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Over 20 million Americans struggle with troublesome effects of tinnitus. Tinnitus 

has a negative impact on a patient’s overall health and social well-being. Tinnitus can be 

a disabling condition. People with tinnitus regularly experience distress, depression, 

anxiety, sleep disturbances, frustration, poor concentration and in some cases pain. 

Currently, there are no scientifically validated cures available for most types of tinnitus. 

In fact, there is a deficiency in neurophysiological knowledge related to tinnitus. There is 

an informational gap between silence, which exacerbate or trigger tinnitus and Medial 

Oliovocochlear (MOC) efferent neural pathway connection. The primary aim of this 

study is to investigate the MOC efferent neural pathway and neural connections 

responsible for tinnitus generation in silence/sensory deprivation. The primary hypothesis 

of this study is that silence/sensory deprivation makes MOC efferent neural pathway 

hyperactive which participate in tinnitus perception. 

Method: fifty-eight normal hearing individuals between age 18-35 years were 

recruited as participants in this study. By placing normal hearing participants in a sound 

booth for 10 minutes, silence/sensory deprivation was created. This offered assessment of 

MOC neural pathway in normal hearing participants in silence. Hyperactivity of MOC 

neural pathway was assessed by its more suppressive effect on stimulated otoacoustic 

emissions (TEOAEs) in silence. The required auditory measurements were recorded in 



	
	

	

the sound booth using recommended diagnostic protocols to ensure the effect of “only 

silence” on auditory structures.  

Results: 41.4% of the participants perceived some type of tinnitus during/after 10 

minutes of silence. Overall, Ringing was the most common type of tinnitus sound 

perception most participants who perceive tinnitus followed by “Cricket” and “Buzzing” 

sound. “Pulsating” or “Clear tone” sounds were less frequent followed by “Hissing,” 

“Ocean Roar,” and “Transformer.” No statistically significant difference was found in the 

total TEOAE and TEOAE suppression amplitude before and after 10 minutes of silence. 

Post silence total TEOAE suppression between tinnitus perceiving and non-perceiving 

tinnitus was not statistically significantly different. 

Conclusion: TEOAE generation is a peripheral phenomenon. Because tinnitus 

perception did not significantly change total TEOAE amplitude, the results may indicate 

higher central auditory structures as a source of tinnitus generation. Therefore, the results 

of the study support the notion that tinnitus is the central auditory processing 

phenomenon. The study may have failed to detect the changes in the medial 

olivocochlear efferent pathway because TEOAE tests might not be sensitive enough to 

detect the post silence changes in the pathway or top-down influence of the corticofugal 

pathway on lower auditory brainstem structures. This does not mean that medial 

olivocochlear efferent pathway does not participate in tinnitus perception. Results of the 

present study also seem to indicate that race may place a function in the perception of 

silence induced temporary tinnitus. Further investigation is needed to evaluate the 



	
	

	

functional contribution of the medial olivocochlear efferent pathway in tinnitus 

perception. 
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CHAPTER I 

 
INTRODUCTION 

 

Tinnitus is the perception of sound in the absence of an external auditory stimulus 

(Møller, 2007). According to the American Tinnitus Association (ATA, 2017), an 

estimated 50 million people in the United States (16%) experience some form of tinnitus. 

Approximately 20 million people (6%) struggle with chronic tinnitus, while two million 

(< 1%) are completely disabled from it (data collected and analyzed from the 2011-2012 

National Health and Nutrition Examination Survey conducted by the U.S. Centers for 

Disease Control). The results from neuroscience studies in tinnitus generally support the 

hypothesis that tinnitus is a central auditory processing disorder (Eggermont, 2012).  

Currently, there is no medical cure for tinnitus. To identify a cure, researchers 

have examined the physiology of the auditory system of model animals. In such tinnitus 

studies, increased spontaneous firing rate (hyperactivity) in auditory neural structures 

such as auditory nerve fibers (Yang et al., 2007) and the dorsal cochlear nucleus 

(Finlyayson & Kaltenbatch, 2009) have been observed to result from cochlear damage. 

Thus, lack of sensory input because of peripheral hearing loss alters neural organization 

in the auditory pathway and results in rapid seemingly irreversible changes in the 

auditory system (Cook, Hung, Miller, Smith, & Tucci, 2002; Pasic & Rubel, 1991; Salvi, 

Wang, & Ding, 2000; Tucci, Cant, & Durham, 2001). Therefore, tinnitus seems to be 
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associated with less neural excitation in the periphery of the ascending auditory pathway 

and greater activity in more central auditory structures (Eggermont, 2012).  

One part of the auditory pathway that might contribute to the perception of 

tinnitus is the efferent auditory pathway. This pathway is part of the descending central 

auditory pathway, which starts in the auditory cortex and terminates in the cochlea 

(Guinan, 2006). One part of the efferent auditory pathway, the olivocochlear bundle 

(OCB) is located within the brainstem and terminates inside the cochlea (Guinan, 2006). 

The olivocochlear bundle is divided into medial and lateral olivocochlear fibers. The 

thick, myelinated medial olivocochlear fibers project predominantly to the contralateral 

cochlea and terminate at the base of the outer hair cells (OHC) (Guinan, 2006). Most of 

the studies on olivocochlear neurons focus on medial olivocochlear fibers because of the 

ease with which it can be stimulated electrically and acoustically (Dhar & Hall, 2012). 

Upon activation, the medial olivocochlear fibers inhibit the outer hair cell activity 

resulting in decreased (suppressed) otoacoustic emission levels.  

Otoacoustic emissions (OAEs) are the echo of sounds generated within the 

cochlea produced by the movement of the outer hair cell in response to a stimulus (Kemp, 

2002). Medial olivocochlear fibers function can be assessed through suppression of 

otoacoustic emissions, in which white noise is presented to the opposite ear (contralateral, 

non-test ear) and variation in otoacoustic emission levels is observed in the ipsilateral 

(test) ear. Thus, OAEs might be used to as means to evaluate the differences in the 

efferent system function in patients with tinnitus. Suppression of otoacoustic emissions 

indicates the inhibitory influence of medial olivocochlear fibers on cochlear 
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amplification, which in turn reduces the auditory input to the ascending auditory 

pathway. Therefore, hyperactivity in the efferent medial olivocochlear fibers would, in 

turn, cause a distinctive reduction in cochlear amplification. Such reduction in cochlear 

amplification may cause less neural excitation in the periphery of the ascending auditory 

pathway. This operates similarly to sensory deprivation and could results in greater 

activity in more central auditory ascending and processing structures leading to the 

perception of tinnitus.    

Several studies in patients with tinnitus and normal hearing have reported that 

there was no suppression effect on TEOAEs (transient otoacoustic emissions) in the 

frequency region of tinnitus, suggesting a medial olivocochlear fiber dysfunction (Chéry-

Croze, Collet, & Morgon, 1993). The lack of transient otoacoustic emission suppression 

in patients with tinnitus and normal hearing has been confirmed (Lalaki et al., 2011; 

Paglialonga, Del Bo, Ravazzani, & Tognola, 2010). Thus, tinnitus has been related to 

both silence and medial olivocochlear pathway dysfunction.  

Tinnitus Retraining Therapy (TRT), which includes directive counseling, use of 

sound therapy, and audiological testing, is an effective tinnitus management program 

(Jastreboff, 2000). In TRT, patients with tinnitus are often advised to avoid silence. When 

placed in silence for a short period of time, many normal hearing individuals perceive 

tinnitus (Heller & Bergman, 1953; Tucker et al., 2005). Thus, lack of auditory input can 

trigger or aggravate the perception of tinnitus perhaps via alteration in the function of 

central auditory neural pathways. The assessment of medial olivocochlear pathway in 

normally hearing subjects without tinnitus, who perceive tinnitus when placed in silence, 
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may reveal the role of the efferent systems in tinnitus perception. Moreover, such 

manipulations may reveal an effect of silence/sensory deprivation on medial 

olivocochlear efferent function. 

The purpose of this study is to assess the role of the efferent auditory pathway 

(medial olivocochlear pathway) in the perception of tinnitus because of silence (auditory 

deprivation). The procedure will use the contralateral suppression of transient evoked 

otoacoustic emissions for the assessment. This study was designed to provide insight 

into: the physiology of connecting neural pathway between (a) the “afferent auditory 

pathway and the medial olivocochlear efferent” pathway, (b) the “medial olivocochlear 

efferent and outer hair cells,” and (c) the “outer hair cells and the afferent pathway.” 

Positive results may be applied to understand the underlying pathophysiology of tinnitus 

and may help to select different treatment options in those tinnitus patients with sensory 

deprivation caused by hearing loss or in patients with chronic tinnitus without hearing 

loss.  
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CHAPTER II 

 
REVIEW OF THE LITERATURE 

 

 This review of the literature will describe what is known concerning the 

relationship between tinnitus perception and the possible role of the efferent auditory 

pathway in tinnitus perception. The contralateral suppression of otoacoustic emissions 

(OAEs) provides a valuable technique for identifying the function of the efferent auditory 

pathway. An altered or abnormal efferent auditory pathway function has been observed in 

tinnitus patients using transient evoked otoacoustic emissions (Geven, Wit, De kleine, & 

Van Dijk, 2012; Lalaki et al., 2011) as an objective measure. Thus, the literature review 

will make the case as to why otoacoustic emissions may be used to shed light on the 

neurophysiology underlying tinnitus. Studies pertaining to tinnitus, the efferent pathway 

and otoacoustic emissions will be reviewed. Therefore, this literature review will focus 

on the following topics: (a) tinnitus (definition, prevalence, physiological aspects, 

relation to sensory deprivation and short-term sensory deprivation); (b) efferent auditory 

pathway (its anatomy and role in suppression of otoacoustic emissions); and (c) 

otoacoustic emissions (their types, the relation of suppression of otoacoustic emissions to 

tinnitus and the suppression of transient otoacoustic emissions). 
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Tinnitus 

Definition of Tinnitus 

Tinnitus is the perception of sound in the absence of an external auditory stimulus 

(Møller, 2007). Tinnitus can be classified into two types: 

1. Objective tinnitus: the perception of sound due to the physical source inside 

the body. These sounds are usually produced by internal function in the 

body’s circulatory (blood flow) and somatic (musculo-skeleton movement) 

system. Almost all the causes of this type of tinnitus can be diagnosed by 

magnetic resonance imaging or magnetic resonance angiography (Sismanis, 

1998, 2003). 

2. Subjective tinnitus: the perception of sound when there is no inside or outside 

sound source present. This may be due to auditory and neurological reaction 

to hearing loss.  

This study will focus on subjective tinnitus, as very little information is known about the 

pathophysiology of this type of tinnitus.   

Prevalence of Tinnitus 

 According to American Tinnitus Association and the National Institute of Health 

(NIH), an estimated 50 million people in the U.S. experience chronic tinnitus or ringing 

in the ears. Of those, 16 million have sought medical attention for their tinnitus; and two 

to three million are completely disabled from it (data collected and analyzed from the 

1999-2004 National Health Interview Survey conducted by the Centers for Disease 

Control). The prevalence of tinnitus in children and geriatric population is 20-40% and 
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15%, respectively. The prevalence in young adults who perceive continuous tinnitus for 

>5 min is approximately 25%.  

Tinnitus and Gender 

 Typically, epidemiological studies of prevalence show that tinnitus may occur 

more often in men, but results are inconsistent (Møller, 2011). No significant differences 

in tinnitus perception were observed between male and females when silence/sensory 

deprivation was employed to trigger tinnitus (Knobel & Sanchez, 2008; Tucker et al., 

2005). 

Tinnitus and Race 

 According to the National Health and Nutrition Examination Surveys among U.S. 

adults (1999-2004), the prevalence of frequent experiences of tinnitus is highest among 

the non-Hispanic whites with decreases in prevalence among Hispanic, Black, and other 

races (Shargorodsky, Curhan, & Farwell, 2010). Tucker et al. (2005) found a significant 

difference in tinnitus perception between Caucasian and African American subjects when 

silence was employed as the tinnitus-triggering factor. Caucasians perceived tinnitus 

more often than African Americans after 20 minutes of silence. 

Tinnitus and Location of Perception  

Research on tinnitus showed that tinnitus could be perceived unilaterally (left ear 

only or right ear only) or bilaterally (both ears) or perceived as located inside the head. 

Hallberg and Erlandsson (1993) investigated predominance of left ear tinnitus perception 

in patients with complaints about tinnitus and in the patients without complaints about 

tinnitus. Tinnitus was reported to be perceived in the left ear in 42% versus 26% in the 
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right ear of tinnitus patients. The percentages were 30% (left-eared tinnitus) and 25% 

(right-eared) for the patients without complaints about their tinnitus. Tinnitus was 

reported “in the head” by 14% of complainers and 6% of the non-complainers. Hiller and 

Goebel (2006) also reported a predominance of left-sided tinnitus (29.1%) versus right-

sided (20%). This study included 4995 members of German Tinnitus League. Indeed, the 

binaural perception of tinnitus was more prevalent (44.9%) in these subjects than either 

sided tinnitus.” This study also reported 23.7% of subjects perceived tinnitus centrally (in 

the head). Similarly, Stouffer and Tyler (1990) reported a higher incidence of tinnitus in 

left ear (21.4%) than in right (15.9%). The binaural perception was reported at 20.3%. 

Thus, research supports a predominance of left-sided tinnitus over right-side tinnitus. The 

incidence of bilateral tinnitus was between 20% and 48%.        

Physiological Aspects of Tinnitus (Possible Generators) 

 Tinnitus can be linked to peripheral ear pathology (e.g., Meniere’s disease, otitis 

media, Eustachian tube dysfunction, or it can be linked to dysfunction of the central 

auditory nervous system (CANS). Neuroscience research in tinnitus has provided strong 

evidence that “significant tinnitus” or continuous tinnitus is a “central auditory 

processing disorder” (Eggermont, 2012). Such studies have demonstrated the 

involvement of one or more aspects of the nervous system other than the auditory system 

(e.g., limbic system, autonomic nervous system, etc.), which interact with the auditory 

nervous system to trigger tinnitus (Jastreboff, 1999). Lower levels of salivary alpha 

amylase (stress-related biomarker in salivary secretion) were found in male subjects with 

tinnitus than subjects without tinnitus, suggesting impaired sympathetic activity in the 
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subjects with tinnitus (Alsalman, Tucker & Vanneste, 2016). See Appendix A for the 

abbreviations for the major anatomical structures within the auditory system. 

Models of Tinnitus 

 Subjective tinnitus occurs more commonly than objective tinnitus. In recent years, 

tinnitus has been investigated as a central auditory processing disorder, although it has 

underlying peripheral triggers (Eggermont, 2012). Research has shown that the human 

central auditory system interacts with human limbic and autonomic nervous system that 

results in a complex neural mechanism involved in the perception of tinnitus (Jastreboff, 

1999). Because of these interactions, different underlying pathologies may act as a 

triggering factor in tinnitus. Therefore, researchers have produced several different 

models of tinnitus derived from animal studies to characterize the pathophysiology of 

tinnitus and to identify the neural structures in humans likely involved in the perception 

of chronic tinnitus. Several of these models are discussed below.  

 The Salicylate Model. Eggermont (2012) reviewed the Salicylate, Sensorineural, 

Somatic, and Neural Synchrony models of tinnitus.  Salicylate (aspirin: non-steroidal 

anti-inflammatory drug) is an ototoxic drug and can act negatively on both the peripheral 

and central auditory nervous system by affecting the electromotility of Outer Hair Cells. 

Salicylate can be a tinnitus-inducing agent (Cazals, 2000). Greeson and Raphael (2009) 

found that salicylate affects the electromotility of outer hair cell by its direct interaction 

with the prestin protein in the wall of the outer hair cell causing temporary hearing loss.  

 Wu, Lv, Kim, Yamoah, and Nuttall (2010) found that a higher dose of salicylate 

is required in humans than animals to induce hearing loss. This study suggested that 
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salicylates could also reduce the driving force (Potassium Ion flow through the outer hair 

cell) required for transduction current and electromotility in outer hair cell by blocking 

KCNQ4 ion channel.  

