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Bianchi modular forms are a generalization of classical modular forms to imaginary

quadratic fields. The study of computational aspects of Bianchi modular forms started in

the 1980s by Elstrodt, Grunewald, and Mennicke. John Cremona and several of his students

made notable contributions to developing theory for computing Bianchi modular forms. This

thesis extends their work by providing algorithms for computing Bianchi modular forms

over imaginary quadratic fields with general class groups. We also provide results, including

dimension tables, of the implementation for the imaginary quadratic field Q(
√
−17).
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Chapter 1: Introduction

Modular forms play a central role in number theory and many other branches of mathematics.

Modular forms were first introduced by Jacobi and Eisenstein in the nineteenth century

through the theory of elliptic functions. The discriminant function and j-function were

modular forms studied in their work. The study of modular forms was given a new life

when Wiles [37] proved the Taniyama-Shimura conjecture for a large class of elliptic curves.

As a corollary, we have an elegant proof of Fermat’s last theorem. Since this development,

researchers have been interested in studying if such conjectures hold for other generalizations

of classical modular forms. One such generalization gives rise to Bianchi modular forms,

which are modular forms over imaginary quadratic fields.

The main goal of this thesis is to analyze Bianchi modular forms from a computational

perspective. To this end, this thesis describes an algorithm and its implementation to compute

Bianchi modular forms as Hecke eigensystems. In particular, we compute Bianchi modular

forms over an imaginary quadratic field with order 4 class group extending the computations

done by Cremona and several of Cremona’s students [6, 12,14,28,36].

The study of computations of Bianchi modular forms started in 1980 by Grunewald,

Mennicke, and others [18, 20]. They compute Bianchi modular forms for F = Q(
√
−d) where

d = 1, 2, 3 using modular symbols techniques. In [7], Cremona extended these computations

to all five Euclidean fields. In the years that followed, some of Cremona’s students worked

on extending these computations. Whitley [36] in her thesis worked on extending modular

symbol techniques to class number 1 fields. Bygott [6] in his thesis developed techniques for
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computing Bianchi modular forms over an imaginary quadratic field with class number 2.

He computed explicit examples over the field Q(
√
−5). Lingham [28] in his thesis worked

on the odd class number case and computed explicit examples for the fields Q(
√
−23) and

Q(
√
−31). Aranes [1] extended the M-symbol techniques over Q to number fields.

Similar to the work of Cremona et. al., we exploit the connection between Bianchi modular

forms and the homology of certain quotients of the hyperbolic 3-space H3 for our computations.

To compute homology we require tessellations of the hyperbolic 3-space H3 with an action of

the congruence subgroups. Cremona and his students utilize an algorithm coming from the

work of Swan [33] to compute such a tessellation. In this thesis, we use the work of Ash [3] and

Koecher [25] coming from the theory of perfect Hermitian forms. Further, for Hecke operator

computations, we use the reduction theory introduced by Gunnells [21]. Conveniently, we

can use the implementations of these techniques by Yasaki [39].

In Chapter 2, we discuss the classical modular forms and some computational techniques.

In Chapter 3, we introduce homological modular forms and discuss techniques for computing

them. This section includes a brief exposition of the Voronoi theory, modular symbol, and

M-symbol techniques for imaginary quadratic fields.

In Chapter 4, we introduce the notion of Bianchi modular forms and how to view them as

Hecke eigensystems. This approach allows us to understand how to use homological modular

forms from Chapter 3 to compute the Hecke eigensystem attached to a Bianchi modular form.

In Chapter 5, we introduce the notion of a homological eigenform and explain how to use

them to compute Hecke eigensystems. In this chapter, we provide algorithms for computing

Bianchi modular forms over imaginary quadratic fields.

Finally in Chapter 6, we discuss the results from the implementation to the imaginary

quadratic field Q(
√
−17). We provide various types of examples observed within the scope

of the computation. We also provide dimension tables and tables of Hecke eigensystems for

certain levels.
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Chapter 2: Classical Theory

In this chapter, we provide a discussion of the classical theory of modular forms. The goal of

this chapter is to help the reader see Bianchi modular forms are a natural generalization of

the classical case.

2.1 Classical Modular Forms

In this section, we state some facts regarding classical modular forms. We use generalizations

of some of these facts to Bianchi modular forms for our computations. For more details, we

refer the reader to [9, 16, 32].

Let H2 = {z ∈ C | Im(z) ≥ 0} denote the upper-half plane, and let H∗
2 = H2 ∪Q ∪ {i∞}

denote the extended upper-half plane obtained by including the cusps P1(Q) = Q ∪ {i∞}.

The group SL2(Z) acts on H2 by fractional linear transformations:

(
a b
c d

)
· z =

az + b

cz + d
. (2.1)

We can extend the action of the group SL2(Z) to cusps Q ∪ {i∞} by

(
a b
c d

)
· p
q
=
ap+ bq

cp+ dq
. (2.2)

We define modular forms as complex-valued functions on H2 satisfying symmetry with re-
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spect to this action by congruence subgroups of SL2(Z). In particular, we consider congruence

subgroups of the form

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 mod N

}
(2.3)

where N ∈ Z≥0.

Definition 2.1. A classical modular form of weight k and level N is a complex-valued

function f : H2 → C that satisfies the following conditions.

1. f is holomorphic on H2

2. For each γ ∈ Γ0(N), we have f [γ]k = f , where f [γ] = j(γ, τ)−kf(γτ) and j(γ, τ) =

cτ + d.

3. f [γ]k is holomorphic at i∞ where γ ∈ SL2(Z) such that γ(∞) = α ∈ Q ∪ {i∞}.

The third condition can also be stated as a growth condition. Explicitly, we want |f [γ]k(z)|

to be bounded as Im(z) → ∞.

These conditions imply that a modular form f has Fourier expansion

f(z) =
∞∑
n=0

an(f)q
n, q = e2πiz,

for any z ∈ H2. Further, the space of modular forms Mk(N) of weight k and level N is a

finite-dimensional C vector space, and we have an explicit formula for the dimension of space

of modular forms [16, Theorem 3.5.1].

If we consider the subspace of modular form f ∈Mk(N) that vanishes on cusps, we get

the space of cuspforms denoted Sk(N). Our main focus will be to compute the space of

cuspforms as they are related to objects like elliptic curves.

Now we look at the interaction between levels. If M | N , then for any g ∈ Sk(M) and for

any divisor d of N/M , the form f(z) = dk−1g(dz) is in Sk(N). We call the subspace Sk(N)old
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of such forms the oldforms at level N . The space Sk(N)new that cannot be constructed from

oldforms is called the the space of newforms at level N .

From a computational standpoint, computing Sk(N)new is important as these are the

forms that truly are level N . In practice, we do this by computing Sk(N) systematically and

accounting for oldforms at levels M | N . Since every form in Sk(M) shows up in Sk(N) with

multiplicity equal to the number of divisors of N/M , we can recognize oldforms by looking

at multiplicities.

2.2 Hecke Operators

In this section, we introduce a collection of operators on the space of cuspforms Sk(N) called

Hecke operators. These operators are diagonalizable and they commute. Therefore, we can

obtain a basis for Sk(N) consisting of simultaneous eigenforms of Hecke operators away from

N . By “computing”, we mean computing these Fourier coefficients of eigenforms using Hecke

operators.

For β ∈ GL+
2 (Z), we can extend the action on Sk(Γ) by:

f [β]k = det(β)k−1j(β, τ)−kf(γβ).

Here GL+
2 (Z) is the subgroup of matrices in GL2(Z) with positive determinant.

Definition 2.2. We define an operator Tp : Sk(Γ) → Sk(Γ) for any prime p by

f [α]k =
k∑

i=1

f [βi]k,

with Γ

(
1 0
0 p

)
Γ =

⋃k
i=1 Γβi where βi =

(
1 0
0 p

)
γi and {γi}ki=1 are orbit representatives of

the coset Γ\Γ
(
1 0
0 p

)
Γ.

5



Remark 2.1. We can define Hecke operators more generally by looking at the double coset

α−1Γα ∩ Γ for any α ∈ GL+
2 (Q).

We set T1 = 1, the identity operator. We can define an operator Tpr inductively by

Tpr = TpTpr−1 + pk−1Tpr−2

for r > 1 and Tn as

Tn =
∏
i

Tprii , where n =
∏
i

prii .

Now we can show that the Hecke operators have the following properties:

Theorem 2.3. For any m,n ∈ Z+,

1. TnTm = TmTn.

2. Tmn = TmTn if (m,n) = 1

Proof. These follow from the definition of Tn and [16, Proposition 5.2.4].

Theorem 2.4. Hecke operators Tn for (n,N) = 1 are simultaneously diagonalizable.

Proof. By [16, Theorem 5.3.3], any Hecke operator Tn with (n,N) = 1 on the space of cuspform

Sk(N) is normal with respect to the Peterson inner product given in [16, Definition 5.4.1].

Therefore, Tn is diagonalizable. Since Hecke operators commute, they are simultaneously

diagonalizable.

Definition 2.5 ([16, Definition 5.8.1]). A nonzero modular forms f ∈ Sk(N) that is an eigen-

form for all Hecke operators Tn is an eigenform. An eigenform f(z) =
∑∞

n=1 an(f)q
n, and q =

e2πiz is normalized if a1(f) = 1. A normalized eigenform in Sk(N)new is called a newform.

Now we have the following theorem about newforms.
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Theorem 2.6 ([16, Theorem 5.8.2]). The set of newforms of level N gives an orthogonal basis

of Sk(N)new with respect to the Petersson inner product. Further, each newform f satisfies

Tn(f) = an(f)f for each n ∈ Z+.

This means, by computing eigenvalues of the Hecke operator Tn, we can recover the

Fourier coefficient an(f) of any newform f . As Sk(N)new has a basis consisting of newforms,

we have a complete description of the space.

2.3 Lattices

Now we look at an alternative definition for modular forms. The definition of Bianchi modular

form in Section 4 is a generalization of this. For details, we refer to [16, Section 1.3 and

Section 1.5]. A lattice in C is a discrete set of the form L = Zω1 + Zω2 where {ω1, ω2} is a

basis for C over R.

Definition 2.7. An enhanced elliptic curve over Γ0(N) is a pair (E,C), where E is a complex

elliptic curve and C is a cyclic subgroup of E of order N .

Alternatively, we can view an enhanced elliptic curve (E,C) as a pair of lattice (L,L′)

with L ⊂ L′ where E(C) = C/L and L/L′ ≃ Z/NZ [24].

We say two enhanced elliptic curves (E,C) and (E ′, C ′) are equivalent if there is an

isomorphism E → E ′ that sends C to C ′. The set of equivalence classes of enhanced elliptic

curves is denoted by S0(N).

Functions on S0(N) satisfying the transformation

F (C/mL,mC) = m−kF (C/L,C) (2.4)

for any m ∈ C×, can be viewed as modular forms of level N and weight k [16].

7



In this approach, there is a natural notion of Hecke operators which can be thought of as

“averaging” operators. These operators are compatible with the Hecke operators defined in

Section 2.2.

We use a generalization of this to imaginary quadratic fields in Section 4.1 to define

Bianchi modular forms. This approach gives an intuitive understanding of the subtleties that

arise due to the class group.

2.4 Homology

Now we restrict our attention to computational techniques for weight 2 classical modular

forms.

The quotient X0(N) = Γ0(N)\H∗
2 is a compact Riemann surface [16, Chapter 2]. Now we

consider the pairing

⟨ , ⟩ : S2(N)×H1(X0(N);Z) → C,

by

⟨f, γ⟩ = 2πi

∫
γ

f(z)dz

for any path γ in X0(N).

This pairing is non-degenerate and Hecke equivariant [32, Theorem 3.4]. That is, for any

Hecke operator Tn, we have ⟨Tnf, γ⟩ = ⟨f, Tnγ⟩. Here the action of Tn on H1(X0(N);Z) is as

described in [32, Chapter 3]. This means we can use the homology H1(X0(N);Z) to compute

the space of cuspforms as a Hecke module. See [32, chapter 3] for more details.

The homology H1(X0(N);Z) can be computed by taking a tessellation of X0(N) with

vertices on cusps. One such tessellation can be obtained using the theory of perfect forms.

Let us consider the vector space V of 2 × 2 real symmetric matrices with the positive

definite inner product given by ⟨x, y⟩ = Tr(xy). By C we denote the space of positive definite
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symmetric matrices of V . This is an open convex cone that is self-adjoint. That is,

C = C∗ =
{
y ∈ V

∣∣ ⟨x, y⟩ > 0, for all x ∈ C̄\{0}
}
,

where C̄ = {y ∈ V | ⟨x, y⟩ ≥ 0, for all x ∈ V } is the closure of C. The boundary of the cone

∂C = C̄\C is the collection of positive semidefinite symmetric matrices in V .

The space C can also be viewed as a space of positive definite quadratic forms with a

given Gram matrix. This allows us to view the space of quadratic forms as an inner product

space, where evaluating a quadratic form on a vector can be viewed as an inner product.

Explicitly, suppose Q is a positive definite quadratic form with the Gram matrix A. Then by

the Cholesky decomposition [27] of positive definite matrices, we have that A = ggt for some

g ∈ GL2(R). Then the inner product between A and the semidefinite form vvt ∈ ∂C can be

viewed as evaluating the quadratic form Q at the vector v as follows:

Q[v] = Tr(vtAv) = Tr(vtggtv) = Tr(ggt · vvt) = ⟨ggt, vvt⟩ = ⟨A, vvt⟩.

Under this interpretation, ∂C corresponds to the space of positive semidefinite quadratic

forms. Further, this gives a way of identifying positive semidefinite forms using linear

conditions. Explicitly, A ∈ ∂C is the same as saying that the orthogonal complement of A

will intersect ∂C non-trivially. That is, if A ∈ ∂C, then there must exist u ∈ R2\{0} such

that ⟨A, uut⟩ = 0. This is the same as saying that uut is a non-zero vector in the orthogonal

complement of Q.

The group G = GL2(R) acts transitively on C from the left by g ·x 7→ gxgt. The stabilizer

of the identity is K = O(2). Thus, we have the identification,

C/R>0 −→ GL2(R)/R>0O(2) ≃ H2.
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Figure 2.1. Farey tessellation of the hyperbolic plane

Define the map q : Z2 → ∂C by v 7→ vvt, and put Θ = q(Z2\{0}). Now we define the

Voronoi polytope as follows:

Definition 2.8. The Voronoi polyhedron Π is defined to be the convex hull of Θ.

The Voronoi polyhedron has a nice combinatorial structure. In particular, all the facets

of Π are triangles. Also, each element in q(v) ∈ Θ can be identified with the cusps a
b
∈ P1(Q)

where v =

(
a
b

)
∈ Z2. Up to homotheties, the action of SL2(Z) is well-defined for this

identification. That is, for any ζ > 0, since v and ζv corresponds to the same element in

P1(Q), g · q(v) = g · q(ζv) in C/R>0. This means after modding out by homotheties, we can

identify the vertices of Π with elements in P1(Q). Then up to homotheties, the facets of Π

under this becomes ideal triangles in H∗
2 = H2 ∪ P1(Q). Thus, we get a triangulation of H∗

2

with vertices on cusps. Further, we have a natural action by SL2(Z) on this triangulation

which is induced by the action of SL2(Z) on C.

In practice, we can also compute this tessellation using perfect forms as introduced by

Voronoi [35].

Definition 2.9. We define the minimum of a quadratic form Q with Gram matrix A, denoted

m(A), to be the minimum value of Q[x] = ⟨A, xxt⟩ for all x ∈ Z2\{(0, 0)}. We define the set

of minimal vectors of A,

M(A) = {x ∈ Z2\{(0, 0)} | Q[x] = m(A)}.
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With this notion of a minimum, we say a quadratic form is perfect if it is uniquely

determined by m(A) and M(A).

In [35], Voronoi proved that there are only finitely many perfect forms up to the action

of SL2(Z). He also proved that each facet of Π can be identified with a perfect form where

vertices of the facet up to homotheties are given by q(v) for v ∈M(A). This shows that there

are only finitely many facets of Π up to the action of SL2(Z). Further, Voronoi also provided

an algorithm to enumerate these perfect forms.

From this algorithm, we can

1. find the cell σ in Π containing a form A ∈ C;

2. find a path along the edges of Π between A,B ∈ C.

These two tasks are extremely useful in computing Hecke operators.

2.5 Modular Symbols and M-symbols

Modular symbols and M-symbols provide a concrete way of writing generators and relations

that describes the relative homology group H1(X0(N), ∂X0(N);C), where ∂X0(N) is the set

of cusps modulo the action of Γ0(N).

Definition 2.10. For Γ ⊆ SL2(Z) the space of modular symbols of weight 2, denoted M2(Γ),

is a free Abelian group generated by pairs of cusps of the form {α, β} modulo the relations

{α, β}+ {β, α} = 0

{α, β}+ {β, γ}+ {γ, α} = 0

g{α, β} − {α, β} = 0 for each g ∈ Γ.

Theorem 2.11 ([29]). The space of weight 2 modular symbols M2(Γ0(N)) is isomorphic to

the homology group H1(X0(N), ∂X0(N);C).
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Remark 2.2. We can define an action by Hecke operators on both sides compatibly. Thus,

this is an isomorphism of Hecke modules.

Now we introduce the so-called Manin’s trick, to show that space of modular symbols is

computable.

Suppose {gi}ri=1 is a set of right coset representatives of Γ0(N) in SL2(Z) so that SL2(Z) =⊔
i Γ0(N)gi. Then for each modular symbol {α, β}, the list {gi{α, β}}ri=1 is the complete list

of distinct Γ0(N)-translates of the symbol {α, β} in M2(Γ0(N)).

Theorem 2.12 ([29]). Let N be a positive integer, and let {gi}ri=1 be a set of right coset

representatives of Γ0(N) in SL2(Z). Then any {α, β} ∈ M2(Γ0(N)) can be written as

{α, β} =
∑
i

aigi{0, i∞},

for some ai ∈ Z.

This shows that the collection {gi{0, i∞}}ri=1 gives a complete list of generators for

M2(Γ0(N)). We call such modular symbols unimodular.

By P1(Z/NZ), we denote the set of pairs (c, d) ∈ Z2 such that gcd(c, d,N) = 1 modulo

the relation

(c1, d2) ∼ (c2, d2) ↔ c1d2 ≡ c2d1 mod N.

We denote the equivalence class of a pair (c, d) by (c : d). Then by [10, Proposition 2.2.2],

we have Γ0(N)\ SL2(R) ≃ P1(Z/NZ). This means we can use P1(Z/NZ) to identify coset

representatives gi.

Definition 2.13. A Manin symbol or M-symbol (c : d) is the class in H1(X0(N), ∂X0(N);C)

of the modular symbol
(
a b
c d

)
{0,∞}, where

(
a b
c d

)
∈ SL2(Z).

M-symbols are especially convenient for computations, but the action of Hecke operators

does not preserve the space of unimodular symbols. However, we have techniques that use
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continued fractions like Heilbronn matrices to compute Hecke operators. More details of this

process are available in [10, Chapter II].

