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Abstract: 

Experience-sampling research involves trade-offs between the number of questions asked per 
signal, the number of signals per day, and the number of days. By combining planned missing-
data designs and multilevel latent variable modeling, we show how to reduce the items per signal 
without reducing the number of items. After illustrating different designs using real data, we 
present two Monte Carlo studies that explored the performance of planned missing-data designs 
across different within-person and between-person sample sizes and across different patterns of 
response rates. The missing-data designs yielded unbiased parameter estimates but slightly 
higher standard errors. With realistic sample sizes, even designs with extensive missingness 
performed well, so these methods are promising additions to an experience-sampler’s toolbox. 

Keywords: Missing data | Experience sampling methods | Efficient designs | Maximum 
likelihood | Ecological momentary assessment 

Article: 

The idea behind experience sampling is simple: to understand what is happening in people’s 
everyday lives, “beep” them with a device, and ask them to answer questions about their current 
experiences (Bolger & Laurenceau, 2013; Conner, Tennen, Fleeson & Barrett, 2009). 
Experience-sampling methods have been increasingly used in social, clinical, and health 
psychology to examine topics as wide-ranging as substance use (Buckner, Zvolensky, Smits, 
Norton, Crosby, Wonderlich & Schmidt, 2011), romantic relationships (Graham, 2008), 
psychosis (Oorschot, Kwapil, Delespaul & Myin-Germeys, 2009), self-injury (Armey, Crowther 
& Miller, 2011), and personality dynamics (Fleeson & Gallagher, 2009). But as in many things, 
the devil is in the details. For fixed-interval and random-interval designs, in which people are 
beeped at fixed or random times throughout the day, researchers must decide how many items 
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should be asked at each beep, how many beeps should be given each day, and how many days 
the study should last. These three design parameters—number of items per beep, number of 
beeps daily, and number of total days—tug against each other, and thus require compromises to 
avoid participant burden, fatigue, and burnout. For example, asking many items per beep usually 
requires using fewer beeps per day; conversely, using many beeps per day usually requires 
asking fewer questions per beep (Hektner, Schmidt & Csikszentmihalyi, 2007). If the demands 
on participants are too high, both the quality and quantity of responses will suffer. 

In this article, we describe some useful planned missing-data designs (Enders, 2010; Graham, 
Taylor, Olchowski & Cumsille, 2006). Although such designs have been popular in cross-
sectional and longitudinal work, researchers have not yet considered their potential for 
experience-sampling studies. Planned missing-data designs allow researchers to omit some items 
at each beep. This reduces the time and burden needed to complete each assessment, and it 
enables researchers to ask more questions in total without expanding the number of questions 
asked per beep. We suspect that such designs could thus be useful for experience-sampling 
research because space in the daily-life questionnaire is tight. Using real data from a study of 
hypomania and positive affect in daily life (Kwapil, Barrantes-Vidal, Armistead, Hope, Brown, 
Silvia & Myin-Germeys, 2011), first we illustrate some common planned missing-data designs 
and describe their typical performance. Then we present two Monte Carlo simulations that 
evaluate the performance of planned missing data across a range of within-person (Level 1) and 
between-person (Level 2) sample sizes and patterns of response rates. 

The basics of planning missing data 

During the dark ages of missing-data analysis, missing observations were usually handled with 
some form of deletion or simple imputation (Graham, 2009; Little & Rubin, 2002). With the 
advent of modern methods—particularly multiple imputation and maximum likelihood—
researchers have many sophisticated options for analyzing data sets with extensive missingness, 
if certain assumptions are made (Enders, 2010). The rise of methods for analyzing missing data 
has brought new attention to planned missing-data designs (Graham et al., 2006), which have a 
long history but were relatively impractical until the development of modern analytic methods. 
Sometimes called efficiency designs, planned missing-data designs entail deliberately omitting 
some items for some participants via random assignment. In cross-sectional research, for 
example, the items might be carved into three sets, and each participant would be randomly 
assigned two of the sets. This method would reduce the number of items that each participant 
answered (from 100 % to 67 %) without reducing the overall number of items asked. In 
longitudinal research, for another example, researchers could randomly assign participants to a 
subset of waves instead of collecting data from everyone at each wave. Such methods save time 
and money, and they can “accelerate” a longitudinal project, such as in cohort sequential designs 
(Duncan, Duncan & Stryker, 2006). 



Planned missing-data designs allow researchers to trade statistical power for time, items, and 
resources. Unlike unintended types of missing data, planned missing data are missing completely 
at random (MCAR): The observed scores are a simple random sample of the set of complete 
scores, so the likelihood of missingness is unrelated to the variable itself or to other variables in 
the data set (Little & Rubin, 2002). As a result, maximum likelihood methods for missing data 
can be applied that assume that the data are MCAR or missing at random (MAR)—in the latter 
case, that the likelihood of missingness is unrelated to the variable itself but is related to other 
variables in the data set (Little & Rubin, 2002). The body of simulation research on maximum 
likelihood methods, viewed broadly, has shown that standard errors are somewhat higher—
consistent with the higher uncertainty that stems from basing an estimate on fewer data—but the 
coefficients themselves are unbiased estimates of the population values (see Davey & 
Savla, 2010; Enders, 2010; McKnight, McKnight, Sidani & Figueredo, 2007). The higher 
standard errors are the price that researchers pay for the ability to ask more items or to reduce the 
time needed to administer the items. This can be a good investment, if the savings in time and 
money enable asking more items, sampling more people, or yielding better data, such as by 
reducing fatigue or increasing compliance. 

An empirical demonstration of planned missing-data designs 

To illustrate different missing-data designs in action, we used data collected as part of a study of 
hypomania’s role in daily emotion, cognition, and social behavior (Kwapil et al., 2011). In this 
study, 321 people took part in a 7-day experience-sampling study. Using personal digital 
assistants (PDAs), we beeped the participants eight times per day for 7 days. One beep occurred 
randomly within each 90-min block between noon and midnight. Compliance was good: People 
completed an average of 41 daily-life questionnaires (SD = 10). In the original study, each 
person received all items at each beep. 