 Salicylate can also disrupt inner hair cell (IHC) function. Research has shown 

that salicylates can disrupt the arachidonic acid cycle. In the normal physiological 

process, enzyme cyclooxygenase (COX) metabolizes arachidonic acid into 

prostaglandins and tromboxanes. Salicylate inhibits the prostaglandin synthesis through 

inhibition of cyclooxygenase causing interference in arachidonic acid cycle in the IHCs. 

Such interference can cause an up-regulation of N-methyl-D-aspartate (NMDA) receptor 

activity in the synaptic junctions between IHC and auditory nerve fibers. This disruption 

increases the probability of NMDA receptor channel opening and potentially leads to 

increased spontaneous firing rates in a subset of auditory nerve fibers (Guitton et al., 

2003). The application of NMDA antagonist in the perilymphatic fluid of the cochlea 

strongly reduces the behavioral indicator of tinnitus in rats, suggesting the possible role 

of NMDA receptor in the generation of salicylate–induced tinnitus through a mechanism 

involving the cyclooxygenase pathway. The direct explanation on the molecular 

mechanism of such pathway involving cyclooxygenase and NMDA receptors needs to be 

determined.  

 The harmful effects of salicylate on the central auditory system (CAS) in animals 

include reduced activity in gamma-Aminobutyric acid (GABA) activity, which increases 

the gain (amplitude) of sound processing in the central auditory system. GABA is the 

inhibitory neurotransmitter of the central nervous system. Reduced activity of GABA in 
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inferior colliculus consequently increases neural firing in IC and may result in the 

increased sound perception (Bauer, Brozoski, Holder, & Caspary, 2000). Thus, tinnitus 

perception can be attributed to the altered activity in the outer hair cell motor protein or 

arachnoid acid cycle in the inner hair cell or GABAergic activity within the inferior 

colliculus or combination of two or more of these changes. 

 The Sensorineural Model. Ototoxicity affects the sensory end organs (OHC) and 

neural structures (auditory nerve fibers). Prolonged noise exposure can also cause OHC 

damage (by the formation of reactive oxygen species, ROS and reactive nitrogen species, 

RNS; together called ROS/RNS) and permanent loss of ganglion cells that innervate 

inner hair cells (Henderson, Bielefeld, Harris, & Hu, 2006). These changes generally 

cause a reduction in spontaneous firing rates of auditory nerve fibers and remove the 

peripheral inhibitory effect. Therefore, these changes cause hyperactivity in the dorsal 

cochlear nucleus (DCN). This results in tonotopic map reorganization in cortical areas 

(Eggermont & Komiya, 2000). Such imbalance between inhibition and excitation leads to 

an increased spontaneous firing rate (SFR) and perception of tinnitus. These neural and 

sensory changes could contribute to tinnitus perception. 

 The Somatic Tinnitus Model. The auditory input from auditory nerve goes to the 

fusiform cell (FC), and the giant cell in the dorsal cochlear nucleus (DCN); then, it is 

redirected to the inferior colliculus (Auditory system). Fusiform cells and giant cells also 

receive the input from the trigeminal and dorsal column systems (somatosensory system). 

Inputs from trigeminal and dorsal column activate the granule cells, which send an 

activation signal to fusiform and giant cells through the parallel fibers. These stimulations 
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also turn on the cartwheel cells. Cartwheel cells inhibit the fusiform cells and may also 

stimulate or inhibit other cartwheel cells (somatosensory system). Thus, an interaction 

between auditory and somatosensory inputs from the nervous system at the level of 

fusiform cell layer provides for generation and/or modulation of tinnitus (tinnitus related 

to the head, neck or jaw injuries) (Oertel & Young, 2004).  

 In the case of peripheral hearing loss, the spontaneous firing rate of the neurons in 

the dorsal cochlear nucleus increases because of the sensory deprivation (Finlayson & 

Kaltenbach, 2009). Thus, the neural synapse strength for auditory input decreases and the 

somatosensory input synapse strength increases. This may occur as a compensation for 

the lost auditory input because of peripheral hearing loss in which neural plasticity might 

play a role (Møller, 2011). Such neural plastic changes lead to enhanced suppression due 

to inputs from trigeminal and dorsal column systems. Thus, increased spontaneous firing 

rate in dorsal cochlear nucleus due to deprivation and strengthening of a somatosensory 

synapse may underlie the perception of change in tinnitus loudness associated with the 

masticatory abnormality (as the mandibular branch of trigeminal nerve innervates the 

temporomadibular joint). 

 The Neural Synchrony Model. Rajan and Irvine (1998) described the 

phenomenon of neural synchrony through the over-representation of tonotopicity in the 

auditory cortex of a cat. The cat sustained high-frequency hearing loss due to noise 

trauma. This high-frequency cochlear damage disconnects the peripheral auditory input 

to the tonotopic map in the thalamocortical region. Because of this lack of auditory input, 

auditory neurons in the affected region of the thalamocortical region begins to respond 
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preferentially to input conveyed by horizontal fibers. Consequently, affected neurons 

begin to express the tuning preference of their neighbors. Over the period, such 

synchronous firing of affected neuron leads to an overrepresentation of edge frequencies 

in the tonotopic gradient in cortical region and cortical tonotopic map reorganizes.  

 It has been proposed that this overrepresentation of edge frequencies may 

correspond to the tinnitus percept and the tinnitus pitch could be matched to the edge 

frequency of the normal hearing.    

 Neurophysiological (Limbic System/Autonomic Nervous System) Model of 

Tinnitus Disturbance. Jastreboff (1999) hypothesized that there are an increased 

agitation and awareness of tinnitus and this occurs due to the interaction of limbic and 

autonomic nervous system (ANS) (see Figure 1). The ability to learn conditioned reflexes 

and the role of “emotion” in the control of behavior, memory, motivation, and mood 

involve the limbic system and autonomic nervous system. Thus, the agitation of the 

person (involving autonomic nervous system changes) affects limbic activation (involved 

in emotional expression), which in turn affects the central auditory nervous system 

resulting in the experience of tinnitus.  

The temporal coincidence of sensory stimuli with negative (or positive) 

reinforcement is sufficient to generate a conditioned reflex (Jastreboff, 1999). Any 

stimulus that triggers agitation (tinnitus itself may be a conditioned stimulus for 

triggering agitation) can become a conditioned stimulus for tinnitus. However, the 

stimulus that is registered in our memory does not reach the level of awareness. 
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Consequently, no reaction is generated, leading to the habituation of the perception of the 

stimuli (Jastreboff, 1999). It means, 

 
As long as the sensory stimulus is limited in time and there is no functional 
dependence of the stimulus, this conditioned reaction will gradually disappear 
(habituate) due to passive extinction of the reflex (the sensory stimulus is present 
but is not accompanied by a reinforcement). (Jastreboff, 1999, p. 34) 
 

 

Figure 1. The Neurophysiological Model of Tinnitus Disturbance. Re-Created from 
Jastreboff, P. J. (1999). The Neurophysiological Model of Tinnitus and Hyperacusis. 
Proceedings of The Sixth International Tinnitus Seminar, 1999. Cambridge, UK). 
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 The unknown source for the auditory stimuli like tinnitus when first experienced 

creates consternation in the person because he/she is unsure how this perceived sound is 

being heard when there is no identifiable stimulus in the surrounding environment. This 

experience creates the negative feeling of discomfort, distress, and negative emotional 

response and the autonomic nervous system gets activated. Thus, the repeated temporal 

coincidence of this unknown sensory stimulus (tinnitus) with the negative reinforcement 

(negative feeling of discomfort, distress, etc.) creates a conditioned reflex and forms a 

vicious cycle of physiological and non-physiological factors in a patient with chronic 

tinnitus. In addition, any significant changes in life (death of family members/friend, loss 

of job, etc.) may exacerbate the negative emotions, feelings, and distress, leading to an 

exacerbation in the tinnitus perception in terms of intensity because of conditioned 

reflexes. 

 In conclusion, the contribution of auditory structures (generators) such as OHC, 

auditory nerve, cochlear nucleus, inferior colliculus, primary auditory area, limbic and 

autonomic nervous system in various combinations may be responsible for the perception 

of tinnitus.  

All the models address tinnitus perception in pathological ears associated with 

some degree of hearing loss but pathophysiology underlying tinnitus perception in people 

with normal hearing remains elusive and unclear. Barnea, Attias, Gold, and Shahar 

(1990) found 8-10% of persons with tinnitus have normal hearing. Another study by 

Jastreboff and Jastreboff (2003) mentioned 20% of patients with tinnitus had normal 

hearing. Therefore, hearing loss is neither required nor sufficient condition for the 
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tinnitus initiation. In the next section, the connection between chronic tinnitus and 

hearing loss will be discussed. 

Tinnitus and Hearing Loss (Sensory Deprivation) 

The effect of sensory deprivation (as documented in the nervous systems in 

animals) is profound. Sensory deprivation can also occur in many life stages. Early in 

fetal development, sensory stimulation guides the anatomical and functional development 

of nervous system. Therefore, sound deprivation likely has a profound effect on the early 

development of the auditory nervous system and this may extend to young individuals 

more than to adults. Two types of neural changes can occur because of sensory 

deprivation to the auditory system. One, the increase in the gain of the auditory nervous 

system due to changes excitation and inhibition balance and two, activation of neural 

plasticity including a change in synaptic efficacy and sprouting of axons (Møller, 2006).  

Since any disorder that can cause hearing loss produces auditory deprivation, the 

degree to which an individual experiences auditory sensory deprivation depends on the 

degree of hearing loss. Ear canal blockage, middle ear disorders, and disorders of the 

cochlea can cause hearing loss ranging from mild to severe and from temporary to 

permanent.  

Tinnitus is common in individuals with a noise-induced hearing loss (an imposed 

form of sensory deprivation on the auditory system). Eggermont and Roberts (2004) 

postulated that increased spontaneous firing rate (SFR) (in the brainstem and auditory 

cortex), increased neural synchrony (auditory thalamic structures and primary auditory 

cortex) and tonotopic cortical map reorganization are potential neural substrates of 
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tinnitus.  To understand the neural substrates of tinnitus, structural changes in the 

auditory nervous system resulting from partial hearing loss because of noise exposure, 

unilateral or bilateral cochlear ablation, and removal of middle ear ossicles (three bones 

in the middle ear) need to be assessed. Because noise exposure is likely the most common 

source of auditory deprivation, the effects of noise exposure on the structures of the 

auditory system and on tinnitus perception will be reviewed next. 

Structural and Physiological Changes in the Peripheral and Central Auditory 

Nervous System (CANS) Due to Noise Exposure 

 Noise exposure can induce temporary or permanent hearing loss depending on the 

level and duration of noise exposure. Often, tinnitus emerges as an associated symptom 

with noise-induced hearing loss (Dancer, Henderson, Salvi, & Hamernik, 1992). Due to 

our limited understanding of the biological basis of tinnitus, tinnitus in noise-induced 

hearing loss cases become interesting symptom because noise exposure primarily 

damages the periphery (cochlea) while evidence indicates that tinnitus is often clearly of 

central origin. Therefore, it is important to understand the peripheral and central auditory 

changes due to noise exposure.     

Changes in Cochlear Hair Cells and Auditory Nerve 

One example of structural and physiologic changes in the inner ear due to noise 

exposure is reactive oxygen species (ROS). Overexposure to noise can permanently 

damage the outer hair cells inside the cochlea and may cause permanent hearing loss 

involving type I spiral ganglion cells that innervate the inner hair cell (Kiang, Liberman, 

& Levine, 1976). Henderson and colleagues (2006) observed the mechanism that noise 
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exposure can produce the reactive oxygen species (ROS) within the cochlea. Reactive 

oxygen species are chemically reactive species containing oxygen. Examples of reactive 

oxygen species are peroxides, superoxide, and hydroxyl radical.  

Noise can affect the function of mitochondria inside the cochlea. During noise 

exposure, the mitochondria in the outer hair cell (OHC) expend large amounts of energy 

through “aerobic respiration” as outer hair cells need energy for their motility in response 

to sound. High oxygen use creates large amounts of superoxide as an unwanted product, 

which creates higher levels of other reactive oxygen species in the cochlea as the 

superoxide reacts with other molecules (Halliwell & Gutteridge, 1985).  

In addition to the overdriving of the mitochondria, another cause of increased 

reactive oxygen species in the cochlea is the excitotoxicity and ischemia/reperfusion.  

Such excitotoxicity can generate event of downstream apoptotic cell death pathways 

because of DNA, protein damage, and lipid peroxidation. Since glutamate acts as an 

excitatory neurotransmitter at the synapses between the inner hair cell (IHC) and auditory 

nerve fibers (ANF), then when the inner hair cell becomes highly active during high-level 

noise exposure this can produce excitotoxicity of auditory nerve fibers. The inner hair 

cell high activity leads to the release of a large amount of glutamate into the synapses 

with type-I fibers of the VIIIth nerve. This excess amount of glutamate causes 

overstimulation of postsynaptic cells via their glutamate receptors, leading to swelling of 

postsynaptic cell bodies and dendrites (Kandel, Schwartz, & Jessell, 2000). This is a 

potential source for excitotoxicity and the apoptosis of neural cells.  
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Changes in the Dorsal Cochlear Nucleus (DCN) 

The auditory nerves almost innervate all the neurons (approximately 100,000) in 

the cochlear nucleus (Moore, 1987). One source for tinnitus generation may be the dorsal 

cochlear nucleus, the first neural station inside the brainstem along the central auditory 

nervous system pathway. Several researchers have theorized that changes in the anatomy 

and physiology of the dorsal cochlear nucleus may be a neurogenerator of chronic 

tinnitus. 

 Kaltenbach, Zhang, and Afman (2000) observed an increase in spontaneous 

firing rate in superficial neurons in the dorsal cochlear nucleus of hamster 5 days after the 

noise exposure of 10-kHz tone at levels between 125-130 sound pressure level (SPL) for 

a period of 4 hours. Similar results were observed when the exposure was 10 kHz tone 

for 2 h at 80 dB sound pressure level (Kaltenbach, Zhang, & Finlayson, 2005). In both 

studies, hair cells and their stereocilia were intact. These findings suggest that extended 

overstimulation of cochlear hair cells can result in the generation of hyperactivity in the 

dorsal cochlear nucleus without apparent loss of hair cell or stereocilia. Thus, 

spontaneous firing rate appears to be independent of cochlear input in the dorsal cochlear 

nucleus. It has also been observed that hyperactivity in the dorsal cochlear nucleus in 

response to an 80 dB sound pressure level stimulus had immediate onset than for 125-130 

dB sound pressure level stimulus. The strength of the behavioral testing of tinnitus in 

noise-exposed hamster was related to the increase in spontaneous firing rate in the dorsal 

cochlear nucleus. In addition, sectioning of the dorsal cochlear nucleus to make it isolated 

from its adjacent brainstem structures did not significantly affect the spontaneous firing 



20 

	

rate in the dorsal cochlear nucleus (Kaltenbach, Zacharek, Zhang, & Frederick, 2004). 

This shows that changes in the spontaneous firing rates in the dorsal cochlear nucleus 

depend on the inputs and neural network to and from the adjacent structures.  

 Two studies, one by Zhou and Shore (2006) and the other by Ma and Young 

(2006), produced contradictory results concerning the lack of increased spontaneous 

firing rate inside the dorsal cochlear nucleus after the noise exposure. The study by Ma 

and Young (2006) was performed on cats instead of hamsters. Thus, there may be species 

a difference in the changes in the auditory system after noise exposure. Zhang, 

Kaltenbach, Godfrey, and Wang (2006) observed enhanced hyperactivity in the dorsal 

cochlear nucleus after the sectioning of dorsal acoustic stria (a structure that provides 

inputs to the dorsal cochlear nucleus) suggesting it may have an inhibitory effect on the 

dorsal cochlear nucleus. The behavioral tests (continuous pressing of the lever during the 

period of silence because of perception tinnitus) for tinnitus in Long-Evans rats after the 

unilateral exposure to a 60-min duration octave band noise centered at 16 kHz at 110 SPL 

showed the presence of tinnitus at approximately 20 kHz before and after bilateral 

ablation of the dorsal cochlear nucleus performed between 3 and 5 months after the 

acoustic trauma. This finding suggests increased spontaneous firing rate in the dorsal 

cochlear nucleus is not entirely the initiator of behavioral signs of tinnitus.  

