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 Parameter estimation techniques such as an expectation-maximization (EM) 

algorithm have been used ubiquitously to estimate cognitive diagnosis models (CDM). 

The primary goal of this study was to utilize polytomous attributes in the polytomous log-

linear cognitive diagnosis model (P-LCDM-PA), which is a special case of the general 

polytomous diagnostic model (GPDM) for polytomous attributes. Then, due to 

exponentially increasing the number of latent classes, explore the feasibility and 

efficiency in addition to the quality of parameter estimation of the stochastic expectation-

maximization (SEM) and Metropolis-Hastings Robbins-Monro (MH-RM) algorithms 

relative to the EM algorithm.  

 The SEM and MH-RM algorithms may be more computationally advantageous 

over an EM algorithm when there exist many latent classes. As the number of measured 

attributes increases in a diagnostic assessment, the number of latent classes increases 

exponentially. The large number of classes is even more problematic when polytomous 

attribute levels are introduced in the diagnostic assessment. The large number of classes 

becomes computationally challenging when estimating a model using an EM algorithm 

because for each respondent, the probability of class membership is computed for every 

latent class. Simulation experiments were conducted examining item parameter recovery 

in the P-LCDM-PA, correct classification rates, and computational time between the 

three algorithms.
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CHAPTER I 

 

INTRODUCTION 

 

 

Definition of Key Terms in Parameter Estimation 

 

 This section aims to define some of the key terms commonly used in parameter 

estimation of cognitive diagnosis models (CDM), which are also sometimes referred to as 

diagnostic classification models. An important property within the framework of 

parameter estimation in CDM is conditional independence (Lord & Novick, 1968). 

Conditional independence states that the correlation between a set of item responses 

should be zero after the effect of the latent variables are conditioned out. The set of item 

responses should only be correlated through the latent variables that the test or survey is 

measuring.  Because responses to a set of items are assumed to be independent within 

each latent class, the property of conditional independence allows the estimation of 

item’s parameters to be done separately for each item.  

 Once the property of conditional independence is assumed, estimators such as the 

expectation-maximization (EM; Bock & Aitkin, 1981) algorithm can be used, which is 

often associated within the frequentist estimation framework. The EM algorithm is an 

iterative procedure that can be used to obtain maximum likelihood estimates of 

parameters associated with probabilistic models in the presence of unobserved latent 

variables (Baker & Kim, 2004). The algorithm consists of two steps; the expectation step 
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and the maximization step. The expectation step in the EM algorithm replaces the 

unknown latent classes with their corresponding expected values, given that the item

 parameters have been estimated in their previous iteration of the algorithm (Rupp, 

Templin, & Henson, 2010). The expectation step in the EM algorithm utilizes the 

probability that any given respondent has the potential of being classified within each 

latent class. The maximization step involves finding a set of item parameter estimates that 

maximizes the expected complete-data likelihood. Essentially, the algorithm calculates 

the maximum likelihood estimates for the incomplete-data problem (i.e., where class 

membership is not known) by utilizing the expected complete-data likelihood instead of 

the observed-data likelihood because the observed-data likelihood might be complicated 

or numerically impossible to maximize (a more detailed discussion of the algorithm will 

be provided in a later section). The algorithm assumes a population distribution or prior 

distribution for the latent variables. The prior distribution expresses what is known about 

the latent variable when the data has not been observed. The prior simplifies the 

estimation process in two ways. First, the focus shifts from some large number of latent 

variable parameters to just the parameters of the prior distribution. Second, by imposing a 

distributional form for the population, the latent variable parameters become temporarily 

“known” (i.e., forming complete-data) and can then be marginalized out of the estimation 

process to allow for estimating the item parameters of the model. 

 Alternatively, an estimator such as a Markov chain Monte Carlo (MCMC) 

algorithm can be used, which is often defined within the Bayesian estimation framework. 

Bayesian estimation focuses on determining a set of parameter values that maximizes the 
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joint posterior distribution of all parameters (Rupp, et al., 2010). The posterior 

distribution expresses what is known about model parameters once the data has been 

observed.  However, from a numerical standpoint, directly maximizing the joint posterior 

distribution of all parameters can be very difficult. MCMC algorithms have been 

proposed to circumvent this problem by sampling from the posterior distribution, rather 

than maximizing it (Junker, Patz & VanHoudnos, 2016). MCMC describes a family of 

algorithms for simulating data i.e., Monte Carlo simulation - using a statistical sequence 

of random draws that is known as a Markov chain. By constructing these steps in a 

particular way, it is possible to simulate values that are from a specific distribution, which 

is referred to as the stationary distribution. When draws of the MCMC are from a 

stationary distribution that chains are said to have converged (Patz & Junker, 1999; 

Junker, Patz & VanHoudnos, 2016). 

 Recently, Cai (2010a; 2010b) introduced a flexible framework for estimating 

parameters of statistical models by coupling two algorithms to formulate a joint 

estimation framework that addresses many of the less appealing features of strictly 

MCMC and maximum likelihood approaches (Chalmers & Flora, 2014). The Metropolis-

Hastings Robbins-Monro (MH-RM; Cai, 2010a, 2010b) algorithm, like MCMC 

estimation, jointly estimates both item and ability parameters by utilizing a stochastically 

imputed complete-data solution with some assumed population distribution for the latent 

variable to exploit on a more manageable complete-data likelihood approach. The 

stochastically imputed complete-data solution process means that once the latent 

variables are “known” via a stochastic imputation procedure, the complete-data solution 
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is formed, which constitutes the observed response data and the now imputed latent 

variables. The algorithm can be partitioned into three stages: perform burn-in iterations, 

collect a specified number of iterations for the model parameters and compute the 

average of this set for each model parameter, and then perform the MH-RM stage until 

the model coverages with a predetermined tolerance level (a more detailed discussion of 

the algorithm will be provided in a later section).  

 The burn-in iterations of the MH-RM utilize an algorithm known as the stochastic 

EM (SEM; Diebolt & Ip, 1994a, 1994b), which involves the following: “fill-in” the latent 

variable with a single draw from the posterior distribution, thus forming the complete-

data solution, then directly maximizing the complete-data likelihood to obtain a 

maximum likelihood estimate for the model parameters. Alternating between the 

stochastic imputation step and maximization step generates a Markov chain that 

coverages to a stationary distribution under mild conditions (Ip, 1994). 

Description of the Problem 

 Over the past several decades, research in educational and psychological 

assessment has led to the development of CDM which provides a latent profile defining 

absolute or partial mastery of a set of predefined attributes (Henson, Templin, & Willse, 

2009). Estimation of CDM is a very critical step in research and practice, like any 

statistical model, when it comes to making inferences about our population of interest. A 

popular estimation algorithm used to estimate CDM in both research and practice is the 

EM (Rupp, Templin, & Henson, 2010). However, there can be computation limitations to 

the EM. For example, if a diagnostic assessment is measuring 12 attributes, the number 
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of possible latent classes is 212 = 4,096. The estimation algorithm can be 

computationally intensive in the E-step because the posterior probability of every latent 

class is computed for each respondent for each step. Instead of using the EM, an MCMC 

algorithm can be implemented to estimate a diagnostic assessment measure 12 attributes. 

The MCMC also has its advantages such that it is relatively easy to implement and only 

requires defining the likelihood function of a CDM. However, there are limitations to 

using an MCMC because typically, many iterations are needed (i.e., 10,000) for the 

Markov chain to reach its stationary distribution, and it can be very difficult to assess the 

accuracy and evaluate convergence, even empirically (Sinharay, 2004). As an alternative 

to both the EM and MCMC, the SEM or MH-RM algorithms can be used to estimate 

CDM when there are many attributes present in a diagnostic assessment. Both algorithms 

have shown their usefulness in estimating high dimensional multidimensional item 

response theory (MIRT; Reckase, 1997) models. The S-step and M-step in the SEM has 

shown to generate a Markov chain that converges to its stationary distribution faster than 

the Markov chains produced by many MCMC algorithms (Diebolt & Ip, 1994a, 1994b), 

which are typically much longer. The MH-RM utilizes the SEM in the initial portion of 

the algorithm such that it moves the parameter quickly to the “neighborhood” of the MLE 

(Stage I and Stage II). From there, an RM update (Stage III) it used to update the 

parameters estimates until some set convergence criteria are met (Monroe & Cai, 2014). 

The advantage of SEM and MH-RM from a computational standpoint is that it couples 

the idea of a stochastic imputation process like MCMC estimation and also includes the 

maximization process used in the EM. However, when a lower number of dimensions (or 
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latent classes) is present, the EM can show to be computationally efficient over the SEM 

and MH-RM. When using CDM in application there are plenty of examples when the 

number attributes could be considered large. Table 1 below presents examples of various 

DCM studies that involved analyses of diagnostic assessments measuring many attributes 

(Sessoms & Henson, 2017). These are examples where the SEM and MH-RM may have 

provided usefulness over other algorithms. 

 

Table 1. Examples of Diagnostic Assessments Measuring many Attributes  

 

Source Number of Attributes Number of Items 

Im & Park (2010) 10 43 items 

Kim (2015) 10 30 items 

Choi, Lee, & Park (2015) 12 43 items 

Sen & Arican (2015) 13 31 items 

Syetina, Gorin, & Taksuoka 

(2011) 

15 28 items 

Lee, Park, & Taylan (2011) 15 25 items 

Chen, Ferron, Thompson, Gorin, 

& Tatsuoka (2010) 

23 162 items 

Chen (2012) 23 23 items 

 

 

In addition to the number of attributes, the number of latent classes increases even further 

when polytomous attributes are used in a diagnostic assessment. Specifically, when using 

polytomous attributes, the number of latent classes used during the E-step is no longer 

computed as 2𝐾, where 𝐾 represent the number of attributes measured in the diagnostic 

assessment.  Instead the possible latent classes in the E-step, the computation is over 

∏ 𝑆𝑘
𝐾
𝑘=1  possible latent classes where 𝑆𝑘 represents the total number of polytomous 

attribute levels for the 𝑘𝑡ℎ attribute. For example, if a diagnostic assessment measures six 

attributes with each attribute consisting of four polytomous skill levels, the total possible 
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latent classes are 46 = 4,096. This example provides motivation for the need of more 

efficient estimation algorithms such as the SEM and MH-RM in diagnostic measurement 

with polytomous attribute levels. Table 2 provides an example of math-based content 

items taken from Chen & de la Torre (2013) that utilizes polytomous attribute levels. 

Assuming the math items are open ended questions (i.e., not multiple-choice items with 

0/1 score categories), scoring of the math items such as these could include; 0 = incorrect, 

1 = partial credit, or 2 = correct. 

 

  Table 2. Polytomous Attributes in an Eight-Grade Proportional Reasoning Assessment 

 

 
 

 

Purpose of Study 

 The primary goal of this study was to utilize the polytomous log-linear cognitive 

diagnosis model (P-LCDM; Hansen, 2013) for polytomous attributes (PA) i.e., P-LCDM-

PA, which is a special case of the general polytomous diagnostic model (GPDM; Chen & 

de la Torre, 2018) for polytomous attributes. Then, due to the potential of exponentially 

increasing the number of latent classes, explore the feasibility and efficiency in addition 

to the quality of parameter estimation of the SEM and MH-RM algorithms relative to the 
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EM algorithm. In general, the EM algorithm and MCMC-based algorithms have been 

commonly used to estimate the parameters of various CDM in both research and practice. 

The SEM and MH-RM are two algorithms that have been used to estimate other 

multidimensional models (e.g., refer to Diebolt & Ip, 1994a, 1994b; Cai, 2010a, 2010b; 

Monroe & Cai, 2014) but have never been implemented for estimating CDM. The 

advantage of these two algorithms over EM and MCMC are that they have shown to be 

computationally more efficient when estimating MIRT models and even more so as the 

number of dimensions in the MIRT increase. The efficiency is because as the number of 

latent dimensions increase, algorithms become computationally slow in the EM. For an 

MCMC, the issue is that such a large number of iterations is needed (e.g., 10,000) to 

obtain convergence (Sinharay, 2004; Patz & Junker, 1999; Junker, Patz & VanHoudnos, 

2016). In addition, it can be very difficult to assess accuracy and evaluate convergence, 

even empirically resulting in more iterations. The SEM and MH-RM circumvent these 

issues presented in the EM and MCMC. In the context of CDM, the efficiency of an EM 

algorithm largely depends on the number of latent classes.  In application the number of 

latent classes can be large because of the number of attributes that are being measured by 

an instrument.  For example, a cognitive diagnostic assessment that measures 10 

attributes will have a total of 1,024 latent classes. The computation can be 

computationally expensive in the EM. In contrast an MCMC does not directly compute 

this probability at each step, however, as was discussed previously, the number of steps 

often renders a MCMC algorithm inefficient with respect to time and computation power.  

Because of these issues it is believed that the use of SEM and MH-RM can provide 
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improved efficiency with respect to computation time and power in the context of the 

CDM estimation framework.  The improved time efficiency will ultimately increase the 

feasibility of using diagnostic models in application.   

Research Questions 

 With respect to the comparison of SEM and MH-RM to the EM algorithm, the 

three research questions motivating this study are: 

1) To what extent does the SEM and MH-RM algorithms show to be 

computationally faster over the EM algorithm as the number of latent classes 

increases? 

2) How accurately are the item parameters of the P-LCDM-PA submodels estimated 

when comparing the SEM, MH-RM, and EM algorithms for estimation? 

3) How accurately are examinees attributes (and attribute patterns) estimated when 

using the SEM, MH-RM, and EM algorithms to estimate the P-LCDM-PA 

submodels? 

Organization of Study 

 Chapter II is divided into two main sections including a discussion of current 

CDM used for handling various types of data and attribute structures and a discussion of 

various types of estimation algorithms that can be used for estimating CDM.  Chapter III 

discusses the functional relationship between the P-LCDM-PA and various traditional 

CDM, model assumptions, and derivation of the observed and complete-data likelihood 

functions for the P-LCDM-PA. Simulation experiments are also conducted to answer the 

research questions provided in the previous section.
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CHAPTER II 

 

REVIEW OF THE LITERATURE 

 

 

Background 

 Over the past several decades, research in educational and psychological 

assessment has led to the development of statistical models that provide a latent profile 

defining absolute mastery or partial mastery of a set of predefined attributes (Rupp et al., 

2010; Henson, Templin, & Willse, 2009). This set of statistical models are commonly 

call cognitive diagnosis models (CDM) aka diagnostic classification models (DCM). 

Given these latent profiles, the conditional probability of a response to a set of items is 

defined as a function of absolute mastery or partial mastery of the attributes that are 

measured by those items. CDM rely on multiple latent variables to classify respondents, 

thus, by definition, can be categorized as multidimensional models (Rupp, et al., 2010). 

Other statistical models such as MIRT contain continuous latent variables that can lead to 

a continuous multidimensional profile, while CDM contain categorical latent variables 

that lead to a discrete multidimensional profile based on statistical classifications. 

Typically, these types of classifications are commonly used in reporting mechanisms in 

diagnostic settings e.g., clinical diagnosis (e.g., refer to Templin & Henson, 2006; Jaeger, 

Tatsuoka, & Berns, 2003; Millon, Millon, Davis, & Grossman, 2006).  

 Another comparison between MIRT and CDM is the definitional grain size of the 

constructs and associated response processes that can be investigated (Rupp, et al., 2010). 



11 

The focus of the separate dimensions in a MIRT is typically on how different and how 

broadly defined the constructs relate to one another. However, the latent variables in a 

CDM can represent attributes that are components of a single more narrowly defined 

construct. For example, the latent variables in a CDM may represent different arithmetic 

operations that must be performed by respondents to solve addition, subtraction, 

multiplication, or division problems on a diagnostic measure. These attributes can be a 

set of more narrowly defined constructs as opposed to one general construct thought to be 

basic arithmetic ability.  

 The majority of CDM are classified as confirmatory in nature based on two 

perspectives (Rupp, et al., 2010): (1) a substantive perspective of use and (2) a statistical 

perspective of model structure. Looking from a substantive perspective of use, CDM are 

used to confirm or refute a hypothesis related to the relationship between how certain 

respondents answer to items and their underlying cognitive characteristics.  In the context 

of diagnostic assessments, CDM could be used to test various hypotheses about a set of 

cognitive attributes that respondents draw on when responding to items on the diagnostic 

assessment. Looking from the statistical perspective of the modeling structure, CDM are 

of a confirmatory nature because they typically require a loading structure to be specified 

a-priori in the form of what’s referred to as a Q matrix (Tatsuoka, 1983). The 

specification of loadings from the Q matrix are like confirmatory MIRT models such that 

certain factor loadings are fixed at 0 and thus the abilities of those dimensions do not 

influence that items response (i.e., the item does not measure that ability). The Q matrix 
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can be represented as a 𝐽 × 𝐾 matrix of dichotomous (e.g., 0/1) or polytomous (e.g., 

0/1/2/3) elements that specifies which attributes are measured by each item:  

 

𝑸[𝐽×𝐾] = (

𝑞11 ⋯ 𝑞1𝐾
⋮ ⋱ ⋮
𝑞𝐽1 ⋯ 𝑞𝐽𝐾

) . (2.1) 

 

Here, 𝐽 represents the number of items in the diagnostic assessment and 𝐾 represents the 

number of attributes measured by the diagnostic assessment. For dichotomous Q 

matrices, a value of 1 indicates that the respondent must have mastery of that attribute to 

have a high conditional probability of response to an item, while a value of 0 in the Q 

matrix indicates that mastery of the attribute is not related to the conditional probability 

of response to an item (i.e., the item does not measure that attribute). For polytomous Q 

matrices, values greater than 0 indicate that the respondent must have that level of 

mastery or higher for that attribute to have a high conditional probability of response to 

an item, while a value of 0 follows the same definition of the dichotomous Q matrix. An 

important advantage of CDM is that they can unfold their theoretical potential for 

complex loading structures where each item can load on multiple attributes. The 

probability of a correct response depends on several attributes as opposed to absolute 

mastery or partial mastery of only a single attribute. This type of loading structure has 

been referred to a within-item multidimensionality in contrast to between-item 

multidimensionality in the case for simple loading structures (Rupp et al., 2010). Within 

the CDM literature, specific models make different assumptions with respect to how the 



13 

attributes interact to result in the conditional probability of a response.  In general, these 

models can be classified into two groups: noncompensatory and compensatory models. 

Basic Cognitive Diagnosis Models 

Noncompensatory Models 

 Noncompensatory CDM reflect the assumption that a deficit in one latent variable 

cannot be compensated for by a surplus in a different latent variable (Rupp, et al., 2010). 

The noncompensatory relationship can usually be expressed mathematically, as a 

sequence of products such that the deficit of one latent variable defines a maximum 

probability that cannot be surpassed regardless of mastery of other required attributes. 

The noncompensatory CDM are defined such that the conditional relationship between 

any attribute and an item’s response depends on the remaining required attributes that 

have been mastered or not mastered (Henson, et al., 2009). Due to the nature of this 

dependency, noncompensatory CDM can be also be referred to as conjunctive models. 

Conjunctive models are defined as a set of models for which the respondent cannot 

“make-up” for non-mastery of required attributes by mastery of other required attributes 

(Rupp et al., 2010). To have a high conditional probability of a correct response for an 

item that is classified under the assumption of a conjunctive model, a respondent must 

master all required attributes for that items.  

 The deterministic input noisy “and” gate (DINA; Haertel, 1989; Junker & 

Sijtsma, 2001; de la Torre & Douglas, 2004) model is among one of the simplest 

conjunctive models. The model utilizes the conjunctive condensation rule, which from 

the deterministic perspective, states that a respondent needs to have mastered all required 
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attributes for an item to have a high probability of obtaining a correct response. 

Additionally, the model separates respondents into two groups where one group includes 

those who have mastered all attributes measured by the item and the other includes all 

other examinees (i.e., those lacking mastery on at least one attribute measure by the 

item). Let 𝚫𝑗 = (𝑠𝑗 , 𝑔𝑗) be a collection of parameters for the 𝑗𝑡ℎ item. The conditional 

probability of a correct response for the 𝑖𝑡ℎ respondent on the 𝑗𝑡ℎ item under the DINA is 

defined by 

 

𝑃(𝑋𝑖𝑗 = 1|𝚫𝑗 , 𝜉𝑖𝑗) = (1 − 𝑠𝑗)
𝜉𝑖𝑗
𝑔(1−𝜉𝑖𝑗) (2.2) 

 

where the latent variable 𝜉𝑖𝑗 ∈ {0,1} defines whether the 𝑖𝑡ℎ respondent has mastered 

(𝜉𝑖𝑗 = 1) or not mastered (𝜉𝑖𝑗 = 0) all required attributes for the 𝑗𝑡ℎ item. This latent 

variable, 𝜉𝑖𝑗 , is referred to as the deterministic input portion of the model. The 

conjunctive kernel that creates 𝜉𝑖𝑗 is refered to as the and-gate because it functions like 

an output summary based on information about the respondent and item (Rupp, et al., 

2010). This parameter is defined as 

 

𝜉𝑖𝑗 =∏𝛼
𝑖𝑘

𝑞𝑗𝑘

𝐾

𝑘=1

. (2.3) 

 

If the 𝑖𝑡ℎ item does not measure mastery of the 𝑘𝑡ℎ attribute, then 𝑞𝑗𝑘 = 0. If the  𝑖𝑡ℎ item 

does measure the 𝑘𝑡ℎ attribute, then 𝑞𝑗𝑘 = 1. Because the product is defined over all 

possible attributes, 𝜉𝑖𝑗 = 1 only occurs when all product terms are equal to 1. The 𝜉𝑖𝑗 = 1 
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indicates the 𝑖𝑡ℎ respondent had mastered all required attributes for the 𝑗𝑡ℎ item.  The slip 

parameter 𝑠𝑗 in the model is defined as the conditional probability of an incorrect 

response for the 𝑗𝑡ℎ item given the 𝑖𝑡ℎ respondent has mastered all required attributes for 

that item. The guess parameter 𝑔𝑗 in the model is defined as the conditional probability of 

a correct response for the 𝑗𝑡ℎ item given the 𝑖𝑡ℎ respondent has not mastered all required 

attributes for that item. The 𝑠𝑗 and 𝑔𝑗 are both expressed as 

 

𝑠𝑗 = 𝑃(𝑋𝑖𝑗 = 0|𝜉𝑖𝑗 = 1) (2.4) 

 

and 

 

𝑔𝑗 = 𝑃(𝑋𝑖𝑗 = 1|𝜉𝑖𝑗 = 0). (2.5) 

 

When the chances of slipping and guessing are known and when 𝜉𝑖𝑗 is known, the 

conditional probability of a correct response can be computed. An assumption in CDM is 

monotonicity which is defined as the property such that given any respondent that masters 

additional skills their conditional probability of a response must be equal to or greater 

than the conditional probability of a response prior to learning the additional set of skills. 

The assumption of monotonicity under the DINA is defined as (1 − 𝑠𝑗) > 𝑔𝑗. As a result, 

a respondent who has mastered all required attributes (𝜉𝑖𝑗 = 1) for an item must have a 

higher conditional probability of responding correctly to that item compared to a 

respondent who has not mastered all required attributes (𝜉𝑖𝑗 = 0) for that item. 

Furthermore, the conditional probability of a correct response is only expected to be high 
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when all required attributes have been mastered i.e. (1 − 𝑠𝑗) component of the model. If 

a subset of attributes has been mastered, the conditional probability of a correct response 

is expected to be low i.e., the 𝑔𝑗 component of the model. 

 One possible limitation of the DINA is that sometimes it is over restrictive in the 

assumption that all respondents lacking at least one required attribute have the same 

conditional probability of a correct response. A conjunctive model that does not make 

this restrictive assumption is a reduced version of the reparametrized unified model 

(RUM, Hartz, 2002). Let 𝚫𝑗 = (𝜋𝑗
∗, 𝑟𝑗𝑘

∗ , … , 𝑟𝑗𝐾
∗ ) be a collection of parameters for the 𝑗𝑡ℎ 

item. The conditional probability of a correct response for the 𝑖𝑡ℎ respondent on the 𝑗𝑡ℎ 

item under the reduced RUM (R-RUM; DiBello, Stout, Roussos, 1995; Hartz, 2002) is 

defined by 

 

𝑃(𝑋𝑖𝑗 = 1|𝚫𝑗 , 𝜶𝑖) = 𝜋𝑗
∗∏𝑟𝑗𝑘

∗ 𝑞𝑗𝑘(1−𝛼𝑖𝑘)

𝐾

𝑘=1

(2.6) 

 

where 𝜋𝑗
∗ is the conditional probability of a correct response when the 𝑖𝑡ℎ respondent has 

mastered all required attributes for the 𝑗𝑡ℎ item, 

 

𝜋𝑗
∗ = 𝑃(𝑋𝑖𝑗 = 1|𝜶𝑖

𝑇𝒒𝑗 = 𝒒𝑗
𝑇𝒒𝑗) (2.7) 

 

otherwise a penalty parameter is imposed 𝑟𝑗𝑘
∗  for every required attribute not mastered for 

that item. The 𝑟𝑗𝑘
∗  penalty parameters indicate the proportional amount that the 

conditional probability of a correct response is reduced for each required attribute not 
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mastered. This pentalty is constrained such that 0 < 𝑟𝑗𝑘
∗ < 1. The formulation in Equation 

(2.6) states that the 𝑖𝑡ℎ respondent has a baseline conditional probability of 𝜋𝑗
∗ for 

responding correctly to the 𝑗𝑡ℎ item. The expression 𝑟𝑗𝑘
∗ 𝑞𝑗𝑘(1−𝛼𝑖𝑘) following the product 

term denotes the influence of measured attributes that have not been mastered for the 𝑖𝑡ℎ 

respondent. Large values of 𝑟𝑗𝑘
∗  mean that the attribute minimally impacts the conditional 

probability of a correct response, while small values of  𝑟𝑗𝑘
∗  mean that the attribute 

dramatically impacts the conditional probability of a correct response. Note that there is 

no penalty on the conditional probability of a correct response when 𝑞𝑗𝑘 = 0. However, 

when 𝑞𝑗𝑘 = 1 the 𝑖𝑡ℎ respondent’s conditional probability of a correct response for the 

𝑗𝑡ℎ item is reduced when 𝛼𝑖𝑘 = 0 and remains unchanged when 𝛼𝑖𝑘 = 1. 

Compensatory Models 

 Compensatory CDM are defined such that the conditional association of any 

required attribute and an item does not depend on mastery of any other required attributes 

(Henson et. al., 2009; Rupp, et al., 2010). Thus, the increase in the conditional probability 

of a correct response when comparing masters to non-masters is constant across all other 

levels of mastery and non-mastery of the other measured attributes. Compensatory CDM 

have sometimes be referred to as disjunctive models. Disjunctive models are defined as a 

set of models for which the respondent can master a subset of required attributes for an 

item and still have a high conditional probability of correctly responding (Rupp et al., 

2010). Note that while disjunctive models can be thought of compensatory, they do not 

satisfy the definition suggested by Henson et al. (2009) and Rupp et al. (2010). 
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The deterministic input noisy “or” gate (DINO; Templin & Henson, 2006; 

Templin, 2006) model is the compensatory analog to the DINA model. The DINO is 

classified as a disjunctive model, which assumes that mastery of any additional attributes 

provides little or no improvement in the conditional probability of a correct response over 

mastery of a single item measured attribute. Specifically, the DINO model separates 

respondents into two groups including those who have mastered at least one of the 

measured attributes and those who have not mastered any of the measured attributes. Like 

the DINA, slipping and guessing parameters are modeled for each item. Let 𝚫𝑗 = (𝑠𝑗, 𝑔𝑗) 

be a collection of parameters for the 𝑗𝑡ℎ item. The conditional probability of a correct 

response for the 𝑖𝑡ℎ respondent on the 𝑗𝑡ℎ item is defined by 

 

𝑃(𝑋𝑖𝑗 = 1|𝚫𝑗 , 𝜔𝑖𝑗) = (1 − 𝑠𝑗)
𝜔𝑖𝑗
𝑔(1−𝜔𝑖𝑗) (2.8) 

 

 

where the latent variable 𝜔𝑖𝑗 ∈ {0,1} defines whether the 𝑖𝑡ℎ respondent has mastered at 

least one of the required attributes (𝜔𝑖𝑗 = 1) or not mastered any required attributes 

(𝜔𝑖𝑗 = 0)  for the 𝑗𝑡ℎ item. This component, 𝜔𝑖𝑗, is referred to as the deterministic input 

portion of the model. The disjunctive kernel that creates 𝜔𝑖𝑗 is referred to as the or-gate 

because it utilizes the disjunctive condensation rule that indicates whether or not at least 

one measured attribute is present and can be expressed as 

 

𝜔𝑖𝑗 = 1 −∏(1 − 𝛼𝑖𝑘)
𝑞𝑗𝑘

𝐾

𝑘=1

(2.9) 
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If the 𝑖𝑡ℎ item does not require mastery of the 𝑘𝑡ℎ attribute, 𝑞𝑗𝑘 = 0, then whether a 

respondent has an 𝛼𝑖𝑘 = 0 or 𝛼𝑖𝑘 = 1 does not matter. However, if  𝑖𝑡ℎ item does require 

mastery of the 𝑘𝑡ℎ attribute, 𝑞𝑗𝑘 = 1, then whether a respondent has an 𝛼𝑖𝑘 = 0 or 𝛼𝑖𝑘 =

1 does help identify group membership. Because the product is defined over all 

attributes, 𝜔𝑖𝑗 = 1 only occurs when the product term is 0. An 𝛼𝑖𝑘 = 1 for at least one 

measured attribute must be present for the 𝑖𝑡ℎ respondent to have a high conditional 

probability of a correct response. Thus, mastery of any measured attribute for an item can 

compensate for not mastering any of the other measured attributes for that item. The slip 

parameter 𝑠𝑗 in the model is defined as the conditional probability of an incorrect 

response for the 𝑗𝑡ℎ item given the 𝑖𝑡ℎ respondent has mastered at least one required 

attribute for that item.  The guess parameter 𝑔𝑗 in the model is defined as the conditional 

probability of correct response for the 𝑗𝑡ℎ item given the 𝑖𝑡ℎ respondent has not mastered 

any measured attributes for that item. The 𝑠𝑗 and 𝑔𝑗 are both expressed similar to the 

DINA, but are conditional on 𝜔𝑖𝑗 and thus are  

 

𝑠𝑗 = 𝑃(𝑋𝑖𝑗 = 0|𝜔𝑖𝑗 = 1) (2.10) 

 

and 

 

𝑔𝑗 = 𝑃(𝑋𝑖𝑗 = 1|𝜔𝑖𝑗 = 0). (2.11) 

 

When the chances of slipping and guessing are known and when 𝜔𝑖𝑗 is known, the 

conditional probability of a correct response can be computed. The assumption of 



20 

monotonicity under the DINO is defined as (1 − 𝑠𝑗) > 𝑔𝑗. Thus, a respondent who has at 

least one measured attribute (𝜔𝑖𝑗 = 1) for an item must have a higher conditional 

probability of responding correctly to that item compared to a respondent who has not 

mastered any measured attributes (𝜔𝑖𝑗 = 0) for that item. The conditional probability of 

a correct response is expected to be high when at least one required attribute has been 

mastered. If no attributes have been mastered, the conditional probability of a correct 

response is expected to be low. 

