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CHAPTER I

INTRODUCTION

1.1. Notation and Conventions

The classical working environment in which Elementary Number Theory takes

place is the set of integers. The integers consist of the counting numbers 1, 2, 3, . . . ,

their negatives, and zero. More succinctly, the symbol Z is used to denote the set of

integers:

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }.

The reason that the letter Z is used in this context is that the German word for

“number” is Zahl. Two subsets of special interest within the full set of integers are the

positive integers (in other words, the counting numbers), which we denote by Z+, and

the set of all integers that are greater than or equal to 0, which we denote by Z≥0.

We will make frequent use of lower case letters to represent integers or functions;

the distinction will be made the first time a new letter is introduced. Matrices shall

be represented using bold upper case letters. Our work deals primarily with integers,

but we will have occasion to work within the larger sets of rational and real numbers,

denoted by Q and R, respectively. We state several theorems in this first section, some

of which are of great importance, such as Theorem 1.1.11. Proofs of the majority of

these theorems may be found in the book by Landau [5].

Due to our emphasis on working within the set of integers, it is essential to

discuss the notion of “divisibility.”

Definition 1.1.1. We say that a nonzero integer a divides another integer b, denoted
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by a | b, if there exists an integer c such that ac = b. In this case, we say that a is a

divisor or factor of b. If such an integer c does not exist, then a does not divide b,

which we denote by a - b.

For example, 2 | 10 since 2 · 5 = 10. However, 2 - 11 since there is no integer c

such that 2 · c = 11. Note that 1 | b for every integer b. Also, we have a | a for every

nonzero integer a.

No discussion of divisibility would be complete without defining the greatest

common divisor.

Definition 1.1.2. Let a, b, c ∈ Z with a 6= 0. The greatest common divisor of a and

b, which we denote by gcd (a, b), is the largest positive integer that simultaneously

divides both a and b. Similarly, the largest positive integer that simultaneously divides

a, b, and c is called the greatest common divisor of a, b, and c, and is denoted by

gcd (a, b, c).

Definition 1.1.3. Let a, b, c ∈ Z with a 6= 0. If gcd (a, b) = 1, then a and b are said

to be relatively prime. Similarly, if gcd (a, b, c) = 1, then the triple of integers a, b,

and c is said to be relatively prime.

A nice result that establishes a connection between the greatest common divisor

of a pair of integers with the greatest common divisor of a triple of integers is the

following.

Theorem 1.1.4. If a, b, c ∈ Z with a 6= 0, then gcd (a, b, c) = gcd (gcd (a, b), c).

An extremely useful result about the greatest common divisor of two integers is

that it may be expressed as a linear combination of these two integers. More precisely,

we have
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Theorem 1.1.5. Given a, b ∈ Z with a 6= 0, there exist integers s, t ∈ Z such that

sa+ tb = gcd (a, b).

A special case of this theorem deserves a separate mention of its own.

Corollary 1.1.6. Given a, b ∈ Z with a 6= 0, we have gcd(a, b) = 1 if and only if

there exist integers s, t ∈ Z such that sa+ tb = 1.

Using Theorems 1.1.4 and 1.1.5 in conjunction, we may prove a natural gener-

alization of Corollary 1.1.6 which applies to a triple of relatively prime integers. We

only state and prove the one direction of this generalization that will be called upon

later in Section 2.3.

Corollary 1.1.7. If a 6= 0, b, and c form a relatively prime triple of integers, then

there exist integers s, t, u ∈ Z such that sa+ tb+ uc = 1.

Proof. Let d = gcd (a, b), and use Theorem 1.1.5 to choose integers x and y such that

xa+ yb = d. If we set e = 1 = gcd (a, b, c), then Theorems 1.1.4 and 1.1.5 together

tell us that there exist integers u, v ∈ Z such that e = vd + uc. Straightforward

substitution yields the following:

1 = e = v(xa+ yb) + uc = vxa+ vyb+ uc,

and setting s = vx and t = vy completes the proof.

Another basic result that we will need later (which also provides a crucial step

in the proof of the Fundamental Theorem of Arithmetic stated just below) is the

following:

Theorem 1.1.8. Let a, b, c be nonzero integers and assume that gcd(a, b) = 1. If

a | bc, then a | c.
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We noted above that if a ≥ 2 is a positive integer, then it has at least two

distinct positive divisors, namely, 1 and a itself. Certain special integers, such as

2, 3, 5, and 7, have no other positive divisors aside from the two just mentioned. This

observation is critical to the whole subject of Elementary Number Theory and leads

to the following crucial definition.

Definition 1.1.9. A positive integer p ≥ 2 is said to be a prime number if the only

two positive integer divisors of p are 1 and p itself. A positive integer m ≥ 2 that is

not prime is said to be a composite number.

For example, 4, 6, 8, 9, 10, and 12 are all composite numbers. We listed the first

4 prime numbers above, in increasing order, and it is easy to continue this ordered list:

11, 13, 17, 19, 23, 29, 31, . . . . Indeed, the list of prime numbers is never-ending, which

is the content of the following important theorem dating back to the mathematics of

ancient Greece.

Theorem 1.1.10. There are infinitely many prime numbers.

From a multiplicative standpoint, the prime numbers are best viewed as the

“building blocks” from which all positive integers arise. It is very important to give

a precise formulation of this, and the resulting statement is—with no exaggeration—

known as the Fundamental Theorem of Arithmetic. The statement that we give here

is perhaps slightly unorthodox, but useful for our purposes.

Theorem 1.1.11. For every integer n ∈ Z+, there is a prime factorization

n =
∏
p

pep(n),

where the product is taken over all prime numbers, only finitely many of the exponents

ep(n) are positive, and these exponents are all uniquely determined by n.
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For example, if n = 1 we have ep(1) = 0 for all primes p. If n = 25, we have

e5(25) = 2 and ep(25) = 0 for all other primes p. The primes form one important

infinite sequence of positive integers and the “perfect squares” form another such

sequence.

Definition 1.1.12. A positive integer n is said to be a perfect square if it has the

form n = b2, for some nonzero integer b.

The list of perfect squares is easy to generate; in ascending order the list begins as

follows: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, . . . . A useful characterization of the perfect

squares may be given in terms of the exponents appearing in their prime factorization.

Theorem 1.1.13. An integer n ∈ Z+ is a perfect square if and only if every exponent

ep(n) appearing in the prime factorization of n in Theorem 1.1.11 is even.

The next result, also related to perfect squares, will have important consequences for

this thesis as well.

Theorem 1.1.14. Given n ∈ Z+, the square root
√
n is an irrational number if and

only if n is not a perfect square.

We will have occasion to make use of the notion of “congruence” with respect

to a given modulus m. The notation used for this was introduced by Gauss in his

epoch-making book entitled Disquisitiones Arithmeticae [3] (this title translates from

Latin into English as “Arithmetical Investigations”).

Definition 1.1.15. Let a, b,m ∈ Z with m ≥ 2. We say that “a is congruent to b

modulo m” if m | (a− b), which we denote by a ≡ b (mod m).

For example, 10 ≡ 2 (mod 4) since 4 | (10 − 2). However, 13 6≡ 3 (mod 4)

since 4 - (13− 3). A list of common properties of congruence is stated below.
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Theorem 1.1.16. Let a, b, c,m ∈ Z with m ≥ 2. Then,

(i) a ≡ a (mod m)

(ii) if a ≡ b (mod m), then b ≡ a (mod m), and

(iii) if a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m).

There are many other properties of modular congruence, but those listed above

are the properties that will be referenced most often throughout this thesis. Theorem

1.1.16 demonstrates that for any fixed m ≥ 2, “congruence modulo m” defines an

equivalence relation on Z; that is, congruence modulo m partitions the set of integers

into distinct “congruence classes”, and there are exactly m such classes. For example,

the class of 0 modulo m is denoted by 0, and consists of those integers congruent

to 0 (mod m). It is easy to see that 0 = {. . . ,−2m,−m, 0,m, 2m, . . . }. Similarly,

1 = {. . . , 1− 2m, 1−m, 1, 1 +m, 1 + 2m, . . . }. Working modulo m, every element

in Z is congruent to exactly one integer in the set A = {0, 1, . . . ,m− 1}, which

means that the m congruence classes modulo m may be listed as 0, 1, . . . ,m− 1. This

particular set A is an example of a “complete set of residues modulo m”, but many

other subsets of Z containing exactly m elements may be used instead of A for this

purpose. This fact is readily formalized by use of the following definition.

Definition 1.1.17. Given a fixed modulus m ≥ 2, any set of m distinct integers

B = {b1, b2, . . . , bm} with the property that every element in Z is congruent modulo

m to exactly one integer in the set B is called a “complete set of residues modulo m”.

When working modulo m, the standard choice used is the set A above, but we now

give another example of Definition 1.1.17 that will play a helpful role in Section 2.2.
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Example 1.1.18. If m ≥ 2 is a fixed even integer, then the set

B =
{
−m

2
+ 1,−m

2
+ 2, . . . ,−m

2
+m =

m

2

}
is a complete set of residues modulo m.

For any fixed modulus m ≥ 2, the congruence classes modulo m respect the

operations of addition and multiplication. For example, if m = 7, then 3 + 9 = 5.

These congruence classes form an “abelian group” of order m under the operation of

addition. We will consider other important groups in this thesis that are not abelian

and which might contain an infinite number of elements as well. We first give the

formal definition of a “group”.

Definition 1.1.19. A group is a set G with a binary operation ? defined on G such

that G is closed under the operation, and such that

(i) (a ? b) ? c = a ? (b ? c) for all a, b, c ∈ G;

(ii) there exists an element e ∈ G, called the identity of G, such that for all a ∈ G,

we have e ? a = a ? e = a;

(iii) for each a ∈ G, there exists an element a−1 ∈ G, called the inverse of a, such

that a−1 ? a = a ? a−1 = e.

If the following additional property holds, then we say that the group is abelian:

(iv) We have a ? b = b ? a for all a, b ∈ G.

The order of a group G is simply the number of elements contained in the set G. A

subgroup of a group G is any nonempty subset H of G which forms a group in its own

right with respect to the operation ?.

7



The group of congruence classes modulo m ≥ 2 under addition is usually

denoted by Z/mZ. If a is a nonzero integer such that gcd(a,m) = 1, then we may

use Corollary 1.1.6 to prove that for any integer b such that b ≡ a (mod m), we have

gcd(b,m) = 1 as well. This justifies saying that if gcd(a,m) = 1, then the class of

a modulo m, a, is relatively prime to m. It is not difficult to prove that the set of

congruence classes modulo m that are relatively prime to m forms an abelian group

under the operation of multiplication, usually denoted by (Z/mZ)×. The number of

elements in this group is designated by φ(m), which is just the number of integers

a in the set {1, 2, . . . ,m} for which gcd(a,m) = 1. We will often have occasion to

work within the groups Z/mZ or (Z/mZ)×, usually without formal mention since the

context should be clear.

The group denoted by SL2(Z), to be defined presently, plays a key role in this

thesis, and certain subgroups of SL2(Z) will also be of great importance.

Definition 1.1.20. Let SL2(Z) denote the set of all 2× 2 matrices with determinant

1 and coefficients in Z.

Theorem 1.1.21. The set SL2(Z) forms a nonabelian group of infinite order under

the operation of matrix multiplication, known as the special linear group.

Proof. Let

A =

a b

c d


be an arbitrary element of SL2(Z). By definition, detA = ad−bc = 1, and a, b, c, d ∈ Z.

Note that

I =

1 0

0 1
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is an element of SL2(Z), and I plays the role of the identity element e in part (ii) of

Definition 1.1.19. It is easy to verify that the matrix

B =

 d −b

−c a


is such that A ·B = B ·A = I. Note that B ∈ SL2(Z), and so part (iii) of Definition

1.1.19 holds. It is well known that matrix multiplication is associative for square

matrices of the same size, and thus part (i) of Definition 1.1.19 holds. Finally,

from the basic multiplicative property of determinants of square matrices, we have

det (A ·B) = detA · detB = 1 · 1 = 1, and thus SL2(Z) is closed under matrix

multiplication. We only need to exhibit a single counter-example of part (iv) of

Definition 1.1.19 to prove that SL2(Z) is nonabelian. Given the two matrices

A =

 3 1

−1 0

 and B =

 5 1

−1 0


in SL2(Z), we note that

A ·B =

14 3

−5 −1

 and B ·A =

14 5

−3 −1

 ,

in violation of part (iv). To see that there are infinitely many distinct matrices in

SL2(Z), we note that every matrix of the form n 1

−1 0


for any n ∈ Z is an element of SL2(Z). This completes the proof of Theorem 1.1.21.
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We finally introduce a somewhat nonstandard operation on 2× 2 matrices that

will appear later in this thesis. We will simply make up our own notation here since

there is no standard usage.

Definition 1.1.22. Given a 2× 2 matrix

A =

a b

c d


with coefficients in Z, we set

Aw =

d b

c a

 .

It is easy to see that if A ∈ SL2(Z), then we also have Aw ∈ SL2(Z). Proving the

following lemma is also a straightforward exercise.

Lemma 1.1.23. If A and B are 2× 2 matrices with coefficients in Z, then

(A ·B)w = Bw ·Aw. (1.1.1)

We also have (
Aw
)w = A. (1.1.2)

1.2. Historical Motivation

In this section, we provide a historical context for the motivation of this thesis.

From antiquity, mathematicians and scholars have posed many questions related

to the representation of various integers. The Greek Diophantus of Alexandria, in

his series of works collectively called Arithmetica, challenged the mathematicians

of the 3rd Century A.D. to compute solutions to 130 algebraic equations, in both

determinate and indeterminate forms. Many of these problems could be reduced
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to solving quadratics, and came to be known as “Diophantine equations.” While

Diophantus did not rule out the possibility of rational number solutions, the modern

usage of “Diophantine equations” insists that the solutions be restricted to the integers,

and we follow modern usage in this thesis. One of the most familiar Diophantine

equations was inspired by the Pythagorean Theorem. When restricted to the integers,

the solutions of a2 + b2 = c2 are called “Pythagorean triples”, for which there are

infinitely many, among which are (a, b, c) = (3, 4, 5) and (5, 12, 13).