Remark 2.3. In generalizing to imaginary quadratic fields, we will see that not every symbol

can be represented by a translation of the symbol {0, i∞}. Thus, we require to keep track of

the edge “type” as well as the coset representative.
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Chapter 3: Homological Modular Forms

In Section 2.4, we saw that the homology H1(X0(N);C) could be used to compute classical

modular forms. Here X0(N) = Γ0(N)\H∗
2 and H∗

2 = H2 ∪ P1(Q), the upper half-plane H2

with cusps. In this section, we discuss how to generalize this to imaginary quadratic fields.

For the purpose of this thesis, we restrict ourselves to weight 2 modular forms. Treatment

of higher weight modular forms over Euclidean imaginary quadratic fields is available in [15].

Let F be an imaginary quadratic field with a ring of integers OF . In the classical

case, we considered the action of SL2(Z) on the hyperbolic plane H2 by fractional linear

transformations. In the Bianchi case, we consider the general linear group GL2(OF ) on the

hyperbolic 3-space H3 = {(z, t) ∈ C× R|t > 0} by

(
p q
r s

)
(z, t) = (z′, t′),

where

z′ =
(pz + q)(rz + s) + (pt)(st)

|rz + s|2 + |r|2t2
and t′ =

|ps− qr|t
|rz + s|2 + |r|2t2

.

Similar to the classical case, we can extend this action to H∗
3 = H3 ∪ P1(F ), the extended

hyperbolic 3-space, by defining an action on cusps P1(F ) = F ∪ {∞} as

(
p q
r s

)
· (c : d) = (cp+ qd : rc+ sd).
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Now for any ideal n of OF , we can define a congruence subgroup

Γ0(n) =

{(
a b
c d

)
∈ GL2(OF )

∣∣∣∣ c ∈ n

}
.

This is similar to the congruence subgroups given in (2.3) for the classical case.

If Γ0(n) is torsion-free, then the quotientX0(n) = Γ0(n)\H∗
3 will be a compact differentiable

manifold, and the homology H1(X0(n);C) is a generalization of the classical homology from

above.

Definition 3.1. We define a homological modular form of level n to be a class in the homology

H1(X0(n);C).

Remark 3.1. It is not obvious that this homology has a connection to modular forms. Fortu-

nately, the work of Kurcanov [26] establishes a duality between the homology H1(X0(n);C)

and the “principal” part of Bianchi modular forms defined in Chapter 4 for imaginary quadratic

fields. A more general result for other number fields is available in [19] by Franke.

Remark 3.2. In practice, we compute the relative homology group H1(X0(n), ∂X0(n);C) where

∂X0(n) denotes the set of cusps up to action of Γ0(n). This is more convenient because any

path between cusps in X0(n) denotes a class H1(X0(n), ∂X0(n);C). To obtain H1(X0(n);C),

we need to compute ∂X0(n). This can be done using methods introduced in Section 4.5.

In the remainder of this section, we summarize techniques for computing homological

modular forms. In Section 3.1, we discuss a generalization of Voronoi theory by Ash and

Koecher. This allows us to obtain a tessellation of the hyperbolic 3-space with an action

by a congruence subgroup. In Section 3.2, we describe a generalization of modular symbols,

M-symbols, and a reduction theory to compute the action of principal Hecke operators on

homology.

We omit proofs in this section to keep this chapter concise. The details in this section

can be found in [3, 21, 25]. For an exposition, we refer the reader to a set of lecture notes by
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Gunnells [22].

3.1 Voronoi Theory

In this section we discuss techniques for computing a tessellation of H3 from the work of Ash

[3] and Koecher [25]. This is a generalization of the classical Voronoi theory introduced in

Section 2.4. We state most of the results over imaginary quadratic fields, although we can

work more generally on other self-adjoint homogeneous cones.

Let F be an imaginary quadratic field, and let OF be the ring of integers as before. We

consider the algebraic group G = ResF/QGL2, where ResF/Q denotes the Weil restriction of

scalars. Let G = G(R) denote the group real points in G.

The group G acts the vector space V = Herm2(C) of Hermitian matrices with complex

coefficients by

g · A 7→ gAg∗,

where g∗ represents the conjugate transpose of the matrix g.

Let C ⊂ V denote the space of positive definite matrices. Then from results in [2], we can

show that C is a self-adjoint cone with respect to the inner product given by ⟨x, y⟩ = Tr(xy∗)

on V . The cone C is also homogeneous as the action by G is transitive. Details of a proof of

both these facts for imaginary quadratic fields can be found in [23, Proposition 4.1.1].

Let q : C2 → C̄ be the map defined by v 7→ vv∗. Here by C̄, we denote the union of C

with the boundary ∂C, which consists of positive semidefinite Hermitian forms. If we fix an

embedding F ↪→ C, we can identify vectors in O2
F as a discrete set in C2. This allows us to

introduce a notion of minimum and minimal vectors for a Hermitian matrix.

Definition 3.2. We define the minimum of A ∈ C by

m(A) = inf{⟨q(x), A⟩ | x ∈ O2
F\{0}},
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and the set of minimal vectors by

M(A) = {x ∈ O2
F\{0} | ⟨q(x), A⟩ = m(A)}.

Note that since O2
F is a discrete set in C2, the set of minimal vectors M(A) is a finite

set. We can see this by looking at the inner product ⟨ , ⟩ as defining a metric and noticing

that the ball of radius m(A) about A can only have a finite intersection with the discrete set

q(O2
F ).

We say a form A ∈ C is perfect if A is completely determined by m(A) and M(A). In

[25], Koecher proved the existence and the finiteness of perfect forms up to the action of

GL2(OF ).

Definition 3.3. A perfect cone σ(A) attached to a perfect form A is given by

σ(A) =

 ∑
v∈M(A)

λvq(v)

∣∣∣∣∣∣ λv ≥ 0


Let Σ denote the collection of perfect cones and their proper faces.

Theorem 3.4 ([25]). The set Σ satisfies the following properties:

1. Any compact set in C meets finitely many perfect cones in Σ.

2. Any perfect cone σ ∈ Σ meets finitely many other perfect cones σ′ such that σ ∩ σ′

contains an element in C.

3. Let σ, σ′ ∈ Σ be different perfect cones.

(a) σ, σ′ do not share any interior points, that is Int(σ) ∩ Int(σ′) = ∅.

(b) σ ∩ σ′ is a common face of both σ and σ′.
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4. If τ is a facet of a perfect cone σ that meets C, then there must exist another perfect

cone σ′ such that τ = σ ∩ σ′.

5. C =
⋃

σ∈Σ σ ∩ C

This implies that Σ gives us a polyhedral decomposition of C. Further, we can show that

the action of the group GL2(OF ) on O2
F induces an action on Σ with the following properties:

Theorem 3.5. The set Σ satisfies the following properties:

1. There are only finitely many GL2(OF ) orbits in Σ

2. Any y ∈ C is contained in the interior of a unique cone in Σ

3. Given any cone σ ∈ Σ with a point in C, σ has finite stabilizer.

In particular, this means that for any congruence subgroup Γ of GL2(OF ), we can choose

a finite list of cones in Σ which are Γ orbit representatives. We can compute this list by

enumerating perfect forms. For an explicit algorithm for this, we refer the reader to [31].

We have the following identification between the cone C and the hyperbolic 3-space H3.

Theorem 3.6. Let C be the cone of positive definite Hermitian matrices in V , then

C/R>0 ≃ H3.

Proof. First, we know that H3 is the symmetric space attached to G = ResF/QGL2 and we

have that H3 ≃ G/KAG where G = G(R) = GL2(C) and K = U(2) is the maximal compact

subgroup of G and AG is the set of positive scalar matrices.

On the other, recall that G acts on C by g · A 7→ gAg∗. By [2, Chapter II], we have that

C ≃ G/K. Since A can be identified with R>0, the result follows.

Thus, the decomposition of C into polyhedral cones up to homotheties gives us a decom-

position of H3 into ideal polytopes with an action by GL2(OF ). We call this the Voronoi
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tessellation of H3 for GL2(OF ). From the properties in Theorem 3.5, each polytope in the

Voronoi tessellation will have a finite orbit and finite stabilizers.

Remark 3.3. If v ∈M(A) for some perfect form A, then for any ζ ∈ O×
F , ζv is also a minimal

vector. Then the ray through q(v) coincides with the ray through q(ζv) in the perfect cone

σ(A). Thus the polytope in H3 induced by σ(A) has a strictly smaller number of vertices

than the number of minimal vectors of A. Further, there might also be cases where two

different minimal vectors correspond to the same cusp in H∗
3. For example, let F = Q(

√
−91)

and ω = 1+
√
−91
2

. The vectors v =

(
ω + 1
−ω + 4

)
and u =

(
5

−ω − 3

)
corresponds to the same

cusp ω−4
7

in H∗
3.

3.2 Modular Symbols and M-symbols

In this section, we define modular symbols and M-symbols, which gives us a concrete way to

write generators and relations that describe the homology group H1(X0(n);C). The parallel

of this material for the classical case is given in Section 2.5. We also introduce a reduction

theory for modular symbols coming from the work of Gunnells [21]. This reduction theory

will be helpful in computing principal Hecke operators introduced in Section 4.2.

Definition 3.7. A modular symbol [u, v] is defined as the class in H1(X0(n), ∂X0(n);C) of a

directed path from u to v, where u, v ∈ P1(F ).

We say a modular symbol [u, v] is Voronoi reduced if the class is induced by an edge in the

Voronoi tessellation.

Theorem 3.8 ([21]). The set of Voronoi reduced modular symbols spans H1(X0(n), ∂X0(n);C).

Proof. This follows from a specialization of Proposition 5 in [21] to imaginary quadratic

fields.
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Now, we have a nice geometric algorithm for expressing an arbitrary symbol [u, v] as a

sum of Voronoi reduced symbols:

Theorem 3.9 ([21, Theorem 4]). Given a modular symbol [u, v], there exists a set of points

{xi : 1 ≤ i ≤ n} with the properties:

1. q(u) ∈ R(x1) and q(v) ∈ R(xn)

2. For any 1 ≤ i ≤ n− 1, there is a ray q(ri) in R(xi) ∩R(xi+1) such that

[u, v] = [u, r1] + [r1, r2] + ...+ [rn, v],

where R(x) denotes the rays in the cone C containing q(x).

M-symbols are a convenient way to compute modular symbols. Over Euclidean number

fields, the translates of the modular symbol {0, i∞} give us a collection of all symbols. Thus,

as described in Section 2.5, M-symbols will simply be elements (c : d) ∈ P1(n). On the

other hand, non-euclidean fields have modular symbols that are not translates of the symbol

{0, i∞}. Therefore, we require more than one orbit representative.

Example 3.10. Let F = Q(
√
−17) with the ring of integers OF = Z[ω], where ω =

√
−17.

Consider the edges e1 = {0, 1}, e2 = {0, 3/(ω+2)}. We claim that e1 and e2 are not equivalent.

We can see this easily by looking at the cusp classes of the vertices. Since the class group of

F is cyclic of order 4, we have the lists of cusps

c0 = (1, ω), c1 = (3, ω + 2), c2 = (9, ω + 8), c3 = (27, ω + 8).

Both vertices of the edge e1 have cusps in the class c0. The edge e2 has one vertex of class

c0 and one of c1. Since the action GL2(OF ) preserves the class of a vertex, e1 and e2 are not

GL2(OF ) equivalent.
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Moreover, two edges with the same types of cusps are not guaranteed to be equivalent

under GL2(OF ). For example, the edge e3 = {0, 3/(ω + 3)} has the same cusp class as e1 but

they are not equivalent under the action of GL2(OF ). A full list of cusps and edges for this

case is available in Section 6.1.

This leads to the following definition:

Definition 3.11. A M-symbol is a pair {(c : d), e} where e is an oriented edge representative

of a GL2(OF )-equivalence class of edges in the Voronoi tessellation and (c : d) ∈ P1(OF/n).

Note that we can conveniently go back and forth between modular symbols and M-symbols

in the following way. If e is an edge with vertices on cusps u and v, then the M-symbol

{(c : d), e} can be identified with the modular symbol [gu, gv] where g =

(
a b
c d

)
∈ GL2(OF ).

In practice, we select edge representative ei to be the edges in the Voronoi tessellation.

Therefore, it is possible that certain edges have non-trivial stabilizer groups. For example,

the edge e3 from Example 3.10 is stabilized by the matrix

h =

(
ω + 3 −3
2ω − 3 −ω − 3

)
: e3 7→ −e3.

To account for this, we can further take the quotient of P1(OF/n) by the stabilizer group

of edge representatives from the right. Explicitly, suppose e is an edge representative of

a certain edge type, and suppose H ⊂ GL2(OF ) stabilizes the edge. Then GL2(OF )/H

parameterize the GL2(OF ) orbit of the edge e. Then for a congruence subgroup Γ0(n), the

double coset space Γ0(n)\GL2(OF )/H parameterizes Γ0(n) orbits of the edge e. Here the

right action of H on P1(n) is given by

(c : d) ·
(
p q
r s

)
= (cp+ dr : cq + ds).
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Example 3.12. Consider the level p2.1 = ⟨2, ω + 1⟩ and Γ = Γ0(p2.1). The points

P1(p2.1) = {(1 : 0), (0 : 1), (1 : 1)},

corresponds to the coset representatives

{Γ
(
0 −1
1 0

)
,Γ

(
1 0
0 1

)
,Γ

(
0 −1
1 1

)
} ∈ Γ\GL2(OF ).

The orbits of the edge e1 = {0, 3/ω + 3} contain the following edges:

e1 = {(0 : 1), e1} = {0, 3/ω + 3},

e2 = {(1 : 0), e1} = {∞, ω + 3/3},

e3 = {(1 : 1), e1} = {−1, (−ω − 3)/(ω + 6).}

However, the edge e1 is stabilized by the matrix

h =

(
ω + 3 −3
2ω − 3 −ω − 3

)
: e1 7→ −e1.

Let t =
(

−3 −ω − 3
−ω − 3 −2ω + 3

)
∈ Γ. Then, t · e2 = −e1. Thus, e1 and e2 are in the same

orbit of Γ. We can see this also by looking at the action of the matrix h on P1(p2.1),

(0 : 1)h = (2ω − 3 : −ω − 3) = (1 : 0).

Since h swaps (1 : 0) and (0 : 1), we only need to consider representative e1 and e3 to

span the orbit of e1 in the homology.

From the above discussion, we see that M-symbols give a convenient way of writing down

a list of generators for homology. Now we give an example of how to express face relations
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A = {4, ω + 2}

B = {−ω + 2, 6} C = {ω + 1, ω − 4} E = {0, 1} F = {1, 1}

G = {−ω,−ω + 4}H = {4, ω + 4}

Figure 3.1. Faces in the Voronoi tessellation for GL2(OF )

using M-symbols.

Example 3.13. Two faces in the Voronoi tessellation for F = Q(
√
−17) and level p2.1 are

given in Figure 3.1.

From the triangular face, we get the relation,

{(0 : 1), AB}+ {(0 : 1), BC}+ {(0 : 1), CA} = 0.

For the matrix g =

(
2ω + 9 ω − 9
4ω − 4 −2ω − 11

)
∈ Γ0(p), we have g(AB) = −(BC). Thus the

relation of the face becomes

{(0 : 1), AB} − {(0 : 1), (AB)} − {(0 : 1), AC} = 0, which implies {(0 : 1), AC} = 0.

The rectangular face gives us the relation

{(0 : 1), AB}+ {(0 : 1), BC}+ {(0 : 1), CD}+ {(0 : 1), DA} = 0.

Since the edges satisfy

(DC) =

(
ω − 4 4
−8 ω + 4

)
(0 : 1)(AB) = (0 : 1)(AB)
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and

(BC) =

(
1 −1
2 −1

)
(0 : 1)(AD) = (0 : 1)(AD),

this relation will become trivial.

Remark 3.4. Principal Hecke operators introduced in Section 4.2 act on the homology

H1(X0(n);C). Let p be a principal prime ideal, and let mi be the Hecke matrices given in

Theorem 4.20 for the Hecke operator Tp. Then the action of the Hecke operator Tp on an

M-symbol {(c : d), {α, β}} is given by

Tp((c : d), {α, β}) =
∑
i

mi

{
aα + b

cα + d
,
aβ + b

cβ + d

}
,

where
(
a b
c d

)
∈ GL2(OF ). We can apply the reduction theory for modular symbols from

the work of Gunnells [21] for each modular symbol in the sum to express it as a finite sum of

M-symbols.

The structure of the Voronoi tessellation determines the number of generators and relations

required to identify the space of homological modular forms. Thus, understanding the number

and the combinatorial types of polytopes in the tessellation is helpful in determining the

difficulty of computing homological modular forms. Motivated by this, we computed and

studied tessellations for a range of imaginary quadratic fields in [30].

The two figures below summarise the trends observed from the computations. From Figure

3.2, we see that the number of perfect forms increases with the discriminant of the number

field. This means that the number of polytopes in the tessellation also increases with the

discriminant. Thus, we expect the homology computations to get harder with the discriminant

since the number of generators and relations depends on the tessellation.

Figure 3.3 shows that tetrahedra are the mostly common polytope, especially for large

discriminants.
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Note that the number of perfect forms Nperf(F ) is the number of polytopes in the

tessellation. We also obtained a lower bound for Nperf(F ).

Theorem 3.14 ([30], Theorem 4.7). Let F be an imaginary quadratic field of discriminant

∆F . Then

Nperf(F ) ≥


|∆F |3/2ζF (2)

C

 ,
where the constant C ∼ 1200.
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Chapter 4: Bianchi Modular Forms

This section follows a preprint by John Cremona extending the work of his students Aranes,

Bygott, and Lingham [1,6, 28].

In Section 4.1, we define lattices and modular points over imaginary quadratic fields.

Then we define a Bianchi modular form as a function on modular points. This approach

allows us to understand the role of the class group. This generalizes the classical theory of

viewing modular forms as functions on enhanced elliptic curves discussed in Section 2.3.

In Section 4.2, we define Hecke operators and study their properties. Similar to the

classical case, Hecke operators commute and are diagonalizable. Thus, we have a basis for

the space consisting of simultaneous eigenforms. We discuss this perspective of viewing a

modular form as a Hecke eigensystem in Section 4.3.

In Section 4.4, we introduce the notion of matrices of type (a, b) which is used to identify

Hecke matrices for principal Hecke operators. Finally, in Section 4.5, we discuss an application

of matrices of type (a, b) to identify cusp equivalence.

4.1 Bianchi Modular Forms

We start by defining OF -lattices which are a generalization of classical lattices.

Definition 4.1. An OF -lattice L is OF -submodule of C2 that satisfies the following:

1. CL = C2, that is L contains a basis for C2.
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2. L is a finitely generated free module so that FL is a 2-dimensional F vector space.

From the structure theorem of OF -modules, we have the following:

Theorem 4.2 ([34, Theorem 9.3.6]). For any lattice L, there exists x1, x2 such that L =

a1x1 ⊕ a2x2 for some fractional ideals a1 and a2.

The class of the product a1a2 in the class group ClF is independent of the choice of x1

and x2. This invariant is called the Steinitz class or simply the class of a lattice. We use the

notation cl(L) to denote this.