  The compensatory reparametrized unified model (C-RUM; Hartz, 2002) model is 

among one of the simplest compensatory CDM. There are two different types of item 

parameter components defined in the model including and intercept parameter, 𝜆𝑗,(0) for 

the 𝑗𝑡ℎ item where −∞ < 𝜆𝑗,(0) < ∞ and a set of slope parameters 𝝀𝑗 = (𝜆𝑗1, … , 𝜆𝑗𝐾) for 

each required attribute for the 𝑗𝑡ℎ item such that 0 < 𝝀𝑗 < ∞. The intercept and slope 

parameters are combined to form the kernel function of the model such that 

 

𝑘𝑒𝑟𝑛𝑒𝑙 = −𝜆𝑗,(0) − 𝝀𝑗ℎ(𝜶𝑖 , 𝒒𝑗) (2.12) 

 

In Equation (2.12) the function ℎ(𝜶𝑖, 𝒒𝑗) is a mapping function that defines the linear 

combination of 𝜶𝑖 and 𝒒𝑗 such that, for the compensatory RUM,  

 

ℎ(𝜶𝑖 , 𝒒𝑗) = 𝛼𝑖1𝑞𝑗1 +⋯+ 𝛼𝑖𝑘𝑞𝑗𝑘 +⋯+ 𝛼𝑖𝐾𝑞𝑗𝐾 . (2.13) 
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Let 𝚫𝑗 = (𝝀𝑗 , 𝜆𝑗,(0)) be a collection of parameters for the 𝑗𝑡ℎ item. Once the kernel 

element has been defined, the C-RUM is defined such that the conditional probability of 

a correct response for the 𝑖𝑡ℎ respondent on the 𝑗𝑡ℎ item is 

 

𝑃(𝑋𝑖𝑗 = 1|𝚫𝑗, 𝜶𝑖) =
1

1 + 𝐸𝑥𝑝[−𝜆𝑗,(0) − 𝝀𝑗ℎ(𝜶𝑖, 𝒒𝑗)]
. (2.14) 

 

For the C-RUM, the lowest conditional probability of a correct response is defined as a 

function of 𝜆𝑗,(0) which is similar to a guessing parameter but on a different scale. The 

conditional probability of a correct response is increased for every measured attribute of 

that item that is mastered, which is defined by 𝝀𝑗 . Thus, the relationship between any 

attribute and item performance, as defined by expected change in log-odds, is not 

conditional on the remaining measured attributes for an item. 

Advanced Cognitive Diagnosis Models  

Background 

 The CDM discussed in the previous sections have certain adherent limitations that 

can inhibit the ability to extract a larger amount diagnostic information from an 

assessment. Specifically, these models are also only limited to dichotomous response data 

including multiple-choice diagnostic assessments that are scored as either right or wrong. 

These basic models essentially limit the possible applications of CDM when 

psychometricians are wanting to analyze either ordinal or nominal response items. Within 

the last several years, research has led to the development of more advanced CDM that 

allowed for more flexibility in handling different types of response data. These advanced 
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models also allow for larger extractions of diagnostic information from an assessment 

that would otherwise be ignored by less complex models. The advanced models 

discussed in the following sections have the capabilities of handling various types of 

response data including ordinal and nominal responses and allow for the generalization of 

ordinal attribute levels that go beyond the prototypical definitions of mastery and non-

mastery ubiquitously discussed in the CDM literature. These advanced models also 

utilize the same definitional structure of compensatory and noncompensatory previously 

discussed. Table 2 provides a classification summary of the various models used in 

diagnostic measurement. This classification is based on whether the models are defined 

as compensatory/noncompensatory or have the capabilities of handling 

polytomous/dichotomous manifest response variables or latent predictor variables. 

Looking at Table 3, models such as the log-linear cognitive diagnosis model (LCDM; 

e.g., Henson, et al., 2009) and generalized deterministic input noisy “and” gate (G-

DINA; e.g., de la Torre, 2011) model are both defined as 

compensatory/noncompensatory and have the capabilities of handing both dichotomous/ 

polytomous manifest response variables and latent predictor variables. The general 

diagnostic model (GDM; e.g., von Davier, 2005) is a compensatory model that has the 

capabilities of handing both dichotomous/ polytomous manifest response variables and 

latent predictor variables. The compensatory/noncompensatory general diagnostic 

classification model for multiple-choice (GDCM-MC; e.g., Dibello, Henson, &, Stout, 

2015) option-based scoring and the noncompensatory multiple-choice deterministic input 
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noisy “and” gate (MC-DINA; e.g., de la Torre, 2009) are both models that allow for 

dichotomous latent predictor variables and polytomous manifest response variables 

 

Table 3. Classifications of Various CDM  

 

  Latent Predictor Variables  

Manifest 

Response 

Variables 

 Dichotomous Polytomous Model Type 

Dichotomous 

  

Noncompensatory 

LCDM DINA 

G-DINA LCDM 

R-RUM G-DINA 

DINA R-RUM 

GDM GDM 

Compensatory 

C-RUM DINO 

LCDM C-RUM 

DINO LCDM 

G-DINA G-DINA 

Polytomous 

  

Noncompensatory 

GDCM-MC  

MC-DINA  

G-DINA LCDM 

LCDM G-DINA 

  

Compensatory 

GDCM-MC  

GDM GDM 

G-DINA LCDM 

LCDM G-DINA 

Note. LCDM = log-linear cognitive diagnosis model; G-DINA = generalized 

deterministic input noisy “and” gate; GDM = general diagnostic model; GDCM-

MC = general diagnostic classification model for multiple-choice; MC-DINA = 

multiple-choice deterministic input noisy “and” gate 

 

 

General Diagnostic Model  

 The general diagnostic model (GDM; von Davier, 2005, 2008; von Davier & 

Yamamoto, 2004) provides a generalized framework for the development of cognitive 

diagnostic models. In the item response modeling framework, the conditional probability 
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of a response to the 𝑥𝑡ℎ category where 𝑋𝑖𝑗 ∈ {0,1, … ,𝑚𝑗} for the 𝑖𝑡ℎ respondent on the 

𝑗𝑡ℎ item is defined by 

 

𝑃(𝑋𝑖𝑗 = 𝑥|𝝀𝑥𝑗 , 𝒒𝑗 , 𝜽𝑖) =
exp[𝑓(𝝀𝑥𝑗 , 𝒒𝑗 , 𝜽𝑖)]

1 + ∑ exp[𝑓(𝝀𝑦𝑗 , 𝒒𝑗 , 𝜽𝑖)]
𝑚𝑗
𝑦=1

(2.15) 

 

where 𝝀𝑥𝑗 represents a collection of item parameters such that 𝝀𝑥𝑗 = (𝛾𝑥𝑗, 𝛽𝑥𝑗), 𝒒𝑗 

represents the Q vector for the 𝑗𝑡ℎ item such that 𝒒𝑗 = (𝑞𝑗1, … , 𝑞𝑗𝑘, … , 𝑞𝑗𝐾) , and 𝜽𝑖 

represents the vector of continuous, binary, or ordinal skills for the 𝑖𝑡ℎ respondent such 

that 𝜽𝑖 = (𝛼𝑖1, … , 𝛼𝑖𝑘 , … , 𝛼𝑖𝐾). The item parameters 𝛾𝑥𝑗 and 𝛽𝑥𝑗 represent the slope and 

intercept parameters, respectively, for the 𝑗𝑡ℎ item. Given a nonzero Q matrix element, 

𝛾𝑥𝑗 in 𝑓(. ) determines how much the attributes in 𝜽𝑖 contribute to the conditional 

response probabilities for the 𝑗𝑡ℎ item. The mathematical formulation of the model was 

utilized as a basis for numerous developments such as the LCDM (Henson et al. 2009; 

Rupp et al., 2010) for binary skill attributes and dichotomous response data, and the 

linear or partial-credit GDM (pGDM; von Davier, 2005, 2008) for binary and ordinal 

attributes and dichotomous and polytomous response data. The conditional probability of 

a response to the 𝑥𝑡ℎ category where again 𝑋𝑖𝑗 ∈ {0,1, … ,𝑚𝑗} for the 𝑖𝑡ℎ respondent on 

the 𝑗𝑡ℎ item under the pGDM is defined by 

 

𝑃(𝑋𝑖𝑗 = 𝑥|𝝀𝑥𝑗 , 𝒒𝑗 , 𝜶𝑖) =
exp[𝛽𝑥𝑗 + ∑ 𝑥𝛾𝑗𝑘ℎ(𝒒𝑗 , 𝜶𝑖)

𝐾
𝑘=1 ]

1 + ∑ exp[𝛽𝑦𝑗 + ∑ 𝑦𝛾𝑗𝑘ℎ(𝒒𝑗 , 𝜶𝑖)
𝐾
𝑘=1 ]

𝑚𝑗
𝑦=1

(2.16) 
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where 𝜶𝑖 = (𝛼𝑖1, … , 𝛼𝑖𝑘, … , 𝛼𝑖𝐾) is a discrete 𝑘-dimensional skill vector that harbors 

binary or ordinal elements and ℎ(𝒒𝑗 , 𝜶𝑖) is the mapping function used to specify the 

linear combination of 𝜶𝑖 and 𝒒𝑗 where 

 

ℎ(𝒒𝑗 , 𝜶𝑖) = (𝑞𝑗1𝛼𝑖1, … , 𝑞𝑗𝑘𝛼𝑖𝑘, … , 𝑞𝑗𝐾𝛼𝑖𝐾) (2.17) 

 

so that the 𝑘𝑡ℎ element of ℎ is specified as ℎ𝑘(𝑞𝑗, 𝛼𝑖) = 𝑞𝑗𝑘𝛼𝑖𝑘. When 𝑞𝑗𝑘 is defined as 

0/1, this is equivalent to 

 

ℎ𝑘(𝑞𝑗 , 𝛼𝑖) = {
𝛼𝑘, 𝑖𝑓 𝑞𝑗𝑘 = 1

0, 𝑒𝑙𝑠𝑒
(2.18) 

 

such that only the 𝑘 skills with nonzero Q matrix elements 𝑞𝑗𝑘 contributes to the 

conditional response probabilities for the 𝑖𝑡ℎ respondent on the 𝑗𝑡ℎ item.  If 𝑞𝑗𝑘 = 1 then 

the total contribution of 𝛾𝑗𝑘ℎ𝑘(𝑞𝑗, 𝛼𝑖) = 𝛾𝑗𝑘𝛼𝑖𝑘 in the kernel, else if 𝑞𝑗𝑘 = 0 no 

contribution is made in the kernel. The imposed definition in Equation (2.18) is 

appropriate for Q matrices with 0/1 elements in correspondence with various discrete 

skill level selections such as 𝛼𝑖𝑘 ∈ {−𝑚,… ,0, … ,𝑚} or dichotomies like 𝛼𝑖𝑘 ∈ {0,1}. 

However, the choice of the mapping function ℎ(. ) does not work well with Q matrices 

that have elements other than 0/1. This choice of the mapping function is particularly 

important if the 𝛾𝑗𝑘 are to be estimated in the pGDM. In the cases with integer or real-

valued Q matrices a useful choice for the mapping function ℎ is 

 

ℎ𝑘(𝑞𝑗, 𝛼𝑖) = min(𝑞𝑗𝑘, 𝛼𝑖𝑘) (2.19) 
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∀𝑘 = 1,… , 𝐾 

 

where 𝑞𝑗𝑘 = 0, 1, 2, … ,𝑚 in correspondence with skill level 𝛼𝑖𝑘 ∈ {0, 1, 2, … ,𝑚}. This 

notation is consistent with the definition in Equation (2.18) when 𝑞𝑗𝑘 is 0/1 and 𝛼𝑖𝑘 ∈

{0,1} but differentiates in cases using arbitrary skill levels for 𝑞𝑗𝑘 and 𝛼𝒊𝒌 elements. The 

purpose of choosing the minimum of  𝑞𝑗𝑘 and 𝛼𝒊𝒌 is that the pGDM may be used for skill 

assessments where Q matrix elements represent a sufficient level for the 𝑘𝑡ℎ skill on the 

𝑗𝑡ℎ item. A higher skill level than 𝑞𝑗𝑘 will not increase the conditional probability of 

response to the 𝑗𝑡ℎ item. However, a skill level lower than 𝑞𝑗𝑘 decreases the conditional 

probability of a response to the 𝑗𝑡ℎ item. 

 The choice of ℎ(𝒒𝑗 , 𝜶𝑖) in correspondence with Q matrices containing 0/1 

elements leads to a model that retains many components of well-known IRT models 

while generalizing these models to diagnostic applications with multivariate latent skills. 

In addition, the slope parameter of the model is subject to the constraint 𝛾𝑥𝑗𝑘 = 𝑥𝛾𝑗𝑘 such 

that the resulting instance is a GDM for dichotomous and polytomous pGDM. The 

discrete scores 𝛼𝑘 are determined before estimation of the model and can be specified by 

the user. These discrete scores are used to assign real numbers to the discrete skill levels. 

Assuming the number of skill levels is 𝑠𝑘 = 2 possible choices of dichotomous skill 

levels could be 𝛼𝑖𝑘 ∈ {−1, 1} or 𝛼𝑖𝑘 ∈ {−.5, .5}. Generalizing this concept to polytomous, 

ordinal skill levels with the number of levels being 𝑠𝑘 = 𝑚 + 1 while determining the 

levels can be specified as 𝛼𝑖𝑘 ∈ {(0 − 𝑧), (1 − 𝑧), … , (𝑚 − 𝑧)} where 𝑧 =
𝑚

2
. If 𝐾 = 1 

and 𝑠𝑘 = 61 such that 𝛼𝑖𝑘 ∈ {−4,… ,0, … 4} i.e., 𝛼 is treated as a continuous latent 
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variable, the pGDM is mathematically equivalent to the generalized partial credit model 

(Muraki, 1992) in the IRT literature. 

Log-Linear Cognitive Diagnosis Model 

 The log-linear cognitive diagnostic model (LCDM; Henson, et al., 2009) is a 

flexible model with the capabilities of defining the relationships between categorical 

variables and an items response using both compensatory and noncompensatory 

relationships. Let 𝚫𝑗 be a collection of effect-level (main and interaction) and intercept 

parameters 𝚫𝑗 = (𝝀𝑗 , 𝜆𝑗,0) for the 𝑗𝑡ℎ item such that 𝝀𝑗 =

(𝜆𝑗,1,(𝑘), … , 𝜆𝑗,2,(𝑘,𝑘′), … , 𝜆𝑗,𝐾𝑗,(1,…,𝐾𝑗)). The conditional probability of a correct response 

under the LCDM for the 𝑖𝑡ℎ respondent on the 𝑗𝑡ℎ item is defined by 

 

𝑃(𝑋𝑖𝑗 = 1|𝚫𝑗 , 𝜶𝑖) =
1

1 + 𝑒𝑥𝑝[−𝝀𝑗
𝑇ℎ(𝜶𝑖, 𝒒𝑗) − 𝜆𝑗,0]

, (2.20) 

 

It’s assumed that the intercept parameters −∞ < 𝜆𝑗,0 < ∞, main-effect parameters 0 <

𝜆𝑗,1,(𝑘), … , 𝜆𝑗,1,(𝐾𝑗) < ∞ and interaction-effect parameters −∞ <

𝜆𝑗,2,(𝑘,𝑘′), … , 𝜆𝑗,𝐾𝑗,(1,…,𝐾𝑗) < ∞.  The 𝜶𝑖 = (𝛼𝑖1, … , 𝛼𝑖𝑘, … , 𝛼𝑖𝐾)
𝑇 represents an attribute 

mastery profile for the 𝑖𝑡ℎ respondent such that 𝛼𝑖𝑘 = 0 if the respondent has not 

mastered the 𝑘𝑡ℎ attribute and 𝛼𝑖𝑘 = 1 if the respondent has mastered the 𝑘𝑡ℎ attribute. 

The 𝒒𝑗 = (𝑞𝑗1, … , 𝑞𝑗𝑘 , … , 𝑞𝑗𝐾) represents elements from the Q matrix for the 𝑗𝑡ℎ item 

where a 𝑞𝑗𝑘 = 0 states that the 𝑘𝑡ℎ attribute is not measured by the 𝑗𝑡ℎ item and  𝑞𝑗𝑘 = 1 
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states that the 𝑘𝑡ℎ attribute is measured by the item. The mapping function ℎ(𝜶𝑖 , 𝒒𝑗) is 

used to specify the linear combination of 𝜶𝑖 and 𝒒𝑗, 

 

𝝀𝑗
𝑇ℎ(𝜶𝑖, 𝒒𝑗) = ∑𝜆𝑗,1,(𝑘)𝛼𝑖𝑘𝑞𝑗𝑘

𝐾

𝑘=1

+∑ ∑ 𝜆𝑗,2,(𝑘,𝑘′)𝛼𝑖𝑘𝑞𝑗𝑘𝛼𝑖𝑘′𝑞𝑗𝑘′

𝐾

𝑘′=𝑘+1

𝐾−1

𝑘=1

+⋯

+𝜆𝑗,𝐾𝑗,(1,…,𝐾𝑗)∏𝛼𝑖𝑘𝑞𝑗𝑘

𝐾𝑗

𝑘=1

, (2.21)

 

 

where 𝐾𝑗 = ∑ 𝑞𝑗𝑘
𝐾𝑗
𝑘=1  represents the number of required attributes for the 𝑗𝑡ℎ item defined 

in the Q matrix. The subscript following the first comma in 𝜆𝑗 represent the effect-level 

and the parentheses following the second comma include the attribute effect. For 

example, 𝜆𝑗,1,(2) would represent the main effect-level for second attribute and 𝜆𝑗,2,(1,2) 

would represent the two-way interaction effect-level between the first and second 

attribute. 

 A property of the LCDM is that there exists a mathematical relationship such that 

a set of constraints placed on the LCDM can correspond to the natural definition of 

noncompensatory and compensatory models. Typically, the unconstrained LCDM can be 

initially used to investigate the nature of the relationship between attribute mastery and 

the conditional probability of a correct response at an item-by-item basis. This framework 

allows the LCDM to function as a general model that may be used to suggest specific 

reduced models that align with the particular patterns of the original model estimates.  

That is, because the LCDM is defined as a general model that has as many parameters as 

equivalence classes (i.e., attribute patterns with unique condition probabilities), then it is 
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possible to place constraints on these parameters such that the LCDM reduces to many of 

the models familiar in the literature (e.g., DINA, DINO, R-RUM, and C-RUM).  

DINA  

 There exists a mathematical relationship such that a set of constraints placed on 

the LCDM can correspond to the prototypical formulation of the DINA (Henson, et al., 

2009). Recall that the DINA defines only two parameters: slipping parameters 𝑠𝑗 that 

define the conditional probability of an incorrect response for the 𝑗𝑡ℎ item given a 

respondent has mastered all required attributes and guessing parameters 𝑔𝑗 that define the 

conditional probability of a correct response given all attributes have not been mastered. 

In the case of 𝐾 = 2 for simplicity purposes, the reduced LCDM under the DINA can be 

expressed as 

 

𝑃(𝑋𝑖𝑗 = 1|𝚫𝑗 , 𝜶𝑖) =
1

1 + 𝑒𝑥𝑝[−(0)𝛼𝑖1 − (0)𝛼𝑖2 − 𝜆𝑗,2,(1,2)𝛼𝑖1𝛼𝑖2 − 𝜆𝑗,0]
(2.22) 

 

where the 0’s have been imposed to emphasize the constraint that 𝜆𝑗,1,(1) = 𝜆𝑗,1,(2) = 0 

and 𝜆𝑗,2,(1,2) > 0. Notice that if all required attributes have not been mastered for the 𝑗𝑡ℎ 

item, then 𝛼𝑖1𝛼𝑖2 = 0 and the conditional probability of a correct response is only a 

function of 𝜆𝑗,0. However, if all required attributes have been mastered for the 𝑗𝑡ℎ item, 

then the conditional probability of a correct response increases by a factor of 𝜆𝑗,2,(1,2).  

Because 𝜆𝑗,2,(1,2) > 0 the reduced LCDM can be defined as a conjunctive model. The 

functional relationship between the reduced LCDM and prototypical formulation of the 

DINA is mathematically expressed as 
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𝜆𝑗,0 = − ln (
1 − 𝑔𝑗

𝑔𝑗
) (2.23) 

 

and  

 

𝜆𝑗,2,(1,2) = −𝜆𝑗,0 − ln(
𝑠𝑗

1 − 𝑠𝑗
) . (2.24) 

 

when there are two attributes measured by the 𝑗𝑡ℎ item. If assuming 𝐾 = 4, and the 𝑗𝑡ℎ 

item measured all four attributes, the 𝜆𝑗,2,(1,2) in Equation (2.24) would be replaced with 

𝜆𝑗,4,(1,2,3,4). 

DINO  

 In addition to the DINA, there exists a mathematical relationship such that a set of 

constraints placed on the LCDM can correspond to the prototypical formulation of the 

DINO (Henson, et al., 2009). Recall that the DINO also defines only two parameters: 

slipping parameters 𝑠𝑗 which defines the conditional probability of an incorrect response 

for the 𝑗𝑡ℎ item given a respondent has mastered at least one required attribute (slips up 

and misses) and guessing parameter 𝑔𝑗 which defines the conditional probability of a 

correct response given all attributes have not been mastered (guesses the correct 

response). In the case of 𝐾 = 2 for simplicity purposes, the reduced LCDM under the 

DINO can be expressed as 

 

𝑃(𝑋𝑖𝑗 = 1|𝚫𝑗 , 𝜶𝑖) =
1

1 + 𝑒𝑥𝑝[−𝜆𝑗𝛼𝑖1 − 𝜆𝑗𝛼𝑖2 + 𝜆𝑗𝛼𝑖1𝛼𝑖2 − 𝜆𝑗,0]
(2.25) 
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where 𝜆𝑗 is a single value estimated along with 𝜆𝑗,0 for the 𝑗𝑡ℎ item. Notice that if no 

required attributes have been mastered for the 𝑗𝑡ℎ item, the conditional probability of a 

correct response is only a function of 𝜆𝑗,0. The conditional probability of response 

increases by 𝜆𝑗 when at least one attribute has been mastered. The sign in front of each 𝜆𝑗 

is determined by 

 

(−1)(𝑞−1) = 𝑠𝑖𝑔𝑛 𝑜𝑓 𝜆 (2.26) 

 

where 𝑞 denotes the number of attributes involved in that specific effect. Thus, main 

effects are positive, two-way interaction effects are negative, three-way interaction 

effects are positive, and so on. The signed relationship denotes that mastery of any 

additional required attributes for the 𝑗𝑡ℎ item does not increase the conditional probability 

of a correct response. The functional relationship between the reduced LCDM and 

prototypical formulation of the DINO is mathematically expressed as Equation (2.23) and  

 

𝜆𝑗 = −𝜆𝑗,0 − ln (
𝑠𝑗

1 − 𝑠𝑗
) . (2.27) 

 

R-RUM  

 The DINA and DINO models are considered simple models in that only two 

parameters are used to model the conditional probability for all attribute patterns.  

However, it is also possible to define more complex constraints for models such as the R-

RUM (Henson, et al., 2009).  Specifically, there exists a mathematical relationship such 

that a set of constraints placed on the LCDM can correspond to the prototypical 
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formulation of the R-RUM. Recall that the R-RUM defines only two parameters: The 𝜋𝑗
∗ 

parameter that defines the conditional probability of a correct response for the 𝑗𝑡ℎ item 

given a respondent has mastered all required attributes and penalty parameters 𝑟𝑗𝑘
∗  that 

penalize the respondent for not mastering the 𝑘𝑡ℎ attributes on the 𝑗𝑡ℎ item. Unlike the R-

RUM, the LCDM has a single model parameter that is used to describe the probability of 

a correct response given that all measured attributes have not been mastered (in contrast 

to the R-RUM 𝜋𝑗
∗).  As a result, the LCDM typically defines an increase in the the odds 

of a correct response for each attribute that is mastered as opposed to a penalty for each 

attribute not mastered.   Therefore, an “inverse” R-RUM (Henson, et al., 2009) can be 

used to define the relationship between the LCDM and prototypical formation of the R-

RUM. In the case of 𝐾 = 2 for simplicity purposes, the reduced LCDM under the R-

RUM can be expressed as 

 

𝑃(𝑋𝑖𝑗 = 1|𝚫𝑗 , 𝜶𝑖) =
1

1 + 𝑒𝑥𝑝[−𝜆𝑗,1,(1)𝛼𝑖1 − 𝜆𝑗,1,(2)𝛼𝑖2 − 𝜆𝑗,2,(1,2)𝛼𝑖1𝛼𝑖2 − 𝜆𝑗,(0)]
(2.28) 

 

The “inverse” R-RUM is mathematically equal to the R-RUM and therefore, 

differentiates only in the definition of each item parameter and its respective space. Let 

𝚫𝑗 = (𝜋𝑗
∗, 𝑟𝑗𝑘

∗ , … , 𝑟𝑗𝐾
∗ ) be a collection of parameters for the 𝑗𝑡ℎ item.  The conditional 

probability of a correct response for the “inverse” R-RUM (Henson, et al., 2009) is 

expressed as 

 

𝑃(𝑋𝑖𝑗 = 1|𝚫𝑗 , 𝜶𝑖) = 𝜋𝑗
∗′∏

1

𝑟𝑗𝑘
∗ 𝑞𝑗𝑘𝛼𝑖𝑘

𝐾

𝑘=1

(2.29) 
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where 𝜋𝑗
∗′ is the conditional probability of a correct response given no attributes have 

been mastered for the 𝑗𝑡ℎ item and 𝑟𝑗𝑘
∗  is defined in the same way as the R-RUM. The 

functional relationship between the reduced LCDM and prototypical formulation of the 

“inverse” R-RUM is mathematically expressed as  

 

𝜆𝑗,0 = − ln (
1 − 𝜋𝑗

∗′

𝜋𝑗
∗′

) (2.30) 

 

and  

 

𝜆𝑗,2,(1,2) = − ln(
1 + 𝑒−𝜆𝑗,0

1 + 𝑒−𝜆𝑗,1,(1)−𝜆𝑗,0 + 𝑒−𝜆𝑗,1,(2)−𝜆𝑗,0 − 𝑒−𝜆𝑗,1,(1)−𝜆𝑗,1,(2)−𝜆𝑗,0
) . (2.31) 

 

Because 𝜆𝑗,2,(1,2) is a function of 𝜆𝑗,1,(1) and 𝜆𝑗,1,(2), no additional parameters are required 

when compared to the total number of estimated parameters in the “inverse” R-RUM. 

Again, this example represents an item where 𝐾 = 2, but it’s possible to extend Equation 

(2.31) to items that measure three or more attributes. 

C-RUM  

 Finally, the easiest of relationships to demonstrate is between the LCDM and the 

C-RUM (Henson, et al., 2009).  There exists a mathematical relationship such that there 

is a set of constraints placed on the LCDM that relates to the prototypical formulation of 

the C-RUM. Recall that the C-RUM only defines two different types of parameters for 

each item: an intercept parameter 𝜆𝑗,0 and main-effect parameters 𝝀𝑗  = (𝜆𝑗𝑘, … , 𝜆𝐾𝑗). As 

is the case with the LCDM, the conditional probability of a correct response when no 
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required attributes have been mastered is only a function of 𝜆𝑗,0 when using the C-RUM. 

Because 0 ≤ 𝝀𝑗 < ∞, the conditional probability a correct response increases for each 

measured attributed that is mastered by the 𝑗𝑡ℎ item. In the case of 𝐾 = 2 for simplicity 

purposes, the reduced LCDM under the C-RUM can be expressed as 

 

𝑃(𝑋𝑖𝑗 = 1|𝚫𝑗, 𝜶𝑖) =
1

1 + 𝑒𝑥𝑝[−𝜆𝑗,1,(1)𝛼𝑖1 − 𝜆𝑗,1,(2)𝛼𝑖2 − 𝜆𝑗,2,(1,2)(0)(0) − 𝜆𝑗,0]
. (2.32) 

 

In this example, the C-RUM is simply defined by setting 𝜆𝑗,1,(2) = 0. 

Polytomous Log-Linear Cognitive Diagnosis Model 

 The polytomous log-linear cognitive diagnosis model (P-LCDM; Hansen, 2013) is 

an extension of the dichotomous LCDM proposed by Henson et al. (2009). The LCDM 

framework can be adapted to handle polytomous response data in ordinal response 

categories, which allows the application of these models to a broader range of diagnostic 

assessments. Following the notation in Hansen (2013), let 𝐾 represent the total number of 

ordered categories where 𝑦𝑖 ∈ {0,1, … , 𝐾 − 1}. Following Samejima’s (1969) graded 

response IRT model and subsequent multidimensional extensions (e.g., Muraki & 

Carlson, 1995; Gibbons et al., 2007), the conditional probability for a given response to 

the 𝑖𝑡ℎ item on the 𝑘𝑡ℎ category may be computed by  

 

𝑃(𝑦𝑖 = 𝑘|𝒙) = 𝑃(𝑦𝑖 ≥ 𝑘|𝒙) − 𝑃(𝑦𝑖 ≥ 𝑘 + 1|𝒙). (2.33) 

 

where the set of boundary response probabilities are defined as 

 

𝑃(𝑦𝑖 ≥ 0|𝒙) = 1 
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𝑃(𝑦𝑖 ≥ 1|𝒙) =
1

1 + 𝐸𝑥𝑝 [−(𝛼𝑖,1 + ℎ(𝜸𝑖, 𝒒𝑖 , 𝒙))]
 

… 

𝑃(𝑦𝑖 ≥ 𝑘|𝒙) =
1

1 + 𝐸𝑥𝑝 [−(𝛼𝑖,𝑘 + ℎ(𝜸𝑖, 𝒒𝑖 , 𝒙))]
(3.34) 

…  

𝑃(𝑦𝑖 ≥ 𝐾 − 1|𝒙) =
1

1 + 𝐸𝑥𝑝 [−(𝛼𝑖,𝐾−1 + ℎ(𝜸𝑖, 𝒒𝑖 , 𝒙))]
, 

𝑃(𝑦𝑖 ≥ 𝐾|𝒙) = 0. 

 

Here 𝛼𝑖,1, … , 𝛼𝑖,𝑘, … , 𝛼𝑖,𝐾−1 are defined as the 𝐾 − 1 intercept parameters for the 𝑖𝑡ℎ item, 

𝜸𝑖 represents a vector of parameters for all main effects and interaction effects for the 𝑖𝑡ℎ 

item, and 𝒙 is the vector of discrete latent variables. The mapping function ℎ(𝜸𝑖, 𝒒𝑖 , 𝒙) is 

defined similarly in Equation (2.21). 

 Because the P-LCDM is an extension of the LCDM and the LCDM is also a 

general model. In addition, an important property of the P-LCDM is that there exists a 

mathematical relationship such that a set of constraints placed on the P-LCDM can 

correspond to the natural definition of noncompensatory and compensatory models for 

polytomous responses.  In fact, it would be possible to first fit the unconstrained P-

LCDM as a method to investigate the nature of the relationships between attribute 

mastery and the conditional probability of a response at an item-by-item basis. 

Depending on the estimates, the unconstrained P-LCDM may then be used to suggest 

specific reduced models that align with the particular patterns of the original model 
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estimates.  Specifically, because the P-LCDM is defined as a general model that has as 

many parameters as equivalence classes (i.e., attribute patterns with unique condition 

probabilities), then it is possible to place constraints on these parameters such that the P-

LCDM reduces to many of the models familiar in the literature (e.g., DINA, DINO, R-

RUM, or C-RUM). Another property of the P-LCDM is that the model can be used to 

define polytomous graded response models that are natural extensions to the DINA, 

DINO, R-RUM, and C-RUM, which is discussed in Chapter III. Chapter III also includes 

a discussion about the extension of the P-LCDM to allow for polytomous attributes. 

