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 The study of bacteria has become increasingly important to agriculture, healthcare, and 

industry. However, the evolutionary forces that enable their unparalleled ability to adapt and 

persist in new environments have yet to be thoroughly determined. Due to their reproduction by 

binary fission, most evolutionary models consider bacteria to be clonally evolving. However, this 

ignores the contribution of genetic material from lateral genetic transfer (i.e. homologous 

recombination) which may be more impactful to their species and genomic evolution than 

mutation alone. Furthermore, tools developed to compare the impact of homologous 

recombination to mutation in bacteria are often based on strong assumptions and have been used 

to analyze only few species represented by few genomes. This, combined with a lack of 

standardization across methodologies and highly inconsistent measurements between studies 

makes determining the true impact of homologous recombination on bacterial evolution difficult. 

In this dissertation, I estimate the evolutionary impact of lateral genetic exchange via 

homologous recombination in 162 bacterial and one archaeal species under a unified framework 

based on Approximate Bayesian Computation (ABC). Using this data, I was able to map the 

evolution of recombination rate – as a trait – across many bacterial species represented by 

thousands of genomes, as well as estimate recombination rate variation on a gene-by-gene basis 

across bacterial chromosomes. Overall, this study provides insight into the diversity of 

recombination rates across bacterial species – a key step in understanding how homologous 

recombination plays a role in bacterial speciation, adaptation, evolution, and population 

diversity.



ESTIMATING HOMOLOGOUS RECOMBINATION RATES ACROSS BACTERIAL 

LINEAGES AND GENOMES 

by 

Ellis L. Torrance 

A Dissertation 
Submitted to 

the Faculty of The Graduate School at 
The University of North Carolina at Greensboro 

in Partial Fulfillment 
of the Requirements for the Degree 

Doctor of Philosophy 

Greensboro 

2024 

Approved by 

Dr. Louis-Marie Bobay 
Committee Chair 



ii 

 

DEDICATION 

I dedicate my PhD Dissertation to my mom and my dog. Neither of them fully 

understands what I’ve written or why I’ve written it, but both have been unconditionally loving 

and supportive, nevertheless. 



iii 

 

APPROVAL PAGE 

This dissertation written by Ellis L. Torrance has been approved by the following 

committee of the Faculty of The Graduate School at The University of North Carolina at 

Greensboro. 

 

Committee Chair    
 Dr. Louis-Marie Bobay  

 
Committee Members       
 Dr. Dan Schrider 
       
 Dr. Kasie Raymann 
       
 Dr. Malcolm Schug 
 

 

 

 

 

 

 

 

 

March 11, 2024 

Date of Acceptance by Committee 

November 3, 2023 
Date of Final Oral Examination 



iv 

 

ACKNOWLEDGEMENTS 

I would like to formally thank my family, friends, mentors, and colleagues for 

contributions to my research, professional development, and personal life. Specifically, I would 

like to thank my research advisor Dr. Louis-Marie Bobay for his incredible kindness, patience, 

and guidance throughout my Ph.D. and the development of this dissertation. Also, thank you to 

Tracey Schwartz, Tyler Lacy, David Schwartz, and Zach Ostrum for their help in proof-reading 

this document. I would also like to thank Dr. Louis-Marie Bobay, Corey Burton, Awa Diop, and 

Matthew Miller for research contributions towards the contents of Chapter 2&3. Lastly, I would 

like to thank my committee members Dr. Kasie Raymann, Dr. Dan Schrider, and Dr. Malcolm 

Schug for their valuable advice and support in the development of my research aims and goals. 

Financially, this material is based upon work supported by the National Institutes of 

Health grant R01GM132137 awarded to Dr. Louis-Marie Bobay as well as the U.S. Department 

of Energy, Office of Science, Office of Advanced Scientific Computing Research, Department of 

Energy Computational Science Graduate Fellowship (DOE CSGF) awarded to me under Award 

Number DE-SC0021110. This report was prepared as an account of work sponsored by an 

agency of the United States Government and requires the following disclaimer: Neither the 

United States Government nor any agency thereof, nor any of their employees, makes any 

warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, 

completeness, or usefulness of any information, apparatus, product, or process disclosed, or 

represents that its use would not infringe privately owned rights. Reference herein to any specific 

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise 

does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 



v 

 

United States Government or any agency thereof. The views and opinions of authors expressed 

herein do not necessarily state or reflect those of the United States Government or any agency 

thereof. 

 



vi 

 

TABLE OF CONTENTS 

 
LIST OF FIGURES ....................................................................................................................... ix 

 
CHAPTER I: INTRODUCTION .................................................................................................... 1 

 
I.1 An Introduction to DNA Exchange in Bacteria ............................................................. 1 

I.2 Homologous Recombination (HR) vs. Horizontal Gene Transfer (HGT) ..................... 2 

I.3 Mechanisms of Homologous Recombination ................................................................ 4 

I.4 Types of DNA Transfer in Prokaryotes ......................................................................... 6 

I.4.1 Conjugation ............................................................................................................. 7 
I.4.2 Transduction ........................................................................................................... 7 
I.4.3 Transformation ........................................................................................................ 9 

I.5 Quantifying Homologous Recombination ..................................................................... 9 

I.6 Homologous Recombination Rates Inferred in Previous Studies ................................ 13 

I.7 Homologous Recombination as an Evolutionary Process ........................................... 15 

I.8 Homologous Recombination across the Genome ........................................................ 18 

I.9 Overview of Dissertation Questions and Chapter Organization .................................. 22 

CHAPTER II: EVOLUTION OF HOMOLOGOUS RECOMBINATION RATES ACROSS 
BACTERIA .................................................................................................................................. 25 

 
II.1 Abstract ........................................................................................................................ 25 

II.2 Statement of Significance ............................................................................................ 26 

II.3 Introduction .................................................................................................................. 26 

II.4 Results .......................................................................................................................... 29 

II.4.1 Description of the ABC approach ......................................................................... 29 
II.4.2 Assessment of the ABC approach ......................................................................... 33 



vii 

 

II.4.3 Rates of homologous recombination across bacteria ............................................ 34 
II.4.4 Robustness of homologous recombination rate estimates .................................... 38 
II.4.5 Inference of overall nucleotide exchange in bacterial recombination .................. 41 
II.4.6 Evolution of recombination rate across the bacterial tree ..................................... 43 

II.5 Discussion .................................................................................................................... 48 

II.6 Methods ........................................................................................................................ 52 

II.6.1 Genome acquisition, Core Genome Assembly, and Phylogeny ........................... 52 
II.6.2 Forward-in-Time Simulation with Homologous Recombination ......................... 54 

II.7 Supplementary Materials ............................................................................................. 55 

II.7.1 Supplementary Text .............................................................................................. 55 

II.7.1.1 Methodology Validation, and Exploration of Bias ............................................ 55 
II.7.1.2 Analyses of recombination rates ........................................................................ 57 

II.7.2 Supplementary Figures ......................................................................................... 59 
II.7.3 Supplementary Table Legends .............................................................................. 70 

II.8 Associated Contents ..................................................................................................... 74 

II.8.1 Ethics Approval and Consent to Participate ......................................................... 74 
II.8.2 Consent for Publication ......................................................................................... 74 
II.8.3 Availability of Data and Materials ........................................................................ 74 
II.8.4 Competing interests .............................................................................................. 74 
II.8.5 Funding Information ............................................................................................. 74 
II.8.6 Funding Disclaimer ............................................................................................... 74 
II.8.7 Authors' contributions ........................................................................................... 75 
II.8.8 Acknowledgments ................................................................................................. 76 

II.9 References .................................................................................................................... 76 

CHAPTER III: HOMOLOGOUS RECOMBINATION SHAPES THE ARCHITECTURE AND 
EVOLUTION OF BACTERIAL GENOMES .............................................................................. 77 

 
III.1 Abstract ........................................................................................................................ 77 

III.2 Introduction .................................................................................................................. 78 

III.3 Results .......................................................................................................................... 81 



viii 

 

III.3.1 Homologous Recombination Rate Varies across Bacterial Core Genes .............. 81 
III.3.2 Homologous Recombination Rate Variation by Gene Function .......................... 85 
III.3.3 Homologous Recombination Rate in Genes Flanking Clusters of Accessory  

Genes ..................................................................................................................... 86 
III.3.4 Homologous Recombination Rate, GC-content, and Selection ............................ 87 
III.3.5 Homologous Recombination Rate and DNA Strand Bias .................................... 88 
III.3.6 Evolution of the Genomic Landscape of Recombination ..................................... 89 
III.3.7 Genomic Landscapes of Homologous Recombination ......................................... 90 
III.3.8 Overview of Clinically Relevant Genes in Hotspots of Recombination .............. 94 

III.4 Discussion .................................................................................................................... 95 

III.5 Supplementary Materials ........................................................................................... 101 

III.5.1 Supplementary Methods ..................................................................................... 101 

III.5.1.1 Data Assembly ................................................................................................. 101 
III.5.1.2 Estimation of recombination rates ................................................................... 102 
III.5.1.3 Identification of Ori and Ter ............................................................................ 103 
III.5.1.4 Other Gene Analyses ....................................................................................... 104 

III.5.2 Supplementary Figures ....................................................................................... 106 
III.5.3 Supplementary Table Legends ............................................................................ 120 

III.6 Associated Contents ................................................................................................... 122 

III.6.1 Ethics Approval and Consent to Participate ....................................................... 122 
III.6.2 Consent for Publication ....................................................................................... 122 
III.6.3 Availability of Data and Materials ...................................................................... 122 
III.6.4 Competing interests ............................................................................................ 122 
III.6.5 Funding Information ........................................................................................... 122 
III.6.6 Funding Disclaimer ............................................................................................. 123 
III.6.7 Authors' contributions ......................................................................................... 123 
III.6.8 Acknowledgments ............................................................................................... 124 

III.7 References .................................................................................................................. 124 

CHAPTER IV: CONCLUSION AND FUTURE RESEARCH DIRECTIONS ........................ 125 
 

REFERENCES ........................................................................................................................... 130 
  



ix 

 

LIST OF FIGURES 

Figure I—1. Cartoon Representing the Difference Between Homologous Recombination (HR) 
and Horizontal Gene Transfer (HGT). ................................................................................ 4 

Figure I—2. A cartoon representing the RecBCD homologous recombination pathway (17). ...... 5 

Figure I—3. A cartoon representing chromosome replication in prokaryotes and some of the 
structural and functional organizations of the Prokaryotic genome (69). ......................... 20 

 
Figure II—1. Description of the method used to infer rates of homologous recombination 

(recABC) for 162 bacteria and one archaeal species in this study. ................................... 31 

Figure II—2. Estimates of homologous recombination rate (r/m) across species. ....................... 35 

Figure II—3. Absolute number of nucleotides exchanged by recombination per mutation relative 
to recombination rate (r/m) for 162 bacteria and one archaeal species (Spearman’s 
Rho=0.74, P<10-15). .......................................................................................................... 43 
 

Figure II—4. Evolution of homologous recombination rate (r/m) across bacteria. ...................... 44 

Figure II—5. Recombination rate r/m across bacterial genera for 162 bacterial species. ............ 46 

Figure S II—1. Assessment of our ABC approach. ...................................................................... 59 

Figure S II—2. Plot of the average of the posterior distribution of simulated summary statistic 
values vs. real summary statistic values before outlier removal (A-C) and after outlier 
removal (D-F) for h/m (red), 𝝅 (green), and LDfit (yellow) calculated from the species 
alignment. Spearman’s correlation coefficients and P-values are indicated above each 
graph. ................................................................................................................................ 60 
 

Figure S II—3. Recombination rate estimates (r/m) for each species relative to the summary 
statistics of each species (real dataset) A) h/m, B) LDfit, and C) π. ................................ 61 
 

Figure S II—4. Recombination rate estimates relative to various genomic characteristics of the 
dataset (A-F). .................................................................................................................... 62 
 

Figure S II—5. Comparison of recombination rate estimates (r/m) to metabolic, environmental, 
and physiological traits predicted from the JGI GOLD database (97) (Supplementary 
Table 1: Tab F). ................................................................................................................. 63 
 

Figure S II—6. Comparison between recombination rate estimates (r/m) and the number of 
integrated viral sequences (prophages). ............................................................................ 64 
  



x 

 

Figure S II—7. Robustness of r/m estimates to genome subsampling.. ....................................... 65 

Figure S II—8. Correlation between recombination rates (r/m) predicted by this study (y-axis) 
and those predicted by ClonalFrameML (x-axis) (8) across different samples of 
Escherichia coli's genomes (n=20). .................................................................................. 66 
 

Figure S II—9. Recombination rates (r/m) estimated with our ABC approach (y-axis) relative to 
recombination rates estimated by ClonalFrameML (x-axis) (45) for 84 bacterial      
species  .............................................................................................................................. 67 
 

Figure S II—10. Comparison of recombination rates between pathogens, non-pathogens, and 
putative pathogens with a Kruskal-Wallis test.. ................................................................ 68 
 

Figure S II—11. Comparison between recombination rate estimates (r/m) from this study and 
estimates from two other studies. ...................................................................................... 69 
 

Figure III—1. Description of the method used to infer rates of homologous recombination 
(recABC) across the core genome for 145 bacteria and one archaeal species in this.   
study. ................................................................................................................................. 83 
 

Figure III—2. The shape of recombination rate variation across Staphylococcus species. .......... 93 

Figure S III—1. Species’ core genome r/m values from Torrance et al. (2024) (Chapter 2) are 
highly similar to the average r/m values across genes for the same species (Spearman’s 
Rho=0.91, P<10-15). ........................................................................................................ 106 
 

Figure S III—2. The variation in r/m across gene functional categories. ................................... 107 

Figure S III—3. Histogram of Spearman’s Rho values for species which had a significant 
correlation between r/m value and GC% across their genes. .......................................... 109 
 

Figure S III—4. Boxplot comparison of the pairwise divergence (A.A.) values for species pairs 
(n=109 species pairs) which had significant correlation in r/m values across shared 
orthologs (“Significant”, n=36 species pairs) and those that did not (“Non-Significant”, 
n=73). .............................................................................................................................. 109 
 

Figure S III—5. Correlation between Spearman’s Rho values from the correlation of r/m vs. 
distance from Ori in replichore 1 and replichore 2 of n=102 species with circular 
chromosomes. ................................................................................................................. 110 
 

Figure S III—6. The shape of recombination rate across bacterial genomes. ............................ 110 

Figure S III—7. The shape of recombination rate across Bacillus genomes (n=10). ................. 112 

Figure S III—8. The shape of recombination rate across Streptococcus genomes (n=11). ........ 113 



xi 

 

Figure S III—9. The shape of recombination rate across Yersinia genomes (n=4). ................... 114 

Figure S III—10. The shape of recombination rate across Pseudomonas genomes (n=5). ........ 115 

Figure S III—11. The shape of recombination rate across Lactobacillus genomes (n=14). ...... 116 

Figure S III—12. The shape of recombination rate across Klebsiella genomes (n=4). .............. 118 

Figure S III—13. The shape of recombination rate across Corynebacterium genomes (n=4). .. 119 



1 

 

CHAPTER I: INTRODUCTION 

I.1 An Introduction to DNA Exchange in Bacteria  

Bacteria and archaea reproduce clonally via binary fission. However, they are also 

capable of transferring DNA between individuals through a variety of mechanisms (e.g., 

conjugation, transformation, and transduction). Genomic material acquired from outside of 

parent-to-offspring (i.e., vertical) inheritance is said to be laterally (or, horizontally) transferred. 

For prokaryotes, lateral genetic transfer is thought to contribute considerably to bacterial and 

archaeal evolution and their unparalleled ability to quickly adapt to new environments. Yet, the 

pervasiveness of lateral DNA exchange has been evaluated in few species, across few genomes, 

and often with inconsistent methodology (1–3). As such, it is still unclear whether DNA 

exchange contributes significantly, in contrast to the contributions of mutations alone, to the 

evolution and adaptation of bacteria. Understanding the extent of lateral transfer will enable 

discernment of the fundamental drivers of bacterial evolution and the roles that it plays in their 

speciation, population structure, adaptation, genome architecture, and gene function, among 

others. Nevertheless, as I will explore in this review, quantification of the impact of DNA 

transfer events relative to random mutation on bacterial evolution has been somewhat difficult to 

ascertain and thus, its relative contribution to genomic evolution across bacterial species and 

genomes remains largely unexplored (4). 

The overarching goal of my dissertation is to: quantify the impact of DNA transferred via 

homologous recombination relative to mutation across many bacterial species, compare its 

variation between species, and to map and compare its variation on a gene-by-gene basis across 

their genomes. By quantifying the extent of genomic exchange across numerous species and 
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genomes, this study provides some of the data and computational tools necessary to 

fundamentally unravel some of the ways in which bacteria have evolved and persisted for 

millions of years on Earth. This introduction chapter aims to provide the reader with a summary 

of relevant background information and begins with defining the primary differences between 

homologous recombination and horizontal gene transfer and continues with the mechanisms and 

modes by which genetic information can be transferred between Prokaryotes. I next provide an 

overview of the different methods that have been used to quantify the impact of HR and the 

potential problems inherent therein. I then summarize the results of prior studies that have 

quantified recombination rate, its variation across some bacteria, and outline evolutionary 

hypotheses which have been developed to explain why HR occurs in Prokaryotes. Next, I review 

the genomic organization of bacteria and summarize findings of the few previous studies that 

have explored intragenomic HR variation in bacteria. Finally, I conclude this introduction by 

describing the organization of the following chapters and questions addressed by my dissertation 

research.  

I.2 Homologous Recombination (HR) vs. Horizontal Gene Transfer (HGT) 

The primary focus of this dissertation is to quantify the rates of homologous 

recombination and their variations across bacterial species and genomes. Thus, horizontal gene 

transfer will be largely ignored. However, it is worth noting the differences and similarities 

between the processes and their genomic contributions as some analyses within this study 

explore the overlap between the two. Both HR and HGT contribute to the genomic plasticity of 

prokaryotic organisms and describe the processes by which genes and alleles are exchanged 

between individuals of a species, between species, and across wider phylogenetic relationships. 

Specifically, homologous recombination refers to the exchange of small (~50-2,000bp (5–7)) 
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highly similar DNA fragments which are thought to occur with higher frequency in relation to 

sequence identity (4, 8). As such, it is expected that homologous recombination occurs most 

readily between highly similar genes from highly related individuals and imparts comparatively 

subtle changes (relative to HGT) in the genome of its recipient (9, 10). Alternatively, the 

definition of HGT is less nuanced and can be used to describe imports that originate from a 

variety of organisms which do not necessarily require homology to be incorporated into a 

genome (7, 11, 12). These events are most often characterized by their contribution to a 

prokaryotes accessory genome which is the collection of genes which are not restricted to the 

species and not shared by all its members (13). Although HGT is an important process, this study 

instead focuses primarily on quantifying genomic change imparted by HR which, alongside 

mutation, defines the primary mechanism by which change may accrue and be selected upon in 

the core genome (i.e., the set of genes which are present in all members of a species) (14). Figure 

1 provides a cartoon illustrating the difference between HR (Figure 1A) and HGT (Figure 1B) 

where HR is the exchange of a highly similar DNA sequence that generates only allelic 

differences as evidence of its occurrence. Whereas in HGT (Figure 1B), the exchange results in 

the insertion of genes in the acceptor genome. 
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Figure I—1. Cartoon Representing the Difference Between Homologous Recombination 

(HR) and Horizontal Gene Transfer (HGT). 

I.3 Mechanisms of Homologous Recombination 

Homologous recombination in Prokaryotes is the unidirectional incorporation of a DNA 

sequence from a donor molecule of DNA into a highly similar, or homologous region, of an 

acceptor genome. This process is akin to gene conversion in Eukaryotes and is thought to occur 

primarily as a housekeeping mechanism by which DNA damage – such as double stranded 

breaks (DSBs) – occurring in the host’s DNA may be repaired (15). Though the proteins that 

facilitate homologous recombination vary between organisms, the general pathway is essentially 

the same: enzymes or enzymatic complexes (such as RecBCD or RecFOR) make a portion of the 

genome accessible to strand-invasion of a donor sequence and subsequent strand-exchange or 

integration of the donor sequence into the host genome (16). Specifically, HR strand-invasion 

and strand-exchange is catalyzed by RecA (or a RecA homolog) (Figure 2 (17)). Notably, RecA 

also has a role in the regulation of the SOS response in bacteria in addition to its role in the repair 

of DNA lesions (16).  

 

B. Horizontal Gene Transfer (HGT)
A ATC GGT T AACAGAT T AC

Donor Sequence

Acceptor Genome

X
AAT C CGCTAACAGAAT AC

AAT CGGT TAACAGAT T AC

Recombined Genome

AAT C CGCTAACAGAAT AC

Acceptor Genome

Donor Sequence of Genes

X

A A C

Recombined Genome

A. Homologous Recombination (HR)
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Figure I—2. A cartoon representing the RecBCD homologous recombination pathway (17). 

This figure is reprinted from “The Impact of Lateral Gene Transfer in Chlamydia” by H. 