Now we define modular points for Γ0(n), which is the generalization of the enhanced

elliptic curves for the classical case.

Definition 4.3. A modular point for Γ0(n) is a pair (L,L′) of lattices in O2
F , where L ⊆ L′

and L′/L ≃ OF/n. We call n the index of the sublattice L in L′ and denote it by [L′ : L].

Here L is called the underlying lattice of (L,L′). The class of a modular point is the Stenitz

class cl(L) of the underlying lattice L. The set of modular points is denoted by M0(n).

Now we define Bianchi modular forms.

Definition 4.4. A Bianchi modular form of weight 2 for Γ0(n) is a function

f :M0(n) → C3,

which satisfies

f(Pzk) = f(P )ρ(zk)

for each z ∈ Z and k ∈ K. Here ρ is an 3-dimensional representation of ZK, where Z is the

center of GL2(C) and K is the maximal compact subgroup U(2).

We have the decomposition of M0(n) =
⊔

c∈ClF
M

(c)
0 (n) where M (c)

0 (n) is the collection of

modular points of class c ∈ ClF . Therefore, we can view Bianchi modular forms as a tuple of

functions (fc), where fc :M
(c)
0 (n) → C3.
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We can understand the connection between each component in the tuple (Fc) by selecting

special representatives for the classes in ClF as follows.

Let pi for 1 ≤ i ≤ k be a set of prime ideals such that {[pi] : 1 ≤ i ≤ k} is a list of cosets

in ClF /Cl
2
F . Let qj for 1 ≤ j ≤ h/k be ideals such that the ideal classes [q2j ] comprise Cl2F .

We fix p1 = q1 = OF . Then each class of the class group can be written as cij = [piqj
2].

Definition 4.5. The standard lattice of class cij is given by Lij = piqj ⊕ qj. Further, a

standard modular point of class cij is Pij = (Lij, L
′
ij) where L′

ij = piqj ⊕qjn
−1. Here cij ∈ ClF

is a representative described above.

Every modular point in the GL2(C)-orbit of standard modular points of the same class.

Proposition 4.6 ([11]). Let P be a modular point for Γ0(n) in class cij. Then there exists a

matrix U ∈ GL2(C) such that P = PijU .

Corollary 4.7 ([11]). We have the following identification:

M
(cij)
0 (n) ≃ Γpi

0 (n)\GL2(C), (4.1)

where Γpi
0 (n) =

{(
a b
c d

)
∈ GL2(F )

∣∣∣∣ b ∈ p−1
i , c ∈ npi

}
.

Now we can write M0(n) =
⊔

cij∈ClF
M

(cij)
0 (n) and view a Bianchi modular form f as a

tuple (fij), where fij :M
(cij)
0 (n) → C3. We can also view a Bianchi modular form as a h-tuple

of functions g = (gij) : H3 → C3. Details are available in [6].

Note that the group Γpi
0 (n) is a congruence subgroup of GL2(OF ) only if i = 1. Therefore

we can compute f1j : Γ0(n)\GL2(C) → C3 by relating it to the homology group H1(X0(n);C)

from the work of Kurcanov [26].

Remark 4.1. If the class number is odd, then Cl2F = ClF . This means each tuple of f has the

form f1j . Thus, we can compute each component using the homology group H1(X0(n);C). On

the other hand, if the class number is even Cl2F ̸= ClF , thus the homology group H1(X0(n);C)

only captures certain components of the Bianchi modular form.
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4.2 Hecke operators

We define Hecke operators as “averaging” operators on the space of modular points. We use

the notation N(a) to represent the ideal norm of a of OF .

Definition 4.8. For each integral ideal a coprime to n, we define

Ta(L,L
′) = N(a)

∑
M⊆L

[L:M ]=a
(M,M ′)∈M0(n)

(M,M ′)

for each (L,L′) ∈ M0(n) where M is a sublattice of L of index a and M ′ =M + aL′.

Definition 4.9. For each fractional ideal b coprime to n, we define

Tb,b(L,L
′) = N(b)2(bL, bL′).

Define the action of a Hecke operator given above on Bianchi modular form by

T (f) = f ◦ T.

Cremona [11] defines the Atkin Lehner operator for a special case using sublattices as

follows:

Definition 4.10. Let p be a prime divisor of the level n with (p, np−1) = 1. The Atkin

Lehner operator is

Wp(L,L
′) = N(p)(pL+ nL′, L+ pL′).

Remark 4.2. Cremona defines a more general class of Atkin Lehner operators in [11].

Now we state some properties of Hecke operators.

Theorem 4.11. The Hecke operators Ta and Tb,b satisfy the following properties:
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1. If a and b are coprime then

TaTb = Tab = TbTa.

2. If a and b are coprime and b coprime to the level n then

TaTb,b = Tb,bTa.

3. If p does not divide the level n then

Tpn+1 = TpnTp − N(p)Tpn−1Tp,p,

for all n ≥ 1.

Proof. Details are and proofs are given in [11].

Let T denote the algebra of endomorphisms generated by operators of the form TaTb,b.

We say a Hecke operator T has class c ∈ ClF if T (M) ∈ M
(cc′)
0 (n) for any M ∈ M

(c′)
0 (n).

Similar to the space of modular points, we also have a decomposition of the Hecke algebra T

into a disjoint union of Hecke operators T(c) of class c.

Remark 4.3. Note that Hecke operators of non-principal classes permute the components of a

tuple f = (fc). In particular, this means non-principal Hecke operators do not act on the

homology group H1(X0(n);C).

4.3 Hecke Eigensystems

From the previous section, we saw that Hecke operators are commutative. These operators

are also diagonalizable and therefore are simultaneously diagonalizable. Thus, there exists

an eigenbasis for the space of modular forms consisting of Hecke eigenforms. Each such

eigenform can be viewed as a Hecke eigensystem.
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This perspective is especially helpful in computations over imaginary quadratic fields

with non-trivial class groups. Although we cannot compute non-principal Hecke operators

directly, considering eigenforms allows us to use properties of Hecke operators to extract the

eigenvalues of non-principal ideals. See Chapter 5 for more details.

Definition 4.12. Let f be a Bianchi modular form that is a simultaneous eigenvector for all

Hecke operators in the Hecke algebra T. We call a function λf : T → C a Hecke eigensystem

if

T (f) = λf (T )f,

for each T ∈ T. Alternatively, we can identify f with the pair (λf , χf ) where λf (a) = λf (Ta)

and χf (b) = λf (Tb,b). We call χ the character of the Hecke eigensystem.

The identification of f with a pair (λ, χ) is used more commonly in this document than

as a function λf : T → C.

Now we can restate the properties of the Hecke operators in terms of Hecke eigensystems.

Theorem 4.13. The eigenvalues of a Hecke eigensystem (λ, χ) satisfy the following proper-

ties:

• If a and b are coprime, then

λ(a)λ(b) = λ(ab).

• If p does not divide the level n then

λ(pn)λ(p) = λ(pn+1) + N(p)λ(pn−1)χ(p),

for all n ≥ 1.

Given a Hecke eigensystem, we can twist by any character of the class group to obtain

another Hecke eigensystem.
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Definition 4.14. Let (λ, χ) be a Hecke eigensystem and let ψ be a character of the class

group. We call the system (λψ, χψ2) a twist of (λ, χ) by ψ.

Theorem 4.15. If (λ′, χ′) is a twist of (λ, χ) by ψ then χ = χ′ if and only if ψ is a quadratic

character.

Proof. If (λ′, χ′) is a twist of (λ, χ), by definition there is a character ψ such that, for any

ideal a, we have χ′(a) = χ(a)ψ2(a). Then χ′ = χ if and only if ψ2(a) = 1 for all a. Thus, the

character ψ is a quadratic character of the class group.

Definition 4.16. Let (λ, χ) be a Hecke eigensystem. We say the system has an inner twist

if for some be a character ψ of the class group, we have (λ, χ) = (λψ, χψ2).

We call the set of Hecke eigensystems obtained by twisting a system (λ, χ) by the characters

of the class group, the twist orbit of (λ, χ). The size of the twist orbit is at most the class

number, and it is strictly less than the class number if and only if (λ, χ) has inner twists.

In Chapter 5, we show that computing twist orbit representatives of Hecke eigensystems is

sufficient to obtain the space of Bianchi modular forms.

From Theorem 4.15, if (λ, χ) has an inner twist by ψ then ψ must be a quadratic character.

In particular, if the class group is odd, quadratic characters are not present which makes it

the “easy” case.

Note that, if (λ, χ) has an inner twist by a character ψ then for each a,

λ(a)(ψ(a)− 1) = 0. (4.2)

Then if ψ(a) = −1, we have λ(p) = 0. Therefore λ is identically zero on all classes with

ψ(p) = −1. We use this in Section 5.6 to identify Hecke eigensystems with inner twists.
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4.4 Hecke Matrices

In this section, we discuss techniques for computing principal Hecke operators using explicit

Hecke matrices.

Lemma 4.17 ([28, Lemma 1.2.5]). Let a and b be ideals in OF such that ab = ⟨g⟩ is principal.

Then there exists a matrix M ∈ GL2(OF ) with determinant g with the lower left entry in n

which induces an isomorphism: OF ⊕OF → a⊕ b.

Proof. Write a = α1OF + α2OF , where α2 ∈ n. Since ab = ⟨g⟩ is principal there exists some

β1, β2 ∈ b such that g = α1β2 − α2β1.

Now the isomorphism is given by right multiplication by the matrix M =

(
α1 β1
α2 β2

)
on

OF ⊕ OF . Here elements in OF ⊕ OF and a ⊕ b are represented as row vectors with the

action matrix multiplication on the right. That is if (x, y) ∈ OF ⊕OF ,

(
x y

)(α1 β1
α2 β2

)
=

(
xα1 + yα2 xβ1 + yβ2

)
∈ a⊕ b.

We call a matrix that gives such an isomorphism a matrix an (a, b)-matrix of level n.

There are two applications of (a, b)-matrices of level n for our computations. In this

section, we discuss how to use them to find Hecke matrices for certain types of principal

Hecke operators. We can also use them to identify cusp equivalence. This is discussed in

Section 4.5.

Proposition 4.18 ([12, Proposition 3] ). Let a and b be two ideals. Then for any γ ∈ GL2(F ),

we have (a⊕ b)γ = (a⊕ b) if and only if γ ∈ ∆(a, b), where

∆(a, b) =

{(
x y
z w

) ∣∣∣∣ x,w ∈ OF , y ∈ a−1b, z ∈ ab−1, xw − yz ∈ O×
F

}
.
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Now we will use (a, b)-matrices of level n to parameterize subspaces of the principal lattice

OF ⊕OF .

Theorem 4.19 ([28]). The collection of submodules of OF ⊕OF of principal index m can be

parameterized by the set

{(OF ⊕OF )Ma,bg | g ∈ Γ0(ab
−1)\GL2(OF )},

where a, b runs over ideals satisfying m = ab and b | a.

Proof. Let M = (OF ⊕OF )Ma,bg for some (a, b)-matrix Ma,b and g ∈ GL2(OF ). By definition,

we have (OF ⊕OF )Ma,b = a⊕ b. Thus the lattice M is isomorphic to a⊕ b. Further, since ab

is principal, we have Ma,bg ∈ GL2(OF ). Thus, the lattice M is a sublattice of L isomorphic

to a⊕ b.

Now we determine when two lattices M = (OF ⊕OF )Ma,bg and M ′ = (OF ⊕OF )Ma,bg
′

give us the same sublattice of L.

Suppose M =M ′. Then (OF ⊕OF )Ma,bg = (OF ⊕OF )Ma,bg
′. This means

(a⊕ b)g = (a⊕ b)g′.

Since b | a, we have g(g′)−1 ∈ GL2(OF ). Further, by Proposition 4.18, we have g(g′)−1 is in

∆(a, b). Then the lower left entry of g(g′)−1 is in ab−1. Thus, we have Γ0(ab
−1)g = Γ0(ab

−1)g′.

This means the coset space Γ0(ab
−1)\GL2(OF ) parameterizes the sublattices of L isomorphic

to a⊕ b.

Now we consider the relation between standard principal modular point (OF ⊕OF ,OF ⊕

n−1) and other principal modular points (L,L′). If (L,L′) is a principal modular point, then
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L is a principal lattice. Then by Proposition 4.6, there is U ∈ GL2(C) such that

(L,L′) = (OF ⊕OF ,OF ⊕ n−1)U.

Consider M = (OF ⊕ OF )gU and M ′ = (OF ⊕ n−1)gU , where g is an (a, b)-matrix of

level n such m = ab is principal and b | a. Then M is a sublattice of L of index ab. Further,

the lattice M ′ is a superlattice of M such that M ′/M ≃ OF/n. Thus, the pair (M,M ′) is in

the sum defining the Hecke operator Tm in Definition 4.8. See [11] for additional details.

Lemma 4.20 ([28]). For any ideal m in a principal class we can compute the Hecke operator

Tm on principal lattices by

Tm(L,L
′) = N(m)

∑
a|b,

ab=m

∑
g∈Γ0(ab

−1)\Γ

(OF ⊕OF ,OF ⊕ n−1)Ma,bgU,

where Γ = GL2(OF ) and Ma,b is an (a, b)-matrix of level n.

We can also compute the Hecke operator Ta,a when a2 is principal using matrices as

follows:

Theorem 4.21. Let a be an ideal coprime to n such that a2 is principal. Then

Ta,a(L,L
′) = N(a)2(OF ⊕OF ,OF ⊕ n−1)Ma,aU,

where Ma,a is a matrix of type (a, a) of level n and L = (OF ⊕OF )U .

Proof. By Definition 4.9, we have

Ta,a(L,L
′) = N(a)2(aL, aL′).

Suppose L = (OF ⊕OF )U for some U ∈ GL2(C). Then aL is a sublattices of L such that
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L/aL ≃ OF/a⊕OF/a. Therefore, we have

aL = (OF ⊕OF )Ma,aU

for some (a, a) matrix Ma,a. Further if Ma,a has type n, then we have

Ta,a(L,L
′) = N(a)2(aL, aL′) = N(a)2(OF ⊕OF ,OF ⊕ n−1)Ma,aU.

Now we look at other types of principal Hecke operators that will be useful for computations

in Chapter 5.

Theorem 4.22 (Hecke Matrices for the principal operator Ta,aTp). For any prime ideal p

and prime ideal a such that pa2 is principal, the following matrices can be used to compute

the Hecke operator TpTa,a:

{Mpa,aV | V ∈ Γ0(p)\GL2(OF )},

where Mpa,a is a matrix of type n.

That is,

TpTa,a(L,L
′) = TpTa,a(OF ⊕OF ,OF ⊕ n−1)U

= N(pa2)
∑

V ∈Γ0(p)\GL2(OF )

(OF ⊕OF ,OF ⊕ n−1)Mpa,aV U.
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Proof. By definition,

Ta,aTp(L,L
′) = Ta,a(Tp(L,L

′))

= N(a2p)
∑
M⊂L,

[L:M ]=p
(M,M ′)∈M0(n)

(aM, aM ′).

If a is an integral ideal, then aM is also an OF -submodule of L, and we have aM ⊂M ⊂ L.

Then we can compute the index of aM in L as follows:

cl([L : aM ]) = cl(aM)/cl(L) = cl(a2)cl(M)/cl(L) = [a2p].

Therefore, the lattice aM is a principal index submodule of L such that M is an OF -

submodule of L of index p. This means aM ≃ ap ⊕ a. Thus, we have aM = L ·Map,a · V ,

where V ∈ Γ0(p)\GL2(OF ). Since we can select Map,a to have level n, the result follows.

Theorem 4.23. We can compute the principal Hecke operator Ta,aTp2 using the following

matrices:

{Map,ap} ∪ {Map2,a · V | V ∈ Γ0(p
2)\GL2(OF )}.

Proof. By definition,

Ta,aTp2(L,L
′) = Ta,a(Tp2(L,L

′))

= N(a2p2)
∑
M⊂L,

[L:M ]=p2

(M,M ′∈M0(n))

(aM, aM ′)

If a is an integral ideal, then aM is also an OF -submodule of L, and we have aM ⊂M ⊂ L.
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Then we can compute the index of aM in L as follows:

cl([L : aM ]) = cl(aM)/cl(L) = cl(a2)cl(M)/cl(L) = [a2p2]

Therefore, the lattice aM is a principal index submodule of L. This means aM ≃ ap2 ⊕ a or

aM ≃ ap⊕ ap.

If L = (OF ⊕ OF )U for some U ∈ GL2(C), then aM = (OF ⊕ OF ) ·Map2,aV · U where

V ∈ Γ0(p
2)\GL2(OF ), or aM = (OF ⊕OF )Map,ap ·U . Therefore, the Hecke matrices required

are

{Map,ap} ∪ {Map2,a · V | V ∈ Γ0(p
2)\GL2(OF )}.

Theorem 4.24. If p and q are prime ideals such that (pqa, n) = 1, then we can compute the

principal Hecke operator Ta,aTpq using the following matrices:

{Mapq,a · V | V ∈ Γ0(pq)\GL2(OF )}.

Proof. By definition,

Ta,aTpq(L,L
′) = Ta,a(Tpq(L,L

′))

= Ta,aN(pq)
∑
M⊂L,

[L:M ]=pq
(M,M ′)∈M0(n)

(M,M ′)

= N(a2pq)
∑
M⊂L,

[L:M ]=pq
(M,M ′)∈M0(n)

(aM, aM ′).

If a is an integral ideal then aM is also an OF -submodule of L, and we have aM ⊂M ⊂ L.
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Then we can compute the index of aM in L,

cl([L : aM ]) = cl(aM)/cl(L) = cl(a2)cl(M)/cl(L) = [a2pq].

Therefore, the lattice aM is a sublattice of L of principal index pqa2. By the structure theorem

of OF -modules, we have M ≃ pqa⊕ a. Such sublattices are parameterized by matrices of the

form Mpqa,aV , where Γ0(pq)V is a coset representatives of Γ0(pq)\GL2(OF ).

Cremona [11] identifies Hecke matrices for the Atkin Lehner operator Wq where prime

q || n with (mq,m)-matrices whose transposes are also (mq,m)-matrices. For this thesis, we

use the following proposition from his work:

Proposition 4.25 (Hecke matrices for Atkin Lehner operators TpWq). Suppose p is a prime

not dividing the level n and q is prime with q || n such that pq is principal. Then the operator

TpWq is described by the matrices M that satisfy the following:

1. pq = ⟨det(M)⟩,

2. M ∈
(
q OF

n q

)
,

3. (OF ⊕OF )M ⊂ L,

where L runs through lattices of index p.

4.5 Cusp Equivalence

To compute H1(X0(n);C), we need to understand the set ∂X0(n), which is the set of cusps

P1(F ) = F ∪ {∞} modulo the action of Γ0(n). In this section, we state an algorithm from

[12] that allows us to use (a, b)-matrices introduced in Lemma 4.17 to enumerate cusps.