Generalized Deterministic Input Noisy “and” Gate Model 

 The generalized deterministic input noisy “and” gate (G-DINA; de la Torre, 2011) 

model is an extension of the LCDM that allows for different link functions other than the 

logit link function. The G-DINA also can be seen as a generalized version of the DINA 

model with more relaxed assumptions. Specifically, the model relaxes the DINA 

assumption that states that the conditional probability of a correct response is equal for all 

latent classes within each of the groups. Recall the DINA separates respondents into two 

groups including those who have mastered and not mastered all required attributes for an 

item. Similar to the DINA, the G-DINA requires specification of a 𝐽 × 𝐾 Q matrix where 

𝑞𝑗𝑘 = 1 if mastery of the 𝑘𝑡ℎ attribute is required to have a higher probability of correctly 

responding to the 𝑗𝑡ℎ item, while 𝑞𝑗𝑘 = 0 if mastery of the 𝑘𝑡ℎ attribute is not measured 

for the 𝑗𝑡ℎ item. However, instead of two groups, the G-DINA partitions the latent classes 

into 2𝐾𝑗
∗

 groups in a similar way as the LCDM. Here, 𝐾𝑗
∗ = ∑ 𝑞𝑗𝑘

𝐾
𝑘=1  defines the number 

of required attributes for the 𝑗𝑡ℎ item.  For notational convenience but without loss of 
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generality, let the first   𝐾𝑗
∗ attributes be required for the 𝑗𝑡ℎ item, and define 𝜶𝑙𝑗

∗  as the 

reduced attribute vector whose elements are the required attributes for the 𝑗𝑡ℎ item. For 

example, if mastery of the first and third attributes are required for the 𝑗𝑡ℎ item, then the 

attribute vector 𝜶𝑙𝑗 reduces to 𝜶𝑙𝑗
∗ = (𝛼𝑙1, 𝛼𝑙3). What is unique to the G-DINA is the 

introduction of several link functions.  In a similar way as link functions are used in the 

Generalized Linear Model, the choice of link function can allow for models that were 

initially expressed in a complex way (e.g., products or requiring interaction terms) to be 

expressed as linear model. Three of the most commonly discussed link functions 

discussed here are referred to as identity, logit, and log. The G-DINA is based on the 

identity link where the conditional probability of a correct response for the 𝑙𝑡ℎ latent class 

on the 𝑗𝑡ℎ is represented mathematically as 

 

𝑃(𝜶𝑙𝑗
∗ ) = 𝛿𝑗0 +∑𝛿𝑗𝑘𝛼𝑙𝑘

𝐾𝑗
∗

𝑘=1

+ ∑ ∑ 𝛿𝑗𝑘𝑘′𝛼𝑙𝑘𝛼𝑙𝑘′

𝐾𝑗
∗−1

𝑘=1

𝐾𝑗
∗

𝑘′>𝑘

+⋯+ 𝛿𝑗12…𝐾𝑗
∗∏𝛼𝑙𝑘

𝐾𝑗
∗

𝑘=1

(2.35) 

 

where 𝛿𝑗0 represents the intercept parameter for the 𝑗𝑡ℎ item where 0 ≤ 𝛿𝑗0 < 1 and 𝛿𝑗𝑘 

is the main effect parameter due to 𝛼𝑘 for the 𝑗𝑡ℎ item where 0 ≤ 𝛿𝑗𝑘 < 1 (non-negative) 

if 𝑃 (𝟎𝐾𝑗
∗) ≤ 𝑃(𝜶𝑙𝑗

∗ ) for ∑ 𝛼𝑙𝑘
𝐾𝑗
∗

𝑘=1 = 1 where 𝟎𝐾𝑗
∗ is represented as the null vector of 

length 𝐾𝑗
∗. These equations would imply that mastery of any single attribute required by 

an item would correspond to an increase in the respondent’s conditional probability of a 

correct response. Like the LCDM, the 𝛿𝑗𝑘𝑘′  is the interaction effect parameter due to 𝛼𝑘 

and 𝛼𝑘′ for the 𝑗𝑡ℎ item. Finally, while interactions can be positive or negative, they must 
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be defined for the identity link such that 0 ≤ 𝑃(𝜶𝑙𝑗
∗ ) ≤ 1. The logit link results in a 

generalized model that can be referred to as the log-odds CDM, which is equivalent to the 

LCDM. The logit link function can be mathematically expressed as 

 

𝑙𝑜𝑔𝑖𝑡[𝑃(𝜶𝑙𝑗
∗ )] = 𝜆𝑗0 +∑𝜆𝑗𝑘𝛼𝑙𝑘

𝐾𝑗
∗

𝑘=1

+ ∑ ∑ 𝜆𝑗𝑘𝑘′𝛼𝑙𝑘𝛼𝑙𝑘′

𝐾𝑗
∗−1

𝑘=1

𝐾𝑗
∗

𝑘′>𝑘

+⋯+ 𝜆𝑗12…𝐾𝑗
∗∏𝛼𝑙𝑘

𝐾𝑗
∗

𝑘=1

. (2.36) 

 

In addition to the logit link, a log link can be used.  The log link function results in a 

model that can be referred to as the log CDM. The log link function can be 

mathematically expressed as 

 

𝑙𝑜𝑔𝑃(𝜶𝑙𝑗
∗ ) = 𝜐𝑗0 +∑𝜐𝑗𝑘𝛼𝑙𝑘

𝐾𝑗
∗

𝑘=1

+ ∑ ∑ 𝜐𝑗𝑘𝑘′𝛼𝑙𝑘𝛼𝑙𝑘′

𝐾𝑗
∗−1

𝑘=1

𝐾𝑗
∗

𝑘′>𝑘

+⋯+ 𝜐𝑗12…𝐾𝑗
∗∏𝛼𝑙𝑘

𝐾𝑗
∗

𝑘=1

. (2.37) 

 

Although the three generalized CDM have similar mathematical formulations, the 

specifications of these models describe unique phenomena. The G-DINA model and logit 

CDM uses main effects to describe the additive impact of mastery for a set of attributes 

on the conditional probability and logit of the conditional probability of a correct 

response, respectively. Whereas, the log CDM uses main effects to define the 

multiplicative impact of mastery for a set of attributes on the conditional probability of a 

correct response as a linear model. Note that this can be seen as an advantage for model 

specification and estimation. For example, the R-RUM, when using the logit link (i.e., the 

LCDM) requires complex constraints on all interaction terms whereas the log CDM 

defines the R-RUM as an additive model with only main effects on the log scale.  Noting 
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this difference in how the models are defined is crucial because applying the same 

constraints to the different link functions will results in different reduced models. A 

detailed description of how the G-DINA can be used to model various reduced models 

(e.g., DINA, DINO, R-RUM, and C-RUM) is further discussed in de la Torre (2011). 

General Polytomous Diagnosis Model 

 Chen & de la Torre (2018) proposed a general cognitive diagnostic model for 

polytomous responses i.e., the general polytomous diagnosis model (GPDM), which 

combines the G-DINA modeling process for dichotomous responses with the item-

splitting process for polytomous responses. The GPDM can also be seen as an extension 

of the P-LCDM in Hansen (2013). The polytomous items are specified similar to 

dichotomous items in a 𝐽 × 𝐾 Q matrix where the elements of Q are 0/1. For the 𝑗𝑡ℎ item, 

irrelevant attributes (i.e., 𝑞 = 0) can be excluded and the measured attributes are 

represented by the reduced attribute vector 𝜼𝑗ℎ = (𝜂𝑗1, … , 𝜂𝑗𝑔, … , 𝜂𝑗𝐺𝑗)
𝑇

, where ℎ =

1, … , 𝐻𝑗 = 2
𝐺𝑗  and 𝐺𝑗 = ∑ 𝑞𝑗𝑘

𝐾
𝑘=1 . Similar to the G-DINA model presented in de la Torre 

(2011), the attribute vector 𝜶𝑙 is simplified as the reduced attribute vector 𝜼𝑗ℎ. This 

simplification means that the 𝐿 = 2𝐾 latent classes of the diagnostic test are simplified to 

𝐻𝑗 latent classes for the 𝑗𝑡ℎ item. The latent variable modeling process with polytomous 

responses involves splitting the polytomous item with 𝐶𝑗 response categories into 𝐶𝑗 

dichotomous sub-items, each of which then can be formulated using a modeling approach 

for dichotomous responses. The GPDM splits the item indirectly based on the difference 

of cumulative probability between response categories. The conditional probability of 
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respondents responding to the 𝑐𝑡ℎ category is 𝑃(𝑋𝑗 = 𝑐|𝜼𝑗ℎ) = 𝑃𝑐(𝜼𝑗ℎ), where 

∑ 𝑃𝑐(𝜼𝑗ℎ)
𝐶𝑗−1

𝑐=0 = 1. The boundary response probability can be denoted as 

𝑃(𝑋𝑗 ≥ 𝑐|𝜼𝑗ℎ) = 𝑃𝑐
∗(𝜼𝑗ℎ). Following the graded response approach (Samejima, 1969), 

the relationship between the conditional and cumulative probabilities can be defined by 

 

𝑃𝑐(𝜼𝑗ℎ) = 𝑃𝑐
∗(𝜼𝑗ℎ) − 𝑃𝑐+1

∗ (𝜼𝑗ℎ) (2.38) 

 

where 𝑃0
∗(𝜼𝑗ℎ) = 1 and 𝑃𝐶𝑗

∗ (𝜼𝑗ℎ) = 0. The monotonicity assumption for the G-DINA 

discussed in de la Torre (2011) can be extended to the GPDM. Namely, the cumulative 

probability of responding in a higher category will increase monotonically for 

respondents who have mastered more required attributes. Using different link functions, 

𝑃𝑐(𝜼𝑗ℎ) can be linearly transformed into item effects in different saturated forms, as 

 

𝐹[𝑃𝑐(𝜼𝑗ℎ)] = 𝛽𝑗𝑐0 +∑𝛽𝑗𝑐𝑔𝜂ℎ𝑔

𝐺𝑗

𝑔=1

+ ∑ ∑ 𝛽𝑗𝑐𝑔𝑔′𝜂ℎ𝑔𝜂ℎ𝑔′

𝐺𝑗−1

𝑔=1

𝐺𝑗

𝑔′>𝑔

+⋯+ 𝛽𝑗𝑐12…𝐺𝑗∏𝜂ℎ𝑔

𝐺𝑗

𝑘=1

(2.39) 

where 𝐹(. ) is a specified linking function and 𝛽𝑗𝑐0, 𝛽𝑗𝑐𝑔, and 𝛽𝑗𝑐𝑔𝑔′ are the baseline, 

main effect, and interaction effect parameters for the 𝑐𝑡ℎ category on the 𝑗𝑡ℎ item, 

respectively. Similar to de la Torre (2011), various link functions include; identity, logit, 

and log links. For dichotomous responses, the formulation is equivalent to the G-DINA 

model with the identity link or LCDM with the logit link functions. The GPDM is a 

saturated model, with equivalent saturated forms, and subsumes a variety of reduced 

CDM for polytomous and dichotomous responses. A detailed description of how the 
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GPDM can be used to model various reduced models (e.g., DINA, DINO, R-RUM, or C-

RUM) for polytomous and dichotomous responses is further discussed in Chen & de la 

Torre (2018). 

Sequential Generalized Deterministic Input Noisy “and” Gate Model 

 Ma & de la Torre (2016) proposed a general polytomous CDM for a special type 

of graded responses such that item categories are attained in a sequential manner and 

affiliated with some attributes explicitly. Similar to Samejima (1995), they define the 

conditional probability of respondents with latent class 𝜶𝑐 responding to the ℎ𝑡ℎ category 

for the 𝑗𝑡ℎ item correctly provided that the respondents have already completed the ℎ𝑡ℎ −

1 category successfully as the processing function of the ℎ𝑡ℎ category, defined as 

𝑆𝑗(ℎ|𝜶𝑐), where its assumed that 

 

𝑆𝑗(ℎ|𝜶𝑐) = {
1, 𝑖𝑓 ℎ = 0
0, 𝑖𝑓 ℎ = 𝐻𝑗 + 1

(2.40) 

 

because respondents are expected to always achieve category 0, but never achieve the 

𝐻𝑗
𝑡ℎ + 1 category. Respondents are expected to score ℎ 𝑖𝑓𝑓 they answered categories 

1, … , ℎ correctly, and if ℎ is not defined as the highest category, an incorrect response is 

expected for the ℎ𝑡ℎ + 1 category. Therefore, the categorical response function for the 𝑗𝑡ℎ 

item can be defined by 

𝑃(𝑋𝑗 = ℎ|𝜶𝑐) = [1 − 𝑆𝑗(ℎ + 1|𝜶𝑐)]∏𝑆𝑗(𝑥|𝜶𝑐)

ℎ

𝑥=0

(2.41) 

 

which is subject to the imposed constraints 
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∑𝑃(𝑋𝑗 = ℎ|𝜶𝑐)

𝐻𝑗

ℎ=0

= 1 ∀𝑐 (2.42) 

 

where 𝑃(𝑋𝑖𝑗 = ℎ|𝜶𝑐) is the probability of respondents in latent class 𝜶𝑐 scoring ℎ on the 

𝑗𝑡ℎ item. The processing function defined in Equation (2.40) is the kernel of the 

sequential process model and can be formulated using most prototypical formulations for 

CDM. For example, if solving a step entails the possession of at least one required 

attribute for the 𝑗𝑡ℎ item, the DINO model can be used as the processing function. By 

parameterizing each category independently, the sequential process model allows 

different cognitive processes to be modeled at different categories within an item. 

 The G-DINA (de la Torre, 2011) model can be used as the processing function 

because it allows a generalized framework subsuming several commonly used CDM. The 

resulting model is referred to as the sequential G-DINA model. Similar to the prototypical 

G-DINA model, 2𝐾 latent classes can be collapsed into 2𝐾𝑗
∗

 latent classes with unique 

conditional probabilities of success. For the ℎ𝑡ℎ category, the possible 2𝐾𝑗
∗

 latent classes 

can be further collapsed into 2𝐾𝑗ℎ
∗

 latent classes, where 𝐾𝑗ℎ
∗  is the number of measured 

attributes for the ℎ𝑡ℎ category on the 𝑗𝑡ℎ item. The processing function  𝑆𝑗(ℎ|𝜶𝑐) can be 

rewritten as 𝑆𝑗(ℎ|𝜶𝑙𝑗ℎ
∗ ) for the sequential G-DINA model using the identity link G-DINA 

model: 

 

𝑆𝑗(ℎ|𝜶𝑙𝑗ℎ
∗ ) = 𝜙𝑗ℎ0 +∑𝜙𝑗ℎ𝑘𝛼𝑙𝑘

𝐾𝑗ℎ
∗

𝑘=1

+ ∑ ∑ 𝜙𝑗ℎ𝑘𝑘′𝛼𝑙𝑘𝛼𝑙𝑘′

𝐾𝑗ℎ
∗ −1

𝑘=1

𝐾𝑗ℎ
∗

𝑘′>𝑘

+⋯+ 𝜙𝑗ℎ12…𝐾𝑗
∗∏𝛼𝑙𝑘

𝐾𝑗ℎ
∗

𝑘=1

(2.43) 
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where 𝜙𝑗ℎ0 represents the intercept parameter for the 𝑗𝑡ℎ item where 0 ≤ 𝜙𝑗ℎ0 < 1 and 

𝜙𝑗ℎ𝑘 is the main effect parameter due to 𝛼𝑘 for the 𝑗𝑡ℎ item where 0 ≤ 𝜙𝑗ℎ𝑘 < 1. The 

𝜙𝑗ℎ𝑘𝑘′ is the interaction effect parameter due to 𝛼𝑘 and 𝛼𝑘′ for the 𝑗𝑡ℎ item. Finally, 

while interactions can be positive or negative, they must be defined for the identity link 

such that 0 ≤ 𝑆𝑗(ℎ|𝜶𝑙𝑗
∗ ) ≤ 1. The 𝜙𝑗ℎ0 can be represented as the processing function for 

the ℎ𝑡ℎ category ∀𝑙 = 1,… , 2𝐾𝑗
∗

 who mastered none of the required attributes, 𝜙𝑗ℎ𝑘 

represent the change of the processing function of the ℎ𝑡ℎ category when the ℎ𝑡ℎ attribute 

has been mastered, and 𝜙𝑗ℎ𝑘𝑘′ and 𝜙𝑗ℎ12…𝐾𝑗
∗ can be represented as the change in the 

processing function of the ℎ𝑡ℎ category when mastery of a combination of attributes are 

obtained. Similar to the prototypical G-DINA model, the processing function can also be 

defined using the log or logit link functions.  

 The sequential G-DINA model can use either a restricted or unrestricted 𝑸 matrix 

denoted as either RS-GDINA or US-GDINA model, respectively. The use of a restricted 

𝑸 matrix allows for the modeling of different underlying processes in different response 

categories. In contrast, the unrestricted 𝑸 matrix provides a possible solution to account 

for the uncertainty in the attribute and category relationships. When the attribute and 

category relationships are present, the RS-GDINA model may be preferred theoretically 

because it typically estimates fewer item parameters than the US-GDINA model (refer to 

Ma & de la Torre (2016) for further details). 
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Multiple-Choice Deterministic Input Noisy “and” Gate Model 

 Typically, CDM are applied to dichotomous or dichotomized data, including MC 

assessments that are scored as either right or wrong. The issue with the dichotomization 

approach for the analysis of MC data is that if often ignores diagnostic information that 

can be found in the distractors, which could be diagnostically suboptimal. The multiple-

choice deterministic input noisy “and” gate (MC-DINA; de la Torre, 2009) model was 

introduced to maximize the diagnostic information of MC assessments. The framework 

for MC data is based on the prototypically formulation of the DINA. Using the notation 

expressed in de la Torre (2009), the conditional probability of a correct response for the 

𝑖𝑡ℎ respondent on the 𝑗𝑡ℎ item under the DINA is defined by 

 

𝑃(𝑋𝑖𝑗 = 1|𝜶𝑖) = 𝑃(𝑋𝑖𝑗 = 1|𝑔𝑖𝑗) = 𝑃𝑗(1|0)
1−𝑔𝑖𝑗[1 − 𝑃𝑗(0|1)]

𝑔𝑖𝑗 (2.44) 

 

where 𝑃𝑗(1|0) and 𝑃𝑗(0|1) are the guessing and slipping parameters, respectively, for the 

𝑗𝑡ℎ item, 𝑔𝑖𝑗 = ∏ 𝛼
𝑖𝑘

𝑞𝑗𝑘𝐾
𝑘=1  is represented at the latent group classification for the 𝑖𝑡ℎ 

respondent on the 𝑗𝑡ℎ item where 𝑔𝑖𝑗 = 1 if the 𝑖𝑡ℎ respondent has mastered all required 

attributes for the 𝑗𝑡ℎ item and else 𝑔𝑖𝑗 = 0. The 𝑔𝑖𝑗 can alternatively be expressed as 

 

𝑔𝑖𝑗 = {
1, 𝑖𝑓 𝜶𝑖

𝑇𝒒𝑗 = 𝒒𝑗
𝑇𝒒𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (2.45) 

 

The MC format for the DINA can be represent by 𝑋𝑖𝑗 ∈ {1,2, . . , 𝐻𝑗} where each element 

of the set 𝑋𝑖𝑗 corresponds to a different response option and 𝐻𝑗 represents the total 
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number of coded response options for the 𝑗𝑡ℎ item. The conditional probability that the 

𝑖𝑡ℎ respondent selects the ℎ𝑡ℎ coded response option is defined as 

 

𝑃(𝑋𝑖𝑗 = ℎ|𝜶𝑖) = 𝑃(𝑋𝑖𝑗 = ℎ|𝑔𝑖𝑗 = 𝑔) = 𝑃𝑗(ℎ|𝑔) (2.46) 

 

where 𝑃𝑗(ℎ|𝑔) is defined as the conditional probability of a respondent in group 𝑔 

choosing the ℎ𝑡ℎ coded response option of the 𝑗𝑡ℎ item and 𝑔 ∈ 𝐺𝑗, which 𝐺𝑗 harbors 0 

and a subset of the sample space {1,2, … , 𝐻}. For a fixed value of 𝑔,  ∑ 𝑃𝑗(ℎ|𝑔)
𝐻
ℎ=1 = 1. 

Therefore, the MC-DINA has a total of ∑ 𝐻(𝐻𝑗
∗ + 1)𝐽

𝑗=1  parameters, where ∑ 𝐻𝑗
∗ + 𝐽𝐽

𝑗=1  

are not free to vary. The 𝑔𝑖𝑗 in the MC-DINA can be expressed as 

 

𝑔𝑖𝑗 = 𝑎𝑟𝑔 𝑚𝑎𝑥
ℎ′

{𝜶𝑖
𝑇𝒒𝑗ℎ′|𝜶𝑖

𝑇𝒒𝑗ℎ′ = 𝒒𝑗ℎ′
𝑇 𝒒𝑗ℎ′} (2.47) 

 

∀ℎ′ = 0,… ,𝐻𝑗 for the 𝑗𝑡ℎ item. The 𝑸 vector 𝒒𝑗ℎ′ is represented as the attribute 

specification for the ℎ𝑡ℎ coded response option on the 𝑗𝑡ℎ item. The 𝑸 vector for any 

noncoded response options is set to 0. Equation (2.47) signifies that the 𝑖𝑡ℎ respondents’ 

latent class will be classified as 𝑔𝑖𝑗 = 0 𝑖𝑓𝑓 the latent class does not meet the attribute 

specification of at least one of the coded response options. Recall the DINA separates 

respondents into two groups indicating those who have mastered and not mastered all 

required attributes for an item. The MC-DINA separates respondents into 𝐻𝑗
∗ + 1 groups, 

which represents the number of response options for the 𝑗𝑡ℎ item plus one. The original 

2𝐾 possible latent classes are classified into 𝐻𝑗
∗ + 1 latent groups. Thus, by coding some 

of the distractors, latent classes that don’t satisfy the specification of the key can be 
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further distinguished from one another, therefore providing additional diagnostic 

information for the 𝑗𝑡ℎ item. The conjunctive property of “all or nothing” still holds in the 

MC-DINA. However, unlike the prototypical formulation of the DINA, this conjunctive 

property does not always result in a single undifferentiated group for those respondents 

who lack a required attribute for the correct response on the 𝑗𝑡ℎ item. To further illustrate 

the MC-DINA framework, an example MC item with four coded response options is 

given in Table 4. 

 

Table 4. MC Item with Four Coded Response Options  

 

 Attribute 

Option 𝛼1 𝛼2 𝛼3 𝛼4 

A  ✓   

B  ✓ ✓  

C ✓  ✓  

D ✓ ✓ ✓  

 

 

Let 𝐴 = 1, 𝐵 = 2, 𝐶 = 3 and 𝐷 = 4 where 𝐻𝑗
∗ = 4 representing number of coded 

response options for the 𝑗𝑡ℎ item. For the 𝑖𝑡ℎ respondent who possess (𝛼1, 𝛼2, 𝛼3) for the 

𝑗𝑡ℎ item such that 𝜶𝑖
𝑇𝒒𝑗ℎ′ = 1 ∀ℎ. Because 𝑞𝑗4 is the 𝑸 vector with the largest ℎ where 

𝜶𝑖
𝑇𝒒𝑗ℎ′ = 1, will be classified under latent Group 4. In contrast, for the 𝑖𝑡ℎ respondent 

who possess (𝛼2, 𝛼3) (i.e., 𝛼 = {0,1,1,0}) of the three required attributes for the 𝑗𝑡ℎ item 

where 𝜶𝑖
𝑇𝒒𝑗ℎ′ = 1 for only ℎ = (1,3), will be classified under latent Group 2. Finally, for 

the 𝑖𝑡ℎ respondent who possess none or only 𝛼1 or 𝛼3 of the three required attributes for 

the 𝑗𝑡ℎ item where 𝜶𝑖
𝑇𝒒𝑗ℎ′ = 0 ∀ℎ, will be classified under latent Group 0.  
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 The modified 𝑸 matrix under the MC-DINA can be represented in the following 

example 

 

𝑸[𝐽×𝐾] = (

2 1 0 0
1 3 1 0
⋮ ⋮ ⋮ ⋮
2 1 0 2

) (2.48) 

 

where a unique coding option is defined where each entry in a cell represents the number 

of times an attribute is specified in the options. For example, the modified 𝑸 vector for 

the first row (2,1,0,0) indicates that the correct option requires (𝛼1, 𝛼2) whereas the only 

coded distractor requires 𝛼1. We can alternatively express 𝑃𝑗(ℎ|𝑔) in the following 

example  

 

𝑃𝑗(ℎ|𝑔) = {

. 20, 𝑖𝑓 𝑔 = 0

. 80, 𝑖𝑓 𝑔 > 0 𝑎𝑛𝑑 𝑔 = ℎ

. 10, 𝑖𝑓 𝑔 > 0 𝑎𝑛𝑑 𝑔 ≠ ℎ
(2.49) 

 

which proports that for a respondent whose latent class does not meet requirements of 

any of the coded response options, choices are made at random e.g., with equal 

probability, 
1

𝐻𝑗
∗. However, respondents who meet the requisites of at least one of the coded 

response options will choose the expected response options 80% of the time and choose 

the remaining options randomly for the 𝑗𝑡ℎ item. 

General Diagnostic Classification Model for Multiple-Choice 

 In addition to the MC-DINA, the generalized diagnostic classification models for 

multiple-choice (GDCM-MC; DiBello, Henson, & Stout, 2015) option-based scoring was 
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also created for multiple-choice diagnostic assessments with response options designed to 

attract particular kinds of respondent thinking and understanding, both desired (correct) 

thinking and problematic (incorrect or partially correct) thinking. There are four key 

features of the GDCM-MC including: (1) an expanded latent space that can include both 

desirable and problematic attributes of thinking. (2) an expanded Q matrix that includes a 

row for each response option and utilizes a three-value coding mechanism to specify 

which latent classes are strongly attracted to that option. (3) a guessing component that 

responds to the forced choice aspect of multiple-choice questions. (4) a general modeling 

framework that can incorporate the diagnostic modeling functionality many dichotomous 

CDM. 

 The respondent’s latent class 𝜶 is expanded in the GDCM-MC to include both 

problematic (including misconceptions and partially correct thinking) and desirable 

(including skills and conceptual understanding) attributes of thinking. Let 𝑘 = 1,… , 𝐾 

where each 𝑘 represents either a desirable or problematic attribute. The latent classes can 

be defined by the set of all 𝐿 = 2𝐾 vectors where 𝜶𝑖 = (𝛼1, … , 𝛼𝑘, … , 𝛼𝐾), where 𝛼𝑖𝑘 =

0 represents the 𝑖𝑡ℎ respondent who lacks the 𝑘𝑡ℎ attribute, while 𝛼𝑖𝑘 = 1 represents the 

𝑖𝑡ℎ respondent who possesses the 𝑘𝑡ℎ attribute. Note there is a shift in terminology from 

“non-master/master of an attribute” to “lacks/possesses an attribute”. Whether 𝛼𝑘 = 1 is 

advantageous or not for a respondent depends entirely on whether the 𝑘𝑡ℎ attribute is a 

desirable or problematic form of thinking. 

 The Q matrix for the GDCM-MC is expanded in two different ways from the 

prototypical dichotomous CDM Q matrix formulation where (1) Q now has a row per 
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response option instead of one row per item as in the dichotomous scoring method. The Q 

matrix for a diagnostic assessment with 40 items, each with four options, will have a total 

of 40 × 4 = 160 rows. (2) Each Q entry can be any of the three values: 0/1/N. The link 

vector for the ℎ𝑡ℎ response option of the 𝑗𝑡ℎ item is the (𝑗, ℎ) row where 𝒒𝑗ℎ =

(𝑞𝑗ℎ1, … , 𝑞𝑗ℎ𝑘 , … , 𝑞𝑗ℎ𝐾) of Q where each of the elements 𝑞𝑗ℎ𝑘 = 0/1/𝑁 and vector 𝒒𝑗ℎ, 

specifies that the latent class 𝜶𝑖 = (𝛼1, … , 𝛼𝑘, … , 𝛼𝐾) is cognitively most strongly 

attracted to the ℎ𝑡ℎ response option most satisfy the following condition: 

 

∀𝑘 = 1,… , 𝐾 for which 𝑞𝑗ℎ𝑘 ≠ 𝑁, 𝛼𝑖𝑘 = 𝑞𝑗ℎ𝑘. 

 

This statement indicates that the latent class 𝜶𝑖 for the 𝑖𝑡ℎ respondent is cognitively most 

strong attracted to the ℎ𝑡ℎ response option if 𝜶𝑖 is satisfied for each of the 𝑘𝑡ℎ attributes 

such that 

• 𝛼𝑖𝑘 = 0, which defines that the 𝑖𝑡ℎ respondent lacks the 𝑘𝑡ℎ attribute if 𝑞𝑗ℎ𝑘 = 0; 

• 𝛼𝑖𝑘 = 1, which defines that the 𝑖𝑡ℎ respondent possesses the 𝑘𝑡ℎ attribute if 

𝑞𝑗ℎ𝑘 = 1; 

• the value of 𝛼𝑖𝑘 for the 𝑖𝑡ℎ respondent on the 𝑘𝑡ℎ attribute does not directly 

influence the strength of attraction towards the ℎ𝑡ℎ option if 𝑞𝑗ℎ𝑘 = 𝑁. 

Note that 𝑞𝑗ℎ𝑘 = 0 in the GDCM-MC has an alternative definition from that of 𝑞𝑗𝑘 = 0 

in the prototypical dichotomous DCM. For example, if the 𝑘𝑡ℎ attribute is a skill, then the 

condition 𝑞𝑗ℎ𝑘 = 0 for an incorrect response to the ℎ𝑡ℎ response option defines that 

lacking a skill makes it more likely that a respondent will select that response option, 
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while 𝑞𝑗ℎ𝑘 = 𝑁 defines that for the ℎ𝑡ℎ response option, whether the respondent lacks or 

possesses the 𝑘𝑡ℎ attribute does not cognitively, or directly, affect their attraction to the 

ℎ𝑡ℎ response option. Thus, the 𝑞𝑗ℎ𝑘 = 𝑁 in the GDCM-MC has the identical definition 

that 𝑞𝑗𝑘 = 0 has in the prototypical dichotomous DCM: Neither lacking or possessing the 

𝑘𝑡ℎ attribute is irrelevant cognitively for the ℎ𝑡ℎ response option. Finally, note that some 

response options may be defined as cognitively neutral such that 𝒒𝑗ℎ =

(𝑁𝑗ℎ1, … , 𝑁𝑗ℎ𝑘, … , 𝑁𝑗ℎ𝐾), which indicates that the option was not specifically designed to 

measure any of the attributes. 

 Assuming the forced choice response imposed by standard multiple-choice 

question formats, it can be hypothesized that a typical strategy for responding to a 

particular item can be classified as one of three types: (1) a cognitive strategy that uses 

the latent class 𝜶𝑖 for the 𝑖𝑡ℎ respondent where 𝜶𝑖 can be defined as the pattern of 

problematic and desirable attributes that are lacked or possessed, (2) guessing strategy 

assumes that selecting each of the ℎ𝑡ℎ response options has an equal probability of 

occurring, and (3) a hybrid strategy, which is modeled as an initial cognitive step, then 

assumes random guessing from the remaining  ℎ𝑡ℎ response options. The probability of 

selecting the ℎ𝑡ℎ response option for the 𝑗𝑡ℎ item is modeled as a mixture of cognitive 

and guessing strategies, conditional on the respondent’s latent class 𝜶. Let 𝐶𝑗 = 𝐶 define 

the use of a cognitive strategy on the 𝑗𝑡ℎ item and 𝐺𝑗 = ~𝐶 define the use of the 

complementary guessing strategy on the 𝑗𝑡ℎ item. Thus, the GDCM-MC mixture model 

for the 𝑗𝑡ℎ item is mathematically expressed as 
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𝑃𝑗(ℎ|𝜶 ) = 𝑃𝑗(ℎ, 𝐶|𝜶) + 𝑃𝑗(ℎ, ~𝐶|𝜶) = 𝑃𝑗(ℎ|𝐶, 𝜶)𝑃𝑗(𝐶|𝜶) + 𝑃𝑗(ℎ|𝐺, 𝜶)𝑃𝑗(𝐺|𝜶) (2.50) 

 

= 𝑃𝑗(ℎ|𝐶, 𝜶)𝝎𝑗,𝜶 +
1

𝐻𝑗
(1 − 𝝎𝑗,𝜶) (2.51) 

∀𝑖 = 1,… ,𝑁 

 

where the conditional probability of applying a cognitive strategy to the 𝑗𝑡ℎ item is 

defined by 𝝎𝑗,𝜶 = 𝑃𝑗(𝐶|𝜶) and 1 − 𝝎𝑗,𝜶 = 𝑃𝑗(𝐺|𝜶) is the conditional probability of a 

guessing strategy to the 𝑗𝑡ℎ item, where guessing is modeled by 𝑃𝑗(ℎ|𝐺, 𝜶) =
1

𝐻𝑗
. Thus, 

the formulation of the GDCM-MC is defined by specifying two components for the ℎ𝑡ℎ 

response option on the 𝑗𝑡ℎ item: (1) the cognitive potions 𝑃𝑗(ℎ|𝐶, 𝜶); (2) the mixing 

portions 𝝎𝑗,𝜶 = 𝑃𝑗(𝐶|𝜶). 