Marti et al., 2022, Frontiers in Cellular and Infection Microbiology, 12, © Frontiers in 

Cellular and Infection Microbiology (2022). 
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The most well-characterized recombination pathway is the RecBCD pathway in E. coli 

which repairs DSBs (Figure 2) (18). Here, the RecBCD enzyme complex is catalyzed by a free 

DNA end characteristic of a DSB and is comprised of DNA helicases (RecB (3’ helicase) and 

RecD (5’ helicase)) and a DNA nuclease (RecC) (19). When a blunted end or nonpaired DNA 

fragment is recognized, the RecBCD complex binds to the DNA end and begins unwinding and 

digesting the DNA strand. A crossover hotspot instigator, better known as a Chi site, is an 

octameric DNA motif which is recognized by the RecBCD complex; its presence inhibits the 

DNA degradation activity of RecBCD and then promotes recombination instead (20, 21). During 

the resolution of a DSB, the interaction between RecC and the 3’ Chi site halts nuclease activity 

in the 5’ to 3’ direction (22). RecB then assists the binding of RecA protein units to the non-

digested 3’ DNA tails and RecBCD disassembles. RecA then facilitates the formation of 

heteroduplex DNA with a homologous sequence via strand invasion (23). DNA polymerase then 

copies the template single stranded DNA to synthetize the complementary strand. The Holliday 

junction that results from strand-invasion is resolved via the hexameric protein complex RuvAB 

and RuvC which unwind and cleave the DNA resulting in either a hybrid or recombinant DNA 

configuration (19, 24) (Figure 2). Though the RecBCD is the most well-characterized 

homologous recombination pathway in bacteria, it is only one example of how DNA can be 

incorporated into the host’s genome through homologous recombination. In fact, many other 

homologous recombination pathways exist or are predicted to exist across prokaryote species, in 

bacteriophages, and in plasmids (16).  

I.4 Types of DNA Transfer in Prokaryotes 

DNA has been hypothesized to enter the prokaryotic cell to engage in homologous 

recombination via various processes and mechanisms (e.g., cell vesicles, and nanotubes) (25, 
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26). However, this introduction will only briefly describe the best characterized modes of DNA 

transfer which are: i) conjugation, ii) transduction, and iii) transformation. 

I.4.1 Conjugation 

Bacterial conjugation, first described in 1946 (27), is the exchange of DNA from a donor 

to a recipient cell that are in physical contact with each other. This exchange is both site and 

strand specific and requires a conjugative system consisting of a coupling system (e.g. the pilus 

or pilin) containing an ATPase which facilitates the active process of moving DNA into the 

acceptor cell via the conjugative secretion system (e.g. type-IV secretion system) (28). 

Conjugative elements are most commonly plasmids or integrative plasmids (and, less frequently, 

transposons, or chromosomal regions) capable of being exchanged via conjugation (29). Briefly, 

transfer of these elements is initiated at the nic (i.e., origin of transfer (oriT)) by the relaxosome - 

a protein complex which binds and cleaves the nic site and remains covalently bound to its 5’ 

end (30). Components of the relaxosome then bind with transport machinery to form a complex 

known as the transferome. The transferome then mediates transfer of the conjugative element to 

the conjugative system which transfers the DNA to the donor cell through the type IV secretion 

system (28, 30).  

I.4.2 Transduction 

Transduction is the transfer of bacterial DNA through the action of bacteriophages (i.e., 

phages) or phage-like elements (31). Phages are viruses of bacteria which can insert their DNA 

into a host cell to facilitate its replication by the host’s machinery. Once inside the host cell the 

phage DNA may enter a replicative phase known as the lytic cycle where the phage genome is 

replicated, and its proteins are expressed, to allow for the formation of phage particles and cell 

lysis (32). Alternatively, the phage may enter a temperate or lysogenic phase in which the viral 
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DNA integrates into the bacterial chromosome and remains dormant within the host genome 

until induction. The induction event triggers the excision of the phage DNA from the host 

genome and its subsequent replication, particle assembly, and release from its host’s cell (32). 

Phages whose genome is integrated into the genome of the host are referred to as prophages. 

Transduction is generally categorized as either i) generalized transduction or ii) specialized 

transduction (33, 34).  

In current models of generalized transduction, the packaging proteins of phages 

mistakenly recognize a signaling motif in the bacterial genome as viral which leads to the 

packaging of bacterial DNA rather than phage DNA (35). By way of this phage particle, the 

bacterial DNA may then be transferred to another bacterial cell where it may be integrated into 

the genome of this recipient cell (32). In contrast, specialized transduction is the transfer of a 

hybridized bacteria-phage DNA fragment resulting from aberrant excision of the phage from the 

bacterial genome. Here, bacterial genes flanking the phage encoding region of the bacterial 

genome are excised with the viral genome as a concatemer and can be packaged into a phage 

particle which may then infect and transfer the bacterial DNA to another bacterial cell(32). 

Though transduction generally involves the activity of a complete phage, it can also 

involve phage-like elements. Prokaryotes may occasionally “domesticate” phages. Prophage 

domestication entails the cooption of genes that convey a fitness advantage to the bacteria and 

the deletion or pseudogenization of the remainder of the prophage (36). In some cases, these can 

be phage genes such as those involved in DNA packaging and transfer (36, 37). An example of 

prophage domestication are gene transfer agents (GTA) which may arise when bacteria 

evolutionarily coopt phage genes for DNA packaging and transfer to assist in the transmission of 

its own genome (36, 37).  
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I.4.3 Transformation  

Some bacteria can gain DNA through the mechanism of transformation. Transformation 

is the uptake and incorporation of exogenous DNA directly from the environment (38). As 

opposed to transduction (which requires viral infection) or conjugation (which requires direct 

contact with another cell), the process of transformation is entirely mediated by the acceptor cell. 

To participate in the uptake and incorporation of extracellular DNA, a bacteria must first be 

competent (39). Competence is conferred by the expression of a transient set of proteins (i.e., 

Com proteins) that coordinate the uptake of extracellular dsDNA into intracellular ssDNA. This 

DNA can then be bound by RecA and incorporated into the genome through HR like other DNA 

imports (40). However, very few species encode com genes and thus most species are not 

believed to be capable of transformation (7). For species which do encode com genes, 

competence is generally not constitutive (41). Instead, competence genes are transiently 

expressed in response to environmental stimuli (e.g., antibiotics or mitomycin-C (42)) or 

signaling factors produced by other cells, such as the peptides produced by Streptococcus in 

response to population quorum (38, 41, 43).  

I.5 Quantifying Homologous Recombination 

Most bacteria readily exchange genomic material and gene flow has been found to be a 

pervasive force shaping the evolution of bacteria (4). However, the relative impact of 

homologous recombination vs. mutation to sequence diversity remains largely unexplored for 

most species. Detection of the number of alleles introduced by recombination (r) relative to 

mutation (m) provides a simple metric by which we may determine the evolutionary impact of 

homologous recombination on genome evolution relative to mutations (typically expressed as 

r/m) (44). As an example: if a fragment of DNA is exchanged by homologous recombination 
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resulting in the substitution of two bases and, separately, two point-mutations occur, then the 

contribution of recombination relative to mutation in genome diversity is essentially equal (i.e., 

r/m=1). It should be emphasized that this is an effective measurement. Meaning that, in cases 

where a recombination event transfers no polymorphisms, the ratio r/m will be zero. As such, a 

low value of r/m (r/m<1) is not necessarily an indicator that little recombination has occurred but 

instead that the impact of recombination on sequence diversity was effectively low (45). 

Differentiating polymorphisms imparted by mutation vs. homologous recombination is a 

difficult task because homologous recombination events may leave few, or no polymorphisms, 

and thus may appear identical to mutational events. Several methods have been proposed to 

measure HR by leveraging the fact that, over time, the occurrence of HR is expected to leave 

genomic signatures in a population such as: uneven clusters of polymorphisms, decay in linkage 

disequilibrium between sites across the genome, and instances of homoplasy (i.e., alleles whose 

distribution across strains is incompatible with vertical inheritance from a direct common 

ancestor (phylogenetic incongruencies)). Several programs have been developed to exploit these 

patterns in effort to determine the relative impact of homologous recombination to bacterial 

evolution. A select few which have been widely adopted or recently developed are outlined 

below: 

i) ClonalFrameML: Perhaps the most popular modern tool for assessing 

recombination rate in bacterial populations is ClonalFrameML (CFML) (45) 

which is an improvement on the tool ClonalFrame (46). CFML takes the input of 

a maximum likelihood phylogeny and the multiple sequence alignment (MSA) 

used to build the phylogeny. From this input, CFML attempts to identify the 

clonal portion of the alignment and then constructs a maximum likelihood 
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phylogeny of the clonal genome (i.e., the inferred phylogeny in the absence of the 

recombined regions). The software then attempts to identify recombination 

breakpoints in the MSA by detecting regions of homoplasy and regions which 

contain a high number of polymorphisms which are not consistent with the clonal 

genealogy. 

ii) Gubbins: Gubbins (47) requires only a MSA as input from the user. As a first 

step, the software defines all SNPs (single nucleotide polymorphisms) which are 

consistent with a constant per-site mutation rate and all clusters of SNPs which 

are not. It infers the clonal portions of the MSA, then removes all SNP clusters 

and constructs a clonal phylogeny from the remaining aligned sites. Gubbins then 

quantifies recombination rates from all the SNPs assumed to derive from imports 

to the phylogeny as homologous recombination events. 

iii) fastGEAR: The recombination detection program fastGEAR (48) takes an MSA as 

input and then groups all taxa within into lineages which it defines as being 

identical over 50% of aligned sites. Clusters of polymorphisms are assumed to be 

imports. The software then attempts to locate the origin of the import. If the origin 

is found to be in another lineage than the one being analyzed, it is considered a 

recombination.  

iv) mCorr: The tool mCorr (49) was the first that claimed to be capable of detecting 

recombination events in raw non-assembled reads and metagenomic datasets. To 

do this, the software employs an approach based on linkage-disequilibrium where 

it scans each pair of homologous sequences in the dataset and computes a 

correlation profile based on substitution probability relative to the distances 
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between sites. The data is then compared to simulated populations evolved under 

a coalescent model with different recombination rates and fragment lengths.  

v) Rhometa: Rhometa (50) is another tool which aims to detect homologous 

recombination in metagenomic shotgun sequencing reads. This tool partially 

implements models from tools developed for recombination analysis in diploid 

organisms such as LDhat (51) and pyrho (52) and methodologically is very 

similar to mCorr with the exception that it is capable of handling non-coding as 

well as coding sequences and that the recombination tract length in Rhometa 

simulations is fixed. 

Each of the homologous recombination detection programs outlined above usually 

utilizes a single genomic signal to determine whether homologous recombination has occurred: 

either the decay of linkage disequilibrium, the density and distribution of polymorphism, or the 

patterns of homoplasies. The assumption that HR results in clusters of polymorphisms as in (47, 

48) was initially motivated by the scarcity of sequenced genomes. This approach attempts to 

detect imports from more distant strains of species however, it lacks in accuracy when detecting 

transfers between more related genomes (i.e., transfers which are more prone to result in 

ungrouped polymorphisms). Additionally, homoplasies may arise because of parallel or 

convergent evolution which are ignored in (45) and may result in erroneous inference of 

recombination in some cases (8). Tools that analyze the decay of linkage disequilibrium (LD) as 

evidence of recombination such as (49, 50) ignore that, especially when using a small or biased 

genomic population such as in a metagenomic sample, one may expect to see dramatic difference 

in linkage decay between sampled populations across different genomic regions, different 
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populations, and different growth phases (53). Thus, the complexity of parameters at play 

compromises the inference of accurate rates of recombination from LD patterns alone.  

Aside from the use of only one metric to infer recombination, these tools generally have 

other problematic assumptions. For instance, it is commonly assumed that substitution 

introduced by mutation occurs at a uniform rate across the genome. This assumption ignores that 

genomic sites may evolve at different rates and are under different selective pressures and, as 

such, not all clusters of polymorphic sites result from homologous recombination alone (54–56). 

Further, many tools rely on the inference of a “clonal” or non-recombining portion of the 

genome which assumes there is a region of the genome which does not recombine (or 

recombines very infrequently) (45, 47). In fact, the inference of the wrong clonal frame can have 

drastic consequences for these methods by causing recombined regions to be entirely ignored. 

Lastly, one inherent issue with using the detection of signatures of HR directly (e.g., homoplasy, 

polymorphism clusters, LD) to infer homologous recombination events is that these signals may 

be saturated in rapidly recombining loci. Therefore, inference of recombination based directly on 

the detection of HR signatures may cause the recombination rate to be underestimated in regions 

that frequently recombine. 

I.6 Homologous Recombination Rates Inferred in Previous Studies 

Though the methods available for recombination identification and rate estimation carry 

several biases and assumptions it has been used to assess recombination in a variety of 

prokaryotic organisms. However, most studies have focused on a single or very few species. 

Nevertheless, there are two studies where recombination rate was evaluated in many prokaryotic 

species under a unified methodology (1, 2). The first is by Vos & Didelot (2009) (1) who used 

ClonalFrame (46) (the predecessor of ClonalFrameML (45)) to determine recombination rates in 
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multi locus sequence typing (MLST) datasets (typically seven gene markers per species) to 

predict recombination rates for 46 bacterial species and 2 archaea (see Table 1 in (1) for data 

regarding the species and number of loci and sequence types analyzed for each). This study 

found r/m across species to range from very low (Leptospira interrogans r/m=0.02) to very high 

(Flavobacterium psychrophilum r/m=63) with 56% of species having r/m>1. The more recent 

study by González-Torres et al. (2019) (2) analyzed whole bacterial genomes to infer 

recombination rates in 54 species by using a composite of methods including ClonalFrameML. 

In this study, the authors considered a recombined fragment to be a region denoted as being 

recombined by three-out-of-five detection programs. This method was used to analyze the whole 

genome of 54 bacterial and archaeal species but only processed a total of 338 genomes (less than 

seven genomes per species, on average). Unfortunately — rather than denoting r/m as the 

number of polymorphic sites imported by recombination relative to those imported by mutation 

as in other studies— the authors stated that their metric r/m instead represents a ratio of 

probabilities that a given site was altered by recombination relative to mutation — making these 

values difficult to compare to other studies. The authors found the highest recombining species 

to be Burkholderia pseudomallei (r/m=973.8) and the lowest to be a group of genomes from the 

genus Frankia (r/m = 0.0). Interestingly, the authors found that recombination was low in 

endosymbionts. The authors also evaluated the number of recombination events relative to gene 

function and found genes associated with cellular defense to have high incidences of 

recombination and that genes associated with conserved house-keeping functionalities tended to 

recombine less. 

Homologous recombination rate has been estimated in a multitude of previous studies for 

more than ninety prokaryotic species (57). Though, with exception to the two outlined in the 
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paragraph above, each study has separately estimated recombination rates for only one or a few 

species. Moreover, these studies were conducted using disparate methodologies, genomic sites, 

species definitions, alternate definitions for what constitutes a recombination event, as well as 

different metrics for defining recombination rate itself (3, 57). An example of this is shown in 

Table 1 of (3) where the authors describe the wide variety of methodologies and metrics from 

prior studies of recombination rate variation in Escherichia coli. Here, E. coli has alternately 

been described as panmictic (or, having such a high recombination rate that the true value is not 

readily discernable) to more recent valuations of r/m≤1. These vast differences in recombination 

rate estimates across a single species are indicative of: i) the need for a singular robust method to 

define recombination rate, ii) the need for a singular definition for recombination rate itself, and 

iii) a study of multiple species performed under a unified framework to determine what patterns 

of recombination rate variation exist amongst bacterial species. 

I.7 Homologous Recombination as an Evolutionary Process 

DNA strands incorporated by HR into an acceptor sequence may be effectively silent or, 

impart no genetic change to the genetic makeup of the acceptor strand. Alternatively, 

polymorphisms may be exchanged and contribute to the divergence of that sequence and be the 

target of selective pressures. The duality of homologous recombination is that it may be 

considered a force which favors the cohesiveness of a genomic population or alternatively, HR 

may increase diversity by conveying novel alleles.  

The question of why homologous recombination occurs in bacteria is akin to the question 

of why sex occurs in eukaryotes as they appear to fulfill the same general function: to increase 

genetic divergence and unlink alleles on which selection may then act more efficiently. As such, 

some of the hypotheses for why sex exists in Eukaryotes may be applied to bacteria as outlined 
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in Vos (2009) (15). Here, the author outlines five theories of the benefit of sexual reproduction as 

they pertain to bacterial recombination that I’ve paraphrased as follows:  

1) In the “Tangled Bank Model” bacterial populations which have reached peak 

fitness in each biome will begin to deplete that environment of resources. To enhance 

population growth and escape competition of related individuals it benefits the bacteria to 

exchange alleles which allow the population to escape the resource-depleted environment 

and colonize new niches.  

2) The “Sign epistasis model” posits that the landscape of fitness is not a single 

idyllic peak, but instead many hills and valleys and that genomic mutations come with 

both costs and benefits that may force bacteria into suboptimal niches. Homologous 

recombination may then allow alleles to be transferred from a population occupying one 

peak to a population occupying another — allowing peak or niche traversal. 

3) The “Lottery Model” proposes that, instead of environmental landscapes being 

static — as in the first two hypotheses — that the fitness landscape is constantly changing 

and that it benefits the population to maintain as much diversity as possible to better their 

chances at exploitation of any peaks that should arise in the fitness landscape.  

4) The “Red Queen Hypothesis” model considers not just the changing of the 

environment as in the previous two models, but also the changes in all other organisms 

present. Here, bacteria also must co-evolve and adapt to other species in their 

environment: their predators, their prey, and their competitors. As such, the primary role 

of homologous recombination is to speed up the acquisition of novel alleles which could 

help them adapt to the constantly evolving organisms present in their environment.  
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5) Finally, the “Muller’s Ratchet” hypothesis posits that deleterious mutations, 

which are much more frequent than beneficial ones, accumulate and reach fixation in 

non-recombining populations. In this scenario, homologous recombination allows the 

purge of deleterious alleles that would otherwise accumulate in the genome. 

There is likely no one model of evolution listed here that accurately encompasses all the 

reasons why homologous recombination occurs and some of these models are not incompatible 

with one another. However, one might expect to see recombination rate amongst species vary in 

accordance with some of these postulates. For instance, species with reduced interaction with the 

greater population (e.g., endosymbionts) may be more predisposed to accumulating deleterious 

mutations through Muller’s Ratchet. Previous studies in Wolbachia (a maternally-inherited 

bacterial symbiont in insects) have found that they are deficient in recombination machinery 

which may be a determining factor in their genome reduction (58). This is because, without 

recombination to counter Muller’s Ratchet, genes are more likely to acquire deleterious 

mutations over time, lose their functionality, and eventually be altogether lost from the genome 

(58). Chlamydia, which are obligate intracellular bacteria that may occasionally be transmitted 

horizontally between hosts (which can be entirely different species such as Chlamydia psittaci 

transmission between birds and humans (59)), have been estimated by a previous study to have a 

relatively high incidence of recombination but a low overall contribution of polymorphisms by 

recombination relative to mutation (Chlamydia trachomatis, 12 genomes) (60). This indicates 

that, even though they are also endosymbionts, cell transfer between hosts or coinfection may 

allow homologous recombination between nonidentical individuals to occur and counteract 

Muller’s Ratchet. However, in the same study, genes associated with interaction with the 

immune system of their host and pathogenicity were found to have higher incidences of 
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recombination relative to other genes indicating there is also a role of HR in adapting to and 

exploiting a changing host environment (60).  

Some species are capable of thriving in a variety of environments, such as E.coli which 

can exist commensally or pathogenically in the gastrointestinal tract of humans, but also in water 

and soil. Due to their persistence in a variety of environments, E. coli may have much larger 

population sizes and encounter individuals with which they can share genomic content with 

much more often and therefore are capable of recombining more (61, 62). Here, homologous 

recombination may be comparatively elevated and play a role in their exemplary ability to adapt 

quickly to new environments (63). Additionally, variation in recombination has been found in 

previous studies (using ClonalFrameML) to exist across phylogroups indicating variation in 

recombination exists not only at the species level, but also at the population level (6, 61). 

However, the extent at which variation can be found across subpopulations in other species or 

even whether variation observed is simply due to lack of precision in methodology is unknown. 

I.8 Homologous Recombination across the Genome 

The genomes of prokaryotes are highly organized entities, which reflects the constraints 

of major genetic and cellular mechanisms such as replication, transcription, and cell division. 

Bacteria and archaea may have one or multiple chromosomes which can be circular or—more 

rarely—linear (as in Streptomyces or Borrelia species), or a combination of both (64). However, 

the overall process of initiating genomic replication is thought to be essentially the same (65–

67). Genomic replication in bacterial chromosomes begins at the origin(s) of replication (Ori or 

oriC) where double-stranded DNA is separated by initiator proteins and replication machinery is 

recruited (68). Helicase enzymes then unwind the DNA and single-stranded binding proteins 

bind to the ssDNA to promote stability and prevent degradation. Strand synthesis proceeds 
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bidirectionally (i.e., in two replichores) outwards towards opposing replication forks (Figure 3, 

(69)). Within each replichore, the leading strand is continuously synthesized in the 5’-3’ 

direction with the same orientation as the replication fork, whereas the synthesis of the lagging 

strand is not continuous and resultant Okazaki fragments must be joined together with a DNA 

ligase. In circular chromosomes, the two replication forks meet at the terminus of replication 

(Ter) which is approximately equidistant from the Ori and occurs in temporal conjunction with 

septum formation of the cell during cellular replication (70). Though replication fork resolution 

is less studied in linear chromosomes, literature suggests the presence of hairpin loops and/or 

telomeres at the terminus, and that replication resolution is likely somewhat like that of 

Eukaryotes and may, in some cases, confer a fitness advantage (64, 65, 71).  