The key to implementing planned missing-data designs for beep-level, within-person constructs 
is to model the Level 1 constructs as latent variables. Multilevel models with latent variables are 
combinations of familiar structural equation models and hierarchical linear models (Mehta & 
Neale, 2005; Muthén & Asparouhov,2011; Skrondal & Rabe-Hesketh, 2004); Heck and Thomas 
(2009) have provided a thorough didactic introduction for researchers interested in learning to 
run multilevel structural equation models. Instead of averaging across items—especially for 
cases in which researchers would average across three or more items—researchers can specify 
the items as indicators of a Level 1 latent outcome. Apart from enabling the use of planned 
missing designs, modeling latent Level 1 variables has the other advantages of latent variable 
modeling, such as the ability to model measurement error. 

Figure 1 depicts the multilevel model used for our examples. The outcome variable is activated 
positive affect(PA), which is a latent variable defined by the observed 
items enthusiastic, excited, energetic, and happy. The Level 1 predictor solitude is a binary 
variable that reflects whether people are alone or with other people. Much research has shown 



that PA is higher when people are with others (Burgin, Brown, Royal, Silvia, Barrantes-Vidal & 
Kwapil, 2012; Silvia & Kwapil, 2011; Watson, 2000). Solitude was group-mean centered (i.e., 
within-person centered) using the observed solitude scores, and the slopes and intercepts were 
modeled as being random. At Level 2, we estimated a main effect of hypomania, measured with 
the Hypomanic Personality Scale (Eckblad & Chapman, 1986), on PA (shown as the path from 
Hypomania to PA Intercept), as well as a cross-level interaction between solitude and hypomania 
(shown as a path from Hypomania to PA Slope). The Hypomanic Personality Scale measures a 
continuum of trait-like variability in bipolar spectrum psychopathology (see Kwapil et al., 2011). 
Hypomania was grand-mean centered using the observed scores. As is typical for experience-
sampling research, the data were fully complete at Level 2 but partially complete at Level 1 
because not everyone responded to every beep (Silvia, Kwapil, Eddington & Brown, 2013). The 
models were estimated using Mplus 6.12 using maximum likelihood estimation with robust 
standard errors. 

 

Fig. 1 A multilevel model with a latent outcome 

Matrix designs for three within-person indicators 

A typical experience-sampling study of mood would have many affect items to capture a range 
of affective states. If a construct includes three items, researchers can use a family of matrix 
designs. In our study, we included many Level 1 items that assessed PA. For this example, we 
will consider three of them: enthusiastic, excited, and energetic. 

A simple matrix design for three indicators would randomly administer two of the three items at 
each beep. Table 1 depicts the design. In our example, people would be 
asked enthusiastic and excited a third of the time, enthusiastic and energetic a third of the time, 



and excited and energetic a third of the time—no one would receive all three items at any beep. 
Table 2 depicts the covariance coverage for this sampling design. The diagonal of the table 
displays the proportion of complete data for an item. Each item is 67 % complete because it is 
asked two thirds of the time. The off-diagonal elements represent the proportions of complete 
data for a covariance between two items. All of the off-diagonal cells have a value of 33 % 
because each item is paired with each other item a third of the time. This last point is a critical 
feature of the matrix design, and of planned missing designs generally: Each item must be paired 
with every other item. If an off-diagonal cell has a value of zero—that is, two items never co-
occur—the model will fail unless advanced methods beyond the scope of this article are applied 
(see, e.g., Willse, Goodman, Allen & Klaric, 2008). 

Table 1 Depiction of a matrix sampling design for three indicators of activated positive affect 

  Enthusiastic Excited Energetic 

Item Group 1 X X   

Item Group 2   X X 

Item Group 3 X   X 

X indicates that an item was administered 

Table 2 Covariance coverage matrix for the three-indicator matrix design 

  Enthusiastic Excited Energetic 

Enthusiastic .67     

Excited .33 .67   

Energetic .33 .33 .67 

The diagonal elements indicate the proportions of complete data for an item; the off-diagonal 
elements indicate the proportions of complete data for a pair of items 

What are the consequences of using such a design? We estimated the multilevel model described 
earlier: a latent activated PA variable was formed by the three items, and it served as the Level 1 
outcome predicted by solitude (Level 1), hypomania (Level 2), and their interaction. The 
predictor variables in these models had complete scores—in these and other planned missing-
data models, the missingness is varied only for the outcomes. We estimated two models. The 
first used the complete-cases data file, in which everyone was asked all three items at all 
occasions. The second used a matrix sampling design, in which we randomly deleted observed 
Level 1 cases on the basis of the matrix sampling design in Table 1, which yielded a data set with 
the covariance coverage displayed in Table 2. The intraclass correlations (ICCs) for the 



individual items—the proportions of the total variance at Level 2—ranged from .243 to .267. To 
estimate an ICC for the latent variable, researchers must ensure that it is invariant across the two 
levels, thereby placing the Level 1 and Level 2 variances on the same scale (Mehta & 
Neale, 2005). Equating the latent variable across Levels 1 and 2 is a good idea, regardless of 
missing data, and it is accomplished by constraining the factor loadings to be equal across levels 
(see Heck & Thomas, 2009, chap. 5; Mehta & Neale, 2005, p. 273). The ICC for the latent 
activated PA variable was .353. 

Table 3 displays the patterns of effects. Comparing the parameters and standard errors reveals 
very little difference: Not much is lost when only two of three items are asked. Consistent with 
formal simulation research, the primary difference was in the standard errors. The estimates of 
regression paths and variances were at most modestly affected, but the standard errors were 
somewhat higher for elements of the model that hinged on the three PA items. Not surprisingly, 
the standard errors were most inflated for the factor loadings for the three items that served as 
indicators of the latent activated PA variable. 