 A set of functions must be selected for the cognitive portions 𝑃𝑗(ℎ|𝐶, 𝜶) of the 

GDCM-MC. Let 𝐹𝑗(ℎ|𝜶) be defined as a function selected for each ℎ𝑡ℎ response option 

on the 𝑗𝑡ℎ item that guides the desired modeling functionality with respect to the 

attractiveness of an option given 𝜶. The conditional probability, 𝑃𝑗(ℎ|𝐶, 𝜶) is defined as  

 

𝑃𝑗(ℎ|𝐶, 𝜶) =
𝐹𝑗(ℎ|𝜶)  

∑ 𝐹𝑗ℎ′(𝜶) 
𝐻𝑗

ℎ′=1

=
𝐹𝑗(ℎ|𝜶) 

𝑆𝑗,𝜶
, (2.52) 

 

where 𝑆𝑗,𝜶 ≡ ∑ 𝐹𝑗(ℎ|𝜶)  
𝐻𝑗
ℎ=1 and 𝐹𝑗(ℎ|𝜶) is defined as the cognitive kernel modeling 

function for the ℎ𝑡ℎ response option on the 𝑗𝑡ℎ item with constraint 𝐹𝑗(ℎ|𝜶)  ≥ 0. Any 

convenient choice of the cognitive kernel functions 𝐹𝑗(ℎ|𝜶) can be imposed for the ℎ𝑡ℎ 
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response option on the 𝑗𝑡ℎ item. However, DiBello et al. (2015) suggest that using any of 

the traditional dichotomous DCM could be used as a link function defining the 

attractiveness of a given option.  The GDCM-MC mixture model defined in Equation 

(2.50) is therefore mathematically expressed for the 𝑗𝑡ℎ item as 

 

𝑃𝑗(ℎ|𝜶 ) = 𝑃𝑗(ℎ|𝐶, 𝜶)𝝎𝑗,𝜶 +
1

𝐻𝑗
(1 − 𝝎𝑗,𝜶) =

𝐹𝑗(ℎ|𝜶) 

𝑆𝑗,𝜶
𝝎𝑗,𝜶 +

1

𝐻𝑗
(1 − 𝝎𝑗,𝜶) (2.53) 

 

with cognitive portion 𝑃𝑗(ℎ|𝐶, 𝜶) =
𝐹𝑗(ℎ|𝜶) 

𝑆𝑗,𝜶
, guessing portion 𝑃𝑗(ℎ|𝐺, 𝜶) =

1

𝐻𝑗
, and 

cognitive mixture probabilities 𝝎𝑗,𝜶 and 1 − 𝝎𝑗,𝜶. 

 As building blocks for the cognitive portion 𝑃𝑗(ℎ|𝐶, 𝜶) =
𝐹𝑗(ℎ|𝜶) 

𝑆𝑗,𝜶
 of the GDCM-

MC, a 𝐹𝑗(ℎ|𝜶) must be selected for each ℎ𝑡ℎ response option, to be monotonically 

increasing as a function of latent class 𝜶 . In this case, monotonically increasing states 

that 𝐹𝑗(ℎ|𝜶) must be larger when 𝜶 = 𝒒𝑗ℎ and smaller as more incongruencies occur 

between 𝜶 and 𝑞𝑗ℎ𝑘 ≠ 𝑁. A feature of the GDCM-MC is that any DCM’s mastery of 

required attributes can be converted to matching the model’s response option link 

vector’s required lack or possession of a set attributes. This type of modeling approach is 

referred to as penalty-for-mismatch heuristic for function 𝐹𝑗(ℎ|𝜶).  

Polytomous Attribute Reparametrized Unified Model 

 The polytomous attribute reparametrized unified model (Templin, 2004) 

incorporates polytomous attributes (or skills) for the RUM model by defining a set of 

general functions that relates the item response function to the level of the attribute. The 
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method for defining the item-attribute relationship as a function of the level of the 

respondent’s 𝛼𝑖𝑘 and the 𝑸 matrix element for the 𝑗𝑡ℎ item, 𝑞𝑗𝑘, is denoted as 

𝑓𝑗𝑘(𝛼𝑖𝑘, 𝑞𝑗𝑘). The unique parameterization of the RUM allows for a natural transition 

from a set of dichotomous attributes 𝛼𝑖𝑘 ∈ {0,1} to a set of polytomous attributes 𝛼𝑖𝑘 ∈

{0,1, … , 𝑝}. Let 𝚫𝑗 represent a collection of item parameters for the RUM where 𝚫𝑗 =

(𝜋𝑗
∗, 𝑟𝑗𝑘

∗ , … , 𝑟𝑗𝐾
∗ ).  The conditional probability of a correct response under the polytomous 

attribute formulation of the RUM is defined by 

 

𝑃(𝑋𝑖𝑗 = 1|𝚫𝑗 , 𝜶𝑖, 𝜃𝑖) = 𝜋𝑗
∗∏[𝑟𝑗𝑘

∗ 𝑓𝑗𝑘(𝛼𝑖𝑘,𝑞𝑗𝑘)]

𝐾

𝑘=1

𝑃𝑐𝑗(𝜃𝑖) (2.54) 

 

where 𝑃𝑐𝑗(𝜃𝑖) is the item response function under the one-parameter logistic model (1PL) 

which is equivalent to the notation in the dichotomous RUM (Hartz, 2002): 

 

𝑃𝑐𝑗(𝜃𝑖) =
exp[𝐷(𝜃𝑖 + 𝑐𝑗)]

1 + exp[𝐷(𝜃𝑖 + 𝑐𝑗)]
. (2.55) 

 

The 𝜃𝑖 represent the continuous latent variable for the 𝑖𝑡ℎ respondent, 𝑐𝑗 is the easiness 

parameter, and 𝐷 is the scaling constant set to 1.701. The 𝑐𝑗 is bounded within the range 

0 < 𝑐𝑗 < 3. The purpose for imposing this constraint on 𝑐𝑗 is that the values within this 

boundary would lead to a maximization of the effect of the non-1PL portion of the item 

response function on the test data. Similar to the RUM (Hartz, 2002), the 𝑐𝑗 can be 

defined as a measure of the completeness of the 𝑸 matrix elements for the 𝑗𝑡ℎ item. A 
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𝑐𝑗 → 0 indicates the attributes defined in 𝑸 matrix does not fully describe the attributes 

necessary for correctly responding to the 𝑗𝑡ℎ item. Thus, the item response function is 

heavily influenced by 𝜃𝑖. In contrast, a 𝑐𝑗 → 3  indicates that the attributes defined in the 

𝑸 matrix fully describe the necessary skills for correctly responding to the 𝑗𝑡ℎ item. Thus, 

the item response function is weakly influenced by 𝜃𝑖. Note that the 𝑃𝑐𝑗(𝜃𝑖) in Equation 

(2.54) is dropped when using the R-RUM. 

 The general nature of 𝑓𝑗𝑘(𝛼𝑖𝑘, 𝑞𝑗𝑘) in the polytomous attribute RUM allows for 

any function of attributes and 𝑸 matrix element to impact the model likelihood. The 

model assumes that ∀𝑘 = 1,… , 𝐾 for 𝛼𝑖𝑘 has discrete skill levels 𝛼𝑖𝑘 ∈ {0,1, … , 𝑝}. The 

constraints placed on the model are defined by 

 

𝑓𝑗𝑘(𝛼𝑖𝑘 = 0, 𝑞𝑗𝑘 = 1) = 1 

𝑓𝑗𝑘(𝛼𝑖𝑘 = 𝑝, 𝑞𝑗𝑘 = 1) = 0 (2.56) 

𝑓𝑗𝑘(𝛼𝑖𝑘 = 1, 𝑞𝑗𝑘 = 1) > 𝑓𝑗𝑘(𝛼𝑖𝑘 = 2, 𝑞𝑗𝑘 = 1) > ⋯ > 𝑓𝑗𝑘(𝛼𝑖𝑘 = 𝑝 − 1, 𝑞𝑗𝑘 = 1) 

 

where the first two constraints define the upper and lower limits of  𝑓𝑗𝑘(𝛼𝑖𝑘, 𝑞𝑗𝑘) whereas 

the third constraint, a monotonic decreasing ordering of 𝑓𝑗𝑘(𝛼𝑖𝑘, 𝑞𝑗𝑘), defines the 

structure of the relationship between the discrete skill levels {0,1, … , 𝑝} and the item 

response function. Respondents where 𝛼𝑖𝑘 = 0 have the complete imposition of the 

penalty parameter 𝑟𝑗𝑘
∗  on the conditional probability of a correct response to the 𝑗𝑡ℎ item, 

while respondents with 𝛼𝑖𝑘 = 𝑝 do not have the imposition of the penalty parameter  𝑟𝑗𝑘
∗  

on the conditional probability of a correct response to the 𝑗𝑡ℎ item. Respondents who 
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possess 0 < 𝛼𝑖𝑘 < 𝑝 have a decreased imposition of the penalty parameter  𝑟𝑗𝑘
∗  to the 

conditional probability of a correct response.  

 Another beneficial property to the parameterization of the polytomous attribute 

RUM is the ability to impose an ordered polytomous skill structure by a small number of 

parameters.  The 𝑓𝑗𝑘(𝛼𝑖𝑘, 𝑞𝑗𝑘) requires 𝑝 − 1 additional parameters for each 𝑸 matrix 

element. Depending on the number of elements in the 𝑸 matrix, the number of 

𝑓𝑗𝑘(𝛼𝑖𝑘, 𝑞𝑗𝑘) parameters can increase exponentially. A constraint can be imposed for 

providing a method of incorporating polytomous skills using a single parameter per skill 

level: 

 

𝑓1𝑘(𝛼𝑖𝑘 = 𝑝, 𝑞𝑗𝑘 = 1) = 𝑓2𝑘(𝛼𝑖𝑘 = 𝑝, 𝑞𝑗𝑘 = 1) = ⋯ = 𝑓𝑗𝑘(𝛼𝑖𝑘 = 𝑝, 𝑞𝑗𝑘 = 1) (2.57) 

∀𝑝 ≠ {0, 𝑙} 

 

where 𝑙 ∈ 𝜶. 

Defining Polytomous Skill Levels in Deterministic Input Noisy “and” Gate Model 

 In the initial stages of learning, student begin to accumulate knowledge about a 

desired skill, then they learn how to apply this skill in simple settings (Karelitz, 2004). As 

a student begins to progress in the learning process, they learn more complex concepts in 

relation to the desired skill and eventually learn how to apply this skill in more complex 

settings. This learning process continues until the student has mastered every aspect of 

the desired skill. When a Q matrix defines skills as only mastery or non-mastery, the 

student’s progress through these learning phases of the desired skill cannot be traced. A 

potential solution to circumvent this limitation is to define each skill as a stage in the 
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learning of a broader skill. However, this can be viewed as an ineffective method for 

organizing such information. Finer division of skill into subskills is not a plausible way to 

improve a DCM diagnostic ability and can introduce more parameters in the model, thus 

making it more complex (DiBello, et al., 1995).  

Karelitz (2004) proposed an ordered-category attribute coding (OCAC) 

framework that uses ordered categories to represent mastery levels of each skill. This 

OCAC framework allows for the number of skills in the design matrix to stay the same, 

while the values within the matrix take on a larger range. Thus, increasing the diagnostic 

power of a model without making it overly complex. The number of mastery states 

increases from two to 𝑚𝑘, where 𝑚𝑘 is defined as the number of finite mastery states for 

the 𝑘𝑡ℎ skill. The levels within each skill are qualitatively ordered with respect to their 

cognitive complexity, or the position in the sequence of learning phases. The various 

levels within each skill represents an increasingly cognitively demands in the acquisition 

and application of each skill. The OCAC framework also allows the levels to be defined 

differently for each skill.  

Certain diagnostic assessments may require various skills, and test developers 

may be interested in diagnosing different aspects of each skill. Consequently, different 

skills may require different number of levels and the definitional structure that defines a 

transition to each level may be different between skills. However, enforcing the same 

definitional structure to all levels across a set of skills may improve the interpretability of 

the diagnostic results. In the OCAC framework, the number of levels for the 𝑘𝑡ℎ skill is 

represented as 𝑚𝑘. To illustrate the how the OCAC framework connects items, attributes, 
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and respondents consider a simple 𝑸 matrix for a diagnostic assessment with 2 skills and 

4 items. Each skill consists of three levels 0, 1, and 2. 

 

Table 5. Simple 𝑸 Matrix 

 

Item 𝑞1 𝑞2 

1 0 1 

2 2 1 

3 1 2 

4 2 2 

 

 

The diagnostic assessment in Table 5 consists of five classes, each with a unique latent 

response pattern as shown in Table 6. 

 

Table 6. Classes and Latent Response Patterns 

 

Class Mastery Levels Latent Response 

𝐶1 {0,0}, {1,0}, {2,0} (0,0,0,0) 

𝐶2 {0,1}, {1,1} {0,2} (1,0,0,0) 

𝐶3 {2,1} (1,1,0,0) 

𝐶4 {1,2} (1,0,1,0) 

𝐶5 {2,2} (1,1,1,1)  

 

 

The 𝑸 matrix and 𝜶 can be jointly represented on a grid-like formation (refer to Karelitz, 

2004 for more detail).  

 An implication of the OCAC framework relates to the number of latent classes 

derived in the 𝑸 matrix. Prototypical formulations of DCM that utilize binary skills 0/1 

have a total of 2𝐾 possible latent classes. Assuming that all the relationships can be 

represented as prerequisites between levels of a skill (e.g., refer to Karelitz (2004) for 
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more detail), the OCAC framework defines the number of latent classes as ∏ 𝑚𝑘
𝐾
𝑘=1 . For 

example, assume the number of skills measured in an OCAC model is 𝐾 = 3 and that the 

number of levels for each skill is 𝑚𝑘 = 3 ∀𝑘. The equivalent binary model will need 𝐾 =

6 skills, resulting in 26 = 64 latent classes, where the OCAC model only results in 

∏ 𝑚𝑘
𝐾
𝑘=1 = 27 latent classes. The 64 latent classes in the binary skills model are mostly 

redundant because there are many prerequisite relations between skills. However, these 

relationships need to be defined independently from the  𝑸 matrix, and the process of 

class reduction must be implemented in the estimation algorithm. The DINA model can 

be extended within the OCAC framework (Karelitz, 2004). Let 𝚫𝑗 = (𝑠𝑗, 𝑔𝑗) be a 

collection of parameters for the 𝑗𝑡ℎ item. The conditional probability of a correct 

response for the 𝑖𝑡ℎ respondent on the 𝑗𝑡ℎ item under the PS-DINA is defined by 

 

𝑃(𝑋𝑖𝑗 = 1|𝚫𝑗 , 𝜉𝑖𝑗
∗ ) = (1 − 𝑠𝑗)

𝜉𝑖𝑗
∗

𝑔(1−𝜉𝑖𝑗
∗ ) (2.58) 

 

where the latent variable 𝜉𝑖𝑗 ∈ {0,1} and is expressed as 

 

𝜉𝑖𝑗
∗ =∏𝐼[𝛼𝑖𝑘 ≥ 𝑞𝑗𝑘]

𝐾

𝑘=1

. (2.59) 

 

where 𝛼𝑖𝑘 ∈ {0,1,2, … ,𝑚𝑘} and the indicator function 𝐼 = 1, when the 𝑖𝑡ℎ respondent’s 

mastery level is at least as high as the item requires, and 𝐼 = 0 otherwise. 
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The Generalized Deterministic Input Noisy “and” Gate Model for Polytomous 

Attributes 

 Defining polytomous attributes in the test developmental process can provide 

additional diagnostic information that may not be available when using binary 0/1 

attribute levels. Specifically, binary attribute levels may not be quite enough to account 

for the relationship between items and so more attribute levels are needed but not a fully 

continuous latent variable like in MIRT. Chen & de la Torre (2013) proposed a 

polytomous generalization of the G-DINA (i.e., pG-DINA) model to accommodate 

polytomous attribute levels. Using the notation from de la Torre (2011) & Chen & de la 

Torre (2013), the pG-DINA involves defining the number of required attributes for the 

𝑗𝑡ℎ item 𝐾𝑗
∗ = ∑ 𝐼(𝑞𝑗𝑘 > 0)

𝐾
𝑘=1  where 𝐼(. ) is the indicator function and 𝑞𝑗𝑘 can take of 

values 0,… ,𝑚,… ,𝑀𝑘 − 1. The 𝑀𝑘 is the number of levels for the 𝑘𝑡ℎ attribute. If the 𝑘𝑡ℎ 

attribute does not require any level of mastery for the 𝑗𝑡ℎ item, then 𝑞𝑗𝑘 = 0. The 

required attributes for the 𝑗𝑡ℎ item can be denoted by the reduced attribute vector 𝜶𝑙𝑗
∗ =

(𝛼𝑙1, … , 𝛼𝑙𝑘, … , 𝛼𝑙𝐾𝑗
∗) where 𝑙 = 1,2, … ,𝑀𝐾𝑗

∗

 and 𝑀𝐾𝑗
∗

 denotes the number of unique 

latent classes. An item with 𝑀 level polytomous attributes will divide respondents into 𝑀 

groups, with each group potentially having its own conditional probability of a correct 

response. The issue with handling such generality would require a model with many 

parameters, and the complexity of the model groups exponentially as the number of 

attribute levels increases.  To make the pG-DINA formulations for polytomous attributes 

more manageable, the items are assumed to distinguish between two latent groups: 

respondents who are on or above a specific attribute level or below this mastery level. 
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Items with this assumption are referred to as specific attribute level mastery (SALM) 

items. Using SALM items, the substantive definition of each attribute level can be 

incorporated into the modeling procedure through a modified Q matrix, as done in the 

ordered-category attribute coding framework (Karelitz, 2004). Specifying 𝑞𝑗𝑘 = 𝑚 for 

the 𝑘𝑡ℎ attribute on the 𝑗𝑡ℎ item, the 𝑀-level 𝛼𝑙𝑘 can collapsed into a dichotomous 

attribute 𝛼𝑙𝑘
∗∗ defined by 

 

𝛼𝑙𝑘
∗∗ = {

0, 𝑖𝑓 𝛼𝑙𝑘 < 𝑞𝑗𝑘
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.60) 

 

where 𝜶𝑙𝑗
∗∗ = (𝛼𝑙1

∗∗, … , 𝛼𝑙𝑘
∗∗, … , 𝛼𝑙𝐾𝑗

∗
∗∗ ) is denoted as the collapsed attribute vector, where 

𝑙 = 1, … , 2𝐾𝑗
∗

. Let’s assume an item measures four attributes 𝐾 = with each attribute 

consisting of three levels 𝑀 = 3 and 𝑸 vector defined as (0,1,2,1) where 𝐾𝑗
∗ = 3. The 

original attribute vector 𝜶𝑙𝑗 with have a total of 𝑀𝐾 = 34 = 81 unique classes, and the 

reduce attribute vector 𝜶𝑙𝑗
∗∗ will have a total of 𝑀𝐾𝑗

∗

= 23 = 8 unique classes. The 

conditional probability of a correct response given a collapsed attribute vector  𝜶𝑙𝑘
∗∗ for 

the 𝑗𝑡ℎ item is defined as 

 

𝑃(𝑋𝑖𝑗|𝜶𝑙𝑗
∗∗) = 𝛿𝑗0 +∑𝛿𝑗𝑘𝛼𝑙𝑘

∗∗

𝐾𝑗
∗

𝑘=1

+ ∑ ∑ 𝛿𝑗𝑘𝑘′𝛼𝑙𝑘
∗∗𝛼𝑙𝑘′

∗∗

𝐾𝑗
∗−1

𝑘=1

𝐾𝑗
∗

𝑘′>𝑘

+⋯+ 𝛿𝑗12…𝐾𝑗
∗∏𝛼𝑙𝑘

∗∗

𝐾𝑗
∗

𝑘=1

(2.61) 

 

where model parameters 𝛿𝑗0, 𝛿𝑗𝑘, 𝛿𝑗𝑘𝑘′ , and 𝛿𝑗12…𝐾𝑗
∗ retain the same interpretation as in 

the G-DINA model. 
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Polytomous Log-Linear Cognitive Diagnosis Model for Polytomous Attributes 

 

 The P-LCDM-PA is an extension of the P-LCDM (Hansen, 2013) and a special 

case of the GPDM (Chen & de la Torre, 2018) using polytomous attributes. Let 𝝎𝑗 be a 

collection of effect (main and interaction) and intercept parameters 𝝎𝑗 = (𝝀𝑗 , 𝝀𝑗,0) for the 

𝑗𝑡ℎ item such that 𝝀𝑗 = (𝜆𝑗,1,(𝑘), … , 𝜆𝑗,2,(𝑘,𝑘′), … , 𝜆𝑗,𝐾𝑗,(1,…,𝐾𝑗)) and 𝝀𝑗,1 =

(𝜆𝑗1,0, … , 𝜆𝑗𝑐,0, … , 𝜆𝑗(𝐶𝑗−1),0). Following the approach of Samejima's (1969) graded 

response IRT model and subsequent multidimensional extensions (e.g., Muraki & 

Carlson, 1995; Gibbons et al., 2007), the conditional probability of a response to the 𝑐𝑡ℎ 

category such that 𝑐 ∈ {0,1, … , 𝐶𝑗 − 1} under the P-LCDM-PA for the 𝑖𝑡ℎ respondent on 

the 𝑗𝑡ℎ item is defined by   

 

𝑃(𝑋𝑖𝑗 = 𝑐| 𝝎𝑗 , 𝜶𝑖) = 𝑃(𝑋𝑖𝑗 ≥ 𝑐| 𝝎𝑗 , 𝜶𝑖) − 𝑃(𝑋𝑖𝑗 ≥ 𝑐 + 1|𝝎𝑗 , 𝜶𝑖) (2.62) 

 

where the set of boundary response probabilities are defined as 

 

𝑃(𝑋𝑖𝑗 ≥ 0| 𝝎𝑗 , 𝜶𝑖) = 1 

𝑃(𝑋𝑖𝑗 ≥ 1| 𝝎𝑗 , 𝜶𝑖) =
1

1 + 𝐸𝑥𝑝[−𝜆𝑗1,0 − 𝝀𝑗
𝑇𝜶𝑖𝑗

∗∗]
 

… 

𝑃(𝑋𝑖𝑗 ≥ 𝑐| 𝝎𝑗 , 𝜶𝑖) =
1

1 + 𝐸𝑥𝑝[−𝜆𝑗𝑐,0 − 𝝀𝑗
𝑇𝜶𝑖𝑗

∗∗]
(2.63) 

…  
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𝑃(𝑋𝑖𝑗 ≥ 𝐶𝑗 − 1| 𝝎𝑗 , 𝜶𝑖) =
1

1 + 𝐸𝑥𝑝 [−𝜆𝑗(𝐶𝑗−1),0 − 𝝀𝑗
𝑇𝜶𝑖𝑗

∗∗]
, 

𝑃(𝑋𝑖𝑗 ≥ 𝐶𝑗|𝝎𝑗 , 𝜶𝑖) = 0. 

 

It’s assumed that all intercept parameters −∞ < 𝜆𝑗1,0, … , 𝜆𝑗𝑐,0, … , 𝜆𝑗(𝐶𝑗−1),0 < ∞, main-

effect parameters 0 ≤ 𝜆𝑗,1,(1), … , 𝜆𝑗,1,(𝑘), … , 𝜆𝑗,1,(𝐾𝑗) < ∞, and interaction-effect 

parameters can be defined as either positive or negative depending on the particular 

submodel constraints place on the P-LCDM-PA. The 𝜶𝑖𝑗
∗∗ =

(𝛼𝑖𝑗,1,(𝑘)
∗∗ , … , 𝛼𝑖𝑗,2,(𝑘,𝑘′)

∗∗ , … , 𝛼𝑖𝑗,𝐾𝑖,(1,…,𝐾𝑖)
∗∗ ) represents a vector of indicator variables for the 

𝑖𝑡ℎ respondent on the 𝑗𝑡ℎ item with respect to either dichotomous or polytomous 

attributes. Furthermore, note that this vector allows for both main effects and interaction 

terms in a similar method as the P-LCDM.  Specifically, the main effect terms of 𝝑𝑖𝑗 are 

defined as 

 

𝛼𝑖𝑗,1,(𝑘)
∗∗ = {

1, 𝑖𝑓 𝛼𝑖𝑘 ≥ 𝑞𝑗𝑘 

0, 𝑒𝑙𝑠𝑒
(2.64) 

∀𝑞𝑗1, … , 𝑞𝑗𝑘, … , 𝑞𝑗𝐾𝑗 ≠ 0 

 

 Again, note that 𝛼𝑖𝑘 can be defined as binary 𝛼𝑖𝑘 ∈ {0,1} or polytomous 𝛼𝑖𝑘 ∈

{0, 1, 2, … , 𝑆𝑘}.  attribute levels.  With respect to the general notation used for 𝜶𝑖𝑗
∗∗, the 

subscript following the first comma in 𝛼𝑖𝑗
∗∗ and 𝜆𝑗 represent the effect-level and the 

parentheses following the second comma include the attribute effect. The remaining 

values in 𝜶𝑖𝑗
∗∗ are defined as a function of the indicator variables, 𝛼𝑖𝑗,1,(𝑘)

∗∗ .  Specifically, 
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once the main effect indicator 𝛼𝑖𝑗,1,(𝑘)
∗∗  is obtained ∀𝑘 = 1,… , 𝐾𝑖, the interaction 

indicators 𝛼𝑖𝑗,2,(𝑘,𝑘′)
∗∗ , … , 𝛼𝑖𝑗,𝐾𝑖,(1,…,𝐾𝑖)

∗∗  are obtained by computing the product of the main 

effects indicated by the subscript. As a result, 𝛼∗∗ = 1 if the respondent has “mastered” a 

single attribute or in the case of an interaction the examinee has “mastered” all attributes 

involved in that interaction. Note that mastery is now used generally such that when the 

attribute is a polytomous attribute then mastery indicates that the level of mastery is at or 

above that of what is required by the item.  If 𝛼∗∗ = 0, the respondent has not mastered 

(i.e., at or above the Q matrix specified level) a single attribute or has not mastered at 

least one attribute in the case of an interaction involving multiple attributes. Note that 𝐾𝑗 

represents the number of required attributes for the 𝑗𝑡ℎ item, where 𝐾𝑗 = ∑ 𝐼[𝑞𝑗𝑘 > 0]
𝐾
𝑘=1  

and 𝐾𝑖 represents the number attributes for the 𝑖𝑡ℎ respondent, where 𝐾𝑖 =

∑ 𝐼[𝛼𝑖𝑘 > 0]
𝐾
𝑘=1 . Table 7 demonstrates how 𝛼∗∗ is obtained as a function of 𝛼 and 𝑞, 

where 𝑞 = (1,2,1): 

 

Table 7. Functional Relationship between 𝛼∗∗ and 𝛼 using 𝑞 = (1,2,1) 
 

𝛼 𝛼1,(1)
∗∗  𝛼1,(2)

∗∗  𝛼1,(3)
∗∗  𝛼2,(1,2)

∗∗  𝛼2,(1,3)
∗∗  𝛼2,(2,3)

∗∗  𝛼3,(1,2,3)
∗∗  

(0,0,0) 0 0 0 0 0 0 0 

(1,0,0) 1 0 0 0 0 0 0 

(1,0,1) 1 0 1 0 1 0 0 

(0,2,1) 0 1 1 0 0 1 0 

(1,1,2) 1 0 1 0 1 0 0 
(0,2,0) 0 1 0 0 0 0 0 

(1,2,1) 1 1 1 1 1 1 1 

(2,2,2) 1 1 1 1 1 1 1 
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Given the set of weights, 𝝀𝑗 , and the set of indictors for main effects and interactions 

“mastery”, 𝜶𝑖𝑗
∗∗, the linear combination of 𝝀𝑗   and 𝜶𝑖𝑗

∗∗ can be represented as 

 

𝝀𝑗
𝑇𝜶𝑖𝑗

∗∗ = 𝜆𝑗,1,(𝑘)𝛼𝑖𝑗,1,(𝑘)
∗∗ +⋯+ 𝜆𝑗,2,(𝑘,𝑘′)𝛼𝑖𝑗,2,(𝑘,𝑘′)

∗∗ +

…+ 𝜆𝑗,𝐾𝑗,(1,…,𝐾𝑗)𝛼𝑖𝑗,𝐾𝑖,(1,…,𝐾𝑖)
∗∗ (2.65)

 

 

 Because the P-LCDM-PA is an extension of the P-LCDM, which is a general 

model, a property of the P-LCDM-PA is that there exists a mathematical relationship 

such that a set of constraints placed on the P-LCDM-PA can correspond to the natural 

definition of noncompensatory and compensatory models for polytomous responses. 

Furthermore, it would be possible to first fit the unconstrained P-LCDM-PA as a method 

to investigate the nature of the relationships between attribute mastery (i.e., defined as 

greater that the Q matrix defined cutoff) and the conditional probability of a response at 

an item-by-item basis. Depending on the estimates, the unconstrained P-LCDM-PA may 

then be used to suggest specific reduced models that align with the particular patterns of 

the original model estimates.  Specifically, it is possible to place constraints on these 

parameters such that the P-LCDM-PA reduces to many of the models familiar in the 

literature (e.g., DINA, DINO, or C-RUM). Another property of the P-LCDM-PA is that 

the model can be used to define polytomous graded response models that are natural 

extensions to the DINA, DINO, and C-RUM for polytomous attributes, which is 

discussed in Chapter III. 
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Parameter Estimation Algorithms 

Background 

 Estimation of CDM is a very critical step in research and practice, like any 

statistical model, when it comes to making inferences about our population of interest. 

Popular estimation algorithms used to estimate the CDM discussed in the previous 

sections is the expectation-maximization (EM; Bock & Aitkin, 1981) algorithm and 

Markov chain Monte Carlo (Junker, Patz & VanHoudnos, 2016) algorithms. The 

stochastic expectation-maximization (SEM; Diebolt & Ip, 1994a, 1994b) and Metropolis-

Hastings Robbins-Monro (MH-RM; Cai, 2010a, 2010b) are two estimation algorithms 

that have been used to estimate other multidimensional models (e.g., refer to Diebolt & 

Ip, 1994a, 1994b; Cai, 2010a, 2010b; Monroe & Cai, 2014) but have never been 

implemented for estimating CDM. The following sections will provide a detailed 

discussion of the EM algorithm, MCMC algorithm, SEM algorithm, and MH-RM 

algorithm in the context of estimating CDM. 

Expectation-Maximization Algorithm 

 The EM algorithm is an iterative procedure for finding maximum likelihood 

estimates of parameters associated with probabilistic models in the presence of 

unobserved latent variables (Baker & Kim, 2004). The algorithm consists of two steps; 

the expectation step and the maximization step. The expectation step in the algorithm 

involves replacing the unknown latent variables of a model with their corresponding 

expected values, given that the item parameters have been estimated in the previous 

iteration of the algorithm (Rupp, et al., 2010). Because the latent variables are classes in 
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CDM, this step in the algorithm utilizes the probability that any given respondent has the 

potential of being classified within each latent class given the responses.  