Transcription co-occurs with genome replication. As such, genes with higher 

transcription rates—such as those required for transcription and translation—are often located 

near Ori, providing a “replication-associated gene dosage effect” (Figure 3, (69)) (67, 72). As 

replication and transcription co-occur, collision between the replication machinery and 

transcriptional machinery may take place and can result in replication-fork collapse. To 

minimize collisions, a gene strand bias has evolved: most genes (55-70%, depending on the 

species) are co-oriented with the leading strand so that transcription is co-oriented with 

replication fork movement (Figure 3, (69)) (67, 70, 73). Replication-fork collapses are resolved 

by the formation of dsDNA breaks which can be repaired by the RecBCD complex using 

homologous recombination as described above (70).  
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Figure I—3. A cartoon representing chromosome replication in prokaryotes and some of 

the structural and functional organizations of the Prokaryotic genome (69). This figure is 

reprinted from “The Organization of the Bacterial Genome” by E. Rocha, 2008, Annual 

Review of Genetics, 42, p. 211-233. © Annual Reviews of Genetics (2008). 

 

Additional compositional and organizational properties have been observed in 

Prokaryotic chromosomes. For instance, guanine (G) is overrepresented in the leading strand and 

cytosine (C) is proportionally overrepresented in the lagging strand with a sharp transition in bias 

occurring at the Ori and Ter which allows the approximate location of the Ori and Ter to be 

determined by plotting cumulative GC skew for many species (70, 74). This pattern is due to the 

discontinuous replication of the lagging strand, which remains single-stranded for longer periods 

of time and is therefore more likely to accumulate certain types of mutations (e.g., cytosine 

deamination occurs more readily on single-stranded DNA). Prokaryotic genomes tend to range 

widely in size between 50kb to 13Mb and are much more compact relative to Eukaryotes with 
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gene densities across the genome of near 87% (67, 75). Additionally, the number of total coding 

sequences typically varies in proportion to the length of the genome (67, 76). Structurally, genes 

tend to be clustered into operons (69). Operons are groups of genes that are co-transcribed under 

the action of a shared promoter(s) and are often functionally related units of a metabolic pathway 

(69, 77). The organization of genes into operons ensures that all units of a given pathway are 

expressed nearly simultaneously in a dosage-dependent manner (78). This is thought to be 

particularly advantageous for the survival of genes during HGT because the transfer of an 

individual gene that is part of a pathway is unlikely to be retained by selection in the recipient 

genome, whereas the transfer of a cluster of genes encoding a fully functional metabolic pathway 

is much more likely to provide a fitness advantage to the recipient genome (69, 77). 

The number of genes associated with housekeeping functions such as replication and 

translation tend to vary little across species, except for some obligate intracellular prokaryotes 

which may be missing some subsets of these genes and rely on the host to fulfill their roles (76). 

In larger genomes—which are expected to engage more frequently in HGT—most of the 

variability in gene content and gene diversity is observed in genes related to mobility, cellular 

transport, secretion, and those attributed to accessory metabolic functions and pathways (79). 

Thus, species with larger genomes and wider gene repertoires are thought to be generalists who 

are more readily capable of niche traversal (67). Further, compared to their more sexually 

isolated and reduced-genome counterparts (e.g., obligate intracellular bacteria), population size is 

expected to be larger and thus selection is expected to be more efficient (75, 76). 

Prior studies have explored variation of homologous recombination rate and its signatures 

in the context of prokaryotic genome organization. However, these studies are few and still 

contain the methodological problems addressed previously. As mentioned above, genes with 
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essential roles in replication and transcription are often found near the origin of replication (72). 

Studies have found genes in this region to display elevated signatures of HR in Staphylococcus 

aureus (80, 81) but similar patterns have not been found in other species (80). One might expect 

signatures of recombination to be lower in highly conserved genes as purifying selection is 

expected to dominate, and so polymorphisms should be less likely to be tolerated. Thus, the trend 

observed in S. aureus is somewhat unexpected and might be the consequence of the low number 

of strains analyzed or inaccuracies in methods for assessing r/m. Alternatively, less-conserved 

genes associated with cellular defense, pathogenicity, and virulence may be under positive 

selection as that would allow quicker adaptation of the organisms to a changing and competitive 

environment (82). For this reason, it might be expected that signatures of recombination would 

be higher in genes associated with these functions. In fact, this was observed in González-Torres 

et al (2019) (2). These genes have also been associated with hotspots of recombination (i.e., a 

region of the genome with significantly elevated recombination rate relative to the genomic 

average) in Oliveira et al. (2017) (13). Hotspots of recombination have also been associated with 

the acquisition of horizontally transferred accessory genes and the regions flanking accessory 

genes have been found to have higher rates of recombination in some species (13, 83, 84). 

Overall, these genomic patterns have been evaluated in few species and using varying 

methodologies and it is therefore difficult to determine whether observed patterns are robust and 

if they are generalizable across bacterial species (57). 

I.9 Overview of Dissertation Questions and Chapter Organization 

As addressed in this introduction chapter, current methods for determining HR rate make 

many assumptions which may result in inaccurate estimation of rate variation across species. 

Further, few studies have examined many bacterial species using a large amount of genomic data 
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under a single methodological framework and definition for recombination rate. Thus, the 

relative contribution of HR to mutation in the evolution and vast diversity observed across 

bacterial species remains largely unexplored. In the following chapters, I; i) leverage a new 

approach for inferring homologous recombination rates and explore its potential biases, 

inconsistencies, and compare our estimates to those of previous studies, ii) explore the variation 

in HR rate observed across the species in the context of the evolution of recombination rate itself 

and whether variation is observed in correlation with bacterial pathogenicity and ecotype, and iii) 

compare HR rates across the genome and within the functional context of genomic organization 

to determine whether genomic trends in recombination exist across the species genome and 

whether those trends persist across species.  

The next chapter is formatted for publication and thus the Aims 1 and 2 of my proposed 

research aims are both included in this single but dense chapter. The objective of Aim 1 was to 

Accurately Estimate Homologous Recombination Rates in Bacteria and included the curation of 

the original dataset – which was aided in part by Matthew Miller and Dr. Awa Diop – as well as 

the assessment of bias in our methodology. Contributions to analyzing variations in HR rate 

across intra-species populations in E. coli were made by Corey Burton during the completion of 

their master’s degree. The manuscript also contains a detailed description of the computational 

pipeline co-developed by my mentor and committee chair Dr. Louis-Marie Bobay, which was 

leveraged by me to estimate recombination rate across a large variety of bacterial species and 

genomes and assess potential biases and inaccuracies in the methodology. The objective of Aim 

2 of my proposal was to Determine how Homologous Recombination Rates Have Evolved in 

Bacteria which specifically referred to: i) mapping the rate of recombination across a multi-

species phylogeny to determine whether recombination rates varied with any detectable patterns 
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across species and ii) identifying potential correlations between recombination rate and several 

genomic, metabolic, and environmental traits.  

The last chapter before the conclusion presents the work conducted on Aim 3 whose 

objective was to Determine Bacterial Recombination Rate Variation along the Chromosome 

using a modified version of the computational pipeline from Aim 1. This enabled me to quantify 

the rates of homologous recombination across the bacterial chromosome of many species. 

Mapping gene-by-gene variation in HR allowed me to begin to determine how HR varied in the 

context of genome organization, whether any trends in HR were found in genes proximal to 

accessory genes, if hotspots of recombination were present in the genomes, and how HR varied 

by gene function. Lastly, by mapping the chromosomal variation of homologous recombination 

rate across the genomes of different species, I was able to determine whether any patterns of 

recombination persisted across species. 

Overall, the aim of my dissertation is to characterize the impact of homologous 

recombination, relative to mutation alone, in the evolution of bacteria. By quantifying the rate of 

recombination across multiple species and genomes, I provide the first steps in discerning the 

impact of recombination on bacterial evolution and the roles that it plays in their population 

structure, genomic structure, and adaptation.   
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II.1 Abstract 

Bacteria are non-sexual organisms but are capable of exchanging DNA at diverse degrees 

through homologous recombination. Intriguingly, the rates of recombination vary immensely 

across lineages where some species have been described as purely clonal and others as "quasi-

sexual". However, estimating recombination rates has proven a difficult endeavor and estimates 

often vary substantially across studies. It is unclear whether these variations reflect natural 

variations across populations or are due to differences in methodologies. Consequently, the 

impact of recombination on bacterial evolution has not been extensively evaluated and the 

evolution of recombination rate—as a trait—remains to be accurately described. Here, we 

developed a new approach based on Approximate Bayesian Computation (ABC) that integrates 

multiple signals of recombination to estimate recombination rates. We inferred the rate of 

recombination of 162 bacterial species and one archaeon and tested the robustness of our 

approach. Our results confirm that recombination rates vary drastically across bacteria, however, 

we found that recombination rate—as a trait—is rather conserved amongst several lineages. 
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Although some traits are thought to be associated with recombination rate (e.g., GC-content), we 

found no clear association between genomic or phenotypic traits and recombination rate. Overall, 

our results provide an overview of recombination rate, its evolution, and its impact on bacterial 

evolution.   

II.2 Statement of Significance  

Homologous recombination is a fundamental mechanism driving the evolution of 

bacteria. Recombination rates have been found to vary tremendously across species but 

quantifying the rates of recombination in bacteria is a difficult task. Moreover, comparing 

estimates across studies is difficult due to the diversity of methodologies and datasets. Using a 

new methodological framework based on Approximate Bayesian Computation, we estimated the 

impact of recombination relative to mutation on bacterial genomic evolution for 162 species. We 

found that rates of homologous recombination do vary greatly across lineages but tend to be 

underestimated by prior studies. We further reconstructed the evolution of recombination rate 

across bacterial lineages and found that this trait is rather conserved.  

II.3 Introduction 

Bacteria adapt rapidly to changing environments and their capacity to survive in new 

environments is owed in part to their propensity for genetic exchange (3, 85). Specifically, 

genetic exchange in bacteria is defined as either resulting from horizontal gene transfer or 

homologous recombination. Horizontal gene transfer leads to the gain of a new DNA sequence 

that was not present in the recipient genome and these processes do not necessarily require close 

relatedness between the donor and recipient DNA sequences. Akin to allelic gene conversion 

events in eukaryotes, homologous recombination is characterized by the unidirectional genetic 

exchange of short homologous DNA sequences. As such, homologous recombination events lead 
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to the replacement of alleles within a homologous sequence, thereby modifying an existing 

sequence. Due to these characteristics, homologous recombination events may leave few—or 

no—genomic signatures of having occurred. This lack of clear genetic evidence makes 

distinguishing homologous recombination events from mutation events a challenging endeavor 

(1, 3, 4, 85).  

Despite the central role of homologous recombination as a basic biological mechanism, 

its impact on bacterial evolution remains poorly understood. In addition, whether recombination 

rate is a fast-evolving or slow-evolving trait remains to be determined. Several analyses have 

quantified the rate of homologous recombination (recombination rate) across bacteria and studies 

have revealed staggering variations of recombination rate estimates across species (1, 2). 

Whether a species is evolving primarily clonally or sexually has key implications for 

understanding their biology and designing tools and models applicable to bacteria (86). 

However, estimating recombination rate has proven a difficult task and studies have often 

reported inconsistent results for the same species (3). For instance, Escherichia coli has been 

found to vary from a clonal species (no recombination) to panmictic (highly recombining) across 

studies (3). The lack of consistent estimates can be attributed to i) the diversity of methods 

developed to assess recombination rates, ii) the different assumptions made to model bacterial 

evolution, and iii) the inconsistency of datasets used to generate these estimates (1–3, 87).  

The various methodologies that have been developed to estimate recombination rates in 

bacteria rely on the analyses of different signatures of recombination (45, 47, 48, 88–93). Some 

approaches rely on the detection of direct evidence of homologous recombination through the 

detection of homoplasies (i.e., alleles that are incongruent with the vertical evolution of the 

species), while others infer recombination rates through the signals of linkage disequilibrium 
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(i.e., the decay of linkage between alleles across genomic distances) or on the distribution of 

polymorphisms (87). Quantifying the direct signal of recombination is challenging due to fact 

that recombination can occur between identical—or nearly identical—sequences. In addition, the 

same sequence can be affected by multiple recombination events throughout its evolution, which 

can lead to a decayed signal of recombination. For these reasons, many recombination events can 

remain undetected and recombination rate can be difficult to quantify. Moreover, virtually all 

approaches aim at quantifying an effective rate of recombination r/m, which is defined as the 

number of times alleles have been exchanged by recombination (r) divided by the number of 

alleles that have been introduced by mutation (m). These approaches are quantifying an effective 

rate of recombination because many sites may have recombined without resulting in any transfer 

of alleles (i.e., the donor sequence was identical to the recipient sequence), and these 

recombination events are not effectively impacting genome evolution. However, other types of 

genetic events may lead to underestimation of recombination rates: i) alleles present in a single 

genome will not impact patterns of homoplasies or linkage disequilibrium; even though these 

alleles might have been gained and lost multiple times through recombination. ii) alleles can be 

exchanged by recombination but need not generate patterns of homoplasy or impact linkage 

disequilibrium.   

Here, we developed a novel approach to quantify the rate of homologous recombination 

across a large set of bacterial species. Using Approximate Bayesian Computation (ABC) and by 

integrating multiple signatures of recombination, we inferred recombination rates in the core 

genomes of 162 species. By using population simulation to model homologous recombination 

we are not limited by direct extrapolation of recombination signal, thus allowing us to predict 

recombination rates more accurately than other methods when recombination rates are 
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particularly high and when the signal of recombination is more complex. In addition, our 

approach allows us to not only estimate the effective rate of recombination relative to mutation, 

but also to estimate the total number of nucleotides that have been exchanged by recombination 

relative to point mutations. We found that recombination rates vary widely across species, and on 

average, recombination promotes the exchange of alleles six times more frequently relative to 

mutation and is more impactful to species evolution than mutation alone for >80% of the species 

included in this analysis. Importantly, we reconstructed the evolution of recombination rate 

across bacteria using a phylogenomic framework, and we found evidence that recombination 

rates are phylogenetically conserved within several genera.  

II.4 Results 

II.4.1 Description of the ABC approach 

Most methods designed to infer homologous recombination rates rely either on 

incongruencies in the phylogenetic signal (i.e., homoplasies) or on the patterns of linkage 

disequilibrium (LD) (45, 47, 48, 90, 94). This is because these metrics are expected to be 

strongly impacted by recombination and represent a signal that can be directly quantified. 

However, very few methods have integrated multiple metrics and these approaches typically rely 

on the direct inference of effective recombination rates from these signatures of recombination. 

To estimate recombination rates across bacteria we developed an approach based on 

Approximate Bayesian Computation (ABC) that integrates patterns of homoplasies, 

polymorphisms, and linkage disequilibrium. Our conceptual framework allows us to improve 

estimates of recombination rate by accounting for recombination events that would be typically 

overlooked by most methods. In contrast to direct approaches, our methodology consists of 

simulating a wide array of genomes with various rates of recombination and a large set of 
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parameters. Rates of recombination are then inferred by identifying the simulated genomes that 

present signatures of recombination that most resemble those observed in the real dataset. In 

brief, our approach consists in simulating the evolution of a core genome ~500,000 times with a 

wide array of recombination rates and various levels of polymorphisms (see Methods) (Fig.1, B). 

For each simulated genome population, we quantify: i) the ratio of homoplasic alleles relative to 

non-homoplasic alleles (h/m), ii) the decline of allelic linkage across short genomic distances 

(LDfit), and iii) the levels of polymorphisms (𝜋) (Fig. 1, C2). We then use ABC to infer which of 

the 500,000 simulation sets of these three summary statistics most resemble the statistics of the 

real population. For each species, the posterior distribution generated with ABC represents the 

0.01% of simulations which present the most similar signatures of recombination based on h/m, 

LDfit and 𝜋 (Fig. 1, D). The recombination rate r/m is then estimated as the average of the 

posterior population which best recapitulated the summary statistics of the species genomic 

sample.  

Species were included in this analysis if: i) the species had 15 or more non-identical 

assembled genomes available from GenBank, and ii) the species retained at least 15 genomes 

after redefinition of species borders by ANI and inferred signal of gene flow between members 

computed by ConSpeciFix as in (4, 95). After applying these criteria, a final dataset composed of 

162 bacterial species and one archaeon was used for estimating recombination rates with our 

ABC approach. Before further analyzing these data, we first conducted several tests to assess the 

accuracy of our estimates. 
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Figure II—1. Description of the method used to infer rates of homologous recombination 

(recABC) for 162 bacteria and one archaeal species in this study. A) For each species, the 

core genome is aligned and concatenated. A phylogeny is built from the alignment of the 

core genome. B) Using the nucleotide length and GC content of the core genome alignment 

from the real species, a single ancestral genome randomly generated to initiate the 

ancestral genome of each simulation. This ancestral genome is then evolved in a forward-

in-time simulation following the phylogenetic topology of the real species under varied 

recombination rates (Rho) and recombination tract lengths (delta) using CoreSimul (96). 

The corresponding effective recombination rate r/m is also computed during the 

simulations. A total of 500,000 simulations are generated for each species. C1) Three 

summary statistics are computed: i) the decay of genetic linkage relative to genomic 

distance (LDfit), ii) the ratio of homoplasy to mutation (h/m), and iii) the average nucleotide 

diversity (Pi) computed for the core genome alignment of the real species. C2) The same 

summary statistics (LDfit, h/m, pi) are calculated for each of the 500k simulations. D) 

Approximate Bayesian Computation (ABC) is used to compare the summary statistics 

from the real species data to the distribution of the same statistics generated by simulation 

under known recombination rates (the prior distribution in grey). The simulations with 

statistics which most closely match the summary statistics from the real species are selected 

using ABC (the posterior distribution in green) with a tolerance threshold of 0.01% (n=50). 

The average rate of recombination of the posterior distribution is then used as an estimate 

of recombination rate for each species. 
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II.4.2 Assessment of the ABC approach 

To evaluate the performance of our method, we first tested the ability of our ABC 

approach to predict the recombination rate of simulated datasets. To do this, we used the 500,000 

simulations of core genome alignments generated under known recombination rates for each 

species and set aside 10% of the simulated data from each species to use as a test population.  

From each test population, the summary statistics from 1% of the simulations (n=5,000) were 

used to infer the rate of recombination using ABC against a population of 90% of the remaining 

simulations (n=450,000) with a tolerance threshold of 0.01%. Results show that our approach 

accurately predicts the rate of recombination r/m for each simulated dataset as the average of the 

combined posterior for each of the 5,000 subpopulations converged to the known average r/m for 

the 5,000 simulated populations (r2=1, P<10-15) (Supp. Table 1I, Supp. Fig. 1). However, the 

inference of r/m was visibly less precise for several simulated datasets (n=19, Supp. Table 1I). 

Interestingly, the species with less accurate predictions shared several characteristics: their core 

genomes presented very few polymorphisms (𝜋<0.005), few homoplasies were inferred 

(h/m<0.38), and linkage was high (LDfit>0.15) (Supp. Table 1I). These results indicate that—as 

expected—the precision of our method is lower for species presenting few polymorphisms and 

low signal of recombination. Nevertheless, our approach did estimate an accurate range of 

recombination rates for these simulations, which was usually low (Supp. Table 1J). 

To further assess the accuracy of our approach, we systematically verified that each of 

the three summary statistics—h/m, LDfit and 𝜋—was precisely inferred for each of the 162 

bacterial species, and one species of archaea. For each summary statistics, the predicted value 

was plotted against the value measured in the real datasets. The estimated values of the metrics 

were typically very close to their real values, except for several outliers. We observed a strong 
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correlation for each metric close to y=x (Spearman’s Rho: h/m=0.99, LDfit=0.78, and 𝜋=0.87) 

(Supp. Fig. 2, A-C), which increased after removal of outliers (Spearman’s rho without outliers: 

h/m=0.99, LDfit=0.89, and 𝜋=0.97) (Supp. Fig. 2, D-F). Species were considered outliers when 

the Cook’s Distance difference in real vs. simulated statistics influenced the expected regression 

slope of one with a cutoff of 4/𝑛. For the statistic h/m, LDfit and 𝜋, we identified eight, seven, 

and nine outliers, respectively (a total of ~18% of the dataset). We were unable to estimate LDfit 

for an additional 13 species due to low levels of polymorphisms in the simulated genomic 

samples. Three species were found to have outliers in two summary statistics (Streptococcus 

salivarus, Haemophilus influenzae, and the archaeon Methanosarcina mazei) and those species 

were marked with an asterisk on most graphs to reflect the potential inaccuracy of r/m estimates 

(Supp. Table 1A, Fig. 2). Notably, no species were found to be outliers in all three summary 

statistics. 

Finally, we tested whether one of the summary statistics was predominantly driving the 

inference of recombination rates. We found that r/m estimates most strongly correlate to h/m 

(Spearman’s Rho=0.72, P<10-14), especially for lower recombination rates (r/m<5) (Supp. Fig. 3, 

A). We did not find significant correlations of r/m with LDfit and with 𝜋 (Spearman’s Rho=-0.12, 

P=0.11 and Spearman’s Rho=-0.17, P=0.031, respectively) (Supp. Fig. 3, B&C). This result is 

somewhat expected since the proportion of nucleotide polymorphisms inferred as homoplasic is 

expected to increase with more frequent recombination, and the signal of homoplasy is expected 

to saturate for higher recombination rates.  