Table 3 Parameter estimates for the complete-cases model and the matrix sampling model for 
three indicators 

  Complete Matrix 

L1 solitude effect .263 (.032) .263 (.033) 

L2 hypomania effect .039 (.006) .038 (.006) 

Cross-level interaction –.003 (.004) –.002 (.004) 

L1 CFA: Enthusiastic loading 1 (0) 1 (0) 

L1 CFA: Excited loading 1.077 (0.019) 1.073 (0.032) 

L1 CFA: Energetic loading 0.961 (0.020) 0.991 (0.031) 

L1 latent PA residual variance 1.326 (0.057) 1.299 (0.067) 

L2 random slope residual variance 0.127 (0.035) 0.117 (0.034) 

L2 random intercept residual variance 0.627 (0.062) 0.618 (0.064) 

The loading for enthusiastic was fixed to 1 in each model. The numbers in parentheses are 
standard errors 

Matrix designs for four indicators 

All else being equal, standard errors will increase as missingness becomes more extensive. To 
illustrate this, we can consider a model with four within-person indicators. Table 4 shows a 



balanced matrix design for four indicators. It adds another item, happy, to the within-person 
activated PA latent variable. In this design, each beep asks two of the four items, and all pairs of 
items are asked. The covariance coverage is thus much lower than in the three-item matrix 
design. As Table 5 shows, 50 % of the data are missing for each item, and each covariance is 
estimated on the basis of about 16 % of the beeps. 

Table 4 Depiction of a matrix sampling design for four indicators of activated positive affect 

  Happy Enthusiastic Excited Energetic 

Item Group 1 X X     

Item Group 2 X   X   

Item Group 3 X     X 

Item Group 4   X X   

Item Group 5   X   X 

Item Group 6     X X 

X indicates that an item was administered 

Table 5 Covariance coverage matrix for the four-indicator matrix design 

  Happy Enthusiastic Excited Energetic 

Happy .50       

Enthusiastic .16 .50     

Excited .16 .16 .50   

Energetic .16 .16 .16 .50 

The diagonal elements indicate the proportions of complete data for an item; the off-diagonal 
elements indicate the proportions of complete data for a pair of items 

As before, we estimated two multilevel models: one using the complete-cases data file, and 
another in which Level 1 were randomly deleted data to create a matrix sampling design for the 
four items. The ICCs for the indicators ranged from .227 to .267, and the ICC for the latent 
activated PA variable was .345. Table 6 displays the effects and their standard errors. As before, 
and as expected, the factor loadings and regression weights are essentially the same, but the 
standard errors are larger, particularly for elements of the model involving the individual items. 



Table 6 Parameter estimates for the complete-cases model, the matrix sampling model, and the 
anchor test model 

  Complete Matrix Anchor Test 

L1 solitude effect .221 (.025) .213 (.025) .229 (.025) 

L2 hypomania effect .029 (.004) .028 (.004) .029 (.004) 

Cross-level interaction –.002 (.003) –.002 (.003) –.002 (.003) 

L1 CFA: Happy loading 1 (0) 1 (0) 1 (0) 

L1 CFA: Enthusiastic loading 1.285 (0.031) 1.359 (0.052) 1.281 (0.036) 

L1 CFA: Excited loading 1.393 (0.029) 1.472 (0.052) 1.397 (0.031) 

L1 CFA: Energetic loading 1.216 (0.029) 1.297 (0.049) 1.215 (0.032) 

L1 latent PA residual variance 0.808 (0.039) 0.734 (0.048) 0.806 (0.040) 

L2 random slope residual variance 0.074 (0.020) 0.060 (0.018) 0.071 (0.020) 

L2 random intercept residual variance 0.373 (0.036) 0.341 (0.037) 0.373 (0.036) 

The loading for happy was fixed to 1 in each model. The numbers in parentheses are standard 
errors 

Anchor test designs for within-person indicators 

In the matrix sampling designs that we have discussed, no single item is always asked. 
Sometimes, however, a researcher may always want to ask a particular item. An item might be a 
“gold standard” item, an item that reviewers expect to see, or a particularly reliable item. For 
such occasions, researchers can useanchor test designs. For example, in an experience-sampling 
study of positive affect, one might want to always ask happy, given its centrality to the construct, 
but to ask the other items only occasionally. 

An example of an anchor test design is shown in Table 7, where people are asked three of the 
four items at each beep. The item happy is always asked, and two of the three remaining items 
are occasionally asked. (This particular design is akin to Graham et al.’s, 2006, three-form design 
with an X-set asked of everyone.) Table 8 shows the covariance coverage for the four items. 
Because happy is always asked, it occurs 67 % of the time with the other three items. The 
occasional items, in contrast, are missing 33 % of the time and occur 33 % of the time with each 
other. This matrix illustrates the sense in which the item happy “anchors” the set of items: Data 
for the item most central to the latent construct—both the item itself and its relations with other 
items—are less sparse than data for the items more peripheral to the latent construct. Like the 



matrix design, the anchor test design requires each item to co-occur with every other item—no 
off-diagonal cell is zero—but the degree of co-occurrence varies between pairs. 

Table 7 Depiction of an anchor test design for four indicators of activated positive affect 

  Happy Enthusiastic Excited Energetic 

Item Group 1 X X X   

Item Group 2 X   X X 

Item Group 3 X X   X 

X indicates that an item was administered 

Table 8 Covariance coverage matrix for the anchor test design 

  Happy Enthusiastic Excited Energetic 

Happy 1       

Enthusiastic .67 .67     

Excited .67 .33 .67   

Energetic .67 .33 .33 .67 

The diagonal elements indicate the proportions of complete data for an item; the off-diagonal 
elements indicate the proportions of complete data for a pair of items 

Table 6 depicts the results in the final column and enables a comparison with both the complete-
cases design and the matrix sampling design. In its coefficients and standard errors, the anchor 
test design is much closer to the complete-cases design than is the matrix sampling design. For 
the coefficients, neither design is especially discrepant, but the estimates for the anchor test 
design are particularly close to the complete-cases design. For the standard errors, both the 
anchor test and matrix sampling designs have higher standard errors for the parts of the model 
involving the four indicators, but the standard errors for the anchor test design are appreciably 
less inflated than those for the matrix sampling design. The better performance for the anchor 
test design is intuitive: Both designs have four indicators, but the anchor test design has less 
overall missingness (as is shown in their covariance coverage matrices). 

