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Summary: 

Iridium complexes have been found to be active as catalysts for hydrosilylation reactions, especially for those 

involving 1,3-dienes and 1-alkynes. For ketones, iridium complexes show maximum activity if one molar 

equivalent (relative to iridium) of triphenylphosphine is added to the reaction mixture. Iridium complexes are 

also active catalysts for the hydrosilylation of α,β-unsaturated ketones, although the regioselectivity differs from 

that obtained with rhodium complexes. Attempts at asymmetric hydrosilylation of keto compounds using 

iridium complexes resulted in extremely low enantiomeric excesses. 

 

Article: 

Introduction 

In contrast to rhodium compounds, the corresponding iridium complexes have been little studied as 

hydrosilylation catalysts [1]. This is, undoubtedly, due to the fact that ligand-free complexes of iridium are 

easily reduced to the metal [2], and that tertiary phosphine supported iridium complexes can undergo oxidative 

addition with silanes to yield catalytically inactive adducts such as [IrHCl(SiX3)(PPh3)2], I, [3]. The catalytic 

inactivity of [IrHCl(SiX3)(PPh3)2] is in contrast to the proposed catalytic intermediacy of the corresponding 

rhodium compound [41]. 

 

We have attempted to explore the catalytic activity of iridium complexes using two basic approaches to 

overcome the difficulties outlined above. Firstly, organic compounds capable of complexing with iridium, such 

as 1,3-dienes which yield isolable [IrCl(diene)]2 complexes [5], would be expected to be less easily reduced to 

the metal, and hence hydrosilylated more readily. Secondly, for substrates such as mono-olefins or ketones, 

which would not be expected to form stable complexes, it would be predicted that addition of an appropriate 

amount of a stabilizing ligand such as a phosphine would yield an active catalyst, since such ligands are known 

to stabilize metals in the low oxidation states believed to be present during hydrosilylation reactions [6]. The 

ratio of P:Ir would, however, have to be below 2:1 to prevent formation of I. In addition to verifying these two 

concepts, we have investigated the hydrosilylation of α,β-unsaturated ketones and asymmetric hydrosilylation 

using iridium complexes. 

 

Experimental 

General procedures 

All reactions were carried out under pure nitrogen, using freshly distilled, dry liquids. Proton NMR spectra were 

recorded on a Varian Associates T60 spectrometer; infrared spectra were taken with a Perkin-Elmer 457 grating 

spectrophotometer as thin films. 

 

The GLC analyses of reaction products were carried out on a Varian Aerograph A-700 Autoprep Gas 

Chromatograph, using a 6 ft column of 10% SE30 on Chromosorb G, with the exception of the 2-

cyclohexenone hydrosilylation products where a 20 ft column of 15% SE30 on Chromosorb G was used, 

employing appropriate internal standards. Preparative GLC separations were carried out on the same machine, 

using the 20 ft column of 15% SE30 on Chromosorb G. The silanes were purchased or prepared according to 
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literature methods. The chiral phosphines (+)-DIOP and neomenthyldiphenylphosphine, NMDPP were 

purchased from Strem Chemicals Inc., and (+)-1-[dimethylaminomethyl]-2-(diphenylphosphino)ferrocene, [(+)-

FcNP] was a gift from Dr. W. R. Cullen. Optical rotations were taken on a Perkin-Elmer 241 polarimeter. 

 

Hydrosilylation of cyclohex-2-enone and related systems 

Cyclohex-2-enone (4.0 ml, 4.0 g, 41 mmol) was added to [IrCl(C8- H14)2]2 (40 mg, 4.5 × 10
-2

 mmol) in a two-

necked flask equipped with a condenser and magnetic stirring bar. The flask was cooled in ice and phenyl-

methylsilane (5.8 ml, 5.2 g, 42 mmol) added via a syringe. The mixture was allowed to warm to room 

temperature and stirred for a further 2 h. A solution of potassium carbonate (20 mg) in 20 ml methanol was 

added carefully to the reaction mixture, which was then stirred for 1 h. The methanol was distilled off, and GLC 

analysis of the residue indicated the presence of cyclohex-2-en-1-ol, which was identified by comparison of its 