II.4.3 Rates of homologous recombination across bacteria  

The rate of effective homologous recombination (r/m) was found to vary widely across 

the 162 bacterial species analyzed with a median rate of 3.84. For most species (82%), the 
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homologous recombination rate was found to be more impactful on genomic evolution than 

mutations alone (r/m>1). The remaining 18% of species were found to acquire polymorphisms 

more frequently via mutation than homologous recombination (r/m<1). The lowest 

recombination rate was observed for Staphylococcus saprophyticus (r/m = 0.003) and the highest 

for Vibrio splendidus (r/m = 32.18). The average recombination rate across bacteria in this study 

was r/m = 5.98±5.89 (Fig. 2, Supp. Table 1A). 

Figure II—2. Estimates of homologous recombination rate (r/m) across species. Each dot 

represents the estimate of recombination rates (r/m) for each of the 162 bacterial species 

and one archaeon in our dataset. These estimates represent the median estimated from the 

posterior distribution of r/m values that were selected using ABC. Black lines represent the 

standard deviation of r/m estimates of the posterior distribution. Asterisks (*) denote 

species for which simulated recombination rate lacked accuracy based on the analysis of 

summary statistics. 
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Recombination rates are thought to be shaped by multiple factors, traits, and life 

conditions. In turn, recombination is predicted to impact the evolution of bacterial genomes. 

Here we attempted to identify which factors correlate to the evolution of recombination rate in 

bacteria. We first compared recombination rate estimates with genomic traits intrinsic to our 

datasets. We found no significant correlation between r/m and the number of core genes, the 

length of the core genome, the average nucleotide pairwise identity across core genomes, or the 

average GC-content across core genomes (Supp. Fig. 4, C, B, D, F). We did however find a 

positive correlation between r/m and the number of genomes in each species population (Supp. 

Fig. 4, A: Spearman’s Rho=0.46, P<10-9) and a negative correlation between r/m and the 

standard deviation of nucleotide pairwise identity (Supp. Fig. 4, F: Spearman’s Rho=-0.40, P<10-

5). These results suggest that recombination rates may be underestimated for species with fewer 

sequenced genomes and that species composed of more structured populations present lower r/m 

estimates. Using metabolic and structural data available from JGI’s GOLD database (97) (Supp. 

Table 1E) we found no significant difference in the median r/m values for motile vs. nonmotile 

species (n=48 and n=68), sporulating vs. nonsporulating (n=9 and n=85), autotrophic vs. 

heterotrophic (n=22 and n=42), Gram negative vs. Gram positive (n=67 and n=79), and 

anaerobic, aerobic, and facultatively aerobic (n=22, n=49, n=55) species (Wilcoxon rank-sum 

test, P>0.05; Supp. Fig. 5, A-D & F). However, the median difference in r/m for bacteria 

described as free-living (n=103, r/m = 3.89) vs. those described as living as obligate intracellular 

bacteria (n=4, r/m = 0.59) was significant (Wilcoxon rank-sum test: P=0.03) which is consistent 

with the idea that intracellular species participate in less DNA exchanges due to their lifestyle 

(Supp. Fig. 5, E). Next, we analyzed the potential link between gene content and metabolic 

functions of bacteria and recombination rates. We tested correlations between inferred r/m and 
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the proportion of various gene functions inferred from COG (clusters of orthologous genes) and 

CAzy (Carbohydrate-Active Enzymes) categories identified with eggNOG across each reference 

genome for all bacterial species in this study (98–100). No statistically significant correlations 

between the proportion of genes annotated with specific gene epithets and recombination rate 

were observed after correcting for multiple testing (Supp. Table 4). Next, because bacteriophages 

are known vectors capable of promoting DNA transfers across bacteria and their abundance in 

lysogenic bacteria may potentially drive higher recombination frequencies (101) prophage 

abundance was assessed for each reference genome using geNomad (102) (n=159 as three 

species could not be analyzed). Both the abundance of prophages as well as the number of genes 

annotated by geNomad as phage were found to be statistically unrelated to variations in r/m 

across species (Spearman’s Rho=0.95, P=0.63) (Supp. Fig. 6, Supp. Table 1G). Finally, to 

determine whether the ecosystem from which the bacterial strains were predominantly collected 

influenced recombination rate, the sampling origin (collection data) of each strain was acquired 

from GenBank when available and summarized into 30 discrete categories (Supp. Table 3). A 

positive correlation was found between the average r/m for a species and the number of strains 

denoted as “human derived" (Spearman’s Rho=0.35, Holm’s adjusted P=0.002). However, as 

mentioned previously, we observed a correlation between the average r/m per species and the 

number of genomes used in the analysis (Spearman’s Rho=0.46, Holm’s adjusted P=0.001) 

indicating that the correlation may be biased by the fact that more sequenced genomes are 

available for bacterial species which are associated with humans (32–34). 

II.4.4 Robustness of homologous recombination rate estimates  

Across studies, the inference of recombination rate of bacterial species has often yielded 

inconsistent estimates depending on the method that was used but also depending on the dataset 
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under study (1–3). An extreme example of these inconsistencies is Salmonella enterica, which 

has been found to be clonal (r/m=0) in one study (103) but was inferred as one of the most 

recombining bacterial species in another one (r/m=30) (1). It is unclear whether these varying 

estimates are the result of methodological issues or whether they reflect biological variations of 

recombination rates across samplings of populations of the same species. This is particularly 

problematic because the borders of bacterial species are often defined inconsistently across 

studies and because new genome sequences are actively being added to databases (4).  

To test for the impact of population sampling on our estimates of recombination rates, we 

conducted several analyses. First, we tested whether variation in strain diversity affected our 

estimates of r/m. For this analysis, each species containing >25 genomes (n=82) were 

subsampled in 100 replicates where 10 genomes were randomly removed from each replicate 

(sample size = n-10). After removing 10 random genomes, the three summary statistics (h/m, 

LDfit and 𝜋) were recalculated from each replicate. A new posterior distribution was then 

generated from each set of summary statistics using ABC to estimate r/m for each replicate. 

Estimates of r/m obtained for the 100 random subpopulations were then compared to those 

estimated for the whole species population to determine how subsampling bias and strain 

variation in sampling impacts r/m estimates for the species. We observed that r/m estimates for 

the 100 replicates of n-10 random genomes sampled from the parent population were typically 

nearly identical to the r/m estimates of the parent population for most species (Spearman’s Rho= 

0.85, P<10-16) (Supp. Fig. 7). Nine species (11%) had an average r/m across their subsampled 

populations which varied from the species r/m by more than 5 (Supp. Table 1J), but, overall, 

these results indicate that most of our r/m estimates are robust to subsampling.  
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Secondly, we tested to what extent sampling biases and the method used for dataset 

construction impacted our estimates. We conducted a large resampling analysis of the genomes 

of Escherichia coli whose core genome was built in a previous study using a different method 

(3). We chose E. coli because of the large number of genomes available for this species and 

because its population structure has been clearly characterized. We conducted a phylogenomic 

analysis of this species and identified the major clades of E. coli: A, B1, B2, D and E (see 

Methods). We then randomly subsampled 15 genomes of each clade five times and inferred 

recombination rates for each subsample (n=25) with our ABC approach. Importantly, the core 

genome of this dataset was built using a different approach and includes genomes from different 

strains compared to this study. Despite the difference in the nature of the dataset, we inferred 

similar recombination rates across these samples (mean r/m = 2.53) (Supp. Table 1B) compared 

to the estimate of E. coli predicted independently in this study (r/m=3.68) (Supp. Table 1A). 

Although we observed some variation across samplings, most estimates of r/m were overall 

consistent across phylogroups (mean r/m = 2.53±0.79), indicating that our method is robust to 

population samplings (Supp. Table 1B). In addition, we did not observe substantial differences in 

recombination rate estimates across the five phylogroups, suggesting that sampling bias does not 

strongly affect our estimates and that population structure does not significantly impact 

recombination rate, at least in E. coli. 

We then compared our estimates of recombination rates to estimates generated by one of 

the most popular tools designed to infer r/m in bacteria: ClonalFrameML (45). As opposed to our 

approach, ClonalFrameML relies solely on phylogenetic incongruencies to infer recombination 

rates. We used the same dataset of 25 samplings across E. coli phylogroups and generated r/m 

estimates with this approach (note that five of the samples could not be processed by 
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ClonalFrameML (see Methods, Supp. Table 1B)). Overall, inferred r/m values for the 

subpopulations tended to be higher than our estimated rates (our method: mean r/m = 2.53±0.79; 

ClonalFrameML: mean r/m = 4.16±1.38). The standard deviation of these estimates was nearly 

double, suggesting that ClonalFrameML estimates are less robust to strain-level variations than 

our method (Supp. Fig. 8, Supp. Table 1B). Next, we tested ClonalFrameML against 84 bacterial 

species from our dataset and found that this method yielded similar recombination rates 

compared to our approach for species with lower r/m estimates (r/m<5). However, we found that 

ClonalFrameML rarely estimated r/m values over 5 (n=7 species); the average rate estimated for 

across all 84 species was r/m=2.0±1.8 with ClonalFrameML and r/m=5.6±5.3 with our method 

(Supp. Fig. 9, Supp. Table 1C). 

Altogether, these different analyses support the accuracy and the consistency of our 

approach. Although some variations are observed across samplings of a given species, estimates 

appear rather robust to genome sampling, especially compared to the large spread of r/m 

estimates generated across all bacterial species (see below). On average, our estimates yielded 

higher recombination rates than another method (ClonalFrameML), but as mentioned above, 

previous methods (including ClonalFrameML) are theoretically incapable of detecting 

recombination events that do not leave a direct signal of recombination (e.g., single alleles) and 

can face difficulties recognizing multiple recombination events; they tend therefore to 

underestimate recombination rates. 

II.4.5 Inference of overall nucleotide exchange in bacterial recombination 

The results presented thus far were reported as effective rates of recombination (r/m), a 

metric used by most approaches since it attempts to quantify the number of allelic variants 

exchanged by recombination. Effective rates of recombination are usually inferred because 
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recombination events between two identical DNA strands do not leave any genomic signature. In 

addition, the transfer of allelic variants does not systematically leave a signature of 

recombination in the genomes. Indeed, transferred alleles do not always generate patterns of 

homoplasies and do not necessarily impact linkage disequilibrium. As opposed to most 

approaches, our method can estimate an overall rate of recombination, which we defined as the 

total number of nucleotides that have been exchanged by homologous recombination relative to 

the number of alleles introduced by mutation regardless of the presence and number of allelic 

variants on the recombined fragments. The average number of nucleotides exchanged by 

homologous recombination to mutations varied from 0.003bp in Staphylococcus saprophyticus 

to 19,606bp in Bifidobacterium breve with an average of 3,896±1,263 across species (Supp. 

Table 1A). Note that this metric does not represent the number of nucleotides exchanged for a 

single recombination event, but, rather, the sum of all nucleotides exchanged per substitution 

introduced by mutation. Interestingly, we found that the number of nucleotides exchanged 

increased exponentially with effective recombination (r/m) until it reaches a plateau at r/m~5. 

This suggests that at higher recombination rates, signal saturation is occurring when measuring 

effective recombination rate: the same alleles are being exchanged via homologous 

recombination multiple times through the species’ evolution (Fig. 3). It further suggests that—as 

expected—our ability to estimate accurate effective rates of recombination declines substantially 

for species with high recombination rates (r/m>>>5). This last observation agrees with the fact 

that the frequency of homoplasies is positively corelated with r/m for r/m<5 and that the 

estimates of ClonalFrameML rarely exceed 5 (r/m<5) (Supp. Fig. 3A, Supp. Fig. 9). 
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Figure II—3. Absolute number of nucleotides exchanged by recombination per mutation 

relative to recombination rate (r/m) for 162 bacteria and one archaeal species (Spearman’s 

Rho=0.74, P<10-15). 

 

II.4.6 Evolution of recombination rate across the bacterial tree 

Although recombination is a key mechanism impacting the evolution of bacteria, very 

little is known about the factors driving recombination rate. The evolution of recombination 

rate—as a trait—has also not been studied in detail thus far. Here, we conducted a phylogenomic 

study to reconstruct the evolution of recombination rate along the tree of bacteria. A 

phylogenetic tree of 162 bacterial species and one archaeon was reconstructed using 13 universal 

genes shared by all species. We used a maximum likelihood approach implemented in Phytools 

(104) to reconstruct the evolution of recombination rate across the internal nodes of the tree (Fig. 

4 and see Methods).   
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Figure II—4. Evolution of homologous recombination rate (r/m) across bacteria. The 

phylogeny of the 162 bacterial and one archaeon was generated using a concatenated 

amino-acid alignment of 13 universal single-copy core orthologs identified in all reference 

strains by eggNOG-mapper (v5) (98). The maximum likelihood tree was built using RAxML 

and 1000 bootstrap replicates (105). The tree was rooted using the archaeon 

Methanosarcina mazei. Ancestral state reconstruction of the of homologous recombination 

rate was inferred using a maximum likelihood approach with the fastAnc function of the R 

package Phytools (104). The gradient of colors across the tree ranges from r/m=0 (blue) to 

r/m=32 (red) and represents the inferred rates of recombination across branches of the 

tree. Genera comprising three or more species are labelled and their average 

recombination rate is represented on the tree.  
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Interestingly, we found that recombination rate is a rather slowly evolving trait that 

appears conserved within several genera. Indeed, we observed that recombination rate varies 

significantly across bacterial genera (Kruskal-Wallis test, P<10-3, genera were included in this 

test when composed of five species or more). Of the nine genera with ≥5 species, Streptococcus 
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(Wilcoxon tests, P<0.01, Bonferroni correction). The recombination rate of Staphylococcus was 

consistently and significantly lower across the species of this genus (median r/m=1.8) relative to 

all other genera (r/m=4.0). In contrast, the species of the genus Streptococcus displayed 

consistently higher recombination rates (median r/m=9.9) which is significantly above the 

recombination rate of the other genera (median r/m=3.8) (Fig. 5). Among the genera composed 

of only three or four species, Chlamydia displays the lowest average recombination rate (r/m = 

0.45±0.3, n=3) and Bifidobacterium was inferred as the most recombinogenic (r/m = 13.5±0.45, 

n=4). We did not observe any evidence that recombination rate was conserved over longer 

phylogenetic distances (i.e., above the genus level). 

Although recombination rates appear somewhat conserved in most genera, several genera 

are composed of species whose recombination rate varies sharply from their overall genus 

average: Enterococcus (r/m=9.6±11.2, n=3) and Vibrio (r/m=12.3±9.5, n=9) present the most 

variation in r/m across their respective genus. For instance, Vibrio alginolyticus (r/m=0.28) has a 

much lower rate of recombination relative to closely related taxa such as Vibrio splendidus (r/m 

= 32.2). These results indicate that, although recombination rate is—overall—a slowly evolving 

trait, it can also evolve much faster in some lineages. 

Figure II—5. Recombination rate r/m across bacterial genera for 162 bacterial species. 

Genera are grouped by phylogenetic class. The middle bar of each box indicates the 

median value; the left and right vertical edges represent the first and the third quartile, 

respectively. The central horizontal lines indicate the data range, with a maximal distance 

of 1.5 interquartile ranges (i.e., the distance between the first and third quartile). 
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II.5 Discussion 

Estimating recombination rates in bacteria has proven a difficult endeavor as homologous 

recombination leaves complex and sparse genomic signatures. Consequently, inconsistent rates 

have often been inferred for the same species across studies. Multiple computational tools have 

been developed to estimate homologous recombination rates in bacteria and they typically rely 

on direct evidence from a single type of signatures of recombination (87). However, 

recombination events do not always leave a straightforward signature of recombination; for 

example, when an allele is exchanged multiple times, or when an allele is found in a single 

strain. Therefore, most tools designed to infer recombination rates likely underestimate true 

recombination rates by incorrectly inferring some recombination events as mutational events. To 

circumvent these caveats, our approach leverages an ABC framework to infer recombination 

rates and integrates multiple signatures of recombination (i.e., homoplasies, linkage 

disequilibrium, and polymorphisms). By relying on simulations and ABC, our approach 

theoretically allows us to account for the complex scenarios where homologous recombination 

would otherwise not be detected. As predicted, we did observe that our estimates of r/m were on 

average higher when compared to previously published estimates and to those obtained with 

ClonalFrameML (1, 2). Importantly, our approach is also capable of estimating recombination 

rates as a function of total nucleotides exchanged per mutation event rather than an effective rate 

of recombination expressed as the number of polymorphisms exchanged per mutation. 

The performance of our approach was evaluated using different simulations and 

resampling approaches. Overall, our results were robust but appeared to lack precision for 

simulated datasets presenting very few polymorphisms and little evidence of recombination. 

However, lack of precision in these cases is expected as virtually every method will not perform 
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well when there is a near total lack of genomic signal to analyze homologous recombination. 

Nevertheless, recombination rates inferred by our method in these scenarios was, overall, in the 

vicinity of the real value (Supp. Fig. 1). Most importantly, we tested the robustness of our 

approach using multiple resampling analyses and resampling biases and results showed 

consistent inference of recombination rates for the same species (Supp. Fig. 7).  

Although we found that our estimates of r/m were within range of those inferred by 

ClonalFrameML for several samples of E. coli genomes (Supp. Fig. 8) (45), our estimates were 

substantially different across species. When comparing our results obtained to r/m values 

obtained with ClonalFrameML for other bacterial species we found that very few 

ClonalFrameML estimates exceeded r/m~5 (Supp. Fig. 9). This is coherent with our observation 

that the genomic signal left by recombination begins to saturate at r/m~5 (Fig. 3) and reflects the 

fact the same allele is likely exchanged multiple times above this rate. This is also supported by 

the fact that the homoplasy to mutation ratio is linearly related to r/m values until r/m~5 (or, h/m 

>1) (Supp. Fig. 3A). Overall, this indicates that approaches relying on direct evidence of site 

exchange may be unable to reliably detect recombination rates greater than 5. The inability to 

accurately infer recombination rates when recombination is high is a well-known limitation to 

the tools that rely on the direct estimate of recombination signal as previously noted (45).  

The rates of homologous recombination estimated across phylogroups of E. coli was 

within ranges of those typically reported in prior studies (r/m = 1.7-3.0) (3, 106). Though less 

data exists for r/m comparison between studies for other bacterial species, estimates from our 

study differed substantially from previous estimates but are typically within the range of those 

reported in previous analyses (our estimates occupy a smaller range of r/m values). In their 2009 

study, Vos & Didelot used ClonalFrame to estimate recombination rates using MLST data 



50 

 

across 48 species (1). This study found r/m rates to vary by over three orders of magnitude: from 

r/m = 0.02 (Leptospira interrogans) to r/m = 63.6 (Flavobacterium psychrophilum). A more 

recent multi-species analysis by González-Torres et al. (2019) focused on 54 bacterial and 

archaeal species with a shared total of 338 genomes found rates to vary from r/m = 0.00 (Frankia 

genus) to r/m = 973.8 (Burkholderia pseudomallei MSHR3) by computing r/m values from 

genomic sites which were found to be exchanged by homologous recombination by at least three 

programs designed to detect recombination events (2). By comparing the recombination rates of 

species included in these studies and ours (Supp. Fig. 11), we found that these analyses inferred 

very low recombination rates for several species, which were inferred to recombine at higher 

rates in our study (see Supp. Table 1D). As stated previously, the actual rates of homologous 

recombination in bacteria are likely underestimated by tools relying on direct inference of 

recombination signal. Moreover, this study relied on an average sample size of six genomes per 

species and we observed that using smaller genomic samples can lead to strongly underestimate 

r/m. Our study represents the largest analysis of recombination rates from complete genomes to 

date with 162 bacterial species (8,706 genomes) and estimated rates varied from r/m = 0.003 

(Staphylococcus saprophyticus) to r/m = 32.3 (Vibrio splendidus) (Fig. 2, Supp. Table 1A). 

Overall, our results encompassed a narrower range or r/m values and differed significantly from 

estimates derived in previous studies (Supp. Fig. 11, Supp. Table 1B & 1E). 

We found that GC-content is not correlated to predicted r/m values as opposed to what 

was reported in eukaryotes (107, 108). Previous studies have hypothesized that GC-content may 

be partially driven by homologous recombination through biased gene conversion (109, 110). 

Alternatively, it has been suggested that higher rates of recombination would drive higher GC-

content by enhancing the effectiveness of selection (111). Our results do not support an overall 
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correlation between GC-content and recombination rate across species (Supp. Fig. 4F). However, 

our analysis does not allow us to conclude whether these effects are driving variations of GC-

content across genomic regions in the same species as suggested by previous results in E. coli (3, 

111, 112). Answering this question would require analyzing the variation of recombination rates 

along bacterial chromosomes.  