A Monte Carlo study of level 1 and Level 2 sample sizes 

The empirical demonstrations that we have presented have their strengths: They capture the 
coarse character of real experience-sampling data, and they reflect the kinds of effects that 
researchers can expect when using these methods in the field. Nevertheless, formal Monte Carlo 



simulations, although more artificial, can illuminate the behavior of the planned missing-data 
designs across a range of factors and conditions (Mooney, 1997). One subtle but important 
strength of Monte Carlo designs for missing-data problems is the ability to evaluate effects 
relative to the true population parameters. In our empirical simulations, the population values 
were unknown, so the planned missing designs were evaluated against the complete-cases 
sample. Missing-data methods, however, seek to reproduce the population values, not what the 
observed data would look like if there were no missing values (Enders, 2010). Monte Carlo 
simulations specify the population values, so we can gain a more incisive look at the 
performance of designs with different patterns of missing within-person data. 

Our first simulation examined three designs: the complete cases, an anchor test design, and a 
matrix design, all for four indicators. We picked these because the anchor test design is relatively 
cautious (one item is always asked), and the matrix design is relatively risky (the covariance 
coverage is only 16 %). To obtain population values for the Monte Carlo simulations, we used 
the observed values from the complete-cases analysis of our hypomania study used in the 
empirical simulations (Kwapil et al., 2011). Using values from actual data increases the realism, 
and hence the practicality, of Monte Carlo simulations: The values of the parameters and ICCs 
reflect values that researchers are likely to encounter (Paxton, Curran, Bollen, Kirby & 
Chen, 2001). The model that we estimated was the same as in the empirical simulation: 
Hypomania (Level 2), solitude (Level 1), and their cross-level interaction predicted activated PA, 
a latent outcome with four indicators. 

Our simulation focused on the roles of the Level 1 and Level 2 sample sizes in the performance 
of the various designs. These elements are important for two reasons. First, one would expect 
sample size to play a large role: With smaller sample sizes, especially at Level 1 (the number of 
beeps), one should encounter more convergence failures and higher standard errors. Second, 
Level 1 and Level 2 sample sizes are under a researcher’s control, whereas many other aspects of 
a model (e.g., the ICC) are not. For our simulation we used a 3 (type of design: complete cases, 
anchor test, matrix) × 4 (Level 2 sample size: 50, 100, 150, 200) × 4 (Level 1 sample size: 15, 
20, 45, 60) design. Simulation research commonly includes values that are unrealistic to 
illuminate a model’s performance under dismal situations. In our analysis, a Level 2 sample size 
of 50 would strike most researchers as relatively small and a poor candidate for planned missing-
data designs; the remaining levels (100, 150, and 200) are more realistic and consistent with 
typical samples in experience-sampling work. Likewise, a Level 1 sample size of 15 is obviously 
too small, 30 is somewhat low for a week-long experience-sampling project, and 45 and 60 
represent realistic values for a typical 7- to 14-day sampling frame. 

To simplify the reporting of the results, we focused on three parameters: the Level 1 main effect 
of solitude on PA, the Level 2 main effect of hypomania on PA, and the factor loading for one of 
the Level 1 PA confirmatory factor analysis (CFA) items (the item excited, chosen randomly). 
We sought three kinds of outcomes. First, how many times did the model fail to terminate 
normally? Second, how biased—that is, how discrepant from the population values—were the 



estimates of the regression weights and factor loadings? And third, how did the missing-data 
designs affect standard errors across the Level 1 and Level 2 sample sizes? The simulated data 
were generated and analyzed using Mplus 6.12 using maximum likelihood. Each condition had 
1,000 simulated samples. 

Estimation problems 

How often did the multilevel model fail to converge? The numbers of times that the model failed 
to terminate normally are shown in Table 9 and Fig. 2. Not surprisingly, termination failures 
were most common at the lowest sample sizes (50 people responding to 15 beeps), particularly 
when a missing-data design was used. Even in the worst case, however, the model failed to 
terminate normally only 2.10 % of the time. As Fig. 2 shows, termination failures were 
essentially zero for all designs once reasonable sample sizes (at least 100 people and 30 beeps) 
were achieved. 

Table 9 Effects of the planned missing-data design and the Level 1 and Level 2 sample sizes on 
termination failures, parameter biases, and standard errors 