Changes in the Ventral Cochlear Nucleus (VCN) 

Another source for the generation of tinnitus may be the ventral cochlear nucleus 

(VCN). Vogler, Robertson, and Mulders (2011) report a study in which a guinea pig was 

exposed to 10 kHz tones presented at 124 dB SPL for 2 hours. The spontaneous firing 
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rate in noise-exposed ears was significantly elevated in the ventral cochlear nucleus after 

a two-week recovery period. In contrast, cats exposed to pink noise-exposed to pink noise 

for half an hour at 105 dB SPL, producing an average threshold shift of 30 dB in the 2-6 

kHz region did not show a significant difference in SFR in the anterior ventral cochlear 

nucleus (AVCN) post-exposure (Van Heusden & Smoorenburg, 1983). It is unclear if 

changes to the ventral cochlear nucleus are a source of tinnitus generation in humans.  

Changes in the Inferior Colliculus (IC) 

Another potential source of tinnitus generation in humans might be the changes in 

the inferior colliculus (IC) resulting from exposure to noise. These changes can result in 

either an increase in spontaneous firing rate of inferior colliculus fibers or a hyperactivity 

of inferior colliculus fibers. Mulders and Robertson (2009) exposed guinea pigs to 10 

kHz tone at 124 dB SPL for 1 hour and observed that acoustic trauma did not 

immediately initiate changes in spontaneous firing rate in the inferior colliculus. 

However, increase in the spontaneous firing rate was reported during the recovery period. 

This increased spontaneous firing rate in inferior colliculus disappeared after cochlear 

ablation. Thus, changes in spontaneous firing rate in inferior colliculus seem to depend 

on the input from the cochlea.   

 Mulders, Seluakumaran, and Robertson (2010) confirmed the previous findings 

that the hyperactivity in the inferior colliculus increases during the recovery period after 

the acoustic trauma. In this study, they also electrically stimulated the olivocochlear 

system (known to decrease the auditory nerve fiber activity) and found that olivocochlear 

system reduced the hyperactivity in the inferior colliculus by reducing the cochlear input 
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through a suppressive effect on auditory nerve fibers. Dong, Mulders, Rodger, Woo, and 

Robertson (2010) also observed supporting findings that the spontaneous firing rate in the 

inferior colliculus did not increase immediately after noise exposure but did after 2 

weeks. The significant increase in the spontaneous firing rate in the central nucleus of the 

inferior colliculus (ICc) of the noise-exposed (4kHz tone at 85-dB for 1h) chinchillas was 

observed at 2 weeks post-exposure. These animals showed behavioral evidence of 

tinnitus at the same time of the recording activity in the inferior colliculus. Thus, it 

appears that noise exposure can cause changes in the inferior colliculus that might 

contribute to tinnitus generation. 

Changes in the Auditory Cortex  

The location for changes in the central auditory nervous system that most likely 

contributes to tinnitus generation by researchers appears to be the auditory cortex. These 

changes include a remapping of frequency regions inside the primary auditory cortex and 

changes in spontaneous neural activity. Eggermont and Komiya (2000) observed 

profound reorganization of the frequency map in the primary auditory cortex of juvenile 

cats (5-6 weeks old) after the exposure to loud 6 kHz tone. The noise exposure caused 

mild to moderate high-frequency hearing loss. The region in primary auditory cortex 

between 6 and 10 kHz was greatly expanded in the noise trauma induced felines and 

covered the cortical areas that would normally include frequencies between 10 and 40 

kHz.  

Spontaneous activity in the reorganized part of the cortex was also significantly 

increased in cats that had been exposed to noise. This spontaneous neural activity could 
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be the result of increased spontaneous firing rate in subcortical structures such as the 

high-frequency part of the inferior colliculus or dorsal cochlear nucleus as noted in noise 

trauma induced studies in animals in the previous section. The observed increase in 

spontaneous firing rate in the reorganized region of primary auditory cortex found in the 

present study could be a substrate for tinnitus. 

 Noreña and Eggermont (2005) conducted a study in cats to observe the effect of 

enriched acoustic environment after the noise trauma-induced hearing loss. The results of 

this study showed noise-induced hearing loss was limited by the targeted acoustic 

stimulation. This targeted acoustic stimulation was given immediately after the trauma. 

This study also found that the targeted acoustic stimulation in hearing loss frequency 

region after noise-induced hearing loss prevented the cortical tonotopic map 

reorganization in cats. The other group of cats who were kept in silence after noise 

exposure showed such reorganization in the primary auditory cortex. Noise exposure 

causes peripheral hearing loss (decrease in auditory nerve firing rates) and changes the 

excitatory and inhibitory balance between the periphery and central structures of the 

auditory system as noted earlier (Eggermont & Komiya, 2000). In this study, stimulation 

in hearing loss frequency range at supra-threshold level compensated for the decrease in 

auditory nerve fiber firing rates and thereby prevented the cascade of central changes 

(release from inhibition) that would normally lead to cortical tonotopic map 

reorganization (Noreña & Eggermont, 2003). 

In the subsequent follow-up study, Noreña, Gourevich, Aizawa, and Eggermont 

(2006) investigated the effect of enhanced acoustic environment on neural firing rates and 
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neural synchrony (i.e., a sign of tinnitus) after the noise-induced hearing loss in cats. 

When the enhanced acoustic environment with a spectrum corresponding to the 

frequency band of the hearing loss was provided after the trauma, tonotopical map, 

spontaneous firing rate, and synchrony were unchanged. Thus, post-trauma acoustic 

stimulation might prevent the occurrence of tinnitus if trauma induced tinnitus is related 

to an increase in spontaneous firing rate or synchrony in the primary auditory cortex. In 

this study, authors also found that acoustic stimulation in low-frequency range (normal 

hearing frequencies) had little or no effect.  

Changes Due to Ossicular Removal (Conductive Hearing Loss) and Cochlear 

Ablation (Deafness) 

Researchers have reported that changes to the peripheral auditory structures, such 

as removing the ossicles (middle ear bones) or ablation of the cochlea itself also resulted 

in changes in physiology in higher centers within the central auditory nervous system 

where tinnitus may be generated. Potashner, Suneja, and Benson (1997) observed the 

cochlear nerve degeneration and degeneration in the central auditory nuclei after the 

unilateral ossicles removal. Degeneration of fine fibers and granulated axons in the 

cochlear nucleus were also observed (more abundant on the ipsilateral side) but only after 

112 days of ossicle removal. This suggests that without cochlear damage, hearing loss 

created by the ossicular removal still had the degenerating effect in cochlear nucleus but 

only after several months. Sumner, Tucci, and Shore (2005) found the significant 

increase in the spontaneous firing rate of ventral cochlear nucleus neurons immediately 

after ossicular removal over first 8 hours that declined with time but did not reach normal 
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value by 14 days. This finding suggests that the peripheral afferent auditory inhibitory 

input is necessary to keep a check on the spontaneous firing rate of the ventral cochlear 

neurons. In addition, later decline in spontaneous firing rate suggests the rapid 

compensatory excitatory contralateral input to the ventral cochlear nucleus.  

 Ablation of the left cochlea resulted in the degeneration of large, intermediate, 

and fine fibers in the ipsilateral anterior ventral cochlear nucleus (AVCN) and posterior 

ventral cochlear nucleus (PVCN) after 7 days. Ipsilateral dorsal cochlear nucleus had 

dense degeneration near the dorsal acoustic stria (Potashner et al., 1997). This suggests 

that ablation starts degeneration process in the cochlear nucleus within a week. 

Koerber, Pfeiffer, Warr, and Kiang (1966) observed the cessation of almost all the 

activity in the ventral cochlear nucleus immediately after the complete cochlear 

destruction while the activity in the dorsal cochlear nucleus was relatively unaffected. 

Similarly, Zacharek, Kaltenbach, Mathog, and Zhang (2002) also observed no significant 

effect in spontaneous firing rate in the dorsal cochlear nucleus after 30 days of partial and 

complete cochlear ablation. Partial cochlear ablation initiated an increase in spontaneous 

firing rate in the ventral cochlear nucleus (Bledsoe et al., 2009).     

 Thus, it may be inferred that sensory deprivation due to unilateral or bilateral 

cochlear ablation has a different effect on auditory structures than the sensory deprivation 

effect of ossicle removal. In addition, sensory deprivation due to cochlear ablation has 

different effects on auditory structures than the effect of sensory deprivation due to 

hearing loss because of noise trauma (exposure).  
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Causes for Tinnitus Emergence 

Excitatory-Inhibitory Imbalance and Neural Reorganization  

Studies in the previous sections suggested the possible role of many different 

parts of the nervous system in tinnitus. The possible reasons for the tinnitus perception 

are: 

1. An altered spontaneous activity that can be different at different levels of the 

auditory system, and/or 

2. Less neural excitation in the periphery of the ascending auditory pathway but 

greater activity in central auditory structures, and/or 

3. Increased neural synchrony of the neural firing, and/or 

4. Increased neural synchrony of the firing in large groups of the nerve cells.  

To understand the possible pathophysiology, which might be associated with 

neural changes resulting from the sensory deprivation caused by a different disturbance 

(noise trauma, ossicular removal or cochlear ablation), the phenomenon of excitatory-

inhibitory imbalance and neural reorganization (neuroplasticity) need to be understood.  

Excitatory-Inhibitory Imbalance of Neurotransmitters 

Changes in the neurotransmitters and neuromodulators cause the changes in the 

activity of the auditory structures. Muly, Gross, and Potashner (2004) studied the effect 

of noise trauma in chinchilla cochlear nucleus. The noise trauma was unilateral and the 

other ear was protected by silicon plug. In the noise-exposed ear, glutamatergic synaptic 

release in the ipsilateral cochlear nucleus was elevated and uptake was depressed during 

the first-week post-exposure and before the cochlear nerve axons degenerate. This, in 
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turn, created hyperactivity of glutamatergic transmission in the cochlear nucleus in which 

the excitotoxic mechanism might be involved. By the end of second-week post exposure, 

the cochlear nerve fibers degenerated and the glutamatergic synaptic release and uptake 

in the cochlear nucleus became abolished. By 90 days post exposure, the plastic changes 

occurred in the cochlear nucleus due to the reappearance of transmitter release and 

elevation of AMPA receptor (ionotropic transmembrane receptor for glutamate that 

mediates fast synaptic transmission in the central nervous system) binding. Such changes 

were absent in the ear with the plug (non-exposed ear). The altered AMPA receptor 

binding activity and glutamatergic release suggested up regulatory activity in the cochlear 

nucleus that may contribute to tinnitus.         

 The study by Potashner et al. (1997) discussed earlier showed the changes in the 

glutamatergic presynaptic release and glutamate inactivation in the cochlear nucleus, 

superior olivary complex (SOC) and midbrain of the adult guinea pigs after the unilateral 

ossicle removal and cochlear ablation. After ossicular removal, delay in degeneration of 

CN fibers was consistent with the delay (after 145 days of ossicle removal) in the 

decreased release and uptake of glutamate, which suggest the regulatory weakening of 

excitatory glutamatergic transmission. On the other hand, the cochlear ablation, which 

deafferented the cochlear nucleus, resulted in the deficiency in release and uptake of 

glutamate within just 2 days after ablation. Such deficiency also resulted in abundant 

fiber degeneration in the cochlear nucleus by 7 days. Subsequently, the residual release 

and uptake increased and in turn strengthened excitatory glutamatergic transmission. 

Similar changes were found in the contralateral (opposite) cochlear nucleus irrespective 
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of the type of lesion suggesting that changes in the lesioned ear may also initiate the 

regulatory synaptic changes in the contralateral CN. Both lesions induced abnormally 

strengthened glutamatergic transmission in the superior olivary complex and the 

midbrain. Potashner et al. (1997) suggested that the strengthening of excitatory 

glutamatergic transmission might facilitate and maintain symptoms such as loudness 

recruitment and tinnitus that often accompany hearing loss.         

 Suneja, Potashner, and Benson (2000) observed bilateral central nucleus of 

inferior colliculus (ICc) decrease in AMPA binding 30 days after unilateral cochlear 

ablation followed by an increase at 60 days. An increase of AMPA receptor subunit 

(GluR2, GluR3, and GluR kainite) expression was detected in the central nucleus of 

inferior colliculus from 3 to 90 days following bilateral cochlear ablation (Holt et al., 

2005). These studies showed that the AMPA receptor changes occurring in the central 

nucleus of inferior colliculus take a longer time than in the cochlear nucleus.  

 Unilateral ossicle removal induced a decline in glycine release and elevated 

glycine uptake in the anterior ventral cochlear nucleus and dorsal cochlear nucleus in 

adult guinea pigs. Similar findings were observed in the dorsal cochlear nucleus after the 

unilateral cochlear ablation (Suneja, Benson, & Potashner, 1998; Suneja, Potashner, & 

Benson, 1998). Such changes were consistent with the down-regulation of the 

presynaptic component of glycinergic inhibitory transmission along with the swift 

removal of extracellular glycine. Such effects suggest a weakening of glycinergic 

inhibitory transmission. Argence et al. (2006) found decreased expression of the α1 
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subunit of GlyR in the contralateral central nucleus of inferior colliculus after unilateral 

cochlear ablation. 

 These findings suggest the long-term deficits in glycinergic synaptic inhibition in 

most of the cochlear nucleus, anterior ventral cochlear nucleus, and the dorsal cochlear 

nucleus of the opposite side because of cochlear ablation. The mechanisms involved are 

(a) down-regulation of postsynaptic GlyR activity in the ventral cochlear nucleus and (b) 

down-regulation of the synaptic release of glycine in the dorsal cochlear nucleus and 

faster removal of extracellular glycine. These mechanisms may initiate the long-term 

hyperexcitability and increased spontaneous firing rate in the dorsal cochlear nucleus and 

may contribute to the tinnitus perception.   

 Szczepaniak and Møller (1995) observed a decrease in GABA-mediated 

inhibition in the inferior colliculus. In the studies by Suneja, Benson, et al. (1998) and 

Suneja, Potashner, et al. (1998), the early changes in the contralateral central nucleus of 

inferior colliculus were consistent with an early weakening of GABAergic inhibition. The 

late strengthening of GABAergic inhibition may have developed in response to the up-

regulation of transmitter release from the glutamatergic synaptic endings in the central 

nucleus of the inferior colliculus.  

   Thus, the type of procedure for creating peripheral lesions (noise exposure, 

cochlear ablation, and ossicular removal) affects the molecular outcomes by creating 

sensory deprivation. Such changes in excitatory and inhibitory synapses can be 

interpreted as follows:  
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1.  Auditory nerve fibers have both excitatory and inhibitory response areas 

(Sachs & Kiang, 1968) and inhibition is a form of suppression that cochlear 

outputs impose on the higher centers (Ruggero, 1992). This means that sounds 

such as a tone will cause both inhibition and excitation in the auditory nervous 

system through synapses. The basilar membrane has the receptive fields for 

the certain frequencies (tonotopicity) and such tonotopic arrangement can be 

seen throughout the auditory nervous system. It enables the auditory system to 

have the lateral inhibition or suppression similar to what is in the visual 

system. Lateral inhibition is the capacity of the neurons of excited neurons to 

reduce the activity of neighboring neurons. Thus, if the peripheral pathology 

reduces the input in certain frequencies, it can reduce the lateral inhibition in 

higher auditory centers (dorsal cochlear nucleus, inferior colliculus) and this 

may enable the neighboring neurons to become sufficiently active to produce 

awareness of sound without an external source of the sound, leading to the 

perception of tinnitus (Rajan & Irvine, 1998).  