The forces driving recombination rate and its evolution remain largely unknown in 

bacteria, and few studies have explored this question (1, 2, 113). Here, we observed that 

recombination rate was rather conserved across several genera, indicating that homologous 

recombination appears as a relatively slowly evolving trait. However, some genera presented 

large differences in recombination rate—such as the genus Vibrio. These sharp variations in 

recombination rate between related species such as V. splendidus (r/m = 32) and V. alginolyticus 

(r/m = 0.3) may be attributed to differences in ecological niche. Perhaps these differences may 

also be explained by sampling biases where the sequenced genomes of V. splendidus which, in 

this study, were almost entirely represented by strains isolated from filtered seawater (65/68 

genomes; core genome pairwise identity = 97.5%) whereas Vibrio alginolyticus was represented 

by strains associated with a variety of saltwater organisms (including fish, mollusk, coral, 

sponge, and kelp), ocean soils, and in human patients (average core genome pairwise identity = 

94.0%) (Supp Table 1A, Supp. Table 3A). Though few obligate intracellular organisms were 

included in this study, we estimated a much lower rate of homologous recombination (r/m<1) for 

obligate intracellular bacteria such as Chlamydia spp. which was also reported in previous 

studies (Supp. Fig. 5E) (60). Intracellular bacteria are expected to present lower rates of 

recombination since they are much less likely to encounter conspecific individuals in nature. 

Additionally, we observed that the number of human-associated strains within a species 
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population correlated positively with r/m and it is possible that many of them are human 

pathogens due to the sequencing bias towards bacteria which impact human health (Supp. Table 

3). However, we did not observe a significant correlation between pathogenicity—as inferred 

from literature analysis such as (114)—and recombination rate (Supp. Fig. 10, Supp. Table 1F) 

(107, 115–126). 

Despite decades of work, the analysis of recombination in bacteria remains a challenging 

task (87). This study offers an integrative approach to estimate recombination rates in bacteria 

which is not limited to the analysis of direct signatures or recombination. By leveraging this 

method, we report estimates of recombination rates for the largest dataset of bacteria to date 

under a unified framework. Albeit computationally expensive, our approach appears to yield 

robust and consistent results. However, much work remains to be conducted to uncover which 

factors are shaping the patterns and the rates of recombination across bacteria and how 

homologous recombination varies across the genome. 

II.6 Methods 

II.6.1 Genome acquisition, Core Genome Assembly, and Phylogeny  

All genomes used in this study were downloaded from NCBI’s GenBank for each 

bacterial and archaeal species presenting 15 or more fully assembled genomes. The original 

dataset was composed of 333 bacterial species comprised of 83,532 assembled genomes. The 

threshold of 15 or more genomes for each species used in this study was established as in (8). To 

verify assembly completeness of the genomes, Hidden Markov Model profiles of 45 universal 

bacterial and archaeal protein markers were detected using HMMER as in (127–129). Genomes 

were conserved in our analysis when all protein markers were identified. These universal 

orthologs were then aligned with MAFFT and concatenated (130). Pairwise sequence identity of 
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the concatenate was estimated and strains with identical nucleotide identities across all marker 

genes were considered duplicates and a single genome of each duplicate was randomly 

conserved for the analysis. For each species, the assembly containing the fewest contigs and the 

most predicted coding regions was chosen as the reference genome for the phylogenomic 

analysis (see below). 

We built the core genome for each species using CoreCruncher with the stringent option 

and USEARCH (global) using an 80% protein identity cutoff (131, 132). The core genome was 

defined as the set of orthologous genes shared by over 90% of the genomes of a given species. 

The CoreCruncher workflow aligns core genes with Muscle (133)at the amino acid level, reverse 

translates these alignments, and then concatenates all core genes to create a single aligned core 

genome concatenate per genome. Species borders were then refined as in Diop et al. 2022: 

genomes were considered as part of the same species when i) sharing an average nucleotide 

identity (ANI) over 94% and ii) no interruption of gene flow across genomes of the same species 

using the ConSpeciFix approach. Genomes that did not meet these conditions were excluded 

from the dataset.  

Due to the removal of misclassified and low-quality genomes, several species were 

entirely excluded from our dataset when their number fell below the threshold of 15 genomes set 

for this analysis. Furthermore, some species presented too many assembled genomes for tree 

building and recombination analysis and these species were randomly sampled down to 100 

genomes (apart from Bacillus thuringiensis for which we completed the analysis at 174 genomes 

before establishment of the 100-genome threshold). A final dataset of 7,451 unique genomes 

across 162 bacterial species and one archaeal species was used for this analysis (Supp. Table 2). 
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A strain phylogeny was then generated from the core genome nucleotide concatenate of each 

species using RAxML v8 with a GTR+gamma model (134).  

II.6.2 Forward-in-Time Simulation with Homologous Recombination  

Evolution of the core genomes was conducted with the forward-in-time simulator 

CoreSimul (96). The core genome alignments for each species were used to generate a random 

ancestral core genome sequence with the same length as the core genome concatenate and the 

same GC content. This ancestral genome was then evolved in silico with CoreSimul following 

the population structure (i.e., topology of the phylogenetic tree) of the species and using an 

identical transition/transversion ratio and substitution rate as observed from the true core genome 

alignments and phylogeny of each species (96). Simulations were conducted using a wide array 

of parameters: i) average recombination rate Rho (from 0 to 20 recombination events per 

mutation), ii) average mutation rate theta (rescaled from 0 to 100% of the branch lengths of the 

phylogenetic tree) and iii) average tract lengths of recombination delta (from 0 to 1,000bp). 

These ranges of parameters were based on estimates from diverse studies (3, 8, 96, 135). 

Combinations of these three parameters were used to simulate core genome evolution with 

CoreSimul; for each branch of the tree, two genomes were randomly selected, and recombination 

events and mutations events were drawn from a Poisson distribution of mean Rho and Theta, 

respectively and each recombination tract length was generated from a geometric distribution of 

mean delta as in (96, 136). This represents a total of ~500,000 simulations per species analyzed. 

For each simulation, the number of polymorphisms exchanged during each recombination event 

(nu) was recorded. Finally, the effective recombination rate (r/m) was expressed as !
"
=

	#$×&'()*×!+,
)+')*

 (Fig.1, A-C) (136). 
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To determine which simulations best recapitulated the recombination rate of the real 

species, several metrics were calculated from the core genomes and phylogenies from both the 

real datasets and the populations of simulated core genomes that resulted from each of the 

500,000 simulations: 𝜋 (i.e. average nucleotide diversity), h/m (i.e. the ratio of homoplasies to 

non-homoplasies) as in (8), and LDfit, where LDfit represents the decay of genetic linkage (r2) 

across distances of pairwise polymorphic sites. Briefly, a non-linear model was fit to the decay 

of linkage relative to nucleotide distances for the true core genome concatenate. For each 

simulated core genome, the pattern of linkage was compared to the pattern of linkage observed in 

the true core genome using the root mean square deviation (RMSE). Finally, we used these three 

summary statistics to compare each of the 500,000 simulations to the three statistics observed in 

the true core genome using Approximate Bayesian Computation (ABC) with the R package abc 

using the loclinear method (137). We set a tolerance threshold of 0.01% to generate the posterior 

distribution or r/m values that best recaptured the summary statistics of the true core genome of 

each species and thus, represents the most likely rate of recombination rate simulated (Fig.1, D). 

Real species summary statistics and simulated summary statistics from the posterior distribution 

as well as the inferred r/m rate are listed in Supp. Table 1A. The scripts developed for this 

analysis has been made available on GitHub as the pipeline recABC 

(https://github.com/lbobay/recABC). Methods and additional analyses of the results of recABC 

are included in the Supplementary Text. 

II.7 Supplementary Materials 

II.7.1 Supplementary Text 

II.7.1.1 Methodology Validation, and Exploration of Bias 

https://github.com/lbobay/recABC
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To assess the fidelity of ABC in choosing simulated populations that best recaptured 

genomic characteristics of the real species, the median of the posterior distribution of each 

simulated summary statistic—h/m, LDfit and 𝜋, respectively—was compared to the true statistic 

value for the species. Outliers were considered species for which the Cook’s Distance difference 

in real vs. simulated statistics influenced the expected regression slope of one with a cutoff of 

4/n. For the statistic h/m, the species Haemophilus influenzae, Helicobacter pylori, Lactobacillus 

sakei, Methanosarcina mazei, Streptococcus equi, Streptococcus mitis, Streptococcus oralis, and 

Vibrio breoganii had predicted values found to be influential to the regression. For the statistic π 

the median simulated posterior values from the species Bacillus pumilus, Campylobacter fetus, 

Corynebacterium diphtheriae, Lactobacillus reuteri, Pseudomonas syringae, Streptococcus 

oralis, Streptococcus salivarius, Vibrio alginolyticus, and Vibrio lentus were found to be 

influential. We were unable to infer LDfit for 13 species due to lack of polymorphisms (all 

genomes were highly similar). Of the remaining, Fusobacterium nucleatum, Haemophilus 

influenzae, Methanosarcina mazei, Mycobacteroides abscessus, Stenotrophomonas maltophilia, 

Streptococcus salivarius, and Vibrio cholerae were found to have simulated values of LDfit which 

varied strongly from the expected values. Notably, no species were found to have deviations in 

all three summary statistic values. Supplementary Table 1A shows the posterior estimates of r/m 

with asterisk(s) to highlight the species for which there was lower confidence in the 

recapitulation of one or more summary statistics which may indicate that r/m estimates for these 

indicated species are less robust. A scatter plot of the real vs. simulated summary statistics was 

generated for each of the three summary statistics (h/m, LDfit, and 𝜋) with the respective species 

outliers removed for each plot (Supp. Fig. 2 A-F). We also verified that the central tendency of 

the prior and the posterior distributions of r/m values were clearly different from one another for 
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most species, indicating that simulation abundance around a particular recombination rate was 

not a determinant factor in identifying the most probable recombination rate for a given species.  

II.7.1.2 Analyses of recombination rates 

To determine the impact of population structure on recombination rate estimates, we 

analyzed the core genome built for 400 genomes of E. coli and its corresponding phylogenetic 

tree (data from (128)). We randomly selected five samples of 15 genomes from each of the five 

major phylogroups of E. coli (A, B1, B2, D and E). Phylogroups were identified from the tree 

and from the classification in (128). The core genome of each sample of 15 genomes was then 

extracted from the main concatenate, and a phylogenetic tree was built using RAxML v8 using a 

GTR+ Gamma model (134).  For each sample (n=25) the core genome as well as the 

reconstructed phylogeny were used to estimate homologous recombination rates by both our 

method and using ClonalFrameML (v1.12) (45) (five of the n=25 samples did not complete the 

run) (Supp. Fig. 8, Supp. Table 1B). ClonalFrameML was also used to estimate the 

recombination rates for 84 species from our dataset (Supp. Fig. 9, Supp. Table 1C).  

The evolution of recombination rate along the tree of bacteria was conducted using a 

maximum likelihood approach. The tree of all the species of our dataset was generated using 13 

universal single-copy COGs found in all reference strains of the species dataset using eggNOG-

mapper (v5) (COG0533, COG0495, COG0202, COG0099, COG0197, COG0094, COG0097, 

COG0096, COG0092, COG0018, COG0522, COG0480, COG0088) (98, 99). The amino-acid 

sequences of the 13 universal COGs were aligned using Mafft v7.49 and concatenated (130). The 

concatenated alignment was used to generate a multi-species phylogeny using raxmlHPC-

Hybrid-SSE3 with the PROTGAMMAWAG model of evolution with 1,000 bootstrap replicates 

(105). The tree was then used to reconstruct the ancestral state of recombination rate at each 
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internal node of the phylogenetic tree using the continuous mapping fastAnc function of the R 

package Phytools (104) (Fig. 4).  

eggNOG-mapper (v5) was used to annotate the reference genome of each species to 

determine how COG and CAzy annotated gene content and genes related to recombination 

correlated to species level differences in recombination rate (98–100). The number of genes 

defined by a specific COG or CAzy epithet were summed and divided by the total number of 

genes annotated in the reference species. All Spearman correlations between gene annotation 

epithets and average recombination rate are listed in Supplementary Table 4. 

Species phenotypic and metabolic traits including gram stain, motility, sporulation, 

energy metabolism, oxygen tolerance, and general lifestyle were compared with recombination 

rate using data from the JGI’s (Joint Genome Institute) Genomes Online Database (GOLD) when 

available (Supp. Table 1E) (97). Species trait groupings were then compared to recombination 

rates (Supp. Fig. 5).  Using data from Bartlett et al. (2022), species were classified into 

pathogens, non-pathogens, and putative pathogens (Supp. Fig. 11, Supp. Table 1G) (114). When 

data was not available for the species from this study, evidence of pathogenicity was inferred 

from a separate literary analysis as denoted in Supplementary Table 1G (114–121, 123–126). 

Additionally, all genomes in this study with collection data available in their GenBank feature 

format (.gff) files were classified into discrete categories (ex: genomes originating from various 

human infections were classified as “human” etc.) to compare the number of genomes within a 

species with a specific epithet to the recombination rate of that species (Supp. Table 3). Finally, 

the tool geNomad was used to identify putative prophages in the reference strain used for each 

species in this analysis and both the number of genes annotated as viral as well as the total 



59 

 

number of putative prophages identified for each species were compared to species r/m values 

(102) (Supp. Table 1H, Supp. Fig. 6). 

II.7.2 Supplementary Figures 

Figure S II—1. Assessment of our ABC approach. XY-Plot comparing the accuracy of our 

ABC pipeline in predicting r/m from simulations where r/m is known. For each species, 

50,000 simulations were discarded from the prior distribution and 5,000 of those simulated 

datasets with known recombination rates were randomly chosen. We predicted r/m from 

the remaining pool of 450,000 simulations (which did not include the test population of the 

5,000 known simulations) with a tolerance of 0.01%. The x-axis shows the average of the 

known r/m estimates across the 5,000 simulations of each species and the y-axis is the 

average of each posterior dataset generated by ABC (n=45) averaged over each of the 5,000 

query datasets where r/m was known. Vertical error bars denote the standard deviation for 

the average over each population (n=5,000) of predicted recombination rates (r/m). 
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Figure S II—2. Plot of the average of the posterior distribution of simulated summary 

statistic values vs. real summary statistic values before outlier removal (A-C) and after 

outlier removal (D-F) for h/m (red), 𝝅 (green), and LDfit (yellow) calculated from the species 

alignment. Spearman’s correlation coefficients and P-values are indicated above each 

graph. 

  

0.
15

Si
m

ul
at

ed
 h

/m

A.

0.000

1

2

2 30 1

Rho = 0.99, p < 2.2e-16

Real Species h/m
0.025 0.050 0.075

0.
00

0
0.

05
0.

10

Real Species ! 

Si
m

ul
at

ed
 !

Rho = 0.87, p < 2.2e-16

Si
m

ul
at

ed
 L

D
fit

Real Species LDfit

0.0
0.2 0.4

0.6

0.0

0.4

0.2

Rho = 0.78, p < 2.2e-16B. C.3

0
0.100 0.6

0.000

1

2

2 30 1

Rho = 0.99, p < 2.2e-16

Real Species h/m
0.025 0.050 0.075

0.
00

0
0.

02
5

0.
05

0
0.

07
5

Real Species !

Si
m

ul
at

ed
 !

Rho = 0.97, p < 2.2e-16

Si
m

ul
at

ed
 L

D
fit

Real Species LDfit

0.0
0.1 0.2

0.3

0.0

0.2

0.1

Rho = 0.89, p < 2.2e-16E. F.

0

Si
m

ul
at

ed
 h

/m

D.

0.3



61 

 

Figure S II—3. Recombination rate estimates (r/m) for each species relative to the 

summary statistics of each species (real dataset) A) h/m, B) LDfit, and C) 𝝅. Spearman’s 

correlation coefficient and P-values are listed in the upper left corner of each plot. 

 

  

Species LDfit Species !Species h/m

r/
m

0

10

20

30

0.0 0.1 0.2 0.3 0.000 0.025 0.050 0.075 0.100

A. C.B.
30

20

10

00

10

20

30

0 1 2 3

Rho = 0.72, p < 2.2e-16 Rho = -0.17, p = 0.031 Rho = -0.12, p = 0.11



62 

 

Figure S II—4. Recombination rate estimates relative to various genomic characteristics of 

the dataset (A-F). Each graph compares recombination rate (r/m) vs. A) the number of 

strains included in each species analysis for 162 species with between 15 and 100 strains, B) 

the length of the core genome (b.p.) for the 163 species in this analysis, C) the number of 

core genes for the 163 species in this analysis. the average core genome nucleotide pairwise 

identity for the 163 species in this analysis, E) the standard deviation of the average 

nucleotide pairwise identity across the core genomes of each species, and F) the average GC 

content across the core genome for the 163 species in this analysis. Spearman’s correlation 

coefficient and P-values are listed in the upper left corner of each plot. 
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Figure S II—5. Comparison of recombination rate estimates (r/m) to metabolic, 

environmental, and physiological traits predicted from the JGI GOLD database (97) 

(Supplementary Table 1: Tab F). Comparisons were made between r/m across A) 

autotrophic and heterotrophic species, B) gram– and gram+ species, C) aerobic, anaerobic, 

and facultatively aerobic species, D) motile and nonmotile species, E) free-living and 

obligately intracellular species, and F) sporulating and nonsporulating species. The 

number of species with data available in JGI GOLD for each comparison is denoted below 

the category label in each plot. Only the median difference in recombination between free-

living and obligate intracellular species was found to be significant (Wilcoxon rank-sum 

test: P=0.03) (97). 
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Figure S II—6. Comparison between recombination rate estimates (r/m) and the number of 

integrated viral sequences (prophages). The program geNomad (37) was used to identify 

the number of putative viral coding sequences (A) and the putative complete prophages (B) 

in each reference sequence from the 159 species in our dataset. 
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Figure S II—7. Robustness of r/m estimates to genome subsampling.  The y-axis represents 

the average recombination rate for 100 random subsamples of x-10 genomes per species 

(where x is the total number of genomes present for a given species in the analysis) and x-

axis represents the recombination rate estimate inferred for that species (n=101 species 

with ≥25 strains).  
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Figure S II—8. Correlation between recombination rates (r/m) predicted by this study (y-

axis) and those predicted by ClonalFrameML (x-axis) (8) across different samples of 

Escherichia coli's genomes (n=20). The black line on the plot represents y=x. 
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Figure S II—9. Recombination rates (r/m) estimated with our ABC approach (y-axis) 

relative to recombination rates estimated by ClonalFrameML (x-axis) (45) for 84 bacterial 

species. The black line on the plot represents y=x.  
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Figure S II—10. Comparison of recombination rates between pathogens, non-pathogens, 

and putative pathogens with a Kruskal-Wallis test. Data compiled in Bartlett et al. (2022) 

was used to infer pathogen status (114). When species in our dataset were not present in 

their dataset, a separate search was conducted on google scholar to determine whether 

publications supporting the bacteria’s classification as a pathogen could be inferred (114–

121, 123–126). Tab F of Supplementary Table 1 contains the table as in Bartlett et al. as 

well as additional citation information appended by this study. 
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Figure S II—11. Comparison between recombination rate estimates (r/m) from this study 

and estimates from two other studies. A) Recombination rates estimated from MLST data 

using ClonalFrame (1), where 14 species were common to our study. B) Recombination 

rates estimated using whole genome content in (2) where 29 species were shared with our 

study. The black line on each graph denotes y=x. Spearman’s correlation coefficients and 

P-values are shown in the upper portion of the graphs. 
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II.7.3 Supplementary Table Legends 

DISCLAIMER: The supplementary tables are too large to be included in this document 

and so only their legends are included below. These tables will be included with the peer-

reviewed manuscripts after their publication. 