  Complete Cases Anchor Test Matrix 

50 100 150 200 50 100 150 200 50 100 150 200 

Terminati
on 
failures 

1
5 

1.70 0.60 0.40 0.30 1.90 1.00 0.70 0.40 2.10 3.40 1.70 0.40 

3
0 

0.50 0.50 0.40 0.10 0.80 0.30 0.10 0.10 1.20 0.00 0.10 0.10 

4
5 

0.80 0.00 0.10 0.00 0.20 0.00 0.10 0.10 0.20 0.20 0.10 0.00 

6
0 

0.00 0.00 0.30 0.10 0.00 0.00 0.00 0.10 0.00 0.10 0.00 0.00 

L1 factor 
loading 
bias 

1
5 

0.187 −0.06
5 

0.050 0.043 0.739 0.043 0.000 −0.05
7 

1.392 0.057 0.136 0.251 

3
0 

0.151 0.179 0.000 0.014 0.194 0.151 0.122 −0.04
3 

0.660 0.215 0.029 0.143 

4
5 

0.258 0.122 0.187 −0.03
6 

0.158 −0.05
7 

0.093 −0.02
9 

0.344 0.201 0.244 0.086 

6
0 

0.079 0.043 −0.10
0 

−0.02
9 

0.022 0.007 −0.09
3 

0.057 −0.29
4 

0.036 0.029 −0.10
8 

L1 main 
effect 

1
5 

1.830 −0.35
7 

−0.75
9 

−0.08
9 

0.714 0.446 −0.49
1 

0.893 −3.21
4 

−0.89
3 

0.179 0.179 



bias 3
0 

−0.93
8 

−0.49
1 

0.804 −1.07
1 

−2.32
1 

−0.08
9 

0.089 0.848 −0.26
8 

0.580 0.937 −0.17
9 

4
5 

−0.26
8 

0.491 0.625 0.759 −0.71
4 

0.937 −0.08
9 

−0.71
4 

−1.07
1 

−0.26
8 

0.268 0.402 

6
0 

1.429 0.759 0.446 0.446 0.893 −0.26
8 

0.268 −0.35
7 

0.491 −0.22
3 

−0.26
8 

−0.49
1 

L2 main 
effect 
bias 

1
5 

1.480 2.224 0.519 0.187 0.458 0.372 0.701 0.803 3.431 0.501 −0.14
3 

−0.33
0 

3
0 

0.128 −0.62
9 

−0.34
1 

0.770 1.757 0.055 0.084 0.559 −1.10
8 

1.416 1.018 0.458 

4
5 

0.801 0.337 0.528 0.165 0.105 −0.32
5 

0.440 1.177 2.536 0.105 −0.07
5 

0.842 

6
0 

1.713 0.963 −0.22
6 

0.319 −0.57
6 

0.526 0.033 0.004 3.589 1.164 0.374 −0.14
1 

L1 factor 
loading S
E 

1
5 

0.088 0.062 0.050 0.044 0.106 0.074 0.060 0.052 0.170 0.117 0.095 0.083 

3
0 

0.064 0.045 0.036 0.031 0.077 0.054 0.044 0.038 0.123 0.087 0.070 0.061 

4
5 

0.052 0.037 0.030 0.026 0.063 0.045 0.036 0.032 0.103 0.072 0.059 0.051 

6
0 

0.045 0.032 0.026 0.023 0.055 0.039 0.032 0.028 0.090 0.064 0.052 0.045 

L1 main 
effect SE 

1
5 

0.116 0.080 0.065 0.056 0.120 0.084 0.068 0.059 0.128 0.089 0.072 0.062 

3
0 

0.081 0.057 0.046 0.040 0.084 0.059 0.048 0.041 0.089 0.063 0.051 0.044 

4
5 

0.066 0.047 0.038 0.033 0.069 0.048 0.039 0.034 0.074 0.051 0.042 0.036 

6
0 

0.058 0.041 0.033 0.029 0.060 0.042 0.034 0.030 0.064 0.045 0.036 0.031 

L2 main 
effect SE 

1
5 

2.147 1.479 1.194 1.034 2.147 1.495 1.215 1.046 2.260 1.543 1.242 1.082 

3
0 

2.011 1.397 1.137 0.986 2.000 1.406 1.142 0.990 2.058 1.445 1.169 1.015 



4
5 

1.969 1.370 1.118 0.963 1.967 1.382 1.123 0.971 2.013 1.401 1.136 0.988 

6
0 

1.915 1.361 1.101 0.957 1.942 1.362 1.104 0.963 1.958 1.375 1.119 0.972 

“Termination failures” are the percentages of the 1,000 samples on which the model did not 
terminate normally. “Bias” is the percentage difference between the simulated value and the 
population value. SE = standard errors. Factor loadings are the loadings of individual items on 
the Level 1 latent positive affect variable. L2 main effects are the effects of hypomania, the 
Level 2 predictor, on the latent positive affect variable 

 

Fig. 2 Effects of planned missing-data designs and sample sizes on termination failures 

Parameter bias 

How closely did the factor loadings and regression weights resemble the population values? Bias 
scores—differences between the simulated estimates and population estimates, expressed as 
percentages—are shown in Table 9. As a visual example, Fig. 3 illustrates the bias scores for the 
Level 1 CFA factor loading. Consistent with the broader missing-data literature, the level of bias 
was small across all three planned missing-data designs. Most of the bias scores (87 %) were less 
than ±1 %, and the most biased estimates were nevertheless only −3.21 % and 3.59 % different 
from the population values. The findings thus support the prior simulations, albeit in a different 
context. 



 

Fig. 3 Effects of planned missing-data designs and sample sizes on Level 1 confirmatory factor 
analysis loading parameter biases 

Standard errors 

How did the planned missing-data designs influence standard errors across different sample 
sizes? Table 9 displays the standard errors. First, it is apparent that the standard errors decline as 
both Level 1 and Level 2 sample sizes increase, consistent with the literature on power analysis 
in multilevel models (Bolger, Stadler & Laurenceau, 2012; Maas & Hox, 2005; Scherbaum & 
Ferreter, 2009). More relevant for our purposes is how the standard errors differed across the 
different planned missing-data designs. Overall, standard errors were lowest for the complete-
cases design, somewhat higher for the anchor test design, and notably higher for the matrix 
design; as one would expect, the standard errors increased as missingness increased. 
Furthermore, the influence of missing data was restricted to the within-person aspects of the 
model: Missing data increased standard errors for the Level 1 factor loading and for the Level 1 
main effect, but not for the Level 2 main effect. To illustrate this pattern, Fig. 4 displays the 
standard errors for the Level 1 CFA factor loading. 



