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Summary: 

Two phosphine-rhodium(II) complexes, bis(tris-o-tolylphosphine)dichlororhodium(II) and bis(tricyclohexyl-

phosphine)dichlororhodium(II), have been found to be active catalysts for the hydrosilylation of a variety of 

organic substrates, and, in conjunction with triethylaluminum, to be hydrogenation catalysts. 

 

Article: 

Introduction 

In recent years a variety of rhodium(I) complexes have been utilized as catalysts for a wide variety of reactions. 

For example, Wilkinson's compound, [RhCl(PPh3)3], has been used to catalyze hydrogenation [1], 

hydrosilylation [2], and decarbonylation [3] reactions. In view of the high catalytic activity of rhodium(I) 

complexes, it seems surprising that the catalytic activity of rhodium(II) complexes has not been extensively 

investigated. We have, therefore undertaken an investigation of the catalytic activity of these species, and report 

in this paper on the use of bis(tris-o-tolylphosphine)dichlororhodium(II), [RhCl2{P(o-C6H4CH)3}2] (I), and 

bis(tricyclohexylphosphine)dichlororhodium(II), [RhCl2 {P(C6H11)3}2] (II), as hydrosilylation and 

hydrogenation catalysts. These complexes are readily synthesized by reaction of the appropriate phosphine with 

rhodium(III) chloride in ethanol [4,5]. 

 

Results and discussion 

Hydrosilylation 

The results of the hydrosilylation of various unsaturated species are summarized in Table 1. All reactions were 

carried out under standard conditions, i.e., 100°C for 8 h, and no attempts were made to maximize yields. 

 
As can be seen from Table 1, both I and II are moderate to excellent catalysts for the hydrosilylation of a wide 

variety of unsaturated compounds, using both alkyl- and alkoxy-silanes. The catalytic activity is comparable to 

that of rhodium(I) species [2]. In all cases it appears that the catalytic activity of II is greater than that of I. For 
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example II gives a 98% yield of n-octylsilane from the hydrosilylation of 1-octene by diethoxymethylsilane, 

whereas I gives only a 86% yield, eq. 1. 

 
Although a majority of catalysts yield only the trans-olefin by cis-addition, it is becoming apparent that many 

rhodium catalysts produce mixtures of cis- and trans-olefins [6,8], and that the yields and ratios of isomers are 

sensitive to reaction conditions. In order to gain further insight into this reaction, a more detailed investigation 

of the hydrosilylation of 1-hexyne by triethylsilane catalyzed by II was carried out. The variation of yield and 

cis/trans ratio was followed as a function of time and the results are summarized in Table 2.  

 
As can be seen, the ratio of cis/trans olefin remains approximately constant at 50/50 (±5). This implies either 

that addition takes place non-stereospecifically or that slow stereospecific addition takes place followed by 

rapid cis-trans isomerization. Previous work indicates that with other rhodium catalysts cis-trans isomerization 

does take place, but that it is slow compared to hydrosilylation [6,8]. The ratio of cis/trans adduct produced 

under identical conditions (100°C, 8 h) by I and II are similar (55/45 and 45/55, respectively), suggesting that 

electronic differences [9] between these ligands have little effect on this ratio, which is perhaps dominated by 

their similar steric bulk [9]. 

 
 

Hydrogenation 

Both I and II become catalysts for hydrogenation when activated by triethylaluminum. Under mild conditions 

(2-3 atm., 20°C), I-Et3Al is extremely active and the reduction of olefins and internal acetylenes is essentially 

quantitative (Table 3). II-Et3Al give quantitative reduction of cyclohexene and 1-octene, but lower yields 

(≈30%) with styrene and cyclooctene, and it is totally inactive for the reduction of internal acetylenes. The 

activity of II-Et3Al is similar to that of polymer-bound rhodium(II) species [10]. 

 

 



Experimental 

General procedures 

All reactions were carried out under pure nitrogen, using freshly distilled dry liquids. 
1
H NMR spectra were 

recorded on a Varian Associates T60 spectrometer. IR spectra were taken with a Perkin—Elmer 457 grating 

spectrophotometer as thin films. The GLC analysis of the reaction products was carried out on a Varian 

Aerograph A-700 "Autoprep" Gas Chromatograph, using a 6 ft. column of 10% SE 30 on Chromosorb G, using 

indan or dodecane as internal standards. Preparative GLC separations were carried out on the same machine 

using a 20 ft. column of 15% SE 30 on Chromosorb G. The silanes were purchased or prepared according to 

literature methods [11]. All the unsaturated organic compounds were commercial products, dried over 

molecular sieves and distilled prior to use, with the exception of 2,3-dimethyl-1,3-butadiene which was 

prepared by the dehydration of pinacol, by the literature method [12]. The rhodium(II) complexes were 

synthesized according to the literature methods [4,5]. Microanalyses were performed by Integral 

Microanalytical Laboratories, Inc. of Raleigh, North Carolina. 

