulb BML 572 ± 66 12.33 ± 0.28 102.3 ± 8.3 223 ± 26 
 BMH 1252 ± 282 20.45 ± 4.49 118.3 ± 7.5 275 ± 30 
 BFL 931 ± 31 18.15 ± 1.84 126.1 ± 10.0 278 ± 19 
 BFH 818 ± 116 16.66 ± 2.02 116.2 ± 17.1 209 ± 11 
 DML 758 ± 82 16.78 ± 1.89 127.0 ± 14.6 306 ± 60 
 DMH 844 ± 145 14.99 ± 1.90 108.0 ± 8.4 236 ± 29 
 DFL 887 ± 92 16.76 ± 1.82 113.7 ± 9.8 281 ± 36 
 DFH 885 ± 88 14.45 ± 1.25 121.4 ± 15.3 334 ± 44 

Striatum BML 448 ± 63 10.15 ± 1.04 129.8 ± 17.5 712 ± 157 
 BMH 409 ± 9 9.44 ± 0.45 97.1 ± 0.8 710 ± 141 
 BFL 454 ± 40 8.44 ± 0.70 107.4 ± 12.5 716 ± 175 
 BFH 598 ± 48 10.32 ± 1.30 111.4 ± 28.5 563 ± 100 
 DML 381 ± 35 8.04 ± 0.55 94.5 ± 8.8 696 ± 185 
 DMH 406 ± 6 8.24 ± 0.45 93.1 ± 2.1 569 ± 46 
 DFL 335 ± 32 9.51 ± 0.73 95.6 ± 11.2 731 ± 113 
 DFH 410 ± 39 9.58 ± 0.67 123.7 ± 11.5 552 ± 54 

Data are represented as mean ± SEM in units of g trace element/g protein.  Treatment group letter 

codes: B=B6J, D=D2J, M=male, F=female, L=low fat diet, H=high fat diet 
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Supplementary Table A3.  Striatum mRNA Gene Expression ΔCt Values 

Treatment 
Group 

DMT1 IRP1 Cp aSyn D2 TH 

BML 17.37 ± 0.06 18.37 ± 0.13 18.44 ± 0.27 9.81 ± 0.12 20.71 ± 0.10 16.75 ± 0.32 
BMH 17.47 ± 0.08 18.36 ± 0.15 18.20 ± 0.24 10.07 ± 0.15 19.68 ± 0.41 16.36 ± 0.18 
BFL 17.00 ± 0.21 18.06 ± 0.23 18.09 ± 0.12 14.07 ± 0.14 18.47 ± 0.28 16.69 ± 0.38 
BFH 17.22 ± 0.07 18.14 ± 0.05 17.92 ± 0.18 14.42 ± 0.07 18.34 ± 0.42 16.43 ± 0.20 
DML 17.43 ± 0.14 18.20 ± 0.16 18.07 ± 0.13 14.38 ± 0.14 16.67 ± 0.57 19.03 ± 0.41 
DMH 17.36 ± 0.15 18.09 ± 0.09 18.10 ± 0.08 14.31 ± 0.19 16.64 ± 0.30 19.33 ± 0.34 
DFL 17.36 ± 0.02 18.14 ± 0.08 19.00 ± 0.16 14.32 ± 0.21 17.72 ± 0.07 19.57 ± 0.25 
DFH 17.17 ± 0.04 18.09 ± 0.06 18.38 ± 0.16 14.43 ± 0.03 17.26 ± 0.15 19.72 ± 0.32 

Data are represented as mean ± SEM.  ΔCt values were normalized using the endogenous control, 18S.  

Higher ΔCt values indicate lower levels of gene expression.  The ΔCt values reported here were used to 

determine fold change in gene expression when comparing LFD (control) to HFD or male (control) to 

female using the comparative Ct method.  Treatment group letter codes: B=B6J, D=D2J, M=male, 

F=female, L=low fat diet, H=high fat diet.  DMT1=divalent metal transporter 1, IRP1=iron regulatory 

protein 1, Cp=ceruloplasmin, aSyn=alpha synuclein, D2 = dopamine receptor D2, TH = tyrosine 

hydroxylase. 