 

Fig. 4 Effects of planned missing-data designs and sample sizes on Level 1 confirmatory factor 
analysis loading standard errors 

Discussion 

The Monte Carlo simulations revealed several things about the behavior of planned missing-data 
designs. For model termination, all designs converged well, once acceptable sample sizes were 
reached (at least 100 people and 30 beeps), so the use of planned missing-data designs for 
within-person constructs doesn’t create notable convergence problems, which were determined 
primarily by sample size. For parameter bias, the estimates of the factor loadings and regression 
weights were minimally biased. All of the designs accurately recovered the parameter values, 
even under sparse conditions (e.g., a matrix design with 50 people and 15 beeps). Although it is 
perhaps counterintuitive, this finding follows from the underlying statistical theory (Little & 
Rubin, 2002; Rubin, 1976) and replicates the broader simulation literature, which supports the 
effectiveness of maximum likelihood methods when data are MCAR, as in planned missing 
designs. Finally, for standard errors, the planned missing designs influenced the sizes of standard 
errors as one would expect: Standard errors increased as missingness increased. The anchor test 
design yielded somewhat higher standard errors than the complete-cases design; the matrix 
design, which has covariance coverage of only 16 %, yielded much higher standard errors. But in 
all cases, standard errors declined as both Level 1 and Level 2 sample sizes increased. The 
increase in standard errors due to planned missing data can thus be offset by larger samples at 
both levels. 

A Monte Carlo simulation of variable response rates 

For our second Monte Carlo study, we wanted to explore the effects of variable response rates on 
the behavior of planned missing-data designs. As experience-sampling researchers know all too 
well, participants vary in how many surveys they complete, an irksome form of unplanned 
missingness. Some participants respond to every single beep, most participants respond to most 



beeps, and some participants respond to few beeps. Part of conducting experience-sampling 
research is developing procedures to boost response rates, such as incentives (e.g., everyone who 
completes at least 70 % is entered in a raffle), establishing a rapport with participants, sending 
reminder texts or e-mails, or having participants return to the lab once or twice during the study 
(Barrett & Barrett, 2001; Burgin, Silvia, Eddington & Kwapil, 2013; Conner & Lehman,2012; 
Hektner et al., 2007). 

In our prior simulation, response rates were fixed: Each “participant” in a sample had the same 
number of Level 1 observations, which is akin to a study in which everyone responded to the 
same number of beeps. In a real study, however, researchers would observe a range of response 
rates, including low response rates for which planned missing designs might fare poorly. The 
present simulation thus varied response rates to examine their influence, if any, on the 
performance of different planned missing designs. 

Empirical context 

As with the prior Monte Carlo simulations, we used results from real experience-sampling data 
as population values. For these simulations, we shifted to a new context and sample data set. The 
data are from a study of social anhedonia and social behavior in daily life (Kwapil, Silvia, Myin-
Germeys, Anderson, Coates, & Brown,2009). Social anhedonia, viewed as a continuum, 
represents trait-like variation in people’s ability to gain pleasure from social interaction (Kwapil, 
Barrantes-Vidal & Silvia, 2008). People high in social anhedonia have a diminished need to 
belong, spend more time alone, and are at substantially higher risk for a range of 
psychopathologies (Brown, Silvia, Myin-Germeys & Kwapil, 2007; Kwapil, 1998; Silvia & 
Kwapil, 2011). In the original study, we measured social anhedonia as a Level 2 variable prior to 
the experience-sampling study. People were then asked to respond to questions about mood and 
social engagement several times a day across 7 days. For the present analyses, we focused on 
four items that people completed when they were with other people at the time of the beep: I like 
this person (these people), My time with this person (these people) is important to me, We are 
interacting together, and I feel close to this person (these people). The four questions, not 
surprisingly, covary highly, and thus load highly on a latent social engagement variable. The 
ICCs for the items ranged from .155 to .254; the ICC for the latent variable was .246. These 
items are good examples of items that could productively be used for a planned missing-data 
design: One would want to measure social engagement at each beep, but the four items are 
interchangeable. 

For our simulations, we chose a simple Level 2 main effect model: social anhedonia, an 
observed Level 2 variable, had a main effect on the latent social engagement variable. No Level 
1 predictors or cross-level interactions were present. As one would expect, as social anhedonia 
increased, people reported lower social engagement with other people, b = −.389, SE = .064, p < 
.001, which would be considered a large effect size (R 2 = 29 %). 



Monte Carlo design 

The Monte Carlo simulations explored the effects of four kinds of response rate variability. We 
created a hypothetical experience-sampling study in which 100 people were beeped 60 times 
over the course of a week. Three planned missing-data designs were examined, as in the prior 
simulations: a complete-cases design, an anchor test design, and a matrix sampling design. We 
then created four kinds of response rate patterns. In a fixed condition, response rates were fixed 
at 45 out of 60, to represent a case in which everyone completed 75 % of the beeps and to serve 
as a no-variability benchmark. In a uniform condition, response rates varied from 20 out of 60 
(33 %) to 60 out of 60 (100 %) in increments of 5. (Twenty beeps served as a floor; experience-
sampling research commonly drops participants whose response rates fall under a predefined 
threshold.) In a high-response-rate condition, 70 % of the sample completed at least 75 % of the 
beeps, with some variability around 75 %, and in a low-response-rate condition, 70 % of the 
sample again completed at least 75 % of the beeps, but 30 % of the sample piled up at the floor. 
These conditions are easiest to understand when they are visualized: Figure 5 illustrates the 
response rates for the low, high, and uniform conditions. For the simulation we thus used a 3 
(type of design: complete cases, anchor test, matrix) × 4 (response rate: fixed, uniform, low, 
high) design. As before, we used Mplus 6.12 and 1,000 simulated samples in each condition. 