 

Hydrosilylation reactions 

These reactions were carried out using the same method. The general procedure will be outlined for the 

hydrosilylation of 1-octene by triethoxysilane catalyzed by I. To a mixture of 1-octene (5.7 g, 50 mmol) and 

triethoxysilane (4.4 g, 27 mmol) in a flask was added I (50 mg, 0.065 mmol). This mixture was heated at 100°C 

for 8 h. After removal of volatiles under reduced pressure at room temperature vacuum distillation yielded 1-

(triethoxysilyl)octane (6.5 g, 87 based on silane), b.p. 100°C/3 mmHg. (Found: C, 61.0; H, 12.0. C14H32O3Si 

calcd.: C, 60.8; H, 11.7%). 
1
H NMR: τ(ppm) 6.27 (6 H, quartet J 7 Hz , Si-O-CH2-C), 8.71 (12 H, singlet, C-

(CH2)6-C), 8.85 (9 H, triplet, J 7 Hz, Si-O-C-CH3), 8.87-9.38 (5 H, broad multiplet, CH3-C and C-CH2-Si). 

 

Hydrosilylation of 1-hexyne 

(a)  By triethylsilane. I (50 mg, 0.065 mmol) was added to a solution of 1-hexyne (4.3 g, 52 mmol) and 

triethylsilane (4.4 g, 38 mmol) and the mixture was heated to 100°C. The oil bath was maintained at that 

temperature for 8 h. The mixture was cooled and the unreacted volatiles were removed under reduced pressure 

and the residue was vacuum distilled yielding 1-(triethylsilyl)-1-hexenes (2.7 g, 35% based on silane), b.p. 

56°C/0.5 mmHg. (Found: C, 71.9; H, 13.1. C13H26Si calcd.: C, 72.6; H, 13.2%). The distillate was shown by 

GLC to be a mixture of two isomers in a 55/45 ratio which were separated by preparative GLC using a Varian 

Aerograph 700 "Autoprep" Gas Chromatograph using a 20' by 3/8" column of 15% SE 30 Chromosorb G at 

200°C. The major isomer was identified as cis-1-(triethylsilyl)-1-hexene from its 
1
H NMR spectrum: τ(ppm) 

3.66 (1 H, overlapping doublet of triplets; J 14 Hz, 
1
J 7 Hz, C-CH= C-Si), 4.67 (1 H, doublet, J 14 Hz, C-C-

CH-Si), 7.62-8.29 (2 H, broad multiplet, C=C-CH2-C), 8.29-9.87 (22 H, complex pattern CH3CH2CH2C-C = C-

SiCH2CH3. The minor component was identified as trans-1-(triethylsilyl)-1-hexene from its 
1
H NMR spectrum: 

τ(ppm) 3.90 (1 H, doublet of triplets, J 19 Hz, 
1
J 6 Hz, C-CH=C-Si; literature values [14] 4.01, J 18.7 Hz, J

1
 6 

Hz), 4.50 (1 H, doublet, J 19 Hz, C-C-CH-Si; literature values [14] 4.50, J 18.7 Hz), 7.61-8.14 (2 H, broad 

multiplet, C=C-CH2-C), 8.14-9.71 (22 H, complex pattern CH3CH2CH2C-C= C-Si-CH2-CH3). 

 

(b)  By dimethylphenylsilane. The reaction between 1-hexyne and dimethylphenylsilane was carried out in 

a similar fashion yielding 1-(dimethylphenylsilyl)hexenes. b.p. 72°C/0.3 mmHg. The 
1
H NMR spectrum 

indicated that the product was a mixture of isomeric 1-(dimethylphenylsilyl)hexenes and no attempt was made 

to isolate or identify them. 

 

Hydrogenation reactions 

These reactions were carried out using the same method. The procedure will be outlined for the hydrogenation 

of cyclohexene using I-Et3Al. 

 

I (10 mg, 0.013 mmol) was placed in a pressure bottle fitted with an inlet valve. The bottle was evacuated and 

filled with nitrogen several times. Cyclohexene (4.0 g, 48 mmol) and benzene (5 ml) were added and the 

reaction mixture cooled in ice. To the stirred mixture 0.75 ml of a 1.0 M solution of triethylaluminum in toluene 

was added by syringe. The mixture was stirred at room temperature for 10 min, before being transferred to a 



Parr hydrogenator, where it was pressurized to 2 atmospheres with hydrogen and allowed to react for 24 h. At 

the end of the reaction period an aliquot of the reaction mixture was removed. Its 
1
H NMR spectrum showed the 

complete absence of peaks in the olefinic region, indicating complete hydrogenation of the cyclohexene. 
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