 
 
Supplementary Table A4.  Hippocampus mRNA gene expression ΔCt values 

Treatment 
Group 

DMT1 Cp CTR1 aSyn APP BDNF 

BML 16.79 ± 0.21 12.91 ± 0.08 18.49 ± 0.17 13.50 ± 0.32 10.55 ± 0.41 19.12 ± 0.28 
BMH 14.56 ± 0.45 13.61 ± 0.20 18.56 ± 0.18 10.74 ± 0.40 7.30 ± 0.37 18.89 ± 0.26 
BFL 17.51 ± 0.06 18.19 ± 0.23 18.18 ± 0.36 15.04 ± 0.39 8.51 ± 0.11 19.11 ± 0.26 
BFH 17.42 ± 0.12 18.05 ± 0.20 18.10 ± 0.22 14.25 ± 0.08 8.09 ± 0.11 18.67 ± 0.08 
DML 16.96 ± 0.12 17.86 ± 0.19 18.23 ± 0.25 14.34 ± 0.35 10.86 ± 0.21 19.16 ± 0.17 
DMH 17.24 ± 0.07 17.51 ± 0.23 18.27 ± 0.10 14.14 ± 0.31 11.03 ± 0.10 19.39 ± 0.43 
DFL 17.18 ± 0.16 18.07 ± 0.19 19.56 ± 0.22 13.98 ± 0.05 11.10 ± 0.13 17.92 ± 0.18 
DFH 17.02 ± 0.10 18.02 ± 0.14 19.20 ± 0.27 13.75 ± 0.90 10.76 ± 0.08 17.95 ± 0.13 

Data are represented as mean ± SEM.  ΔCt values were normalized using the endogenous control, 18S.  

Higher ΔCt values indicate lower levels of gene expression.  The ΔCt values reported here were used to 

determine fold change in gene expression when comparing LFD (control) to HFD or male (control) to 

female using the comparative Ct method.  Treatment group letter codes: B=B6J, D=D2J, M=male, 

F=female, L=low fat diet, H=high fat diet.  DMT1=divalent metal transporter 1, Cp=ceruloplasmin, 

CTR1=copper transporter protein 1, aSyn=alpha synuclein, APP = amyloid precursor protein, BDNF = brain-

derived neurotrophic factor. 
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Supplementary Table A5.  Olfactory Bulb mRNA Gene Expression ΔCt Values 

Treatment 
Group 

DMT1 aSyn APP BDNF D2 TH 

BML 14.01 ± 0.20  13.40 ± 0.03 11.01 ± 0.23 19.04 ± 0.35 19.55 ± 0.16 14.70 ± 0.74 
BMH 14.40 ± 0.20 13.60 ± 0.04 10.97 ± 0.21 19.01 ± 0.17 20.84 ± 0.46 15.45 ± 0.55 
BFL 12.82 ± 0.36 12.25 ± 0.31 11.40 ± 0.34 19.82 ± 0.28 18.77 ± 0.50 13.82 ± 0.25 
BFH 12.79 ± 0.40 12.50 ± 0.25 11.68 ± 0.40 18.87 ± 0.35 19.86 ± 0.69 14.41 ± 0.47 
DML 18.23 ± 0.05 14.47 ± 0.21 8.89 ± 0.03 19.92 ± 0.19 21.28 ± 0.24 16.34 ± 0.33 
DMH 17.27 ± 0.34 13.83 ± 0.02 7.54 ± 0.29 20.04 ± 0.24 19.68 ± 0.48 14.67 ± 0.66 
DFL 17.85 ± 0.38 14.38 ± 0.23 12.27 ± 0.44 20.55 ± 0.20 20.74 ± 0.25 15.80 ± 0.15 
DFH 17.79 ± 0.15 14.26 ± 0.07 12.62 ± 0.38 20.11 ± 0.11 20.62 ± 0.33 15.27 ± 0.19 

Data are represented as mean ± SEM.  ΔCt values were normalized using the endogenous control, 18S.  
Higher ΔCt values indicate lower levels of gene expression.  The ΔCt values reported here were used to 
determine fold change in gene expression when comparing LFD (control) to HFD or male (control) to 
female using the comparative Ct method.  Treatment group letter codes: B=B6J, D=D2J, M=male, 
F=female, L=low fat diet, H=high fat diet.  DMT1=divalent metal transporter 1, aSyn=alpha synuclein, APP 
= amyloid precursor protein, BDNF = brain-derived neurotrophic factor, D2 = dopamine receptor D2, TH = 
tyrosine hydroxylase. 

 
 
Supplementary Table A6.  Midbrain mRNA Gene Expression ΔCt Values 

Treatment Group aSyn Cp TH 

BML 15.34 ± 0.32 18.52 ± 0.27 18.32 ± 1.44 
BMH 15.19 ± 1.14 18.24 ± 0.59 17.95 ± 1.42 
DML 13.76 ± 1.48 17.52 ± 0.20 16.66 ± 0.22 
DMH 12.83 ± 0.46 17.13 ± 0.59 17.30 ± 1.36 

Data are represented as mean ± SEM.  ΔCt values were normalized using the endogenous control, 18S.  