2.  Evidence supports the findings that high-frequency sounds elicit the stronger 

inhibitory response in the neurons in the cochlear nucleus than low 

frequencies. Acoustic trauma commonly causes the high-frequency hearing 

loss and may cause tinnitus because of reduced high-frequency lateral 

inhibition. The inferior colliculus has significant interaction between 

excitation and inhibition.  
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Neural Reorganization in Auditory Cortex 

Many forms of tinnitus have been linked to neural plasticity (Bartels, Staal, & 

Albers, 2007) and thus tinnitus is considered a “plastic disorder” (Møller, 2008). Sensory 

deprivation is the strongest premotor of neural plasticity (Møller, 2006). The nervous 

system can change its function because of neural plasticity in synaptic connections. The 

person who is placed in the sound proof booth for some time experiences the tinnitus that 

may be a result of the immediate effect of neural changes.  

 Neural plasticity can cause normally ineffective synapses, typically masked by 

normally dominant synapses, to become active (Møller, 2001, 2006). Such neural 

plasticity can play a role when the non-classical auditory pathway (extra-lemniscal 

pathway) receives the auditory input from the ear and activates its neural connection to 

sensory receptor of other sensory systems (e.g., somatosensory). Non-classical auditory 

pathway also has neural connections with amygdala and other limbic structures (LeDoux, 

1992). It also receives neural inputs from dorsal and medial thalamus (Møller, 2003). The 

non-classical pathway has been observed to play a role in tinnitus perception (Møller, 

Møller, & Yokota, 1992). Non-classical or extralemniscal pathway consists of the 

external nucleus of inferior colliculus, the magnocellular nucleus of the medial geniculate 

body, dorsal cochlear nucleus and secondary auditory cortex (Eggermont, 2005). 

Changes in the spontaneous activity of the extralemniscal pathway have been linked to 

the tinnitus generation. Chen and Jastreboff (1995) observed the increased spontaneous 

activity in the secondary auditory cortex, combined with an increase in firing rate for the 

external nucleus of the inferior colliculus in cats after noise exposure. Salvi, Hamernik, 
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and Henderson (1978) observed strongly decreased in the dorsal cochlear nucleus in 

characteristic frequency region with an elevated threshold in chinchillas exposed to an 86 

dB SPL, 4kHz noise band for 4 days. The effect tinnitus inducing agents such as noise 

and ototoxic drugs (salicylate and quinine) have been demonstrated in animal studies on 

the non-classical pathway (extralemniscal pathway) in changing spontaneous firing rates 

of the structures in the non-classical pathway. Such changes in the spontaneous firing rate 

form the basis of the neural substrate of tinnitus. Limbic system was found abnormally 

activated in some individuals with tinnitus (Lockwood et al., 1998) and such activity in 

the limbic system may be created by emotional disturbances derived from the experience 

of tinnitus.  

 The neural plasticity hypothesis suggests two lines of auditory research. First, 

animal studies found that noise exposure induces the hearing loss in certain frequencies 

which leads to a reorganization of tonotopic maps in the primary auditory cortex, in such 

a way that edge frequencies of the normal hearing region become over-represented in the 

entire region of those frequencies in the hearing loss (Noreña, 2003). It was suggested 

that such overrepresentation of tonotopic reorganization might underlie tinnitus because 

hearing loss is a proposed cause of tinnitus (Eggermont & Roberts, 2004). The second 

line of research suggests that the neural representation of the primary auditory cortex can 

be changed over the lifespan by either deafferentation or auditory training (Fritz, Elhilali, 

& Shamma, 2005; Weinberger, 2007).  

 Such neural reorganization in both lines of research requires neural synchrony 

along with neural plasticity. The changes initiated by neural plasticity can be permanent 
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because of Hebb’s principle: neurons that fire together will eventually also connect 

morphologically together (“wire together”) (Møller, 2006). The abnormal synchronous 

(temporally coupled) firing of the neurons, develop in the auditory cortex when the 

auditory input from the cochlea is cut off. To explain this neural phenomenon, Rajan and 

Irvine (1998) proposed the neural synchrony model of tinnitus through the 

overrepresentation of tonotopicity in the auditory cortex of a cat. Upon hearing loss, the 

diminished input from the thalamus to cortex reduces excitation and feed-forward 

inhibition in the neurons that coded for the frequencies in the hearing loss region, 

resulting in those neurons producing action potentials because of the activation of 

adjacent unaffected neurons responding to sound frequencies not lost, via input through 

horizontal connections. Thus, the output of the “affected” neuron remains relatively 

intact. This result in synchronous firing all along the fiber tracts connecting wide area in 

the cortex leading to the over-representation of those frequencies not lost in the damage. 

The synchronous firing exhibits itself in the form of thalamocortical and corticolimbic 

interaction and may lead to the perception of phantom sound, tinnitus. 

Tinnitus and Silence: Short-term Sensory Deprivation and Tinnitus Perception 

As noted earlier, approximately 10%–20% of the patients with tinnitus have 

normal hearing. This suggests that one aspect of the generation of tinnitus may occur 

when a person with normal hearing experiences prolonged silence. Though very little 

research has been done on the effect of silence on tinnitus perception and/or severity, the 

seminal investigation of this phenomenon was the 1953 report by Heller and Bergman 

(1953). This study was conducted on 80 normally hearing males and females from 10 to 
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68 years of age without any aural disease and hearing loss. Subjects sat in the soundproof 

chamber with ambient noise level between 15 dB and 18 dB (re: 0.0002 dynes per cm2) 

for five minutes and were instructed to report any sound that might be detected.  

Data from normal hearing subjects in this experiment were compared with data 

obtained on tinnitus perception from 100 hard-of-hearing patients admitted to the clinic. 

The results in this patient population showed that 75 normal hearing subjects out of 80 

(93.75%) reported the perception of sound while sitting in the soundproof chamber. 

When compared with the hard of hearing subjects, 73 patients out of 100 (73%) reported 

the perception of tinnitus. The sounds described as “buzz,” “hum,” and “ring” were the 

most frequently perceived by both groups and comprised at least 50% of the responses of 

each group. Thus, there appears to be the similarity in the type of tinnitus sound 

perception associated with hearing loss in hard of hearing patients and type of tinnitus 

sound perceived in silence by subjects with normal hearing. Heller and Bergman then 

proposed that perhaps tinnitus is a physiological phenomenon in an intact auditory system 

that is always masked by ambient noise that usually exceeds 35 dB.    

 Tucker et al. (2005) conducted a similar experiment on 120 normal-hearing young 

adults (60 male and 60 females with 40 Caucasians and 20 African Americans in each 

gender group) to examine the effect of silence on the experience of tinnitus. The aim of 

the study was to determine whether significant differences exist in tinnitus perception due 

to gender and race. The results of the study showed no significant gender difference in 

perception of tinnitus but a significant difference was observed between races with 

tinnitus perception more common in Caucasian participants (78%) than African 
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American participants (38%). The most common type of tinnitus sounds perceived was 

“ring” (57%), “buzz” (21%), “pulse” (22%), “heartbeat” (21%), and “hum” (14%). When 

compared to Heller and Bergman (1953) study where overall tinnitus perception was 

94%, this study reported significantly lower overall tinnitus perception (64%). Unlike the 

Heller and Bergman study, the silence period was kept for 20 minutes as opposed to 5 

minutes. Also, all the subjects had hearing thresholds 20 dB or less for octave frequencies 

between 250 and 8000 Hz in both ears as opposed to “self” reported normal hearing in all 

the subjects in Heller and Bergman study. The differences in the results between these 

two studies might be attributed to the differences in the subject age range, procedures 

followed, and duration of silence (sound deprivation). Additional studies are needed to 

explore differences in tinnitus perception due to race. 

 The study by Tucker et al. (2005) does not support the conclusion proposed by 

Heller and Bergman (1953) that “tinnitus is a physiological phenomenon in an intact 

auditory system always masked by ambient noise usually exceeding 35 dB tinnitus” (p. 

82). Instead, their study indicated that silence helped to produce temporary tinnitus in 

normal hearing subjects and that there was a significant difference in tinnitus perception 

due to race and not gender.  

Mason and Brady (2009) studied the effect of short-term complete isolation from 

sound and vision on the perceptual disturbances in the highly hallucination-prone and 

non-hallucination prone groups. The result of this study showed that the brief period of 

sensory deprivation led to significant increase in perceptual disturbances such as 

anhedonia and paranoia. The hallucination-prone individuals experienced more 
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perceptual disturbances than non-prone individuals. The perceptual disturbances like 

anhedonia and paranoia must have the neurological base set in the interaction between 

visual/auditory nervous system and limbic system (as the sensory deprivation was in 

visual and auditory senses in the first study). The hallucination-prone and non-prone 

individuals also may have a “race factor” or “gender” factor contributing to a 

predisposition to perceptual disturbances because a “race” factor was involved in the 

tinnitus experience in Tucker’s study.   

Another short-term sensory deprivation study by Munro, Turtle, and Schaette 

(2014) showed an increase in loudness rating and over amplification of stimulus-evoked 

neural activity in the unilateral auditory deprived ear (plugged for 7 days). This is 

attributed to the gain control mechanism at the lower level of the auditory brainstem. This 

mechanism increases the neural responses because of sensory deprivation and thus lower 

sound level required to elicit the stimulus-evoked neural activity (measured by acoustic 

reflex thresholds) in the sensory deprived ear. The authors concluded that the strength of 

the excitatory synapses is scaled up and strength of inhibitory synapses is scaled down 

because of such sensory deprivation.    

The findings from studies focused on tinnitus in silence and similar studies on 

short-term sensory deprivation reveal the need for a more objective approach to assess 

the auditory system (peripheral and central) involved in tinnitus experience because of 

silence among normal-hearing listeners. Although neurophysiological aspects of tinnitus 

provide us with probable structures involved in tinnitus experience resulting from hearing 

loss and auditory pathological structures, the exact cause of tinnitus experience remains 
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unknown for normal hearing individuals when silence is a triggering factor. The present 

study will focus on the assessment of the medial olivocochlear (MOC) reflex pathway. 

This pathway is well defined and can be assessed acoustically by measuring contralateral 

suppression of otoacoustic emissions. The projections and connections of and with 

medial olivocochlear bundle make it potential pathway that may be involved in tinnitus 

perception. The functional anatomy of the MOC pathway is described in the following 

section.   

Brief Functional Anatomy of Efferent Auditory Pathway 

To understand suppression of the otoacoustic emissions, it is important to review 

the functional anatomy of the efferent auditory system that starts in the cortex and 

terminates in the cochlea, the olivocochlear bundle (OCB) originates in the brainstem and 

terminates in the cochlea (Guinan, 2006). The functional anatomy of the auditory efferent 

system is shown in Figure 2.  

 

Figure 2. The Functional Anatomy of the Efferent Auditory System (Olivocochlear 
Pathway). Adapted from “Olivocochlear Efferents: Anatomy, Physiology, Function, and 
the Measurement of Efferent Effects in Humans,” by J. J. Guinan, 2006, Ear and 
Hearing, 27(6), 589-607. Copyright 2006 by the Wolters Kluwer Health, Inc. Adapted 
with Permission. 
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The OCB consists of both lateral (L) and medial (M) olivocochlear (OC) fibers, 

which originate in lateral and medial olivocochlear nuclei, respectively. Each cochlea 

receives both crossed and uncrossed lateral olivocochlear bundle and medial 

olivocochlear bundle fibers. As shown in right side of Figure 2, the thick, myelinated 

medial olivocochlear bundle fibers that project predominantly to the contralateral cochlea 

and terminate at the base of the outer hair cell (OHC) and thin unmyelinated lateral 

olivocochlear bundle fibers terminates on the dendrites of the auditory nerve fibers 

(Guinan, 2006). Animal studies have shown that medial olivocochlear fibers can be 

electrically and acoustically stimulated. In contrast, the electrical and acoustical 

stimulation of lateral olivocochlear fibers is limited and no conclusion has been made if 

lateral olivocochlear fibers show any activity after electrical stimulation or whether or not 

they can be acoustically stimulated.  

There are three ways to record efferent olivocochlear bundle stimulation: a) 

Ipsilateral acoustic stimulation: acoustic stimulation in the same ear in which 

measurement of the modulation of otoacoustic emissions is being done b) Contralateral 

acoustic stimulation: acoustic stimulation in the opposite ear c) Binaural acoustic 

stimulation: Both ears (the ear in which modulation of otoacoustic emissions is being 

measured and the opposite ear) are stimulated simultaneously.    

Suppression of Otoacoustic Emissions (OAEs) in Population with Normal Hearing 

Sensitivity 

The effects of contralateral and ipsilateral competing stimuli on OAEs have been 

studied using auditory stimulation in human subjects and artificial electrical stimulation 
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in animal subjects. The physiological effects of such stimulation were manifested in the 

suppression of stimulated and spontaneous otoacoustic emissions through the auditory 

efferent system, specifically the medial olivocochlear efferent in the brainstem (Guinan, 

1996; Harris and Glattke, 1992). The functional role of the auditory efferent system is not 

fully understood but some studies showed its importance in protection from acoustic 

trauma (Rajan, 2000; Maison & Liberman, 2000) and improved speech perception in 

noise (Kumar & Vanaja, 2004). Thus, research in the auditory efferent system has 

valuable clinical applications.    

 To understand the suppression of otoacoustic emissions, different otoacoustic 

emissions are discussed in following sections. 

Otoacoustic Emissions (OAEs) 

Otoacoustic emissions are the echo of sounds generated in the cochlea by the 

movement of the sensory hair cells (Outer hair cells) in response to a stimulus (Kemp, 

2002). The energetic motion of the outer hair cells due to its characteristic 

“electromotility” gives rise to cochlear amplification and as a result, some energy escapes 

to the oval window in the form of reverse traveling wave measured as otoacoustic 

emissions. Thus, otoacoustic emissions are the sign of healthy cochlear function and 

provide simple, efficient, and objective measures to assess the cochlear function (Kemp, 

2002). The otoacoustic emissions, as a research tool, provide a non-invasive tool not only 

for the assessment of cochlear function (Kemp, 2002) but also for the assessment of 

efferent auditory pathway (Giraud, Collet, Chéry-Croze, Magnan, & Chays, 1995). 
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Classification of Otoacoustic Emissions 

Otoacoustic emissions (OAEs) have been classified based on two viewpoints. The 

first is the traditional classification based on the types of stimulus used to elicit and 

record the otoacoustic emissions. The second is based on the physiological mechanism 

involved in their creation (Kemp & Brown, 1983; Knight & Kemp, 2000, 2001). For this 

literature review, the first classification system based on the type of stimulus or no 

stimulus will be used. 

 Spontaneous otoacoustic emissions. Spontaneous otoacoustic emissions 

(SOAEs) are low tonal signals produced in the cochlea without any external auditory 

stimulation (Kemp, 2002). The structural irregularities in the cochlea are the probable 

cause of generating spontaneous otoacoustic emissions (Kemp, 1986; Manley, 1993). 

These irregularities set up the reverse travelling wave along the basilar membrane 

eventually recorded as spontaneous otoacoustic emissions in the ear canal (Kemp, 1986). 

The spontaneous otoacoustic emissions are classified as pure reflection emissions 

because they are emitted from cochlear standing-wave resonances (Shera, 2003, 2004). 

Shera (2003) suggested that internal physiological or even environmental noises act as a 

source of vibrational energy to the basilar membrane initiating forward traveling waves. 

These forward traveling waves are then reflected by random roughness and minor 

irregularities present along the basilar membrane that set up a reverse traveling wave 

propagating towards the oval window. These reverse traveling waves, in turn, get 

reflected from the oval window (the boundary between inner and middle ear impedance 

mismatch) and travel near their characteristic frequency regions. The “in phase” 
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interaction between forward and reverse traveling waves in many places create a standing 

wave that leaks out as spontaneous otoacoustic emissions. The amplitude of the reverse 

traveling wave increases at the places where standing waves are created. This happens 

because of the multiple reflections of the standing waves from the irregularities along the 

cochlear partition. Eventually some portion of this increased amplitude leaks as a 

spontaneous otoacoustic emissions (Shera, 2003).        