Table S II—1. Comprehensive table including datasets produced by and relevant to this 

study. Tab A) List of all 162 bacterial and one archaeal species (corresponding to 7,451 

complete genomes) analyzed in this study where asterisks in column 2 indicate lack of 

confidence in simulating one or more summary statistic (*,**,***). The taxonomic and 

genomic information included is as follows: column 3: core gene number, column 4: 

number of strains, column 5: core genome length (bp), column 6: average core genome GC-

content (%), column 7: average core genome pairwise sequence identity, column 8: 

standard deviation of average core genome pairwise identity, column 9: combined 

GenBank ID and assembly accession number for the reference genome chosen for each 

species, column 10: the total number of genes in the reference genome, column 11: the total 

genome length of the reference genome (bp), column 12: the number of assembly contigs in 

the reference genome, column 13-16: real species values for the three summary statistics: 

theta, 𝝅, LDfit, and h/m, column 17: the total number of simulations conducted for each 

species, column 18: the number of simulations in the ABC posterior dataset with a 

tolerance of 0.01%, column 19-36: and the average, median, and standard deviation of the 

branch length coefficient, r/m, h/m, 𝝅, LDfit, and delta x rho x theta (i.e. the recombination 

rate expressed as the total number of nucleotides exchange via recombination relative to 

mutation) generated from the ABC posterior dataset for each species. Tab B) List of 

recombination rate estimates (r/m) computed across different replicated of E. coli 
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phylogroups by both our method (column 2) and ClonalFrameML (column 3) (8). The 

combined averages and standard deviations of r/m computed by both methods are shown 

below the table. Tab C) List of 84 species with average r/m estimated by both 

ClonalFrameML (column 2) (45) and our method (column 3) as well as the absolute 

difference in r/m between estimates (column 4). The average and standard deviation of the 

three columns is shown at the bottom of the table. Tab D) A comparison of homologous 

recombination rate estimated for species in this study (column 2) to those which were 

estimated for the same species in Vos & Didelot (2009) (1) (column 3) and Gonzalez-torres 

et al. (2019) (2) (column 1). The table includes the species name the r/m estimate reported 

in Gonzalez-torres et al. (2019), the r/m estimate reported in this study, and the r/m 

estimate reported by Vos & Didelot (2009). ‘NA’ denotes species for which no r/m data was 

available in the study. Tab E) List of ecological and metabolic data for 162 bacterial and 

one archaeal species used in this analysis imported from the Joint Genome Institute’s 

Genomes Online Database (GOLD) (97). The columns for oxygen tolerance (column 15: 

“O2”), energy metabolism (column 17: “energy”), gram staining specificity (column 18: 

“gram”), cell shape category (column 31: “cell_shape”), cell motility (column 33: 

“cell_motility”), and whether the species was capable of sporulation (column 35: 

“sporulation”) were compared to recombination rate estimates as reported in 

Supplementary Figure 4. Tab F) A List of 162 bacteria in this study, their taxonomic 

classifiers, and their classification as putative pathogens or pathogens of humans as 

reported in Barlett et al., 2022. Data not included in Barlett el al. (2022) is denoted with 

‘NA’ for the pathogenicity column (column 8) and characterization as a pathogen was 

separately investigated in this analysis and its status was listed in column 11 and 
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supporting citation in column 12 (114–121, 123–126). Data from this study was compared 

to recombination rate to assess putative relationship between human pathogenicity and 

recombination rate as reported in Supplementary Figure 5. Tab G) Tabulated results of 

prophage prediction on each reference genome from 159 species. Table contains species 

name (column 1), the average recombination rate for the species (column 2), the number of 

complete putative prophages identified by geNomad (column 3) and the number of putative 

viral coding regions identified by geNomad (column 4) (102). Tab H) Table of data from 

Supplementary Figure 7. The table contains the species name from which the simulated 

dataset originated (column 1), the average of the known recombination rate across the 

5,000 randomly chosen simulations (column 2), the predicted average recombination rate 

across the average of each posterior dataset generated by ABC (n=5,000) (column 3), and 

the standard deviation of the predicted recombination rate based on the posterior 

distribution generated by ABC (n=5,000) (column 4). Tab I) Assessment of our ABC 

approach by predicting recombination rate from a set of 5,000 simulations where 

recombination rate was known for each population. Each row denotes i) the species from 

which the simulated dataset originated, ii) the Pearson’s correlation coefficient and iii) the 

P-value of the Pearson correlation between the average of all predicted r/m values of the 

simulated dataset and the known average r/m across the simulated dataset (Table1 I), iv--

vi) the average known summary statistic values (h/m, 𝝅, LDfit) across the simulated dataset 

(n=5,000), vii) the average predicted r/m across all posterior populations for the 5,000 

simulated datasets (n=5,000), viii-x)  and the average predicted summary statistics (h/m, 𝝅, 

LDfit) across all posterior populations for the 5,000 simulated datasets (n=5,000). Tab J) 

Results of the subsampling analysis. Ten genomes were randomly discarded for each 
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species and recombination rate was re-estimated (100 replicates). Included are the species 

names, the average r/m estimated for the species, the average r/m estimated across the 100 

replicates of subsamples of n-10 genomes and the difference in r/m between the two 

estimates. The final column contains asterisks denoting species whose r/m estimated from 

subpopulations varied by more than five from the species population.  

 

Table S II—2. List of genome IDs included in this analysis for each species. File contains 

the species used in this study (column 1), the strain chosen as the reference sequence 

(column 2), and a list of the combined Genbank ID and assembly ID for each strain in the 

species analysis (column 3). 

 

Table S II—3. Tab A) Collection data for 7,654 bacterial genomes as listed in the GenBank 

Feature Format (GFF) files. The table includes the species names, their concatenated 

GenBank genome IDs and assembly accession numbers, GenBank feature collection 

information, and coded category summarizing the GenBank collection information. Tab B) 

Spearman correlations between r/m estimates and the number of genomes within a species 

from each environmental category based on their available GenBank collection data. P-

values were adjusted for multiple with Holm adjustment. 

 

Table S II—4. Comparison between recombination rate estimates (r/m) and the percentage 

of genes in a COG or CAzy category (98–100). Tab A: The table includes the Spearman’s 

correlation coefficient and p-value for the comparison between r/m and the percentage of 

genes in each COG or CAzy category as annotated by eggNOG (98–100). Tab B: The table 
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contains the species name, its average r/m values, and the percentage of genes in each COG 

or CAzy category as annotated by eggNOG (98–100). 
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II.8.4 Competing interests 

The authors declare that they have no competing interests. 

II.8.5 Funding Information 

This study was supported by the National Institutes of Health grant R01GM132137 

awarded to LMB and by the U.S. Department of Energy, Office of Science, Office of Advanced 

Scientific Computing Research, Department of Energy Computational Science Graduate 

Fellowship under Award Number DE-SC0021110 awarded to ELT. 

II.8.6 Funding Disclaimer  

https://github.com/lbobay/recABC


75 

 

This report was prepared as an account of work sponsored by an agency of the United 

States Government. Neither the United States Government nor any agency thereof, nor any of 

their employees, makes any warranty, express or implied, or assumes any legal liability or 

responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 

product, or process disclosed, or represents that its use would not infringe privately owned rights. 

Reference herein to any specific commercial product, process, or service by trade name, 

trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 

recommendation, or favoring by the United States Government or any agency thereof. The views 

and opinions of authors expressed herein do not necessarily state or reflect those of the United 

States Government or any agency thereof. 

 

II.8.7 Authors' contributions 

 E.L.T., A.D., C.B., and L-M. B. designed, performed research, and analyzed data in this 

publication. E.L.T. and L-M.B. wrote this paper and A.D., and C.B. reviewed and edited it.  

  



76 

 

II.8.8 Acknowledgments 

We would like to thank Shaw Kagawa, LeRayah Neely-Brown and Cory Schantz for 

testing the early version of recABC. We are thankful to Daniel Schrider for providing advice and 

Kasie Raymann and Gavin Douglas for reading the manuscript. We would like to dedicate this 

manuscript to Matthew Miller.  

II.9 References 

See REFERENCES on page 130.  



77 

 

CHAPTER III: HOMOLOGOUS RECOMBINATION SHAPES THE ARCHITECTURE AND 

EVOLUTION OF BACTERIAL GENOMES 

Ellis L. Torrance1, Awa Diop2, Louis-Marie Bobay1,2 

1 Biology Department, University of North Carolina at Greensboro, Greensboro, NC 27412 USA 

2 Department of Biological Sciences, North Carolina State University, Raleigh, NC 

III.1 Abstract 

Homologous recombination is a significant evolutionary force that varies tremendously 

across bacterial species. However, how the landscape of homologous recombination varies 

across genes and within individual genomes has only been studied in a few species.  Here, we 

used Approximate Bayesian Computation to estimate the recombination rate along the genomes 

of 145 bacterial species and one archaeon. Our results show that homologous recombination is a 

key force shaping many aspects of bacterial genome architecture and its evolution. We find that 

recombination rates vary greatly along genomes and that these patterns are not random. The 

genomic landscape of recombination presents several key signatures: rates are highest near the 

origin of replication in most species, patterns of recombination appear symmetrical in both 

replichores and most species have genomic hotpots of recombination. Furthermore, many closely 

related species share conserved landscapes of recombination across orthologs indicating that 

recombination landscapes are conserved over significant evolutionary distances. We show clear 

evidence that recombination drives the evolution of GC-content through increasing the 

effectiveness of selection and not through biased gene conversion, thereby solving an ongoing 

debate. Finally, we show that the rate of recombination varies across gene function and that 
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many hotspots of recombination are associated with adaptive and transferable regions often 

encoding genes involved in pathogenicity. 

III.2 Introduction 

Homologous recombination is a major force shaping genome evolution across bacteria. 

This mechanism promotes the exchange of alleles between homologous sequences akin to the 

process of gene conversion in Eukaryotes. The rates of recombination vary extensively across 

species, but several studies have shown that recombination rates vary across genomic regions as 

well (14, 138). In addition to the overall fluctuations of recombination rates, some genomic 

regions present very low rates of recombination (i.e., coldspots) while others show particularly 

high rates of recombination (i.e., hotspots). The mechanisms shaping these variations in 

recombination rate along the genome are not known. Some regions might be more 

recombinogenic by presenting an easier access for incoming DNA or by containing sequence 

motifs that stimulate recombination (e.g., Chi motifs). Alternatively, selection may be shaping 

the patterns of recombination across genomic regions. It has been hypothesized that hotspots of 

recombination play an important role in the ability of bacteria to adapt to selective pressures 

from their environment. However, the patterns of homologous recombination have only been 

characterized in the genome of a few species. Thus, it remains largely unknow how variations in 

homologous recombination contribute to shape the evolution and adaptation of bacterial 

genomes. In addition, we ignore to what extent these genomic landscapes of recombination are 

conserved after species diverge from one another. 

In Eukaryotes, the genomic landscapes of recombination have been extensively studied 

and hotspots of recombination have been found to be associated with disease phenotypes and 

adaptation (139). In bacteria however, variations of recombination rate across the genome have 
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not been thoroughly described (81, 83, 107). Previous studies have shown that signatures of 

recombination are lower in core genes with housekeeping functions and higher in genes 

associated with virulence and defense functions (2, 81, 83, 107). Interestingly, hotspots of 

recombination have been observed to be flanking mobile elements such as SCC (Staphylococcal 

cassette chromosome) which is associated with methicillin resistance in Staphylococcus aureus 

(MRSA) (81, 107, 140). In addition, hotspots of recombination have also been found near the 

origin of replication (Ori) in S. aureus, but this trend has not been observed in other species (81, 

107). Moreover, genes flanking mobile elements and clusters of accessory genes have been 

estimated to recombine twice more frequently than non-flanking genes across bacterial species 

(13).  

Bacterial chromosomes present various levels of organization, and those can impose 

mechanistic and selective constraints on recombination. Replication proceeds bidirectionally 

starting at the Ori (69). In circular chromosomes, the two replichores present similar lengths and 

progress synchronously from Ori to the terminus of replication (Ter). A mutation accumulation 

study has shown that mutation frequency follows a wave-like pattern, symmetrical in the two 

replichores, which has been hypothesized to be the result of replication timing and its 

interruption (141). Because DNA synthesis proceeds necessarily from 5' to 3', one strand is 

synthetized continuously in the same direction as the replication fork (i.e., the leading strand), 

while the other strand is synthetized discontinuously (i.e., the lagging strand). Thus, the initiation 

of DNA synthesis is delayed for the lagging strand and its template strand remains single-

stranded for longer periods of time. Due to the higher mutagenic nature of single-stranded DNA, 

it has been suggested that this asymmetry in DNA replication cause higher mutation rates on the 

lagging strand relative to the leading strand (142). However, it has been shown that this 
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asymmetry could in fact be driven by the stronger selective constraints acting on the leading 

strand, due to the higher prevalence of essential and highly expressed genes on this strand. 

Finally, genes and operons are often observed as clusters of accessory genes such as 

pathogenicity islands, which are often horizontally exchanged between strains (69, 143). The 

insertion of these transferred clusters of accessory genes can be mediated by non-homologous 

recombination, site-specific recombination, or by homologous recombination at flanking core 

genes (144–146).  

Here, we leveraged a new approach to estimate the rates of homologous recombination 

along bacterial genomes. We adapted our tool recABC (see Chapter 2) to estimate the 

recombination rate of thousands of individual core genes across the genomes of 145 bacterial 

species and one archaeon. We compared the rates of recombination in the context of their 

chromosomal location and functions to determine whether homologous recombination rate varies 

with any appreciable patterns across species. Using a robust dataset of >200k core genes, we 

observed that homologous recombination varies extensively across the genome of most bacteria. 

We further found evidence that these variations are linked to gene function and chromosome 

structure, indicating that selection is likely shaping patterns of recombination. We detected the 

presence of many hotspots and coldspots of recombination across species. We did not identify 

any strand-specific biases in homologous recombination or any strong indication that 

recombination rate is elevated in genes directly flanking accessory regions. However, we did 

observe a significant relationship between homologous recombination and GC content as well as 

signatures of selection.  
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III.3 Results 

III.3.1 Homologous Recombination Rate Varies across Bacterial Core Genes 

In a recent study, we developed and applied a novel approach to estimate recombination 

rate across bacterial using Approximate Bayesian Computation (ABC) (see Chapter 2). Briefly, 

our tool generates forward-in-time simulations of genome populations evolved under various 

rates of recombination (n=500k simulations per species) and our approach selects the simulations 

that best recapitulates genomic signatures of recombination observed in the real genomes 

through comparison of summary statistics with ABC. We utilized the summary statistics from 

individual core gene alignments to estimate recombination rate for that gene from the simulated 

population of sequences (see Fig. 1). For each core gene, we measured the effective rate of 

recombination r/m, which represents the number of times alleles has been exchanged by 

recombination (r) relative to the number of alleles introduced by mutation (m). Using this 

approach, we inferred the recombination rate of each core gene across all the core genomes (i.e., 

the set of genes shared by nearly all the members of a species) of our dataset: 162 bacterial 

species and one archaeon. Each species was composed of between 15-100 non-redundant 

genomes and genomes were classified to a species using both the average nucleotide identity 

(ANI) and the patterns of gene flow (4). The core genes whose summary statistics could not be 

robustly used for inference of recombination rate (i.e., that fell outside of the distribution of 

simulated summary statistics) were excluded from the analysis (see Methods). We further 

excluded the species whose core genome was highly reduced (<200 core genes) after excluding 

those genes. After applying these criteria, our final dataset was composed of a total of 145 

bacterial and one archaeal species, for which recombination rates of individual core genes could 

be confidently inferred. We found that the average rate of recombination across core genes 
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within each species was tightly correlated to the species r/m previously inferred using the whole 

core genome (Spearman’s Rho=0.91, P<10-15: Supp. Fig. 1). The number of core genes for which 

a robust estimate of r/m could be inferred varied from a minimum of 218 for Salmonella enterica 

to a maximum of 4,161 for Burkholderia gladioli. In total, the r/m values were estimated for 

208,686 core genes. The data summarizing the size of the core gene dataset, the distribution of 

r/m and summary statistic values for species included in this analysis are presented Supp. Table 

1. 
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Figure III—1. Description of the method used to infer rates of homologous recombination 

(recABC) across the core genome for 145 bacteria and one archaeal species in this study. A) 

For each species, the core genome is aligned and concatenated and a phylogeny is built 

from the alignment of the core genome. Using the nucleotide length and GC content of the 

core genome alignment from the real species, a single ancestral genome randomly 

generated to initiate the ancestral genome of each simulation. This ancestral genome is then 

evolved in a forward-in-time simulation following the phylogenetic topology of the real 

species under varied recombination rates (Rho) and recombination tract lengths (delta) 

using CoreSimul (96). The corresponding effective recombination rate r/m is also computed 

during the simulations. A total of 500,000 simulations are generated for each species. B) An 

alignment is generated for each core gene within each species. C1) Two summary statistics 

are computed: i) the ratio of homoplasy to mutation (h/m), and ii) the average nucleotide 

diversity (Pi) computed for the core genome alignment of the real species. C2) The same 

summary statistics (h/m, pi) are calculated for each of the 500k simulations. D) 

Approximate Bayesian Computation (ABC) is then used to compare the summary statistics 

from the real species gene data to the distribution of the same statistics generated by 

simulation under known recombination rates (the prior distribution in grey). The 

simulations with statistics which most closely match the summary statistics from the real 

species are selected using ABC (the posterior distribution in blue) with a tolerance 

threshold of 0.01% (n=50). The average rate of recombination of the posterior distribution 

is then used as an estimate of recombination rate for each core gene in each species.  
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III.3.2 Homologous Recombination Rate Variation by Gene Function 

We first tested whether rates of homologous recombination vary across gene functional 

categories (i.e., clusters of orthologous genes (COG)), all genes were classified into COG 

categories using eggNOG (n=208,686 core genes) (98, 99). Overall, a significant difference in 

r/m values across COG categories was detected (Kruskal-Wallis, P<10-22) and recombination 

rates were then compared for each relevant functional category independently (18 COGs in total) 

using a Wilcoxon Test with Benjamini-Hochberg adjustment (Supp. Fig 2A). Significantly lower 

r/m values were observed for functional categories coding for central cellular functions: i) cell 

cycle control, cell division, and chromosome partitioning (COG category D, P<10-5), ii) 

translation, ribosomal structure, and biogenesis (COG category J, P<10-76), and iii) transcription 

(COG category K, P<0.05). In contrast, significantly higher r/m values were observed for genes 

encoding more diverse functional categories: i) energy production and conversion (COG 

category C, P<10-4), ii) amino acid transport and metabolism (COG category E, P=10-12), iii) 

carbohydrate transport and metabolism (COG category G, P= P<10-5),  iv) coenzyme 

metabolism and transport (COG category H, P<10-3), v) cell wall/membrane/envelope biogenesis 

(COG category M, P<10-6), vii) inorganic ion transport and metabolism (COG category P, P<10-

7), viii) signal transduction mechanisms (COG category T, P<10-3) and ix) defense mechanisms 

(COG category V, P<10-12).  

To determine to what extent recombination rate varied across gene functions at the 

species level, the same test was performed within each species individually (n=146). As 

expected, few significant relationships were observed, which is likely due to the decrease in 

statistical power. Nevertheless, a significantly lower recombination rate (Benjamini-Hochberg 

adjusted P<0.05) was observed for genes belonging to the COG category J for 43 species 
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(translation, ribosomal structure, and biogenesis, 29% of species) and K for 7 species 

(transcription, 5% of species). In contrast, a significantly higher rate of recombination was 

observed for genes belonging to the COG category E for 11 species (amino acid transport and 

metabolism, 8% of the species). All other categories had less than ≤5 species with significant 

trends. A bar graph showing the number of species which was significant for each COG group is 

shown in Supp. Fig. 2B. 

III.3.3 Homologous Recombination Rate in Genes Flanking Clusters of Accessory 

Genes 

Accessory genes (i.e., genes that are typically found in a single of in a few genomes) are 

often transferred by Horizontal Gene Transfer (HGT) and the insertion of these sequences can be 

mediated by homologous recombination and other mechanisms (7). In prior studies, the rate of 

homologous recombination has been estimated to be higher in the regions flanking horizontally 

transferred accessory genes (13, 84, 112). However, only Oliveira et al. (2017) analyzed this 

trend over multiple species. Here, the authors quantified recombination rates by calculating both 

the number of estimated recombination events and the amount of phylogenetic incongruencies in 

core genes flanking accessory gene regions (13). To test whether we observed similar trends in 

our dataset, we defined accessory gene clusters as strings of ≥5 consecutive accessory genes and 

we compared r/m estimates of core genes flanking these regions versus r/m estimated of the non-

flanking core genes (i.e. core genes not directly located next to accessory gene regions) for each 

species (Supp. Table 2). We found that the majority of species had an increase in recombination 

rate in flanking core genes relative to non-flanking core genes (98, 68%). However, the increase 

was only significant for nine species (Bacillus megaterium, B. wiedmannii, B. cereus, 

Staphylococcus warneri, S. equorum, Lactobacillus kunkeei, Burkholderia multivorans, B. 
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vietnamiensis, Bifidobacterium adolescentis) (Benjamini-Hochberg adjusted P<0.05) and no 

species were found to have a statistically significant decrease. The increase in r/m in the core 

genes flanking accessory regions was overall relatively small: we measured an average increase 

in r/m across species of 0.47±0.64.  

III.3.4 Homologous Recombination Rate, GC-content, and Selection 

Previous studies have reported a positive relationship between the rate of recombination 

and the GC-content of gene sequences. This result has been interpreted as evidence that 

recombination can enhance genomic GC-content i) by a mechanistic bias during the 

recombination process (the biased gene conversion hypothesis) (147) or ii) by increasing the 

effectiveness of selection (the selection hypothesis) (135, 148). We compared our estimates of 

recombination rates to the average GC-content estimated across all the sequences of each core 

gene using a Spearman’s correlation test with Benjamini-Hochberg P-value adjustment for all 

146 species (Supp. Table 2). As reported in previous studies, we observed that the relationship 

between r/m and GC-content was positive in most species (Rho>0, n=119, (82%). The 

relationship between r/m and GC% was significant for 83 (57%) of these species, among which 

nine had a significant negative correlation (6%) and the remaining 74 showed a significant 

positive correlation (50%). The distribution of correlation coefficients across significant species 

comparisons is shown in Supp. Fig. 3 (Average Rho=0.08±0.1). 

To determine whether a relationship was observed between r/m and the impact of 

selection, we estimated the ratio of non-synonymous to synonymous substitution rates (dN/dS) 

using PAML for each core gene alignment and for each species (see Methods). Species were 

included in this analysis if r/m and dN/dS could be both estimated for at least 200 core genes 

(n=142). We found a significant correlation between r/m and dN/dS for 73 species (51%) 
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(Spearman’s Benjamini-Hochberg corrected P-Value<0.05). Of those that were significant, 14 

showed a positive correlation and the remaining 81% (n=59) presented a negative correlation 

between r/m and dN/dS. These results indicate that genes with higher recombination rates are 

evolving under stronger selective pressures. Separately, we observed that r/m and dN were 

significantly corelated for 114 species with a positive significant relationship for 67% (n=79) and 

r/m vs. dS were significantly correlated for 123 species with a positive significant relationship 

for 80% of species (Rho>0.0, n=98). These results further indicate that the correlation between 

r/m and dN/dS is not solely driven by dN or dS. Results for each of these tests comparing r/m to 

dN, dS, and dN/dS across core genes for each species are available in Supp. Table 3.  