The group GL2(OF ) acts on cusps by left multiplication if we identify elements in P1(F )

with the column vector in O2
F\{0}.
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Theorem 4.26. The set of cusp modulo the action of GL2(OF ) is parameterized by the class

group. That is,

GL2(OF )\P1(F ) ≃ ClF ,

where the isomorphism is given by mapping GL2(OF )

(
a
b

)
∈ P1(F ) 7→ [⟨a, b⟩] ∈ ClF

We can see from the theorem above that if F has a non-trivial class group, then there are

multiple cusp classes. We also have more cusp classes for congruence subgroups of GL2(OF ).

Example 4.27. For the number field F = Q(
√
−17), there are 4 cusps up to the action of

GL2(OF ). Namely,

c0 = (1, ω), c1 = (3, ω + 2), c2 = (9, ω + 8), c3 = (27, ω + 8).

The list of cusps up to the action of the congruence subgroup Γ0(p2.1) is contained in the

set

c0 = (1, ω), c1 = (3, ω + 2), c2 = (9, ω + 8), c3 = (27, ω + 8)

d0 = (1, 0), d1 = (−ω − 2, ω + 5), d2 = (−ω + 10, 2ω − 2), d3 = (2ω − 11,−2ω − 16).

Therefore, we have at most twice as many cusp classes because Γ0(p2.1) is an index 2 subgroup

of GL2(OF ).

More generally, the double coset Γ0(n)\GL2(OF )/Γα parameterizes the Γ0(n)-orbit of a

cusp α, where Γα is the stabilizer in GL2(OF ) of α. A systematic way to parameterize the

Γ0(n)-orbit of a cusp α is to first obtain a list of coset representative for Γ0(n)\GL2(OF ) to

get a total list of cusps. Then check their equivalence using techniques given by Aranes and

Cremona [12].

We first state two necessary conditions for cusp equivalence, which provide two quick

exits.
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Theorem 4.28 ([12]). If α and α′ are two cusps that are Γ0(n)-equivalent then

1. [α] = [α′] where [α] denotes the class of a cusp.

2. dn(α) = dn(α
′) where d(α)n = d(α) + n and d(α) is the denominator ideal of a cusp

α =

(
a
b

)
given by d(α) = ⟨b⟩/⟨a, b⟩.

The following theorem provides a technique to check Γ0(n)-equivalence of cusps.

Theorem 4.29 ([12, Theorem 6]). Suppose α =

(
a1
a2

)
and α′ =

(
a′1
a′2

)
are cusps that satisfy

the necessary conditions above. Let a = ⟨a1, a2⟩ = ⟨a′1, a′2⟩ Then the following are equivalent:

1. There exists γ ∈ Γ0(n) such that γ(α) = α′.

2. There exist (a, b)-matrices M =

(
a1 b1
a2 b2

)
and M ′ =

(
a′1 b′1
a′2 b′2

)
, where b = a−1 such

that for some γ ∈ GL2(OF ) we have γM =M ′.

3. There exist u ∈ OF coprime to n and v ∈ O×
F such that

(a) a′2 = ua2 mod (an),

(b) ua′1 = va1 mod (da).
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Chapter 5: Algorithm

In Section 4.1, we introduced Bianchi modular forms and remarked on the deficiency of the

homology group H1(X0(n;C)) when the class group of the field is non-trivial. Further, we

commented in Section 4.3, that by considering eigenforms and eigensystems, one can extract

Hecke eigenvalues of non-principal Hecke operators. In this chapter, we describe an explicit

algorithm to compute Bianchi modular forms as Hecke eigensystems using principal Hecke

operators. Parts of this section are closely related to the preprint by John Cremona. We cite

and remark on these connections throughout the chapter.

In Chapter 3, we described techniques to compute the homology group H1(X0(n;C)),

which is a finite-dimensional complex vector space with an action by principal Hecke operators.

Since Hecke operators are diagonalizable and simultaneously diagonalizable, we can construct

a basis for this space in terms of eigenforms. We defined these as homological eigenforms

in Section 5.1 and explain how to compute them. Further, we define what it means for

a homological eigenform to match an eigensystem. In Section 5.2, we show that Hecke

eigensystems that match the same homological eigenform are in the same twist orbit. The

main goal is to compute a representative of the Hecke eigensystem orbit for each homological

eigenform.

In Section 5.3, we classify the characters of Hecke eigensystems that match a homological

eigenform. We call this the character orbit. Then we explain how to compute the eigenvalues

of other Hecke operators if the character is fixed. In Section 5.4, we show that for any prime

p, the Hecke eigenvalue λ(p) is a root of a certain quadratic polynomial. If [p] ∈ Cl2F , we
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show that this root is known exactly. On the other hand, if [p] /∈ Cl2F , each choice of root

occurs in the twist orbit. Then we explain how to make choices of roots to obtain a single

Hecke eigensystem in the twist orbit. In Sections 5.5 and 5.6, we explain how to carry out

computations for Hecke eigensystems with and without inner twists. Finally, we conclude

this chapter by providing an algorithm that utilizes these techniques.

5.1 Homological Eigenforms

Definition 5.1. We say a class f in the homology H1(X0(n);C) is a homological eigenform if

1. Taf = af (a)f , for each principal ideal a;

2. Tb,bf = af (b, b)f , for each ideal b ∈ ClF [2].

In particular, this means f is a simultaneous eigenvector for all Hecke operator TaTb,b where

ab2 is principal.

Remark 5.1. From the work of Kurcanov [26], we know that the eigenvalues of a homological

eigenform lie in a finite extension of Q. However, we do not know this field until we compute

Hecke eigensystems.

Now we explain how we compute homological eigenforms over an imaginary quadratic

field F of a given level n.

First, we compute the homology H1(X0(n);C) using M-symbol techniques introduced in

Section 3.2. Then up to a certain bound B, we compute:

1. Hecke operators Tp on H1(X0(n);C) for all principal prime ideals p up to norm B using

Hecke matrices in Theorem 4.20;

2. Hecke operators TpTa,a on H1(X0(n);C) for all non-principal prime ideals p ∈ Cl2F up to

norm B using the Hecke matrices from Theorem 4.22. Here a is any prime ideal such

that a2 ∈ [p−1].
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Finally, we compute the simultaneous diagonalization of these matrices using standard

techniques from linear algebra to obtain a list of homological eigenforms.

Remark 5.2. It is possible for the bound B to not be sufficient to obtain a complete diagonal-

ization. In theory, the bound B might depend on the discriminant of the number field and

the degree of the Hecke field. In our implementation for F = Q(
√
−17) a bound B = 100

was sufficient for the scope of our computation.

We denote the subgroup of order 2 elements in the class group ClF by ClF [2]. This means

that [p] ∈ ClF [2] if and only if p2 is a principal ideal.

Definition 5.2. We say a homological eigenform f matches a Hecke eigensystem (λ, χ) if

the following are satisfied:

1. For each principal ideal a, we have λ(a) = af (a), where Taf = af (a)f .

2. For each ideal b coprime to the level n in ClF [2], that is b2 is principal, we have

χ(b) = af (b, b), where Tb,bf = af (b, b)f .

In [11], Cremona characterizes the Hecke eigensystems with the same restriction to

the principal component, i.e., those Hecke eigensystems that match the same homological

eigenform.

In the remainder of this chapter, we explain how to compute Hecke eigensystems using

homological eigenforms. First, we show that computing one Hecke eigensystems representative

per homological eigenform is sufficient to compute all Hecke eigensystems attached to Bianchi

modular forms. Next, we explain how to pick a character for the representative eigensystem

using the action of Ta,a for [a] ∈ ClF [2]. Finally, we explain how to compute eigenvalues λ(p)

for various primes p. By definition, if p is principal then we can compute λ(p) from the action

of Tp on the homological eigenform. If the character is fixed, we show how to compute λ(p)

for primes p with [p] ∈ Cl2F . Computing λ(p) with [p] /∈ Cl2F is more technical. We explain
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how to do this in Section 5.5 for eigensystems without inner twists and in Section 5.6 for

eigensystems with inner twists.

Remark 5.3. Homological eigenforms are sufficient to compute newforms as their restrictions

to the principal component are non-trivial. However, there are certain oldforms with trivial

restriction to the principal component. We give an example of this in Section 6.3.

5.2 Twist Orbit of Hecke eigensystems

In this section, we discuss the connection between Hecke eigensystems that match the same

homological eigenform. We claim that two different Hecke eigensystems can match the same

homological eigenform if and only if they are in the same twist orbit. In particular, this

means if we can identify a Hecke eigensystem (λ, χ) that matches a homological eigenform f ,

then we can obtain all the systems that match f by twisting (λ, χ).

The converse of this claim is not hard to see because the characters of the class group are

trivial on the principal component. Proving the forward direction requires the bulk of work.

The results in this section will follow a preprint by Cremona [11] closely.

The main group theoretical result needed for the proofs in this section is the ability to

extend a quadratic character of a subgroup of a 2-group to the full group. We state this

result for our context.

Theorem 5.3. Let H be a subgroup of ClF such that Cl2F ⊆ H. Then any quadratic character

ψ : H → {1,−1} can be extended to a quadratic character ψ′ : ClF → {1,−1} such that

ψ′|H = ψ.

Proof. Since Cl2F ⊆ H and quadratic characters are trivial on Cl2F , we can view ψ as a group

homomorphism ofH/Cl2F . From the third isomorphism theorem, we haveH/Cl2F ⊴ ClF /Cl
2
F ,

thus H/Cl2F is also a 2-group. Therefore, we can view H/Cl2F as a F2 vector space with a basis

{[ai] Cl2F | 1 ≤ i ≤ l} and ψ as a linear transformation. Now, we can extend the basis above
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to a basis {[ai] Cl2F | 1 ≤ i ≤ k} of ClF /Cl2F and extend ψ to ψ′colonClF /Cl
2
F → {1,−1},

by ψ′(ai) = ϵi, where ϵi = ψ([ai] Cl
2
F ) for i ≤ l and ϵi(ai) = 1 for i > l .

Since {[ai] Cl2F | 1 ≤ i ≤ k} is a basis for ClF /Cl
2
F and ψ is a linear transformation

defined on a basis, it extends to ClF /Cl
2
F by linearity. The composition of ψ with the

projection map from ClF to ClF /Cl
2
F determines a quadratic character ψ′ of the class group.

Now by construction, we have ψ′|H = ψ.

We look at the relation between the eigenvalues of two Hecke eigensystems with the same

character that matches the same homological eigenform.

Theorem 5.4 ([11]). Let (λ, χ) and (λ′, χ) be two Hecke eigensystems that match a homological

eigenform f . Then either λ(T ) = λ′(T ) or λ(T ) = −λ′(T ) for any Hecke operator T .

Proof. Suppose T is a Hecke operator of class [a]. Let b ∈ [a−1] be a prime ideal coprime to

the level. Then the Hecke operator T 2Tb,b is a principal Hecke operator. Since both (λ, χ)

and (λ′, χ) match f , we have

λ(T 2Tb,b) = af (T
2Tb,b) = λ′(T 2Tb,b).

Since the two Hecke eigensystems have the same character, we have λ(T 2) = λ′(T 2). From

the multiplicative property of λ and λ′, we get λ(T )2 = λ′(T )2. Therefore either λ(T ) = λ′(T )

or λ(T ) = −λ′(T ), as desired.

Note that the above theorem gives a result only at the level of a single Hecke operator.

To compare two eigensystems, we need to consider their connection in the full Hecke algebra.

For a large collection of Hecke operators, namely Hecke operators with classes in Cl2F , we

can prove more.

Theorem 5.5 ([28]). Let (λ, χ) and (λ′, χ) be two Hecke eigensystems that match a homological

eigenform f . Then λ(T ) = λ′(T ) for any operator T in the Hecke algebra T of class [a] ∈ Cl2F .
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Proof. Let [a] ∈ Cl2F . If the ideal b ∈ [a−1] then ab2 is principal. Therefore, for any T ∈ T of

class [a] ∈ Cl2F , the Hecke operator TTb,b is a principal. Since both Hecke eigensystems match

with the same eigenform f , we have λ(TTb,b) = af(TTb,b) = λ′(TTb,b). Since both systems

have the same character, λ(T ) = λ′(T ).

Now with these ingredients, we can show the following:

Theorem 5.6 ([11]). Let f be a homological eigenform that matches two different eigensystems

(λ, χ) and (λ′, χ). Then there exists a quadratic character ψ such that λ = ψλ′.

Proof. Let H ⊆ ClF be the subset where λ is not identically zero on Hecke operators with

classes in H. Since λ(T ) = ±λ′(T ), Theorem 5.4 implies that λ′ is also not identically zero

on Hecke operators with classes in H. That is, for every class c ∈ H, there exists a Hecke

operator T ∈ T of class c where λ(T ) ̸= 0 and λ′(T ) ̸= 0. Note that H is a subgroup because

λ is multiplicative, that is λ(TT ′) = λ(T )λ(T ′). Also, we have Cl2F ⊆ H because Ta,a is not

identically zero for any class [a] in ClF .

Let ψ be a map on H given by ψ([a]) =
λ(T )

λ′(T )
where T ∈ T of class [a] such that λ′(T ) ̸= 0.

Note that since [a] ∈ H, we can always find such a Hecke operator. From Corollary 5.4, we

know that ψ([a]) ∈ {1,−1}.

Now we show that ψ is well-defined. That is, the value of ψ does not depend on the

choice of the Hecke operator T ∈ T of class [a]. Suppose T and T ′ in T of class [a] such that

λ′(T ) ̸= 0 and λ′(T ′) ̸= 0. Then TT ′ is a Hecke operator of class [a2]. Theorem 5.5 implies

that λ(TT ′) = λ′(TT ′). This means λ(T )
λ′(T )

· λ(T ′)
λ′(T ′)

= 1. Since λ(T )
λ′(T )

and λ(T ′)
λ′(T ′)

are ±1, we have
λ(T )
λ′(T )

= λ(T ′)
λ′(T ′)

.

Now we show that ψ is a group homomorphism on H. That is for any [a1], [a2] ∈ H, we

need to show that ψ([a1a2]) = ψ([a1])ψ([a2]). Suppose T1, T2 ∈ T are Hecke operators of class

[a1] and [a2], respectively. Then the operator T = T1T2 has class [a1a2] and λ(T ) ̸= 0 because
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λ is multiplicative. By definition

ψ([a1a2]) =
λ(T )

λ′(T )
=
λ(T1T2)

λ′(T1T2)
=

λ(T1)λ(T2)

λ′(T1)λ′(T2)
= ψ([a1])ψ([a2]).

This means ψ is a quadratic character of H. Now by Theorem 5.3, we can find a quadratic

character ψ′ of the class group that restricts to ψ on H. Thus we have λ = ψλ′.

Remark 5.4. Note that the quadratic character ψ from the above theorem might not be

unique. However, this only happens if (λ, χ) has an inner twist. For example, suppose the

eigensystems λ and λ′ have eigenvalue zero for all ideals in some class [q]. This means that

(λ, χ) has an inner twist by a quadratic character non-trivial on q and trivial everywhere else.

Up to now, we have only compared systems with the same character. The following

corollary gives the more general result for systems with different characters that match the

same homological eigenform:

Corollary 5.7. Let f be a homological eigenform. Both Hecke eigensystems (λ, χ) and (λ′, χ′)

match f if and only if (λ′, χ′) is a twist of (λ, χ).

Proof. Suppose (λ, χ) and (λ′, χ′) are two Hecke eigensystems that match the homological

eigenform f . Then for any a ∈ ClF [2], we have that χ(a) = χ′(a). This means the character

χ(χ′)−1 is a character that is trivial on ClF [2]. Therefore χ′(χ)−1 is a square. That is χ′ = χψ2

for some character ψ. Now the twist of (λ, χ) by ψ is (λψ, χ′).

Using Theorem 5.6, there exists a quadratic character ψ′ such that the twist of (λψ, χ′)

by ψ′ is (λ′, χ′). We can twist (λ, χ) by ψψ′ to obtain (λ′, χ′). Thus, they are in the same

twist orbit.

Corollary 5.8. Let f be a homological eigenform. There are at most h = |ClF | Hecke

eigensystems (λ, χ) that match f .
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Proof. We have shown in Corollary 5.7 that any two eigensystems matching the same

homological eigenform must be in the same twist orbit. Since the size of the twist orbit is at

most h, the result follows.

From Corollary 5.7, we know that all Hecke eigensystems matching a homological eigenform

are in the same twist orbit. This means computing a single Hecke eigensystem will be sufficient

to compute all eigensystems that match it.

5.3 Computing the Character

In this section, we explain how to identify the characters of Hecke eigensystems matching a

given homological eigenform f using principal Hecke operators.

Note that twisting a system (λ, χ) by a character only changes χ by a square. This means

the number of distinct characters in the same twist orbit of a Hecke eigensystem is |Cl2F |.

In particular, if the order of the class group is even then Cl2F ̸= ClF . Thus, a homological

modular form f can only match Hecke eigensystems with certain characters. Since this

collection of characters only depends on the homological eigenform, we call it the character

orbit of a homological eigenform or simply the character orbit.

Theorem 5.9. Let f be a homological eigenform that matches the Hecke eigensystem (λ, χ).

Then we can compute the characters χ up to twist using principal Hecke operators on f .

Proof. Using Theorem 4.21, we can compute the Hecke operator Ta,a on f for each ideal a

such that a2 is principal. Thus χ(a) can be computed for each a ∈ ClF [2]. Also, we know

that χ(a) ∈ {1,−1} because χ(a2) = χ(a)2 = 1 for any a ∈ ClF [2]. Let χ′ be a character of

the class group such that χ(a) = χ′(a) for each a ∈ ClF [2]. Then χχ′−1(a) must be trivial

on ClF [2]. Since the characters that are trivial on order two elements are squares, we have

χ = χ′ψ2 for some ψ. Thus χ′ determines the character χ up to a twist.
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Remark 5.5. In practice, for a list of ideal representative ai from classes in ClF [2], we compute

Tai,ai and pick a character of the class group that agrees with the eigenvalues of Tai,ai . As

stated before, since we only need to identify one eigensystem, we do not miss anything by

fixing a character from the character orbit.

5.4 Hecke Eigenvalues

Once we fix a character from the character orbit, we can obtain certain information about

the eigenvalues of any Hecke eigensystem matching f . Recall that we can view a Hecke

eigensystem as a function on the Hecke algebra λ : T → C or as a pair (λ, χ). We write λ(a)

for λ(Ta) and χ(a) for λ(Ta,a).

Corollary 5.10. Let f be a homological eigenform. If (λ, χ) is any Hecke eigensystem

that matches f with a known character χ, then λ(p) can be computed using principal Hecke

operators for any prime p where [p] ∈ Cl2F . In particular, at a fixed prime p with [p] ∈ Cl2F ,

all eigensystems with the same character that match f have the same eigenvalue.

Proof. Consider the Hecke operators Tp. Since [p] ∈ Cl2F , there exists an ideal a such that

TpTa,a is principal. Using Hecke matrices from Theorem 4.22, we can compute

af (TpTa,a) = λ(TpTa,a) = λ(p)χ(a).

Since χ is known, we know λ(p) is computable. The second statement follow from Theorem

5.5 for T = Tp.