GLC retention time with an authentic sample. For systems that produced a mixture of cyclohexanone and 

cyclohex-2-en-1-ol, the same procedure was followed, and the products were identified by comparison of their 

GLC retention times with authentic samples, on several different columns. The yields were calculated using 

internal standards, such as decane or dodecane, based on quantitative standardizations using pure cyclohex-2-

en-1-ol and cyclohexanone. 

 

Quantitative reactions 

These were carried out as above, but reduced to half the scale. After the hydrolysis with methanol, a GLC 

standard was added and the yields of cyclohexanone and cyclohex-2-en-1-ol determined by comparison with 

standardizations obtained using authentic samples. 

 

Attempted asymmetric hydrosilylations 

These were all carried out using the same procedure, which will be illustrated for the hydrosilylation of 

acetophenone by diphenylsilane, using neomenthyldiphenylphosphine, NMDPP. 

 

Neomenthyldiphenylphosphine (32 mg, 9.9 × 10
-2

 mmol) was dissolved in 1 ml of benzene and [Ir(1,5-

COD)Cl]2 (33 mg, 4.9 × 10
-2

 mmol) added. The solution was stirred at room temperature for 30 min, and then 

cooled in ice while a solution of diphenylsilane (3.0 ml, 3.0 g, 16 mmol) and acetophenone (2.0 ml, 2.1 g, 17 

mmol) in 5 ml benzene was added. The ice bath was removed and the solution stirred at room temperature 

overnight. A solution of hydrochloric acid (4 ml 2 M HCl in 20 ml acetone) was added to the reaction mixture 

to hydrolyze the silyl ether. The layers were separated, the organic layer was dried with calcium sulfate and the 

solvent removed by vacuum. Distillation of the residue gave 1-phenylethanol (1.5 g, 77%), b.p. 50 °C/1 mmHg, 

identified by its 
1
H NMR spectrum. The optical rotation was determined in dichloromethane (c 2.27) and was 

found to be zero. Other phosphines used in an analogous fashion were (+)-DIOP (molar ratio of DIOP:Ir 1:2) 

(0% enantiomeric excess) and (+)-1-[dimethylaminomethyl]-2-(diphenylphosphino)ferrocene ((+)-FcNP) (1% 

enantiomeric excess of S-alcohol). The asymmetric hydrosilylation of ethyl pyruvate was attempted, using a 

similar method, with the catalyst systems [IrCl(COD)]2— 2NMDPP and [IrCl(COD)]2-2(+)-FcNP with 

enantiomeric excesses of 0% and 7% of the (+)-alcohol, respectively. 

 

Other hydrosilylations 

These were carried out using standard procedures outlined in the literature [7, 8]. Identification was by isolation 

and comparison of 
1
H NMR and IR spectra with those of authentic samples, or by comparison of GLC retention 

times with those of authentic samples. Quantitative reactions were carried out as outlined, and yields were 

calculated using an appropriate internal standard. 

 

Results and discussion 

1,3-Dienes and 1-alkynes 

Organic substrates that are capable of forming stable complexes with iridium and thus preventing its reduction, 

such as 1-pentyne and 2,3-dimethylbuta-1,3-diene, DMBD, are readily hydrosilylated, especially with 

triethylsilane, when an essentially ligand-free iridium complex [IrCl(COE)2]2 (COE = cis-cyclooctene), II, is 

used (Tables 1 and 2). With DMBD the reaction is very regioselective, giving essentially only the 1,4-adduct, 