 Treating response patterns as fixed once observed, the observed-data likelihood 

function is denoted as 𝐿(𝝎|𝑿) (Cai, 2010a, 2010b; Monroe & Cai, 2014). In the 

maximization step, instead of maximizing 𝐿(𝝎|𝑿) directly, the observed-data estimation 

problem can be transformed into a sequence of complete-data estimation problems by 

iteratively maximizing the conditional expectation of 𝐿(𝝎|𝒀) over 𝑓(𝜶|𝝎,𝑿), where 

𝐿(𝝎|𝒀) is the complete-data likelihood, and 𝑓(𝜶|𝝎,𝑿) denotes the posterior predictive 

distribution of the missing data 𝜶 given observed-data 𝑿 and parameters 𝝎 (Dempster, 

Laird, & Rubin, 1977). In (𝝎|𝒀), the variable 𝒀 = (𝑿, 𝜶) is denoted as the complete-

data. Convergance results (Wu, 1983) show that successive EM iterations will result in a 

(local) maximizer of 𝐿(𝝎|𝑿). The iterative approach to the algorithm is summarized as 

follows: 

1) Initialize parameters 𝝎(𝑡−1) = 𝝎∗. 

2) Expectation step: Evaluate the posterior predictive distribution of the latent 

variable 𝑓(𝜶|𝝎(𝑡−1), 𝑿) using old parameters 𝝎(𝑡−1). Then the expected 

complete-data log-likelihood, under this distribution is defined as 

 

𝑄(𝝎(𝑡)|𝝎(𝑡−1)) =∑𝑙𝑜𝑔𝐿(𝝎(𝑡)|𝒀)𝑓(𝜶|𝝎(𝑡−1), 𝑿)

∀𝜶

. (2.66) 

 

3) Maximization step: Update parameters 𝝎 to maximize the expected complete-data 

log-likelihood 
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𝝎(𝑡) = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝝎

𝑄(𝝎(𝑡)|𝝎(𝑡−1)) . (2.67) 

 

4) Check convergence criterion 𝜖 such that ‖𝝎(𝑡) −𝝎(𝑡−1)‖ <  𝜖, else return to Step 

2 if condition not satisfied. 

Computing 𝑄(𝝎(𝑡)|𝝎(𝑡−1)) is equivalent to finding the following two quantities 

 

𝑛𝑙
(𝑡−1) =∑𝑓(𝜶𝑙|𝝎

(𝑡−1), 𝑿𝑖) =∑
𝐿(𝑿𝑖|𝝎

(𝑡−1), 𝜶𝑙)𝑓
(𝑡−1)(𝜶𝑙)

∑ 𝐿(𝑿𝑖|𝝎
(𝑡−1), 𝜶)𝑓(𝑡−1)(𝜶)∀𝜶

𝑁

𝑖=1

𝑁

𝑖=1

(2.68) 

 

𝑟𝑙𝑗𝑐
(𝑡−1) =∑𝐼[𝑋𝑖𝑗 = 𝑐]𝑓(𝜶𝑙|𝝎

(𝑡−1), 𝑿𝑖) =∑𝐼[𝑋𝑖𝑗 = 𝑐]
𝐿(𝑿𝑖|𝝎

(𝑡−1), 𝜶𝑙)𝑓
(𝑡−1)(𝜶𝑙)

∑ 𝐿(𝑿𝑖|𝝎
(𝑡−1), 𝜶)𝑓(𝑡−1)(𝜶)∀𝜶

𝑁

𝑖=1

𝑁

𝑖=1

(2.69) 

 

𝑓(𝑡)(𝜶𝑙) =
𝑛𝑙
(𝑡−1)

𝑁
(2.70) 

 

where 𝑛𝑙 represents the expected frequency of respondents belonging to the 𝑙𝑡ℎ latent 

class, 𝑟𝑙𝑗𝑐 represents the expected frequency of respondents belonging to the 𝑙𝑡ℎ latent 

class who responded to the 𝑐𝑡ℎ category for the 𝑗𝑡ℎ item, and 𝑓(𝑡)(𝜶𝑙) is the prior 

distribution for ∀𝜶. The indicator function 𝐼[𝑋𝑖𝑗 = 𝑐] evaluates to 1 when 𝑋𝑖𝑗 = 𝑐, 

otherwise 0. The maximization of 𝑄(𝝎(𝑡)|𝝎(𝑡−1)) is equivalent to first finding the 

following quantities once 𝑛𝑙
(𝑡−1)

 and 𝑟𝑙𝑗𝑐
(𝑡−1)

 are obtained 

 

𝑔(𝝎𝑗
(𝑡)|𝝎(𝑡−1)) = ∇𝝎𝑄(𝝎

(𝑡)|𝝎(𝑡−1)) =
𝜕𝑄(𝝎(𝑡)|𝝎(𝑡−1)) 

𝜕𝝎𝑗
(2.71) 
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𝐻(𝝎𝑗
(𝑡)|𝝎(𝑡−1)) = ∇𝝎

𝟐𝑄(𝝎(𝑡)|𝝎(𝑡−1)) =
𝜕2𝑙𝑜𝑔𝑄(𝝎(𝑡)|𝝎(𝑡−1)) 

𝜕𝝎𝑗𝜕𝝎𝑗
′ (2.72) 

 

where 𝑔(𝝎𝑗
(𝑡)|𝝎(𝑡−1)) is a gradient vector of (2𝐾𝑗 − 1) + (𝐶𝑗 − 1) × 1 dimensions for 

the complete-data log-likelihood and 𝐻(𝝎𝑗
(𝑡)
|𝝎(𝑡−1)) be the complete-data information 

matrix of (2𝐾𝑗 − 1) + (𝐶𝑗 − 1) × (2
𝐾𝑗 − 1) + (𝐶𝑗 − 1) dimensions of for the 𝑗𝑡ℎ item. 

Once 𝑔(𝝎𝑗
(𝑡)|𝝎(𝑡−1))  and 𝐻(𝝎𝑗

(𝑡)|𝝎(𝑡−1)) have been solved, an iterative Newton-

Raphson optimization method with a predetermined convergence criterion 𝜖 can be 

implemented to obtain a new set of parameters for the 𝑡𝑡ℎ iteration in the algorithm, 

 

𝝎𝑗
(𝑡) = 𝝎𝑗

(𝑡−1) + 𝐻(𝝎𝑗
(𝑡)|𝝎(𝑡−1))

−1

𝑔(𝝎𝑗
(𝑡)|𝝎(𝑡−1)) (2.73) 

 

where 𝐻(𝝎𝑗
(𝑡)|𝝎(𝑡−1))

−1

is the inverse of the complete-data information matrix for the 

𝑗𝑡ℎ item. It’s important to note that a Newton-Raphson optimization method is not always 

needed in maximum likelihood estimation. There are cases when the maximum value of a 

parameter can be determined in closed form (i.e., where the first derivative is zero and 

second derivative is negative). A fundamental property of the algorithm assumes that the 

updated guess 𝝎(𝑡) will never be less likely that the previous guess 𝝎(𝑡−1) 

(monotonicity). However, there is no guarantee that the sequence of {𝝎(0), 𝝎(1), … } 

coverages to a global maximum. 
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Markov Chain Monte Carlo Algorithm 

 Maximum likelihood estimation, described in the previous section, involves the 

determination of a set of parameter estimates that maximize the value of the likelihood 

function. Bayesian estimation focuses on determining a set of parameter values that 

maximizes the joint posterior distribution of all parameters (Rupp, et al., 2010).  

However, from a numerical standpoint, directly maximizing the joint posterior 

distribution of all parameters be very difficult. MCMC algorithms have been proposed to 

circumvent this problem by sampling from the posterior distribution, rather than 

maximizing it. MCMC describes a family of algorithms for simulating data (i.e., Monte 

Carlo simulation) using a statistical sequence of random draws that is known as a Markov 

chain {𝜔(𝑡)}. By imposing these steps in a way, it is possible to simulate values that are 

from a specific distribution, referred to as the stationary distribution, which is the 

distribution to which the {𝜔(𝑡)}  converges as 𝑡 → ∞ (Patz & Junker, 1999; Junker, Patz 

& VanHoudnos, 2016). The essential idea is to define a stationary Markov chain 

Μ0, Μ1, Μ2… with states  Μ𝑡 = {𝜔
(𝑡)} and transition kernel  

 

𝜅(𝜔(1)|𝜔(0)) = 𝑃[Μ𝑡 = {𝜔
(1)}|Μ𝑡 = {𝜔

(0)}], ∀𝑡 (2.74) 

 

where the probability of moving to a new state 𝜔(1) given the current state 𝜔(0) with 

stationary distribution Ψ(𝜔) assuming 𝜔 is continuous is defined by 

 

Ψ(𝜔(1)) = ∫𝜅(𝜔(1)|𝜔(0))Ψ(𝜔(0))𝑑𝜔(0)

𝜔

. (2.75) 
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Once the transition kernel 𝜅(𝜔(1)|𝜔(0)) is defined such that Ψ(𝜔) = 𝑓(𝜔|𝜶, 𝑿), then 

removing the first 𝑚0 observations – the “burn-in” period before the distribution of  Μ𝑡 

has converged to stationary distribution 𝑓(𝜔|𝜶, 𝑿) – the “retained” observations 

 

{𝜔(1)} = Μ𝑚0+1, {𝜔
(2)} = Μ𝑚0+2, … , {𝜔

(𝑀)} = Μ𝑚0+𝑀 (2.76) 

 

can be treated like dependent draws from  𝑓(𝜔|𝜶, 𝑿). Given the “retained” observations, 

an expected a-posteriori (EAP) estimate of an integrable function 𝑓(𝜔) can be obtained 

simply by  

 

𝐸[𝑓(𝜔|𝑿)] = ∫𝑓(𝜔|𝜶, 𝑿)𝑓(𝜔)𝑑𝜔

𝜔

(2.77) 

 

with convergence as 𝑡 → ∞. Note that the transition kernel 𝜅(𝜔(1)|𝜔(0)) can be 

constructed such that the stationary distribution of the Markov chain is that of the 

posterior distribution 𝑓(𝜔|𝜶, 𝑿). For example, let (𝜔1, 𝜔2) be a disjoint partition block 

the parameter vector 𝝎 into two blocks of parameters. A short calculation verifying 

Equation (2.75) shows that 

 

𝜅(𝜔(1)|𝜔(0)) = 𝑓(𝜔1
(1)|𝜔2

(0), 𝜶, 𝑿)𝑓(𝜔2
(1)|𝜔1

(1), 𝜶, 𝑿) (2.78) 

 

  has a stationary distribution 𝑓(𝜔|𝜶, 𝑿).  

 An MCMC algorithm is simplest to implement when the complete conditionals 

can be written in closed form and can be sampled from directly. In this scenario, the 

MCMC algorithm is referred to as a Gibbs sampler (Patz & Junker, 1999; Junker, Patz & 
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VanHoudnos, 2016). Assume that (𝜔1, 𝜔2, … , 𝜔𝐽) is a fixed disjoint partition of the 

parameter vector 𝝎. A Gibbs sampling procedure is defined to move from Μ𝑡−1 =

(𝜔1
(𝑡−1)

, 𝜔2
(𝑡−1)

, … , 𝜔𝐽
(𝑡−1)

) to Μ𝑡 = (𝜔1
(𝑡)
, 𝜔2

(𝑡)
, … , 𝜔𝐽

(𝑡)
) in the Markov chain  

 

𝑆𝑎𝑚𝑝𝑙𝑒 𝜔1
(𝑡)~𝑓(𝜔1|𝜔2

(𝑡−1), … , 𝜔𝐽
(𝑡−1), 𝜶, 𝑿) 

𝑆𝑎𝑚𝑝𝑙𝑒 𝜔2
(𝑡)~𝑓(𝜔2|𝜔1

(𝑡), 𝜔3
(𝑡−1), … , 𝜔𝐽

(𝑡−1), 𝜶, 𝑿) 

⋯ (2.79) 

𝑆𝑎𝑚𝑝𝑙𝑒 𝜔𝑗
(𝑡)~𝑓(𝜔𝑗|𝜔1

(𝑡), … , 𝜔𝑗−1
(𝑡) , 𝜔𝑗+1

(𝑡−1), … , 𝜔𝐽
(𝑡−1), 𝜶, 𝑿) 

⋯ 

𝑆𝑎𝑚𝑝𝑙𝑒 𝜔𝐽
(𝑡)~𝑓(𝜔𝐽|𝜔1

(𝑡), … , 𝜔𝐽−1
(𝑡) , 𝜶, 𝑿) 

 

where 𝑓(. ) is defined as the full conditional densities for 𝜔1
(𝑡)
, 𝜔2

(𝑡)
, … , 𝜔𝐽

(𝑡)
 because the 

distribution of each partition element 𝜔𝑗 is expressed conditional on all other parameters, 

latent variables 𝜶 and data 𝑿 in the model. For notational clarity, the full conditional 

densities are defined as 𝑓(𝜔𝑗|𝜔−𝑗) where 𝜔−𝑗 represents all other parameters except 𝜔𝑗. 

An extension of the calculations in Equation (2.78) can show that the kernel density 

𝜅(𝜔(𝑡)|𝜔(𝑡−1)) has 𝑓(𝜔|𝜶, 𝑿) as its stationary distribution such that the kernel density 

consists of the product of the complete conditional densities 

 

𝜅(𝜔(𝑡)|𝜔(𝑡−1)) = 𝑓(𝜔1
(𝑡)|𝜔−𝑗, 𝜶, 𝑿) × 𝑓(𝜔2

(𝑡)|𝜔−𝑗, 𝜶, 𝑿) × …× 𝑓(𝜔𝐽
(𝑡)|𝜔−𝑗, 𝜶, 𝑿). (2.80) 
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It’s important to note that each of the full conditional densities are proportional to the 

joint density as a function of its block of parameters e.g., 

 

𝑓(𝜔1|𝜔2
(𝑡−1), … , 𝜔𝐽

(𝑡−1),𝜶,𝑿) =
𝐿( 𝑿|𝜔1

(𝑡−1), 𝜔2
(𝑡−1), … , 𝜔𝐽

(𝑡−1), 𝜶)𝑓(𝜔1
(𝑡−1), 𝜔2

(𝑡−1), … , 𝜔𝐽
(𝑡−1))

∫ 𝐿( 𝑿|𝜔1
(𝑡−1), 𝜔2

(𝑡−1), … , 𝜔𝐽
(𝑡−1), 𝜶)𝑓(𝜔1

(𝑡−1), 𝜔2
(𝑡−1), … , 𝜔𝐽

(𝑡−1))𝑑𝜔1𝜔1

∝ 𝑓( 𝑿|𝜔1
(𝑡−1), 𝜔2

(𝑡−1), … , 𝜔𝐽
(𝑡−1), 𝜶)𝑓(𝜔1

(𝑡−1), 𝜔2
(𝑡−1), … , 𝜔𝐽

(𝑡−1)) (2.81)

 

 

as a function of 𝜔1, holding all other blocks (𝜔2, 𝜔3, … , 𝜔𝐽), latent variables 𝜶, and data 

𝑿 fixed. Thus, when the likelihood 𝐿 ( 𝑿|𝜔1
(𝑡−1), 𝜔2

(𝑡−1), … , 𝜔𝐽
(𝑡−1), 𝜶) and prior 

𝑓 (𝜔1
(𝑡−1), 𝜔2

(𝑡−1), … , 𝜔𝐽
(𝑡−1)) factor into a product of terms involving separate blocks of the 

partition it is easy to “pick out” a function proportional to the complete conditional, by 

simply retaining those terms in the joint density that depend on 𝜔1. 

 The full conditional densities are typically difficult to directly sample from, but 

they can be specified up to a proportionality constant i.e., refer to Equation (2.81). This 

specification of a proportionality constant suggests the Gibbs sampling procedure can be 

coupled with the Metropolis-Hastings algorithm (MH; Patz & Junker, 1999; Hastings, 

1970; Metropolis et. al., 1953), which utilizes an accept/reject sampling method.  The 

concept of the MH algorithm is such that at each step, sample 𝜔𝑗
(𝑡)~𝑞(𝜔𝑗

(𝑡)|𝜔𝑗
(𝑡−1)), 

where 𝑞(𝜔𝑗
(𝑡)|𝜔𝑗

(𝑡−1)) is defined as the proposal density. Once  𝜔𝑗
(𝑡) has been sampled, 

the probability of accepting proposed state 𝜔𝑗
(𝑡) given previous state 𝜔𝑗

(𝑡−1) is defined 

by 

 

𝛼∗(𝜔𝑗
(𝑡)|𝜔𝑗

(𝑡−1)) = 𝑚𝑖𝑛 {
𝑓(𝜔𝑗

(𝑡)|𝜔−𝑗, 𝜶, 𝑿)𝑞(𝜔𝑗
(𝑡−1)|𝜔𝑗

(𝑡))

𝑓(𝜔𝑗
(𝑡−1)|𝜔−𝑗, 𝜶, 𝑿)𝑞(𝜔𝑗

(𝑡)|𝜔𝑗
(𝑡−1))

, 1} . (2.82) 
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The proposal density can be chosen to be any convenient density e.g.,  

1) Normal random walk Metropolis-Hastings which involves taking the proposal 

density 𝑞(𝜔𝑗
(𝑡)|𝜔𝑗

(𝑡−1)) = 𝑞(𝜔𝑗
(𝑡)), independent of 𝜔𝑗

(𝑡−1). 

2) Independence Metropolis-Hastings which involves taking the proposal 

density 𝑞(𝜔𝑗
(𝑡)|𝜔𝑗

(𝑡−1)) = 𝑁(𝜇 = 𝜔𝑗
(𝑡−1), 𝜎2), a normal density with  mean of 

𝜔𝑗
(𝑡−1) and variance of 𝜎2. 

An important note to mention is that if 𝑞(. ) is symmetric in 𝜔𝑗
(𝑡) and 𝜔𝑗

(𝑡−1), then the 

𝑞(. ) terms in Equation (2.82) cancel, and the algorithm tends to move toward the mode 

of 𝑓(𝜔𝑗
(𝑡)|𝜔−𝑗, 𝜶, 𝑿) (Junker, Patz & VanHoudnos, 2016). In addition, if 

𝑓(𝜔𝑗
(𝑡)|𝜔−𝑗, 𝜶, 𝑿) = 𝑞(𝜔𝑗

(𝑡)|𝜔𝑗
(𝑡−1)) and 𝑓(𝜔𝑗

(𝑡−1)|𝜔−𝑗, 𝜶, 𝑿) = 𝑞(𝜔𝑗
(𝑡−1)|𝜔𝑗

(𝑡)) then 

the MH algorithm reduces to a Gibbs sampler such that we are always sampling from 

𝑓(𝜔𝑗
(𝑡)|𝜔−𝑗, 𝜶, 𝑿) and always accepting 𝜔𝑗 with 𝛼∗ = 1, which implies that the Gibbs 

sampler is a special case of the MH algorithm.  

Stochastic Expectation-Maximization Algorithm 

 The SEM algorithm is a flexible and powerful algorithm with the capabilities to 

handle complex models, especially those for which the EM is difficult to implement 

(Diebolt & Ip, 1994). When implementing the SEM, the missing data 𝜶 with at each 𝑡𝑡ℎ 

iteration is “filled-in” with a single draw 𝑓(𝜶|𝝎,𝑿) using the MH algorithm, thus 

forming a complete-data solution 𝒀 = (𝑿, 𝜶). Note that 𝜶 is assumed to have some 

population distribution 𝑓(𝜶). Using this complete-data set, 𝑙𝑜𝑔𝐿(𝝎|𝒀) is directly 

maximized to obtain a maximum likelihood estimate for 𝝎.  Note that this maximum is 
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usually determined by a method such as the Newton-Raphson optimization method. 

Alternating between the stochastic imputation step and maximization step generates a 

Markov chain {𝝎(𝑡)} that coverages to a stationary distribution 𝑓(𝝎|𝒀) under mild 

conditions (Ip, 1994). The stationary distribution is approximately centered at the 

maximum likelihood estimates of 𝝎(𝑡) and has a variance that depends on the rate of 

change of 𝝎(𝑡) in the maximization step. Typically, a certain number of iterations, 𝑡𝑜, are 

required as a “burn-in” period, allowing {𝝎(𝑡)} to approach its stationary distribution. 

The iterative approach to the algorithm is summarized as follows (Grünewald, 

Humphreys, & Hössjer, 2010): 

1) Select a starting parameter value 𝝎(𝑡−1) = 𝝎∗. Set 𝑡 = 1. 

2) Stochastic imputation step involves simulating 𝑀 = 1 set of missing data 𝜶(𝑡) =

(𝜶1
(𝑡)
, … , 𝜶𝑁

(𝑡)
)~𝜶|𝑿,𝝎(𝑡−1) using a MH algorithm in the same way as described in the 

previous section discussing MCMC. Set 𝒀𝑡 = (𝑿, 𝜶
(𝑡)) and compute 𝑙𝑜𝑔𝐿(𝝎(𝑡−1)|𝒀𝑡), 

which is defined as the Monte Carlo approximation of the complete-data log-likelihood 

of the observed-data set, using the single imputed sample, 𝜶(𝑡). Because 𝜶 is assumed to 

be sample independent for each respondent, the probability of accepting proposed state 

𝜶𝑖
(𝑡)

 given previous state 𝜶𝑖
(𝑡−1)

 for the 𝑖𝑡ℎ respondent is defined by 

 

𝛼∗(𝜶𝑖
(𝑡)|𝜶𝑖

(𝑡−1)) = 𝑚𝑖𝑛 {
𝑓(𝜶𝑖

(𝑡)|𝜶−𝑖, 𝝎, 𝑿)𝑞(𝜶𝑖
(𝑡−1)|𝜶𝑖

(𝑡))

𝑓(𝜶𝑖
(𝑡−1)|𝜶−𝑖, 𝝎, 𝑿)𝑞(𝜶𝑖

(𝑡)|𝜶𝑖
(𝑡−1))

, 1} . (2.83) 
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3) Maximization step involves obtaining a new parameter estimates that maximizes 

𝑙𝑜𝑔𝐿(𝝎(𝑡−1)|𝒀𝑡):  

 

𝝎(𝑡) = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝝎

𝑙𝑜𝑔𝐿(𝝎(𝑡−1)|𝒀𝑡) (2.84) 

 

4) Set 𝑡 − 1 = 𝑡. If 𝑡 ≤ 𝑇 + 𝑡𝑜, go to Step 2, otherwise compute: 

 

�̃� =
1

𝑇
∑ 𝝎(𝑡)
𝑇+𝑡𝑜

𝑡=𝑡𝑜+1

(2.85) 

 

The 𝑇 represents the total number of retained 𝜔 estimates to be averaged over and recall 

𝑡0 represents the burn-in. Finding a new set of parameter estimates 𝝎(𝑡) in Step 3 that 

maximizes 𝑙𝑜𝑔𝐿(𝒀𝑡|𝝎
(𝑡−1)) can be done using the Newton-Raphson optimization 

method. However, for the SEM, a single iterative approach in the Newton-Raphson 

optimizer is sufficient enough for obtaining the maximum likelihood estimates (Diebolt 

& Ip, 1994a, 1994b). 

Metropolis-Hastings Robbins-Monto Algorithm 

 Recently, Cai (2010a; 2010b) introduced a flexible framework for estimating 

parameters of statistical models by coupling two algorithms to formulate a joint 

estimation framework that addresses many of the less appealing features of strictly 

MCMC and maximum likelihood approaches (Chalmers & Flora, 2014). The MH-RM 

algorithm, like MCMC estimation, jointly estimates both item and ability parameters by 

utilizing a stochastically imputed complete-data solution with some assumed population 
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distribution for the latent variable to exploit on a more manageable complete-data 

likelihood approach. The MH-RM algorithm combines the process of stochastic 

imputation through a MH algorithm with a RM (Robbins & Monro, 1951) root-finding 

algorithm for noise-corrupted functions. The iterative algorithm can be partitioned into 

three stages: 1) perform 𝑏 burn-in SEM iterations, 2) collect 𝑐 iterations of 𝝎 and find the 

average of this set, �̃�, and 3) then perform the MH-RM stage until the model converges 

with a predetermined tolerance level. The MH-RM stage begins estimation with the 

initial parameter estimates 𝝎(𝑡−1) = �̃� and recursively completes the following steps: 

1) The stochastic imputation step involves stochastically impute an 𝑁 × 𝐾 matrix of 

missing latent classes 𝜶(𝑡) = (𝜶1
(𝑡)
, … , 𝜶𝑁

(𝑡)
)~𝜶|𝑿,𝝎(𝑡−1) with a MH algorithm 𝑀 times. 

Because 𝜶 is assumed to be sample independent for each respondent, the probability of 

accepting proposed state 𝜶𝑖
(𝑡)

 given previous state 𝜶𝑖
(𝑡−1)

 for the 𝑖𝑡ℎ respondent is defined 

by Equation (2.83). 

2) For the stochastic approximation step, using Fisher’s identity, approximation of the 

observed-data gradient is done by using the sample average of the complete-data gradients, 

 

�̃�𝑗+1 =
1

𝑀
∑ 𝑔(𝝎𝑗

(𝑡)|𝒀)

𝑀

𝑚=1

(2.86) 

 

and a recursive approximation of the conditional expectation of the complete-data 

information matrix, 
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𝚪𝑗+1 = 𝚪𝑗 + 𝛾𝑡 {
1

𝑀
∑ −𝐻(𝝎𝑗

(𝑡)|𝒀)

𝑀

𝑚=1

− 𝚪𝑗} (2.87) 

 

that allows for effectively speeding up convergence. Here, 𝚪𝑗 represents a 𝑑 × 𝑑 positive 

definite symmetric matrix, where 𝑑 is the total number of item parameters to be estimated 

for the 𝑗𝑡ℎ item. The initial choice of 𝚪 can be arbitrary (e.g., identity matrix) in the initial 

step of the algorithm. 

3) In the RM update step, a new set of item parameter estimates are proposed, 

 

𝝎𝑗
(𝑡) = 𝝎𝑗

(𝑡−1) + 𝛾𝑡(𝚪𝑗+1
−𝟏 �̃�𝑗 ). (2.88) 

 

4) Check convergence criterion 𝜖 such that ‖𝝎(𝑡) −𝝎(𝑡−1)‖ <  𝜖, else return to Step 1 if 

condition not satisfied. 

The 𝛾𝑡 in Equations (2.87) and (2.88) is referred to as gain constants. The gain constants 

purpose is to scale the updates and serve to slowly average out the noise in the 

approximation to the complete-data gradients. Thus, 𝛾𝑡 needs to slowly decrease to zero, 

which can be ensured by the following conditions: 

 

𝛾𝑡 ∈ (0, 1],∑𝛾𝑡

∞

𝑡=1

= ∞, and ∑𝛾𝑡
2

∞

𝑡=1

< ∞. (2.89) 

 

Note if 𝛾𝑡 decreases too quickly, the 𝝎 estimates may stabilize prematurely before the 

maximum likelihood estimate is reached. Alternatively, if 𝛾𝑡 decreases too slowly, the 𝝎 

estimates may never stabilize (Monro & Cai, 2014). The algorithm handles the inherent 
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noise-corrupted stochastic imputation procedure by using the RM root-finding algorithm 

to stabilize both the updates and the information matrix (Chalmers & Flora, 2014). In this 

way, the inaccuracies borne from the MH algorithm are adequately accounted for when 

attempting to maximize the complete-data log-likelihood, and subsequent standard errors 

can be computed appropriately using Louis’s (1982) complete-data method (refer to Cai, 

2010a).  

Summary of Research Study 

 The primary goal of this study was to provide an extension of the P-LCDM 

GPDM to allow for polytomous attributes, which may have use in the exploration of 

learning progressions or when dichotomous attributes are an over simplification of the 

abilities of interest.  Then, due to the potential of exponentially increasing the number of 

latent classes, explore the feasibility and efficiency in addition to the quality of parameter 

estimation of the SEM and MH-RM algorithms relative to the EM algorithm. Note that 

while the polytomous attribute case provides one example for when computational 

burden can be challenging, a similar challenge can occur when the number of 

dichotomous attributes becomes large.  This study introduces the SEM and MH-RM 

algorithms as computationally faster methods for estimating parameters of a CDM when 

many latent classes are present in a diagnostic assessment. The EM algorithm can be a 

computationally slow method for estimating parameters of a CDM when many latent 

classes are present in a diagnostic assessment. The EM algorithm is typically slow 

because the E-step involves computing the posterior probability of every latent class for 

each given respondent. This computation becomes even challenging at a much faster rate 
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(i.e., even when measuring six to eight attributes) when polytomous attributes are 

introduced in the model because the number of latent classes is then represented as 

∏ 𝑆𝑘
𝐾
𝑘=1 , where 𝑆𝑘 represents the number of attribute levels for the 𝑘𝑡ℎ attribute. With 

respect to the comparison of SEM and MH-RM to the EM algorithm, recall the three 

research questions motivating this study are: 

1) To what extent does the SEM and MH-RM algorithms show to be 

computationally faster when compared to the EM algorithm as the number of 

latent classes increases? 

2) How accurately are the item parameters of the P-LCDM-PA submodels estimated 

when comparing the SEM, MH-RM, and EM algorithms for estimation? 

3) How accurately are examinees attributes (and attribute patterns) estimated when 

using the SEM, MH-RM, and EM algorithms to estimate the P-LCDM-PA 

submodels? 
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CHAPTER III 

 

METHODOLOGY 

 

 

Background 

 This study looks to using the P-LCDM for polytomous attributes, which is a 

special case of the GPDM for polytomous attributes. Recall that the P-LCDM models 

ordinal responses using the LCDM with multiple intercepts while all effect-level 

parameters are held constant across all category thresholds.  Such an extension to the 

LCDM for an ordinal response is consistent with the graded response model in IRT 

literature (i.e., refer to Samejima, 1969), and the subsequent multidimensional extensions 

(e.g., Muraki & Carlson, 1995; Gibbons et al., 2007). In contrast the GPDM generalized 

the P-LCDM to allow for multiple intercepts and multiple effect-level parameters to be 

estimated across each category threshold. Although both approaches are general models 

that subsume many constrained ordinal response models, which are extensions of models 

previously introduced in the literature, Hansen (2013) and Chen and de la Torre (2018) 

did not provide a detailed description of these respective submodels (e.g., ordinal 

response extension for the DINA, DINO, and C-RUM).  

 Note that because of the two different parametrization of an ordinal model there 

are differences related to the number of estimated item parameters, overall fidelity and 

model fit of each model.  For example, a DINA for ordinal responses using the P-LCDM 

for an item with four categories will have a total of four estimated item parameters (one 
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interaction and three intercepts), whereas the GPDM would have six (three interactions 

and three intercepts).  Furthermore, while the R-RUM could be defined as a model for 

ordinal responses using the GPDM, this is not possible using the P-LCDM.  It’s 

important to note that the addition of polytomous attributes dramatically increasing the 

number of possible latent classes, which then naturally allows for the systematic 

exploration of the efficiency of the SEM and MH-RM for this more complex model.  

 The estimation algorithms that will be implemented to obtain estimates of the P-

LCDM-PA submodels are the EM, SEM, and MH-RM. The MCMC algorithm is not 

included in the current study because it has been ubiquitously used in estimating CDM 

over the past several years due to its simplicity of implementation. Also, recall that there 

are limitations to using an MCMC algorithm due to a large amount of iterations that are 

typically needed (i.e., 10,000) for the Markov chain to reach its stationary distribution. 

Note that it is also very difficult to objectively evaluate convergence, even empirically 

(Sinharay, 2004).  