Yet another Diophantine equation, again with a long history stretching back

to antiquity, is the Fermat-Pell Equation, often referred to simply as Pell’s Equation.

There are many variants of this equation, depending upon the situation and field of

study, but we are mainly interested in finding all integer pair solutions (x, y) to the

equation x2 − Dy2 = 4, where D is a positive integer satisfying certain conditions

which are spelled out in detail in Assumption 2.2.1.

There are many mathematicians who have contributed to the modern develop-

ment of the subject of Number Theory. The individual chiefly credited with reigniting

a new interest in the subject during The Renaissance, after a long period of abeyance,

in so much as to be appropriately called the “Father of Modern Number Theory”, is

the French mathematician Pierre de Fermat (1601 - 1665). Although Fermat published

very few works, much of his personal and professional correspondence has survived, and

from these letters, many of Fermat’s achievements and advances in Number Theory

have come to light. Fermat studied Diophantine equations, and he is credited with

proving various theorems, for example, related to the integer solutions of equations of

the form p = x2 +my2, where p is an odd prime and m ∈ Z. The expression on the

right hand side, x2 +my2, is a special type of “binary quadratic form”.

In 1657, Fermat issued a challenge to the prominent British mathematicians of

11



the era to compute integer solutions to Pell’s Equation for a fixed discriminant [2]. The

standard at the time was to allow rational solutions, but Fermat insisted on integer

solutions only. While some British mathematicians were able to answer specific cases

of Fermat’s challenge successfully, Fermat was not completely satisfied. What Fermat

was truly after was a general proof that Pell’s Equation always possessed nontrivial

solutions, as opposed to a method that would successfully produce such solutions in

special cases. William Brouncker (1620 - 1684), a well-known Irish mathematician, was

one of the individuals who responded to Fermat’s challenge. Brouncker had previously

developed the theory of continued fractions and had given a remarkable formula for

the number 4/π in terms of such specialized fractions which was published by the

English mathematician John Wallis (1616 - 1703) in his famous book Arithmetica

Infinitorum. Brouncker found that a variation on his method of continued fractions

could produce nontrivial solutions to Pell’s Equation in his response to Fermat’s

challenge, even if he could not offer Fermat general proofs. Continued fractions had

earlier been discovered by the Italian mathematician Pietro Cataldi (1548 - 1626),

but his use of these specialized fractions was not as sophisticated as Brouncker’s, and

Brouncker apparently had no knowledge of Cataldi’s work in this area. Euler and

Lagrange would later expand upon the notation and theory of continued fractions,

and would take the subject far beyond where Brouncker had left it.

Continuing the work of Fermat, Leonhard Euler (1707 - 1783) also studied

the representation of prime numbers by means of various binary quadratic forms (see

Section 2.1 for the definition of such forms). Euler was led by these studies to be

the first to formulate and state the Law of Quadratic Reciprocity. After proving

certain special cases of this famous Law, he was able to rigorously demonstrate several

statements left unproven by Fermat. Euler was the first to seriously take up the many
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challenges in Number Theory that Fermat had left to posterity. He spent over 50

years of his life making steady progress towards proving Fermat’s statements, at the

same time laying the proper foundations that now form the basis of modern texts on

Number Theory.

Crucial to this thesis is the work of Italian mathematician Joseph-Louis La-

grange (1736 - 1813), a keen student of Euler’s work who would later succeed Euler

as the director of the mathematics section at the Prussian Academy of Sciences in

Berlin. Lagrange was the first to publish a proof that the Fermat-Pell 1-Equation

x2 − dy2 = 1 always has a nontrivial solution pair (x, y) (meaning that x and y are

both positive integers) for any given d ∈ Z+ that is not a perfect square (see Section

5.2 for an approach to this Diophantine equation using minus continued fractions).

Lagrange was also the first to develop what we now call “reduction theory” in his

elaboration of the theory of binary quadratic forms. Reduction theory has been

studied intensively since its inception, and it forms the core of this thesis. We focus

specifically on indefinite binary quadratic forms in this thesis, and in this context

there is no universally accepted definition for a “reduced form”. The definition we

prefer in this thesis is due to Don Zagier (born 1951), and the main reference we use

in following his approach is his book [8].

The “classic” positive continued fractions first described by Cataldi and Brouncker,

and later used by Euler and Lagrange as well, allow any real number β to be expressed

as a cascading infinite fraction

β = a0 +
1

a1 +
1

a2 +
1
. . .

.
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In this thesis, however, we will instead employ the theory of “minus” continued fractions,

described in [4] and [8]. Using minus continued fractions, we may express any real

number β in the form

β = n0 −
1

n1 −
1

n2 −
1

. . .

,

where n0 ∈ Z and nj ∈ Z≥2 for j = 1, 2, 3, . . . . We discuss minus continued fractions

in greater detail in Section 4.2.

Carl Friedrich Gauss (1777 - 1855), widely considered to be one of the greatest

mathematicians of all time, made significant contributions to Number Theory in

his work entitled Disquisitiones Arithmeticae, published in 1801 when he was 24

years old. In the years preceding the Disquisitiones, most of the major theorems

and contributions to Number Theory were disjointed, isolated, and full of gaps in

their logic and proofs. Gauss took it upon himself to collect these scattered works,

refine and fill in the holes in the proofs, and to publish the works under a single title.

Alongside the contributions of other mathematicians, Gauss also published his own

extensive and oftentimes revolutionary results in the same text. The publication of

the Disquisitiones, coupled with Gauss’ renowned status as a highly respected and

authoritative mathematician, ignited interest in Number Theory, and set the stage for

the development of the subject as we know it today.

14



CHAPTER II

INDEFINITE BINARY QUADRATIC FORMS

AND REAL QUADRATIC IRRATIONALS

2.1. Discriminants

Definition 2.1.1. An integral binary quadratic form f(x, y) is a homogeneous poly-

nomial expression of degree two in two variables: f(x, y) = ax2 + bxy + cy2, where a,

b, and c are fixed integer coefficients, not all equal to zero, and the variables x and y

are restricted to taking on only integer values.

For brevity, we often use the term “form” or just say “binary quadratic form”

instead of “integral binary quadratic form” since this is the only type of form we

consider in this thesis. As an abbreviation, we sometimes denote the form f(x, y) by

its ordered list of coefficients [a, b, c], contained within square brackets, or simply by

f . The fundamental quantity associated to a form is its discriminant.

Definition 2.1.2. The discriminant D of a binary quadratic form [a, b, c] is defined

to be the integer D = b2 − 4ac.

For example, the form x2 + y2 has discriminant −4, the form x2 + 2xy + y2

has discriminant 0, and the form x2 + 3xy + y2 has discriminant 5.

Given a form f(x, y), the simplest way to classify it initially depends upon the

set of integers that it represents. We say that a form f(x, y) “represents the integer n”

if there exist integers x1 and y1 such that f(x1, y1) = n. There are some forms that

represent only negative integers and 0 and these are of no interest to us. Excluding
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these, there are only two types of forms that arise and the following two definitions

delineate these two types.

Definition 2.1.3. A form f is said to be nonnegative if the only integers it represents

are greater than or equal to zero.

It is easy to see that each of the forms x2 + y2 and x2 + 2xy + y2 = (x+ y)2 is

nonnegative. On the other hand, since 1 · (−1)2 + 3 · (−1)(1) + 1 · (1)2 = −1, the form

x2 + 3xy + y2 is not of this type.

Definition 2.1.4. An indefinite form is one which, for suitable values of (x, y), can

represent both positive and negative integers.

One of the reasons that the discriminant of a form is so important is that it

allows us to instantaneously categorize the form with respect to Definitions 2.1.3 and

2.1.4. If f is a form having negative discriminant, then we know that a 6= 0 since

otherwise D = b2 ≥ 0. If D < 0 and a < 0, then f represents only negative integers

and zero. If D < 0 and a > 0, then f is a nonnegative form; even stronger, it is

“positive definite” (see [5], p. 172). Since so much is already known about forms of

negative discriminant, we have decided in this thesis to focus exclusively on forms of

nonnegative discriminant. Note that for any discriminantD, we haveD = b2−4ac ≡ b2

(mod 4). Since for any integer b, we have either b2 ≡ 0 (mod 4) or b2 ≡ 1 (mod 4),

we see that in general we have either D ≡ 0 (mod 4) or D ≡ 1 (mod 4). This shows

that the list of all possible nonnegative discriminants, in ascending order, starts out as

follows: 0, 1, 4, 5, 8, 9, 12, 13, . . . . Every integer on this list arises as the discriminant

of some binary quadratic form. If D ≡ 0 (mod 4), then the form

x2 − D

4
y2
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has discriminant D. If D ≡ 1 (mod 4), then the form

x2 + xy +
1−D

4
y2

has discriminant D. Even if all of the discriminants in the list above are possible, not

all of them are equally interesting. If D = 0, or if D is a perfect square (see Definition

1.1.12), then any form f(x, y) having such a value of D as its discriminant can be

factored into a product of linear forms as follows ([5], p. 171):

f(x, y) = (rx+ sy)(tx+ uy), (2.1.1)

where r, s, t, and u are all integers. Conversely, if D ∈ Z+ is a discriminant that is not

a perfect square, then no form of that discriminant may be factored into a product of

linear forms. If a binary quadratic form can be factored as in (2.1.1), then it becomes

significantly easier to work with and loses its second degree quality. For all of the

reasons just given, we henceforth only consider in this thesis binary quadratic forms

having a positive integer discriminant D which is not a perfect square. Such forms

are always indefinite, as we presently show. It is worth noting that since we only

consider those D ∈ Z+ such that D is not a perfect square, any form f = [a, b, c] of

such discriminant must have a 6= 0 and c 6= 0 since otherwise D = b2. The fact that

we always have a 6= 0 and c 6= 0 for every form [a, b, c] under consideration from this

point onwards will prove to be very important on many occasions. We will give regular

reminders of this fact, but there shall be instances where this is tacitly assumed to be

known and where no explicit mention of this fact will be made.

Theorem 2.1.5. Every binary quadratic form f = [a, b, c] having a discriminant

D = b2 − 4ac > 0 that is not a perfect square is necessarily indefinite.
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Proof. We first note that f(1, 0) = a, and that

f(b,−2a) = a · b2 − b · 2ba+ c · 4a2 = a
(
4ac− b2

)
= −Da.

Since a 6= 0 and D > 0, one of the two integers just computed will always be positive

and the other one will be negative. By Definition 2.1.4, our proof is complete.

Remark. As we saw above, if f = [a, b, c] is a form of discriminant D, then b2 ≡ D

(mod 4). It is well-known that if b ∈ Z is even, then b2 is even, and if b is odd, then b2

is odd. Thus, if b is even, then D ≡ 0 (mod 4), which means that D is even, and we

have b ≡ D (mod 2). Likewise, if b is odd, then D ≡ 1 (mod 4), which means that D

is odd, and we have b ≡ D (mod 2). In general, we conclude that if f = [a, b, c] is a

form of discriminant D, then b ≡ D (mod 2). In other words, the middle coefficient b

and the discriminant D always have the same parity.

2.2. Classes of Forms

Based upon the considerations in Section 2.1, we restrict ourselves to the study

of only those binary quadratic forms having a discriminant satisfying the following

conditions.

Assumption 2.2.1. A discriminant (throughout the remainder of this thesis) is a

positive integer D ∈ Z+ that is not a perfect square, and for which we have either

D ≡ 0 (mod 4) or D ≡ 1 (mod 4).

The list of such D values starts in ascending order as follows:

5, 8, 12, 13, 17, 20, 21, 24, 28, 29, 32, 33, 37, 40, 41, 44, 45, 48, 52, 53, 56, 57, 60, 61, 65, . . . .

By Theorem 2.1.5, all of the binary quadratic forms that we consider from this

point onwards are indefinite forms. For a fixed discriminant D ∈ Z+, we show later
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in this section that there are infinitely many distinct binary quadratic forms whose

discriminant is equal to D. There is one particular form of discriminant D ∈ Z+ which

has a special name because of its great importance.

Definition 2.2.2. If D ≡ 0 (mod 4), then the indefinite form

x2 − D

4
y2 (2.2.1)

is called the principal form of discriminant D. If D ≡ 1 (mod 4), then the indefinite

form

x2 + xy +
1−D

4
y2 (2.2.2)

is similarly called the principal form of discriminant D.

Definition 2.2.3. For a fixed discriminant D ∈ Z+, we let Q(D) denote the set of

all binary quadratic forms of discriminant D. By Definition 2.2.2, we know that Q(D)

is a nonempty set.

Given a form f = [a, b, c] of discriminant D, it is of interest to know exactly

which integers f represents. Questions of this type date all the way back to the work

of Fermat during the 1630’s. A famous result of Fermat, for example, states that no

prime number that is congruent to 3 modulo 4 (it is not difficult to prove that the

list of such primes is infinitely long, starting with 3, 7, 11, 19, . . . ) is representable by

the form x2 + y2. On the other hand, every odd prime number p ≡ 1 (mod 4) (again,

there are infinitely many such primes starting with 5, 13, 17, 29, . . . ) is representable

by the form x2 + y2. The form x2 + y2 is admittedly positive definite, but similar

restrictions hold with respect to indefinite forms as well. As the originators of this

subject discovered, it often happens that two distinct forms f and g represent exactly

the same integers, whereas one of these two forms could be much easier to work
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with because it might have significantly smaller coefficients than the other. These

observations have led to an extensive theory where a given form f is transformed

to another form g which represents the exact same integers as f . We only consider

transformations of a very special type, commonly known as being “unimodular”. Given

a form f(x, y) = ax2 + bxy + cy2, we may replace the variable x by rX + sY and the

variable y by tX + uY to obtain by substitution the following:

f(x, y) = f(rX + sY, tX + uY )

= a(rX + sY )2 + b(rX + sY )(tX + uY ) + c(tX + uY )2

= a1X
2 + b1XY + c1Y

2 = g(X, Y ), (2.2.3)

where the coefficients a1, b1, and c1 are given below by the expressions in (2.2.7),

(2.2.8), and (2.2.9), respectively.