We define the quantity

t(p) = af (Tp2Ta,a) +N(p) (5.1)

for any a ∈ [p−1]. Note that t(p) only depends on the homological eigenform f and the

principal Hecke operator Tp2Ta,a.

51



Now we study the Hecke eigenvalues for Hecke operators of the form Tp, where p is prime.

Theorem 5.11. Let f be a homological eigenform. If (λ, χ) is any Hecke eigensystem matching

f , then for any prime ideal p the value of λ(p) is a root of the polynomial x2 − t(p)χ(p).

Proof. Since a ∈ [p−1], the ideal p2a2 is principal. By Definition 5.2, we have λ(Tp2Ta,a) =

af (Tp2Ta,a), where Tp2Ta,af = af (Tp2Ta,a)f . From the properties of Hecke eigenvalues, we get

λ(p2) =
λ(Tp2Ta,a)

χ(a)
= χ−1(a)af (Tp2Ta,a) = χ(p)af (Tp2Ta,a),

and

λ(p)2 = λ(p2) + χ(p)N(p) = χ(p)af (Tp2Ta,a) + χ(p)N(p) = χ(p)t(p).

Therefore λ(p) is a root of the polynomial x2 − t(p)χ(p).

Corollary 5.12. Let f be a homological eigenform. Any Hecke eigensystem (λ, χ) that

matches f satisfies λ(p) ∈ {
√
χ(p)t(p),−

√
χ(p)t(p)}.

Proof. This follows easily from Theorem 5.11.

We now make several observations. First, if t(p) = 0, then λ(p) = 0 in any Hecke

eigensystem. Otherwise, if [p] /∈ Cl2F both values will occur in the twist orbit. That is, for

a fixed prime ideal p /∈ Cl2F , there exists systems (λ, χ) and (λ′, χ) that matches f , where

λ′(p) =
√
χ(p)t(p) and λ(p) = −

√
χ(p)t(p).

Since our goal is to compute a single eigensystem in its character orbit, we must make

certain choices for primes [p] /∈ Cl2F . That is, if for a certain prime p we have t(p) ̸= 0, then we

must decide whether to compute the system with the eigenvalue
√
χ(p)t(p) or −

√
χ(p)t(p).

Also, there is a limit on the number of choices because the size of the twist orbit is bounded

by the class number. Further, after making a choice for an ideal p where t(p) ̸= 0, then any

other ideal q with [q] ∈ [p] Cl2F is known. For example, suppose p /∈ Cl2F is a prime ideal and
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(λ, χ) is the Hecke eigensystem with λ(p) =
√
χ(p)t(p). Let q be a prime ideal such that pq

is principal. Then we can compute the eigenvalue λ(pq) exactly using the principal Hecke

operator Tpq. Then we have λ(q) = λ(pq)√
t(p)

.

It is possible for t(p) = 0 for all ideals in certain classes of ClF \Cl2F . This only happens if

the Hecke eigensystem has inner twists. We discuss how to compute such systems in Section

5.6.

5.5 Eigensystems without Inner Twists

Recall from Definition 4.16, we say a Hecke eigensystem (λ, χ) has inner twist if for some

character ψ of the class group (λ, χ) = (λψ, λ, χψ2). This section discusses techniques to

compute Hecke eigensystems without inner twists.

Definition 5.13. We call a set of ideals {ai | 1 ≤ i ≤ k} admissible for the Hecke eigensystem

(λ, χ) if the set {[ai] Cl2F | 1 ≤ i ≤ k} is a Z-basis for ClF /Cl
2
F and λ(ai) ̸= 0 for all i.

If a set of ideals is admissible for a Hecke eigensystem then it is also admissible for any

eigensystem in its twist orbit. Therefore, an admissible set only depends on the homological

eigenform.

Theorem 5.14. Let (λ, χ) be a Hecke eigensystem. The eigensystem has an admissible set if

and only if (λ, χ) does not have inner twists.

Proof. Suppose (λ, χ) is a system without inner twists. Let {ai, 1 ≤ i ≤ k} be any set such

that {[ai] | 1 ≤ i ≤ k} is a Z-basis for ClF /Cl
2
F . Suppose λ(aj) = 0 for some j. Applying

Theorem 5.3 for H = ClF , we can find a quadratic character ψ defined by

ψ(ai) :=


−1 if i = j,

1 for i ̸= j.
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Since (λ, χ) does not have an inner twist by ψ, there exist a ideal b such that λψ ̸= λ.

This could only happen if λ(b) ̸= 0 and ψ(b) = −1. By the definition of a Z-basis, we have

[b] Cl2F = [alii ] Cl
2
F for some exponents li ∈ {0, 1}. Since ψ is trivial on Cl2F , we have that

ψ(b) =
∏k

i=1 ψ(aj)
li = −1. Therefore, for some j, we have lj = 1 and ψ(ai) = −1. This

means, we can replace aj by b to obtain a new set where λ(aj) ̸= 0. We can repeat this

process iteratively to obtain an admissible set.

Remark 5.6. In practice, we have the freedom to pick a set {ai} that is a Z-basis of ClF /Cl2F .

However, for computational running time reasons, there might be a better basis where the

norms of the ideals ai are smaller. The Example 5.15 demonstrates this. See Remark 5.7 for

additional details.

Example 5.15. Suppose F = Q(
√
−5190) where ω =

√
−5190. Then ClF = ⟨g1⟩ × ⟨g2⟩ ×

⟨g3⟩ ≃ C2 × C4 × C8 . Thus Cl2F = ⟨g22⟩ × ⟨g23⟩ ≃ C2 × C4 and ClF /Cl
2
F = ⟨g1Cl2F ⟩ ×

⟨g2Cl2F ⟩×⟨g3Cl2F ⟩ ≃ C3
2 . Thus, we can pick a1 = ⟨2, ω+1⟩ ∈ g1, a2 = ⟨499, ω+171⟩ ∈ g2 and

a3 = ⟨7, ω+5⟩ ∈ g3 to be a Z-basis. Alternatively, we can replace a2 by a′2 = ⟨43, ω+20⟩ ∈ g2g3

to get another Z-basis. The second collection might be preferable because the norm of a′2 is

significantly smaller than the norm of a2.

Theorem 5.16. Let f be a homological eigenform without inner twists. For any admissible

set {ai | 1 ≤ i ≤ k}, there is a Hecke eigensystem (λ, χ) that matches f such that for all i,

we have λ(ai) =
√
χ(ai)t(ai) .

Proof. Let {ai}ki=1 be an admissible set for f . Let (λ, χ) be the Hecke eigensystem that

matches f . Suppose (ϵi) ∈ {1,−1}k, where λ(ai) = ϵi
√
χ(ai)t(ai). Let ψ be the unique

quadratic character with ψ(ai) = ϵi obtained from Theorem 5.3 for H = ClF . Then the

statement holds for the twist of the system (λ, χ) by ψ.

Now we show that the knowledge of the eigenvalues on an admissible set is sufficient for

computing the Hecke eigenvalues of other ideals using principal Hecke operators.
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Theorem 5.17. Let f be a homological eigenform without inner twists, and let {ai} be an

admissible set. Suppose (λ, χ) is the Hecke eigensystem where λ(ai) =
√
χ(ai)t(ai). Then for

any ideal p, we can compute the Hecke eigenvalue λ(p) from the action of principal Hecke

operators.

Proof. Let (λ, χ) be a Hecke eigensystem that matches f with λ(ai) =
√
χ(ai)t(ai). Note

that since {ai}ki=1 is an admissible set such a Hecke eigensystem exists by Theorem 5.16.

Now for any p, there exists exponents li ∈ {0, 1} such that [p] Cl2F = [
∏k

i=1 a
li
i ] Cl

2
F . Let

I = {i | li ̸= 0}, and set b = p
∏

i∈I ai. Note that [b] ∈ Cl2F , therefore, we can compute the

eigenvalue λ(b) using the action of the principal Hecke operator TbTa,a of f for some a such

that a2b is principal. Now using properties of Hecke eigenvalues, we have

λ(b) = λ(p)λ(
∏
i∈I

ai) = λ(p)
∏
i∈I

λ(ai).

Therefore,

λ(p) =
λ(b)∏

i∈I

√
t(ai)χ(ai)

.

The main takeaway of these results is as follows. If f is a homological modular form

without inner twist with a fixed character χ from the character orbit, then the pairs (ai, λ(ai))

for an admissible set are sufficient to compute all eigenvalues of the system (λ, χ) that matches

f . Thus, the datum {f, χ, {(ai, λ(ai))}} identifies a unique Hecke eigensystem that matches

f .

Remark 5.7. The speed of computing a Hecke operator depends on the number of Hecke

matrices used. To compute λ(p) using the theorem above, we need about

N(p)
k∏

i=1

N(ai) +
k∑

i=1

N(ai)
2 + 2k
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matrices, where k = |ClF /Cl2F |. Alternatively, we can first compute eigenvalues for a

complete list of small norm representatives for ClF and use the representative of the inverse

class of p to compute λ(p). This requires about

N(p)N(aj) +
h∑

i=1

N(ai)
2 + 2k

matrices. If the norm of the ideal p is large, this method might be faster.

5.6 Eigensystems with Inner Twists

In this section, we discuss some aspects of computing Hecke eigensystems with inner twists.

The existence of an inner twists makes the computations over imaginary quadratic fields with

even-order class groups interesting and challenging. One aspect that makes computations

difficult is the non-existence of admissible sets. Therefore, we require more information to

identify a unique Hecke eigensystem that matches a homological eigenform.

First, we discuss a strategy that we use to identify systems with inner twists. This strategy

is the main idea behind Algorithm 5.22. The theory behind the statement was explained

through personal communications with J. Cremona [13].

Suppose (λ, χ) is a Hecke eigensystem that matches the homological eigenform f of level

n. Suppose f has an inner twist by a quadratic character ψ. Then the contribution of f

to the oldspace at level m is equal to #{d | d|(m/n), ψ(d) = 1}. This means that for a set

of prime ideals {ai | 1 ≤ i ≤ k} where {[ai] | 1 ≤ i ≤ k} is a Z-basis for ClF /Cl
2
F , we can

compare the oldform contribution of f to level nai for each ai. If the contribution of f to

the oldspace is one dimensional, then ψ(ai) = −1 and if it is 2-dimensional then ψ(ai) = 1.

Therefore, by Theorem 5.3, we can identify ψ uniquely.

For example, suppose the set of prime ideals {a1, a2, a3} is a basis for ClF /Cl
2
F . The

table 5.1 describes three quadratic characters of ClF .
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Table 5.1. Character values

a1 a2 a3

ψ1 -1 1 1

ψ2 1 -1 1

ψ3 -1 -1 1

If the system has inner twist by ψ1, the old space contribution of f to na1, na2, na3 would

be 1, 2 and 2, respectively. If the system has inner twist by ψ2, the old space contribution of

f to na1, na2, na3 would be 2, 1 and 2, respectively. Finally, if the system has inner twist

by ψ3, the old space contribution of f to na1, na2, na3 would be 1, 1 and 2, respectively.

This means we can identify the inner twist character uniquely by looking at the oldspace

contribution to na1, na2, na3.

Now we discuss how to identify a Hecke eigensystem that matches a homological eigenform

f if the inner twist character ψ is known. By Theorem 5.7, if we can find a Hecke eigensystem

that matches f , then its orbit gives all the eigensystems matching f . However, unlike the

non-twist case, the Hecke eigensystem orbit has strictly fewer than h = #ClF elements.

Theorem 5.18. Let f be a homological eigenform and let (λ, χ) be a Hecke eigensystem that

matches f with an inner twist by a quadratic character ψ. Let H be the subgroup of classes of

Hecke operators in ClF where λ is not identically zero. Then there exists a set of ideals {bi}

such that H/Cl2F = ⟨[bi] Cl2F ⟩ and λ(bi) ̸= 0.

Proof. Since the Hecke eigensystem has a twist by ψ, this means λ cannot be identically zero

on the classes in H. Therefore, we can find some ideal bi with λ(bi) ̸= 0.

Now we show the existence of a Hecke eigensystem with known eigenvalues on a certain

set of ideals satisfying the condition in the Theorem 5.18.

Theorem 5.19. Let f be a homological eigenform with an inner twist by ψ. Let H be the

subgroup of classes [p] of ideals with ψ(p) = 1. Let {bi} such that H/Cl2F = ⟨Cl2F [bi]⟩ and
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t(bi) ̸= 0. Then there is a Hecke eigensystem (λ, χ) that matches f such that for all i, we

have λ(bi) =
√
χ(bi)t(bi).

Proof. The proof is similar to that of Theorem 5.16. We define ϵi to be λ(bi) = ϵi
√
χ(bi)t(bi)

for a basis {bi} of H/Cl2F that satisfies t(bi) ̸= 0 for all i. From Theorem 5.3, we can find a

quadratic character ψ such that the twist of (λ, χ) by ψ desired the property.

Remark 5.8. In contrast to the non-twist case, the quadratic character ψ from Theorem 5.6

is not unique.

Now we show the uniqueness of the eigensystem from Theorem 5.19. In particular, we

show that once eigenvalues for a set of ideals {bi} are computed, then the eigenvalues of any

other ideal are known.

Theorem 5.20. Let f be a homological eigenform with inner twists by ψ. Let {bi} such

that H/Cl2F = ⟨Cl2F [bi]⟩ and t(bi) ̸= 0. Suppose (λ, χ) is the Hecke eigensystem where

λ(bi) =
√
χ(bi)t(bi). Then for any ideal p, we can compute the Hecke eigenvalue λ(p) from

the action of principal Hecke operators.

Proof. If ψ(p) = −1, then λ(p) = 0. On the other hand, if ψ(p) = 1 then [p] ∈ H. Therefore,

for some li ∈ {0, 1} we have [p] Cl2F = [bi]
li Cl2F . Now pblii ∈ Cl2F , so we can compute the

eigenvalue using principal Hecke operators. Then

λ(p) =
λ(pblii )

χ(bi)
√
χ(bi)t(bi)

.

The following example demonstrates this strategy:

Example 5.21. Let f be a homological eigenform over a field F , where

ClF = ⟨g1, g2⟩ ≃ C4 × C4.
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Then ClF /Cl
2
F = ⟨g1Cl2F ⟩ × ⟨g2Cl2F ⟩. Suppose f has inner twist by the quadratic character

ψ : g1 7→ −1, g2 7→ −1. Then

H = {1, g21, g22, g1g2, g21g22, g1g32, g2g31}.

Then H/Cl2F = {Cl2F ,Cl2F (g1g2)}. Let b be an ideal in [g1g2] such that t(b) ̸= 0. This is

possible since any Hecke eigensystem that matches f is not identically zero in [g1g2]. Then

there is a eigensystem (λ, χ) that matches f with λ(b) =
√
χ(b)t(b).

If p is a prime ideal with ψ(p) = −1, then we know λ(p) = 0. On the other hand if

ψ(p) = 1, then [p] ∈ H. Thus, either [p] ∈ Cl2F or [p] ∈ Cl2F [b]. If [p] ∈ Cl2F , we can compute

λ(p) exactly. On the other hand if [p] ∈ Cl2F [b] then [pb] ∈ Cl2F and λ(p) = λ(Tpb)√
χ(b)t(b)

.

Remark 5.9. In the non-twist case, there are 2k systems matching a homological modular

form f with the same character, where k = |ClF /Cl2F |. Therefore, there are k ideals to

pick signs arbitrarily. If the system has inner twists, we only have 2k−1 systems matching a

homological modular form f with the same character. Therefore, we only have k − 1 ideals

to pick signs arbitrarily.

If the imaginary quadratic field has a cyclic class group of even order, the case is much

simpler because there is only one quadratic twist. See 6.10 for an example of such a system.

5.7 Algorithms for Computing Eigensystems

In this section, we give algorithms for computing the Hecke eigensystems attached to Bianchi

modular forms with general class groups.

First, we give an algorithm to check if a homological modular form f has inner twists. If

the class number is odd, there are no quadratic twists. Thus, we only check inner twists for

fields with even class numbers.
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Algorithm 5.22 (Checking inner twists).

Input: Homological eigenform f of level n over the imaginary quadratic field F with even

class number

Output: “True” if f has inner twist or “False” if f does not have inner twists

1. Select a list R of small prime ideal representatives of each class in the class group ClF .

2. Identify a subset {ai} of R whose classes form a Z-basis for ClF /Cl
2
F .

3. For each ai, compute the dimension contribution of f to the oldspace homological

modular forms at level ain. Let I be the set of indices where the oldspace dimension of

f in ain is 1-dimensional.

4. If I is non-empty, output “True”, I else return “False”.

If f is a homological eigenform without an inner twist, we use the following algorithm to

identify a Hecke eigensystem that matches f .

Algorithm 5.23.

Input: Homological eigenform f over the imaginary quadratic field F

Output: List R of ideal representative OF , character χ in the character orbit of f , set of

pairs {[ai, λ(ai)]}

1. Select a list R of small prime ideal representatives of each class in the class group ClF .

2. For each ideal a ∈ R where a2 is principal, compute the Hecke operator Ta,a using Hecke

matrices from Theorem 4.21. Select the character χ such that Ta,af = χ(a)f .

3. Check if inner twist using Algorithm 5.22. If no inner twists, let H = ClF . Otherwise

if f has inner twists by ψ, let H = ker(ψ).

4. Identify a subset {ai} of R whose classes form a Z-basis for H.
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5. Compute t(ai) for each i where t(p) = af (Tp2Ta,a) + N(p).

6. If t(ai) ̸= 0 for each i, return R,χ, set of pairs {[ai,
√
χ(ai)t(ai)]}. Also, return ψ if

the system has inner twists.

7. If t(ai) = 0 for some i, select a different set in step 3 and repeat.

If the Hecke eigenvalues of a full collection of representatives of the class group are known,

then computing the Hecke eigenvalue of another ideal p would simply amount to finding the

representative q for the class [p−1] with λ(q) ̸= 0 and computing the principal Hecke operator

Tpq using Hecke matrices in Theorem 4.20. As this is a speedup especially if the norm of the

prime q is large, we give a grid algorithm to compute the eigenvalues of such a list.

Algorithm 5.24 (Constructing the Grid).

Input: Homological eigenform f over the imaginary quadratic field F without inner twists,

R,χ, set of pairs {[ai, λ(ai)]}

Output: {(p, λ(p)) : p ∈ R}

For each p ∈ R, we do the following:

1. Compute exponents li ∈ {0, 1} such that [p] Cl2F = [
∏k

i=1[a
li
i ] Cl

2
F .

2. Let b = p
∏

li=1 ai. Pick an ideal a such that a2b is a principal ideal. Compute the

principal Hecke operator TbTa,a.

3. Compute λ(p). See proof of Corollary 5.17 for more details.
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Chapter 6: Computational Results

In this chapter, we summarize the results from the implementation of our algorithms to the

imaginary quadratic field F = Q(
√
−17) with the LMFDB label 2.0.68.1, with the ring of

integers OF = Z[ω], where ω =
√
−17. The class group ClF of F is a cyclic group of order 4,

and its unit group is {±1}. The scope of our computation is as follows:

1. We compute the homology H1(X0(n);C) for levels n with norm N(n) < 850.

2. For level n with N(n) ≤ 300, we computed Hecke operators for prime ideals and certain

composite ideals with class in Cl2F with norm less than 100.