Polytomous DINA for Polytomous Attributes  

 Given the relationship between the LCDM and DINA and the fact that the P-

LCDM-PA is a polytomous extension of the LCDM, then the P-LCDM-PA can be used 

to define a polytomous attribute version of the DINA for ordinal responses i.e., 

polytomous DINA for polytomous attributes (P-DINA-PA). Recall that the DINA for 

dichotomous responses only defines two parameters for each item: a slipping parameter, 

𝑠𝑗, and guessing parameter, 𝑔𝑗. Specifically, the conditional probability of a correct 

response is equal to 𝑔𝑗 unless all required attributes for the 𝑗𝑡ℎ item have been mastered, 
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in which the conditional probability of a correct response increases to 1 − 𝑠𝑗. However, 

for the DINA model to be used for an ordinal scale more slip and guess parameters must 

be defined. 

Let 𝚫𝑗 be a collection of slip and guess parameters for the 𝑗𝑡ℎ item such that 𝚫𝑗 =

(𝑠𝑗1, … , 𝑠𝑗𝑐, … , 𝑠𝑗(𝐶𝑗−1), 𝑔𝑗1, … , 𝑔𝑗𝑐, … , 𝑔𝑗(𝐶𝑗−1)). Note that the reduction of the P-LCDM-

PA to a P-DINA-PA will still use a similar modeling approach as the graded response 

model introduced earlier.  Thus, the conditional probability of responding to the 𝑐𝑡ℎ 

category under the P-DINA-PA for the 𝑖𝑡ℎ respondent on the 𝑗𝑡ℎ item can be defined by 

 

𝑃(𝑋𝑖𝑗 = 𝑐| 𝚫𝑗 , 𝜉𝑖𝑗
∗ ) = 𝑃(𝑋𝑖𝑗 ≥ 𝑐| 𝚫𝑗 , 𝜉𝑖𝑗

∗ ) − 𝑃(𝑋𝑖𝑗 ≥ 𝑐 + 1|𝚫𝑗 , 𝜉𝑖𝑗
∗ ) (3.1) 

 

Only now the set of boundary response probabilities are defined based on the 

corresponding slip and guess parameters for that boundary, which are defined as 

 

𝑃(𝑋𝑖𝑗 ≥ 0|𝚫𝑗 , 𝜉𝑖𝑗
∗ ) = 1 

𝑃(𝑋𝑖𝑗 ≥ 1|𝚫𝑗 , 𝜉𝑖𝑗
∗ ) = (1 − 𝑠𝑗1)

𝜉𝑖𝑗
∗

𝑔
𝑗1

(1−𝜉𝑖𝑗
∗ )

 

⋯  

𝑃(𝑋𝑖𝑗 ≥ 𝑐|𝚫𝑗 , 𝜉𝑖𝑗
∗ ) = (1 − 𝑠𝑗𝑐)

𝜉𝑖𝑗
∗

𝑔
𝑗𝑐

(1−𝜉𝑖𝑗
∗ )

(3.2) 

⋯ 

𝑃(𝑋𝑖𝑗 ≥ 𝐶𝑗 − 1| 𝚫𝑗 , 𝜉𝑖𝑗
∗ ) = (1 − 𝑠𝑗(𝐶𝑗−1))

𝜉𝑖𝑗
∗

𝑔
𝑗(𝐶𝑗−1)

(1−𝜉𝑖𝑗
∗ )

 

𝑃(𝑋𝑖𝑗 ≥ 𝐶𝑗|𝚫𝑗 , 𝜉𝑖𝑗
∗ ) = 0. 
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Furthermore, the 𝑠𝑗1, … , 𝑠𝑗𝑐, … , 𝑠𝐶𝑗−1 and 𝑔𝑗1, … , 𝑔𝑗𝑐, … , 𝑔𝐶𝑗−1 are defined by 

 

𝑠𝑗1 = 𝑃(𝑋𝑖𝑗 < 1|𝜉𝑖𝑗
∗ = 1) 

⋯ 

𝑠𝑗𝑐 = 𝑃(𝑋𝑖𝑗 < 𝑐|𝜉𝑖𝑗
∗ = 1) (3.3) 

⋯ 

𝑠𝑗(𝐶𝑗−1) = 𝑃(𝑋𝑖𝑗 < 𝐶𝑗 − 1|𝜉𝑖𝑗
∗ = 1) 

 

and 

 

𝑔𝑗1 = 𝑃(𝑋𝑖𝑗 ≥ 1|𝜉𝑖𝑗
∗ = 0) 

⋯  

𝑔𝑗𝑐 = 𝑃(𝑋𝑖𝑗 ≥ 𝑐|𝜉𝑖𝑗
∗ = 0) (3.4) 

⋯ 

𝑔𝑗(𝐶𝑗−1) = 𝑃(𝑋𝑖𝑗 ≥ 𝐶𝑗 − 1|𝜉𝑖𝑗
∗ = 0), 

 

respectively.  Recall that 𝜉𝑖𝑗
∗ ∈ {0,1} is a latent variable that defines whether the 𝑖𝑡ℎ 

respondent has mastered (i.e., 𝛼 ≥ 𝑞) all required attributes for the 𝑗𝑡ℎ item. The 𝑠𝑗𝑐 

parameters under the prototypical formulation of the P-DINA-PA are now defined as the 

conditional probability of responding below the 𝑐𝑡ℎ category given all required attributes 

have been mastered the required level for the 𝑗𝑡ℎ item. The 𝑔𝑗𝑐 parameters under the 

prototypical formulation of the P-DINA-PA are now defined as the conditional 
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probability of responding to the 𝑐𝑡ℎ category or higher given no required attributes have 

been mastered for the 𝑗𝑡ℎ item. Note that when using the P-LCDM-PA the same 

constraints are used to define the DINA as when using the LCDM.  However, because 

there are multiple intercepts corresponding to the each of the ordinal levels then it is 

possible to solve for slip and guess parameters for each level. Defining the P-LCDM-PA 

parameters as a function of the P-DINA-PA parameters: 

 

𝜆𝑗1,0 = − 𝑙𝑛 (
1 − 𝑔𝑗1

𝑔𝑗1
) 

…  

𝜆𝑗𝑐,0 = − 𝑙𝑛 (
1 − 𝑔𝑗𝑐

𝑔𝑗𝑐
) (3.5) 

⋯ 

𝜆𝑗(𝐶𝑗−1),0 = − 𝑙𝑛 (
1 − 𝑔𝑗(𝐶𝑗−1)

𝑔𝑗(𝐶𝑗−1)
) 

 

and 

 

𝜆𝑗,𝐾𝑗,(1,…,𝐾𝑗) = −𝜆𝑗1,0 − 𝑙𝑛 (
𝑠𝑗1

1 − 𝑠𝑗1
) 

…  

𝜆𝑗,𝐾𝑗,(1,…,𝐾𝑗) = −𝜆𝑗𝑐,0 − 𝑙𝑛 (
𝑠𝑗𝑐

1 − 𝑠𝑗𝑐
) (3.6) 

⋯ 
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𝜆𝑗,𝐾𝑗,(1,…,𝐾𝑗) = −𝜆𝑗(𝐶𝑗−1),0 − 𝑙𝑛 (
𝑠𝑗(𝐶𝑗−1)

1 − 𝑠𝑗(𝐶𝑗−1)
). 

Table 8 shows the relationship between the prototypical formulation of the P-DINA-PA 

to the P-LCDM-PA for a single item. It’s important to note that the interaction term 

𝜆𝑗,𝐾𝑗,(1,…,𝐾𝑗) is the same across all category thresholds, and as a result the 𝑠 parameters do 

have a constrained relationship as opposed to the GPDM. Suppressing the subscripts i 

and  𝑗 and assuming 𝐾 = 2, the boundary response probability for the 𝑐𝑡ℎ category can be 

computed by 

 

𝑃(𝑋 ≥ 𝑐|𝜶) =
1

1 + 𝐸𝑥𝑝[−𝜆𝑐,0 − 𝜆1,(1)𝛼1,(1)
∗∗ − 𝜆1,(2)𝛼1,(2)

∗∗ − 𝜆2,(1,2)𝛼2,(1,2)
∗∗ ]

(3.7) 

 

Table 8. Relationship between the P-LCDM-PA and P-DINA-PA 

 

 𝑃(𝑋 ≥ 𝑐|𝜶) 
𝜶∗∗ P-LCDM-PA P-DINA-PA 

(0,0,0) 
1

1 + 𝐸𝑥𝑝[−𝜆𝑐,0 − 𝜆2,(1,2)(0)]
 𝑔𝑐 

(1,0,0) 
1

1 + 𝐸𝑥𝑝[−𝜆𝑐,0 − 𝜆2,(1,2)(0)]
 𝑔𝑐 

(0,1,0) 
1

1 + 𝐸𝑥𝑝[−𝜆𝑐,0 − 𝜆2,(1,2)(0)]
 𝑔𝑐 

(1,1,1) 
1

1 + 𝐸𝑥𝑝[−𝜆𝑐,0 − 𝜆2,(1,2)(1)]
 1 − 𝑠𝑐 

 

 

The formulation in Table 7 for the P-LCDM-PA states that there is only a positive 

conditional relationship between a required attribute and the item when all other 

attributes that are measured by that item have been mastered. All conditional 

relationships between an attribute and the item, given at least one attribute has not been 
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mastered are set to 0. Specifically, there is no increase in conditional probability of a 

higher response for only knowing a subset of attributes, but only when all attributes 

measured by the item have been mastered, which is an example of a conjunctive model.  

Polytomous DINO for Polytomous Attributes 

 Given the relationship between the LCDM and DINO and the fact that the P-

LCDM-PA is a polytomous extension of the LCDM, then the P-LCDM-PA can be used 

to define a polytomous version of the DINO for ordinal responses i.e., polytomous DINO 

for polytomous attributes (P-DINO-PA). Recall that, similar to the DINA, the DINO for 

dichotomous responses only defines two parameters for each item: a slipping parameter 

𝑠𝑗 and guessing parameter 𝑔𝑗. Specifically, the conditional probability of a correct 

response is equal to 𝑔𝑗 unless at least one measured attribute for the 𝑗𝑡ℎ item has been 

mastered, in which the conditional probability of a correct response increases to 1 − 𝑠𝑗.  

For the DINO model to be used for an ordinal scale, more slip and guess parameters must 

be defined. Similar to the DINA, Let 𝚫𝑗 be a collection of slip and guess parameters for 

the 𝑗𝑡ℎ item such that 𝚫𝑗 = (𝑠𝑗1, … , 𝑠𝑗𝑐, … , 𝑠𝑗(𝐶𝑗−1), 𝑔𝑗1, … , 𝑔𝑗𝑐, … , 𝑔𝑗(𝐶𝑗−1)). Note that 

the reduction of the P-LCDM-PA to a P-DINO-PA will still use a similar modeling 

approach as the graded response model introduced earlier. Thus, the conditional 

probability of responding to the 𝑐𝑡ℎ category under the P-DINO-PA for the 𝑖𝑡ℎ 

respondent on the 𝑗𝑡ℎ item can be defined by 

 

𝑃(𝑋𝑖𝑗 = 𝑐| 𝚫𝑗 , 𝜂𝑖𝑗
∗ ) = 𝑃(𝑋𝑖𝑗 ≥ 𝑐| 𝚫𝑗 , 𝜂𝑖𝑗

∗ ) − 𝑃(𝑋𝑖𝑗 ≥ 𝑐 + 1|𝚫𝑗 , 𝜂𝑖𝑗
∗ ). (3.8) 
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Only now the set of boundary response probabilities (i.e., the probability of getting a 

score at or above a given value 𝑐) are defined based on the corresponding slip and guess 

parameters for that boundary. Specifically, they are defined as 

 

𝑃(𝑋𝑖𝑗 ≥ 0|𝚫𝑗 , 𝜂𝑖𝑗
∗ ) = 1 

𝑃(𝑋𝑖𝑗 ≥ 1|𝚫𝑗, 𝜂𝑖𝑗) = (1 − 𝑠𝑗1)
𝜂𝑖𝑗
∗

𝑔
𝑗1

(1−𝜂𝑖𝑗
∗ )

 

⋯  

𝑃(𝑋𝑖𝑗 ≥ 𝑐|𝚫𝑗 , 𝜂𝑖𝑗) = (1 − 𝑠𝑗𝑐)
𝜂𝑖𝑗
∗

𝑔
𝑗𝑐

(1−𝜂𝑖𝑗
∗ )

(3.9) 

⋯ 

𝑃(𝑋𝑖𝑗 ≥ 𝐶𝑗 − 1| 𝚫𝑗 , 𝜂𝑖𝑗) = (1 − 𝑠𝑗(𝐶𝑗−1))
𝜂𝑖𝑗
∗

𝑔
𝑗(𝐶𝑗−1)

(1−𝜂𝑖𝑗
∗ )

 

𝑃(𝑋𝑖𝑗 ≥ 𝐶𝑗|𝚫𝑗 , 𝜂𝑖𝑗
∗ ) = 0. 

 

The 𝑠𝑗1, … , 𝑠𝑗𝑐 , … , 𝑠𝑗𝐶𝑗−1 and 𝑔𝑗1, … , 𝑔𝑗𝑐, … , 𝑔𝑗𝐶𝑗−1 are defined by 

 

𝑠𝑗1 = 𝑃(𝑋𝑖𝑗 < 1|𝜂𝑖𝑗
∗ = 1) 

⋯  

𝑠𝑗𝑐 = 𝑃(𝑋𝑖𝑗 < 𝑐|𝜂𝑖𝑗
∗ = 1) (3.10) 

⋯ 

𝑠𝑗(𝐶𝑗−1) = 𝑃(𝑋𝑖𝑗 < 𝐶𝑗 − 1|𝜂𝑖𝑗
∗ = 1) 

 

and 
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𝑔𝑗1 = 𝑃(𝑋𝑖𝑗 ≥ 1|𝜂𝑖𝑗
∗ = 0) 

⋯  

𝑔𝑗𝑐 = 𝑃(𝑋𝑖𝑗 ≥ 𝑐|𝜂𝑖𝑗
∗ = 0) (3.11) 

⋯ 

𝑔𝑗(𝐶𝑗−1) = 𝑃(𝑋𝑖𝑗 ≥ 𝐶𝑗 − 1|𝜂𝑖𝑗
∗ = 0), 

 

respectively. The 𝜂𝑖𝑗
∗ ∈ {0,1} is a latent variable that defines whether the 𝑖𝑡ℎ respondent 

has mastered (i.e., 𝛼 ≥ 𝑞) at least one required attribute for the 𝑗𝑡ℎ item  

 

𝜂𝑖𝑗
∗ = {

1, 𝑖𝑓 ∃𝑘 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝛼𝑖𝑘 ≥ 𝑞𝑗𝑘 

0, 𝑖𝑓 𝛼𝑖𝑘 < 𝑞𝑗𝑘 ∀𝑘
. (3.12) 

 

The 𝑠𝑗𝑐 parameters under the prototypical formulation of the P-DINO-PA are now 

defined as the conditional probability of responding below the 𝑐𝑡ℎ category given at least 

one required attribute has been mastered the required level for the 𝑗𝑡ℎ item.  The 𝑔𝑗𝑐 

parameters under the prototypical formulation of the P-DINO-PA are now defined as the 

conditional probability of responding to the 𝑐𝑡ℎ category or higher given no required 

attributes have been mastered for the 𝑗𝑡ℎ item. Note that when using the P-LCDM-PA 

similar constraints are used to define the DINO as when using the LCDM.  However, 

because there are multiple intercepts corresponding to the each of the ordinal levels then 

it is possible to solve for slip and guess parameters for each level. Defining the P-LCDM-

PA parameters as a function of the P-DINO-PA parameters: Equation (3.5) and 
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𝜆𝑗 = −𝜆𝑗1,0 − 𝑙𝑛 (
𝑠𝑗1

1 − 𝑠𝑗1
) 

…  

𝜆𝑗 = −𝜆𝑗𝑐,0 − 𝑙𝑛 (
𝑠𝑗𝑐

1 − 𝑠𝑗𝑐
) (3.13) 

⋯ 

𝜆𝑗 = −𝜆𝑗(𝐶𝑗−1),0 − 𝑙𝑛 (
𝑠𝑗𝐶𝑗−1

1 − 𝑠𝑗𝐶𝑗−1
). 

 

Table 9 shows the relationship between the prototypical formulation of the P-DINO-PA 

to the P-LCDM-PA for a single item.  It’s important to note that the interaction term 𝜆𝑗 is 

the same across all category thresholds, and as a result the 𝑠 parameters do have a 

constrained relationship as opposed to the GPDM. Suppressing the subscript i and 𝑗 and 

assuming 𝐾 = 2, the boundary response probability for the 𝑐𝑡ℎ category can be computed 

by 

 

𝑃(𝑋 ≥ 𝑐|𝜶) =
1

1 + 𝐸𝑥𝑝[−𝜆𝑐,0 − 𝜆𝛼1,(1)
∗∗ − 𝜆𝛼1,(2)

∗∗ − 𝜆𝛼2,(1,2)
∗∗ ]

(3.14) 
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Table 9. Relationship between the P-LCDM-PA and P-DINO-PA 

 

 𝑃(𝑋 ≥ 𝑐|𝜶) 
𝜶∗∗ P-LCDM-PA P-DINO-PA 

(0,0,0) 
1

1 + 𝐸𝑥𝑝[−𝜆𝑐,0 − 𝜆(0) − 𝜆(0) + 𝜆(0)]
 𝑔𝑐 

(1,0,0) 
1

1 + 𝐸𝑥𝑝[−𝜆𝑐,0 − 𝜆(1) − 𝜆(0) + 𝜆(0)]
 1 − 𝑠𝑐 

(0,1,0) 
1

1 + 𝐸𝑥𝑝[−𝜆𝑐,0 − 𝜆(0) − 𝜆(1) + 𝜆(0)]
 1 − 𝑠𝑐 

(1,1,1) 
1

1 + 𝐸𝑥𝑝[−𝜆𝑐,0 − 𝜆(1) − 𝜆(1) + 𝜆(1)]
 1 − 𝑠𝑐 

 

 

Here, 𝜆 is denoted as a single value that is estimated for the item along with 𝜆𝑐,0. The 

formulation in Table 8 for the P-LCDM-PA shows that there is a positive conditional 

relationship between a required attribute and the item when at least one attribute has been 

mastered. Given that any other required attributes have been mastered, this conditional 

relationship between an attribute and the item is set to 0. Specifically, there is an increase 

in the conditional probability of responding to the 𝑐𝑡ℎ category or higher for knowing at 

least one attribute, but there is no additional increase in conditional probability of 

responding to the 𝑐𝑡ℎ category or higher when additional attributes have been mastered. 

A similar strategy can be applied to items measuring more than two attributes where the 

sign in front of 𝜆 is determined by Equation (2.26). 

Polytomous C-RUM for Polytomous Attributes 

 Finally, there exists a mathematical relationship such that there is a set of 

constraints placed on the P-LCDM-PA that relates to the prototypical formulation of the 

C-RUM for ordinal responses i.e., polytomous C-RUM for polytomous attributes (P-C-
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RUM-PA). In this case the relationship is most obvious because of the general form of 

the P-C-RUM-PA. Recall that the C-RUM for dichotomous responses only defines two 

types of parameters for each item: an intercept parameter 𝜆𝑗,0 and main-effect parameters 

𝝀𝑗  = (𝜆𝑗,1,(1), … , 𝜆𝑗,1,(𝑘), … , 𝜆𝑗,1,(𝐾𝑗)). In this case, the conditional probability of a correct 

response when no required attributes have been mastered is 𝑙𝑜𝑔𝑖𝑡−1(𝜆𝑗,0). Since 0 ≤

𝝀𝑗 < ∞, the conditional probability of a correct response increases for every required 

attributed mastered by the 𝑗𝑡ℎ item. Table 10 shows the relationship between the 

prototypical formulation of the P-C-RUM-PA to the P-LCDM-PA for a single item using 

Equation (3.7). 

 

Table 10. Relationship between the P-LCDM-PA and P-C-RUM-PA 

 

 𝑃(𝑋 ≥ 𝑐|𝜶) 

𝜶∗∗ P-LCDM-PA P-C-RUM-PA 

(0,0,0) 
1

1 + 𝐸𝑥𝑝[−𝜆𝑐,(0) − 𝜆1,(1)(0) − 𝜆1,(2)(0)]
 

1

1 + 𝐸𝑥𝑝[−𝜆𝑐,(0) − 𝜆1,(1)(0) − 𝜆1,(2)(0)]
 

(1,0,0) 
1

1 + 𝐸𝑥𝑝[−𝜆𝑐,(0) − 𝜆1,(1)(1) − 𝜆1,(2)(0)]
 

1

1 + 𝐸𝑥𝑝[−𝜆𝑐,(0) − 𝜆1,(1)(1) − 𝜆1,(2)(0)]
 

(0,1,0) 
1

1 + 𝐸𝑥𝑝[−𝜆𝑐,(0) − 𝜆1,(1)(0) − 𝜆1,(2)(1)]
 

1

1 + 𝐸𝑥𝑝[−𝜆𝑐,(0) − 𝜆1,(1)(0) − 𝜆1,(2)(1)]
 

(1,1,1) 
1

1 + 𝐸𝑥𝑝[−𝜆𝑐,(0) − 𝜆1,(1)(1) − 𝜆1,(2)(1)]
 

1

1 + 𝐸𝑥𝑝[−𝜆𝑐,(0) − 𝜆1,(1)(1) − 𝜆1,(2)(1)]
 

 

 

The P-C-RUM-PA is simply defined by setting 𝜆2,(1,2) = 0. Thus, the conditional 

probability responding to the 𝑐𝑡ℎ category or higher will increase by a factor of 𝑒𝜆1 when 

comparing a non-master to a respondent who has mastered the first attribute, which does 

not depend on mastery or non-mastery of the second attribute.  
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Model Assumptions 

 There are several assumptions in the P-LCDM-PA to ensure identifiability of 

which are the same as what are required for the LCDM (Henson, et al, 2009). The first 

assumption is determined by the Q matrix. Identifying a Q matrix in the analysis is 

comparable to a confirmatory factor analysis such that the definition of attributes is 

identified by the items that measure each attribute. Without the Q matrix, attributes could 

alternate in their definition, much like a rotational indeterminacy in an exploratory MIRT 

analysis. The second assumption is to ensure monotonicity in the item response function. 

In the context of CDM, monotonicity is defined as the property such that assuming that 

any respondent who masters additional attributes will have a conditional probability of a 

response equal to or greater than the conditional probability of a response prior to 

learning the additional set of attributes. The property of monotonicity in the LCDM can 

be expressed as 

 

𝑃(𝑋𝑖𝑗| 𝝎𝑗 , 𝜶𝑖
𝑤) ≥ 𝑃(𝑋𝑖𝑗| 𝝎𝑗 , 𝜶𝑖), ∀𝑤 (3.15) 

 

where 

 

𝛼𝑖𝑗,1,(𝑘)
∗∗(𝑤)

= {
𝛼𝑖𝑗,1,(𝑘)
∗∗ , 𝑖𝑓 𝑤 ≠ 𝑘

1, 𝑒𝑙𝑠𝑒
(3.16) 

 

The third assumption is based on the fact the attributes and Q matrix entries are defined 

as either  {0,1} for the dichotomous attributes and {0,1,2, … , 𝑆𝑘} for polytomous 

attributes. By imposing this constraint, a reference group is identified as those 
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respondents who have not mastered any of the required attributes for an item. Thus, 

identifying the conditional probability of a response for the respondents who have not 

mastered any of the required attributes for an item as the 𝑙𝑜𝑔𝑖𝑡−1(𝜆0). The final 

assumption is based on conditional independence (Lord & Novick, 1968). This 

assumption states that a sequence of item responses 𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝐽 for the 𝑖𝑡ℎ respondent 

is conditionally independent given all item parameters 𝚫𝑗 and an individual’s mastery 

profile (i.e., latent class) 𝜶𝑖: 

 

𝑃(⋂𝑋𝑖𝑗

𝐽

𝑗=1

|𝝎𝑗 , 𝜶𝑖) =∏𝑃(𝑋𝑖𝑗| 𝝎𝑗 , 𝜶𝑖)

𝐽

𝑗=1

= 𝑃(𝑋𝑖1|𝝎𝑗, 𝜶𝑖) × …× 𝑃(𝑋𝑖𝑗|𝝎𝑗, 𝜶𝑖) × …× 𝑃(𝑋𝑖𝐽|𝝎𝑗, 𝜶𝑖). (3.17)

 

 

This equation states that the correlation between a set of item responses 𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝐽 

should be zero after the effect of 𝜶𝑖 is conditioned out. The set of item responses should 

only be correlated through the latent variables that the test or survey is measuring. 

Observed-Data and Complete-Data Likelihoods 

 To determine the observed-data likelihood function for the P-LCDM-PA, the 

conditional probability of observing a response for the 𝑖𝑡ℎ respondent on the 𝑗𝑡ℎ item 

must first be defined as 

 

𝑃(𝑋𝑖𝑗|𝝎𝑗 , 𝜶𝑖) = ∏𝑃(𝑋𝑖𝑗 = 𝑐| 𝝎𝑗 , 𝜶𝑖)
𝐼[𝑋𝑖𝑗=𝑐]

𝐶𝑗−1

𝑐=0

(3.18) 

 

where the indicator function 𝐼[𝑋𝑖𝑗 = 𝑐] is equal to 
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𝐼[𝑋𝑖𝑗 = 𝑐] = {
1, 𝑖𝑓 𝑋𝑖𝑗 = 𝑐

0, 𝑒𝑙𝑠𝑒
. (3.19) 

 

When conditional independence is assumed as defined in Equation (3.17), the conditional 

likelihood of the 𝑖𝑡ℎ respondent’s 𝐽 × 1 response vector 𝑿𝑖 is 

 

𝐿(𝑿𝑖|𝝎, 𝜶𝑖) =∏𝑃(𝑋𝑖𝑗|𝝎𝑗 , 𝜶𝑖)

𝐽

𝑗=1

(3.20) 

 

 and the marginal likelihood of response pattern 𝑿𝑖 for the 𝑖𝑡ℎ respondent is then, 

 

𝐿(𝑿𝑖|𝝎) =∑𝑓(𝜶)∏𝑃(𝑋𝑖𝑗|𝝎𝑗 , 𝜶)

𝐽

𝑗=1∀𝜶

(3.21) 

 

where 𝑓(𝜶) is the prior distribution defining the probability of any given respondent 

randomly being sampled from the population belonging to the latent class 𝜶. The 

summation is taken over all possible latent classes 𝜶𝑙 , … , 𝜶𝐿.  The total number latent 

classes 𝜶 can be computed as 𝐿 = ∏ 𝑆𝑘
𝐾
𝑘=1 . The following constraint is place on 𝑓(𝜶) 

such that, 

 

∑𝑓(𝜶) 

∀𝜶

= 1. (3.22) 

 

Recall that imposing a prior distribution on 𝜶 simplifies the estimation process in two 

ways. First, the focus shifts from some large number of latent variable parameters to just 
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the parameters of the prior distribution. Second, by imposing a distributional form for the 

population, the latent variable parameters become temporarily “known” (i.e., forming 

complete-data) and can then be marginalized out of the estimation process. Treating 

response patterns as fixed once observed, the observed-data likelihood function across the 

𝑁 × 𝐽 response data matrix can be formulated: 

 

𝐿(𝝎|𝑿) =∏[∑𝑓(𝜶)∏𝑃(𝑋𝑖𝑗|𝝎𝑗 , 𝜶)

𝐽

𝑗=1∀𝜶

]

𝑁

𝑖=1

. (3.23) 

 

The latent classes 𝜶 can be thought of as the “missing data” component. Now assuming 

the missing data 𝜶 are “filled-in” for each respondent via a stochastic imputation process, 

the complete-data solution can be formulated 𝒀 = (𝑿, 𝜶). Thus, the complete-data 

likelihood function of the P-LCDM-PA is defined as follows, 

 

𝐿(𝝎|𝒀) =∏[∏𝑃(𝑋𝑖𝑗|𝝎𝑗 , 𝜶𝑖)𝑓(𝜶𝑖)

𝐽

𝑗=1

]

𝑁

𝑖=1

= [∏𝑓(𝜶𝑖)

𝑁

𝑖=1

] [∏∏𝑃(𝑋𝑖𝑗|𝝎𝑗 , 𝜶𝑖)

𝐽

𝑗=1

𝑁

𝑖=1

] (3.24) 

 

 

and further taking the log of the complete-data likelihood results in sum of two 

independent parts, 

 

𝑙𝑜𝑔𝐿(𝝎|𝒀) =∑𝑙𝑜𝑔𝑓(𝜶𝑖)

𝑁

𝑖=1

+∑∑∑ 𝐼[𝑋𝑖𝑗 = 𝑐]𝑙𝑜𝑔𝑃(𝑋𝑖𝑗 = 𝑐| 𝝎𝑗 , 𝜶𝑖)

𝐶𝑗−1

𝑐=0

𝐽

𝑗=1

𝑁

𝑖=1

(3.25) 
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=∑𝑙𝑜𝑔𝑓(𝜶𝑖)

𝑁

𝑖=1

+∑∑∑ 𝐼[𝑋𝑖𝑗 = 𝑐] 𝑙𝑜𝑔[𝑃(𝑋𝑖𝑗 ≥ 𝑐| 𝝎𝑗, 𝜶𝑖) − 𝑃(𝑋𝑖𝑗 ≥ 𝑐 + 1|𝝎𝑗, 𝜶𝑖)]

𝐶𝑗−1

𝑐=0

𝐽

𝑗=1

𝑁

𝑖=1

. (3.26) 

 

Simulation Experiment 

 The primary goal of this study was to utilize polytomous attributes in the 

polytomous log-linear cognitive diagnosis model (P-LCDM-PA), which is a special case 

of the general polytomous diagnostic model (GPDM) for polytomous attributes.  Then, 

due to the potential of exponentially increasing the number of latent classes, explore the 

feasibility and efficiency in addition to the quality of parameter estimation of the SEM 

and MH-RM algorithms relative to the EM algorithm. Note that although this particular 

study focuses on polytomous attributes, similar computational challenges exist when the 

number of attributes become large.  Thus, this study will also contribute to applications 

where the number of attributes is large. For example, Choi, Lee, & Park’s (2015) 

application study involved the analysis of a diagnostic assessment that measured 12 

attributes, while other application studies conducted by Chen et al. (2010) and Chen 

(2012) involved the analysis of diagnostic assessments that measured as many as 23 

attributes. 

To assess the efficacy of estimation algorithms, a function in R (R, 2017) was 

created to simulate observed response data from the P-LCDM-PA submodels. There was 

a total of 1(𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒) × 1(𝑠𝑢𝑟𝑣𝑒𝑦 𝑙𝑒𝑛𝑔𝑡ℎ) × 2(𝑖𝑡𝑒𝑚 𝑞𝑢𝑎𝑙𝑖𝑡𝑦) ×

2(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠) × 2(𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝑙𝑒𝑣𝑒𝑙𝑠) × 1(𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠) ×

1(𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠) × 3(𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑚𝑜𝑑𝑒𝑙𝑠) = 24 joint conditions 
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with each joint condition being replicated 50 times. Table 11 presents a summary of the 

simulation experiment. 