 

Fig. 5 Depiction of the low, high, and uniform response rates used in the simulations 

We focused on two effects for which poor performance would be obvious: The factor loading for 
one of the Level 1 items (the item I feel close to this person (these people), chosen randomly), 
and the regression weight for the main effect of social anhedonia on the latent social engagement 
variable. As before, we evaluated parameter bias (how much did the simulated factor loading and 
regression weight diverge from the population values?) and the standard errors (how much did 
the standard errors change as a function of response rates and missing-data designs?). We did not 
evaluate estimation failures because, given the simpler model and solid sample sizes at both 
levels, all samples terminated normally in all conditions. 

http://link.springer.com/article/10.3758/s13428-013-0353-y/fulltext.html#Fig5


Parameter bias 

For parameter bias, we again found minimal bias in the estimated Level 1 factor loading and 
Level 2 main effect. Table 10 displays the bias values, as percentages, for all conditions. Bias 
values were tiny: The most biased score was only −1.2 % different from the population value. 
These results indicate that parameter bias is essentially unaffected by the type of planned 
missing-data design and the types of response rates. 

Table 10 Effects of the planned missing-data design and response rates on parameter biases and 
standard errors 

  Complete Cases Anchor Test Matrix 

Low High Fixe
d 

Unifo
rm 

Low Hig
h 

Fixe
d 

Unifo
rm 

Low Hig
h 

Fixe
d 

Unifo
rm 

Factor 
loading 
bias 

0.04
9 

0.05
6 

0.02
1 

−0.02
8 

−0.0
35 

0.04
2 

0.07
0 

0.049 −0.1
05 

0.14
0 

0.02
1 

0.049 

L2 
main 
effect 
bias 

−0.8
23 

−1.2
08 

−0.5
91 

−0.69
4 

0.92
5 

−0.1
29 

−0.3
34 

0.000 0.84
8 

0.33
4 

0.97
7 

0.360 

Factor 
loading
SE 

0.01
54 

0.01
48 

0.01
51 

0.0160 0.01
88 

0.01
83 

0.01
87 

0.0199 0.03
09 

0.02
96 

0.03
03 

0.0322 

Main 
effectS
E 

0.06
50 

0.06
43 

0.06
40 

0.0650 0.06
52 

0.06
43 

0.06
50 

0.0655 0.06
54 

0.06
46 

0.06
48 

0.0655 

“Bias” is the percentage difference between the simulated value and the population 
value. SE = standard errors. Factor loadings are the loadings of individual items on the Level 1 
latent social engagement variable. L2 main effects are the effects of social anhedonia, the Level 
2 predictor, on the latent social engagement variable 

Standard errors 

For standard errors, we again found an influence of the planned missing-data design. The 
standard errors for the Level 2 main effect were essentially identical across all conditions, as is 
shown in the last row of Table 10. However, the standard errors for the Level 1 factor loading 
(not surprisingly) varied across the conditions. These values are displayed in Table 10 and Fig. 6. 
As in our prior simulations, standard errors increased as the amount of missingness increased: 
They were lowest for the complete-cases design, somewhat higher for the anchor test design, and 
notably higher for the matrix design. 



 

Fig. 6 Effects of planned missing-data designs and response rates on Level 1 confirmatory factor 
analysis loading standard errors 

The type of response rate had minor effects, at most: Standard errors were lowest for the high-
response-rate conditions, but the variation between the types of response rates was trivial. As a 
result, variation in response rates appears to exert a minor influence, regardless of the kind of 
missing-data design. 

Discussion 

The Monte Carlo simulations replicated the general findings from the prior simulation and from 
the broader literature on planned missing data. As before, missing data created minimal bias in 
the parameter estimates (factor loadings and regression weights), but they did increase the 
standard errors as the amount of missingness increased. In this simulation, the increase in 
standard errors was restricted to the Level 1 CFA. Beyond the prior study, we evaluated the 
possible influences of different patterns of response rates. Overall, these patterns created at most 
minor differences in standard errors. The trivial influence of different response-rate patterns 
should be reassuring, given that experience-sampling research always involves between-person 
variability in response rates. 

General discussion 

In research, as in life, there is no free lunch, but there are occasionally good coupons. To date, 
experience-sampling research hasn’t considered the value of planned missing-data designs, 
which have proven to be helpful in other domains in which time and resources are tight (Graham 
et al., 2006). Planned missing-data designs offer a way for researchers to ask more Level 1 items 
overall without presenting more items at each beep. But nothing comes for free—as the level of 



missingness increases, the standard errors increase—so these designs should be applied only 
when the gains outweigh the somewhat reduced power. 

The findings from our simulated designs resemble the findings from the broader missing-data 
literature (Davey & Savla, 2010; Enders, 2010; McKnight et al., 2007) and fit the underlying 
statistical theory (Little & Rubin,2002; Rubin, 1976). Standard errors increased as the covariance 
coverage decreased. Anchoring the set of items by always asking one of the items yielded only 
slightly higher standard errors than always asking all questions. For all the designs, the inflated 
standard errors were restricted to the parts of the multilevel structural equation model that 
involved the items, as one would expect, so the designs did not cause a widespread inflation of 
error throughout the model. Higher standard errors, of course, reduce power to detect significant 
effects, so researchers should weigh the virtues of a planned missing design in light of its 
drawbacks. 

Practical considerations 

When should researchers considering using a planned missing-data design in their experience-
sampling study? We see planned missing-data designs as being particularly valuable when 
researchers intend to collect several items to measure a dependent variable and then average 
across them. This is common in experience-sampling research, particularly research on affect, 
social behavior, and inner experience. Instead of simply averaging to form the outcome, 
researchers can use a matrix or anchor test design and use shorter questionnaires. But like any 
method, planned missing-data designs should be used when their trade-offs are favorable, not 
because they seem novel, fancy, or interesting. 

The primary payoff of these designs is space: Fewer items can be asked at each beep, so each 
daily-life survey will take less time. For example, consider a study with 20 items overall but only 
15 items per beep, a savings of five items. The savings in space can be spent in several ways. 
First, it can be spent on lower burden. Asking fewer questions per beep reduces the participants’ 
burden, which should lead to higher compliance rates. Deliberate nonresponse—ignoring the 
beeper, PDA, or phone—is a vexing source of missing data, and any simple methodological or 
procedural element that can boost response rates is worthwhile (Burgin et al., 2013). Simply 
keeping each survey short is its own virtue. 