3. The space of Bianchi modular forms for levels n with norm N(n) ≤ 200.

In this chapter, we use the notation pp.n to represent a prime ideal with LMFDB label

p.n. Examples of this are given in Table 6.1.

6.1 Voronoi Tessellation

In this section, we state information about the structure of the Voronoi tessellation of the

full modular group GL2(OF ).

There are 12 perfect forms up to GL2(OF ) equivalence. Table 6.2 lists these forms and

the number of minimal vectors. The second column of the table contains [a, b1, b2, c] where

the matrix representation of each form is
(

a b1 + b2ω
b1 − b2ω c

)
.
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Table 6.1. Ideals of OF and their generators

Norm LMFDB Label Generators Symbol

2 2.1 ⟨2, ω + 1⟩ p2.1

3 3.1 ⟨3, ω + 4⟩ p3.1

3 3.2 ⟨3, ω + 2⟩ p3.2

7 7.1 ⟨7, ω + 4⟩ p7.1

7 7.2 ⟨7, ω + 7⟩ p7.2

11 11.1 ⟨11, ω + 4⟩ p11.1

11 11.2 ⟨11, ω + 7⟩ p11.2

13 13.1 ⟨13, ω + 3⟩ p13.1

13 13.2 ⟨13, ω + 10⟩ p13.2

17 17.1 ⟨17, ω⟩ p17.2

23 23.1 ⟨23, ω + 11⟩ p23.1

23 23.2 ⟨23, ω + 12⟩ p23.2

25 25.2 ⟨5⟩ p25.1

31 31.1 ⟨31, ω + 13⟩ p31.1

31 31.2 ⟨31, ω + 18⟩ p31.2

53 53.1 ⟨53, ω + 6⟩ p53.1

53 53.2 ⟨53, ω + 47⟩ p53.2

89 89.1 ⟨89, ω + 28⟩ p89.1

89 89.2 ⟨89, ω + 61⟩ p89.2

63



Table 6.2. Perfect forms up to GL2(OF ) equivalence for the number field F = Q(
√
−17)

[a, b1, b2, c] number of minimal vectors

P1 [5/3,−1/2, 29/102, 1] 6

P2 [19/9,−5/6, 29/102, 1] 4

P3 [13/3,−31/18, 223/306, 25/9] 4

P4 [24/5,−39/20, 137/170, 31/10] 5

P5 [25/12,−7/8, 14/51, 1] 5

P6 [5/3,−11/18, 83/306, 1] 5

P7 [25/12,−41/48, 227/816, 1] 4

P8 [35/8,−85/48, 601/816, 17/6] 4

P9 [7/4,−7/8, 4/17, 1] 6

P10 [13/8,−5/8, 9/34, 1] 4

P11 [5/4,−5/8, 15/68, 1] 9

P12 [1,−1/2, 7/34, 1] 12

Table 6.3 gives the combinatorial type, the face vector of each polytope, and the number

of distinct polytopes of each type observed in the tessellation. The face vector is a tuple of

integers [v, e, f ], where v, e, f are the number of vertices, edges, and faces of each polytope

type respectively.
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Table 6.3. Combinatorial types of polytopes in the Voronoi tessellation for F = Q(
√
−17)

Combinatorial type polytope Face Vector Number of polytopes

Tetrahedron [4, 6, 4] 5

Square Pyramid [5, 8, 5] 3

Triangular Prism [6, 9, 5] 2

Hexagonal Cap [9, 15, 8] 1

Truncated Tetrahedron [12, 18, 8] 1

We list below the 27 vertices of the 12 polytopes:

C1 = [0, 1] C2 = [1, 0] C3 = [1, 1] C4 = [3, w + 1]

C5 = [3, w + 2] C6 = [3, w + 3] C7 = [4, w + 2] C8 = [4, w + 3]

C9 = [4, w + 4] C10 = [5, w + 2] C11 = [5, w + 3] C12 = [−w,−w + 4]

C13 = [−w,−w + 5] C14 = [−w + 2, 4] C15 = [−w + 2, 5] C16 = [−w + 2, 6]

C17 = [−w + 3, 5] C18 = [−w + 3, 6] C19 = [−w + 6, w + 8] C20 = [w + 1, w − 4]

C21 = [w + 1, w − 3] C22 = [w + 2, w − 4] C23 = [w + 2, w − 3] C24 = [w + 2, w − 2]

C25 = [w + 3, w − 2] C26 = [w + 5, 2w − 1] C27 = [2w + 3, 2w − 7]

There are 18 types of edges up to GL2(OF ) equivalence. Thus, these are the generators
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of the homology for the full group GL2(OF ).

E1 = C1C5 E2 = C5C16 E3 = C7C16 E4 = C1C7 E5 = C6C20 E6 = C1C6

E7 = C1C20 E8 = C19C20 E9 = C7C20 E10 = C20C26 E11 = C8C26 E12 = C8C19

E13 = C8C27 E14 = C1C9 E15 = C8C9 E16 = C1C8 E17 = C1C3 E18 = C8C21

There are 29 types of faces. These faces contribute relations in homology.

F1 = C8C26C27 F2 = C1C4C5 F3 = C1C2C3 F4 = C5C6C20

F5 = C1C6C20 F6 = C1C5C20 F7 = C1C5C6 F8 = C16C19C20

F9 = C7C19C20 F10 = C7C16C20 F11 = C7C16C19 F12 = C8C18C21

F13 = C8C20C26 F14 = C8C19C20 F15 = C1C7C8 F16 = C8C19C27

F17 = C1C8C9 F18 = C7C8C20 F19 = C1C6C8 F20 = C8C9C13

F21 = C1C7C20 F22 = C1C8C20 F23 = C1C5C7C16 F24 = C1C3C9C12

F25 = C1C3C8C21 F26 = C1C6C9C13 F27 = C4C5C16C22 F28 = C19C20C26C27

F29 = C1C3C7C11C23C24

6.2 Hecke Eigensystems

In this section, we discuss and provide a detailed example of how to compute Hecke eigensys-

tems matching a homological eigenform f over the imaginary quadratic field F = Q(
√
−17).

The class group ClF of F is a cyclic grop of order 4. Let g be a generator of ClF such

that p3.1 ∈ g, where p3.1 = ⟨3, 4 + ω⟩. The character group is also a cyclic group of order 4.

Let χ1 be the character defined by χ1(g) = i =
√
−1, and let χk denote χk

1. For concreteness,

the character values are given in Table 6.4.

By ClF [2] we denote the order 2 elements in the class group ClF . From Theorem 5.9 and

Remark 5.5, we know computing Ta,a for all a ∈ ClF [2] is sufficient to identify the character

orbit. For the field F , since ClF [2] = {1, g2}, we can use one ideal p ∈ g2 to compute the
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Table 6.4. Characters of the class group of Q(
√
−17)

1 g g2 g3

χ0 1 1 1 1

χ1 1 i 1 −i

χ2 1 −1 1 −1

χ3 1 −i 1 i

character orbit. If λ(Tp,p) = 1 for some Hecke operators Tp,p with p ∈ g2 then χ must be

a character that is trivial on ClF [2]. Thus, χ = χ0 or χ = χ2. On the other hand, if the

eigenvalue for Tp,p for some p ∈ g2 is −1, then χ = χ1 or χ3. To make our computations

simpler, if λ(Tp,p) = 1, we pick χ = χ0 and otherwise pick χ = χ1.

Because ClF /Cl
2
F is generated by gCl2F , the set {q} where q ∈ g and λ(q) ̸= 0 is an

admissible set. Therefore, by computing the Hecke eigenvalue λ(q) for some such ideal q ∈ g,

we can uniquely identify a Hecke eigensystem.

Example 6.1. At level p2.1 = ⟨2, 1 + ω⟩, there is one homological eigenform f2. Since the

homology is one-dimensional, the principal eigenvalues of f2 are rational.

Let p = p13.1 = ⟨13, 3 + ω⟩. Then p ∈ Cl2F , and the eigenvalue of the principal Hecke

operator Tp,p is 1. Therefore, the character orbit of f2 is {χ0, χ2}. Now, we can fix the

character to be χ = χ0 to identify a Hecke eigensystem.

The smallest non-principal prime ideals are the two primes above 3, p3.1 = ⟨3, 4 + ω⟩ ∈ g

and p3.2 = ⟨3, 2 + ω⟩ ∈ g3. The Hecke eigenvalue of the principal Hecke operator Tp3.1p3.2 is

non-zero. This means that the set {p3.1} is an admissible Z-basis for ClF /Cl
2
F . Now we

compute t(p3.1) with Theorem 5.11 and picking λ(p3.1) =
√
t(p3.1) for some a ∈ [p−1]. Note

that χ(p3.1) = 1.

For this example, picking a = p3.2 and using matrices in Theorem 4.23, we get that

λ(Tp23.1Tp3.2,p3.2) = 3. Then we get λ(p3.1) = 2
√
2.
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Table 6.5. Hecke eigensystem representative at level p2.1

prime p3.1 p3.2 p7.1 p7.2 p11.2 p11.1 p13.1 p13.2 p17.1 p23.1 p23.2

class 2 3 1 3 1 3 2 2 0 1 3

f2 2α −2α 0 0 −2α 2α −2 −2 −6 −4α 4α

Now, we can compute all the eigenvalues in this particular system using principal Hecke

operators. For example, for the eigenvalue of p3.2, we only need the principal Hecke operator

Tp3.1p3.2 to compute λ(p3.1p3.2) = −8. Then,

λ(p3.2) =
λ(p3.1p3.2)

λ(p3.2)
=

− 8

2
√
2
= −2

√
2.

With these choices, we get the Hecke eigensystem given the Table 6.5, where α =
√
2.

Now we discuss how to obtain the full space of Bianchi modular forms using homological

eigenforms. Recall from Chapter 5 that we can compute a complete collection of all Hecke

eigensystems that match a homological eigenform f2 by twisting one Hecke eigensystem (λ, χ)

that matches with f2 by the characters of the class group. For the field F = Q(
√
−17), the

characters in consideration are given in Table 6.4. If the homological eigenform f matches

(λ, χ), then the twist orbit

{(λ, χ), (λχ1, χχ2), (λχ2, χ), (λχ3, χχ2)}

gives us all eigensystems matching f2.

Example 6.2. Table 6.5 describes a Hecke eigensystem matching the unique homological

eigenform at level p2.1. This Hecke eigensystem does not have inner twists since we have an

admissible basis for ClF /Cl
2
F . Now we can twist this system by the character of the class

group to obtain the Hecke eigensystems given in Table 6.6, where α =
√
2 and β =

√
−2.
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Table 6.6. Hecke eigensystems at level p2.1

prime p3.1 p3.2 p7.2 p7.1 p11.2 p11.1 p13.2 p13.1 p17.1 p23.1 p23.2 p25.1

class 3 1 1 3 3 1 2 2 0 1 3 0

f2 2α −2α 0 0 −2α 2α −2 −2 −6 −4α 4α 2

f2 ⊗ χ1 2β 2β 0 0 −2β −2β 2 2 −6 4β 4β 2

f2 ⊗ χ2 −2α 2α 0 0 2α −2α −2 −2 −6 4α −4α 2

f2 ⊗ χ3 −2β −2β 0 0 2β 2β 2 2 −6 −4β −4β 2

Note that the twist orbit decomposes into two Galois orbits with the following Galois

alignments:

σ1(f2) = f2 ⊗ χ2 and σ2(f2 ⊗ χ1) = f2 ⊗ χ3,

where σ1 : α 7→ −α and σ2 : β 7→ −β.

Now we give an example of a case where the Galois orbits and twists orbits align exactly.

Example 6.3. At level p23.1 = ⟨9,−1− ω⟩, we observe one homological eigenform. As before,

the principal Hecke operators are rational. Let p = p13.1. The eigenvalue of the principal

Hecke operator Tp,p is −1. Therefore, the character orbit of the homological eigenform is

{χ1, χ3}. Table 6.7 gives a Hecke eigensystem that matches the homological eigenform where

α is a root of x4 + 1.

In this case, we recover all the systems using the action of the Galois group of x4 + 1.

Table 6.8 shows these four systems.

If all the systems in the twist orbit are distinct, as it is in the examples above, the

dimension of the space of Bianchi modular forms is 4 times the dimension of the space of

homological eigenforms. We have non-distinct eigensystems in the twist orbit only when the

69



Table 6.7. Hecke eigensystems at level p23.1

prime p2.1 p3.2 p7.2 p7.1 p11.2 p11.1 p13.2 p13.1 p17.1 p23.1 p23.2 p25.1

class 2 1 1 3 3 1 2 2 0 1 3 0

f9 −α2 2α3 −4α3 2α −3α −6α3 −2α2 2α2 0 4α3 2α 4

Table 6.8. All Hecke eigensystems at level p23.1

prime p2.1 p3.2 p7.2 p7.1 p11.2 p11.1 p13.2 p13.1 p17.1 p23.1 p23.2

class 2 1 1 3 3 1 2 2 0 1 3

f9 −α2 2α3 −4α3 2α −3α −6α3 −2α2 2α2 0 4α3 2α

f9 ⊗ χ1 α2 2α −4α 2α3 −3α3 −6α 2α2 −2α2 0 4α 2α3

f9 ⊗ χ2 −α2 −2α3 4α3 −2α 3α 6α3 −2α2 2α2 0 −4α3 −2α

f9 ⊗ χ3 α2 −2α 4α −2α3 3α3 6α 2α2 −2α2 0 −4α −2α3

homological eigenform has inner twists. In that case, the dimension of the twist orbit will be

2 times the dimension of the homological eigenform. Up to norm 200, the only inner twist

cases observed are at level p62.1. Thus, we can accurately compute the dimension of the space

of Bianchi modular forms up to level norm 200.

6.3 Oldforms and Newforms

From the last section, we saw how to compute the dimension of the space of Bianchi modular

forms. Now we discuss how to identify the space of newforms.

Similar to the classical case, if m divides n then S2(m) ⊂ S2(n). For each divisor d of n/m,
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Table 6.9. Hecke eigensystem at level p22.1

prime p2.1 p3.1 p3.2 p7.2 p7.1 p11.2 p11.1 p13.2 p13.1 p17.1 p23.1 p23.2 multiplicity

class 2 3 1 1 3 3 1 2 2 0 1 3

f4 1 α −α 3α −3α −α α 4 4 6 α −α 1

f2 1 2α −2α 0 0 −2α 2α −2 −2 −6 −4α 4α 2

there is a map S2(m) → S2(n). Therefore, each Hecke eigensystem of level m contributes to

the old space of S2(n) with the multiplicity of the number of divisors of n/m. We can see

this contribution at the homology level as well. However, if the Hecke eigensystem has inner

twists, the dimension of the old space in homology might be lower. See Section 6.8 for more

details.

Example 6.4. At level p22.1, we observe 2 homological eigenforms, one with multiplicity 1

and the other with multiplicity 2. Table 6.9 represents one Hecke eigensystem representative

that matches each homological modular form, where α =
√
2.

Up to the scope of the computation, f2 matches the Hecke eigensystem from level p2.1 as

expected from Atkin Lehner theory.

At level p32.1, the 7 homological eigenforms are given in Table 6.10, where α =
√
2.

The Hecke eigensystem at level p2.1 shows up with multiplicity 3, and the new Hecke

eigensystem for level p22.1 shows up with multiplicity 3 as expected.

The oldform contribution in the homology of the inner twist systems is more subtle.

Suppose f ∈ S2(n) with inner twists by ψ. Then the contribution of f to the homology at

level n is the number of divisor d|(m/n) with ψ(d) = 1. From communications with Cremona,

it was explained that this is due to the image of the adelic analog of the map “multiplication

by d” for ψ(d) = −1. If the system has an inner twist by ψ, then these images will only
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Table 6.10. Hecke eigensystems at level p32.1

prime p3.1 p3.2 p7.2 p7.1 p11.2 p11.1 p13.2 p13.1 p17.1 p23.1 p23.2 multiplicity

class 3 1 1 3 3 1 2 2 0 1 3

f8,1 0 0 −2α 2α −4α 4α −2 −2 −6 2α −2α 1

f8,2 2 −2 −2 2 2 −2 2 2 2 6 −6 1

f4 α −α 3α −3α −α α 4 4 6 α −α 2

f2 2α −2α 0 0 −2α 2α −2 −2 −6 −4α 4α 3

be supported on non-principal classes. Hence, we cannot observe them in homology. The

following example demonstrates this phenomenon:

Example 6.5. At the levels p22.1p3.1 and p22.1p3.2, there are 80 homological eigenforms. All

homological eigenforms, except the two from level p62.1, do not have any inner twist. Therefore,

the size of the twist orbit of each of these 78 homological eigenform is 4. The two homological

eigenforms from level p62.1 each only have an orbit of size 2. Thus, the total number of Hecke

eigensystems coming from the twist orbits of homological eigenforms is 316.

Now, we look at the oldspace contributions to level p62.1p3.1 from the Bianchi modular

forms. This is given in the table below: From this we can see that the total dimension of the

space of Bianchi modular forms is 320. This means that the homology is missing 4 Hecke

eigensystems. These four “missing” systems are the ones that are supported on non-principal

components. These are coming from the image of the map “multiplication by p3.1” on the

four inner twist eigensystems at level p62.1.
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Table 6.11. Oldspace dimensions at level p62.1p3.1

level d dnew Multiplicity χ0 χ1 χ2 χ3

p2.1 4 4 12 2 0 2 0

p22.1 12 4 10 2 0 2 0

p32.1 28 8 8 4 0 4 0

p42.1 60 16 6 0 8 0 8

p62.1 144 20 2 5 5 5 5

p22.1p3.1 28 4 5 0 2 0 2

p42.1p3.1 136 4 3 2 0 2 0

p62.1p3.1 92 68 92 68

6.4 Dimension Tables

In this section, we provide tables of dimensions of the space of Bianchi modular forms and

spaces of newforms up to level norm 200.

The columns of Tables 6.13 and Table 6.14 give the following information. The first

column of these tables represents the LMFDB label of ideal n. The second column is the total

dimension d of the cuspidal space. The third column specifies the dimension of new space dnew.

The fourth column is a pair [t, n] where t represents the number of Hecke eigensystems with

character orbit {χ0, χ2} and n represents the number of Hecke eigensystems with character

{χ1, χ3}. We indicate the level with Hecke eigensystems with an inner twist with an asterisk.

For example, the column corresponding to level p16.1 is given below. The dimension of

the Bianchi modular forms space at this level is 60 with 16 eigensystems that are new. Since

[t, n] = [0, 16], all 16 Hecke eigensystems had character either χ1 or χ3.
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Table 6.12. Excerpt of Table 6.13

n d dnew [t, n]
16.1 60 16 [0, 16]

Remark 6.1. From the independent work of Cremona, dimension tables are available for

the field Q(
√
−17) in LMFDB up to level norm bound 1000. With a careful analysis, we

confirmed these agreed with our computations up to level norm 200. For all levels in this

range, the newspace dimensions from the LMFBD tables are always half the number t in the

pair [n, t] on Tables 6.13 through Table 6.17. For example, from our tables the dimension of

the total cuspidal space at level p33.1, the pair [t, n] = [4, 16]. This means the newspace at this

level has 4 Hecke eigensystems with character χ0 or χ2. Therefore, the new space dimension

in LMFDB tables for this level is 2. Since our table does not explicitly state character details

for oldspaces, direct comparisons are not possible. However, since oldform contributions are

well understood, one can compute and verify the data in these tables.