 

Table 11. Summary of Simulation Experiment 

 

Design Factor Number of Levels Values of Levels 

Sample Size 1 5,000 

Survey Length 1 50 items 

Item Quality 2 Low and High 

Number of Attributes 2 4 and 6 attributes 

Number of Attribute 

Levels 
2 2 and 3 levels 

Number of Response 

Categories 
1 4 categories 

Correlation between 

Attributes 
1 𝜌 ∈ [. 5, .8] 

Generating Model 3 
P-DINA-PA, P-DINO-PA, 

P-C-RUM-PA 

Total Joint Conditions 24  

Replications 50  

Total 1,200  

 

 

Q matrices of 𝐽 × 𝐾 dimensions with either dichotomous or polytomous attribute levels 

were randomly simulated from a categorical distribution with for each given element of 

the 𝑗𝑡ℎ item’s 𝑸 vector. The corresponding probabilities 𝒑 for each of the sample spaces 

{0,1} and {0,1,2} are  

 

𝑝(𝑞𝑗𝑘) = {
. 7, 𝑖𝑓 𝑞𝑗𝑘 = 0

. 3, 𝑖𝑓 𝑞𝑗𝑘 = 1
, (3.27) 

 

and 
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𝑝(𝑞𝑗𝑘) = {

. 7, 𝑖𝑓 𝑞𝑗𝑘 = 0

. 15, 𝑖𝑓 𝑞𝑗𝑘 = 1

. 15, 𝑖𝑓 𝑞𝑗𝑘 = 2

, (3.28) 

 

 respectively. The corresponding probability mass function of the categorical distribution 

for the random variable 𝑞𝑗𝑘 can be defined by 

 

𝑓(𝑞𝑗𝑘|𝒑) = ∏ 𝑝(𝑞𝑗𝑘)
𝐼[𝑞𝑗𝑘=𝑘]

𝑆𝑘−1

𝑘=0

(3.29) 

 

where 𝐼[𝑞𝑗𝑘 = 𝑘] evaluates to 1 if 𝑞𝑗𝑘 = 𝑘, otherwise evaluates to 0. It was assumed that 

all attributes measured the same number of levels 𝑆1 = 𝑆2 =,… ,= 𝑆𝐾 which resulted in 

𝑆𝐾 number of latent classes. The choice for number of polytomous attribute levels was 

based on prior research done in Chen & de la Torre (2013) who examined three levels in 

their simulation study. Simulated Q matrices were generated to measure either 𝐾 = 4 or 6 

attributes. The choice for number of attributes measured was based on a study completed 

by Sessoms & Henson (2017). Results from the study show that there was wide range in 

the number of attributes measured, with as few as four attributes (e.g., Li & Suen, 2013a, 

2013b) and as many as 23 attributes (e.g., Chen, 2012). The average number of attributes 

measured was eight (𝑀 = 8.19, median = 6.5, 𝑆𝐷 = 4.95). The most frequent number of 

attributes measured was four and eight. Specifically, 25% of the studies measured four 

attributes, while 19% measured eight attributes. In addition, when simulating the Q 

matrices, a set of constraints where placed such that each item measured no more than 

four attributes and each attribute was measured by no more than 40% of the survey 
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length. Furthermore, because the model being considered allows for ordinal responses, a 

survey length of 50 items was generated with each item having four response categories 

with corresponding sample space 𝑋𝑖𝑗 ∈ {0,1,2,3}. The survey length selected correspond 

to studies reported in the literature. For example, Henson & Templin (2009) used 40 

items and seven attributes. Choi et al. (2010) considered Q matrix with 40 items and four 

attributes in their simulation experiment. Hansen’s (2013) study considered 50 items in 

the simulation experiment. The choice for number response categories is based on 

common survey development practices e.g., a four-category case can have the following 

response options: “strongly disagree”, “disagree”, “agree”, and “strongly agree” (e.g., 

Nering & Ostini, 2010). The probability mass function of the random variable 𝑋𝑖𝑗 is 

represented in Equation (3.18).  

 To obtain respondent’s true latent class profiles, a sample size of 𝑁 = 5,000 was 

first randomly generated from a multivariate normal distribution: 

 

𝜶𝑖
′~𝑀𝑉𝑁(𝟎, 𝚺[𝐾×𝐾′]) (3.30) 

 

with a mean vector of 𝟎 = (01, … , 0𝑘, … , 0𝐾), and covariance matrix, 

 

𝚺[𝐾×𝐾′] = (
1 ⋯ 𝜌1𝐾′
⋮ ⋱ ⋮
𝜌𝐾1 ⋯ 1

) (3.31) 

 

which consisted of unit diagonal elements and correlations, 𝜌~𝑈(. 5, .8), between the 

continuous latent variables 𝜶𝑖
′ = (𝛼𝑖1

′ , … , 𝛼𝑖𝑘
′ , … , 𝛼𝑖𝐾

′ ).   Once 𝜶′ was drawn, 𝛼𝑖𝑘 ∈ {0,1} 

and 𝛼𝑖𝑘 ∈ {0,1,2} was obtained by using the following thresholds: 
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𝛼𝑖𝑘 = {
0, −∞ < 𝛼𝑖𝑘

′ < 0

1, 0 ≤ 𝛼𝑖𝑘
′ < ∞

, (3.32) 

 

and 

 

𝛼𝑖𝑘 = {

0, −∞ < 𝛼𝑖𝑘
′ < −.5

1, −.5 ≤ 𝛼𝑖𝑘
′ < .5

2, . 5 ≤ 𝛼𝑖𝑘
′ < ∞

. (3.33) 

 

The sample size chosen for this study were based on prior research which has shown that 

although intercepts and main effects appeared to be estimated consistently in sample sizes 

of at least 500, higher sample sizes up to 4,000 are required to estimate two-way 

interactions reliably (Choi et al., 2010). Because the current study sought to additionally 

estimate three-way and four-way interaction effect parameters, even higher demands on 

sample size i.e., 𝑁 = 5,000 were required for more reliable parameter estimates. The 

choice for fixing the mean vector to 𝟎 was based on a prior simulation study done in 

Kunina-Habenicht, Rupp, & Wilhelm (2012).  The choice for generating correlations 𝜌 ∈

[.5, .8]  was based on typically reported correlations between subscores for subdomains in 

the national and international educational surveys (e.g., Sinharay, Puhan, & Haberman, 

2011). Item parameters for the four submodels were generated in a way that would 

exhibit either low-quality items or high-quality items. The purpose for exploring item 

quality is because low-quality items could potentially impact rates of convergence in the 

estimation procedures and thus, contribute to larger computation times for the estimation 

algorithms. The item constraints were imposed on the P-LCDM-PA to emulate behavior 
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of the prototypical formulation corresponding to the P-DINA-PA, P-DINO-PA, or P-C-

RUM-PA. For the P-LCDM-PA to reduce to an extension of the submodels, effect-level 

parameters 𝜆 (indicating main or interaction) were randomly generated as followed: 

 

𝜆~ {
𝑈(. 5,1), 𝑖𝑓 𝑙𝑜𝑤 𝑖𝑡𝑒𝑚 𝑞𝑢𝑎𝑙𝑖𝑡𝑦

𝑈(1,1.5), 𝑖𝑓 ℎ𝑖𝑔ℎ 𝑖𝑡𝑒𝑚 𝑞𝑢𝑎𝑙𝑖𝑡𝑦
(3.34) 

 

The choice for generating 𝜆 this way is based similarly to von Davier (2005) where 

effects were randomly generated 𝜆~𝑁(1, .25). The mean 𝜇 = 1 for the normal 

distribution was used as threshold for determining low/high item quality. The lower 

bound (i.e., .5) for the uniform distribution under the low item quality condition and 

upper bound (i.e., 1.5) for the uniform distribution under the high item quality condition 

were used to represent approximately 45% of the generated items given that the standard 

deviation was set to 𝜎 = .25 in the normal distribution by von Davier (2005). For the 

intercept parameters 𝜆1,0, … , 𝜆𝑐,0, … , 𝜆𝐶−1,0 the following generating method was 

implemented where 𝜆1,0~𝑁(1, .5) and remaining intercept parameters were generated 

recursively using the following, 

 
𝜆𝑐,0 = 𝜆𝑐−1,0 − 𝑁(1, .2). (3.35) 

 

 Software such as flexMIRT (Cai, 2017) has the capability of estimating a P-

LCDM using the EM. However, because the SEM or MH-RM does not exist in any 

available software for estimating CDM, the SEM and MH-RM was implemented using a 

combination of functions written in both R and Fortran programming languages. 
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flexMIRT also has the capabilities for defining polytomous attribute levels 

“experimentally”.  To allow for a more direct comparison between the EM, SEM and 

MH-RM, such that biased results could be plausible if implementing the EM from 

flexMIRT (Cai, 2017), the author also coded the EM estimation algorithm using a 

combination of functions written in both R and Fortran programming languages. Random 

starting values for item parameters when using the EM, SEM, and MH-RM algorithms 

were obtained using the same item parameter generating methods discussed earlier. The 

convergence criteria for the EM and MH-RM was set to .0005 and .001, respectively. In 

the EM, the E-step had a maximum of 2,000 cycles while the M-step had a maximum of 

500 cycles. Convergence criteria for the M-step was .0001. The SEM was set to have 

burn-in cycles 𝑏 = 800 and retained post-burn-in used for estimation was 𝑐 = 200. The 

MH-RM was set to have 𝑏 = 800 burn-in cycles, 𝑐 = 200 cycles to be average over for 

starting maximum likelihood estimates in the MH-RM, and a maximum of 2,000 cycles 

for the MH-RM. There was 𝑀𝑡 = 1 MH draws of the 𝜶 parameters per cycle (e.g., refer 

to Cai, 2010b), and the gain constant ( 𝛾𝑡) for the MH-RM was computed as follows 

(Chalmers, 2012), 

 

𝛾𝑡 = (
𝜀1
𝑡
)
𝜀2

(3.36) 

 

 where 𝜀1 = .1 and 𝜀2 = .75  ∀𝑡 = 1,2, … ,2000. In addition, for estimation using SEM 

and MH-RM, the probability transition matrices in the MH algorithm, 𝑞(𝜶𝑖
(𝑡)|𝜶𝑖

(𝑡−1)), for 

each set of attribute levels was defined as follows, 
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𝑞(𝜶𝑖
(𝑡)|𝜶𝑖

(𝑡−1)) = 

 

 

 

 

 

𝑞(𝜶𝑖
(𝑡)|𝜶𝑖

(𝑡−1)) = 

 

 

Tuning each element within 𝑞(𝜶𝑖
(𝑡)|𝜶𝑖

(𝑡−1)) will adjust acceptance rates under the MH 

algorithm for 𝜶 accordingly in the SEM and MH-RM algorithms. The elements of 

𝑞(𝜶𝑖
(𝑡)|𝜶𝑖

(𝑡−1)) were chosen in a way such that the acceptance rates were between the 

acceptable values of .2 and .4 (e.g., refer to Junker, Patz & VanHoudnos, 2016). To help 

bring stability to the estimation procedures, partially informative priors were imposed on 

the item parameters of the P-LCDM-PA submodels. The prior distribution for 𝜆 was 

assumed to be log-normally distributed (e.g., refer to Junker, Patz & VanHoudnos, 2016): 

𝜆~𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(1.19,1.09).  The prior distribution for 𝜆1,0, 𝜆2,0, and 𝜆3,0 were all 

assumed to be normally distributed (e.g., refer to Baker & Kim, 2004): 

𝜆1,0~𝑛𝑜𝑟𝑚𝑎𝑙(1,2), 𝜆2,0~𝑛𝑜𝑟𝑚𝑎𝑙(0,2), and 𝜆3,0~𝑛𝑜𝑟𝑚𝑎𝑙(−1,2).    

A main objective was to assess the computational efficiency of each approach 

relative to the amount time required to obtain estimates computation time (in minutes) 

was reported for the EM, SEM, and MH-RM algorithms. It is also possible that specific 

algorithms obtain estimates in less time but do not perform as well with respect to 

𝜶𝑖
(𝑡−1)

\𝜶𝑖
(𝑡)

 0 1 

0 .7 .3 

1 .3 .7 

𝜶𝑖
(𝑡−1)

\𝜶𝑖
(𝑡)

 0 1 2 

0 .6 .2 .2 

1 . 2 . 6 . 2 

2 .2 . 2 . 6 

(3.37) 

(3.38) 
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estimation.  To evaluate the general performance of each algorithm, the mean absolute 

difference (MAD) metric was used to assess overall recovery of the item parameters. The 

general form for calculating MAD is presented as follows, 

  

𝑀𝐴𝐷 =
∑ |�̂�𝑝 − 𝑥𝑝|
𝑃
𝑝=1

𝑃
, (3.39) 

 

where 𝑥𝑝 and  �̂�𝑝  are the true and estimated 𝑝𝑡ℎ parameter, respectively, and P is the 

total number of item parameters (e.g., 𝜆 or 𝜆0).  A maximum a-posteriori (MAP; 

Embretson & Reise, 2000) method was used to estimate respondents’ latent classes 𝜶. A 

uniform prior distribution, 𝑓(𝜶) was assumed.  Correct classification rates (CCR) or 

probability of correct classification, 𝑝(𝐶𝐶), were examined to determine the overall 

recovery of respondents estimated latent classes 

 

𝐶𝐶𝑅 =
∑(�̂� = 𝜶)

𝑁
. (3.40) 

 

Note that Equations (3.39) and (3.40) are computed within each replication. The results 

are summerized based on the average 𝑀𝐴𝐷 and 𝐶𝐶𝑅 across the 50 replications for each 

joint condition. An additional set of levels for 𝐾 were included in a separate simulation 

experiment when evaluating computational time; 𝐾 = 5, 7, and 8. For this simulation 

experiement, the smallest number of possible latent classes was 24 = 16 while the largest 

number of possible latent classes was 38 = 6,561. The reason for including these 

addition 𝐾 levels was to see at which points did the SEM and MH-RM become 

computationally faster over the EM. Because some of the simulation conditions required 
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eight hours to complete a single replication (e.g., when 38 latent classes were present), 

only five replications per joint condition was used in reporting the results. To help bring 

stability to the estimation procedure, inparticular when 38 latent classes were present, 

informative priors were imposed on the item parameters of the P-LCDM-PA submodels. 

The prior distribution for 𝜆 was assumed to be log-normally distributed: 

𝜆~𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(0, .5).  The prior distribution for 𝜆1,0, 𝜆2,0, and 𝜆3,0 were all assumed to 

be normally distributed: 𝜆1,0~𝑛𝑜𝑟𝑚𝑎𝑙(1,1), 𝜆2,0~𝑛𝑜𝑟𝑚𝑎𝑙(0,1), and 

𝜆3,0~𝑛𝑜𝑟𝑚𝑎𝑙(−1,1).  The simulation experiment was ran on a desktop with a 64-bit 

operating system using an Intel(R) Core(TM) i7-4790K CPU at 4GHz and 16 GB of 

installed memory (RAM).  

 The primary goal of this study was to utilize the P-LCDM-PA, which is a special 

case of the GPDM for polytomous attributes and then, due to the potential of 

exponentially increasing the number of latent classes, explore the feasibility and 

efficiency in addition to the quality of parameter estimation of the SEM and MH-RM 

algorithms relative to the EM algorithm. The SEM and MH-RM algorithms have been 

popular choices for estimating higher-dimensional latent variable models (e.g., refer to 

Diebolt & Ip, 1994a, 1994b; Cai, 2010a, 2010b; Monroe & Cai, 2014) but have never 

been used to estimate CDM. The SEM and MH-RM algorithms can be useful in the 

context of estimating CDM when the number of latent classes increases exponentially 

i.e., 2𝐾. This exponential increase is even more prominent when polytomous attribute 

levels are introduced in a diagnostic assessment because the number of latent classes is 

then represented as ∏ 𝑆𝑘
𝐾
𝑘=1 . The results of this study will be helpful to researchers and 
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practitioners who are interested in developing diagnostic assessments that may contain 

many attributes and/or dichotomous/polytomous attribute levels and are need more 

computationally efficient estimation algorithms
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CHAPTER IV 

 

RESULTS 

 

 

 This chapter will provide a summary of the results from the simulation study 

proposed in the previous chapter. This first section of this chapter will discuss the 𝑀𝐴𝐷 

results associated with recovery of the main and effect-level parameters. The second 

section of this chapter will discuss the 𝑀𝐴𝐷 results associated with recovery of the 

intercept parameters. The third section of this chapter will discuss the 𝐶𝐶𝑅 results. 

Finally, the last section of this chapter will provide a discussion of the results associated 

with computational time (in minutes) between the EM, SEM, and MH-RM algorithms. 

Recall, with respect to the comparison of SEM and MH-RM to the EM algorithm, the 

three research questions motivating this study are: 

1) To what extent does the SEM and MH-RM algorithms show to be 

computationally faster over the EM algorithm as the number of latent classes 

increases? 

2) How accurately are the item parameters of the P-LCDM-PA submodels estimated 

when comparing the SEM, MH-RM, and EM algorithms for estimation? 

3) How accurately are examinees attributes (and attribute patterns) estimated when 

using the SEM, MH-RM, and EM algorithms to estimate the P-LCDM-PA 

submodels? 
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Recovery of Effect-Level Parameters  

 The results in Table 12 show the average 𝑀𝐴𝐷 along with the corresponding 

standard deviations between true and estimate 𝜆 parameters across 50 replications, for 

each joint condition. Figure 1 displays the average 𝑀𝐴𝐷 along with the corresponding 

standard deviations between true and estimate 𝜆 parameters across 50 replications, for 

each joint condition. Results from the simulation experiment showed that overall the EM 

presented better recovery of the 𝜆 parameters compared to the SEM and MH-RM. The 

average 𝑀𝐴𝐷 indicated that recovery of the 𝜆 parameters between the SEM and MH-RM 

were very similar. The largest MAD difference between the SEM and MH-RM compared 

to the EM was when item quality was low, 36 latent classes were present, and the P-

DINO-PA was used as the estimated model. The average 𝑀𝐴𝐷 results indicated that 

recovery of the 𝜆 parameters is better when item quality is high compared to low item 

quality under the P-DINA-PA and P-DINO-PA. The difference in the 𝑀𝐴𝐷 results 

between low and high item quality under the P-C-RUM-PA was minimal. It’s speculated 

that the reason the results between low and high item quality under the P-C-RUM-PA 

were very similar was because of how effect-level parameters were generated. For 

example, results may vary more if there was a larger distinction between low and high 

performing items where 𝜆~𝑈(. 1, .5) for low item quality and 𝜆~𝑈(1,1.5) for high item 

quality. As the number of measured attributes increased in the 𝑸 matrices, recovery of the 

𝜆 parameters is poorer. Results from the simulation study showed that when dichotomous 

attribute levels were used, recovery of the 𝜆 parameters were better compared using 
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polytomous attribute levels. These overall results indicate that as the number of latent 

classes increases, recovery of the 𝜆 parameters is poorer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 12. Average 𝑀𝐴𝐷 with 𝑆𝐷 between True and Estimated Effect-level Parameters  
 

   Low Item Quality High Item Quality 

Model 𝑆 𝐾 EM MH-RM SEM EM MH-RM SEM 

P-C-RUM-PA 

2 
4 .12  (.01) .14  (.02) .14  (.02) .11  (.02) .13  (.03) .13  (.02) 

6 .18  (.02) .21  (.04) .21  (.04) .18  (.02) .21  (.04) .21  (.04) 

3 
4 .15  (.01) .18  (.03) .18  (.03) .13  (.02) .17  (.04) .17  (.04) 

6 .21  (.02) .25  (.03) .25  (.03) .22  (.02) .27  (.04) .26  (.03) 

P-DINA-PA 

2 
4 .10  (.01) .11  (.01) .11  (.01) .07  (.01) .07  (.01) .07  (.01) 

6 .18  (.01) .20  (.02) .20  (.02) .12  (.01) .13  (.01) .13  (.01) 

3 
4 .14  (.02) .19  (.04) .19  (.04) .11  (.01) .14  (.02) .14  (.02) 

6 .25  (.03) .30  (.03) .30  (.03) .22  (.02) .26  (.03) .26  (.03) 

P-DINO-PA 

2 
4 .09  (.01) .12  (.03) .12  (.03) .07  (.01) .08  (.01) .08  (.01) 

6 .16  (.02) .22  (.04) .22  (.04) .11  (.01) .13  (.02) .13  (.02) 

3 
4 .13  (.01) .20  (.03) .21  (.03) .10  (.01) .15  (.03) .15  (.03) 

6 .21  (.02) .33  (.05) .33  (.05) .18  (.02) .25  (.04) .25  (.04) 

Note. EM = expectation maximization algorithm; SEM = stochastic expectation maximization 

algorithm; MH-RM = Metropolis-Hastings Robbins-Monro algorithm; P-C-RUM-PA = polytomous 

compensatory reparameterized unified model for polytomous attributes; P-DINA-PA = polytomous 

deterministic input noisy “and” gate model; P-DINO-PA = polytomous deterministic input noisy “or” 

gate model; S = number of attribute levels; K = number of attributes 
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Figure 1. Average 𝑀𝐴𝐷 with 95% Confidence Intervals between True and Estimated 

Effect-level Parameters 

 

 

Recovery of Intercept Parameters 

 The results in Table 13 show the average 𝑀𝐴𝐷 along with the corresponding 

standard deviations between true and estimate 𝜆0 parameters across the 50 replications, 

for each joint condition. Figure 2 displays the average 𝑀𝐴𝐷 along with the corresponding 

95% confidence intervals between true and estimate 𝜆0 parameters across the 50 

replications, for each joint condition. Results from the simulation experiment showed that 
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overall the EM presented slightly better recovery of the 𝜆0 parameters compared to the 

SEM and MH-RM. The average 𝑀𝐴𝐷 results showed that recovery of the 𝜆0 parameters 

between the SEM and MH-RM were very similar. The largest MAD difference between 

the SEM and MH-RM compared to the EM was when item quality was low, 36 latent 

classes were present, and the P-DINO-PA was used as the estimated model. The average 

𝑀𝐴𝐷 results indicated that recovery of the 𝜆 parameters is better when item quality is 

high compared to low item quality under the P-DINO-PA. The difference in the 𝑀𝐴𝐷 

results between low and high item quality under the P-DINA-PA and P-C-RUM-PA was 

minimal. It’s speculated that the reason the results between low and high item quality 

under the P-DINA-PA were very similar was because estimating the intercept in the 

model is eqivialent to estimating the guess parameter in the DINA. The guess parameter 

in the DINA tends to estimate well because typically, it’s more likely that the respodents 

randomly sampled from the population have not mastered all required attributes for a 

given item. Thus, more data is contributed to estimating the intercept parameters 

compared to the effect-level parameter. Again, it’s speculated that the reason the results 

between low and high item quality under the P-C-RUM-PA were very similar was 

because of how effect-level parameters were generated. For example, results may vary 

more if there was a larger distinction between low and high performing items where 

𝜆~𝑈(. 1, .5) for low item quality and 𝜆~𝑈(1,1.5) for high item quality. As the number of 

measured attributes increases, the quality of parameter recovery of the 𝜆0 decreased. 

Results from the simulation study showed that when dichotomous attribute levels were 

used, recovery of the 𝜆0 parameters were better compared using polytomous attribute 
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levels. This result overall indicates that as the number of latent classes increases, 

recovery of the 𝜆0 parameters is poorer. 

 

Table 13. Average 𝑀𝐴𝐷 with 𝑆𝐷 between True and Estimated Intercept Parameters 
 

   Low Item Quality High Item Quality 

Model 𝑆 𝐾 EM MH-RM SEM EM MH-RM SEM 

P-C-RUM-PA 

2 
4 .08  (.01) .11  (.02) .11  (.02) .08  (.01) .10  (.02) .10  (.03) 

6 .16  (.02) .17  (.03) .17  (.03) .15  (.03) .17  (.05) .17  (.05) 

3 
4 .10  (.01) .13  (.02) .13  (.02) .09  (.01) .12  (.03) .12  (.03) 

6 .18  (.02) .19  (.03) .19  (.03) .17  (.03) .20  (.04) .20  (.04) 

P-DINA-PA 

2 
4 .05  (.00) .05  (.01) .05  (.01) .05  (.00) .05  (.01) .05  (.01) 

6 .06  (.01) .07  (.01) .07  (.01) .06  (.01) .06  (.01) .06  (.01) 

3 
4 .05  (.01) .09  (.02) .09  (.02) .06  (.01) .08  (.01) .08  (.01) 

6 .06  (.01) .09  (.02) .09  (.02) .07  (.01) .09  (.02) .09  (.02) 

P-DINO-PA 

2 
4 .09  (.01) .10  (.02) .10  (.02) .07  (.01) .08  (.01) .08  (.01) 

6 .17  (.02) .19  (.03) .19  (.03) .13  (.01) .14  (.02) .14  (.02) 

3 
4 .11  (.01) .15  (.02) .15  (.02) .09  (.01) .12  (.03) .12  (.03) 

6 .21  (.02) .25  (.04) .25  (.04) .19  (.02) .21  (.03) .21  (.03) 

Note. EM = expectation maximization algorithm; SEM = stochastic expectation maximization 

algorithm; MH-RM = Metropolis-Hastings Robbins-Monro algorithm; P-C-RUM-PA = polytomous 

compensatory reparameterized unified model for polytomous attributes; P-DINA-PA = polytomous 

deterministic input noisy “and” gate model; P-DINO-PA = polytomous deterministic input noisy “or” 

gate model; S = number of attribute levels; K = number of attributes 
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Figure 2. Average 𝑀𝐴𝐷 with 95% Confidence Intervals between True and Estimated 

Intercept Parameters 

 

 

Correct Classification Rates 

 The results in Table 14 show the average CCR (i.e., 𝑝(𝐶𝐶)) along with the 

corresponding standard deviations between true and estimated 𝜶 for each joint condition. 

Figure 3 show the average CCR along with the corresponding 95% confidence intervals 

between true and estimated 𝜶 for each joint condition. Results from the simulation 

experiment showed that the 𝑝(𝐶𝐶) is similar across the EM, SEM, and MH-RM 

algorithms for each joint condition. The results indicated that the 𝑝(𝐶𝐶) is higher when 
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item quality is high compared to low item quality. The 𝑝(𝐶𝐶) decreased as the number of 

latent classes increased. In addition, the 𝑝(𝐶𝐶) was higher for dichotomous attribute 

levels compared to polytomous attribute levels. As the number of measured attributes 

increased, 𝑝(𝐶𝐶) was negatively impacted. The 𝑝(𝐶𝐶) was the highest when item quality 

was high and there were the fewest, 24, latent classes. The 𝑝(𝐶𝐶) was the lowest when 

item quality was low and there were the maximum, 36, latent classes. 

 

Table 14. Average 𝐶𝐶𝑅 with 𝑆𝐷 between True and Estimated Attribute Profiles 
 

   Low Item Quality High Item Quality 

Model 𝑆 𝐾 EM MH-RM SEM EM MH-RM SEM 

P-C-RUM-PA 

2 
4 .81  (.01) .81  (.01) .81  (.01) .91  (.01) .91  (.01) .91  (.01) 

6 .79  (.01) .79  (.01) .79  (.01) .88  (.01) .87  (.01) .87  (.01) 

3 
4 .62  (.01) .61  (.01) .61  (.01) .75  (.01) .75  (.01) .75  (.01) 

6 .60  (.01) .60  (.01) .59  (.01) .71  (.01) .70  (.01) .70  (.01) 

P-DINA-PA 

2 
4 .75  (.01) .75  (.01) .75  (.01) .87  (.01) .87  (.01) .87  (.01) 

6 .68  (.01) .68  (.01) .68  (.01) .78  (.01) .78  (.01) .78  (.01) 

3 
4 .54  (.01) .54  (.01) .54  (.01) .68  (.01) .68  (.01) .68  (.01) 

6 .48  (.01) .47  (.01) .47  (.01) .58  (.01) .58  (.01) .58  (.01) 

P-DINO-PA 

2 
4 .75  (.01) .74  (.01) .74  (.01) .87  (.01) .87  (.01) .87  (.01) 

6 .68  (.01) .67  (.01) .67  (.01) .79  (.01) .79  (.01) .79  (.01) 

3 
4 .55  (.01) .54  (.01) .54  (.01) .68  (.01) .68  (.01) .68  (.01) 

6 .48  (.01) .47  (.01) .47  (.01) .59  (.01) .58  (.01) .58  (.01) 

Note. EM = expectation maximization algorithm; SEM = stochastic expectation maximization algorithm; 

MH-RM = Metropolis-Hastings Robbins-Monro algorithm; P-C-RUM-PA = polytomous compensatory 

reparameterized unified model for polytomous attributes; P-DINA-PA = polytomous deterministic input 

noisy “and” gate model; P-DINO-PA = polytomous deterministic input noisy “or” gate model; S = 

number of attribute levels; K = number of attributes 
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Figure 3. Average 𝐶𝐶𝑅 with 95% Confidence Intervals between True and Estimated 

Attribute Profiles 

 

 

Computational Time 

 The results shown in Table 15 provide a summary of average computational time 

and standard deviations between the EM, SEM, and MH-RM algorithms across all 

replications within a joint condition. Figures 4, 5, and 6 show the computational time 

results under the P-C-RUM-PA, P-DINA-PA, and P-DINO-PA, respectively. Because it 

was nearly impossible to obtain convergence when the SEM and MH-RM was used to 

estimate the P-DINA-PA when 38 latent classes were present, only one replication was 
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done. The results from the simulation experiment showed to be consistent across the three 

submodels. Computational time for the SEM and MH-RM increased slightly as the 

number of latent classes increases. The maximum computational time for the SEM and 

MH-RM was approximately one hour when there were 38 latent classes. For the EM, 

computational time increased exponentially compared to the SEM, and MH-RM when 

the number of latent classes increased to either 37 or 38. When the number of latent 

classes was 38, the EM required approximately six hours to complete. The EM also 

showed to be computationally slower when estimating the P-DINA-PA when there were 

36 latent classes compared the SEM and MH-RM.  In addition, low item quality showed 

to impact convergence rates (i.e., the algorithms took more iterations to converge) in the 

EM, SEM, and MH-RM compared to high item quality. For the EM, the differences in 

the results between low and high quality test items showed to increase as the number of 

latent classes increased. For the SEM and MH-RM, the differences in the results between 

low and high quality test items showed to be minimally impacted as the number of latent 

classes increased.  For the P-DINO-PA, the EM showed to be computationally slower 

under the high item quality condition compared to the low item quality condition when 

there were 38 latent classes present. When estimating the P-DINA-PA and P-C-RUM-

PA, computational time was slower under the low item quality condition compared to the 

high item quality condition when 37 possible latent classes were present. 
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Table 15. Average Computational Time (in minutes) with 

𝑆𝐷 
 

   Low Item Quality High Item Quality 

Model 𝑆 𝐾 EM 
MH-

RM 
SEM EM 

MH-

RM 
SEM 

P-C-

RUM-

PA 

2 

4 
.37  

(.05) 

10.22  

(.11) 

9.78  

(.22) 

.37  

(.08) 

10.06  

(.40) 

9.73  

(.50) 

5 
.66  

(.04) 

15.20  

(.31) 

14.44  

(.22) 

.71  

(.09) 

15.46  

(.23) 

14.50  

(.16) 

6 
1.36  

(.26) 

25.28  

(.85) 

23.77  

(.45) 

1.32  

(.16) 

24.89  

(.51) 

23.41  

(.49) 

7 
4.89  

(3.15) 

41.68  

(.80) 

39.10  

(.95) 

4.48  

(1.20) 

40.82  

(1.28) 

38.36  

(.53) 

8 
15.50  

(3.09) 

75.66  

(1.71) 

72.28  

(4.43) 

13.24  

(3.46) 

81.07  

(12.20) 

77.82  

(14.96) 

3 

4 
1.28  

(.24) 

10.02  

(.12) 

9.66  

(.19) 

1.12  

(.18) 

9.71  

(.12) 

9.29  

(.10) 

5 
4.92  

(2.12) 

14.73  

(.31) 

13.98  

(.29) 

3.19  

(.28) 

14.90  

(.24) 

13.93  

(.21) 

6 
15.45  

(1.24) 

24.80  

(.67) 

23.27  

(.67) 

13.59  

(1.13) 

25.10  

(.88) 

23.17  

(.77) 

7 
84.06  

(25.73) 

39.01  

(.63) 

36.80  

(.70) 

75.35  

(22.62) 

41.61  

(.85) 

38.30  

(.93) 

8 
339.55  

(62.41) 

74.23  

(3.74) 