Second, the saved space can be spent on asking additional constructs. Researchers could add five 
new items, thus asking 20 items per beep out of a 25-item protocol. The amount of time that 
participants spend completing a survey will thus be the same, but a wider range of constructs can 
be assessed. In this case, somewhat higher standard errors would be traded for the ability to 
measure and analyze more constructs. Our intuition is that this option capitalizes the most on the 
strengths of a planned missing-data approach. 

Third, the saved space can be spent on increasing the Level 1 sample size. As noted earlier, there 
is a tension between the number of items per beep and the number of beeps per day. Shorter 



questionnaires can be administered more often. Instead of asking 20 items six times daily, for 
example, researchers might ask 15 items eight times daily. This would increase the Level 1 
sample size, and thus power, all else being equal (Bolger et al., 2012). In some cases, having 
more Level 1 units will eliminate the effect of missing data on power. 

Finally, the saved space can be spent to offset other influences on administration time. Many 
technologies aid with collecting responses (Conner & Lehman, 2012), but some take more time 
than others. In our lab, we have compared text surveys given via Palm Pilots to interactive voice 
response surveys using participants’ own phones (Burgin et al., 2013). It took much less time to 
complete the same set of items on a Palm Pilot (around 55 s) than on a phone (around 158 s). In 
such cases, applying a planned missing design can reduce administration time, and thus 
presumably increase response rates. 

Beyond saving space, a smaller virtue of planned missing-data methods is the reduction of 
automatic responding. When people get the same items in the same order dozens of times, they 
tend to respond automatically and to “click through” the survey. Planned missing designs, by 
presenting different item sets at each beep, disrupt the development of response habits, which 
should increase data quality. 

We have focused on applying these designs to within-person constructs, but experience-sampling 
researchers could extend them to both levels of their multilevel designs. Planned missing-data 
designs are typically seen in cross-sectional designs, such as large-scale educational assessment 
(e.g., Willse et al.,2008) or psychological research in which time and resources are limited (e.g., 
Graham et al., 2006). For example, some Level 2 constructs might lend themselves to a matrix 
sampling or anchor test design. We should emphasize, of course, that planned missing-data 
designs involve a trade-off: Researchers are willing to accept higher standard errors in exchange 
for the ability to measure more things, thus allowing more questions to be asked in the same 
amount of time. We doubt that the trade-off usually favors planned missing designs for Level 2 
constructs of core interest to a research project, but we should note that in theory, nothing 
prevents implementing these designs at both model levels. 

Planning for power 

When considering a study that would include planned missing data, researchers can estimate the 
influence of different designs on power by conducting small-scale Monte Carlo simulations of 
their own. Missingness increases standard errors, and hence reduces power, but this reduction 
decreases when the Level 1 and Level 2 sample sizes increase. Researchers can run a handful of 
simulations, using data from their prior work or from other research as population values to 
understand how different designs and sample sizes would influence power for their particular 
study. Muthén and Muthén (2002) provided a user-friendly description of how to use simulations 
to estimate power in Mplus, and several recent chapters have illustrated applications specific to 
experience-sampling designs (Bolger & Laurenceau, 2013; Bolger et al., 2012). 



One virtue of using Monte Carlo methods to estimate power is that this can alleviate unrealistic 
fears of the effects of planned missing data. As the present simulations show, most of the 
influence of missing data is on standard errors, and this increase can be offset by higher Level 1 
and Level 2 sample sizes. A few simulations will show researchers the sample points at which 
power is acceptably high. 

Future directions 

An important direction for future work will be to test the effects of planned missing-data 
methods on participants’ behavior, such as response rates (e.g., number of surveys completed) 
and data quality (e.g., time taken to complete each survey, the reliability of the within-person 
constructs). Based on how experience-sampling researchers discuss the trade-offs between items-
per-beep and beeps-per-day, one would expect shorter surveys to foster higher compliance. But 
the methodological literature in experience sampling is surprisingly small, and only recently 
have studies examined the factors—such as technical and design factors, personal traits of the 
participants, and aspects of the daily environment—that predict response rates and data quality 
(Burgin et al., 2013; Conner & Reid, 2012; Courvoisier, Eid & Lischetzke,2012; Messiah, 
Grondin & Encrenaz, 2011; Burgin et al., 2013). 

Collecting data on how planned missing designs influence compliance would also afford a look 
at how multiple types of missingness behave. Experience-sampling research has extensive 
missing data at Level 1. Scores are typically missing at the beep level—for instance, someone 
does not respond to a phone call or PDA signal, causing all items to be missing—but they are 
occasionally missing at the item level—such as when someone skips an item or hangs up early. 
Planned missing-data designs yield observations that are missing completely at random: The 
available data are a representative random sample of the total observations, and the Monte Carlo 
simulations reported here reflect this mechanism. 

As McKnight et al. (2007) have pointed out, however, patterns of missingness in real data 
typically reflect several mechanisms. In an experience-sampling study, for example, some 
observations are missing completely at random (e.g., a technical failure in an IVR system or 
PDA that causes a missed signal), some are missing at random (e.g., people are less likely to 
respond earlier in the day, which can be modeled by using time as a predictor; Courvoisier et 
al., 2012), and some are missing not at random (e.g., in a study of substance use, polydrug users 
are probably less likely to respond while and after using drugs; Messiah et al., 2011). These 
mechanisms might interact in complex ways. For example, a planned missing-data design could 
reduce unplanned missingness by fostering higher compliance. Or, less favorably, when 
unplanned missingness is high, such as with volatile or low-functioning samples, the data could 
become sparse if planned missingness were added. In the absence of empirical guidance, 
researchers should take expected effective response rates into account when estimating power 
and include likely predictors of missingness in the statistical model (Courvoisier et al., 2012). 
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