6.5 Newform Tables

In this section, we provide tables with information about levels containing newforms.

The first four columns have the same format as in the dimension Tables 6.13 and 6.14.

Note that on each row t+ n = dnew. The fifth column gives information about the restriction

of Hecke eigensystems to the principal component. The sixth column gives information about

the Hecke field of the Hecke eigensystem. The entries in both columns are sequences of pairs

of integers. The first entry of a pair corresponds to the degree of the Hecke field and the

second to the total number of systems over the Hecke field. The number of such pairs gives

the number of distinct Hecke fields observed at each level.

For example, the row corresponding to the level p16.1 is given below.
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Table 6.13. Dimension tables for levels 0 ≤ N(n) ≤ 200

n d dnew [t, n]

1.1 0 0 [0, 0]

2.1 4 4 [4, 0]

3.2 0 0 [0, 0]

3.1 0 0 [0, 0]

4.1 12 4 [4, 0]

6.2 8 0 [0, 0]

6.1 8 0 [0, 0]

7.1 4 4 [4, 0]

7.2 4 4 [4, 0]

8.1 28 8 [8, 0]

9.1 4 4 [0, 4]

9.3 4 4 [0, 4]

9.2 8 8 [8, 0]

11.2 0 0 [0, 0]

11.1 0 0 [0, 0]

12.1 28 4 [0, 4]

12.2 28 4 [0, 4]

13.2 0 0 [0, 0]

13.1 0 0 [0, 0]

14.2 16 0 [0, 0]

14.1 16 0 [0, 0]

n d dnew [t, n]

16.1 60 16 [0, 16]

17.1 4 4 [4, 0]

18.3 20 0 [0, 0]

18.1 20 0 [0, 0]

18.2 36 4 [4, 0]

21.1 12 4 [4, 0]

21.4 12 4 [4, 0]

21.3 8 0 [0, 0]

21.2 8 0 [0, 0]

22.2 8 0 [0, 0]

22.1 8 0 [0, 0]

23.1 0 0 [0, 0]

23.2 0 0 [0, 0]

24.1 64 0 [0, 0]

24.2 64 0 [0, 0]

25.1 12 12 [12, 0]

26.2 12 4 [0, 4]

26.1 12 4 [0, 4]

27.4 8 0 [0, 0]

27.2 44 20 [4, 16]

27.1 8 0 [0, 0]

n d dnew [t, n]

27.3 44 20 [4, 16]

28.2 36 0 [0, 0]

28.1 36 0 [0, 0]

31.2 0 0 [0, 0]

31.1 0 0 [0, 0]

32.1 92 0 [0, 0]

33.2 0 0 [0, 0]

33.1 0 0 [0, 0]

33.3 0 0 [0, 0]

33.4 0 0 [0, 0]

34.1 20 4 [4, 0]

36.3 60 4 [4, 0]

36.2 100 4 [4, 0]

36.1 60 4 [4, 0]

39.1 0 0 [0, 0]

39.4 0 0 [0, 0]

39.3 0 0 [0, 0]

39.2 0 0 [0, 0]

42.1 40 0 [0, 0]

42.4 40 0 [0, 0]

42.3 40 8 [4, 4]
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Table 6.14. Dimension tables for levels 0 ≤ N(n) ≤ 200 (continued)

n d dnew [t, n]

42.2 40 8 [4, 4]

44.1 24 0 [0, 0]

44.2 24 0 [0, 0]

46.2 8 0 [0, 0]

46.1 8 0 [0, 0]

48.1 136 4 [4, 0]

48.2 136 4 [4, 0]

49.3 12 4 [4, 0]

49.2 36 20 [20, 0]

49.1 12 4 [4, 0]

50.1 44 12 [12, 0]

51.1 8 0 [0, 0]

51.2 8 0 [0, 0]

52.1 32 0 [0, 0]

52.2 32 0 [0, 0]

53.1 0 0 [0, 0]

53.2 0 0 [0, 0]

54.4 32 0 [0, 0]

54.2 120 0 [0, 0]

54.3 120 0 [0, 0]

54.1 32 0 [0, 0]

n d dnew [t, n]

56.2 72 0 [0, 0]

56.1 72 0 [0, 0]

62.2 12 4 [4, 0]

62.1 12 4 [4, 0]

63.6 36 8 [0, 8]

63.3 40 0 [0, 0]

63.2 20 0 [0, 0]

63.1 36 8 [0, 8]

63.5 20 0 [0, 0]

63.4 40 0 [0, 0]

64.1∗ 144 20 [10, 10]

66.1 20 4 [4, 0]

66.2 28 12 [0, 12]

66.4 20 4 [4, 0]

66.3 28 12 [0, 12]

68.1 52 8 [8, 0]

69.1 0 0 [0, 0]

69.2 0 0 [0, 0]

69.4 0 0 [0, 0]

69.3 0 0 [0, 0]

71.1 0 0 [0, 0]

n d dnew [t, n]

71.2 0 0 [0, 0]

72.3 124 0 [0, 0]

72.1 124 0 [0, 0]

72.2 220 24 [24, 0]

75.2 24 0 [0, 0]

75.1 24 0 [0, 0]

77.1 8 0 [0, 0]

77.3 8 0 [0, 0]

77.4 8 0 [0, 0]

77.2 8 0 [0, 0]

78.1 24 0 [0, 0]

78.3 44 20 [4, 16]

78.4 24 0 [0, 0]

78.2 44 20 [4, 16]

79.1 0 0 [0, 0]

79.2 0 0 [0, 0]

81.3 164 28 [12, 16]

81.1 12 0 [0, 0]

81.4 80 0 [0, 0]

81.2 80 0 [0, 0]

81.5 12 0 [0, 0]
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Table 6.15. Dimension tables for levels 0 ≤ N(n) ≤ 200 (continued)

n d dnew [t, n]

84.4 92 0 [0, 0]

84.1 92 0 [0, 0]

84.3 96 0 [0, 0]

84.2 96 0 [0, 0]

88.2 56 0 [0, 0]

88.1 56 0 [0, 0]

89.1 0 0 [0, 0]

89.2 0 0 [0, 0]

91.3 8 0 [0, 0]

91.2 8 0 [0, 0]

91.4 8 0 [0, 0]

91.1 8 0 [0, 0]

92.2 24 0 [0, 0]

92.1 24 0 [0, 0]

93.1 0 0 [0, 0]

93.3 8 8 [4, 4]

93.2 8 8 [4, 4]

93.4 0 0 [0, 0]

96.1 208 0 [0, 0]

96.2 208 0 [0, 0]

98.2 116 28 [28, 0]

n d dnew [t, n]

98.3 40 4 [4, 0]

98.1 40 4 [4, 0]

99.2 8 0 [0, 0]

99.5 8 0 [0, 0]

99.4 32 16 [0, 16]

99.3 32 16 [0, 16]

99.1 8 0 [0, 0]

99.6 8 0 [0, 0]

100.1 100 16 [16, 0]

101.2 0 0 [0, 0]

101.1 0 0 [0, 0]

102.1 40 0 [0, 0]

102.2 40 0 [0, 0]

104.2 72 4 [4, 0]

104.1 72 4 [4, 0]

106.1 12 4 [0, 4]

106.2 12 4 [0, 4]

107.1 0 0 [0, 0]

107.2 0 0 [0, 0]

108.2 280 16 [12, 4]

108.3 280 16 [12, 4]

n d dnew [t, n]

108.4 92 0 [0, 0]

108.1 92 0 [0, 0]

112.1 144 4 [0, 4]

112.2 144 4 [0, 4]

117.5 8 0 [0, 0]

117.2 8 0 [0, 0]

117.4 16 0 [0, 0]

117.1 8 0 [0, 0]

117.3 16 0 [0, 0]

117.6 8 0 [0, 0]

119.2 16 0 [0, 0]

119.1 16 0 [0, 0]

121.2 36 36 [36, 0]

121.3 4 4 [0, 4]

121.1 4 4 [0, 4]

124.2 32 0 [0, 0]

124.1 32 0 [0, 0]

126.4 136 0 [0, 0]

126.2 80 0 [0, 0]

126.3 136 0 [0, 0]

126.5 80 0 [0, 0]
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Table 6.16. Dimension tables for levels 0 ≤ N(n) ≤ 200 (continued)

n d dnew [t, n]

126.1 108 12 [4, 8]

126.6 108 12 [4, 8]

128.1 196 0 [0, 0]

131.2 0 0 [0, 0]

131.1 0 0 [0, 0]

132.1 64 0 [0, 0]

132.3 80 0 [0, 0]

132.4 64 0 [0, 0]

132.2 80 0 [0, 0]

136.1 140 40 [24, 16]

137.2 0 0 [0, 0]

137.1 0 0 [0, 0]

138.3 20 4 [0, 4]

138.4 16 0 [0, 0]

138.1 16 0 [0, 0]

138.2 20 4 [0, 4]

139.1 0 0 [0, 0]

139.2 0 0 [0, 0]

142.1 8 0 [0, 0]

142.2 8 0 [0, 0]

143.1 0 0 [0, 0]

n d dnew [t, n]

143.4 0 0 [0, 0]

143.3 0 0 [0, 0]

143.2 0 0 [0, 0]

144.3 252 8 [4, 4]

144.2 460 40 [0, 40]

144.1 252 8 [4, 4]

147.6 40 8 [8, 0]

147.5 80 0 [0, 0]

147.2 80 0 [0, 0]

147.4 24 0 [0, 0]

147.1 40 8 [8, 0]

147.3 24 0 [0, 0]

149.2 0 0 [0, 0]

149.1 0 0 [0, 0]

150.1 92 4 [4, 0]

150.2 92 4 [4, 0]

153.1 20 0 [0, 0]

153.3 20 0 [0, 0]

153.2 44 12 [12, 0]

154.2 32 0 [0, 0]

154.4 32 0 [0, 0]

n d dnew [t, n]

154.3 32 0 [0, 0]

154.1 32 0 [0, 0]

156.3 112 0 [0, 0]

156.1 72 0 [0, 0]

156.2 112 0 [0, 0]

156.4 72 0 [0, 0]

157.2 0 0 [0, 0]

157.1 0 0 [0, 0]

158.1 8 0 [0, 0]

158.2 8 0 [0, 0]

159.3 4 4 [4, 0]

159.4 0 0 [0, 0]

159.1 0 0 [0, 0]

159.2 4 4 [4, 0]

161.4 8 0 [0, 0]

161.3 12 4 [4, 0]

161.1 8 0 [0, 0]

161.2 12 4 [4, 0]

162.5 60 16 [8, 8]

162.2 212 8 [4, 4]

162.1 60 16 [8, 8]
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Table 6.17. Dimension tables for levels 0 ≤ N(n) ≤ 200 (continued)

n d dnew [t, n]

162.4 212 8 [4, 4]

162.3 396 16 [16, 0]

163.1 0 0 [0, 0]

163.2 0 0 [0, 0]

167.2 0 0 [0, 0]

167.1 0 0 [0, 0]

168.4 184 8 [4, 4]

168.1 184 8 [4, 4]

168.2 184 0 [0, 0]

168.3 184 0 [0, 0]

169.2 36 36 [36, 0]

169.1 0 0 [0, 0]

169.3 0 0 [0, 0]

175.2 32 0 [0, 0]

175.1 32 0 [0, 0]

176.2 120 0 [0, 0]

176.1 120 0 [0, 0]

178.2 24 16 [4, 12]

178.1 24 16 [4, 12]

182.4 40 0 [0, 0]

182.1 40 0 [0, 0]

n d dnew [t, n]

182.3 40 0 [0, 0]

182.2 40 0 [0, 0]

184.1 56 0 [0, 0]

184.2 56 0 [0, 0]

186.1 28 4 [0, 4]

186.3 40 0 [0, 0]

186.4 28 4 [0, 4]

186.2 40 0 [0, 0]

187.2 8 0 [0, 0]

187.1 8 0 [0, 0]

189.4 132 8 [0, 8]

189.6 144 0 [0, 0]

189.1 60 0 [0, 0]

189.8 60 0 [0, 0]

189.5 132 8 [0, 8]

189.7 32 0 [0, 0]

189.2 32 0 [0, 0]

189.3 144 0 [0, 0]

192.1∗ 320 0 [0, 0]

192.2∗ 320 0 [0, 0]

196.3 84 4 [0, 4]

n d dnew [t, n]

196.2 228 16 [16, 0]

196.1 84 4 [0, 4]

198.4 144 8 [0, 8]

198.6 48 0 [0, 0]

198.1 48 0 [0, 0]

198.3 144 8 [0, 8]

198.2 84 20 [12, 8]

198.5 84 20 [12, 8]

199.1 0 0 [0, 0]

199.2 0 0 [0, 0]

200.1 244 72 [40, 32]
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Table 6.18. Excerpt of Table 6.19

n d dnew [t, n] principal full
16.1 60 16 [0, 16] [1, 16] [2, 8], [4, 4], [4, 4]

This means all of the 16 Hecke eigensystems are rational when restricted to the principal

component. Hence, we only observe one new homological eigenform at this level. The full

eigensystems come from two different Hecke fields. There are 8 Hecke eigensystem systems

over the degree two fields Q(i). There are four Hecke eigensystem with Hecke field Q(ζ8)

where ζ8 is a primitive 8th root of unity (4.0.256.1), and the other four are over the field

Q(ζ12), where ζ12 is a primitive 12th root of unity (4.0.144.1). Note that this means the

Galois conjugates Hecke eigensystem over the degree 2 field and their twists are all different

eigensystems. However, the Galois conjugate and twists of the two eigensystems align with

each other.

6.6 Base Change

According to [8], a Hecke eigensystem over an imaginary quadratic field F is base change of

a classical modular form f ∈ S2(N,ψ) if the eigenvalues satisfy the following properties:

1. If p is split and p = pp, then λ(p) = λ(p) = ap;

2. If p is inert, then λ(p) = a2p − 2ψ(p)p;

3. If p is ramified and if (p) = p2, then λ(p) = ap,

where ap is the Hecke eigenvalue of f at p.

Remark 6.2. A special case of base change can happen if level n is Galois stable. If f is

a homological eigenform of level n that matches (λ, χ) then by f̄ we mean the conjugate
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Table 6.19. Newforms space 0 ≤ N(n) ≤ 200

n d n [t, n] principal full

2.1 4 4 [4, 0] [1, 4] [2, 2], [2, 2]

4.1 12 4 [4, 0] [1, 4] [2, 2], [2, 2]

7.1 4 4 [4, 0] [1, 4] [1, 2], [2, 2]

7.2 4 4 [4, 0] [1, 4] [1, 2], [2, 2]

8.1 28 8 [8, 0] [1, 8] [1, 2], [2, 2], [2, 2], [2, 2]

9.1 4 4 [0, 4] [1, 4] [4, 4]

9.3 4 4 [0, 4] [1, 4] [2, 4]

9.2 8 8 [8, 0] [1, 8] [1, 4], [2, 4]

12.1 28 4 [0, 4] [1, 4] [4, 4]

12.2 28 4 [0, 4] [1, 4] [4, 4]

16.1 60 16 [0, 16] [1, 16] [2, 8], [4, 4], [4, 4]

17.1 4 4 [4, 0] [1, 4] [1, 2], [2, 2]

18.2 36 4 [4, 0] [1, 4] [1, 2], [2, 2]

21.1 12 4 [4, 0] [1, 4] [1, 2], [2, 2]

21.4 12 4 [4, 0] [1, 4] [1, 2], [2, 2]

25.1 12 12 [12, 0] [3, 12] [3, 6], [6, 6]

26.2 12 4 [0, 4] [1, 4] [4, 4]

26.1 12 4 [0, 4] [1, 4] [2, 4]

27.2 44 20 [4, 16] [1, 4], [4, 16] [1, 2], [2, 2], [16, 16]

27.3 44 20 [4, 16] [1, 4], [4, 16] [1, 2], [2, 2], [16, 16]

34.1 20 4 [4, 0] [1, 4] [1, 2], [2, 2]
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Table 6.20. Newforms space 0 ≤ N(n) ≤ 200 (continued)

n d n [t, n] principal full

36.3 60 4 [4, 0] [1, 4] [1, 4]

36.2 100 4 [4, 0] [1, 4] [1, 2], [2, 2]

36.1 60 4 [4, 0] [1, 4] [2, 2], [2, 2]

42.3 40 8 [4, 4] [1, 4], [2, 4] [1, 2], [2, 2], [4, 4]

42.2 40 8 [4, 4] [1, 4], [2, 4] [1, 2], [2, 2], [4, 4]

48.1 136 4 [4, 0] [1, 4] [1, 2], [2, 2]

48.2 136 4 [4, 0] [1, 4] [1, 2], [2, 2]

49.3 12 4 [4, 0] [1, 4] [2, 2], [2, 2]

49.2 36 20 [20, 0] [5, 10], [5, 10] [5, 10], [10, 10]

49.1 12 4 [4, 0] [1, 4] [2, 2], [2, 2]

50.1 44 12 [12, 0] [1, 12] [1, 6], [2, 6]

62.2 12 4 [4, 0] [1, 4] [1, 2], [2, 2]

62.1 12 4 [4, 0] [1, 4] [1, 2], [2, 2]

63.6 36 8 [0, 8] [2, 8] [4, 4], [4, 4]

63.1 36 8 [0, 8] [2, 8] [4, 8]

64.1∗ 144 20 [10, 10] [1, 4], [2, 16] [1, 2], [2, 2], [2, 8], [4, 8]

66.1 20 4 [4, 0] [1, 4] [1, 2], [2, 2]

66.2 28 12 [0, 12] [1, 4], [2, 8] [4, 4], [8, 8]

66.4 20 4 [4, 0] [1, 4] [1, 2], [2, 2]

66.3 28 12 [0, 12] [1, 4], [2, 8] [2, 4], [4, 8]

68.1 52 8 [8, 0] [2, 8] [2, 4], [4, 4]
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Table 6.21. Newforms space 0 ≤ N(n) ≤ 200 (continued)

n d n [t, n] principal full

72.2 220 24 [24, 0] [1, 4], [2, 4], [2, 4], [3, 12] [1, 2], [2, 2], [2, 4], [3, 6], [4, 4], [6, 6]

78.3 44 20 [4, 16] [1, 4], [4, 16] [1, 4], [8, 16]

78.2 44 20 [4, 16] [1, 4], [4, 16] [1, 2], [2, 2], [16, 16]

81.3 164 28 [12, 16] [1, 12], [2, 8], [2, 8] [1, 4], [2, 2], [2, 2], [2, 4], [4, 8], [8, 8]