69.18  

(3.83) 

295.82  

(43.95) 

76.19  

(2.39) 

68.11  

(1.09) 

P-

DINA-

PA 

2 

4 
.30  

(.01) 

10.05  

(.44) 

9.26  

(.35) 

.22  

(.01) 

9.19  

(.30) 

8.75  

(.12) 

5 
.54  

(.03) 

13.70  

(.18) 

13.06  

(.17) 

.39  

(.05) 

13.73  

(.11) 

13.24  

(.09) 

6 
1.34  

(.08) 

23.20  

(.19) 

21.89  

(.16) 

.85  

(.09) 

22.21  

(.34) 

21.25  

(.14) 

7 
3.35  

(.31) 

37.96  

(.80) 

35.55  

(.84) 

2.17  

(.27) 

36.74  

(.70) 

35.38  

(.39) 

8 
12.07  

(1.38) 

70.16  

(1.11) 

66.13  

(1.59) 

8.67  

(.85) 

74.48  

(8.23) 

72.55  

(7.99) 

3 

4 
1.51  

(.28) 

9.15  

(.13) 

8.73  

(.05) 

.92  

(.07) 

9.11  

(.15) 

8.67  

(.09) 

5 
5.67  

(1.55) 

13.83  

(.17) 

12.98  

(.15) 

3.00  

(.42) 

13.76  

(.28) 

12.97  

(.22) 

6 
21.90  

(3.19) 

22.24  

(.81) 

20.52  

(.60) 

12.28  

(1.22) 

22.41  

(.38) 

20.74  

(.28) 

7 
102.21  

(29.79) 

36.33  

(.78) 

33.52  

(.10) 

63.35  

(15.55) 

38.74  

(2.16) 

35.75  

(1.63) 

8 
435.80 

(-) 

71.15  

(-) 

67.04  

(-) 

258.89 

(-) 

70.39  

(-) 

65.18  

(-) 

P-

DINO-

PA 

2 

4 
.35  

(.05) 

9.35  

(.21) 

9.20  

(.44) 

.26  

(.03) 

9.01  

(.11) 

8.87  

(.21) 

5 
.68  

(.12) 

13.76  

(.47) 

13.56  

(.53) 

.49  

(.08) 

13.28  

(.20) 

12.96  

(.17) 

6 
1.33  

(.14) 

22.88  

(2.31) 

21.27  

(.14) 

.95  

(.17) 

21.66  

(.44) 

21.10  

(.33) 
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7 
3.73  

(.47) 

35.77  

(.25) 

35.13  

(.26) 

2.55  

(.38) 

35.74  

(.92) 

35.10  

(.34) 

8 
13.86  

(1.12) 

70.33  

(8.82) 

62.78  

(1.49) 

11.48  

(1.78) 

72.65  

(10.23) 

65.23  

(3.02) 

3 

4 
1.40  

(.13) 

9.54  

(1.15) 

8.65  

(.11) 

.94  

(.07) 

8.81  

(.07) 

8.56  

(.13) 

5 
4.64  

(1.35) 

13.10  

(.12) 

12.86  

(.10) 

3.45  

(.56) 

13.15  

(.20) 

12.91  

(.10) 

6 
14.77  

(1.37) 

22.71  

(2.00) 

20.79  

(.33) 

13.03  

(.94) 

21.12  

(.60) 

20.40  

(.58) 

7 
87.88  

(17.20) 

37.21  

(3.12) 

34.00  

(.66) 

59.46  

(8.35) 

35.50  

(1.08) 

34.03  

(.93) 

8 
278.36  

(15.75) 

68.88  

(9.36) 

63.60  

(1.02) 

301.14  

(28.04) 

69.30  

(10.22) 

65.35  

(7.26) 

Note. EM = expectation maximization algorithm; SEM = stochastic 

expectation maximization algorithm; MH-RM = Metropolis-Hastings 

Robbins-Monro algorithm; P-C-RUM-PA = polytomous compensatory 

reparameterized unified model for polytomous attributes; P-DINA-PA = 

polytomous deterministic input noisy “and” gate model; P-DINO-PA = 

polytomous deterministic input noisy “or” gate model; S = number of 

attribute levels; K = number of attributes 
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Figure 4. Average Computational Times (in minutes) for the P-C-RUM-PA 
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Figure 5. Average Computational Times (in minutes) for the P-DINA-PA 
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Figure 6. Average Computational Times (in minutes) for the P-DINO-PA 
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CHAPTER V 

 

DISCUSSION 

 

 

Conclusions 

 The primary goal of this study was to utilize polytomous attributes in the 

polytomous log-linear cognitive diagnosis model (P-LCDM-PA), which is a special case 

of the general polytomous diagnostic model (GPDM) for polytomous attributes. Then, 

due to exponentially increasing the number of latent classes, explore the feasibility and 

efficiency in addition to the quality of parameter estimation of the stochastic expectation-

maximization (SEM) and Metropolis-Hastings Robbins-Monro (MH-RM) algorithms 

relative to the EM algorithm. Recall, with respect to the comparison of SEM and MH-

RM to the EM algorithm, the three research questions motivating this study are: 

1) To what extent does the SEM and MH-RM algorithms show to be 

computationally faster over the EM algorithm as the number of latent classes 

increases? 

2) How accurately are the item parameters of the P-LCDM-PA submodels estimated 

when comparing the SEM, MH-RM, and EM algorithms for estimation? 

3) How accurately are examinees attributes (and attribute patterns) estimated when 

using the SEM, MH-RM, and EM algorithms to estimate the P-LCDM-PA 

submodels? 
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Results from the simulation experiment overall showed that the EM recovered the item 

parameters 𝜆 and 𝜆0 of the P-LCDM-PA submodels better than the SEM and MH-RM. 

Item parameter recovery between the SEM and MH-RM was very similar. Recall that 

both the SEM and MH-RM stages I and II used 𝑏 = 800 and 𝑐 = 200 cycles. It’s 

speculated that convergance was obtained in the SEM cycles of the MH-RM, so the 

additional stage was unnecessary, thus why item parameter recovery results were not 

better in the MH-RM.  The EM and MH-RM have been compared in previous studies by 

Cai (2010a, 2010b) and Chalmers and Flora (2014) when estimating MIRT models. The 

results from those research studies have shown that the EM and MH-RM produce very 

similar item parameter estimates. It’s a possiblilty that the MH-RM and SEM has a 

harder time estimating models with discete latent variables compared to models with 

continuous latent variables. For the current study, the possible difference in item 

parameter recovery results between the EM and MH-RM/SEM could be due to 

convergence criteria. For example, running a burnin of greater than 1,000 could of 

improved the results in the SEM and MH-RM. Another possibility for differences in item 

parameter recovery is the fact that the SEM and MH-RM are stochastic algorithms, 

whereas the EM is a deterministic algorithm. Different convergence criteria were used for 

the EM and MH-RM. The reason for this was from results obtained during preliminary 

analysis of the algorithms. Initially, a convergence criteria of .0001 was used for both the 

EM and MH-RM. The EM showed to have major issues reaching that convergence 

criteria of .0001 when the number of latent classes became relatively large (e.g., 36 latent 

classes). The convergence criteria for the EM was then increased to .0005. The MH-RM 
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showed to have major issues reaching that convergence criteria of .0001 under most 

conditions. This could possibly be due to the stochastic nature of the algorithm. Because 

of the stochastic nature of the algorithm and convergence issues with such a small 

criteria, the convergence criteria was then set to .001. This criteria is default in the mirt 

package (Chalmers, 2012) when using the MH-RM and is also used in the simulation 

experiment done by Chalmers and Flora (2014). The preliminary analysis also compared 

item parameter recovery results from the MH-RM using a convergance criteria of .001 

and .0005. Results showed that the smaller convergance criteria of .0005 did not improve 

item parameter recovery compared to using a convergance criteria of .001. Again, it’s 

speculated that convergance was obtained during the SEM cycles of the algorithm, so the 

additional stage with a set convergance criteria was unnecessary. The probability of 

correct classification when using all three estimatioin methods, the EM, SEM, and MH-

RM, was very similar. As might be expected, high item quality improved item parameter 

recovery and classification rates when compared to low item quality. As the number of 

latent classes increased, item parameter recovery and classification rates were negatively 

impacted across all submodels of the P-LCDM-PA. Specifically, recovery of the item 

parameters and classification rates were improved when dichotomous attribute levels 

were used compared to using polytomous attribute levels. As the number of measured 

attributes increased so does the number of classes and so the model becomes more 

complex without any addition to the number of items. These results were consistent 

across all three estimation algorithms.  
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 Results examining computational time showed that the EM was computationally 

sufficient when the number of possible latent classes was relatively low. However, as the 

number of latent classes increased to either 37 or 38, the SEM and MH-RM showed to be 

computationally faster than the EM. Even though the SEM and MH-RM showed to be 

computational faster when 37 or 38 latent classes were present, this did not deteriate from 

parameter recovery performace of these algorithms compared to the EM. Again, the EM 

becomes computationally slow because it always has to directly compute the probability 

of class membership for each respondent. There were some cases where the SEM and 

MH-RM were slightly computationally faster when polytomous attributes were used 

compared to dichotomous attributes, e.g., 24 compared to 34.  It’s speculated that this is 

due to the low number of replications used for the compulational time experiment. If the 

number of replications were to increased to 50 or 100, this behavior would possibly 

disappear. Generally, lower item quality overall negatively impacted convergence (i.e., 

the algorithms took more iterations to reach convergence) rates for the EM, SEM, and 

MH-RM compared to high item quality. The negative impact of low item quality was 

more profound in the EM compared the SEM and MH-RM. When the EM was used to 

estimate the P-DINO-PA under the 38 latent classes, the low item quality condition 

showed to be computationally faster than the high item quality condition. It’s speculated 

that this is due to the low number of replications used for the computational time 

experiment. Increasing the number of replications may dissolve this behavior. To better 

interpret what an MAD result of .2, .21, and .21 for 𝜆0 in the EM, SEM, and MH-RM, 

respectively, let’s using an example where the estimated model was the P-DINO-PA. 
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Recall that the 𝜆0 is used to define the conditional probability of a response to the 𝑐𝑡ℎ 

category or higher for the reference group, which is defined by the respondents who have 

mastered none of the measured attributes. This conditional probability from the model is 

equivalent to the guess parameter in the prototypical formulation of the DINO (or DINA). 

The equivalency of an MAD result of .2, .21, and .21 average difference between true and 

estimated 𝜆0 would result in .04, .04, and .04 average difference between the true and 

estimated guess parameters, respectively. 

Implications 

 The results of this study will have implications towards researchers and 

practitioners who are interested in developing diagnostic assessments that may contain 

many attributes and/or dichotomous/polytomous attribute levels and are need more 

computationally efficient estimation algorithms. Recall the study completed by Sessoms 

& Henson (2017) examined the number of measured attributes for real application of 

diagnostic assessments. Results from their study showed that there was wide range in the 

number of attributes measured, with as few as four attributes (e.g., Li & Suen, 2013a, 

2013b) and as many as 23 attributes (e.g., Chen, 2012). The average number of attributes 

measured was eight (𝑀 = 8.19, median = 6.5, 𝑆𝐷 = 4.95). The most frequent number of 

attributes measured was four and eight. Specifically, 25% of the studies measured four 

attributes, while 19% measured eight attributes. In reality, dichotomous attributes may 

not be what reasearchers and practiconers are wanting in their diagnostic measures. For 

example, the science field tends to focus on learning progressions that could be modelled 

as polytomous attributes, which in turn, can increase the complexity of the models used. 
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As modeling situations like this comes up, there is a push for fast computers, where the 

current study brings to the forefront that alternative parameter estimation methods could 

be used to circumvent these problems. There also can be motivation to using polytomous 

attributes over continuous latent variable models such as MIRT. A motivation for this 

could be the case where a researcher or practicioner wants to use CDM but dichotomous 

attribute definitions of mastery/non-mastery are too limited. Polytomous attributes are a 

way to stay within specific stages e.g., non-mastery, partial mastery, and mastery, while 

not adapting fully continuous latent variables into the model. 

Recommendations 

 Typically, larger samples sizes are needed to estimate complex models such as the 

one studied in this dissertation, which is especially true when estimating higher-order 

interaction parameters in the P-DINA-PA. The SEM and MH-RM show evidence of 

being computationally efficient as the number of latent classes is large compared to the 

EM. Generally speaking, the EM is a sufficient algorithm to use when the number of 

latent classes is relatively low, whereas the SEM and MH-RM serve no advantage in 

these scenarios. In fact, when the number of latent classes is low, SEM and MH-RM 

resulted in high MADs with respect to item parameters estimation.  There is also the issue 

with classification rates becoming poorer when increasing the number of possible latent 

classes. So, this is something researchers and practitioners need to keep in mind when 

developing diagnostic assessments that measure many attributes and/or incorporate 

polytomous attribute levels. A way of circumventing this issue would be to increase the 

number of items and/or response categories in a diagnostic assessment. This provides 
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more statistical information about the items and respondents, thus reducing the amount of 

statistical error associated with item parameter estimates and classifications of 

individuals. As a result, it is recommend for researchers and practitioners to construct 

some items in a diagnostic assessment that are open ended responses (i.e., allows for 

partial credit) instead of all multiple-choice responses. There are cases were the CCR 

were around .5 when the estimated model was either the P-DINA-PA or P-DINO-PA 

under 36 latent classes and low performing items. A CCR around .5 indicates that there’s 

weak statistical information about a respondents true classification. It would be advised 

that cases when polytomous attributes are used in combination with an assessment 

measuring many attributes, results from estimating the P-DINA-PA and P-DINO-PA 

should be used with caution. Another important results is that even through the item 

parameters recovered differently between the EM compared to the SEM and MH-RM, 

the CCR results were very similar between the three algorithms. Thus, if a researcher or 

practitioners is more concerned with classifications of individuals rather than the item 

parameter results, any of the three methods would be equally sufficient to use when 

estimating the P-LCDM-PA. Another important recommendation for researchers and 

practitioners is to use a MAP  approach where the 𝑓(𝜶) is estimated instead of treated as 

uniform. The reason for this is that treating the probability of class membership, 𝑓(𝜶) as 

being estimated instead of uniform could improve classification rates in respondents i.e., 

reducing the amount of statistical error associated around the respondents estimated 𝜶 

parameters. Note that when 𝑓(𝜶) is estimated in calibration procedure, we have statistical 

information about the population, thus improving the amount of statistic information we 
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have about the respondents. When estimation is completed using the SEM and MH-RM, 

𝑓(𝜶) can be estimated using the accept/reject sampling method of a MH algorithm, or via 

Gibbs sampler using a combination of a multinomial and Dirichlet distributional priors. 

For the EM, obtaining an estimate of 𝑓(𝜶) is simply done by averaging the posterior 

probabilities across the sample for each possible latent class. 

Limitations 

 While the results of the current study provide important implications for 

resesearchers and practicioners, there are a few limitations that were presented in this 

research study. The number of replications per joint condition could be higher (e.g., 100 

replications per condition). However, for the current study, increasing the number of 

replications would have been very difficult for conditions with 37 or 38 possible latent 

classes present due to computational time associated with the EM. The SEM and MH-

RM showed to be less problematic because it took an average of one hour or less to 

complete. Also, the standard deviation of the 𝑀𝐴𝐷 results for item parameters and 

classification rates across the 50 replications with a condition was small across all 

simulation conditions. This result indicated that the results were consist across the 50 

replications for each joint condition. Thus, increasing the number of replications per joint 

condition is not expected to change the results and may not be necessary. Using more 

informative priors could have improved item parameter recovery, classification rates, and 

computational time. However, the results from the simulation study (e.g., item parameter 

recovery) would have been more influenced by the priors during estimation procedures 

rather than the response data. Another limitation of the current study is that sample size 
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and test length was not varied as a factor of the simulation design.  Item parameter 

recovery, classification rates, and computational time was not analyzed when smaller 

sample sizes and test lengths are present. Even with a sample size of 𝑁 = 5,000, item 

parameter recovery was poor under certain conditions. Sample sizes up to 𝑁 = 10,000 

may be needed for adequate parameter recovery when there are many attributes measured 

and/or polytomous attribute levels are present in a diagnostic assessment. The challenge 

of such a sample size requirement is that it narrows the range of applications of such an 

approach to Larger testing programs such as American College Testing and Educational 

Testing Services. Whereas many smaller scale applications could really benefit from such 

a modeling approach.  Item parameter recovery was overall poorer when the SEM and 

MH-RM were used. This difference could have potentially been caused in part, by the 

method used to generate item intercepts in the simulation study. For example, in some 

preliminary analysis, simulated intercepts that resulted in 𝜆0 = (. 5, −1,−2.5) compared 

to 𝜆0 = (1,0, −1) showed to negatively impact item parameter recovery in the SEM and 

MH-RM Possible reasons for this could be an issue with how the item parameter priors 

was specified or problems with the complete-data gradients. The EM consistently used all 

possible latent classes in the estimation of the models. Another limitation is that the 

respondent’s estimated latent classes were obtained using a uniform prior, 𝑓(𝜶) in the 

MAP scoring procedure. Note that a Bayesian approach to classification (i.e., estimation 

of attribute profiles) can result in higher correct classification rates when the prior is a 

reasonable approximation of the true distribution of the attribute profile.  As a result, the 

𝑝(𝐶𝐶) is lower when 𝑓(𝜶) is assumed to be uniform compared to being estimated and 
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imputed in the scoring procedure. Thus, it is likely 𝑝(𝐶𝐶) could have been higher if 𝑓(𝜶) 

was estimated in the calibration procedure. Another possible limitation is that the author 

coded the program and did the best he could to make sure things were running accurately, 

but there may be some issues and efficiency with the program. 

Directions for Future Research 

 Several future research directions can be explored in relation to this research 

study. Future research could explore parameter recovery and computational time when 

smaller sample sizes and survey lengths are used. Typically, a sample size of 𝑁 = 5,000 

is not realistic in many small-scale testing situations. For the current study, a partially 

informative prior was used for the item parameters.  Future research could explore how 

influential informative vs. noninformative priors impact item parameter recovery, 

classification rates, and computational time in relation to the P-LCDM-PA. An 

informative prior may improve item parameter recovery, classification rates, and 

computational time, however, the drawback to this is that the data will have less influence 

on the results obtained from the estimation procedure. This can be more problematic 

when real data study is implemented because we don’t know true values and thus a 

reasonable prior cannot easily be determined. A direction for future research could 

include evaluating how random starting values compared to “good” starting values 

impact convergence rates in the algorithms. Future researchers could explore how the 

general difficulty of a test impacts item parameter recovery, CCR, and computational 

time, especially in the SEM and MH-RM. Future research can use the SEM and MH-RM 

to estimate other CDMs including GDM, G-DINA, unconstrained P-LCDM-PA, 
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dichotomous LCDM and its submodels. The increase in the number of latent classes as a 

function of measured attributes in a diagnostic assessment is also applicable in other 

CDM as well. Another important direction for future research could be comparing other 

methods to the SEM and MH-RM for reducing computational time such as the OCAC 

framework presented in Karelitz (2004), defining a higher-order continuous factor, or 

forming hierarchical structures. These methods could possibly be combined with the 

SEM and MH-RM to further improve computational time. 

Summary 

 In summary, the primary goal of this study was to utilize polytomous attributes in 

the P-LCDM-PA, which is a special case of the GPDM for polytomous attributes. Then, 

due to exponentially increasing the number of latent classes, explore the feasibility and 

efficiency in addition to the quality of parameter estimation of the SEM and MH-RM 

algorithms relative to the EM algorithm. The SEM and MH-RM algorithms may be more 

computationally advantageous over an EM algorithm when there exist many latent 

classes. As the number of measured attributes increases in a diagnostic assessment, the 

number of latent classes increases exponentially. The large number of classes is even 

more problematic when polytomous attribute levels are introduced in the diagnostic 

assessment. This study will provide researchers and practitioners interested in developing 

diagnostic assessments that may contain many attributes and/or dichotomous/polytomous 

attribute levels and are need more computationally efficient estimation algorithms.  
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APPENDIX A 

 

LOG-POSTERIOR AND DERIVATIVES 

 

 Because prior distributions are being imposed on 𝜆 and 𝜆0 in the P-LCDM-PA, 

the function that will be maximized is the log-posterior, denoted here as 𝑓, rather than the 

log-likelihood. The log-posterior function used to estimate model parameters of the P-

LCDM-PA can be presented in the following form 

 

𝑙𝑜𝑔𝑓 = [∑∑∑ 𝑟𝑖𝑗𝑐log (𝑃𝑖𝑗𝑐 − 𝑃𝑖𝑗𝑐+1

𝐶𝑗−1

𝑐=0

)

𝐽

𝑗=1

𝐿

𝑖=1

] +∑∑𝑙𝑜𝑔𝑝(𝜆𝑗𝑘)

2
𝐾𝑗

𝑘=1

𝐽

𝑗=1

+∑∑ 𝑙𝑜𝑔𝑝(𝜆𝑗𝑐,0)

𝐶𝑗−1

𝑐=1

𝐽

𝑗=1

. (A. 1)

 

 

Here L is the total number of latent classes, 𝐿 = ∏ 𝑆𝑘
𝐾
𝑘=1 , J is the total number of items in 

the diagnostic assessment, and 𝐶𝑗 is the total number of response categories for the 𝑗𝑡ℎ 

item. In the SEM and MH-RM, the summation of L can be taken over the total sample 

size N rather than over all latent classes, and 𝑟𝑖𝑗𝑐 can be set to 𝐼[𝑋𝑖𝑗 = 𝑐]. The the prior 

distribution 𝑝(𝜆𝑗𝑘) is defined as the log-normal density function with hyperparameters 

𝜇𝜆𝑗𝑘  and 𝜎𝜆𝑗𝑘 , 

 

𝑝(𝜆𝑗𝑘) =
1

𝜆𝑗𝑘
∙

1

𝜎𝜆𝑗𝑘√2𝜋
𝑒𝑥𝑝 [−

1

2
(
𝑙𝑜𝑔𝜆𝑗𝑘 − 𝜇𝜆𝑗𝑘

𝜎𝜆𝑗𝑘
)

2

] , (𝐴. 2) 

 

and taking the 𝑙𝑜𝑔 of 𝑝(𝜆𝑗𝑘) results in 
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𝑙𝑜𝑔𝑝(𝜆𝑗𝑘) = 𝑙𝑜𝑔
1

𝜆𝑗𝑘
+ 𝑙𝑜𝑔𝐶 −

1

2
(
𝑙𝑜𝑔𝜆𝑗𝑘 − 𝜇𝜆𝑗𝑘

𝜎𝜆𝑗𝑘
)

2

. (𝐴. 3) 

 

where 𝑙𝑜𝑔𝐶 is a constant that can be dropped out of the equation. The prior distribution 

𝑝(𝜆𝑗𝑐,0) is defined as the normal density function with hyperparameters 𝜇𝜆𝑗𝑐,0 and 𝜎𝜆𝑗𝑐,0, 

 

 𝑝(𝜆𝑗𝑐,0) =
1

𝜎𝜆𝑗𝑐,0√2𝜋
𝑒𝑥𝑝 [−

1

2
(
𝜆𝑗𝑐,0 − 𝜇𝜆𝑗𝑐,0
𝜎𝜆𝑗𝑐,0

)

2

] (𝐴. 4) 

 

and taking the 𝑙𝑜𝑔 of 𝑝(𝜆𝑗𝑐,0) results in 

 

𝑙𝑜𝑔𝑝(𝜆𝑗𝑐,0) = 𝑙𝑜𝑔𝐶 −
1

2
(
𝜆𝑗𝑐,0 − 𝜇𝜆𝑗𝑐,0
𝜎𝜆𝑗𝑐,0

)

2

. (𝐴. 5) 

where 𝑙𝑜𝑔𝐶 is a constant. The 𝑟𝑖𝑗𝑐 in Equation (A.1) is defined as the expected frequency 

of respondents responding at 𝑐𝑡ℎ category for the 𝑗𝑡ℎ item, given the 𝑖𝑡ℎ latent class, 𝑃𝑖𝑗𝑐 

and  𝑃𝑖𝑗𝑐+1 are the boundary response probabilities for the 𝑗𝑡ℎ item at 𝑐𝑡ℎ category, given 

the 𝑖𝑡ℎ latent class. For notational clarity, the indices of i,  j and k will be suppressed in 

the log-posterior function. Following Baker and Kim (2004) and Cai (2010a), 

differentiating the log-posterior function with respect to model parameters 𝝀 and 𝜆𝑐,0 the 

first-order partial derivative values are defined as 

 

𝜕𝑙𝑜𝑔𝑓

𝜕𝝀 
= ∑

𝑟𝑐
𝑃𝑐 − 𝑃𝑐+1

𝐶−1

𝑐=0

(
𝜕𝑃𝑐
𝜕𝝀 

−
𝜕𝑃𝑐+1
𝜕𝝀 

) + (−
1

𝝀
−
𝑙𝑜𝑔𝝀 − 𝜇𝝀

𝜎𝝀
2𝝀

) , (A. 6) 
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𝜕𝑙𝑜𝑔𝑓

𝜕𝜆𝑐,0
= −(

𝑟𝑐−1
𝑃𝑐−1 − 𝑃𝑐

−
𝑟𝑐

𝑃𝑐 − 𝑃𝑐+1
)
𝜕𝑃𝑐
𝜕𝜆𝑐,0

+ (−
𝜆𝑐,0 − 𝜇𝜆𝑐,0
𝜎𝜆𝑐,0
2 ) , (A. 7) 

 

where 

 
𝜕𝑃𝑐
𝜕𝝀 

= 𝑃𝑐(1 − 𝑃𝑐)𝜶
∗∗, (A. 8) 

 
𝜕𝑃𝑐
𝜕𝜆𝑐,0

= 𝑃𝑐(1 − 𝑃𝑐), (A. 9) 

 

which are then collected into a (2𝐾𝑗 − 1) + (𝐶𝑗 − 1) × 1 gradient vector: 

 

∇𝑙𝑜𝑔𝑓𝑇 = (
𝜕𝑙𝑜𝑔𝑓

𝜕𝝀 
,
𝜕𝑙𝑜𝑔𝑓

𝜕𝜆𝑐,0
, ⋯ ,

𝜕𝑙𝑜𝑔𝑓

𝜕𝜆𝐶−1,0
 ) . (A. 10) 

 

Further differentiating the log-posterior function with respect to model parameters 𝝀 and  

𝜆𝑐,0 the second-order partial derivative are defined as 

 

𝜕2𝑙𝑜𝑔𝑓

𝜕𝝀𝜕𝝀′ 
= ∑−

𝑟𝑐
(𝑃𝑐 − 𝑃𝑐+1)

2

𝐶−1

𝑐=0

(
𝜕𝑃𝑐
𝜕𝝀 

−
𝜕𝑃𝑐+1
𝜕𝝀 

) (
𝜕𝑃𝑐
𝜕𝝀′ 

−
𝜕𝑃𝑐+1
𝜕𝝀′ 

)

+
𝑟𝑐

𝑃𝑐 − 𝑃𝑐+1
(
𝜕2𝑃𝑐
𝜕𝝀𝜕𝝀′ 

−
𝜕2𝑃𝑐+1
𝜕𝝀𝜕𝝀′ 

) + (
1

𝝀2
−

1

𝜎𝝀
2𝝀2

+
𝑙𝑜𝑔𝝀 − 𝜇𝝀

𝜎𝝀
2𝝀2

) , (A. 11)

 

 

𝜕2𝑙𝑜𝑔𝑓

𝜕𝜆𝑐,0
2 = −(

𝑟𝑐−1
(𝑃𝑐−1 − 𝑃𝑐)2

+
𝑟𝑐

(𝑃𝑐 − 𝑃𝑐+1)2
)(

𝜕𝑃𝑐
𝜕𝜆𝑐,0

)

2

−(
𝑟𝑐−1

𝑃𝑐−1 − 𝑃𝑐
−

𝑟𝑐
𝑃𝑐 − 𝑃𝑐+1

) (
𝜕2𝑃𝑐

𝜕𝜆𝑐,0
2 ) + (−

1

𝜎𝜆𝑐,0
2 ) , (A. 12)
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𝜕2𝑙𝑜𝑔𝑓

𝜕𝜆𝑐−1,0𝜕𝜆𝑐,0
=

𝑟𝑐−1
(𝑃𝑐−1 − 𝑃𝑘)2

(
𝜕𝑃𝑐−1
𝜕𝜆𝑐−1,0

)(
𝜕𝑃𝑐
𝜕𝜆𝑐,0

) , (A. 13) 

 

𝜕2𝑙𝑜𝑔𝑓

𝜕𝜆𝑐+1,0𝜕𝜆𝑐,0
=

𝑟𝑐
(𝑃𝑐 − 𝑃𝑐+1)2

(
𝜕𝑃𝑐+1
𝜕𝜆𝑐+1,0

)(
𝜕𝑃𝑐
𝜕𝜆𝑐,0

) , (A. 14) 

 

𝜕2𝑙𝑜𝑔𝑓

𝜕𝝀𝜕𝜆𝑐,0 
= −

𝑟𝑐
(𝑃𝑐 − 𝑃𝑐+1)2

(
𝜕𝑃𝑐
𝜕𝜆𝑐,0 

) (
𝜕𝑃𝑐
𝜕𝝀 

−
𝜕𝑃𝑐+1
𝜕𝝀 

) +
𝑟𝑐−1

(𝑃𝑐−1 − 𝑃𝑐)2
(
𝜕𝑃𝑐
𝜕𝜆𝑐,0 

)

(
𝜕𝑃𝑐−1
𝜕𝝀 

−
𝜕𝑃𝑐
𝜕𝝀 
) − (

𝑟𝑐−1
𝑃𝑐−1 − 𝑃𝑐

−
𝑟𝑐

𝑃𝑐 − 𝑃𝑐+1
)(

𝜕2𝑃𝑐
𝜕𝝀𝜕𝜆𝑐,0 

) , (A. 15)

 

 

where 

 

𝜕2𝑃𝑐
𝜕𝝀𝜕𝝀′ 

= 𝑃𝑐(1 − 𝑃𝑐)(1 − 2𝑃𝑐)𝜶
∗∗𝜶∗∗(𝑇), (A. 16) 

 

𝜕2𝑃𝑐

𝜕𝜆𝑐,0
2 = 𝑃𝑐(1 − 𝑃𝑐)(1 − 2𝑃𝑐), (A. 17) 

 

𝜕2𝑃𝑐
𝜕𝝀𝜕𝜆𝑐,0 

= 𝑃𝑐(1 − 𝑃𝑐)(1 − 2𝑃𝑐)𝜶
∗∗. (A. 18) 

 

which are then collected into a (2𝐾𝑗 − 1) + (𝐶𝑗 − 1) × (2
𝐾𝑗 − 1) + (𝐶𝑗 − 1) Hessian 

matrix: 
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∇2𝑙𝑜𝑔𝑓 =

(

 
 
 
 
 

𝜕2𝑙𝑜𝑔𝑓

𝜕𝝀𝜕𝝀′ 
…

𝜕2𝑙𝑜𝑔𝑓

𝜕𝝀𝜕𝜆𝑐,0  

⋮ ⋱
𝜕2𝑙𝑜𝑔𝑓

𝜕𝜆𝑐−1,0𝜕𝜆𝑐, 

𝜕2𝑙𝑜𝑔𝑓

𝜕𝝀𝜕𝜆𝑐,0  

𝜕2𝑙𝑜𝑔𝑓

𝜕𝜆𝑐+1,0𝜕𝜆𝑐,0 

𝜕2𝑙𝑜𝑔𝑓

𝜕𝜆𝑐,0
2 )

 
 
 
 
 

. (A. 19) 

 

Note in Equation (A.11) the second-order partial derivative with respect to 𝑙𝑜𝑔𝑝(𝝀) only 

applies when 𝝀 = 𝝀′ otherwise, 0. 