We further tested whether a relationship existed between dN/dS and GC-content across 

the core genes of the 142 species (Supp. Table 4). Indeed, we observed a significant relationship 

between dN/dS and GC% across 113 species (77%) (Benjamini-Hochberg adjusted P<0.05). Of 

these, 68% of species had a significant negative relationship between dN/dS and GC% (n=77, 

Rho<0.0) and the remaining 32% (n=36) had a significant positive relationship. Species with a 

significant positive relationship tended to be species with high GC content such as Burkholderia 

sp. and Mycobacterium sp. 

III.3.5 Homologous Recombination Rate and DNA Strand Bias 

To determine whether the correlations between r/m and GC-content were related to strand 

bias— and to evaluate the hypothesis that homologous recombination should be more prevalent 

on the lagging strand due to increased prevalence of head-on collision between replication and 

transcriptional machinery and subsequent strand repair through homologous recombination 

(149)—we compared the r/m between genes present on the leading and lagging strands using a 

Wilcoxon Test with Benjamini-Hochberg P-value adjustment for n=102 species (see 



89 

 

supplementary methods for determination of leading vs. lagging strand). We found little 

evidence supporting a difference in recombination rate between the leading and lagging strands. 

Of the 102 species assessed, only seven species presented a significant difference in 

recombination rate across core genes between strands (Supp. Table 5). Of those seven, four 

species had a significant increase in their lagging strand r/m (Pseudomonas chlororaphis, 

Lactobacillus fermentum, Staphylococcus saprophyticus, and L. kunkeei) and three species 

presented the reverse trend (Yersinia intermedia, Serratia marscescens, and Lactobacillus 

salivarus). Notably, this difference in r/m between strands was small (Difference in r/m average 

between leading and lagging strands ≤ 1) for all species. Overall, r/m is very similar between the 

core genes of the leading and lagging strands across bacterial species.  

III.3.6 Evolution of the Genomic Landscape of Recombination  

Here we tested whether the patterns of recombination rates were conserved between 

species following speciation and divergence. We compared the genomic patterns of 

recombination between all pairs of species within each genus, which represented 109 unique 

pairs of species. For each pair, recombination rates were compared between shared orthologs to 

determine whether the patterns of recombination rate were a conserved trait between closely 

related species (Supp. Table 6). We found a positive significant correlation between the 

recombination rates of the shared orthologs for 36 species pairs (Spearman’s Benjamini-

Hochberg adjusted P<0.05), indicating that genomic landscapes of recombination are somewhat 

conserved between related species. Conservation in recombination rate was then compared to 

pairwise divergence between species of the pair. We found that the species with evidence of 

conservation in r/m across shared orthologs had lower pairwise divergence (average A.A. 

pairwise divergence = 0.25±0.18) versus those without evidence of conservation in r/m (average 
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A.A. pairwise divergence = 0.37±0.30) (Supp. Figure 4). This result further supports that the 

genomic patterns of recombination are conserved over short evolutionary distance.  

III.3.7 Genomic Landscapes of Homologous Recombination 

Bacterial chromosomes are highly organized entities, and these constrains can shape 

recombination rates across genomes. We first tested whether recombination rates varied between 

the origin of replication origin (Ori) and the terminus (Ter) for the 102 species with circular 

chromosomes for which Ori and Ter could be confidently identified based on GC-skew (see 

Methods) (Supp. Table 7). We found that r/m was higher near Ori for 67% of species (n=66). 

Correlations between r/m and distance to Ori were statistically significant for 36 species 

(Spearman’s Benjamini-Hochberg adjusted P <0.05). Here, the majority (n=26, 72%) displayed 

higher rates of recombination near Ori whereas the inverse (r/m is lower near the Ori) was 

observed as significant in 10 species (28%). These results indicate that bacteria present an 

overall bias of increased recombination near Ori.  

We further tested whether recombination rates were symmetrical across both replichores.  

Core gene sets were arbitrarily bisected at the Ori-Ter axis into “right” and “left” replichores. For 

each replichore, we correlated the rate of recombination of the core genes relative to their 

positions in the Ori-Ter axis. Interestingly, we found that the absolute value of Spearman’s Rho 

between both replichores were very similar between the two replichores of most species 

(Rho=0.4, P<10-4) supporting the evidence of symmetry in the patterns of recombination rates in 

the two replichores (Supp. Fig. 5).  

Previous studies have found that recombination rates vary extensively across bacterial 

chromosomes in species such as Staphylococcus aureus, Streptococcus pyogenes, and 

Campylobacter jejuni with little visible pattern for most species except for anomalous spikes, or 
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“hotspots” of recombination (81, 83, 107, 112). Hotspots of recombination are of particular 

interest as they have previously been found to correspond to the presence of genes associated 

with potentially adaptive traits such as virulence or antibiotic resistance (81, 107). As mentioned 

above, and in accordance with other studies, we observed that rates of recombination are 

significantly elevated in genes associated with adaptive traits such as cellular defense among 

others (see Supp. Fig. 2) (2, 107). To visualize the patterns of recombination along bacterial 

genomes, we plotted the average of recombination rates across the core genome of each species 

(n=102) using a sliding window (starting at the origin of replication (x=0) and the relative 

location of the terminus plotted as a line in green) (Supplementary Folder 1). We defined 

hotspots and coldspots (regions of anomalously low recombination) as regions where local r/m 

differed by more than two standard deviations from the mean across the genome. Overall, we 

detected hotspots and coldspots (regions of anomalously low recombination) across species with 

most species having at least one hot- and coldspot as defined by this metric. In accordance with 

prior studies; coldspots primarily contained housekeeping genes, whereas hotspots were enriched 

in genes that are potentially adaptive such as those associated with metabolic or virulence traits 

(107).  

We found some general patterns in the shape of r/m variation across the chromosome of 

many species. We noted the presence of i) an upward parabola-like trend where recombination 

rates were highest near Ori and lowest near Ter for 16 species (Supp. Fig. 6A) and ii) a 

downward parabola-like trend where the inverse pattern was observed in 5 species (Supp. Fig. 

6B). Overall, these patterns support our previous results that the variations of recombination 

rates along the genomes are somewhat symmetrical in both replichores, i.e., symmetrical relative 

to the Ori-Ter axis. Interestingly, although the number of estimable core genes varied across 
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species, we observed similar genomic landscapes of recombination rates across the species of 

some genera (e.g. Lactobacillus (Supp. Fig. 11) and Staphylococcus (Fig. 2)).  
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Figure III—2. The shape of recombination rate variation across Staphylococcus species. 

Each graph represents the smoothed average r/m across estimable core genes in a sliding-

window of 50 with a step of 2. The approximate location of the Ori is at x=0 and the 

approximate location of the Ter is demarcated by a green line in each plot. The solid 

horizontal line represents the mean r/m across estimable core genes and the dashed lines 

are the r/m values two standard-deviations from the mean. The red line on each plot 

represents the location of OrfX (a SCC integration site) and the red triangle indicates the 

presence of SCCmec integration at this site.  
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III.3.8 Overview of Clinically Relevant Genes in Hotspots of Recombination 

Outside of Staphylococcus several species had clinically relevant gene sets present in 

their respective hotspots of recombination. In B. subtillis, the hotspot near Ter is associated with 

genes annotated as belonging to the yngABC operon, which is associated with lipid metabolism, 

biofilm formation, and anaerobic growth (150) (Supp. Fig. 7). Several of these genes were found 

to have r/m rates at approximately 10 times the genome average (ex: yngB r/m=12.9, yngI, yngL, 

and yngK r/m>10) contributing heavily to the spike in r/m average in a region with an otherwise 

low recombination rate. Importantly, the gene MurM (r/m=9.3, gene 198 in Supp. Fig. 8) is 

present in a hotspot in Streptococcus pyogenes which is linked to penicillin resistance and 

peptidoglycan formation as well as a regulator of the stringent response pathway in S. 

pneumoniae (151). The second hotspot in S. pyogenes houses a lactose specific PTS 

(phosphotransferase system) (r/m~19, gene 684 in Supp. Fig. 8) which has been found to play a 

role in Group A Streptococcus (GAS) virulence in mice (152). In S. mutans, the single hotspot 

was associated with pyrimidine biosynthesis (pyrK, pyrD, pyrF, pyrE: r/m~20), the upregulation 

of which is associated with acid-tolerance in S. mutans cultures (153) and may contribute to their 

role in generating dental carries. In Yersinia enterolitica the main hotspot was associated with 

the gene YadG (r/m =2.7) which is a hypothesized ATP-binding protein of an ABC transporter 

system and was found to be associated with granuloma (i.e., aggregate of host immune cells) 

formation in Y. pseudotuberculosis (154) (Supp. Fig. 9). Pseudomonas aeruginosa had a spike in 

recombination rate at a region identified as likely being the PA1272 operon (Cob(I)alamin 

adenosyltransferase) which is involved with Vitamin B12 synthesis and plays a role in bacterial 

persistence within the host as well as disease outcome (Supp. Fig. 10) (155, 156). Here, CobO 

had an r/m=18.5 and the other associated Cob proteins were found to be accessory genes and so 
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did not have estimable r/m rates (157). Notably, many genes within this hotspot were excluded 

from the analysis as their summary statistics fell outside of the distribution of simulated 

summary statistics for P. aeruginosa indicating the true rate of recombination may be 

underestimated in this region. In Pseudomonas chlororaphis, hotspots proximal to Ter are 

associated with genes for molybdenum metabolism (MoeA, MoaB r/m~2.5) which is also 

potentially associated with activation of anaerobic growth (158, 159) (Supp. Fig. 10). The 

hotspot of recombination in Corynebacterium diptheriae was associated with ion transport such 

as the czcD gene (r/m=14) which is hypothesized to aid in avoidance of macrophage induced 

zinc toxicity in human infection (160) (Supp. Fig. 13). Though not all hotspots of recombination 

were analyzed for all species in this analysis (n=146), all gene annotations and corresponding 

recombination rate data are available on Kaggle (www.kaggle.com/datasets/ellistorr/bacteria-

gene-rm). 

III.4 Discussion 

Though homologous recombination rate is expected to vary at the genomic scale, its 

variation across bacterial genomes has, to our knowledge, been examined in only 10 species and 

often across relatively few genomes and genomic sites (80, 81, 83, 112, 161). In this study, we 

estimated the recombination rate (r/m) for individual core genes (n=208,686 total) across 145 

bacterial species and one archaeon using an ABC framework (see Chapter 2). We found that 

estimations of recombination rate averaged across individual core genes were nearly identical to 

those inferred for the entire core genome in our previous analysis (Supp. Fig. 1) indicating that 

core gene estimates of r/m by this method seem robust. As observed in prior studies, we noted a 

statistically significant decrease in r/m for genes associated with conserved housekeeping 

functions such as those coding for transcriptional and cellular replication machinery (Supp. Fig. 
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2A) (2, 107). The inverse was found for genes related to metabolism, signaling, and virulence 

among others. Though different metrics were used to assign both gene functionality and 

homologous recombination rate in prior analyses, this was found to be true for virulence 

associated genes in only three species in (107) (Escherichia coli, Neisseria meningitidis, and 

Staphylococcus aureus) (Supp. Fig. 2A). High recombination rate in (107) was most frequently 

found to be associated with genes involved in modulation of the cell surface and we observed 

similar trends, but also high levels of recombination in genes involved in cellular metabolism 

and transport. Within our study, these trends were less statistically salient at the species level—

presumably due to decrease in statistical power (Supp. Fig. 2B).  

For species with a circular chromosomal and where Ori and Ter could be confidently 

inferred (n=102), we found that r/m was higher at the Ori than the Ter for 67% of species and a 

statistically significant decrease in r/m with increasing distance from the Ori was noted in at least 

one replichore for 36 species (35%). The inverse (lower r/m near the Ori) was observed as 

significant in 10 species. This trend is most visually observable in Supp. Fig. 6A where we found 

16 species had an “upward parabolic” shape to their genomic landscape of recombination and 

Supp. Fig. 6B where the inverse—a downward parabola-like trend—was observed for five 

species. Notably, we found that for most bacteria, recombination is higher near Ori, which may 

be due to increased exposure of this region to the recombination machinery during chromosomal 

replication. Indeed, during replication, Ori-proximal DNA is present in two or more copies 

relative to Ter-proximal regions, and this likely offers more opportunities for recombination near 

Ori. We compared the statistical relationship between r/m and distance from the Ori separately 

for each replichore and found that, for most species, the recombination landscape across the two 

replichores was quite symmetrical (Supp. Fig. 5). Studies have found the mutational load in 
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bacteria is also symmetrical in both replichores and varies with replication timing (141, 162). 

Thus, it is likely that replication timing similarly impacts the variation in homologous 

recombination rates across the bacterial chromosome. 

Interestingly, within some genera (e.g., Staphylococcus (Fig. 2) and Lactobacillus (Supp. 

Fig. 11)) several species displayed similar landscapes of recombination. A previous study found 

evidence that recombination rate may be conserved across orthologs of closely related species 

(n=3 species pairs (107)) which may contribute to some of the similarity we observed in r/m 

across genomic landscapes. Across 109 species pairs (within the same genus) we found that 36 

had statistically significant correlation in r/m across shared orthologs (Supp. Table 7). 

Comparing the pairwise divergence between significant and non-significant groups (Supp. Fig. 

4), we found that the significant group were composed of pairs of species that were more related 

to one another providing further evidence that recombination rate across shared orthologs is 

conserved across closely related species. It is unclear, however, whether this trend is driven by 

the conserved synteny of these species and an overall conservation of the recombination 

landscape or whether homologous recombination rate is similar in genes with similar functions 

and similar selective pressures. 

Increased substitution rate has been observed in the genes of the lagging strand of DNA 

relative to those in the leading strand and some authors have suggested that this may be the result 

of asymmetrical mutation rate (163), whereas others have shown evidence that this is due to the 

higher prevalence of genes evolving under stronger purifying selective pressures on the leading 

strand (164). Head-on collisions between the replication machinery and the transcription 

apparatus are thought be more common on the lagging rather than leading strand, and this is 

thought to have a detrimental impact on gene expression and possibly replication (164). In 
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contrast to these asymmetrical patterns of substitution rates, we observed statistical difference in 

the r/m values across genes present in the leading strand relative to those found on the lagging 

strand for only seven species (Supp. Table 6). 

Though the base composition of the genome varies across prokaryotes, the relative GC-

content across the genome is conserved at the genus and phylum level (165). Variations in GC-

content have been proposed to be shaped by selective forces (e.g., for translation efficiency) or 

neutral processes such as mutational biases or biased gene conversion, or a combination of both 

(165). Specifically, GC-biased gene conversion (gBGC) is a force shaping the base composition 

of Eukaryotic genomes whereby mismatches introduced during recombination events are 

preferentially repaired into G’s and C’s rather than A’s and T’s. Therefore, in Eukaryotes, 

regions of high GC-content are expected to be regions of high recombination and vice versa 

(166). GC-biased gene conversion is expected to be a neutral process that perhaps counteracts 

the mutational bias that is universally biased towards A and T (167). However, whether gBGC 

plays a neutral role in the base composition of Prokaryotic genomes is a subject of debate 

because higher recombination rates are also expected to enhance the effectiveness of selection 

through Hill-Robertson effects (147, 165). In accordance with a previous analysis (107) we did 

observe a positive correlation between r/m and GC-content across most species (Supp. Fig 3) 

which is expected under the gBGC model and a selective model. However, we additionally 

found a negative correlation between r/m and signatures of selection (dN/dS) (Supp. Table 4) in 

most species, and dN/dS and GC-content were also correlated (Supp. Table 5). This result is 

consequential because it shows that GC-content is higher when recombination rate is higher, but 

only when a stronger signature of selection is also observed. In contrast, genes with higher 

recombination rates did not show an increased GC-content when increased selection was not 
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observed. Thus, it shows that gBGC does not play a significant role in the evolution of bacterial 

genomes and that, conversely, homologous recombination shapes GC-content by increasing the 

effectiveness of selection.  

The presence of recombination hotspots (i.e., regions with high relative recombination 

rate) across the genomes of bacteria is thought to be associated with adaptive genes, including 

those associated with virulence and pathogenicity because these genes frequently arise from 

horizontal transmission. Since the transmission and integration of these elements is expected to 

be partially mediated by homologous recombination we expect to observe higher recombination 

rates, or hotspots, across the genome in relation to some of these regions (83, 161). We observed 

that the number and frequency of hotspots varied extensively across bacterial chromosomes of 

different species as has been observed for ten species in (107). Although few of these genes 

within these regions have been reported in previous analyses, we did observe that ksgA in S. 

pyogenes was similarly elevated in both (107) and our analysis. Further, for the genus 

Staphylococcus, we observed a strong trend of a decreasing r/m with increasing distance from 

the Ori and hotspots of r/m proximal to the Ori, and this had been observed in two prior studies 

on S. aureus (81, 107). Here the authors note the presence of OrfX (a SPOUT-methyltransferase 

homolog) in recombination hotspots which acts as an integration site for clinically relevant 

MGEs such as SCCmec (a Staphylococcal Cassette Chromosome carrying genes implicated in 

methicillin resistance). Interestingly, we found that this integration site is always associated with 

the recombination hotspot proximal to Ori, which is conserved in all 12 Staphylococcus species 

in our analysis (Fig. 2; OrfX highlighted in red). Furthermore, a MGE was found to be integrated 

at this site in all but one species, and an SCCmec-like element (i.e., an MGE encoding a MecA 

(PBP2a) gene specifically associated with high-level methicillin resistance (168)) was found 



100 

 

present at this site in five species (Fig. 2; red triangle denotes presence of SCCmec). Due to the 

relative conservation of OrfX in this highly recombining region proximal to Ori across 

Staphylococcus species, it is likely that an MGE such as SCCmec could be efficiently transferred 

between species in this genus. Thus, it is likely within the capacity of all Staphylococcus species 

to develop methicillin resistance through inter-species transfers of elements such as SCCmec. 

Furthermore, this indicates that a hotspot of recombination, which is associated with adaptation, 

has been conserved for a long period of time.  

Finally, it is expected the homologous recombination plays a role in horizontal gene 

transfer (13). In fact, prior studies have estimated homologous recombination rates to be elevated 

in regions flanking mobile genetic elements (13, 84). These mobile regions are associated with 

tracts of accessory genes and so, in this analysis, we compared recombination rates of core genes 

flanking regions containing at least five consecutive accessory genes to all other core genes. 

Though we found that flanking core genes had a slight elevation in recombination rate across all 

species, we observed this elevation to be statistically significant in only nine. However, the 

differences between studies may be due to differences in defining accessory regions or 

recombination rate. Perhaps as well, the findings may be more nuanced in that different types of 

mobile elements do not rely on homologous recombination for integration. For instance, many 

mobile elements like most temperate bacteriophages encode their own site-specific integrase, and 

these enzymes are not expected to leave a signal of recombination.  

Overall, our results show that homologous recombination plays a major role in shaping 

the architecture and the evolution of bacterial genomes. Recombination rate is highly variable 

across the bacterial genome and varies in tandem with both as gene functional roles and 

chromosomal structure. It further contributes to genome plasticity. A limitation of our 
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methodology is that we were not able to estimate recombination rates for all genes because some 

displayed parameters that fell outside of the distributions of simulated range (Supp. Table 1). 

Thus, the number hotspots of recombination may be underestimated for some species. 

Nevertheless, our results provide a rather complete picture showing how recombination rate is 

associated with many aspects of the architecture and evolution of bacterial genomes: gene 

function, replication timing, the origin and terminus of replication, GC-content, selection, and 

gene transfers.  

III.5 Supplementary Materials 

III.5.1 Supplementary Methods 

III.5.1.1 Data Assembly 

The bacterial species used in this analysis were defined in a previous study as having ≥15 

sequenced non-identical genomes available on Refseq (see Torrance et al. (2024): unpublished 

manuscript in Chapter 2). In this study, the assembly quality of the genomes within each species 

was ensured by checking that each genome contained the expected number of universal genes as 

in (129). Further, the genomes within each species were also redefined in accordance with 

methods proposed by Diop et al. (2022) by ensuring the genomes adhered to their given species 

definition by both i) ANI (≥ 94% pairwise identity across the core genome) and ii) gene flow 

analysis (i.e. strains were only included in the analysis if they were determined to be engaging in 

gene flow with other members of the species) (4). For the 162 bacterial species and one archaeon 

that contained ≥15 species, orthologs were inferred using CoreCruncher with default parameters 

and orthologous genes were defined as core genes when present in at least 90% of the genomes 

of a species (131). The core genes were aligned using Mafft (130). One reference genome was 

chosen for each species by having, first, the most complete genome assembly (i.e., the least 
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number of contigs) and second, the highest number of predicted coding sequences. Accessory 

genes were defined as all the other genes that were not defined as core present in the reference 

genome of each species. A core genome phylogeny was generated from the core genome 

concatenate for each species using RAxML (134).  