 In initial years, after spontaneous otoacoustic emissions discovery, technical 

limitations in the instrumentations made it difficult to record spontaneous otoacoustic 

emissions frequently in adults, therefore the prevalence of spontaneous otoacoustic 

emissions in adults was less than 40%. However, with the subsequent invention of new-

sophisticated instrumentation, the prevalence has reached to approximately 80% (Kuroda, 

2007; Strickland, 1985). Bilger, Matthies, Hammel, and Demorest (1990) and Penner, 

Glotzbach, and Huang (1993) have reported that the right ear has more frequency of 

SOAEs occurrence than left. The female to male ratio of spontaneous otoacoustic 

emissions occurrence is approximately 2:1 (Bilger et al., 1990; Martin, Probst, & 

Lonsbury-Martin, 1990). In adults, SOAEs is mostly measured in the frequency region 

between 1000 and 2000 Hz. In infants and newborns, the range is 2500-5000 Hz (Morlet 

et al., 1995). The spontaneous otoacoustic emissions can be up to -15 to 10 dB. The 

spontaneous otoacoustic emissions are affected by ototoxic drugs, which can affect the 

cochlear amplification due to the damage in the outer hair cell (Kuroda, Chida, 

Kashiwamura, Matumura, & Fukuda, 2008). Thus, the presence of spontaneous 

otoacoustic emissions indicates normal hearing functioning and healthy cochlea.  
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In contrast, animal studies in chinchilla reported initiation of spontaneous 

otoacoustic emissions after noise exposure (Clark, Kim, Zurek, & Bohne, 1984) and high 

amplitude spontaneous otoacoustic emissions were recorded from the frequency region 

where cochlear damage was present (Nuttall et al., 2004). Such relation of spontaneous 

otoacoustic emissions and cochlear damage might support the reflection phenomenon. 

The structural damage creates the irregularities in the cochlea. As mentioned earlier, 

cochlear irregularities are responsible for the generation of spontaneous otoacoustic 

emissions. Thus, the cochlear damage becomes the source of spontaneous otoacoustic 

emissions. In select patients, the frequency of perceived tinnitus can coincide with a 

patient’s recorded spontaneous otoacoustic emissions frequencies; however, this is not 

true for every tinnitus patient, and generally, the relationship between tinnitus and 

spontaneous otoacoustic emissions has not been found to be statistically significant 

(Ceranic, Prasher, Raglan, & Luxon, 1998).      

 Transient evoked otoacoustic emissions (TEOAEs). Transient otoacoustic 

emissions (TEOAEs) are the acoustic energy emitted by an active process in the cochlea 

in response to brief broadband click stimuli (Hall, 2000). The transient otoacoustic 

emissions are nonlinear and non-stationary in nature. The transient otoacoustic emissions 

consist of different frequency components at different moments of time and its response 

amplitude grows nonlinearly with an increase in the stimulus intensity (Kemp, 1978).  

Click stimuli are comprised by a set of four stimuli presentations with the first three in 

one phase and the fourth in opposite phase of the first three but with an amplitude three 
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times greater than the first three. The next stimulus sequence of clicks would be with 

reverse polarities for all four stimuli.  

The response to these four stimuli would have linear components (components 

that follow the stimuli exactly) and nonlinear components (TEOAEs). Because the 

polarity of forth stimuli is exactly opposite and the power is equal to the sum of the 

power of the first three stimuli, the sum of the linear components will be zero leaving the 

nonlinear components for recording and analysis. These nonlinear components are 

transformed into the frequency domain after eliminating the first few milliseconds of data 

to avoid the contribution of stimulus artifacts in the average response waveform. These 

nonlinear components are displayed as the transient otoacoustic emissions. 

 Effect of gender on TEOAE. Gender differences can be reported in the human 

peripheral and central auditory nervous system. McFadden (1998) summarized various 

auditory system differences between males and females. Male heads, pinna, external ear 

canals, and middle-ear volumes are larger than females. Males have a longer cochlea than 

females. These differences contribute significantly to the differences in the TEOAEs 

between males and females. Females have significantly higher amplitude and 

reproducibility in TEOAE values than males (McFadden, 1998; Robinette, 1992; 

Shahnaz, 2008). 

 Characteristic of a TEOAE response waveform. Figure 3 shows the transient 

otoacoustic emissions response displayed on the Otodynamics Ltd. ILOV6 292-I 

instrument analysis window. The “Stimulus, Response” waveform and OAE response 
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window are the most common aspects of the transient otoacoustic emissions displayed in 

commercially available instruments.   

1. Demographic data: The left column of the screen shows the demographic data 

of the subjects such as name, date of birth, gender etc.  

2. Stimulus: The stimulus panel shows the biphasic click stimulus waveform 

because of 80 μs electric pulse applied to the transducer. The x-axis displays 

the time recorded after the click presentation in milliseconds with a window 

up to five milliseconds. The y-axis displays amplitude scale of the click 

stimulus in pascals (Pa), which is related to the intensity of the click. The 

amplitude of stimulus is slightly less than 0.3 Pa (0.3 Pa is equivalent to 83.5 

dB SPL). The green circle in the stimulus window is the traffic light indicator. 

It represents the stability figure. It turns green when the stability figure is over 

90, orange for over 70 and red for below 70.    

3. Response waveform: The response waveform panel shows the overlapping of 

time-averaged response from the two memory locations (each one gets half of 

the data points) sampled for 20-ms. Appropriate overlapping between two 

waveforms is displayed here and indicated waveform reproducibility. The 

amplitude of the response waveform is set at the 0.5 mPa. The response 

waveform is time-averaged waveform sampled for 20 ms period following the 

transient stimulus. First 2-3 ms shows straight line because it is the time 

through which stimulus is extended. After the stimulus stops, the software 

starts analyzing the response waveform.   
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4. OAE response window: The raw transient otoacoustic emissions response is 

analyzed using an FFT, and the half-octave bands for the transient otoacoustic 

emissions response (Blue bars) with noise energy (Red bar) is displayed as a 

histogram. This is the Fast Fourier Analysis of the transient otoacoustic 

emissions response waveform. The transient otoacoustic emissions responses 

are measured across frequency range 1 kHz – 8 kHz and are recorded in 

dBSPL. 

 

 

Figure 3. A TEOAE Otodynamics Ltd. ILOv6 OAE System Showing the Transient 
Otoacoustic Emissions Response and Analysis Screen. The Transient Otoacoustic 
Emissions Response Obtained from a Young Adult Male is Shown with Various Stimulus 
Characteristics. 
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 Distortion product otoacoustic emissions (DPOAEs). The DPOAEs are the 

responses from the cochlea because of an intermodulation distortion initiated by the 

nonlinear aspects of cochlear processing. An introduction of two simultaneous, pure-tone 

stimuli or primary tones close in frequency into the external auditory canal creates such 

distortion (Kemp, 1979). The regional mechanical nonlinearities cause reverse 

propagation of distortion energy that can be recorded in the external auditory canal. A 

stimulus of two primary tones f1 (low frequency) with its level as L1 and f2 (f2>f1) with 

its levels as L2 and ratio of 1.22 (i.e., f2/f1=1.22) are introduced together, and a resulting 

distortion product 2f1-f2 is measured. The 2f1-f2 DPOAEs is commonly recorded 

because it is the largest measurable DPOAE in human ears.  
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Figure 4. A DPOAE Otodynamics Ltd. ILOv6 OAE System Showing DPOAE Response 
and Analysis Screen. The DPOAE Response (The OAE is Shown in the Blue Portion of 
Bars. The Red Portion is Noise Floor) Obtained from a Young Adult Male is Shown with 
Various Stimulus Characteristics. The Screen Data Fields Nlo, Nhi and, Rej Have the 
Same Interpretation Explained in the Previous Section about TEOAEs. Stim: in This 
Figure Shows L1=70 dB SPL and L2=60 dB SPL Protocol Commonly Used. The F2/F1 
Ratio is 1.22 for Maximum Overlap between Two Primaries and Robust 2f1-f2 DPOAE 
Recording. DP Level: Total DP Power in dB SPL. L1 and L2 stim: the DP Stimulus 
Levels Used in dB SPL. 

 

Stimulation of OAEs 

Altered or abnormal efferent auditory pathway function has been observed in 

tinnitus patients using both contralateral suppression of Distortion product Otoacoustic 

emission (Chéry-Croze et al., 1993) and Transient evoked Otoacoustic emissions (Geven 
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et al., 2012; Lalaki et al., 2011). Therefore, recording of contralateral suppression of 

otoacoustic emissions in tinnitus perception in silence can be a useful tool to assess the 

medial olivocochlear function and its relationship to tinnitus perception. 

Ipsilateral Acoustic Stimulation  

In the ipsilateral acoustic stimulation, the acoustic stimulus crosses midline from 

the stimulated ear (ipsilateral ear) via afferent neurons to stimulate efferent neurons of the 

opposite side olivocochlear bundle and then these efferent neurons from the opposite side 

cross back over to have their influence on the ipsilateral stimulated cochlea. This pathway 

involves crossed olivocochlear bundle (COCB) (see Figure 2). 

Contralateral Acoustic Stimulation  

Unlike ipsilateral stimulation, contralateral acoustic stimulation crosses over to 

the opposite side via afferent but the efferent effect is carried out by the uncrossed 

olivocochlear bundle (UOCB) (Guinan, 2006). This means stimulating one ear and 

measuring the effect in the opposite ear (see Figure 2), and in binaural stimulation, both 

uncrossed olivocochlear bundle and crossed olivocochlear bundle are stimulated (Guinan, 

2006).  

Suppression of Transient Evoked OAEs (TEOAEs) 

Suppression of TEOAEs can be recorded using ipsilateral, contralateral, or 

binaural acoustic stimulation (Dhar & Hall, 2012). In ipsilateral suppression of TEOAE, 

the undesirable interaction between emission evoking stimulus and suppressor stimulus 

makes this method difficult to record genuine results. Therefore, a forward masking 

paradigm in which the suppressor precedes the stimulus is used to record ipsilateral 
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suppression of TEOAEs (Tavartkiladze, Frolenkov, Kruglov, & Artamasov, 1994). The 

most commonly used method to measure suppression of TEOAEs is the contralateral 

suppression mode (contralateral acoustic stimulation) in which continuous noise is 

presented to the contralateral ear during the time that OAEs are recorded.  

The consistent decrease of 1-4 dB is seen in the overall emission amplitude 

(Berlin et al., 1993, Berlin, Hood, Hurley, & Wen, 1994). The greatest amount of 

suppression for the contralateral continuous noise was found for lower intensities 55 and 

60 dB peak SPL as opposed to higher intensities (Hood, Berlin, Hurley, Cecola, & Bell, 

1996). Noise is a more effective stimulus than pure tones as the suppressor. Broadband 

noise has been found to be most effective suppressor than narrowband noise and tones 

when click stimulus was used for TEOAE emissions (Berlin et al., 1993). The white 

noise of 60-65 dB is recommended. In addition, the duration of suppressor up to 400 ms 

with its continuous contralateral presentation during recording TEOAEs was found to 

have a greater amount of inhibition. The studies have reported that the TEOAEs 

suppression value varies from less than 1 dB to several dBs (Muchnik et al., 2004; 

Prasher, Ryan & Luxon, 1994; Veuillet, Collet, & Duclaux, 1991). Muchnik et al. (2004) 

reported a mean of 1.57 dB (SD=0.64) in right ear and mean of 1.61 dB (SD=0.68) in the 

left ear. The means values in other studies ranged between 0.8 to 2 dB (Burguetti & 

Carvallo, 2008; Kumar & Vanaja, 2004). The difference in the mean value could be 

attributed to changes in the protocol and inter-subject variability in modulatory effect on 

the cochlear gain (De Boer, Thornton, & Krumbholz, 2011). The individual differences in 

the level of TEOAEs may also affect the magnitude of suppression (De Ceulaer et al., 
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2001). Because of these variations, it is difficult to arrive at a specific and uniform 

decision criterion to define the presence or absence of suppression. However, a few 

investigators have reported criteria for stating decisions. Majorities of the studies have 

used 0.6 dB as the decision criterion (Muchnick et al., 2004; Prasher et al., 1994).  

See Figure 8 in Appendix D for TEOAE waveform before suppression and after 

suppression.   

Tinnitus and Suppression of Otoacoustic Emissions 

Abnormal distortion product otoacoustic emissions and transient otoacoustic 

emissions findings in a person with tinnitus suggest that peripheral pathological changes, 

such as abnormal outer hair cell function, may contribute to the generation of tinnitus. 

There have been several previous studies conducted to explore the involvement of medial 

olivocochlear (efferent control) in the subjects with tinnitus using otoacoustic emission 

assessment. A smaller suppression effect in transient otoacoustic emission (with the use 

of contralateral broadband noise stimulation) was observed ipsilateral to the ear of 

tinnitus perception (where the tinnitus was perceived) in the normal hearing subjects with 

unilateral tinnitus (Veuillet et al., 1991). A subsequent study by Chéry-Croze et al. (1993) 

observed variation in medial olivocochlear function in all of their 16 bilateral tinnitus 

patients with normal hearing sensitivity and 50% of their unilateral tinnitus patients with 

normal hearing sensitivity. The suppression was tested using contralateral suppression of 

TEOAEs and DPOAEs. This alteration in medial olivocochlear was the manifestation of 

either abnormally small or no suppression using contralateral noise and enhancement in 

distortion product otoacoustic emission amplitude with contralateral stimulation. In 
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addition, distortion product otoacoustic emission findings showed medial olivocochlear 

dysfunction in the frequency region of the tinnitus.  

Riga, Papadas, Werner, and Dalchow (2007) experimented with suppression of 

distortion product otoacoustic emissions in 18 normal hearing adults (seven men, 11 

women) with acute tinnitus. Three subjects had bilateral tinnitus. Results showed a lack 

of statistically significant distortion product otoacoustic emission amplitude suppression 

after application of contralateral white noise in either ear (with or without tinnitus) in 

normal hearing adults with acute tinnitus. Additionally, they observed an enhancement of 

distortion product otoacoustic emission amplitude in some patients after application of 

contralateral noise. Conversely, they report statistically significant contralateral 

suppression of distortion product otoacoustic emission amplitude in their control group 

matched with subjects with respect to sex, ear side, and age distribution. Thus, the less 

effective functioning of the cochlear efferent system seemed to be indicated in adults 

with normal hearing who had acute tinnitus.  

The findings from the distortion product otoacoustic emission suppression studies 

need to be analyzed with caution. The distortion product otoacoustic emission consists of 

two components (place fixed waveform and wave fixed waveform) and these two sources 

interfere and make the medial olivocochlear reflex effect on distortion product 

otoacoustic emission very complex. Sometimes it may increase the distortion product 

otoacoustic emission (Müller, Janssen, Heppelmann, & Wagner, 2005; Wagner, 

Heppelmann, Müller, Janssen, & Zenner, 2007). The increase in the distortion product 

otoacoustic emission findings after medial olivocochlear reflex activation can be 
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explained by the phase relationship between two sources of distortion product otoacoustic 

emissions. If the two components of distortion product otoacoustic emissions normally 

cancel, and medial olivocochlear stimulation inhibits one component (source) more than 

the other, this inhibition reduces the cancellation and increases the distortion product 

otoacoustic emission. Thus, the relative phases of the two-distortion product otoacoustic 

emission components greatly influences the distortion product otoacoustic emission 

change measures in the ear canal.  

Such phase relationship is not related to the medial olivocochlear effect but can 

strongly influence the result of the medial olivocochlear reflex action. Thus, change in 

distortion product otoacoustic emission amplitude is not the accurate measure of medial 

olivocochlear reflex effect. Therefore, in this study, contralateral suppression of transient 

otoacoustic emissions is selected as the tool for recording any change in the transient 

otoacoustic emission because of medial olivocochlear reflex activation due to 

contralateral white noise.  