93.3 8 8 [4, 4] [1, 4], [2, 4] [1, 2], [2, 2], [4, 4]

93.2 8 8 [4, 4] [1, 4], [2, 4] [1, 2], [2, 2], [4, 4]

98.2 116 28 [28, 0] [1, 8], [2, 8], [3, 12] [1, 6], [2, 2], [2, 4], [3, 6], [4, 4], [6, 6]

98.3 40 4 [4, 0] [1, 4] [2, 2], [2, 2]

98.1 40 4 [4, 0] [1, 4] [2, 2], [2, 2]

99.4 32 16 [0, 16] [1, 4], [3, 12] [2, 4], [6, 12]

99.3 32 16 [0, 16] [2, 4], [6, 12] [4, 4], [12, 12]

100.1 100 16 [16, 0] [1, 4], [3, 6], [3, 6] [1, 2], [2, 2], [3, 6], [6, 6]

104.2 72 4 [4, 0] [1, 4] [2, 2], [2, 2]

104.1 72 4 [4, 0] [1, 4] [2, 2], [2, 2]

106.1 12 4 [0, 4] [2, 4] [4, 4]

106.2 12 4 [0, 4] [2, 4] [4, 4]

108.2 280 16 [12, 4] [1, 8], [2, 8] [1, 2], [2, 2], [2, 4], [4, 4], [4, 4]

108.3 280 16 [12, 4] [1, 8], [2, 8] [1, 2], [2, 4], [2, 6], [4, 4]

112.1 144 4 [0, 4] [2, 4] [4, 4]

112.2 144 4 [0, 4] [2, 4] [4, 4]

121.2 36 36 [36, 0] [1, 4], [8, 32] [1, 2], [2, 2], [8, 16], [16, 16]
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Table 6.22. Newforms space 0 ≤ N(n) ≤ 200 (continued)

n d n [t, n] principal full

121.3 4 4 [0, 4] [2, 4] [4, 4]

121.1 4 4 [0, 4] [2, 4] [4, 4]

126.1 108 12 [4, 8] [1, 4], [2, 8] [1, 2], [2, 2], [4, 4], [4, 4]

126.6 108 12 [4, 8] [1, 4], [2, 8] [1, 2], [2, 2], [4, 4], [4, 4]

136.1 140 40 [24, 16] [1, 8], [2, 8], [2, 8], [1, 4], [2, 4], [2, 4], [2, 4], [4, 4],

[4, 16] [4, 4], [8, 16]

138.3 20 4 [0, 4] [2, 4] [4, 4]

138.2 20 4 [0, 4] [2, 4] [4, 4]

144.3 252 8 [4, 4] [1, 4], [2, 4] [2, 2], [2, 2], [4, 4]

144.2 460 40 [0, 40] [1, 20], [2, 8], [3, 12] [2, 4], [4, 4], [4, 4], [4, 8], [8, 8], [12, 12]

144.1 252 8 [4, 4] [1, 8] [2, 2], [2, 2], [4, 4]

147.6 40 8 [8, 0] [1, 8] [1, 4], [2, 4]

147.1 40 8 [8, 0] [1, 8] [1, 4], [2, 4]

150.1 92 4 [4, 0] [1, 4] [1, 2], [2, 2]

150.2 92 4 [4, 0] [1, 4] [1, 2], [2, 2]

153.2 44 12 [12, 0] [1, 4], [2, 4], [2, 4] [1, 2], [2, 2], [2, 4], [4, 4]

159.3 4 4 [4, 0] [1, 4] [1, 2], [2, 2]

159.2 4 4 [4, 0] [1, 4] [1, 2], [2, 2]

161.3 12 4 [4, 0] [1, 4] [1, 2], [2, 2]

161.2 12 4 [4, 0] [1, 4] [1, 2], [2, 2]

162.5 60 16 [8, 8] [2, 4], [2, 4], [2, 8] [4, 4], [4, 4], [4, 4], [4, 4]

162.2 212 8 [4, 4] [1, 8] [1, 2], [2, 2], [4, 4]
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Table 6.23. Newforms space 0 ≤ N(n) ≤ 200 (continued)

n d n [t, n] principal full

162.1 60 16 [8, 8] [2, 4], [2, 4], [2, 8] [4, 4], [4, 4], [4, 4], [4, 4]

162.4 212 8 [4, 4] [1, 8] [1, 2], [2, 2], [4, 4]

162.3 396 16 [16, 0] [1, 16] [1, 2], [2, 2], [2, 6], [2, 6]

168.4 184 8 [4, 4] [1, 4], [2, 4] [1, 2], [2, 2], [4, 4]

168.1 184 8 [4, 4] [1, 4], [2, 4] [1, 2], [2, 2], [4, 4]

169.2 36 36 [36, 0] [1, 4], [2, 8], [1, 2], [2, 2], [4, 4], [4, 4],

[3, 12], [3, 12] [6, 6], [6, 6], [6, 6], [6, 6]

178.2 24 16 [4, 12] [1, 16] [1, 2], [2, 10], [4, 4]

178.1 24 16 [4, 12] [1, 16] [1, 2], [2, 14]

186.1 28 4 [0, 4] [2, 4] [4, 4]

186.4 28 4 [0, 4] [2, 4] [4, 4]

189.4 132 8 [0, 8] [1, 8] [4, 4], [4, 4]

189.5 132 8 [0, 8] [1, 8] [4, 4], [4, 4]

196.3 84 4 [0, 4] [2, 4] [4, 4]

196.2 228 16 [16, 0] [4, 16] [4, 8], [8, 8]

196.1 84 4 [0, 4] [2, 4] [4, 4]

198.4 144 8 [0, 8] [1, 8] [2, 8]

198.3 144 8 [0, 8] [1, 8] [2, 8]

198.2 84 20 [12, 8] [1, 8], [3, 6], [3, 6] [2, 8], [3, 6], [6, 6]

198.5 84 20 [12, 8] [1, 8], [3, 6], [3, 6] [2, 8], [3, 6], [6, 6]

200.1 244 72 [40, 32] [1, 16], [3, 6], [3, 18], [1, 10], [2, 6], [4, 8], [4, 8], [6, 6],

[4, 8], [4, 8], [4, 8], [4, 8] [6, 6], [6, 6], [6, 6], [8, 8], [8, 8]
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eigenform that matches a conjugate system denoted by (λ̄, χ̄) satisfying

λ̄(p) = λ(p̄) and χ̄(p) = χ(p̄).

Here the level of the conjugate form f̄ is n̄. If the level is Galois stable, that is if n̄ = n,

then the forms f and f̄ will have the same level. Further, if the eigenspace of f is one

dimensional, then f = f̄ . Then there is an eigensystem that matches f with the property

λ(p) = λ(p̄) and χ(p) = χ(p̄).

Then this system (λ, χ) is base change.

Example 6.6. The level p17.1 = ⟨17, ω⟩ is a Galois stable level with a one-dimensional

homological eigensystem as described in the remark above. Thus, we expect a Hecke

eigensystem that matches the homological eigenform to come from base change. The following

table represents such a Hecke eigensystem:

Table 6.24. Hecke eigensystem at level p17.1

prime p2.1 p3.1 p3.2 p7.2 p7.1 p11.2 p11.1 p13.2 p13.1 p17.1 p23.1 p23.2 p25.1

class 2 3 1 1 3 3 1 2 2 0 1 3 0

−1 0 0 −4 −4 0 0 −2 −2 ∗ −4 −4 −6

This system matches the point counts of the following rational elliptic curve

E : y2 = x3 − 11x+ 6

with LMFDB label 17.a. Thus, this system is a base change of the classical newform at level
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17 with trivial character (17.2.a.a).

Example 6.7. At level p17.1p22.1, there are two new homological eigenforms. Table 6.25 gives

two Hecke eigensystems that match these eigenforms where α =
√
3.

Table 6.25. Hecke eigensystem at level p17.1p22.1

prime p3.1 p3.2 p7.1 p7.2 p11.2 p11.1 p13.1 p13.2 p23.1

class 3 1 3 1 3 1 2 2 1

g1 α + 1 α + 1 −α− 1 −α− 1 α− 3 α− 3 2α + 2 2α + 2 α− 3

g2 −α− 1 −α− 1 α + 1 α + 1 −α + 3 −α + 3 2α + 2 2α + 2 −α + 3

Both systems are one-dimensional in homology, so we expect the systems to come from

base change.

From the data available on LMFDB, we find that the base change of a newform with

level 68 with trivial character (68.2.a.a) matches g1, and the base change of the a newform

with level 272 with trivial character (272.2.a.e) matches with g2 up to the scope of our

computation.

We also observe that the two systems have the following agreement:

g2 = σ(g1)⊗ χ2,

where σ : α 7→ −α. On the classical modular forms side, we see similar symmetry. The

classical modular form with LMFDB label 272.2.a.e is a twist of the form with LMFDB label

68.2.a.a by the quadratic Dirichlet character with conductor 4 and LMFBD label 4b.

We also observe Hecke eigensystem (λ, χ) with the property λ(p) = ±λ(p̄) on split primes.

Thus, finding a character ψ might be possible such that the twisted system (λψ, χψ2) is base
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change. We call such a system a twisted base change. The following is a detailed example

that demonstrates this phenomenon.

Example 6.8. We observe one homological eigenform at level p2.1 = ⟨2, ω + 1⟩. The system

f2 given in Table 6.5 is not base change because the eigenvalues on conjugate primes are

different. However, the two twists f2 ⊗ χ1 and f2 ⊗ χ3 given in Table 6.6 agree on conjugate

primes. Thus, the eigensystems f2 ⊗ χ1 and f2 ⊗ χ3 are potentially base change of a classical

newform.

On split primes, the Hecke eigensystem f2 ⊗ χ1 agrees exactly with the classical newform

at level 34 with a quadratic Dirichlet character ψ of conductor 34 (34.2.b.a). On inert prime,

we have the following relationship.

Table 6.26. Hecke eigenvalues of the system f2 ⊗ χ1 at inert primes

p 5 19 43 59

ψ(p) −1 1 1 1

ap −2
√
−2 −4 −4 12

ap = a2p − 2ψ(p)p 2 −22 −70 26

Thus the system f2 ⊗ χ1 agrees with the base change of the classical modular newform

mentioned above for the scope of our computations.

Further, the L-function attached to this Hecke eigensystem f2 matches the L-function of

the Hilbert cusp form with LMFDB label 2.2.17.1-32.3-a for the scope of the computation.

This Hilbert modular form matches with the isogeny classes of two the elliptic curve of

conductor 32 over Q(
√
17) (32.3a, 32.4a). These objects have the degree 4 L-function with

conductor 9248 (4-9248-1.1-c1e2-0-2).

Another example of twisted base change can be found in Section 6.8.
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CMF 34.2.b.a with character 34.b

base change to Q(
√
−17)

BMF f2 ⊗ χ1 at level p2.1

χ1

base change to Q(
√
17)

HMF 2.2.17.1-4.1-a

ψ

BMF f2 at level p2.1 HMF 2.2.17.1-32.3-a
L-function

Figure 6.1. Conjectural connections at level p17.1

6.7 Elliptic Curves

From the proof of the Shimura-Taniyama-Weil conjecture by Bruiel, Conrad, Diamond,

Taylor, and Wiles [4, 38], we know that rational elliptic curves are modular. Explicitly, this

means that there is a rational newform f of weight 2 over the level equal to the conductor of

the elliptic curve that has the same L-function. It is of interest to understand if and when

there is such a relationship between elliptic curves over other number fields. By the work

of Dieulefait, Guerberoff, and Pacetti [17], we have an algorithm to prove modularity for a

given elliptic curve over an imaginary quadratic field. They also provide some of the first

known examples of modular elliptic curves over an imaginary quadratic field that are not

base change of an elliptic curve over Q. In this section, we add to this work by proving the

modularity of several elliptic curves over F = Q(
√
−17). To our knowledge, these are the

first explicit examples of modular elliptic curves over number fields with the class number 4.

Example 6.9. Here we show how we use the algorithm given in [17] to prove the modularity

of the elliptic curve,

E : y2 = x3 + (−11664ω − 23355)x+ (−1714608ω − 256662)
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with conductor p7.1 = ⟨7, 5 + ω⟩.

At level p7.1, there is one homological eigenform. The following table represents one Hecke

eigensystem that matches it.

Table 6.27. Hecke eigensystem at level p7.1

p2.1 p3.1 p3.2 p7.2 p7.1 p11.2 p11.1 p13.2 p13.1 p17.1 p23.1 p23.2 p25.1 field

class 2 3 1 1 3 3 1 2 2 0 1 3 0

−1 −2 −2 0 1 −6 2 −2 6 −2 8 0 −2 x− 1

Now we explain the details of using the algorithm [17, Algorithm 2.2] to show that the

above system matches the elliptic curve.

1. First we chose primes ideal, p1 = p2.1 and p2 = p3.1. The root of characteristic

polynomial of Frobpi , αpi and βpi satisfy αpi + βpi ≠ 0. Also, 2 in the extension Q[αpi ]

has inertia degree 1 as needed. At these primes, the trace of E is equal to the Hecke

Eigenvalues:

a(p2.1) = −1 a(p3.1) = −2

2. For this case, the modulus mF = p52.1p7.1p7.2p17.1. and the ray class group is

ClF (mF ) ≃ C2 × C2 × C2 × C24 × C96.

3. There are 31 index two subgroups of ClF (mF ). For each of these and the full group, we

consider the corresponding quadratic extension L of F . We compute the modulus mL

and the corresponding ray class group ClF (mL). Now for each of these ray class groups,
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we select a set of generators {χj}nj=1 of cubic characters. For each of these generators,

we pick a set of primes qj such that

⟨log(χ1(qj), ..., log(χn(qj)⟩n
′

j=1 = (Z/3Z)n

for some n′ ∈ Z. In our example, we only used prime above 3 and 23. The eigenvalue

for these primes are

a(p3.1) = a(p3.2) = −2, a(p23.1) = 0, a(p23.2) = 8.

Each of these eigenvalues was even as required. Thus, we proceeded to the next step.

4. For this step, we needed a basis of quadratic characters {χi}ni=1 of ClF (mF ). And we

also needed a set of prime ideal {pi} coprime to mF , such that

{log(χ1(qj), log(χ2(qj), . . . , log(χn(qj)}2
n−1

j=1 = (Z/2Z)n\{0}.

For our example, n = 5. Therefore, we needed to further compute the eigenvalue of

primes below

{11, 13, 5, 31, 53, 79, 89, 107, 131, 149, 157,167, 257, 281,

361, 457, 593, 1721}.

As the Hecke eigenvalues for those primes agreed with the trace of Frobenius of E, we

moved on to the next step.

5. In the last step of our computation, we needed to check if the local L-factor of E and f

are equal at primes dividing 2n(E)n(f)n(f)∆(F ), that is we needed to compute Hecke
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eigenvalue of the following prime ideals:

{p2.1, p7.1, p7.2, p17.1}

On the side of the modular form, for the prime that divides the conductor, we can use

the Atkin Lehner operators to compute the Hecke eigenvalues. These can be computed

using matrices specified in Proposition 4.25.

For elliptic curves, we need to understand the type of reduction at the bad primes as

mentioned in [5]. At primes, {p2.1, p7.2, p17.1} has good reduction. Therefore, we can

compute the trace of Frobenius. At the prime, p7.1, E has split multiplicative reduction

thus the corresponding a(p7.1) is 1 which agrees with the Hecke eigenvalue for the Atkin

Lehner operator.

6.8 Inner Twists

For our imaginary quadratic field F , the character χ2 from Table 6.4 is the only quadratic

character. Thus, we can recognize inner twist forms by checking if λ(a) = 0 for each a ∈ g or

g3 where g is a generator of the class group ClF .

In this case, there are only two Hecke eigensystems that match the homological eigenform

f because we have the alignment

f = f ⊗ χ2 and f ⊗ χ1 = f ⊗ χ3.

We can observe this reduction in homology by looking at oldspace contributions of twisted

systems. That is, if f is a homological eigenform of level n with an inner twist by χ2, then the

oldspace contribution of f to level na will be the number of divisors d of a where [d] ∈ {0, c2}.

This means if a has divisors such that [d] ∈ {c, c3}, then the oldspace contribution of f is
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fewer than the number of total divisors. In particular, if a is a prime such that χ2(a) = −1,

then we observe a one-dimensional homological eigenform in level an that is now an old

homological eigenform. An explicit example is given below.

Example 6.10. At level p62.1, there are 6 one-dimensional homological eigenforms. Two

homological eigenforms have zero eigenvalues for the principal Hecke operators of the form

Tpq, where p ∈ c and q ∈ c3. The two Hecke eigensystems that match these two homological

eigenforms are given Table 6.28, where i =
√
−1.

Table 6.28. Hecke eigensystems at level p62.1

p3.1 p3.2 p7.1 p7.2 p11.1 p11.2 p13.2 p13.1 p17.1 p25.1 p53.1 p53.2 p89.1 p89.2

class 3 1 3 1 1 3 2 2 0 0 0 0 2 2

f1 0 0 0 0 0 0 6 6 2 −6 14 14 10 10

f2 0 0 0 0 0 0 −6i 6i −2 −6 −14 −14 −10i 10i

The eigenvalues computed for both these systems at all primes in generator classes are

0. The contribution of two eigenform to the oldspace at level p62.1p3.1 is 1-dimensional in

homology. Thus, this means for the unramified characters of the class group in Table 6.4, we

have

f1 = f1 ⊗ χ2 and f1 ⊗ χ1 = f1 ⊗ χ3;

f2 = f2 ⊗ χ2 and f2 ⊗ χ1 = f2 ⊗ χ3.

This also means the newspace dimension of the Bianchi modular forms is 20 dimensional

instead of being 4 times the dimension of homology.

We also observe that the first system matched the base change to F of the rational elliptic
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curve

E : y2 = x3 − x

with LMFDB label 32.a3, which has CM by Q(
√
−1).

The inner twist of f1 explains the existence of a CM elliptic curve.

A twist of the second Hecke eigensystem f2 by a character ψ of the ray class group ClF (m),

where m = p22.1, matches the base change of classical newform 32.2.a.a. This newform also

has CM by Q(
√
−1). Thus, ap = 0 for each inert prime in Q(

√
−1). These rational primes

align with primes in the generator classes of ClF .

We identify a candidate for ψ by looking at principal primes and primes in the class c2.

This candidate character on the ray class group ClF (m) = ⟨g⟩ ≃ C8 is defined by ψ(g) = ζ8,

where ζ8 is an 8th root of unity. We summarize these eigenvalues in Table 6.29.

Table 6.29. Eigenvalues of the inner twist Hecke eigensystems at level p62.1p3.1

p13.2 p13.1 p53.2 p53.1 p89.1 p89.2

class in ClmF 2g 6g 4g 4g 6g 2g

class in ClF c2 c2 0 0 c2 c2

ψ(g) ζ28 ζ68 −1 −1 ζ68 ζ28

f2 −6ζ28 6ζ28 −14 −14 −10ζ28 10ζ28

f2 ⊗ ψ(g) 6 6 14 14 −10 −10

Thus, the system f2 potentially is a twisted base change system.
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