Definition 2.2.4. The binary quadratic form f = [a, b, c] is said to be equivalent to

the form g = [a1, b1, c1] if there exist four integers r, s, t, and u, for which ru− st = 1,

and such that the substitutions

x = rX + sY, y = tX + uY (2.2.4)

transform f(x, y) into g(X, Y ) as in (2.2.3) above. The equations in (2.2.4) give a

unimodular transformation from the form f to the form g which may be represented

by the transformation matrix r s

t u

 ∈ SL2(Z) .

In this case, we use the shorthand notation f ∼ g.
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We now show that the discriminant of a form f is preserved under unimodular

transformations, which is another way of saying that equivalent forms always have the

same discriminant.

Theorem 2.2.5. If the form f has discriminant D and f ∼ g, then g also has

discriminant D.

Proof. Let f = [a, b, c] = ax2 + bxy + cy2 be such that b2 − 4ac = D. Since f ∼ g,

there exist four integers r, s, t, and u, with ru− st = 1, such that the transformation

in (2.2.4) allows us to express g in the form

g(X, Y ) = a(rX + sY )2 + b(rX + sY )(tX + uY ) + c(tX + uY )2. (2.2.5)

It is easy to verify that, after expansion and collection of terms, we may rewrite (2.2.5)

as

g(X, Y ) = a1X
2 + b1XY + c1Y

2, (2.2.6)

where

a1 = ar2 + brt+ ct2, (2.2.7)

b1 = 2ars+ b(ru+ st) + 2ctu, and (2.2.8)

c1 = as2 + bsu+ cu2. (2.2.9)

A straightforward, if somewhat tedious, calculation reveals that we have b21 − 4a1c1 =

b2 − 4ac = D, and thus g = [a1, b1, c1] also has discriminant D.

Theorem 2.2.6. The relationship ∼ given between forms in Definition 2.2.4 is re-

flexive, symmetric, and transitive, and therefore establishes an equivalence relation

with respect to all forms of the same discriminant D.
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Before we delve into the proof of Theorem 2.2.6, it is helpful to first introduce

some convenient notation. The two linear equations in (2.2.4) may be rewritten in

matrix form as x
y

 =

r s

t u


X
Y

 . (2.2.10)

Assume that a second unimodular transformation from the variables X, Y to the

variables x ′, y ′ is defined by

X = r1x
′ + s1y

′, Y = t1x
′ + u1y

′, (2.2.11)

which in matrix form looks like:X
Y

 =

r1 s1

t1 u1


x ′
y ′

 . (2.2.12)

Whether we use (2.2.11) or (2.2.12), the form g(X, Y ) is taken to a new form h(x ′, y ′),

which also has discriminant D by Theorem 2.2.5. Switching from the variables x, y to

X, Y , and then from X, Y to x ′, y ′, is carried out by plugging the equations (2.2.11)

into (2.2.4) to obtain

x = r(r1x
′ + s1y

′) + s(t1x
′ + u1y

′) = (rr1 + st1)x
′ + (rs1 + su1) y

′,

y = t(r1x
′ + s1y

′) + u(t1x
′ + u1y

′) = (tr1 + ut1)x
′ + (ts1 + uu1) y

′.

Equivalently, we may substitute (2.2.12) into (2.2.10) and apply the associative law of
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matrix multiplication to obtainx
y

 =

r s

t u

 ·

r1 s1

t1 u1

 ·
x ′
y ′


 =


r s

t u

 ·
r1 s1

t1 u1


 ·
x ′
y ′


=

rr1 + st1 rs1 + su1

tr1 + ut1 ts1 + uu1

 ·
x ′
y ′

 . (2.2.13)

Notation. If the form f is taken to the form g by use of the equations in (2.2.4) and

A =

r s

t u

 ∈ SL2(Z) ,

then f ∼ g, and we employ the following shorthand notation:

f ·A = g. (2.2.14)

For example, referring back to (2.2.12), if

B =

r1 s1

t1 u1

 ∈ SL2(Z) ,

then g ∼ h, and we also have

g ·B = h. (2.2.15)

Proof of Theorem 2.2.6. The fact that SL2(Z) is a group, proved as Theorem 1.1.21,

is critical to the present proof. Assume that f ∼ g with f ·A = g, and that g ∼ h

with g ·B = h. By (2.2.13), we see that

f · (A ·B) = h. (2.2.16)

Since A and B are both elements in the group SL2(Z), we have (A ·B) ∈ SL2(Z),
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and (2.2.16) thus states that f ∼ h, which establishes transitivity. If we replace g in

(2.2.15) by use of (2.2.14), we are able to append two more equalities to (2.2.16) to

obtain

f · (A ·B) = h = g ·B = (f ·A) ·B, (2.2.17)

and we may therefore conclude that

(f ·A) ·B = f · (A ·B) . (2.2.18)

The order in which matrices are multiplied is crucial, and the fact that (2.2.18) holds

means that we have a “right group action” (see [1], §1.7) of the group SL2(Z) on

the set Q(D). Note that f ∼ f since f is transformed into itself by the identity

transformation

I =

1 0

0 1

 ∈ SL2(Z) ,

which establishes reflexivity. The symmetric property is obtained using the following

steps. Assuming that f ∼ g just means that

f ·A = g (2.2.19)

for some matrix A ∈ SL2(Z). Since SL2(Z) is a group, A−1 ∈ SL2(Z), and application

of A−1 coming in from the right hand side in (2.2.19) gives

(f ·A) ·A−1 = g ·A−1. (2.2.20)

By (2.2.18), the left hand side of (2.2.20) may be re-expressed as

(f ·A) ·A−1 = f ·
(
A ·A−1

)
= f · I = f, (2.2.21)
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and combining this with (2.2.20) we conclude that g ·A−1 = f , which implies that

g ∼ f .

The equivalence relation established in Theorem 2.2.6 allows us to partition

the forms in Q(D) into distinct classes of forms. There will always be at least one

class of forms of discriminant D ∈ Z+, namely the class to which the principal form

of discriminant D belongs.

Definition 2.2.7. Given a fixed discriminant D ∈ Z+, the set of all forms in Q(D)

that are equivalent to the principal form of discriminant D makes up the principal

class of discriminant D.

For some discriminants, there is only one class of forms, which just means that every

form of that discriminant is equivalent to the principal form. Examples of such “one

class” discriminants are D = 5, 8, 13, 17, 29, 37, 41, 53, and 61, as we verify in Section

3.1.

Given a fixed discriminant D ∈ Z+, we mentioned earlier in this section that

there are infinitely many distinct forms in Q(D). This is an immediate consequence

of the following more refined result.

Theorem 2.2.8. For a fixed discriminant D ∈ Z+, every class of forms within Q(D)

contains infinitely many distinct individual forms.

Proof. Let C denote a fixed class of forms within Q(D) and let f1 = [a1, b1, c1] be an

arbitrarily given member of C. Given any fixed integer s ∈ Z, the matrix

E(s) =

1 s

0 1

 (2.2.22)
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is clearly an element of SL2(Z), and we have f1 ·E(s) = f2 = [a2, b2, c2], where a2 = a1

by (2.2.7), and b2 = b1 + s · (2a1) by (2.2.8). Since a1 6= 0, infinitely many distinct

values will arise for the middle coefficient b2 as s runs through all integers in Z.

We now show that if two forms f and g are in the same class of forms C ⊆ Q(D),

then they represent exactly the same integers. This shows that just having our hands

on one form in a given class is sufficient with respect to questions regarding the

representation of various subsets of integers.

Theorem 2.2.9. Equivalent forms represent exactly the same integers.

Proof. If f ∼ g, then by definition there is a matrix

A =

r s

t u

 ∈ SL2(Z)

such that f ·A = g. If the integer k1 ∈ Z is represented by the form g, then there

exist integers X1 and Y1 such that g(X1, Y1) = k1. Setting x1 = rX1 + sY1 and

y1 = tX1+uY1, we see by (2.2.3) that we have f(x1, y1) = k1, and so k1 is represented

by the form f as well. Conversely, assume that the integer l2 ∈ Z is represented

by the form f , which means there exist integers x2 and y2 such that f(x2, y2) = l2.

Since A ∈ SL2(Z), the linear equations in (2.2.4) are invertible, which implies that

there exist uniquely determined integers X2 and Y2 such that x2 = rX2 + sY2 and

y2 = tX2 + uY2. Again, by (2.2.3), we have f(x2, y2) = g(X2, Y2) = l2, which shows

that the form g represents l2 as well.

It was Lagrange who first introduced the notion of classes of binary quadratic

forms of a fixed discriminant. It was also he who first proved the remarkable theorem

that for any given discriminant D ∈ Z+, the number of classes of forms that the
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equivalence relation in Theorem 2.2.6 sets up is always finite. We give two independent

proofs of this famous theorem, one in this section and one in Section 3.1. The proof

in this section follows the one that is given starting on page 175 of Landau’s book [5].

Landau’s presentation is very concise and we aim to give a more leisurely and detailed

presentation here. The following lemma is the key to proving Theorem 2.2.11 below.

Lemma 2.2.10. Every class of forms C ⊆ Q(D) contains an individual binary

quadratic form f = [a, b, c] for which

|b| ≤ |a| ≤ |c| . (2.2.23)

Proof. Let f0(x, y) = a0x
2 + b0xy + c0y

2 be an arbitrarily given fixed form of discrimi-

nant D ∈ Z+ lying in the class C. Recall from Theorem 2.1.5 that f0 represents both

positive and negative integers. Let V denote the nonempty set of all nonzero integers

that are represented by f0, and taking absolute values of these nonzero integers allows

us to form the following set:

T =
{
|n| ∈ Z+ : n ∈ V

}
.

Since T is a nonempty subset of Z+, the Well-Ordering Principle guarantees the

existence of a least element in T , namely, there is an integer a ∈ Z \ {0} such that

f0(r, t) = a for a pair of integers r and t, and |a| ≤ |n| for every n ∈ V . The integers

r and t are not uniquely determined, so we just fix one choice for this pair such that

a = a0r
2 + b0rt+ c0t

2. (2.2.24)

Since a 6= 0 by construction, the integers r and t in (2.2.24) can not both be equal

to zero. We claim that gcd (r, t) = 1. To demonstrate this, suppose for the sake of
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contradiction that we have gcd (r, t) = d > 1. Since d is a divisor of both r and t,

there exist integers k and ` such that dk = r and d` = t. Thus, equation (2.2.24) may

be rewritten as follows:

a = a0(dk)
2 + b0(dk)(d`) + c0(d`)

2

= a0d
2k2 + b0d

2k`+ c0d
2` 2

= d 2
[
a0k

2 + b0k`+ c0`
2
]
. (2.2.25)

By assumption, we have 1 < d, and therefore 1 < d 2. Since 0 < |a|, we have |a| < |a|d 2,

and so
|a|
d 2

< |a|. (2.2.26)

By (2.2.25), we note that a/d 2 is an integer (it is nonzero as well) and this integer is

represented by f0 since f0(k, `) = a/d 2 by (2.2.25). We conclude that a/d 2 ∈ V and

therefore ∣∣∣ a
d 2

∣∣∣ = |a|
d 2
∈ T. (2.2.27)

On the other hand, |a| is the least element in T , and (2.2.26) and (2.2.27) stand

in contradiction to |a| being this least element. This establishes our claim that

gcd (r, t) = 1. Since the integers r and t are relatively prime, Corollary 1.1.6 guarantees

the existence of two integers s and u such that ru− st = 1, and this gives us in turn

a matrix

A =

r s

t u

 ∈ SL2(Z) .

We now set f1 = [a1, b1, c1] = f0 ·A, and note that f0 ∼ f1, and

a1 = a = a0r
2 + b0rt+ c0t

2
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by (2.2.7) and (2.2.24). The “a–coefficient” we are seeking for the inequalities in

(2.2.23) has now been found. We still need one further transformation to obtain

the sought-after b–coefficient. Recall from the proof of Theorem 2.2.8 that the

transformation matrix E(s) [see (2.2.22)] leaves the a–coefficient unchanged so that

a2 = a1. On the other hand, the new b–coefficient is given by

b2 = b1 + s · (2a), (2.2.28)

since a1 = a. We set f2 = [a2, b2, c2] = f1 · E(s), and our claim is that an integer s

may be chosen in (2.2.28) such that |b2| ≤ |a|. Note that (2.2.28) tells us that all of

the potential b–coefficients are separated from each other by a distance measured in

multiples of |2a|. Let m = |2a|, which is an even integer greater than or equal to 2.

Working modulo m, we may choose s ∈ Z such that the integer b2 in (2.2.28) falls into

the set B defined in Example 1.1.18:

B = {−|a|+ 1,−|a|+ 2, . . . ,−|a|+ |2a| = |a|} .

This implies that −|a| < b2 ≤ |a|, which verifies our claim. A more geometric way to

visualize this is to note that there are m+ 1 integers that are greater than or equal to

−|a| and less than or equal to |a|. In some cases, two distinct values of s in (2.2.28)

will lead to |b2| ≤ |a|. For example, if a = −4 and b1 = −20, then s = −2 leads to

b2 = −4, and s = −3 leads to b2 = 4. This is illustrated by the red dots in Figure

2.1 below, which are each separated by a distance of 8 = |2a|. On the other hand,

if b1 = −19 instead, then only the value s = −2 gives an answer of b2 = −3 in the

proper range. This is illustrated by the blue dots in Figure 2.1. We have removed

certain portions of the real line in Figure 2.1 to preserve the scale.
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−20 −19 −12 −11 −4 −3 4 5

Figure 2.1. Picture proof of the existence of a suitable integer s

We now have f2 = [a, b, c2] = f1 · E(s), with |b| ≤ |a| for an appropriate choice

of s ∈ Z. The b–coefficient we are seeking for the inequalities in (2.2.23) has now

been found. We have f1 ∼ f2, and since f0 ∼ f1, we have f2 ∈ C by transitivity. We

now claim that c = c2 satisfies |a| ≤ |c| automatically because of the way in which a

was chosen, and thus the form f = f2 = [a, b, c] has coefficients that satisfy (2.2.23),

which then completes the proof of Lemma 2.2.10. To verify this last claim, we recall

from Theorem 2.2.9 that the two forms f0 and f represent exactly the same integers

since they both lie in the same class C. Since f(0, 1) = c, the form f represents c and

therefore f0 represents c as well. Because c 6= 0, we have c ∈ V , and so |a| ≤ |c| by

our minimality choice of a.