Higher ΔCt values indicate lower levels of gene expression.  The ΔCt values reported here were used to 

determine fold change in gene expression when comparing LFD (control) to HFD or male (control) to 

female using the comparative Ct method.  Treatment group letter codes: B=B6J, D=D2J, M=male, L=low 

fat diet, H=high fat diet.  aSyn=alpha synuclein, Cp=ceruloplasmin, TH = tyrosine hydroxylase.   
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Supplementary Table A7.  Total Distance Traveled for Male and Female B6J and D2J 
Mice in the Open Field 
 

Treatment 
Group 

Total Distance Traveled (m) per Five-min Timeframe 
0-5 5-10 10-15 15-20 20-25 25-30 

BML 18.1 ± 1.2 12.3 ± 0.9 11.6 ± 0.4 10.4 ± 0.5 11.3 ± 0.8 9.7 ± 0.7 
BMH 11.2 ± 0.8 8.3 ± 0.6 8.0 ± 0.5 7.9 ± 0.5 6.7 ± 0.3 6.5 ± 0.3 
BFL 15.7 ± 1.2 11.8 ± 0.7 11.1 ± 0.6 12.3 ± 0.5 10.9 ± 0.6 10.9 ± 0.8 
BFH 12.9 ± 0.7 9.3 ± 0.6 8.8 ± 0.6 9.6 ± 0.7 8.7 ± 0.9 8.6 ± 0.8 
DML 8.7 ± 1.2 9.9 ± 1.4 10.4 ± 0.8 9.8 ± 0.8 7.6 ± 1.2 6.8 ± 1.1 
DMH 5.9 ± 0.6 7.5 ± 0.8 6.3 ± 1.0 4.9 ± 0.7 4.1 ± 0.7 4.2 ± 1.0 
DFL 7.8 ± 0.5 10.2 ± 1.7 7.3 ± 0.7 5.3 ± 1.0 4.5 ± 0.5 6.6 ± 1.3 
DFH 7.1 ± 0.9 7.1 ± 1.0 5.2 ± 0.6 6.9 ± 1.1 3.1 ± 0.4 3.3 ± 0.6 

Data are represented as mean ± SEM. Treatment group letter codes: B=B6J, D=D2J, M=male, F=female, 

L=low fat diet, H=high fat diet. 

 
 
Supplementary Table A8.  Velocity for Male and Female B6J and D2J Mice in the Open 
Field 
 

Treatment 
Group 

Velocity (mm/s) per Five-min Timeframe 
0-5 5-10 10-15 15-20 20-25 25-30 

BML 60.4 ± 3.8 40.6 ± 3.4 38.6 ± 1.3 35.1 ± 1.8 38.0 ± 2.6 32.6 ± 2.4 
BMH 37.4 ± 2.8 27.9 ± 2.2 25.9 ± 1.5 26.6 ± 1.7 22.4 ± 1.0 21.7 ± 0.9 
BFL 52.7 ± 4.1 39.4 ± 2.2 37.0 ± 1.8 41.1 ± 1.5 36.3 ± 1.8 36.0 ± 2.8 
BFH 43.3 ± 2.6 31.1 ± 2.1 29.2 ± 2.1 31.9 ± 2.4 29.2 ± 2.8 29.0 ± 2.6 
DML 25.8 ± 2.7 29.9 ± 4.4 33.1 ± 2.6 31.5 ± 2.8 25.0 ± 4.6 18.0 ± 3.6 
DMH 19.3 ± 2.0 25.1 ± 2.7 20.9 ± 3.4 16.6 ± 2.1 13.8 ± 2.5 13.9 ± 3.3 
DFL 26.0 ± 1.7 34.3 ± 5.8 24.4 ± 2.2 17.9 ± 3.2 15.1 ± 1.6 21.9 ± 4.4 
DFH 23.8 ± 2.9 23.6 ± 3.4 17.4 ± 2.0 21.4 ± 4.6 10.2 ± 1.4 10.8 ± 2.1 

Data are represented as mean ± SEM. Treatment group letter codes: B=B6J, D=D2J, M=male, F=female, 

L=low fat diet, H=high fat diet. 
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Supplementary Table A9.  Behavior Tests for Exploration, Anxiety, Compulsivity, 
Motivation, and Memory 
 

Treatment 
Group 

Habituation Fecal Boli 
Center 
Entries 

Nestlet 
Shredding 

Novel Object 
DI 

BML 263 ± 32 5.33 ± 0.75 25.2 ± 1.6 2.38 ± 0.76 0.057 ± 0.068 
BMH 163 ± 25 7.78 ± 0.60 22.4 ± 1.8 0.11 ± 0.04 0.146 ± 0.067 
BFL 152 ± 32 4.11 ± 0.51 22.2 ± 1.6 0.31 ± 0.14 0.090 ± 0.055 
BFH 127 ± 31 4.67 ± 0.76 19.3 ± 1.3 0.61 ± 0.20 0.166 ± 0.069 
DML 156 ± 45 5.89 ± 0.72 7.9 ± 2.1 3.00 ± 0.74 0.098 ± 0.087 
DMH 101 ± 18 5.38 ± 0.78 9.8 ± 3.3 2.50 ± 0.63 0.101 ± 0.179 
DFL 142 ± 41 5.33 ± 1.03 10.7 ± 3.0 3.73 ± 0.92 0.081 ± 0.136 