Summary of Literature and Research Hypotheses 

A review of the literature has shown that (a) tinnitus can be perceived after a 

period of silence, and (b) suppression of otoacoustic emissions is abnormal (lacking) in 

patients with chronic tinnitus. Research is needed to further understand the effect of 

silence on temporary and chronic tinnitus and the role that the efferent auditory system 

plays in tinnitus perception. In addition, research is needed to determine if an abnormal 

suppression of otoacoustic emissions will appear in normal hearing subjects after a period 

of silence in which the perception of tinnitus may or may not occur and to document the 
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magnitude of suppression. Thus, although contralateral suppression has been researched 

over two decades, there is no consensus on the exact protocol to be used for the 

magnitude of suppression observed in persons with normal hearing after a period of 

silence.  

 The purpose of this study is to assess the role of the efferent auditory pathway 

(medial olivocochlear pathway) in the perception of tinnitus in silence using the measure 

of contralateral suppression of transient evoked otoacoustic emission. This study will 

explore the physiology of connecting neural pathway between the afferent auditory 

pathway and medial olivocochlear efferent, medial olivocochlear efferent and outer hair 

cell and outer hair cell and afferent pathway (see Figure 5).  
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Figure 5. Theoretical Model for This Study. The Cross Marks (Red and Orange) Shows 
Lack of Auditory Input Due to Silence in a Sound Booth. The Upward Arrows (Red and 
Orange) in Cochlear Nucleus (CN) Show Hyperactivity Due to Lack of Inhibitory Input 
from the Periphery. The Red and Orange Pathway Shows the Inhibitory Input to the 
Outer Hair Cells (OHC) Due to Hyperactivity in the CN. Identical Phenomenon and 
Pathways are Hypothesized for the Contralateral Ear.   
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Research Hypotheses 

 Hypothesis 1: The total transient otoacoustic emission amplitude values will be 

statistically significantly decreased after a period of 10 minutes of silence in test ear 

(right ear). 

 Rationale for Hypothesis 1: Lack of peripheral auditory input due to noise-

induced hearing loss causes hyperactivity in the cochlear nucleus. Here, it was 

hypothesized that the lack of peripheral auditory input due to silence would cause the 

same hyperactivity in the cochlear nucleus. This hyperactivity in the cochlear nucleus 

after the silence period would then activate the medial olivocochlear neurons and in turn 

produce more transient otoacoustic emission suppression through uncrossed medial 

olivocochlear neurons (UCMOC) innervated by ipsilateral interneurons or through 

crossed medial olivocochlear neurons (CMOC) innervated by contralateral interneurons, 

and as a result total transient otoacoustic emission amplitude would be decreased 

significantly.  

 Hypothesis 2: The transient otoacoustic emission suppression amplitude will be 

significantly increased after a period of 10 minutes silence in test ear (right ear).   

 Rationale for Hypothesis 2: Lack of peripheral auditory input due to silence 

would cause hyperactivity in the cochlear nucleus. This hyperactivity in the cochlear 

nucleus would then hyperactivate the medial olivocochlear neurons and in turn, would 

produce more transient otoacoustic suppression in the test ear (right ear). 
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 Hypothesis 3: Participants perceiving tinnitus after 10 minutes of silence will 

have a greater amount of TEOAE suppression in post-silent measurement than the 

participants without the perception of tinnitus.  

 Rationale for Hypothesis 3: Since tinnitus has been linked to noise-induced 

hyperactivity in the cochlear nucleus due to lack of peripheral inhibition, in this study the 

participants perceiving tinnitus would be expected to have similar changes in the cochlear 

nucleus after a silent period. Therefore, their tinnitus would be linked to increased 

suppression of transient evoked otoacoustic emission post-silent period.   
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CHAPTER III 

 
METHODS 

 

The objective of this study was to assess the function of Medial Olivocochlear 

reflex pathway (MOC) before and after the period of brief silence and its possible role in 

the perception of tinnitus in silence. The rationale for the study was that the contralateral 

suppression of transient otoacoustic emissions before and after the period of silence gives 

the insight into the function of the medial olivocochlear reflex pathway in the perception 

of tinnitus in silence.    

Subjects 

The participant pool consisted of 58 males. The age range criterion was 18-35 

years. The pool consisted of 40 Asians, 14 Caucasians, and 4 African Americans.  

Participants met the inclusion criterion only if they had normal hearing thresholds 

of < or equal to 25 dB HL at octave frequencies from 250 Hz to 8000 Hz and also at 3000 

& 6000 Hz. Participants with no abnormalities or pathologies in the ear canal, including 

wax, as seen by looking in the ear with an Otoscope were included in the study. 

Additionally, each participant had normal middle ear function as evidenced by otoscopic 

examination and tympanometry (Static compliance between +100 daPa and -100 daPa, 

0.33 cc > middle ear compliance < 1.75 cc). Also, all participants did not have any 

history of hearing loss, chronic tinnitus, head trauma, middle ear pathology, ear surgery, 
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neurological disease, and prolonged history of noise exposure or trauma (see Appendix 

B: Case History Questionnaire). 

Recruitment Method  

 The participants for this study were recruited in following ways:  

1.  Subjects were recruited individually. See Appendix G for Recruitment Script 

(In-Person). 

2.  Flyers were distributed in the UNCG classes with the permission of respective 

instructors. Interested students contacted investigator through email or phone. 

See Appendix F for Recruitment Flyer. 

3.  The investigator sent an email to the instructor along with the faculty letter. 

See Appendix H for Faculty Letter. The respective instructor forwarded the 

email to the students with the faculty letter script. Investigator responded by 

email to those students who contacted him as of result of the recruitment 

email sent to them by their instructor.  

Data Collection Procedure 

The Institutional Review Board for the protection of human research participants 

at the University of North Carolina at Greensboro approved this study. Each participant 

signed IRB approved (stamped) informed consent form before participating in the study 

(see Appendix E for Informed Consent Form). The participants recruited for this study 

were instructed to avoid exposure to loud sounds such as MP3 player music, vacuum 

cleaners, motorbikes, lawn mowers and so forth at least 12 hours before testing. The data 
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was collected in the sound-treated booth meeting ANSI standards in the Ferguson 

Building, Room 327-A, UNCG.      

Instrumentation and Calibration  

Auditory hearing sensitivity was assessed using Audiology clinical equipment 

housed in the UNCG Speech and Hearing Center on the third floor of the Ferguson 

Building. This equipment included the Grason-Stadler (GSI) 61 clinical audiometer and 

Eartone 3-A inserts. GSI TympStar Middle Ear Analyzer was used to assess middle ear 

function. Otodynamics Echoport ILOV6 292-I instrument was used to measure transient 

otoacoustic emissions (TEOAEs) and subsequent contralateral suppression of transient 

otoacoustic emissions. All the mentioned equipment was calibrated on February 4th, 

2016. 
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Figure 6. Schematic Diagram of the Research Method. This Figure Shows the Schematic 
Diagram of Research Design and Relevant Statistical Analysis Tests.  
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Procedure 

Each participant was instructed to sit in an upright comfortable position on a chair 

inside the sound booth. 

Case History Questionnaire  

Participants completed a paper case history. The case history questionnaire 

contains questions about the hearing status and neurological status. (See Appendix B for 

questions).   

Audiometry  

The participants were tested in a sound booth for peripheral hearing sensitivity at 

250, 500, 1000, 2000, 3000, 4000, 6000, and 8000 Hz frequency to ensure normal 

hearing sensitivity using ASHA guidelines (2005). The Grason-Stadler (GSI) 61 clinical 

audiometer and Eartone 3-A inserts were used to assess peripheral hearing sensitivity 

(pure tone air conduction thresholds).   

Assessment of Middle Ear Function with Tympanometry 

Tympanometry was performed inside the sound booth to assess normal middle ear 

function. GSI TympStar Middle Ear Analyzer (calibrated on February 4, 2016) was used 

to assess middle ear function.  

Inclusion in the Study  

If the participant’s middle ear function and hearing thresholds were normal, the 

participant was included in the study and the transient evoked otoacoustic emissions 

recordings and silence experiments were conducted. If the participant’s middle ear 

function or hearing thresholds were not within normal limits, the participant was 
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excluded from the study and was referred for follow-up testing with a doctor and/or 

audiologist. 

Simultaneous Transient Evoked Otoacoustic Emissions (TEOAE) and TEOAE 

Suppression Testing and Silence Exposures 

 Figure 7 illustrates the simultaneous transient evoked otoacoustic emissions and 

TEOAE suppression recording.  

 

Figure 7. Continuous Contralateral Suppressor Noise Method. Probe 1, Test (Ipsilateral) 
Ear: Click Stimulus is Presented. Probe 2, Contralateral Ear: Suppressor Broadband 
Noise is Presented. In “Masker ON” Condition, the TEOAEs are Recorded with 
Suppressor Noise (Contralateral Suppression of TEOAEs). In “Masker OFF” Condition, 
TEOAEs are Recorded without Suppression. These Two Conditions are Interleaved for 
Three Times to Record Reliable TEOAEs with and without Suppression. 
 

Continuous Contralateral Noise Suppressor Paradigm 

TEOAEs and contralateral suppression effect of TEOAEs were measured using a 

continuous contralateral suppressor noise paradigm. This paradigm was an advanced 

binaural OAE measurement available in ILOV6 292-I OAE instrument (Calibrated on 

02/04/2016). In this paradigm, two separate TEOAE recording conditions were recorded 

simultaneously. One TEOAE recording was done with a suppressor (masker) noise being 

presented to the opposite ear and the other recording was made from the ipsilateral ear 
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with no suppressor. These two simultaneous recording conditions were interleaved during 

stimulus presentations of contralateral noise so the effect of any slow changes in 

recording conditions (for example changes in probe fit) was minimized (Berlin et al., 

1993; Collet et al., 1990; Ryan, Kemp, & Hinchcliffe, 1991). 

TEOAE and TEOAE Suppression Recording Parameters 

Three repetitions of each condition were performed with 100 clicks in each 

condition for better stimulus stability and response reproducibility. Then those three 

TEOAE recordings were averaged together into the final TEOAE and TEOAE 

suppression recording. The TEOAE responses and contralateral suppression responses 

were automatically accepted only when the stimulus stability exceeded 80% and the 

reproducibility of the emissions exceeded 70% (Hood et al., 1996). The recommended 

stimulus intensity for the click stimulus in linear mode (Robinette & Glattke, 2007) for 

contralateral suppression of TEOAEs was kept at 60 dB peak sound pressure level (Hood 

et al., 1996; Veuillet et al., 1991). The recommended contralateral suppressor was used as 

the broadband (white) noise (Berlin et al., 1993; Velenovsky & Glattke, 2002). The 

intensity for suppressor (broadband noise) was kept at 65 dB sound pressure level.  

Instructions before the Baseline Recording and Silence Period  

Knobel and Sanchez (2008) observed 68.2% of the participants (normal hearing 

adults) perceived tinnitus when seated in a sound booth for 5 minutes during an auditory 

attention task. However, the percentage of participants perceiving tinnitus reduced to 

45.5% when participants were assigned a visual task during the silent period. This study 

demonstrated that visual task interferes with auditory attention task and tinnitus 
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perception. Therefore, participants were instructed not to talk, read, write, or text. In 

addition, participants were instructed to report the auditory experience they had during 

the 10 minutes of the silent period, if any. Participants were also instructed to disregard 

the auditory stimulus presented during the OAE tests administered before and after the 

silent period. These instructions were important because the participants needed to report 

their experience after the post-silent recording of TEOAE tests.   

Baseline Recording of TEOAE Total Amplitude with and without Suppression (Pre-

silence Recording)  

Each participant was seated in a comfortable chair inside the sound booth for all 

TEOAE measurements. The TEAOE equipment Otodynamics was calibrated for all the 

testing parameters (stimulus and acquisition) before data collection procedure. OAE 

probe calibration was completed before testing each participant. The real ear probe 

calibration was performed using the ILO probe-fit check paradigm before running each 

OAE measurement. The probe (probe 1), with a suitable probe tip, was inserted in the 

right ear canal to obtain a firm but comfortable seal. The second probe (probe 2) was 

inserted in the left ear canal to obtain a firm but comfortable seal. The broadband white 

noise was delivered to the left ear for contralateral TEOAE suppression. Care was taken 

to ensure that the positions of the probes would not be altered throughout the duration of 

testing and silence. The simultaneous TEOAE recording with and without suppression 

was obtained using the recommended test parameters mentioned in the previous section.  

Total TEOAE suppression amplitude was measured by subtracting total TEOAE 

suppression response from the total TEOAE response. Hood et al. (1996) found the 
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suppression variability across the subjects ranged from 0.07 to 0.36 dB with mean of 0.21 

dB that was based on the standard error of the mean for each of the click intensity (50, 

55, 60, 65, and 70 dB) and white noise (10 dB below the click intensity to 10 dB above 

the click intensity). Because stimulus and suppressor parameters in this study are similar 

to the parameters used in the Hood et al. (1996) study, the upper limit of the range (0.36 

dB) was considered appropriate to test the suppression effect.  

Silence Session  

Once the baseline TEOAE and suppression of TEOAE measurements had been 

recorded, each participant remained sitting in the sound booth for a period of 10 minutes 

with the TEOAE equipment remaining in place. Participants were sitting quietly in a 

silence/sensory deprivation condition for the duration of 10 minutes.  

Repeat TEOAE and Contralateral Suppression (Post-silence Recording) 

TEOAE and contralateral suppression of TEOAEs were measured again to 

determine if there was any change from the baseline. Care was taken to ensure that the 

positions of the probes would not be altered throughout the duration of testing and 

silence. Any difference in the amount of suppression was attributed to the effect of 

silence/sensory deprivation. 

Filling Out Questionnaire  

Participants were unhooked from probes and allowed leave the sound booth. 

Participants were given a paper survey with three questions to indicate the kind of 

tinnitus perception (such as tone, buzz, cricket-like, ocean waves, roaring, etc.) that they 

may have experienced during the silence period. Participants completed a short written 
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survey to describe any tinnitus perceptions they might have noticed. (See Appendix C for 

this survey). The word “Tinnitus” was intentionally avoided in the tester’s instructions to 

prevent any apprehension about the auditory perception if any. This procedure was 

administered to let the auditory system recover from the changes that silence might 

induce.  

Data Analysis 

 Descriptive and inferential quantitative statistical tests were used to analyze the 

data. Data was entered SPSS software (Version 20) spreadsheet. Descriptive statistics 

data was obtained from the case history form and tinnitus survey form on subject 

demographics, tinnitus sound heard, race and ear differences. It should be noted here that, 

whereas subjects did vary in race, the purpose of this preliminary study was to examine 

the effect of silence on TEOAE. Thus, the race was not used as a coding factor in 

ANOVA calculations.  

De-identifier codes were used in the SPSS spreadsheet for data. The key for the 

de-identifier code was kept on a paper file in a locked cabinet at the desk of the 

investigator in CSD 327A. The SPSS spreadsheet that contains the data was located on 

the investigator’s office computer protected with a secure password. The investigator 

with secure login ID and password accessed the data. The raw data was stored in the 

laptop attached to the instrument Otodynamic echoport ILOV6 292-I in CSD 327-A. The 

test software was password protected. Only the investigator had access to login ID and 

password.   

 



67 

	

Research Hypotheses: Definition of Statistical Support  

 Hypothesis 1: The total transient otoacoustic emission amplitude values will be 

statistically significantly decreased after a period of 10 minutes of silence in test ear 

(right ear). 

 Definition of statistical support for hypothesis 1: Repeated measures analysis of 

variance (ANOVA) was administered for the repeated measure TEOAE amplitude before 

and after 10 minutes of silence.  

 Hypothesis 2: The transient otoacoustic emission suppression amplitude will be 

significantly increased after a period of 10 minutes silence in test ear (right ear).   

 Definition of statistical support for hypothesis 2: Repeated measures analysis of 

variance (ANOVA) was administered for the repeated measure TEOAE suppression 

amplitude before and after 10 minutes of silence.  

 Hypothesis 3: Participants perceiving tinnitus after 10 minutes of silence will 

have a greater amount of TEOAE suppression in post-silent measurement than the 

participants without the perception of tinnitus. 