The proof just given of Lemma 2.2.10 hinges upon the existence of a smallest

nonzero integer a (in terms of absolute value), representable by the form f0. From an

algorithmic standpoint, there is not a straightforward process to find the integer a

when working with an indefinite form f0. Therefore, even if the proof given of Lemma

2.2.10 is completely rigorous, it is not completely satisfactory from an algorithmic

point of view. The presentation of algorithmically satisfactory proofs and methods for

indefinite forms is the theme of Section 3.1.

Theorem 2.2.11. For a fixed discriminant D ∈ Z+, the number of equivalence classes

of forms of discriminant D is finite.

Proof. We consider the set S(D) of all forms f = [a, b, c] of discriminant D that

satisfy the conditions in (2.2.23): |b| ≤ |a| ≤ |c|. If D ≡ 0 (mod 4), then the principal
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form [1, 0,−D/4] satisfies these conditions; if D ≡ 1 (mod 4), then the principal

form [1, 1, (1−D)/4] also satisfies these conditions, which shows that the set S(D) is

nonempty for every choice of D ∈ Z+ satisfying Assumption 2.2.1. We remind the

reader that for any form having such a discriminant, both the a–coefficient and the

c–coefficient are necessarily nonzero.

Our goal is to show that the set S(D) has only finitely many elements. Lemma

2.2.10 tells us that every form in Q(D) is equivalent to a form in S(D), and once it is

known that S(D) is a finite set, it follows immediately from Lemma 2.2.10 that there

are only a finite number of classes of forms of discriminant D.

In order to show that S(D) is a finite set, we need to establish several inequalities

that follow from (2.2.23). Let f = [a, b, c] be any given form in the set S(D). From

|b| ≤ |a| and |b| ≤ |c|, we conclude that b2 = |b|2 ≤ |a||c| = |ac|. Since b2 = D + 4ac

and 0 < D, we find that

4ac < D + 4ac = b2 ≤ |ac|. (2.2.29)

The inequalities in (2.2.29) imply that ac < 0. To see this, we first note that ac 6= 0.

If we had 0 < ac, it would follow that |ac| = ac < 4ac, in contradiction to (2.2.29).

We conclude that ac < 0, and so

− ac = |ac|. (2.2.30)

From |a| ≤ |c|, we see that a2 = |a|2 ≤ |a||c| = |ac|. Combining with (2.2.30), we

obtain

4a2 ≤ 4|ac| = −4ac = D − b2 ≤ D. (2.2.31)

From (2.2.31), we conclude that 0 < |a|2 ≤ D/4, and taking square roots leads to the
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inequality

|a| ≤
√
D

2
(2.2.32)

for the a–coefficient of f . Since |b| ≤ |a|, we also obtain

|b| ≤
√
D

2
(2.2.33)

for the b–coefficient of f . Of course,
√
D/2 is a fixed positive constant and there

are only finitely many pairs of integer-valued choices for a and b that simultaneously

satisfy (2.2.32) and (2.2.33). For each such appropriate pair of integers a and b, the

c–coefficient of f is uniquely determined by the equation

c =
b2 −D
4a

. (2.2.34)

We conclude that S(D) is a finite set. Examples of the explicit construction of all

forms in S(D) for various values of D ∈ Z+ are given below in Example 2.2.13.

Given Theorem 2.2.11, we are now in a position to define the following crucial

invariant associated to any given discriminant D ∈ Z+.

Definition 2.2.12. For a fixed discriminant D ∈ Z+, we let the positive integer t(D)

denote the number of equivalence classes of forms of discriminant D.

There is a straightforward algorithm to find all forms in the set S(D) for any given

discriminant D ∈ Z+. We illustrate this algorithm for a few small values of D ∈ Z+

in Example 2.2.13 below. Knowing how many forms are in the set S(D) gives us

immediately an upper bound on the size of the invariant t(D). An exact determination

of t(D), however, requires a more sophisticated method, and such an algorithmically

effective method giving the precise determination of the invariant t(D) is presented in

Section 3.1.
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Example 2.2.13. We give here several examples of how to find all forms in the set

S(D) for a few small values of D ∈ Z+. If D = 5, then
√
D/2 = 1.118 . . . , and we have

either a = 1 or a = −1 by (2.2.32), since a 6= 0. Similarly, the only choices for the b–

coefficient are −1, 0, and 1 by (2.2.33), but b = 0 is ruled out since the b–coefficient and

D must have the same parity by the Remark at the end of Section 2.1. Using (2.2.34),

if a = 1 and b = 1, then c = −1, so that [1, 1,−1] ∈ S(5). Continuing in this way,

we find that S(5) consists precisely of the four forms [1, 1,−1], [1,−1,−1], [−1, 1, 1],

and [−1,−1, 1]. By Lemma 2.2.10, we have t(5) ≤ 4, and we have t(5) = 4 only

if all four forms in S(5) lie in different equivalence classes. In Section 3.1, we will

find that all four forms in S(5) lie in the same class (all four are in the principal

class!), so that t(5) = 1. If D = 8, then
√
D/2 = 1.414 . . . , and again we must

have either a = 1 or a = −1. This time both b = 1 and b = −1 are ruled out since

their parity does not match that of D, so only b = 0 is allowed. We find that S(8)

consists of only the two forms [1, 0,−2] and [−1, 0, 2], and so t(8) ≤ 2. We will find in

Section 3.1 that t(8) = 1. A similar analysis shows that S(12) consists of only the

two forms [1, 0,−3] and [−1, 0, 3], but in this case we will find in Section 3.1 that

t(12) = 2. If D = 17, then
√
D/2 = 2.061 . . . , and a must be chosen among the

four possibilities: 2, 1,−1, and −2. By parity considerations, we are only allowed

the two b–values of 1 and −1. Therefore, S(17) consists of the following eight forms:

[2, 1,−2], [2,−1,−2], [1, 1,−4], [1,−1,−4], [−1, 1, 4], [−1,−1, 4], [−2, 1, 2], [−2,−1, 2],

and so t(17) ≤ 8. We will find in Section 3.1 that t(17) = 1, and this already begins to

show that the number of forms in the set S(D) only gives a fairly crude upper bound

on the size of t(D).

Given a fixed discriminant D ∈ Z+, there is an important distinction to be
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made among the forms in the set Q(D), which is formalized in the following definition.

We will see the relevance of this distinction in Section 2.3.

Definition 2.2.14. A form [a, b, c] ∈ Q(D) is said to be primitive if gcd (a, b, c) = 1,

and it is said to be imprimitive if gcd (a, b, c) > 1.

For example, the form [2, 9, 5] of discriminant 41 is primitive, whereas the form [3, 12, 6]

of discriminant 72 is imprimitive since gcd (3, 12, 6) = 3. Note that the principal form

of discriminant D is always primitive since the a–coefficient is equal to 1 by definition,

which forces the value of gcd (a, b, c) to be 1. This shows that we always have at least

one form in Q(D) that is primitive. Primitive forms have certain properties that make

them more desirable to work with than imprimitive forms, but we treat all forms in

Q(D) on an equal footing whenever we can.

The following theorem shows that any two given equivalent forms in Q(D) are

either both primitive or they are both imprimitive. This implies that we can designate

each class C of forms in Q(D) as being either primitive or imprimitive. Since the

principal form of discriminant D is primitive, we note that the principal class of

discriminant D is primitive as well, which shows that at least one class of forms of

discriminant D is primitive.

Theorem 2.2.15. If f = [a, b, c] and g = [a1, b1, c1] are any two given forms in Q(D)

with f ∼ g, then gcd (a, b, c) = gcd (a1, b1, c1).

Proof. First, we show that gcd (a, b, c) ≤ gcd (a1, b1, c1). Set d = gcd (a, b, c) and

e = gcd (a1, b1, c1). By definition, d is a positive integer and d | a, d | b, and d | c, so

there exist integers k, `,m ∈ Z such that a = dk, b = d`, and c = dm. Since f ∼ g

by assumption, there exist four integers r, s, t, and u, with ru− st = 1, such that the

coefficients of the form g are given in terms of the coefficients of the form f by the
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three equations (2.2.7), (2.2.8), and (2.2.9). If we replace a, b, and c in these three

equations by the expressions above, we obtain

a1 = ar2 + brt+ ct2 = dkr2 + d`rt+ dmt2 = d
(
kr2 + `rt+mt2

)
,

b1 = 2ars+ b(ru+ st) + 2ctu = 2dkrs+ (d`)(ru+ st) + 2dmtu

= d (2krs+ `(ru+ st) + 2mtu) , and

c1 = as2 + bsu+ cu2 = dks2 + d`su+ dmu2 = d
(
ks2 + `su+mu2

)
.

Thus, we have that d | a1, d | b1, and d | c1, which implies that the positive integer d

is a common divisor of a1, b1, and c1. By definition, e is the largest positive integer

that simultaneously divides a1, b1, and c1, and thus d ≤ e.

In order to complete the proof, we now show that e = gcd (a1, b1, c1) ≤ d. By

definition, e is a positive integer and e | a1, e | b1, and e | c1, so there exist integers

h, i, j ∈ Z such that a1 = eh, b1 = ei, and c1 = ej. We are assuming that f ·A = g,

where

A =

r s

t u

 ∈ SL2(Z) .

At the end of the proof of Theorem 2.2.6, we found that g ·A−1 = f . If we set

A−1 =

r1 s1

t1 u1

 ∈ SL2(Z) ,

then as we saw in the proof of Theorem 1.1.21, we have r1 = u, s1 = −s, t1 = −t, and
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u1 = r. The equations analogous to (2.2.7), (2.2.8), and (2.2.9) are

a = a1r
2
1 + b1r1t1 + c1t

2
1,

b = 2a1r1s1 + b1(r1u1 + s1t1) + 2c1t1u1, and

c = a1s
2
1 + b1s1u1 + c1u

2
1.

Using the same argument as above, we see that e | a, e | b, and e | c, which implies

that the positive integer e is a common divisor of a, b, and c. By definition, d is

the largest positive integer that simultaneously divides a, b, and c, and thus e ≤ d,

which in conjunction with the first half of the proof establishes the equality d = e,

completing the proof of Theorem 2.2.15.

Now that we know that the forms in a given class of forms of discriminant

D ∈ Z+ are either all primitive or all imprimitive, the following definition makes

perfect sense.

Definition 2.2.16. For a fixed discriminant D ∈ Z+, we let the positive integer h(D)

denote the number of equivalence classes of forms of discriminant D which contain

only primitive forms.

There are only a total number of t(D) ∈ Z+ classes of forms of discriminant D, so it

is clear that h(D) ≤ t(D). We noted above that the principal class of discriminant D

contains only primitive forms, and so 1 ≤ h(D). A given discriminant D ∈ Z+ is said

to be fundamental if h(D) = t(D). We listed all of the 25 positive discriminants from

5 to 65 inclusive at the beginning of this section, and an examination of Table 3.1.3 at

the end of Section 3.1 shows that all of these discriminants are fundamental except
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for D = 20, 32, 45, 48, and 52. Landau states (see [5], p. 179) that

t(D) =
∑

h

(
D

g2

)
,

where the sum runs over all g ∈ Z+ such that g2 | D, and with the quantity D/g2 being

itself a discriminant. This shows that if we know h(D) for each positive discriminant

D ∈ Z+, then we can easily recover the value of t(D) for all such discriminants as well.

Given this, a generally usable formula for h(D) would be of prime importance! In

Section 2.5, we present a famous analytic formula for h(D) that was originally derived

by Peter Gustav Dirichlet in 1839.

2.3. Automorphs and the Fermat-Pell 4 -Equation

Let D ∈ Z+ be a fixed discriminant, and choose any form f ∈ Q(D). There

are two specific matrices A ∈ SL2(Z) such that f ·A = f , namely

A =

1 0

0 1

 and A =

−1 0

0 −1

 .

This shows that the set Aut (f), to be defined presently, is always nonempty.

Definition 2.3.1. Given f ∈ Q(D), we define the set Aut (f), known as the set of

automorphs of f , to be the collection of all A ∈ SL2(Z) such that f ·A = f .

Given any f ∈ Q(D), we already know that Aut (f) contains at least two elements.

An extremely important theorem, proved in Section 3.2, states that if f is a primitive

form, then Aut (f) is a set with infinitely many distinct elements. This theorem holds

specifically for indefinite forms of discriminant D satisfying Assumption 2.2.1, and it

most certainly does not hold, for example, with respect to positive definite forms!

37



Theorem 2.3.2. For a fixed discriminant D ∈ Z+, and any given form f ∈ Q(D),

the set Aut (f) forms a subgroup of SL2(Z).

Proof. We already noted above that Aut (f) is nonempty. If both A and B are in

Aut (f), we first wish to prove that the product A · B is in Aut (f) as well. By

assumption, we have f ·A = f and f ·B = f . Using (2.2.18), we obtain

f · (A ·B) = (f ·A) ·B = f ·B = f,

which confirms that A ·B ∈ Aut (f). We finally need to verify that A−1 ∈ Aut (f),

assuming that A ∈ Aut (f). Towards the end of the proof of Theorem 2.2.6, we

showed that if f ·A = g, then g ·A−1 = f . Setting g = f here allows us to see that if

A ∈ Aut (f), then A−1 ∈ Aut (f).

Our main goal in this section is to develop an important connection between the

automorphs of an indefinite form f and the solutions of a famous Diophantine equation

typically known as “Pell’s Equation”, which we instead refer to as the “Fermat-Pell

Equation”. We prefer this terminology as a way to give the proper credit to Fermat

for his impressive contributions to our understanding of the solutions of this equation.