DFH 169 ± 27 5.44 ± 0.63 6.6 ± 2.2 1.62 ± 0.48 -0.12 ± 0.098 

Habituation measures exploration and memory with learning.  Fecal boli and center entries measure 
anxiety.  Nestlet shredding measures compulsivity, motivation, and welfare.  Novel Object Discrimination 
Index measures learning and memory.  Data are represented as mean ± SEM.  For the center entries test, 
data from the first five-minute segment in the open field were used for the B6J mice analysis, and data 
from the second five-minute segment was used for the D2J analysis.  These time frames were selected 
based on greatest total distance travelled for each strain.  Treatment group letter codes: B=B6J, D=D2J, 
M=male, F=female, L=low fat diet, H=high fat diet.  DI = discrimination index. 

 
 
Supplementary Table A10.  Dopamine Release and Reuptake in the Striatum 

Treatment Group 
Dopamine 
Release DS  

Dopamine 
Reuptake DS 

Dopamine 
Release VS  

Dopamine 
Reuptake VS 

BML 151.5 ± 18.3 3.22 ± 0.32 174.0 ± 11.6 2.89 ± 0.32 
BMH 136.8 ± 8.5 3.73 ± 0.36 180.8 ± 13.6 1.63 ± 0.19 
BFL 128.3 ± 6.1 4.10 ± 0.43 185.8 ± 10.7 2.23 ± 0.33 
BFH 163.6 ± 9.3 3.89 ± 0.46 187.2 ± 7.0 2.57 ± 0.63 
DML 133.7 ± 6.7 4.81 ± 0.56 196.5 ± 11.5 3.53 ± 0.43 
DMH 149.0 ± 8.7 3.41 ± 0.35 206.8 ± 8.7 2.13 ± 0.24 
DFL 140.0 ± 7.8 4.74 ± 0.64 188.0 ± 26.1 3.64 ± 0.58 
DFH 145.9 ± 7.3 3.44 ± 0.32 214.1 ± 6.8 3.12 ± 0.24 

Data are represented as mean ± SEM.  Dopamine release was calculated as a ratio of five-pulse release to 
one-pulse release to provide information regarding the dynamic capacity to release dopamine from the 
dorsal and ventral striatum.  Units for dopamine release are % pulse.  Dopamine reuptake is measured as 

maximal rate of dopamine uptake (Vmax) by dopamine transporter.  Units for reuptake are mol/L·s.  DS 
= dorsal striatum, VS = ventral striatum.  Treatment group letter codes: B=B6J, D=D2J, M=male, F=female, 
L=low fat diet, H=high fat diet. 
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APPENDIX B 
 

BEHAVIOR TESTING  
 

 

 
 
Figure B1.  Open Field Set Up.  Four acrylic cubes were used for the open field and novel object 
recognition tests with one mouse placed in each cube.  Each cube is assigned an individual camera with 
recording software.  Four mice were evaluated at one time for each round of testing.  

  
 

 
 
Figure B2.  Open Field Single Cube.  Each acrylic cube measures 29 cm x 29 cm x 38 cm.  Mice were placed 
at the center of the cube at the start of each experiment.  
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Figure B3.  Objects Used for Novel Object Recognition Test.  Nonporous objects were chosen with similar 
size and color but distinct shape.  Two owls were used in phase II (familiarization phase).  One owl and 
one squirrel were used for phase III (testing phase), with the owl as the familiar object and the squirrel as 
the new object.   
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Figure B4.  Novel Object Recognition Test.  Phase I (A) is the 30-minute habituation phase for mice to 
gain exposure to the testing arena.  Phase II (B) is the familiarization phase for mice to explore an identical 
object for five minutes.  Phase III (C) is the testing phase for mice to explore either the familiar object or 
new object for five minutes.  Phase III occurs two hours after phase II and is used to evaluate memory. 
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Figure B5.  Nestlet Shredding Set Up.  Polycarbonate mouse cages were filled with bedding to a depth of 
0.5 cm.  Pre-weighed cotton nestlet squares (5.8cm x 5.8cm x 0.2cm) were placed in the middle of each 
cage before placing each mouse inside.  Fitted filter tops were used to enclose the cage during testing 
(tops and nestlet squares not shown here). 

 
 

 
 
Figure B6.  Nestlet Shredding Result Example.  After each 30-minute nestlet shredding test, shredded 
nestlet material was carefully removed from each nestlet square. Individual nestlets were dried for 24 
hours before weighing.  Percent shredding was calculated for each mouse as a measure of motivation and 
compulsivity. 