 Definition of statistical support for hypothesis 3: Hood et al. (1996) found the 

suppression variability across the subjects ranged from 0.07 to 0.36 dB with mean of 0.21 

dB that was based on the standard error of the mean for each of the click intensity (50, 

55, 60, 65 and 70 dB) and white noise (10 dB below the click intensity to 10 dB above 

the click intensity). The upper limit of the range (0.36) was considered appropriate to test 

the suppression effect. One-way ANOVA was performed to assess the difference in post 

silence total TEOAE suppression amplitude between participants perceiving tinnitus and 
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non-perceiving tinnitus. Repeated measure Analysis of Variance (ANOVA) was 

performed to assess the overall suppression effect (Total suppression) before and after 

silence period between the participants perceiving tinnitus post-silence and non-

perceiving participants.   
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CHAPTER IV 

 
RESULTS 

 

Tinnitus Perception 

Descriptive statistics for the tinnitus perception, tinnitus localization, and types of 

tinnitus perception are shown in Table 1. The Tinnitus perception questionnaire was 

administered immediately to each subject after the completion of silence experiment. It 

can be seen that 41.4% (24 out of 58) of the total participants reported the perception of 

tinnitus during/after exposure to 10 minutes of silence. 58.6% (34 out of 58) did not 

report perceiving tinnitus during/after 10 minutes of silence. Majority of the participants 

(n=14/24, 58.3%) reported their tinnitus perception to be located in both ears. Five 

participants (20.8%) and three (12.5%) participants reported hearing their tinnitus in the 

head and right ear, respectively. The remaining two (8.3%) participants reported their 

tinnitus in the left ear. Considering the silence period of 10 minutes was introduced to 

both ears and the subjects had normal hearing in both ears, it was expected that the 

majority of tinnitus perception would be reported both ears.   

 Overall, “Ringing” was the most common type of tinnitus sound perception in the 

majority of participants who perceive tinnitus followed by “Cricket” and “Buzzing” 

sound. “Pulsating” or “Clear tone” sounds were less frequent followed by “Hissing,” 

“Ocean Roar,” and “Transformer.” “Only one participant reported hearing the “Ocean 

Roar” or “Transformer” sounds. 



70 

	

Table 1 
 
Descriptive Statistics for Tinnitus Perception Questionnaire: Tinnitus Perception, 
Location, and Type 
 

  n Percent 

Tinnitus Perception  
(N=58) 

Yes 24 41.4% 

No 34 58.6% 

Tinnitus Location  
(N=24) 

Right ear 3 12.5% 

Left ear 2 8.3% 

Both ears 14 58.3% 

In the head 5 20.8% 

Tinnitus Type  
(N=24) 

Ringing  9 37.5% 

Cricket 5 20.8% 

Buzzing 3 12.5% 

Hissing 1 4.1% 

Pulsating 2 8.3% 

Clear Tone  2 8.3% 

Ocean Roar 1 4.1% 

Transformer 1 4.1% 

 

 Table 2 shows the demographic statistics of age, gender, and tinnitus perception 

according to the ethnicity. Age range of the participants was 18-35 years with the mean 

age 26.96 years. All 58 participants recruited in this study were male. Out of 40 Asian 

participants, 14 (35%) perceived tinnitus during or after 10 minutes of silence. Tinnitus 

perception was highest in Caucasian subjects and lowest in African American subjects. 

Out of 14 Caucasian participants, nine (64%) perceived tinnitus during or after 10 
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minutes of silence. Out of four African American participants, only one (25%) perceived 

tinnitus during or after 10 minutes of silence.  

 
Table 2 
 
Demographic Table: Age, Gender, and Tinnitus Perception and Ethnicity Descriptive 
Statistics 
 
  

Ethnicity  
Age 

Range 
Mean 
Age 

 
Gender 

   
Asian 

 
Caucasian 

African 
American 

 
Total (%) 

18-35 
Years 

26.96 Male 

Tinnitus  Yes 14 (35%) 9 (64.28%) 1 (25%) 24 (41.37%) 19–33 26.3 24 

 No 26 (65%) 5 (35.72%) 3 (75%) 34 (58.62%) 19–34 26.6 34 

Total  40 14 4 58 58  58 

 

Silence on Transient OAEs 

The Effect of Silence on Recording Transient OAE Amplitude 

Hypothesis 1: The total transient otoacoustic emission amplitude values will be 

statistically significantly decreased after a period of 10 minutes of silence in test 

ear (right ear). 

Table 3 shows TEOAE and TEOAE suppression data analysis for pre and post 10 

minutes silence period. Repeated measures ANOVA was conducted to compare the effect 

of 10 minutes of silence on total mean TEOAE and total TEOAE suppression amplitudes 

from pre-silence and post-silence conditions. All participants met “total TEOAE 

suppression 0.36 dB or more” criterion.  

Statistical analysis revealed there was no statistically significant (Wilks’ 

Lambda= .984, F (1, 57) = .948, p = .334) difference observed between pre- and post-10-
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minutes silence total TEOAE amplitude in the right ear. See Figure 9 in Appendix D for 

the TEOAE waveform before and after 10 minutes of silence. (Note: The waveforms in 

Appendix D are from one of the participants in this study.) There was no effect of 10 

minutes of silence on total TEOAE amplitude. This result indicates that the difference in 

means of pre- and post-10 minutes of silence TEOAE amplitudes are clinically non-

significant. Therefore, exposing a subject to 10 minutes of silence period did not affect 

the subject’s total Transient Otoacoustic Emission (TEOAE) amplitude.  

The Effect of Silence on the Recording of the Suppression Amplitude of Transient 

OAEs 

Hypothesis 2: The transient otoacoustic emission suppression amplitude will be 

significantly increased after a period of 10 minutes silence in test ear (right ear). 

Table 3 also shows total TEOAE suppression data analysis before and after 10 

minutes of silence. See Figure 10 in Appendix D for the TEOAE suppression waveform 

before and after 10 minutes of silence. Repeated measure ANOVA was conducted to 

compare the effect of silence on total TEOAE suppression amplitude. There was no 

significant effect of 10 minutes of silence on total TEOAE suppression amplitude 

(Wilks’s Lambda= .995, F (1,57) = .304, p = .584). It was observed that the total TEOAE 

suppression amplitudes were not significantly different between pre and post 10 minutes 

silent measurement. Therefore, like TEOAE amplitude before silence, total TEOAE 

suppression amplitude was not affected by 10 minutes of the silence period.       
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Table 3 
 
Descriptive Statistics and Summary of Repeated Measure ANOVA of TEOAE and 
TEOAE Suppression Amplitudes: Pre- and Post- 10 Minutes of Silence  
 
 10-min Silence N M SD df F Sig. 

Total TEOAE 
Amplitude 

Pre-Silence 58 11.4897 4.9021 
1 .948 

.334 

Post-Silence 58 11.5828 5.0069  

Total TEOAE 
Suppression 
Amplitude 

Pre-Silence 58 .9259 .7470 
1 .304 

.584 

Post-Silence 58 .8931 .7525  

 

The Effect of Tinnitus Perception Due to Silence and the Amplitude of OAE 

Suppression 

Hypothesis 3: Participants perceiving tinnitus after 10 minutes of silence will 

have a greater amount of TEOAE suppression in post-silent measurement than the 

participants without the perception of tinnitus. 

Table 4 shows the results of the one-way ANOVA measurement with 1 dependent 

variable (Post-Silence Total TEOAE Suppression) and two groups of factor tinnitus 

(Participants perceiving tinnitus during/after 10 minutes of silence and Participants who 

did not perceive tinnitus). The results of the one-way ANOVA showed that there is no 

statistically significant (F (1,56) = .220, ns) difference in post silence total TEOAE 

suppression amplitude between two groups. There is no significant difference in post 

silence total TEOAE suppression due to tinnitus perception. This result indicates that the 

perception of tinnitus after a brief period of silence did not results in a significant change 

in the total suppression of TEOAE amplitude. 
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Table 4 
 
Descriptive Statistics and One Way ANOVA for Post Silence Total TEOAE Suppression 
Amplitude between Tinnitus Perceiving Participants and Participants not Perceiving 
Tinnitus  
 
     Post-Silent TEOAE Suppression 

Perception N M SD df F Sig. 

Tinnitus 
Yes 24 .8375 .83030 

1 .220 .641 
No 34 .9324 .70269 

  

 Table 5 shows the summary of the Repeated Measure ANOVA. The Repeated 

Measure ANOVA with two within-subject factors (Pre-silence total TEOAE suppression 

and Post Silence total TEOAE suppression) and one between subjects factor (Tinnitus 

perception) were applied to evaluate group difference. The main effect of tinnitus 

perception (F (1, 56) = 0.486, p = 0.489) was not to be statistically significant in 

TEOAEs. The data further indicates that there was no statistically significant (F (1,56) = 

0.405, p = 0.527) difference between pre-post 10 minutes silence total TEOAE 

suppression (PrePostSup) between participants who perceived tinnitus and participants 

who did not perceive tinnitus during/after 10 minutes of silence.   

 
Table 5 
 
Summary of Repeated Measure ANOVA: Main Effect of Tinnitus, Pre- and Post-
Silence—Tinnitus Interaction on Total TEOAE Suppression Amplitude 
 

Source Mean Square df F Sig. 

Intercept 90.758 1 88.017 .000 

Tinnitus .501 1 .486 .489 

Tinnitus*PrePostSup .042 1 .405 .527 

Error 57.743 56  
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CHAPTER V 

 
DISCUSSION 

  

 The purpose of this study was to investigate the effect of silence on TEOAE and 

TEOAE suppression, wih the emergence of temporary tinnitus perception as an analysis 

factor. Additionally, this study reports on the demographics on temporary tinnitus 

perception after a brief period of silence. 

Tinnitus Perception and Silence Demographics 

One goal of the current study was to expand upon the findings of Tucker et al. 

(2005) to document the emergence of temporary tinnitus in normal hearing young adults 

after a short period of silence. To date, few studies have explored the emergence of 

temporary tinnitus perception after a brief period of silence in normal hearing adults. 

Tucker et al. (2005) reported a total mean of 64% overall tinnitus perception in young 

adults with normal hearing after a period of silence. Additionally, they reported finding a 

significant race difference in tinnitus perception, with a high percentage of Caucasians 

(78%) perceived tinnitus after silence than African American (38%).  The landmark 

article in tinnitus and silence is from Heller and Bergman’s (1953) study, who found 

93.75% normal hearing adults experienced tinnitus perception after a period of silence.   

The current study found that 41.4% of the total participants perceived some type 

of tinnitus during/after 10 minutes of silence. This overall finding was lower than that of 

Heller and Bergman (1953) and for the Caucasians reported in Tucker et al. (2005). The 
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findings of the current study may differ from the work of Heller and Bergman due to the 

age range of the self-reported normal hearing participants were 10-68 years in their study 

and that self-reported hearing might have neglected the actual hearing loss at higher 

frequencies due to old age. That untested hearing loss might have caused the higher 

percentage of tinnitus perception participants.  

The finding of the current study was also lower than that reported by Tucker et al. 

(2005) and possibly can to be attributed to the difference in race/ethnicity of the 

participants. The current study had 69% of Asian participants, and the overall low result 

of 41.4% of subjects perceiving tinnitus may suggest that Asian participants, like African 

American participants reported in Tucker et al. (2005), are less likely to perceive tinnitus 

in/after the silence.  

As reported in Tucker et al.’s (2005) study, a high percentage of Caucasians 

perceived tinnitus. In present study, 64.28% of Caucasians perceived tinnitus after/during 

10 minutes of silence as compared to 35% Asian and 25% African American. However, 

only 24.13% of participants were Caucasians in the present study. Considering that the 

Caucasians are more likely to report tinnitus in silence, it would have been beneficial for 

the present study to include a high percentage of Caucasians instead of Asian.  

The Role of the Medial Olivocochlear Efferent Pathway and Tinnitus Perception 

The primary goal of the current study was to identify the possible role of the 

medial olivocochlear efferent neural pathway in the perception of tinnitus in the presence 

of silence. The function of the medial olivocochlear efferent neural pathway was assessed 
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using the transient otoacoustic emission suppression tests. Three hypotheses were 

proposed: 

1. The total transient otoacoustic emission amplitude values will be statistically 

significantly decreased after a period of 10 minutes of silence in test ear (right 

ear). 

2. The transient otoacoustic emission suppression amplitude will be significantly 

increased after a period of 10 minutes silence in test ear (right ear). 

3. Participants perceiving tinnitus after 10 minutes of silence will have a greater 

amount of TEOAE suppression in post-silent measurement than the 

participants without the perception of tinnitus. 

The Effect of Silence on the TEOAE Amplitude 

 TOAE waveform amplitude was selected as a means of assessing the medial 

olivocochlear neural pathway. Changes in this lower brainstem neural function after 

exposure to silence would be reflected/recorded in the amplitudes of the TEOAE and the 

TEOAE with suppression (introduction of masking noise to the stimulus). Results of the 

present study found that the total TEOAE amplitudes (with and without suppression) 

were not statistically significantly different before and after 10 minutes of silence. To our 

knowledge, this study is the first research study that aims at identifying the statistical 

difference in TEOAE and TEOAE suppression amplitude in single sitting session and to 

observe the effect of 10 minutes of silence on TEOAE and TEOAE suppression. This 

preliminary finding would suggest that the exposure to a brief period of silence does not 

alter the neural functioning of the lower central auditory neural pathway. This finding 



78 

	

supports (Eggermont, 2012; Eggermont & Komiya, 2000; Eggermont & Roberts, 2004) 

which indicate that the generation of tinnitus is more likely thalamic or higher cortical in 

origin. 

 There could be alternative explanations to the findings of the present study: 

● Ten minutes of silence (sensory deprivation) may not have been sufficient to 

induce hyperactivity in the cochlear nucleus or medial olivocochlear efferent 

neural pathway enough to inflict significant TEOAE suppression. However, 

other studies (Bo et al., 2008; Knobel & Sanchez, 2008) report the emergence 

of temporary tinnitus perception after just five/four minutes of silence.  

● Ten minutes of silence (sensory deprivation) may not be sufficient to cause 

the significant alteration in the cochlear biochemical processes to change the 

TEOAE amplitude.  

● Post silent changes in the cochlea or hyperactivity in the cochlear nucleus 

and/or efferent auditory pathways were quickly recovered after the stimulus 

presentation (stimulus presentation during post silence TEOAE and TEOAE 

suppression recording) to eliminate detection of any changes in the TEOAE or 

TEOAE suppression. 

Additional research is needed in the effects of brief periods of silence on TOAE 

amplitude to further our understanding of the contribution of the lower CANS in the 

perception of tinnitus. 
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Tinnitus and Silence 

The Effect of Tinnitus Perception on TEOAE Amplitude 

  The results of the current study found no statistically significant difference in 

post-silent total TEOAE suppression between tinnitus perceiving participants and non-

perceiving participants. The data in Table 5 further indicates that there was no 

statistically significant difference between pre-post 10 minutes silence total TEOAE 

suppression (PrePostSup) between participants who perceived tinnitus and participants 

who did not perceive tinnitus. There is no interaction effect between tinnitus and pre-post 

silent TEOAE suppression.  

Tinnitus is a central, rather than a peripheral auditory phenomenon. Some form of 

cochlear damage initiates the neuroplasticity changes in the central auditory system that 

underlies the pathophysiology of tinnitus (Eggermont & Roberts, 2004; Kaltenbach, 

2011; Møller, 2007; Roberts et al., 2010). The cochlear damage could be because of noise 

trauma; ototoxicity or age-related hearing loss. Noreña and Farley (2013) proposed that 

residual peripheral spontaneous activity and central auditory gain due to peripheral 

damage collectively contribute to the tinnitus perception. Changes in the spontaneous 

firing rate of many different structures within the central auditory system have been 

shown after cochlear damage (Kaltenbach, 2011; Mulders & Robertson, 2009; Volger, 

Robertson, & Mulder, 2011). In the present study, the participants did not have any 

peripheral cochlear damage as assessed by audiometric test and otoacoustic emission 

tests. Therefore, 10 minutes of silence might not have produced the pathophysiological 

changes in the central auditory system, especially hyperactivity in the dorsal cochlear 
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nucleus. This also suggests that the pathophysiology of tinnitus perception in patients 

with cochlear damage (hearing loss of some degree) might be different than silence 

induced tinnitus in normal hearing individuals.  