There are several variants of the Fermat-Pell Equation, but the version most directly

connected to the automorphs of an indefinite form f of discriminant D ∈ Z+ is the

following:

t2 −Du2 = 4. (2.3.1)

The goal, dating back to Fermat, is to find all integer pair solutions (t, u) ∈ Z2 to

(2.3.1). We are immediately able to find two “trivial” such solutions to (2.3.1), namely,

(2, 0) and (−2, 0). The crux of the matter, due to Fermat, is that there are always

nontrivial solutions to (2.3.1), corresponding to any given fixed discriminant D ∈ Z+.
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For the sake of clarity, we refer to (2.3.1) as the “Fermat-Pell 4 -Equation”. In Section

5.2, we study the integer pair solutions to the “Fermat-Pell 1 -Equation”

t2 − du2 = 1. (2.3.2)

The following theorem is the main result of this section. As usual, D ∈ Z+

is a fixed discriminant. A new twist here is that the form f ∈ Q(D) chosen in this

theorem must be primitive (from our results in Section 2.2, we know that there are

infinitely many primitive forms in Q(D)). In Example 2.3.4 below, we look at a few

specific examples that illustrate what can go wrong assuming f is not primitive.

Theorem 2.3.3. Every automorph A ∈ Aut (f) associated to a given primitive form

f = [a, b, c] ∈ Q(D) satisfies the formula

A =

 t−bu
2
−cu

au t+bu
2

 ∈ SL2(Z) , (2.3.3)

where (t, u) is an arbitrary integer pair solution of the Fermat-Pell 4 -Equation (2.3.1).

Remarks.

1) Assuming that the integer pair (t, u) is a solution of (2.3.1), we claim that both

(t+ bu)/2 and (t− bu)/2 are integers. By the Remark at the end of Section 2.1,

we have b ≡ D (mod 2). By this same Remark, any integer and its square have

the same parity, and it is easy to see that any integer and its additive inverse

also have the same parity. Using this information, and the fact that t and u are

both integers, we note that

t+ bu ≡ t+Du ≡ t2 −Du2 = 4 ≡ 0 (mod 2).
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Thus, t+ bu is evenly divisible by 2, and so the quantity (t+ bu)/2 is an integer.

The same argument may be used to demonstrate that the quantity (t− bu)/2 is

an integer as well, proving our claim.

2) Computing the determinant of the transformation matrix in (2.3.3), we find that

(t− bu)
2

·(t+ bu)

2
+acu2 =

t2 − b2u2

4
+acu2 =

t2 − (b2 − 4ac)u2

4
=
t2 −Du2

4
= 1,

with the last equality holding since the integer pair (t, u) is a solution of (2.3.1).

Taking this together with Remark 1) above shows that the matrix in (2.3.3) is

an element of SL2(Z).

3) Throughout the following proof, it is important to keep in mind that a 6= 0.

This follows from the fact that the discriminant D satisfies Assumption 2.2.1.

Proof. Assume throughout that f = [a, b, c] ∈ Q(D) is a fixed primitive form, and

that (t, u) is any given integer pair solution to (2.3.1). We first wish to show that the

matrix A ∈ SL2(Z) in (2.3.3) takes f into itself. In order to do this, it suffices to show

that the coefficients a and b are left unchanged by the action of A, since c is uniquely

determined by D, a, and b, and will thus be left unchanged as well. Substituting the

transformation values into (2.2.7), the new coefficient a1 is given by

a1 = a

(
t− bu

2

)2

+ b

(
t− bu

2

)
au+ ca2u2

= a
t2

4
− abtu

2
+ ab2

u2

4
+ ab

tu

2
− ab2u

2

2
+ a2cu2

=
a

4

[
t2 −

(
b2 − 4ac

)
u2
]

=
a

4

(
t2 −Du2

)
= a,

with the last equality holding by (2.3.1). Similarly, substituting the transformation
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values into (2.2.8), we see that the new coefficient b1 is given by

b1 = −2a
(
t− bu

2

)
cu+ b

(
1− 2acu2

)
+ 2cau

(
t+ bu

2

)
= −actu+ abcu2 + b− 2abcu2 + actu+ abcu2 = b.

Note that in the first equation above, we have made use of the equality

t2 − b2u2

4
− acu2 = 1− 2acu2,

which follows from the equation in Remark 2) above. This confirms that the coefficients

a and b are left unchanged by the action of A. Since D ∈ Z+ is fixed, we conclude

that the coefficient c remains unchanged as well. Therefore, the matrix A in (2.3.3)

arising from a given solution (t, u) of (2.3.1) lies in Aut (f).

We have seen in the first part of the proof that any given integer pair solution

(t, u) of the Fermat-Pell 4 -Equation leads to a uniquely defined element of Aut (f).

This second part of the proof will show that any given automorph A ∈ Aut (f) leads

to a uniquely defined integer pair solution (t, u) of the Fermat-Pell 4 -Equation. For

this part of the proof, we assume that

A =

 r s

m n

 (2.3.4)

is a given element in Aut (f), and we need to prove that r, s,m, and n satisfy the

formula given in (2.3.3), associated to some integer pair solution (t, u) of (2.3.1). By

assumption, we have f ·A = f , and so by (2.2.7), we have

a = ar2 + brm+ cm2. (2.3.5)
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From (2.2.8), and a few straightforward algebraic steps, we find that

b = 2ars+ b+ 2bsm+ 2cmn,

0 = 2ars+ 2bsm+ 2cmn,

0 = ars+ bsm+ cmn. (2.3.6)

We may now use equations (2.3.5) and (2.3.6) to eliminate b. Multiplying both sides

of (2.3.5) by s yields

as = asr2 + bsrm+ cm2s, (2.3.7)

and multiplying both sides of (2.3.6) by r yields

0 = asr2 + bsrm+ cmnr. (2.3.8)

Subtracting (2.3.8) from (2.3.7), we have

as = cm2s− cmnr = cm(ms− rn) = −cm, (2.3.9)

with the last equality holding by virtue of the fact that ms − rn = −1, since the

2× 2 matrix in (2.3.4) is an element of SL2(Z). A similar argument may be used to

eliminate c. Multiplying both sides of (2.3.5) by n yields

an = ar2n+ brmn+ cm2n, (2.3.10)

and multiplying both sides of (2.3.6) by m yields

0 = arsm+ bsm2 + cm2n. (2.3.11)

Subtracting (2.3.11) from (2.3.10), we have an = ar2n+ brmn− arsm− bsm2, which
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we may rearrange to obtain

an = ar2n− arsm+ brmn− bsm2. (2.3.12)

Since the transformation matrix in (2.3.4) is an element of SL2(Z), we have rn−sm = 1,

and so we may factor (2.3.12) to obtain

an = ar2n− arsm+ brmn− bsm2

= ar(rn− sm) + bm(rn− sm)

= ar + bm,

which we may rewrite as

a(n− r) = bm. (2.3.13)

From (2.3.9) and (2.3.13), we see that a | cm and a | bm (recall that a 6= 0); thus,

there exist integers d, e ∈ Z such that ad = cm and ae = bm.

Everything done in the proof of Theorem 2.3.3 to this point works equally well

whether f is primitive or imprimitive. Finally, at this juncture, in order to complete

the second part of this proof, we bring into play the assumption that f = [a, b, c] is

a primitive form. This just means that gcd (a, b, c) = 1, which implies by Corollary

1.1.7 that there exist integers j, k, ` ∈ Z such that aj + bk + c` = 1. If we multiply

both sides of this last equation through by m, and replace bm by ae and cm by ad,

we obtain

ajm+ bkm+ c`m = m,

ajm+ aek + ad` = m,

a(jm+ ek + d`) = m.
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Since all of the variables here are integers by construction, we conclude that a | m.

Thus, there exists an integer u ∈ Z such that

m = au. (2.3.14)

Substituting this expression for m into (2.3.9), we obtain as = − cm = − cau, or

s = −cu, (2.3.15)

where division by a is allowed since a 6= 0. Using (2.3.14) again, in conjunction this

time with (2.3.13), yields a(n− r) = bm = bau, or

n− r = bu. (2.3.16)

Recalling that nr − sm = 1, and replacing n− r by bu, s by −cu, and m by au, we

find that

(n+ r)2 = n2 + 2nr + r2 = (n− r)2 + 4nr

= (bu)2 + 4(1 + sm) = b2u2 + 4
(
1− acu2

)
= b2u2 + 4− 4acu2 = u2

(
b2 − 4ac

)
+ 4

= Du2 + 4.

If we set

t = n+ r ∈ Z, (2.3.17)

then we may simplify the above to read: t2 −Du2 = 4, which shows that (t, u) is an

integer pair solution of the Fermat-Pell 4 -Equation. If we solve the system of two
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equations given by (2.3.16) and (2.3.17) for r and n, we find that

r =
t− bu

2
, (2.3.18)

and

n =
t+ bu

2
. (2.3.19)

By (2.3.14), (2.3.15), (2.3.18), and (2.3.19), we see that the arbitrarily given automorph

in (2.3.4) taking the primitive form f = [a, b, c] into itself may be expressed as follows: r s

m n

 =

 t−bu
2
−cu

au t+bu
2

 ∈ Aut (f) ⊂ SL2(Z) ,

where (t, u) is, as we saw above, an integer pair solution of the Fermat-Pell 4 -Equation

(2.3.1). This completes the proof of Theorem 2.3.3.

In Example 2.3.4 below, we give two simple examples that illustrate what can

go wrong with regard to Theorem 2.3.3 if the form f is not primitive. We noted in the

second half of the proof of Theorem 2.3.3 that if f = [a, b, c] is primitive, then a | m

[see (2.3.14)]. A review of this part of the proof highlights clearly that (2.3.14) is the

linchpin result that allows us to properly carry out the second half of the proof. If f

is imprimitive, then it can happen that a - m and that is where the trouble lies, as we

see below. We will also show how easy it is to obtain nontrivial solutions to (2.3.1), if

we have in hand an element in Aut (f).

Example 2.3.4. Consider the imprimitive form f = [2, 6, 2] of discriminant D = 20.

It is easy to verify that  r s

m n

 =

 3 1

−1 0

 ∈ Aut (f),
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and so m = −1. However, we have a = 2 - m in this example. From (2.3.14) and

(2.3.17), we can still solve for u and t in this example to obtain u = m
a
= −1

2
and

t = r + n = 3 + 0 = 3. Note that (t, u) = (3,−1/2) is a solution to (2.3.1), but it is

not one of the integer pair solutions of interest to us. Similarly, r s

m n

 =

 5 3

−2 −1


is an automorph of the imprimitive form f = [4, 12, 6] of discriminant D = 48.

However, a = 4 - −2 = m. Again, (t, u) = (4,−1/2) is a solution of (2.3.1), but not of

the type we are seeking. Consider now the primitive form f = [1, 6, 4] of discriminant

D = 20. An easy check confirms that r s

m n

 =

21 16

−4 −3

 ∈ Aut (f),

so that m = −4. Clearly, a = 1 | m and u = m
a
= −4. Also, t = r + n = 18, and it is

easy to verify that (t, u) = (18,−4) is an integer pair solution to (2.3.1) with D = 20.

The reader may well ask how we got our hands on the different automorphs

in Example 2.3.4. We present an algorithm in Section 3.2 that allows us to produce

automorphs of special “reduced” forms (all three forms in Example 2.3.4 are of this

special type; see Definition 3.1.1). Theorem 2.3.3 works in both directions. If we have

a systematic procedure to generate all automorphs of a given primitive form f of

discriminant D ∈ Z+, then we are able to obtain all possible integer pair solutions to

(2.3.1). Conversely, integer pair solutions of (2.3.1) associated to a given discriminant

D translate into automorphs of forms in Q(D). We consider a “brute force” method

to obtain nontrivial solutions to (2.3.1) for a fixed discriminant D ∈ Z+ later in this

46



section. It is worth mentioning that the two trivial solutions (t, u) = (2, 0) and (−2, 0)

to (2.3.1) lead via (2.3.3) to the two “obvious” automorphs that always lie in Aut (f),

displayed at the very beginning of this section.

The following famous theorem was known to Fermat, and Weil [7] has con-

structed a proof of this theorem which he conjectures to be similar to what Fermat

might have had in mind, even if no record exists of the proof that Fermat claims to

have possessed.

Theorem 2.3.5. For any given fixed discriminant D ∈ Z+, the Fermat-Pell 4 -

Equation (2.3.1) possesses an integer pair solution (t, u) ∈ Z2 with u ∈ Z+.

The modern proofs of Theorem 2.3.5 fall into two distinct categories: constructive

and non-constructive. Landau ([5], starting on page 76) offers a beautiful, but non

constructive, proof of Theorem 2.3.5 which relies upon the pigeon-hole principle.

Assuming the truth of Theorem 2.3.5, let F (D) denote the nonempty set of all integer

pair solutions (t, u) ∈ Z2 to (2.3.1) with u ∈ Z+. By the Well-Ordering Principle, there

is a uniquely defined integer u1 ∈ Z+ and an integer t ′ with (t ′, u1) ∈ F (D) such that

u1 ≤ u for any given pair (t, u) ∈ F (D). Given the existence of the integer u1 ∈ Z+

associated to a fixed discriminant D ∈ Z+, there is a straightforward brute-force

algorithm to compute it. If we set in succession u = 1, 2, 3, . . . and test each time if

the positive integer 4+Du2 is a perfect square, then u = u1 is the first positive integer

we encounter in this process where 4 + Du2 is a perfect square. A corresponding

positive integer t1 ∈ Z+ is then uniquely determined by the equality t21 = 4 +Du21.

Note that t1 > 2 since Du21 > 0.

Definition 2.3.6. Given a fixed discriminant D ∈ Z+, the uniquely defined integer

pair (t1, u1) ∈ F (D) obtainable in principle from the algorithm just described is called
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the minimal solution of (2.3.1).