III.5.1.2 Estimation of recombination rates 

A set of 500,000 forward-in-time simulations with varied rates of homologous 

recombination (r/m) was generated using each species tree and each core genome concatenate 

using CoreSimul through the recABC pipeline as in Torrance et al., (2024) (see unpublished 

manuscript in Chapter 2). For each species, the recombination rate of each core gene was 

estimated by comparing the signature of recombination between each core gene alignment and 

the simulated sequences using ABC. The recombination rate of each core gene was estimated by 

the recombination rate used to evolve the simulated sequences that most closely and robustly 

matched the signatures of recombination to the gene. Here, the summary statistics 𝜋 (i.e., levels 

of polymorphisms) and h/m (i.e. the ratio of homoplasic to nonhomoplasic alleles) were 

calculated for each core gene within each species. Then, using ABC, the summary statistics for 

each core gene were compared to the summary statistics generated from each simulated species 

population with a tolerance of 0.01% to determine the most probable rate of recombination for 

each gene.  

As expected, not all summary statistics for genes fell within the distribution of simulated 

summary statistics of the simulated sequences. These genes were removed from further analysis 

when the summary statistic for a given gene varied from the average of its nearest simulated 

sequence set by more than ±0.1 for h/m or ±0.01 for 𝜋. This threshold was determined by 

comparing the graphs and correlations (Spearman’s rho) of each simulated summary statistic vs. 
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real summary statistic (h/m and 𝜋) for each species. Here, we found that removal of genes 

outside these tolerance levels yielded the highest number of estimable genes where the simulated 

and real value summary statistic was closest to equivalent (x=y, or Spearman’s rho ≥0.97). The 

number of genes that were excluded from further analysis by this metric are listed in 

Supplementary Table 1. Furthermore, some core genes had no polymorphisms and thus r/m 

could not be estimated (i.e., m=0) and those were also excluded from the analysis. These genes 

are denoted as a r/m of "NA" in column 2 of the datasets available on Kaggle 

(www.kaggle.com/datasets/ellistorr/bacteria-gene-rm). Species with fewer than 200 inferred core 

genes for which r/m could be predicted were excluded from further analysis (n=10). Thus, our 

final dataset was composed of 146 species. The species included in this analysis and the total 

number of core genes and accessory genes, as well as the number of core genes which had no 

polymorphisms or had summary statistics which fell outside of the range of simulated summary 

statistics, are detailed in Supplementary Table 1. The average rate of recombination estimated 

across all genes was compared to the r/m values estimated on the core genome concatenate in 

Torrance et al. (2024) (see unpublished manuscript in Chapter 2) in Supp. Fig. 1. In depth data 

for each species detailing the summary statistics, r/m estimation of each core gene, and other 

gene characteristics amassed in this study is available at Kaggle 

(www.kaggle.com/datasets/ellistorr/bacteria-gene-rm). 

III.5.1.3 Identification of Ori and Ter 

The origin (Ori) and terminus (Ter) of replication were identified using the cumulative 

GC (CGC) skew in the reference genome for each species as in (74). We build a graph for each 

species by plotting the CGC skew using a 10kb sliding window. Species were only included in 

this analysis if they had a single clear maximum (corresponding to approximate Ter location) and 
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a single clear minimum (corresponding to approximate Ori location) (n=110 species) (74). In 

other words, Ori and Ter were not inferred for the species presenting additional local maxima or 

minima. Species with known linear chromosomes or multiple chromosomes were identified from 

(64) and excluded from the analyses of recombination symmetry. Using the 102 species with 

clearly defined Ori and Ter locations, the recombination rate of each core gene was plotted 

relative to the absolute distance from Ori and Ter to determine whether recombination rate varied 

on both replichores of each species. These species were also used to compare r/m variations 

between leading and lagging strand genes. Leading and lagging strands were determined using 

the map of GC skew where core genes present on the strand with increasing GC skew with 

increasing distance from the Ori and a positive orientation were determined to be leading strand 

genes while those with a negative orientation in this region were determining to be lagging 

strand genes. For the segment of chromosome with a decreasing GC-skew with increasing 

distance from the Ori, the positively oriented genes were lagging strand and the negatively 

oriented genes were leading strand. Variations of recombination rate along the core genome of 

each species were computed using a sliding window of 50 core genes and a step of two genes. 

The plots are ordered by Ori start location (Supplementary Folder 1). Hotspots and coldspots of 

recombination were defined as genome locations where r/m differed by more than two standard 

deviations from the average r/m of the species. 

III.5.1.4 Other Gene Analyses 

To determine whether recombination rate varied significantly across gene functions, the 

reference genome of all species (n=146) was annotated using EggNOG (98) and recombination 

rate was compared across 18 COG (clusters of orthologous genes) categories (208,686 core 

genes) (99). For this analysis, the COG categories A (RNA processing and modification) and B 
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(chromatin structure and dynamics) were excluded because these categories typically only 

correspond to Eukaryotic systems. Category S was excluded because it corresponds to groups of 

orthologs without known functions. Further, genes were only compared if they were annotated as 

belonging to a single COG category and genes that were not assigned to a category were 

excluded. For each species, a Wilcoxon test with Benjamini-Hochberg P-value adjustment was 

conducted where r/m for the genes in each COG category was compared to r/m of the genes 

classified in all the other COG categories. Additionally, a Wilcoxon test where all species gene 

data was pooled to compare r/m of across the genes in each COG category to the genes in all 

other COG categories was performed. We also used the same dataset of 146 species to determine 

whether r/m varied with any appreciable pattern in genes flanking accessory gene clusters to 

those not flanking accessory regions. To do this, we defined accessory regions and regions of the 

genome containing at least five consecutive accessory genes. We then compared the 

recombination rate of the core genes flanking these regions to the recombination rate of non-

flanking core genes using a Wilcoxon test with Benjamini-Hochberg adjustment for each 

species. 
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III.5.2 Supplementary Figures 

Figure S III—1. Species’ core genome r/m values from Torrance et al. (2024) (Chapter 2) 

are highly similar to the average r/m values across genes for the same species (Spearman’s 

Rho=0.91, P<10-15).  
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Figure S III—2. The variation in r/m across gene functional categories. A) Boxplots show 

the variation in r/m between each COG (Conserved Ortholog Group (cite)) category and all 

other genes (“Other”). On each plot, the significance level and Benjamini-Hochberg 

adjusted P-value for each Wilcoxon test is shown. Red (higher r/m) and blue (lower r/m) 

arrows are shown for each COG category that had a significant difference between it and 

all other genes. A key listing the description for each COG category is shown in the bottom 

left. B) A bar graph shows the number of species which had a significant difference in r/m 

between the COG category and all other genes (Wilcoxon Test, Benjamini-Hochberg 

adjusted P-value<0.05). 
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Figure S III—3. Histogram of Spearman’s Rho values for species which had a significant 

correlation between r/m value and GC% across their genes. The blue dashed line shows the 

average Rho value (Average Rho=0.08±0.1). 

 

Figure S III—4. Boxplot comparison of the pairwise divergence (A.A.) values for species 

pairs (n=109 species pairs) which had significant correlation in r/m values across shared 

orthologs (“Significant”, n=36 species pairs) and those that did not (“Non-Significant”, 

n=73). 
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Figure S III—5. Correlation between Spearman’s Rho values from the correlation of r/m 

vs. distance from Ori in replichore 1 and replichore 2 of n=102 species with circular 

chromosomes.  

 

Figure S III—6. The shape of recombination rate across bacterial genomes. A) Some 

bacterial species (n=16) displayed an upward “parabola-like” shape in recombination rate 

variation across their genomes. B) Some bacterial species (n=5) displayed a downward 

“parabola-like” shape in recombination rate variation across their genomes. These graphs 

display the smoothed average of a sliding window of 50 estimable core genes with a step of 

2 where x is the core gene number in order of its appearance with increasing distance from 

the Ori. For each graph, x=0 demarcates the Ori and the green line demarcates the Ter. 

The black horizontal line denotes the average r/m value of all estimable core genes, and the 

dashed lines denote two standard-deviations from the mean r/m in both directions.  
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Figure S III—7. The shape of recombination rate across Bacillus genomes (n=10). These 

graphs display the smoothed average across 50 estimable core genes with a step of 2 where 

x is the core gene number in order of its appearance with increasing distance from the Ori. 

For each graph, x=0 demarcates the Ori and the green line demarcates the Ter. The black 

horizontal line denotes the average r/m value of all estimable core genes, and the dashed 

lines denote two standard-deviations from the mean r/m. 
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Figure S III—8. The shape of recombination rate across Streptococcus genomes (n=11). 

These graphs display the smoothed average across 50 estimable core genes with a step of 2 

where x is the core gene number in order of its appearance with increasing distance from 

the Ori. For each graph, x=0 demarcates the Ori and the green line demarcates the Ter. 

The black horizontal line denotes the average r/m value of all estimable core genes, and the 

dashed lines denote two standard-deviations from the mean r/m. 
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Figure S III—9. The shape of recombination rate across Yersinia genomes (n=4). These 

graphs display the smoothed average across 50 estimable core genes with a step of 2 where 

x is the core gene number in order of its appearance with increasing distance from the Ori. 

For each graph, x=0 demarcates the Ori and the green line demarcates the Ter. The black 

horizontal line denotes the average r/m value of all estimable core genes, and the dashed 

lines denote two standard-deviations from the mean r/m. 

  
Ordered Core Gene num.

Sm
oo

th
ed

 C
or

e G
en

e 
r/
m



115 

 

Figure S III—10. The shape of recombination rate across Pseudomonas genomes (n=5). 

These graphs display the smoothed average across 50 estimable core genes with a step of 2 

where x is the core gene number in order of its appearance with increasing distance from 

the Ori. For each graph, x=0 demarcates the Ori and the green line demarcates the Ter. 

The black horizontal line denotes the average r/m value of all estimable core genes, and the 

dashed lines denote two standard-deviations from the mean r/m. 
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Figure S III—11. The shape of recombination rate across Lactobacillus genomes (n=14). 

These graphs display the smoothed average across 50 estimable core genes with a step of 2 

where x is the core gene number in order of its appearance with increasing distance from 

the Ori. For each graph, x=0 demarcates the Ori and the green line demarcates the Ter. 

The black horizontal line denotes the average r/m value of all estimable core genes, and the 

dashed lines denote two standard-deviations from the mean r/m. 
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Figure S III—12. The shape of recombination rate across Klebsiella genomes (n=4). These 

graphs display the smoothed average across 50 estimable core genes with a step of 2 where 

x is the core gene number in order of its appearance with increasing distance from the Ori. 

For each graph, x=0 demarcates the Ori and the green line demarcates the Ter. The black 

horizontal line denotes the average r/m value of all estimable core genes, and the dashed 

lines denote two standard-deviations from the mean r/m. 
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Figure S III—13. The shape of recombination rate across Corynebacterium genomes (n=4). 

These graphs display the smoothed average across 50 estimable core genes with a step of 2 

where x is the core gene number in order of its appearance with increasing distance from 

the Ori. For each graph, x=0 demarcates the Ori and the green line demarcates the Ter. 

The black horizontal line denotes the average r/m value of all estimable core genes, and the 

dashed lines denote two standard-deviations from the mean r/m. 
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III.5.3 Supplementary Table Legends 

DISCLAIMER: The supplementary tables are too large to be included in this document 

and so only their legends are included below. The tables will be included in the peer-reviewed 

manuscript once publication occurs. 

Table S III—2. Summary of gene data for each species analyzed in this study (n=146). The 

table columns are as follows: Col 1) Species name, Col 2) Number of core genes (total), Col 

3) Number of accessory genes, Col 4) Number of core genes without polymorphisms (r/m 

not estimable), Col 5) Number of core genes outside of simulation distribution (r/m not 

estimable), Col 6) Number of core genes used in this analysis (r/m is estimable), Col 7) 

Species’ core genome r/m (as per Torrance et al. (2024)), Col 8) Average r/m across 

estimable core genes, Col 9) Median r/m across estimable core genes, Col 10) Standard 

deviation of r/m across estimable core genes, Col 11) Average simulated h/m across 

estimable core genes, Col 12) Median simulated h/m across estimable core genes, Col 13) 

Standard deviation of simulated h/m across estimable core genes, Col 14) Average 

simulated 𝝅 across estimable core genes, Col 15) Median simulated 𝝅 across estimable core 

genes, Col 16) Standard deviation of simulated 𝝅 across estimable core genes, Col 17) 

Average real h/m across estimable core genes, Col 18) Median real h/m across estimable 

core genes, Col 19) Standard deviation of real h/m across estimable core genes, Col 20) 

Average real 𝝅 across estimable core genes, Col 21) Median real 𝝅 across estimable core 

genes, and Col 22) Standard deviation of real 𝝅 across estimable core genes. 

 

Table S III—2. Wilcoxon’s test comparison of r/m for core genes flanking accessory regions 

(“Flanking”) vs. r/m of core genes not flanking accessory regions (“Non-Flanking”) across 
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all species n=146. Significant Benjamini-Hochberg adjusted P-values are highlighted in 

red. The median r/m of each group and difference in r/m between each group is also 

provided. 

 

Table S III—3. Spearman’s correlation test results for comparison between r/m and GC% 

values across core genes for each species (n=146). Significant Benjamini-Hochberg adjusted 

P-values are highlighted in red. 

 

Table S III—4. Spearman’s correlation test results for comparison between r/m and dN/dS 

(Tab 1), dN (Tab 2), and dS (Tab 3) values across core genes for each species (n=142). 

 

Table S III—5. Spearman’s correlation test results for comparison between GC% and 

dN/dS values across core genes for each species (n=142). Significant Benjamini-Hochberg 

adjusted P-values are highlighted in red. 

 

Table S III—6. Wilcoxon Test results for comparison of r/m between leading and lagging 

strand genes for each species (n=102). Significant Benjamini-Hochberg adjusted P-values 

are highlighted in red.  

 

Table S III—7. Spearman’s correlation test results for comparison of r/m values across the 

shared orthologs of related species (n=109 species pairs). Significant Benjamini-Hochberg 

adjusted P-values are highlighted in red. The table also contains the pairwise divergence 

(A.A.) between each species pair.  
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Table S III—8. Spearman’s correlation test results for comparison between r/m and 

distance from the Ori (Ori-Ter) and Ter (Ter-Ori) (i.e. both replichores) for n=102 species 

with circular chromosomes. Significant Benjamini-Hochberg adjusted P-values are 

highlighted in red. 
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CHAPTER IV: CONCLUSION AND FUTURE RESEARCH DIRECTIONS 

Prokaryotes are the most abundant lifeforms on this planet and yet much remains 

unknown regarding the processes that govern their species and genomic evolution. The 

overarching goal of this dissertation was to discern and then explore the variation in homologous 

recombination (HR) rates across bacterial species and across genomic positions. Specifically, I 

was interested in i) determining whether polymorphisms imparted by HR were more impactful to 

genome diversification than mutation alone and whether this was true for most species, ii) 

whether recombination was a fast or slow evolving trait and whether there was conservation of 

the trait within bacterial lineages and, iii) if recombination rate varied with any patterns across 

bacterial genes and genomes. 

The first step in accomplishing these aims was leveraging a methodological framework 

based on Approximate Bayesian Computation (ABC), as in Chapter 2. This computational 

pipeline – now aptly named recABC – allowed me to infer bacterial recombination rate (r/m) 

which is a ratio of the polymorphisms imparted by recombination relative to mutation alone. I 

did this for 162 bacterial species and one archaeon and found that HR rate varied extensively 

across species. Furthermore, I found that, for most species, recombination was more impactful to 

bacterial evolution than mutation alone. Mapping the variation in the trait of recombination rate 

across species revealed a hereto unforeseen pattern of conservation in recombination rate 

amongst several genera. This finding indicates that homologous recombination rate is a 

somewhat conserved trait amongst some lineages while it sharply changes in others. I also found, 

as seen in previous studies, that recombination rate was significantly lower amongst obligate 

intracellular bacteria. Interestingly, no correlations were observed between recombination rate 
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and metabolic capabilities, virulence phenotypes, prophage content, and genomic variations. I 

also used the tool ClonalFrameML (CFML) (45) to compare similarities between results 

achieved with recABC and found that CFML rarely inferred recombination rates of greater than 

five. In fact, r/m=5 was where I observed that the homoplasy to mutation ratio was no longer 

directly related to r/m and that signal saturation of recombination began to occur.  

In Chapter 2, I analyzed several species traits and found no correlation to recombination 

rate variation across species. However, there are still many traits left to be examined which are 

theorized to vary with recombination rate. For instance, HR across species should also be 

compared to the presence and/or absence of different subtypes of recombination machinery, 

genes conveying species competence (i.e., the ability to express proteins necessary for 

transformation (see Ch 1: Introduction)), or restriction modification systems (2, 169). Analysis 

such as these have been made simpler by my estimation of recombination rate for many species 

and finding traits that correlate with these rates could reveal much about the factors driving 

recombination rate variations across species and the evolution of HR in bacteria. 

Unfortunately, due to the stringency with which we defined our genomic datasets, I was 

only able to estimate recombination rate for a single archaeon. Ideally, a greater effort to 

sequence and assemble archaeal genomes from the environment would enable the determination 

of whether homologous recombination was as great of an evolutionary driver for archaeal 

evolution as it is for bacteria. Further, though I attempted to observe differences in r/m between 

bacterial species and ecological subtypes; genomes relevant to human and agricultural disease 

were overrepresented in our genetic sampling relative to environmental strains. This made it hard 

to determine whether any differences in patterns of recombination exist between species 

associated with different environments, metabolic capabilities, and lifestyles. Thus, these 
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analyses should be ongoing as sequencing data for prokaryotes becomes more widely available. 

Continuing work on this topic should unveil whether the impact or frequency of recombination 

varies between archaea and bacteria and whether any phenotypic, ecological, or environmental 

factors reveal why patterns in recombination rate variation exist across species and genera.  

Comparison of HR rates obtained with recABC to predecessor software revealed that 

recABC is much more adept at inferring recombination rate. Especially in instances of high 

recombination which leads to signal saturation at recombination rates of >5. However, there are 

also several assumptions of the software which could be improved upon with time and 

advancements in computational capabilities. For example, recombination simulations assume a 

constant rate or recombination along the branches of the phylogeny and that all genomes have 

the same probability of recombining with one another. Reality is obviously much more complex 

and there are likely population and genomic barriers to recombination which we are presently 

unable to simulate in this analysis. I look forward to seeing improvements in this methodology 

and inference of bacterial genetic exchange as scientific and computational advancements in the 

study of Prokaryotic population genetics occur. 

Though recABC appears to be much more accurate at inferring homologous 

recombination rates, it also requires more time for analysis and is more computationally 

expensive than most predecessor software. For example, though one can use a standard laptop to 

run the simulations sequentially, the lower estimation for time to complete 500,000 simulations 

on a relatively small set of genomes (15 strains) would be ~15 days. When launching the 

simulations on a computing cluster, I batch-launched the simulations in sets of 1,000 to speed up 

the process. However, doing this is not very user-friendly, most biologists are not trained to use 

computing clusters or do not have access to one, and many computing clusters have strict run-
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time limitations. Therefore, future work will entail parallelizing the simulation portion of 

recABC and adding code to let users easily control the number of simulations launched. It is my 

hope that perhaps much of the data generated from our extensive analysis of bacterial species 

and genomes could be used to train a machine learning algorithm to speed up inference of 

recombination rates. 

The final aim of this dissertation was addressed in Chapter 3 and involved determining 

how recombination rate varied across bacterial chromosomes. I found that recombination rate 

varied by gene functionality in a somewhat predictable pattern: core genes associated with 

conserved ‘housekeeping’ functions tended to have lower recombination rates and genes 

associated with virulence and metabolism tended to have higher recombination rates. Further, 

gene recombination rate varied extensively across the chromosome and showed patterns in some 

species that correlated to replication, pathogenicity islands, and accessory gene location. 

Specifically, I found a very conserved genomic landscape of recombination across the species of 

the genus Staphylococcus. This finding indicates that genome-wide patterns of recombination 

rates may be a conserved trait in some lineages as was observed for genera in our analysis of the 

evolution of recombination rate across bacteria (see Chapter 2 Results). 

One interesting direction for future work in this domain is the exploration of whether the 

landscape of recombination is shaped by genomic evolution and structure or rather genomic 

structure itself is shaped by recombination. This question could be resolved by comparing the 

landscape of recombination across closely related species. Indeed, we found that recombination 

rate was somewhat conserved across orthologs in related species. However, it is not known 

whether the conservation in recombination rate is syntenic or whether the conservation relates to 

the gene’s functional role. To determine this, I would need to determine whether conserved tracts 
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of recombination (such as the region of high recombination rate near the Ori in Staphylococcus) 

contained similar gene sets in conserved order. Once this is accomplished, I could also work to 

determine whether recombination rate varies in tandem with evidence of positive selection for 

individual genes or across the genomic landscape. As recombination is expected to increase the 

power of selection, I would expect the interplay of recombination and selection to be tightly 

coupled. 

In conclusion, my dissertation work has allowed the estimation of homologous 

recombination rate for many bacterial species and genomes. Overall, this work has provided 

insight on the diversity in recombination and the commonality of DNA exchange across species 

— establishing a “first-step” in understanding how recombination shapes bacterial evolution, 

genomes, adaptation, and population diversity. Future work in this field will enable the 

discernment of the interplay of selective processes and recombination on the evolution of 

Prokaryotic species and genomes, thereby allowing us to better predict disease emergence and 

pathogenicity, as well as employ Prokaryotes more effectively in agricultural, biotechnological, 

and medical settings. 
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