(CH3)2C=C(CH3)CH2SiEt3, with triethylsilane. This is in contrast to the results reported for some rhodium 

complexes [7], where a mixture of 1,4-addition and 1,2-addition is reported. This may be rationalized in terms 

of the accepted mechanism for the hydrosilylation of 1,3-dienes (Scheme 1). The π-a1lyl complex, III, is formed 

by addition of the oxidative adduct [HMSiR3] (M = metal plus all other ligands) to DMBD. This π-allyl 

complex may rearrange to the σ-alkenyls IV and V, which will lead to the 1,4-adduct and 1,2-adduct 

respectively. The formation of the tertiary σ-alkenyl, V, is less likely to be expected with the larger iridium 

atom, due to steric effects, than with rhodium. This should lead to a relatively larger amount of 1,4-adduct for 

iridium, in agreement with experimental results, Although the size difference between iridium and rhodium is 

small, due to the Lanthanide Contraction, the results can best be rationalized by assuming that this difference 

may be a factor in determining the isomer ratio. The results with alkoxysilanes are poor, and less well-defined. 

The decrease of catalytic activity on going from alkylsilanes to alkoxysilanes parallels results obtained with 

rhodium complexes [4]. The greater stability, and hence decreased catalytic activity, of the oxidative adducts of 

electron-withdrawing silanes, such as alkoxysilanes, with rhodium compounds has been proposed to account for 

this phenomenon [4]. A similar explanation can be used to rationalize the results with iridium. Addition of 

triphenylphosphine at a ratio of P:Ir of 1:1 causes the yield to decrease, perhaps due to the steric hindrance of 

the bulky phosphine. The isomer ratio does not vary, as the isomer favored by a bulky metal center is essentially 

the only adduct formed. 

 

 
 

Iridium complexes yield a mixture of cis- and trans-1-triethylsilylpent-1-enes from the hydrosilylation of pent-

1-yne by triethylsilane. Like [RhCl(COE)2]2, which also gives a mixture of the two pentenes with a cis:trans 

ratio of 61:29 [8], [IrCl(COE)2] 2 gives a similar cis:trans ratio of 84:16 under the same conditions. This may be 

rationalized in terms of the mechanism proposed for rhodium catalysts [8] (Scheme 2). The small size 

differences between rhodium and iridium would not be expected to be so important for σ-alk-1-enyls such as 

cis- and trans-M—CH=CHR, (Scheme 2), as for the σ-alkenyls proposed as intermediates for the 

hydrosilylation of DMBD. Use of a catalyst system involving the good donor ligand, P(o-C6H4OMe)3, does not 

alter the isomer ratio, in contrast to the rhodium systems where an increase in cis-pent-1-enes was observed. 

The origins of this effect are obscure. In all the iridium-catalyzed reactions, small amounts (2-5%) of a third 

isomer were formed and, as in the rhodium case, this was tentatively assigned as 1-triethylsilylpent-2-ene, based 

on comparison of its GLC retention time with an authentic sample. This third isomer could be formed by 

isomerization of the initially-formed internal adducts [8]. 



Ketones and olefins 

The effect of addition of a ligand such as triphenylphosphine to the a weakly coordinating substrate such as 

cyclohexanone (Table 3). With no added ligand, a modest yield of the 1:1 adduct is formed; this yield may be 

increased by addition of triphenylphosphine at a P:Ir ratio of 1:1. Presumably, as outlined in the introduction, 

the triphenylphosphine is able to stabilize the catalyst system and allows more efficient hydrosilylation. 

However, if a P:Ir ratio of 2:1 is used, the system ceases to be a catalyst for this reaction, due to the formation of 

the catalytically inert adduct [IrHCl(SiEt3)(PPh3)2]. 

 
 

The utility of iridium-based catalysts for the hydrosilylation of 1-olefins is poor. Even the addition of 

phosphines does not increase the activity noticeably (Table 4). 