The phrase “obtainable in principle” used in Definition 2.3.6 is meant to highlight the

fact that the brute-force algorithm described above makes perfect sense in principle

but might be hopeless in practice! In Table 2.3.1 below, we present the minimal

solution to (2.3.1) for all discriminants D with 5 ≤ D ≤ 65.

Table 2.3.1. Minimal solution to (2.3.1) for all discriminants D with 5 ≤ D ≤ 65

D Minimal Solution Pair (t1, u1)

5 (3, 1)

8 (6, 2)

12 (4, 1)

13 (11, 3)

17 (66, 16)

20 (18, 4)

21 (5, 1)

24 (10, 2)

28 (16, 3)

29 (27, 5)

32 (6, 1)

33 (46, 8)

37 (146, 24)

D Minimal Solution Pair (t1, u1)

40 (38, 6)

41 (4098, 640)

44 (20, 3)

45 (7, 1)

48 (14, 2)

52 (1298, 180)

53 (51, 7)

56 (30, 4)

57 (302, 40)

60 (8, 1)

61 (1523, 195)

65 (258, 32)

A cursory look at this table shows the wild variation in the size of u1 as D is varied.
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With a fast computer, the algorithm described above works fine for relatively small

discriminants D ∈ Z+ in the hundreds, but there are well-documented instances where

u1 is positively enormous for values of D in the thousands and millions.

We offer a constructive proof of Theorem 2.3.5 in Section 3.2. This proof is

accompanied with an effective algorithm (see Algorithm 3.2.7) that allows one to

compute the minimal solution to (2.3.1) even when the integers t1 and u1 are gigantic.

Associated to the minimal solution (t1, u1) of (2.3.1) introduced in Definition

2.3.6, we define a corresponding real quadratic irrational number

ε1(D) =
t1 + u1

√
D

2
(2.3.20)

(such numbers are discussed in greater detail in Section 2.4). The uniquely defined real

number ε1(D) associated to the discriminant D ∈ Z+ is known as the “fundamental

unit of discriminant D ”.

2.4. Real Quadratic Irrationals

We now consider a special set of real numbers that are intimately connected

with indefinite binary quadratic forms.

Definition 2.4.1. Let d ∈ Z+ be a fixed positive integer that is not a perfect square.

A real quadratic irrational is any number β of the form

β =
`+m

√
d

n
, (2.4.1)

where ` ∈ Z, and m,n ∈ Z \ {0}.

It is easy to see that such a number is real, and β is irrational by the choice of d and

since m 6= 0. The word “quadratic” appears in the definition since such a number

always satisfies a quadratic equation; the number appearing in (2.4.1) is a root of the
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quadratic polynomial

n2x2 − 2`nx+ (`2 − dm2) ∈ Z[x]. (2.4.2)

The connection with indefinite binary quadratic forms, alluded to above, is

forged in the following definition.

Definition 2.4.2. Let D ∈ Z+ be a fixed discriminant and let f = [a, b, c] be a form

in Q(D). The real quadratic irrational number β corresponding to f is defined by

β =
b+
√
D

2a
(2.4.3)

(note that by our assumptions, a 6= 0). This correspondence sets up a map Z having

domain Q(D) and codomain equal to the set of all real quadratic irrational numbers.

We let QI(D) denote the range of Z, and thus the function Z : Q(D) → QI(D) is

surjective by construction.

This correspondence is exploited on several occasions in this thesis; the crucial choice

made in (3.1.8) is but one example.

Theorem 2.4.3. Let D ∈ Z+ be a fixed discriminant. The map

Z : Q(D)→ QI(D) (2.4.4)

described in Definition 2.4.2 is injective and therefore sets up a one-to-one correspon-

dence between the two sets Q(D) and QI(D).

Proof. Let f1 = [a1, b1, c1] and f2 = [a2, b2, c2] be two arbitrarily given forms in Q(D),

and assume that Z(f1) = Z(f2), which just says that

b1 +
√
D

2a1
=
b2 +

√
D

2a2
,
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or 2a2b1 + 2a2
√
D = 2a1b2 + 2a1

√
D. Rearrangement gives

(2a2 − 2a1)
√
D = 2a1b2 − 2a2b1, (2.4.5)

and if 2a2 − 2a1 6= 0, then
√
D ∈ Q, contradicting the fact that

√
D is an irrational

number. We conclude that 2a2 = 2a1, or a1 = a2, so that from (2.4.5) we see that

2a1b1 = 2a1b2, or b1 = b2. Since f1 and f2 are both in Q(D), we also have c1 = c2,

which shows that the map in (2.4.4) is injective.

The most important result in this section is the following theorem.

Theorem 2.4.4. Let D ∈ Z+ be a fixed discriminant and let f = [a, b, c] be a form

of discriminant D whose corresponding real quadratic irrational is β = (b+
√
D)/2a.

Assume furthermore that

A =

r s

t u

 ∈ SL2(Z) ,

and that f · A = f1 = [a1, b1, c1], where β1 = (b1 +
√
D)/2a1 is the real quadratic

irrational corresponding to f1. Then,

β1 =
uβ + s

tβ + r
. (2.4.6)

Remark. The quantity tβ + r appearing in the denominator of (2.4.6) is never equal

to zero. To see this, assume first that t = 0. In this case, we must have r 6= 0 since

A ∈ SL2(Z). Now assume that t 6= 0. If we have tβ + r = 0, then

β = −r
t
∈ Q,

contradicting the fact that β is an irrational number.

Proof. We simply start with the expression on the right side of (2.4.6) and show after
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some algebraic manipulation that this expression is equal to β1. We have

s+ u
(
b+
√
D

2a

)
r + t

(
b+
√
D

2a

) =
2as+ u(b+

√
D)

2ar + t(b+
√
D)

=

(
2as+ bu+ u

√
D
)

(
2ar + bt+ t

√
D
) ·

(
2ar + bt− t

√
D
)

(
2ar + bt− t

√
D
) . (2.4.7)

The numerator on the right hand side of (2.4.7) multiplies out to the quantity

4a2rs+ 2abst− 2ast
√
D + 2abru+ b2tu− btu

√
D + 2aru

√
D + btu

√
D − tuD

= 4a2rs+ 2abru+ 2abst+ b2tu− tu
(
b2 − 4ac

)
+ 2a (ru− st)

√
D

= 2a
(
2ars+ b (ru+ st) + 2ctu+

√
D
)

= 2a
(
b1 +

√
D
)
, (2.4.8)

with the last equality holding by (2.2.8). The denominator on the right hand side of

(2.4.7) multiplies out to the quantity

(2ar + bt)2 − t2D = 4a2r2 + 4abrt+ b2t2 − t2
(
b2 − 4ac

)
= 4a

(
ar2 + brt+ ct2

)
= 2a · 2a1, (2.4.9)

with the last equality holding by (2.2.7). Combining (2.4.7), (2.4.8), and (2.4.9), we

find that

uβ + s

tβ + r
=

2a
(
b1 +

√
D
)

2a · 2a1
= β1,

which confirms (2.4.6).

The expression on the right hand side of (2.4.6) is connected to an important

type of mapping.

52



Definition 2.4.5. Given a matrix

A =

a b

c d

 ∈ SL2(Z) ,

the linear fractional transformation LA associated to A is the mapping sending

x 7→ ax+ b

cx+ d
, (2.4.10)

where x ∈ R. If c = 0, then we must have d 6= 0 since A ∈ SL2(Z), and the domain of

LA is all real numbers. If c 6= 0, then the domain of LA is R \ {−d
c
}. Either way, the

domain of LA always includes all irrational numbers.

Notation. Given a matrix

A =

a b

c d

 ∈ SL2(Z) ,

and a real number γ in the domain of LA, we employ the following shorthand notation:

A · γ := LA(γ) =
aγ + b

cγ + d
. (2.4.11)

Using this notation, we may conveniently rephrase the statement of Theorem 2.4.4 to

read as follows: If

A =

r s

t u

 ∈ SL2(Z) ,

and f ·A = f1 = [a1, b1, c1], then (2.4.6) may be rewritten as

β1 = Aw · β, (2.4.12)

where use is made of Definition 1.1.22. Using the notation of Definition 2.4.2, we may
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also write this last equality as

Z(f1) = Aw · Z(f). (2.4.13)

We are accustomed to write f ·A in this order since we have a right group action of

SL2(Z) on the set Q(D). It is no accident that Aw is placed to the left of β = Z(f) in

(2.4.12) and (2.4.13), as it is shown below that SL2(Z) has a natural left group action

on the set QI(D).

Theorem 2.4.6. Let D ∈ Z+ be a fixed discriminant and assume we have an arbitrarily

given β ∈ QI(D). If A,B ∈ SL2(Z), then

A · β ∈ QI(D) ; (2.4.14)

we have

I · β = β, (2.4.15)

where I ∈ SL2(Z) is the 2× 2 identity matrix, and

(B ·A) · β = B · (A · β). (2.4.16)

Comparison to §1.7 in [1] confirms that the group SL2(Z) has a left group action on

the set QI(D).

Proof. By Theorem 2.4.3, there exists a unique form f ∈ Q(D) such that Z(f) = β.

If we set f1 = f ·Aw, then Z(f1) = A · β by (2.4.12) and (1.1.2), and Z(f1) ∈ QI(D),

which confirms (2.4.14). Note that (2.4.15) follows immediately from (2.4.11). To
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prove (2.4.16), we set

B =

a1 b1

c1 d1

 and A =

a b

c d

 .

The right hand side of (2.4.16) may be written in the form

a1

(
aβ+b
cβ+d

)
+ b1

c1

(
aβ+b
cβ+d

)
+ d1

=
a1(aβ + b) + b1(cβ + d)

c1(aβ + b) + d1(cβ + d)
(2.4.17)

=
(a1a+ b1c)β + (a1b+ b1d)

(c1a+ d1c)β + (c1b+ d1d)
.

Since

B ·A =

a1a+ b1c a1b+ b1d

c1a+ d1c c1b+ d1d

 ,

we have established (2.4.16) as well.

Using the notation introduced in (2.4.11), we may rewrite the expression appearing in

(2.4.17) as LB [LA(β)], which is the composition of two linear fractional transformations.

From this perspective, the fact that we have a left action here makes perfect sense.

Theorem 2.4.7. Let D ∈ Z+ be a fixed discriminant and let f ∈ Q(D). If we have

A,B ∈ SL2(Z), and f2 = f · (A ·B), then Z(f2) = ((A ·B)w ) · Z(f).

Proof. Assuming that f ·A = f1, we have Z(f1) = Aw · Z(f) by (2.4.13). Similarly,

if f1 ·B = f2, then Z(f2) = Bw · Z(f1). Note that

f · (A ·B) = (f ·A) ·B = f1 ·B = f2,

where (2.2.18) is invoked in the first equality. We also have

Z(f2) = Bw · Z(f1) = Bw · (Aw · Z(f)) =
(
Bw ·Aw

)
· Z(f), (2.4.18)
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with the last equality holding by (2.4.16). Combining (2.4.18) with (1.1.1), we conclude

that

Z(f2) =
(
(A ·B)w

)
· Z(f).

In Section 4.1, we make use of the following corollary which follows easily by

induction from Theorem 2.4.7.

Corollary 2.4.8. Let D ∈ Z+ be a fixed discriminant and let f ∈ Q(D). If we have

A1,A2, . . .An ∈ SL2(Z), and fn = f · (A1 ·A2 · · ·An), then

Z(fn) =
(
(A1 ·A2 · · ·An)

w ) · Z(f).
2.5. Dirichlet’s Class Number Formula

In order to state Dirichlet’s famous “class number formula” for h(D) (see the

comment at the very end of Section 2.2), we require one further ingredient, known

as the “Kronecker symbol”, named in honor of Leopold Kronecker. We assume that

D ∈ Z+ is a fixed discriminant throughout the following discussion. The Kronecker

symbol is an arithmetic function, denoted by χD(n), and defined for all positive integers

n ∈ Z+, taking on only the three values −1, 0, and 1. The strategy for defining χD(n) is

straightforward. We set χD(1) = 1 and then uniquely specify χD at every prime number

p. Once that is done, we extend the function χD to all positive integers multiplicatively

using the Fundamental Theorem of Arithmetic. For example, if χD(3) = 1 and

χD(7) = −1, then we define χD(21) = χD(3 · 7) := χD(3) · χD(7) = (1)(−1) = −1.

Defining χD at the prime number p = 2 is simple, so we handle it first. If p is an

odd prime number, we need to employ the “Legendre symbol”, named in honor of

Adrien-Marie Legendre, to be defined below.
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Definition 2.5.1. p = 2 : χD(2) = 0 if 2 | D, or equivalently, if D ≡ 0 (mod 4).

χD(2) =

 1 if D ≡ 1 (mod 8)

−1 if D ≡ 5 (mod 8).

Since D ≡ 0 or 1 (mod 4), this covers all possibilities.

Definition 2.5.2. If p is an odd prime number, and a is an integer not divisible by p,

the Legendre symbol, denoted by
(
a
p

)
, is defined to have the value +1 if there is an

integer x such that x2 ≡ a (mod p). If there is no such integer x, the symbol is set

equal to −1.

Definition 2.5.3. p = odd prime: χD(p) = 0 if p | D.

χD(p) =
(
D
p

)
(← Legendre symbol) if p - D.

For example, if D = 5 we have χ5(1) = 1, χ5(2) = −1, χ5(3) = −1, χ5(4) = 1,

χ5(5) = 0, and then this pattern is repeated modulo 5 forever after so that χ5(6) = 1,

χ5(7) = −1, χ5(8) = −1, χ5(9) = 1, χ5(10) = 0, et cetera. This provides a prototypical

example of the behavior of χD for any given fixed discriminant D ∈ Z+.