 Noise trauma, ototoxic medication, or ages related hearing loss are related to the 

tinnitus in humans. Therefore, possibly, multiple mechanisms that lead to some form of 

central neuroplastic changes play a role in tinnitus perception. Similarly, silence induced 

tinnitus might have the mechanism that might not involve an alteration in the medial 

olivocochlear efferent pathway, although further investigation is needed.       

 Several studies have found dysfunction of the medial olivocochlear efferent 

pathway in humans with tinnitus compared to normal hearing sensitivity (Fernandes & 

Santos, 2009; Granjeiro et al., 2008; Paglialonga, Fiocchi, Del Bo, Ravazzani, & 

Tognola, 2011; Riga et al., 2007). In these studies, although subjects had normal hearing 

sensitivity, they already had the tinnitus. A trigger of tinnitus in these subjects might be 

cochlear dead regions that go undetected in audiometry and even in otoacoustic emissions 

if such dead regions are outside the frequency range of testing. Similarly, the hearing loss 

also might go undetected in the frequency range outside the testing frequencies. Such 

cochlear dead regions and hearing loss can initiate neuroplastic changes in the central 

auditory system that leads to tinnitus perception.  

 In the present study, all participants had a normal hearing and they did not have 

tinnitus. Therefore, silence might not have induced medial olivocochlear dysfunction in 

both tinnitus perceiving participants and non-perceiving participants. In participants who 

did not perceive tinnitus, silence might not have induced the neuroplastic changes in the 
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central auditory system. In participants who did perceive tinnitus, silence might have 

induced temporary neural changes in the central auditory system, but not in the medial 

olivocochlear efferent or dorsal cochlear nucleus, that lead to tinnitus perception. As 

discussed in the previous section, silence induced tinnitus might have a different 

mechanism than tinnitus associated with hearing loss. 

 Corticofugal auditory system in humans. The functional corticofugal efferent 

system runs from cortex to the cochlea (Perrot et al., 2005). The findings of this study 

suggest the functional connection between the auditory cortex and contralateral outer hair 

cell in humans. The medial olivocochlear efferent pathway acts as the final connection in 

corticofugal efferent system between superior olivary complex and contralateral outer 

hair cells (Perrot et al., 2005). The electrical stimulation of the auditory areas in this 

system resulted in the significant reduction of the contralateral evoked otoacoustic 

emission amplitude. This corticofugal efferent system influences lower auditory 

brainstem structures such as medial olivocochlear neuronal pathway and cochlear 

nucleus.  

Top-down influence of the attention plays a significant role in alteration of 

cerebral cortical area function (Gilbert & Sigman, 2007). Auditory cortex and other 

cortical areas are influenced by the auditory attention (Justerboff, 1999). Auditory 

attention can influence the lower auditory structures such as medial olivocochlear bundle 

and cochlear nucleus via the corticofugal efferent pathway. In this study, participants 

might have sought the sound perception during the period of silence (auditory attention). 

Such auditory attention might have suppressed the hyperactivity in the medial 
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olivocochlear efferent pathway or cochlear nucleus through corticofugal efferent 

feedback. Therefore, corticofugal top-down efferent feedback might have inhibited any 

change in the TEOAE suppression amplitude after 10 minutes of silence.  

 TEOAE suppression and tinnitus. As mentioned earlier in the literature review, 

abnormally small or no suppression was observed in the contralateral suppression of 

TEOAE test in tinnitus patients with a normal hearing sensitivity (Chéry-Croze et al., 

1993; Veuillet et al., 1991). However, according to the theoretical model of this study, it 

was hypothesized that there would be more suppression in participants perceiving tinnitus 

compared to participants not perceiving tinnitus. This discrepancy could be explained in 

the context of the lack of peripheral inhibition theory. The subjects in the above-

mentioned studies had a normal hearing. Therefore, it is not expected in these patients to 

have hyperactivity in the cochlear nucleus and subsequent hyperactivation in the medial 

olivocochlear efferent pathway. Therefore, it is also not expected in these tinnitus patients 

to have more suppression. On the contrary, these patients had abnormal small or no 

suppression. Such findings could be the effect of corticofugal efferent auditory system 

feedback (Explained in the previous section). In these tinnitus patients, the constant 

awareness and attention to the tinnitus and associated psychological factors might have 

influenced the auditory cortex and in-turn sent inhibitory feedback to the medial 

olivocochlear efferent pathway through the corticofugal system. Such negative feedback 

inhibited the medial olivocochlear efferent pathway and consequently abnormally small 

or no suppression was observed in the contralateral suppression of TEOAE test.    
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 In the present study, the participants perceiving tinnitus also may have sought the 

sound perception during silence and in such participants abnormally small or no 

suppression was expected because of negative corticofugal auditory feedback. However, 

in the present study, there was no significant difference in suppression between tinnitus 

perceiving and non-perceiving tinnitus. The lack of peripheral inhibition due to silence 

may have initiated the hyperactivity in the cochlear nucleus (according to the theoretical 

model of this study). Such hyperactivity in the cochlear nucleus may have canceled out 

the negative feedback effect from the corticofugal pathway. Thus, there was no effect of 

silence on TEOAE suppression amplitude.  

 Although corticofugal feedback has the influence on the theoretical model of this 

study and seems to be the missing piece, the theoretical model still holds its notion in the 

context of this study. The non-significant results in this study can be attributed to the 

inadequacy of TEOAE tests in measurement of brainstem structures. The TEOAE 

suppression test is an indirect measure of cochlear nucleus hyperactivity. In this study, 

the inferences about the cochlear nucleus hyperactivity were based on changes in the 

cochlear phenomenon (TEOAE changes). In addition, TEOAE suppression test is 

noninvasive procedure, which cannot directly measure the cochlear nucleus hyperactivity 

or MOC hyperactivity.           

 Abnormal suppression of medial olivocochlear pathway was also observed using 

DPOAE suppression in normal hearing tinnitus patients (Riga et al., 2007). The DPOAE 

suppression results are to be observed with caution because the phase relationship 

between two frequencies in the DPOAE stimulus greatly influences the results of the 
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DPOAE test. This phenomenon and shortcomings of the DPOAE tests in relation to the 

assessment of medial olivocochlear function is explained in the “Tinnitus and 

suppression of otoacoustic emission” section of the literature review. Abnormally small 

suppression in this study may be attributed to the phase relationship phenomenon.        

Limitations of the Study 

The otoacoustic emission tests used in this study are non-invasive tests. Although 

contralateral suppression of otoacoustic emission provides information about the function 

of the medial olivocochlear efferent pathway, these tests might not have assessed the 

altered function of the efferent after a period of silence. The post-silent changes in the 

cochlea or hyperactivity in the cochlear nucleus and/or efferent auditory pathways was 

recovered soon enough after the stimulus presentation (stimulus presentation during post 

silence TEOAE and TEOAE suppression recording) to eliminate any changes in the 

TEOAE or TEOAE suppression.  

The continuous contralateral suppressor noise method was used to assess the 

TEOAE and TEOAE suppression. It is possible that residual inhibition (carryover of 

suppression following stimulation) in the masker “ON” condition might have impacted 

the TEOAE response in the masker “OFF” condition. Consequently, the difference 

between TEOAE amplitude and TEOAE amplitude after suppression could have reduced. 

This could have affected the total TEOAE suppression amplitude. It is also possible that 

after a period of silence, noise in the masker “ON” condition could have canceled out any 

changes in the auditory structures by the silence.     
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It seems like TEOAE tests may not be suitable for the assessment of MOC 

function related to hyperactivity in the cochlear nucleus. If post silence test stimulus 

presentation cancels out the auditory changes before they get recorded then indirect 

measurement of MOC function could be done. Such indirect measurement of MOC 

function related to hyperactivity in the cochlear nucleus is explained in the context of 

musician-non-musicians study in the following future direction section.   

Future Directions 

Whereas tinnitus is thought to be central auditory processing phenomenon, results 

of this study indicate that the medial olivocochlear components of the central auditory 

nervous system appear not to be a strong contributing factor in the perception of 

temporary tinnitus and TEOAEs are not affected by the period of silence. Therefore, 

assessment of auditory structures like cochlear nucleus seems a promising area of 

research. Perrot and Collet (2014) reported stronger medial olivocochlear function in 

musician than non-musician. It would be useful information to observe the auditory 

brainstem response wave III amplitude in the musician. Auditory brainstem response 

wave III originates from cochlear nucleus. Therefore, if this wave III amplitude in 

musician has significantly larger amplitude than non-musician, that might give indirect 

connection to hyperactivity in the cochlear nucleus and consequential stronger medial 

olivocochlear response in the musician. This connection would be extended to the 

tinnitus perception by administering silence experiment in the musician with normal 

hearing and non-musician with normal hearing.    
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Tinnitus retraining therapy shows remarkable improvement in above 80% of the 

patients with any type of tinnitus (Jastreboff, 2011). The function of the medial 

olivocochlear efferent could be assessed before and after the tinnitus retraining therapy. It 

could provide important information about the possible role of medial olivocochlear 

efferent in tinnitus perception. In addition, such study could explore if alterations in the 

medial olivocochlear function are associated with any particular type of tinnitus.    

Tucker et al. (2005) observed the effect of 20 minutes of silence on 120 normal-

hearing young adults (60 male and 60 females with 40 Caucasians and 20 African 

Americans in each gender group). A significant difference was observed between races 

with tinnitus perception more common in Caucasian listeners (78%) than African 

American listeners (38%). Assessment of medial olivocochlear efferent using suppression 

of otoacoustic emission could be extended to a different race to observe the connection 

between efferent pathway and tinnitus in a different race. A future study could recruit 

more Caucasian and African American subjects to this database and then the data could 

be run with race as the main effects variable, to see if the finding of Tucker et al. (2005) 

is supported in showing subjects with darker skin tones are less likely to perceive tinnitus 

after a period of brief silence. 

Conclusions 

 No statistically significant difference was found in total TEOAE and TEOAE 

suppression amplitude after 10 minutes of silence. Tinnitus perceiving participants did 

not show a statistically significant difference in total TEOAE suppression amplitudes 

after 10 minutes of silence than tinnitus non-perceiving participants. No interaction effect 



87 

	

was found between pre-post silence suppression and tinnitus perception. The TEOAE 

generation is a peripheral phenomenon. Because tinnitus perception did not significantly 

change total TEOAE amplitude, the results may indicate higher central auditory 

structures as a source of tinnitus generation. Therefore, the results of the study support 

the notion that tinnitus is the central auditory processing phenomenon. The study may 

have failed to detect the changes in the medial olivocochlear efferent pathway because 

TEOAE tests might not be sensitive enough to detect the post-silence changes in the 

pathway or top-down influence of the corticofugal pathway on lower auditory brainstem 

structures. This does not mean that medial olivocochlear efferents do not participate in 

tinnitus perception. Results of the present study also seem to indicate that race may place 

a function in the perception of silence induced temporary tinnitus. Further investigation is 

needed to evaluate the functional contribution of the medial olivocochlear efferent 

pathway in tinnitus perception.   
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APPENDIX A 
 

LIST OF ABBREVIATIONS 
 

Abbreviation Full Name 

AI Primary Auditory Cortex 

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

ANF Auditory Nerve Fibers 

AVCN Anterior Ventral Cochlear Nucleus  

CANS Central Auditory Nervous System 

CF Characteristic Frequency  

COX Cyclooxygenase  

CN Cochlear Nucleus 

DCN Dorsal Cochlear Nucleus 

DPOAE Distortion Product Otoacoustic Emissions 

EAE Enhanced Acoustic Environment 

FC Fusiform Cell 

GABA Gamma-Aminobutyric Acid  

IC Inferior Colliculus 

ICc Central Nucleus of Inferior Colliculus 

IHC Inner Hair Cell 

LOC Lateral Olivocochlear Neurons 

MOC Medial Olivocochlear Neurons 

NMDA N-methyl-D-aspartate 

OAE Otoacoustic Emission 

OCB Olivocochlear Bundle 

OHC Outer Hair Cell 

PVCN Posterior Ventral Cochlear Nucleus 
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Abbreviation Full Name 

RNS Reactive Nitrogen Species 

ROS Reactive Oxygen Species 

SFR Spontaneous Firing Rate  

SOAE Spontaneous Otoacoustic Emission 

SOC Superior Olivary Complex 

SPL Sound Pressure Level 

TEOAE Transient Evoked Otoacoustic Emission 

TMJ Temporomandibular Joint  

VCN Ventral Cochlear Nucleus 
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APPENDIX B 
 

CASE HISTORY QUESTIONNAIRE 
 
 

Case History Questionnaire 

Subject Number: ____________         Date: _________ Age: ______ 

Questions about Hearing Status: Yes No 

1.    Do you have a ringing in the ears? (Tinnitus)     

2.    Do you have a hearing loss?     

3.    Do you have a history of ear infections?     

4.    Do you currently have any discharge coming from 
your ears? 

    

5.    Do you currently have tubes in your eardrum?     

6.    Do you have a feeling of spinning, whirling, or 
dizziness? 

    

7.    Do you have a feeling of fullness or pressure in your 
ears? 

    

8.     Have you ever had surgery on your ears?     

9.    Have you been exposed to intense noise exposure (e.g., 
industrial noise) for long time? 

    

Questions about Neurological Status:     

10.  Do you have a history of seizures?     

11. Do you have a history of brain injury or head trauma?     

12.  Do you have a history of a brain tumor or the ear?     

13. Do you have a history of any neurological disorder?     
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14. Do you have any other medical history that might affect 
your hearing? 

    

          
   If yes, please specify 
  
  
  
  
  

    

  

Audiogram:    ____ Normal   ____Abnormal 

Otoscopy:   Right ear: ____Normal  ______Abnormal 

     Left ear: ____Normal _______Abnormal 

Tympanogram:  Right ear: ____ Normal  _____ Abnormal 

   Left ear: ____ Normal  _____ Abnormal 

 

Admission to Study:  ______Yes  ____No 

Medical Referral: ______Yes  ____No 
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APPENDIX C 
 

SOUND PERCEPTION QUESTIONNAIRE 
 
 

Sound Perception Questionnaire:  Test ear: ____________ 
Subject Number: ______________ Date: ___________ Age: ______________ 
1. Did you hear any sounds after 10 minutes of silence? 
 

YES NO 

  

  
2. If YES, in which ear did you perceive the sound? 
Right: ____ Left: _____ both ears: ______ or, in the head: _______ 
 
3. What type of sound(s) you perceived? Check the box next to the type of sound close to 
the sound you perceived after 10 minutes of silence. Check all that apply.  
  

Type of Sound Check if you heard this sound. 

Ringing   

Whistle   

Crickets   

Buzzing   

Hissing   

Hum   

Pulsating   

Clear tone   

Ocean Roar   

Transformer   

Other: (please describe) 
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APPENDIX D 
 

TEOAE WAVEFORMS 
 
 

 

Figure 8. TEOAE Suppression Waveform a) before and b) after 10 Minutes of Silence, 
Measured from One of the Participants in This Study. The X-axis Represents the Time-
averaged Waveforms Sampled for a 20-ms Period Following the Onset of the Transient 
Stimulus. Y-Axis Represents Amplitude of the Waveform in mPa. a) TEOAE Waveform 
before Suppression; b) TEOAE Suppression Waveform after Suppression. We Can See 
the Reduced Amplitude in TEOAE Waveform after Suppression.  
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Figure 9. TEOAE Suppression Waveform a) before and b) after 10 Minutes of Silence, 
Measured from One of the Participants in This Study. As We Can See, There is No 
Significant Change in the Waveforms before and after 10 Minutes of Silence. TEOAE 
Amplitude is Almost the Same after 10 Minutes of Silence.   
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Figure 10. TEOAE Suppression Waveform a) before and b) after 10 Minutes of Silence, 
Measured from One of the Participants in This Study. As We Can See, There is No 
Significant Change in the Waveforms before and after 10 Minutes of Silence. TEOAE 
Suppression Amplitude is Almost the Same after 10 Minutes of Silence.  
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