 

α, β-Unsaturated ketones 

Ojima et al. [9] have reported the hydrosilylation of α, β-unsaturated carbonyl compounds catalyzed by 

Wilkinson's compound. Hydrosilylation can occur in a 1,2- or 1,4-mode, illustrated below for cyclohex-2-

enone, eqn. (1). Methanolysis of the silyl ethers leads to an allylic alcohol from 1,2-addition, and to the ketone 

via the enol from 1,4-addition. This reduction can be extremely regioselective; for example, the hydrosilylation 

of mesityl oxide by HSiEt3 yields exclusively the 1,4-adduct, whereas PhSiH3 yields exclusively the 1,2-adduct 

[9]. 

 

 

 



 

 
The mechanism proposed to explain this regioselectivity [9] is outlined in Scheme 3. The intermediate, VI, 

formed by coordination of the α,β-unsaturated ketone to the adduct formed by oxidative addition of the silane, 

undergoes a silicon migration from the metal to the carbonyl oxygen of the unsaturated ketone to give the a-

siloxyalkenylmetal hydride, VII. This is a logical extension of the mechanism proposed for the hydrosilylation 

of saturated ketones [10], which has been supported by spin-trapping experiments [11]. The adduct VII can 

rearrange to the adduct VIII. VII will yield the 1,2-adduct (allylic alcohol, after methanolysis), whereas VIII 

will yield the 1,4-adduct (ketone, after methanolysis). The rate of isomerization of VII to VIII will be 

determined by the steric bulk of the silane. A large silane will destabilize the adduct VII due to steric hindrance 

with the metal center, and increase the rate of formation of VIII and hence the amount of 1,4-adduct. Thus, the 

results with Wilkinson's compound can be explained. The more bulky triethylsilane causes rapid isomerization 

of VII to VIII and formation of the 1,4-adduct (ketone), whereas with the less bulky phenylsilane, VII does not 

rearrange and the sole product is the 1,2-adduct (allylic alcohol). 

 



 [Ir(COE)2Cl] 2 and [Ir(COD)Cl]2 (COE = cis-cyclooctene; COD = cis, cis-cycloocta-1,5-diene) are also 

excellent catalysts for this type of reaction, and our results are summarized in Table 5. The results may be easily 

accommodated by Scheme 3. For example, with C6H5(CH3)SiH2 and cyclohex-2-enone the reaction is 

quantitative and selective, giving only the 1,2-adduct (allylic alcohol). According to the proposed mechanism, 

the iridium complex, which does not have the bulky PPh3 ligands present in Wilkinson's compound, should 

exhibit reduced steric repulsion between the coordinated ligands (in VII), effectively preventing the 

isomerization to VIII. Therefore, only the 1,2-adduct would be expected. In the reaction of Et3SiH and 

cyclohex-2-enone catalyzed by [Ir(COE)2Cl]2, the yield is quantitative but the selectivity is lower, and different, 

from that reported for catalysis by Wilkinson's compound. Wilkinson's compound gives only 1,4-adduct in 

similar reactions; however, with the ligand-free iridium complex the rate of isomerization of VII to VIII would 

also be lessened for the bulkier Et3SiH, and hence a larger amount of 1,2-adduct would be expected, as is found. 

In accord with this rationale, the use of [Ir(COE)2Cl]2-2PPh3, (more sterically crowded about the iridium) yields 

more of the ketone (1,4-adduct). 

 
Asymmetric hydrosilylation 

The asymmetric hydrosilylation of keto compounds such as acetophenone or ethyl pyruvate was also attempted 

using a [Ir(COD)Cl]2-2L catalyst system (L = chiral phosphine such as neomenthyldiphenylphosphine, (+)-

DIOP, or (+)-1-(dimethylaminomethyl)-2-(diphenylphosphino)-ferrocene, (+)-FcNP). The chemical yields were 

satisfactory, but the optical yields were extremely low, reaching a maximum of 7% enantiomeric excess (see 

Experimental Section). These are much lower than those obtained with rhodium, perhaps due to the fact that 

with iridium we were limited to a P:Ir ratio of 1:1 (as we have shown that catalytic activity ceases at ratios of 

P:Ir of 2:1), whereas the high optical yields obtained with rhodium involved ratios of P:Rh of 2:1 and greater. 
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