It can be shown (see [5]) that the infinite series

∞∑
n=1

χD(n)

n
(2.5.1)

is conditionally convergent. The limit value of the series in (2.5.1) is usually denoted

by L(1, χD), since this value is equal to the L-function associated to the Dirichlet

character χD evaluated at 1. Dirichlet’s formula (certainly one of the most amazing
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formulas in all of mathematics!) reads as follows:

h(D) =

√
D

log(ε1(D))
· L(1, χD), (2.5.2)

where the definition of the fundamental unit ε1(D) is given in (2.3.20). Part of the

fascination of this formula is that the positive integer h(D) is obtained through

transcendental means. Using (2.5.2) to compute the integer h(D) requires that enough

terms are added together in (2.5.1) to ensure that the overall error on the right hand

side of (2.5.2) is less than one half. For all of the examples computed in Example

2.5.4 below, the sum in (2.5.1) is taken from n = 1 to n = 100, 000, which gives more

than enough accuracy for the value of L(1, χD) in order to nail down the integer h(D)

precisely. The values used for t1 and u1 in (2.3.20) are taken from Table 2.3.1.

Example 2.5.4. If D = 5, then we compute the approximate value L(1, χ5) =

0.43040894, and the approximate value on the right hand side of (2.5.2) comes out to

0.99999999, so that h(5) = 1. If D = 8, then L(1, χ8) = 0.62322524, and we find that

h(8) = 1. If D = 12, we obtain an approximate value L(1, χ12) = 0.76035599, which

leads to the approximate value of 2.00002630 on the right hand side of (2.5.2), and so

h(12) = 2. Continuing in this way gives us all of the values displayed in Table 2.5.1

below. All of the values listed for L(1, χD) are good to at least 3 decimal places.
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Table 2.5.1. Values of L(1, χD) and h(D) for all discriminants D with 5 ≤ D ≤ 65

D L (1, χD) h(D)

5 0.43040894 1

8 0.62322524 1

12 0.76035599 2

13 0.66275539 1

17 1.01608483 1

20 0.64561341 1

21 0.68379725 2

24 0.93587131 2

28 1.04646489 2

29 0.61178629 1

32 0.62322524 2

33 1.33280719 2

37 0.81927217 1

D L (1, χD) h(D)

40 1.15008652 2

41 1.29910306 1

44 0.90246065 2

45 0.57386859 2

48 0.76035600 2

52 0.99412309 1

53 0.54000494 1

56 0.90868078 2

57 1.51272617 2

60 1.06553432 4

61 0.93834020 1

65 1.37751601 2
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CHAPTER III

REDUCTION THEORY

AND THE FERMAT-PELL 4 -EQUATION

3.1. Zagier’s Reduction Theory

Let D ∈ Z+ be a fixed discriminant satisfying the conditions in Assumption

2.2.1. From Section 2.2, we know that there are infinitely many distinct indefinite

binary quadratic forms of discriminant D. Recall from Definition 2.2.2 that

if D ≡ 0 (mod 4), then x2 − D

4
y2 (3.1.1)

is the principal form of discriminant D, and

if D ≡ 1 (mod 4), then x2 + xy +
1−D

4
y2 (3.1.2)

is the principal form of discriminant D.

We showed in Section 2.2 how to partition all forms of discriminant D into

equivalence classes under the action of SL2(Z). The equivalence class that the principal

form of discriminant D falls into is called the “principal class of discriminant D”. Our

first goal in the present section is to show that within each equivalence class of forms

of discriminant D, there exists at least one “reduced form.” Some classes will actually

contain several distinct reduced forms, but any given class will contain at most finitely

many distinct reduced forms, even if such a class always contains infinitely many

distinct forms in total by Theorem 2.2.8.

We also develop an algorithm which takes as input an arbitrary form of

discriminant D, and after a finite number of unimodular transformations, produces a
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reduced form lying in the same equivalence class as the form with which we started.

As we saw in Section 2.2, there are only finitely many equivalence classes of forms

of fixed discriminant D, and the reduced forms of discriminant D give us a means of

identifying and labeling these various classes. We show at the end of this section that

reduced forms allow us to decide in a finite number of steps if two arbitrarily given

forms of discriminant D lie in the same equivalence class as each other or not.

The reduction algorithm mentioned above only employs unimodular transfor-

mations of a special type, which we now consider in detail. Our transformations are

carried out using matrices of the form

S(n) =

 n 1

−1 0

 ∈ SL2(Z) , (3.1.3)

with n ∈ Z chosen specifically as described below. By (2.2.7), (2.2.8), and (2.2.9),

such a transformation takes a form f = [a, b, c] := ax2+ bxy+ cy2, with a, b, c ∈ Z and

discriminant D = b2 − 4ac, to a form f ′ = [a ′, b ′, c ′] whose coefficients are given by

a ′ = an2 − bn+ c (3.1.4)

b ′ = 2an− b (3.1.5)

c ′ = a (3.1.6)

with discriminant D = (b ′)2 − 4a ′c ′.

Given a form f = [a, b, c] whose discriminant D ∈ Z+ satisfies Assumption

2.2.1, we recall that we must have a 6= 0 and c 6= 0, since otherwise we would have

D = b2, violating the condition that D is not a perfect square. The significance of this

restriction is immediately seen, since given such a form f = [a, b, c], the transformation

S(n) that we apply to it is uniquely determined by choosing n ∈ Z such that the
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following inequalities are satisfied:

n >
b+
√
D

2a
> n− 1. (3.1.7)

Due to the division by 2a, it is crucial that 2a 6= 0, or that a 6= 0. The inequalities in

(3.1.7) are strict, since the quantity (b+
√
D)/2a is irrational. This irrationality follows

immediately from the fact that
√
D is itself an irrational number. An equivalent

way to state (3.1.7) is that n ∈ Z is chosen by setting it equal to the ceiling of the

irrational number (b+
√
D)/2a, namely,

n =

⌈
b+
√
D

2a

⌉
, or n = dZ(f)e, (3.1.8)

where the description of the map Z is found in Definition 2.4.2.

After obtaining the new form [a ′, b ′, c ′] by applying S(n) to [a, b, c], we then

apply a transformation S (n ′) to [a ′, b ′, c ′] by choosing n ′ =
⌈
b ′+
√
D

2a ′

⌉
, and then iterate

and continue in this way. This process constitutes the reduction algorithm mentioned

above.

The following definition is central to this entire section. There are certain

forms that lie in any given equivalence class that have special restrictions upon their

coefficients.

Definition 3.1.1. We say that an indefinite form [a, b, c] of discriminant D > 0 is

reduced if

a > 0, c > 0, b > a+ c. (3.1.9)

It is worth noting that this is not the standard definition of what it means for

an indefinite binary quadratic form to be reduced. Definition 3.1.1 is due to Zagier

([8], p. 122). To emphasize this point, we could say that an indefinite form satisfying
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Definition 3.1.1 is “Zagier-reduced”, but since this is the only definition of “reduced”

that is used in this thesis, this emphasis is unnecessary. It should be noted that we

follow the presentation in Zagier’s book ([8], §13) rather closely throughout this whole

section with the intention of giving a more leisurely and detailed exposition of his

main results.

The following theorem encapsulates the claims made earlier in this section that

each equivalence class contains at least one reduced form and at most finitely many

such forms. It is through the use of the reduction algorithm that the proof of this

theorem is obtained.

Theorem 3.1.2. If D ∈ Z+ is a fixed discriminant, then every form of discriminant

D is taken by a finite number of unimodular transformations S(n) to a reduced form

in the same equivalence class. Furthermore, there are only finitely many reduced forms

of discriminant D, and these may be explicitly described.

Remark. Since the reduction algorithm may be applied to any given form of discriminant

D, Theorem 3.1.2 shows that each equivalence class contains at least one reduced

form. In Section 2.2, we set t(D) equal to the number of equivalence classes of forms

of discriminant D, and we now set j(D) equal to the total number of reduced forms

of discriminant D. Theorem 3.1.2 shows that j(D) ∈ Z+ and that t(D) ≤ j(D),

offering an independent proof of Theorem 2.2.11, confirming again that the number of

equivalence classes of forms of discriminant D is finite. It turns out that we almost

always have t(D) < j(D) since there is generally at least one equivalence class of

forms of discriminant D containing two or more reduced forms. The reduced forms

lying in a particular equivalence class are interconnected amongst themselves as part

of a structure known as a “cycle of reduced forms.” A detailed discussion of these
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cycles appears later in this section.

Proof. We begin by proving the first statement of Theorem 3.1.2, that every form of

discriminant D is taken by a finite number of unimodular transformations S(n) to a

reduced form in the same equivalence class.

Let [a, b, c] be an arbitrary form of discriminant D, and set n =
⌈
b+
√
D

2a

⌉
. Since

n satisfies the inequalities in (3.1.7), the number θ defined by

θ = n− b+
√
D

2a
(3.1.10)

is an irrational number that satisfies the inequalities

0 < θ < 1. (3.1.11)

We may rewrite (3.1.10) in the form b+
√
D = 2an− 2aθ, or

− b+ 2an =
√
D + 2aθ. (3.1.12)

The transformation S(n) takes the form [a, b, c] to the form [a ′, b ′, c ′] with

a ′ = an2 − bn+ c (3.1.13)

b ′ = 2an− b (3.1.14)

c ′ = a. (3.1.15)

There is nothing we can do to simplify (3.1.15). By use of (3.1.12), we can rewrite

(3.1.14) as

b ′ =
√
D + 2aθ. (3.1.14′)
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In order to obtain a more useful version of (3.1.13), we note by (3.1.10) that

n2 =

(
b+
√
D

2a

)2

+

(
b+
√
D
)
θ

a
+ θ2,

or

n2 =
b2 + 2b

√
D +D

4a2
+

(
b+
√
D
)
θ

a
+ θ2. (3.1.16)

We may now rewrite (3.1.13), using (3.1.16) and (3.1.10), in the form

a ′ =
b2 + 2b

√
D +D

4a
+
(
b+
√
D
)
θ + aθ2 − b

(
b+
√
D

2a

)
− bθ + c, (3.1.17)

or

a ′ = aθ2 + θ
√
D, (3.1.18)

since
b2 + 2b

√
D +D − 2b2 − 2b

√
D + 4ac

4a
= 0

follows from D = b2 − 4ac. From (3.1.18) and (3.1.11), we note that if a > 0, then

a ′ > 0. This shows that with respect to the sequence of forms [a, b, c], [a ′, b ′, c ′],

[a ′′, b ′′, c ′′] , . . . (we think of this as an infinite sequence) that are generated by the

S(n) transformations, once (and if) the “a–coefficient” becomes positive, it stays

positive in each succeeding form. Thus, it remains to show that the a–coefficient does

indeed become positive.

From (3.1.11), we know that

0 < θ2 < 1, (3.1.19)

and thus if a < 0, then

a < aθ2 < 0. (3.1.20)
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From (3.1.18) and (3.1.11), we have

aθ2 < a ′, (3.1.21)

and combining this with (3.1.20) gives us

a < a ′ (3.1.22)

when a < 0. Since a, a ′, a ′′, . . . are all integers, after a finite number of steps with

respect to the sequence of forms, the a–coefficient will become positive (the a–coefficient

will never be = 0 by our choice of D). Once the a–coefficient becomes positive, it

will remain positive, as we saw above. Likewise, since c ′ = a by (3.1.15), this same

statement holds with respect to the c–coefficient.

Now, assume that we have reached a point within the sequence of forms where

both the a–coefficient and c–coefficient are simultaneously positive. For the sake of

convenience, we shall call this form [a, b, c] even if in terms of our original labeling

it is not the first form we started with in the sequence. Every form in the sequence

of forms after and including this form [a, b, c] will have a positive a–coefficient and a

positive c–coefficient. By Definition 3.1.1, two of the three conditions for a reduced

form are satisfied, and will remain satisfied as the sequence is carried forward ad

infinitum, namely a > 0 and c > 0. Only the last condition, namely b > a+ c, may or

may not hold at this point. However, we now show that even if this condition does

not currently hold, it will be satisfied after a finite number of further iterations of the

reduction algorithm.

In the next step of reduction, we could have 0 < a ′ < a, and in the step

after that, we could have 0 < a ′′ < a ′, but only a finite number of such steps with a

given a–coefficient strictly less than its predecessor can occur since a, a ′, a ′′, . . . are
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all positive integers. This shows that after a finite number of steps overall in the

sequence of forms, starting from the very beginning form, we will obtain a form [a, b, c]

(again, we are allowing for a relabeling) such that a > 0 and such that a ≤ a ′. We

claim that the next form [a ′, b ′, c ′] will be reduced! To see this, note that, by (3.1.18),

0 ≤ a ′ − a = aθ2 + θ
√
D − a

= θ
√
D − a

(
1− θ2

)
. (3.1.23)

It is clear that 0 < θ < 1 + θ, and since 0 <
√
D, we have θ

√
D < (1 + θ)

√
D, which

implies that

θ
√
D − a

(
1− θ2

)
< (1 + θ)

√
D − a

(
1− θ2

)
= (1 + θ)

[√
D − a(1− θ)

]
. (3.1.24)

Combining the inequalities in (3.1.23) and (3.1.24), we have

0 < (1 + θ)
[√

D − a(1− θ)
]
. (3.1.25)

The expression (1 + θ)
[√

D − a(1− θ)
]
may be rewritten in the form

1 + θ

1− θ

[√
D(1− θ)− a(1− θ)2

]
. (3.1.26)

This is allowable since by (3.1.11) we have 0 < 1− θ, and so we are not dividing by

0. We also note that the quantity 1+θ
1−θ is a positive real number. The expression in

square brackets in (3.1.26), after distribution, is equal to
√
D− θ

√
D− a+ 2aθ− aθ2,

which may be rewritten to obtain

√
D + 2aθ −

(
aθ2 + θ

√
D
)
− a, (3.1.27)
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which, by (3.1.14′), (3.1.18), and (3.1.15), is equal to b ′− a ′− c ′. Combining (3.1.25),

(3.1.26), and (3.1.27), we finally obtain

0 <

(
1 + θ

1− θ

)
(b ′ − a ′ − c ′) . (3.1.28)

Since 0 < 1+θ
1−θ , we see from (3.1.28) that 0 < b ′− a ′− c ′, or equivalently, a ′ + c ′ < b ′,

which proves that [a ′, b ′, c ′] is a reduced form as claimed, since we already know that

0 < a ′ and 0 < a = c ′. We note that this last form [a ′, b ′, c ′], reached after finitely

many steps from the starting form, lies in the same equivalence class as the starting

form, since each transformation matrix S(n) lies in the group SL2(Z). This completes

the proof of the first statement in Theorem 3.1.2.

We now prove the second statement in Theorem 3.1.2, that there are only

finitely many reduced forms of discriminant D. From the first statement proven above,

it is clear that there is at least one reduced form of discriminant D, lying in the same

equivalence class as the principal form of discriminant D. Let [a, b, c] be a reduced

form of discriminant D so that b2 − 4ac = D. We set

k = b− 2a, (3.1.29)

and note that

D − k2 = b2 − 4ac− (b− 2a)2

= −4ac+ 4ab− 4a2,

so that

D − k2 = 4a(b− a− c) > 0, (3.1.30)

with this last inequality holding since a > 0 and b > a+c by assumption. We conclude
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that

k2 < D, (3.1.31)

or equivalently

|k| <
√
D. (3.1.32)

From (3.1.30), we see that the positive integer 4a divides evenly into the positive

integer D − k2, which reads in the usual shorthand

4a |
(
D − k2

)
. (3.1.33)

This implies that

k2 ≡ D (mod 4). (3.1.34)

By (3.1.34), we see that the quantity D−k2
4

is an integer, and (3.1.30) may be written

as a(b− a− c) = D−k2
4

, so that

a
∣∣∣ D − k2

4
. (3.1.35)

Now, since 4ac = 4ab− 4a2 − (D − k2), it follows that

c = b− a− D − k2

4a
, (3.1.36)

where D−k2
4a
∈ Z by (3.1.33). By (3.1.29), we note that k + a = b− a, so that (3.1.36)

may be rewritten as

c = k + a− D − k2

4a
. (3.1.37)

Since a > 0, c > 0, and b > a+ c by assumption, we have D = b2 − 4ac < b2, and so

√
D < b. (3.1.38)
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From (3.1.38), we have
√
D − k < b− k, (3.1.39)

and we note from (3.1.32) that 0 <
√
D − k. From (3.1.29), we have b− k = 2a, so

(3.1.39) may be rewritten as

0 <

√
D − k
2

< a. (3.1.40)

If we combine (3.1.29), (3.1.32), (3.1.34), (3.1.35), (3.1.37), and (3.1.40), we may

finally conclude that any reduced form of discriminant D according to Definition 3.1.1

may be put into the shape [
a, k + 2a, k + a− D − k2

4a

]
, (3.1.41)

where a and k satisfy the following four conditions:

|k| <
√
D, k2 ≡ D (mod 4), a

∣∣∣ D − k2
4

, 0 <

√
D − k
2

< a. (3.1.42)

Only finitely many a’s and k’s can satisfy all of these conditions, and so there are only

finitely many reduced forms of discriminant D. This completes the proof of Theorem

3.1.2.

It is a simple matter to write a computer program that outputs the finite list

of all forms having the shape given in (3.1.41) arising from all integer values of k and

a that satisfy the four conditions in (3.1.42). Let W (D) denote this finite list of forms,

and let R(D) denote the set of all reduced forms of discriminant D. We demonstrated

above that R(D) ⊆ W (D), confirming that R(D) is a finite set, and now we wish to

prove that the opposite inclusion holds: W (D) ⊆ R(D). Once this claim is proven, it

is guaranteed that our computer program outputs precisely the list of all reduced

forms of discriminant D.
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Theorem 3.1.3. If W (D) denotes the set of all forms having the shape given in

(3.1.41) arising from all integer values of k and a that satisfy the four conditions

in (3.1.42), and R(D) denotes the set of all reduced forms of discriminant D, then

R(D) = W (D).

Proof. We already know from the proof of Theorem 3.1.2 that R(D) ⊆ W (D), and

thus it suffices to prove that W (D) ⊆ R(D). We begin by showing that any form

having coefficients as given in (3.1.41) has discriminant D:

(k + 2a)2 − 4a

[
k + a− D − k2

4a

]
= k2 + 4ak + 4a2 − 4ak − 4a2 +

(
D − k2

)
(3.1.43)

= k2 +
(
D − k2

)
= D.

It follows from the condition |k| <
√
D that 0 <

√
D − k, which in turn says that

0 <
√
D−k
2

, and so the condition that
√
D−k
2

< a implies immediately that a > 0. Given

a ∈ Z+, b in the form b = k + 2a, and some integer c such that b2 − 4ac = D, we

note that c is uniquely determined by the equation c = b2−D
4a

. The unique solution

for c given a ∈ Z+ and b = k + 2a was found in (3.1.43) as c = k + a− D−k2
4a

, where

the condition a
∣∣ D−k2

4
guarantees that c ∈ Z (note that D ≡ k2 (mod 4) implies that

D−k2
4
∈ Z). For the sum a+ c, we find that

a+ c = k + 2a− D − k2

4a
= b− D − k2

4a
,

or

a+ c+
D − k2

4a
= b. (3.1.44)

Since the second and third conditions in (3.1.42) guarantee that D−k2
4a
∈ Z, and the

first condition (3.1.42) implies that k2 < D, it follows that the integer D−k2
4a

is positive
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since a > 0. Using the fact that D−k2
4a

is positive in (3.1.44) implies that a+ c < b. All

that remains to prove that W (D) ⊆ R(D) is that c > 0.

From the fourth condition in (3.1.42) that (
√
D−k)/2 < a, we have

√
D−k <

2a = b− k, and this implies that
√
D < b, which shows that b ∈ Z+. Squaring both

sides gives D < b2, or b2 − 4ac < b2, and so −4ac < 0. The only way for this last

inequality to hold is if c ∈ Z+, since it has already been shown that a > 0. We

conclude that W (D) ⊆ R(D), which completes the proof of Theorem 3.1.3.

If we apply our computer program in the case where D = 20, we obtain exactly

five reduced forms: [4, 6, 1], [5, 10, 4], [2, 6, 2], [4, 10, 5], and [1, 6, 4]. For four of these

forms, the sum a+ c is exactly one less than b, and this is a very common occurrence

for reduced forms of a given discriminant. The table below shows this in terms of

equation (3.1.44).

Table 3.1.1. Reduced forms of discriminant D = 20.

Form k = b− 2a (D − k2)/4a

[4, 6, 1] 6− 8 = −2 (20− 4)/16 = 1

[5, 10, 4] 10− 10 = 0 (20− 0)/20 = 1

[2, 6, 2] 6− 4 = 2 (20− 4)/8 = 2

[4, 10, 5] 10− 8 = 2 (20− 4)/16 = 1

[1, 6, 4] 6− 2 = 4 (20− 16)/4 = 1

As another follow-up to the proof of Theorem 3.1.2, we pose the following

natural question: “How many steps does it take our reduction algorithm, when applied

to the principal form of discriminant D as defined in (3.1.1) and (3.1.2), to obtain
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a reduced form in the principal class?” Note that the principal form itself is never

a reduced form since the c–coefficient in (3.1.1) and (3.1.2) is always negative. This

implies that we always need at least one step in the reduction algorithm before a

reduced form in the principal class is obtained. However, we show that a reduced

form in the principal class is obtained in exactly one step if our starting point is the

principal form. We first illustrate this phenomenon with several concrete examples,

and then provide a proof that the reduction algorithm always outputs a reduced form

in exactly one step if the starting form is the principal form.

Recall that a single step in the reduction algorithm is always effected by a

simple matrix transformation S(n), which in turn hinges uniquely on the single integer

n ∈ Z. When S(n) takes the form [a, b, c] to the form [a ′, b ′, c ′], we illustrate this

schematically as follows:

[a, b, c]
n−→ [a ′, b ′, c ′] .

The concrete examples we promised are displayed in Table 3.1.2 below.

In the table below, we see that each principal form is taken to a reduced form

in exactly one step. To prove this in general, we return to the proof of Theorem 3.1.2,

where we showed that if [a, b, c] is a form with a > 0, and if S(n) takes this form

to [a ′, b ′, c ′] with a ≤ a ′, then the form [a ′, b ′, c ′] will be reduced. We also showed

that if a > 0, then a ′ > 0. Now, the principal form of discriminant D always has

a = 1. Therefore, a ′ ∈ Z+, and we must have 1 = a ≤ a ′. We see immediately from

above that [a ′, b ′, c ′] is a reduced form, obtained in exactly one step of the reduction

algorithm starting from the principal form.
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Table 3.1.2. Reduction of principal forms.

D Principal Form to Reduced Form

5 [1, 1,−1] 2−→ [1, 3, 1]

8 [1, 0,−2] 2−→ [2, 4, 1]

12 [1, 0,−3] 2−→ [1, 4, 1]

13 [1, 1,−3] 3−→ [3, 5, 1]

17 [1, 1,−4] 3−→ [2, 5, 1]

20 [1, 0,−5] 3−→ [4, 6, 1]

21 [1, 1,−5] 3−→ [1, 5, 1]

24 [1, 0,−6] 3−→ [3, 6, 1]

28 [1, 0,−7] 3−→ [2, 6, 1]

Given a form [a, b, c] of discriminantD, there is a uniquely defined corresponding

transformation matrix S(n) that is employed in our reduction algorithm to take us

to the new form [a ′, b ′, c ′], also of discriminant D. We are naturally led to pose the

following question: “If [a, b, c] is a reduced form, is there anything that can be said of

the form [a ′, b ′, c ′]?” The elegant answer to this question is given by the following

theorem.

Theorem 3.1.4. Let D ∈ Z+ be a fixed discriminant. If [a, b, c] is a reduced form of

discriminant D, then [a ′, b ′, c ′] is also a reduced form of discriminant D.

Remark. As we saw in the proof of Theorem 3.1.2, starting with an arbitrary form

[a, b, c] of discriminant D, not necessarily reduced, our reduction algorithm pro-

vides us with a uniquely determined infinite sequence of forms [a, b, c], [a ′, b ′, c ′],

[a ′′, b ′′, c ′′] , . . . ,
[
a(j), b(j), c(j)

]
, . . . for j = 0, 1, 2, 3, . . . . Theorem 3.1.2 says that for
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some integer m ∈ Z≥0, the form
[
a(m), b(m), c(m)

]
will be reduced. If we specify

m ∈ Z≥0 to be the first such integer for which
[
a(m), b(m), c(m)

]
is a reduced form,

Theorem 3.1.4 states that for every integer j ≥ m, each form
[
a(j), b(j), c(j)

]
will be

reduced as well.

As a preliminary step towards proving Theorem 3.1.4, we first prove the

following lemma, which is a result of interest in itself.

Lemma 3.1.5. A quadratic form

f(x, y) = ax2 + bxy + cy2 := [a, b, c] (3.1.45)

of discriminant b2 − 4ac = D ∈ Z+ (recall that a 6= 0 and c 6= 0 for any form whose

discriminant is as specified in Theorem 3.1.4) is reduced if and only if the two roots of

the quadratic equation f(x,−1) = ax2 − bx+ c = 0, namely (b±
√
D)/2a, satisfy the

following inequalities:

0 <
b−
√
D

2a
< 1 <

b+
√
D

2a
. (3.1.46)

Proof. We first prove the forward direction. Assume that [a, b, c] is a reduced form,

namely a > 0, c > 0, and b > a+ c. From equations (3.1.29) and (3.1.32), the quantity

k = b− 2a satisfies the inequality |k| <
√
D, or

|b− 2a| = |2a− b| <
√
D, (3.1.47)

which may be rewritten as

−
√
D < 2a− b <

√
D. (3.1.48)

Adding b to both sides gives

b−
√
D < 2a < b+

√
D. (3.1.49)
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From (3.1.38), we know that
√
D < b, and so (3.1.49) may be extended to

0 < b−
√
D < 2a < b+

√
D. (3.1.50)

Since 2a > 0, we may divide every expression in (3.1.50) by 2a to obtain

0 <
b−
√
D

2a
< 1 <

b+
√
D

2a
. (3.1.51)

This completes the proof of the forward direction.

Next, we prove the reverse direction. Assume that the inequalities in (3.1.51)

hold for the two roots of the quadratic equation f(x,−1) = 0. From (3.1.51), we have

0 <
b+
√
D

2a
− b−

√
D

2a
=

√
D

a
. (3.1.52)

Since
√
D > 0, we see that we must also have a > 0 by (3.1.52). Both roots are

assumed to be positive, and so their product must be positive as well:

0 <

(
b+
√
D

2a

)(
b−
√
D

2a

)
=
b2 −D
4a2

=
4ac

4a2
=
c

a
. (3.1.53)

Since a > 0, we see that we must also have c > 0 by (3.1.53). Since 2a > 0, the

first inequality in (3.1.51) implies that 0 < b −
√
D, or that

√
D < b, which shows

that b > 0. However, it remains to prove a stronger inequality, namely b > a + c.

Multiplying the inequalities in (3.1.51) through by the positive quantity 2a, we

obtain b −
√
D < 2a < b +

√
D, or −

√
D < 2a − b <

√
D, which implies that

|2a− b| = |b− 2a| <
√
D. Setting k = b− 2a and squaring gives |k|2 = k2 < D, or

0 < D − k2 = b2 − 4ac− (b− 2a)2 = 4a(b− a− c). (3.1.54)

Since 4a > 0, (3.1.54) implies that b − a − c > 0, or b > a + c. This completes the

proof of Lemma 3.1.5.
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Proof of Theorem 3.1.4. Assume that [a, b, c] is a reduced form of discriminant D. The

value of n in the matrix S(n) which takes us to [a ′, b ′, c ′] is given by n =
⌈
b+
√
D

2a

⌉
.

From the forward direction of Lemma 3.1.5, we see that n satisfies the inequality

n ≥ 2. Since 0 < (b−
√
D)/2a < 1 by (3.1.51), the inequality

1 < n− (b−
√
D)

2a
(3.1.55)

holds based upon the distance between the two numbers on the right hand side of

(3.1.55) as illustrated in the picture below:

(
0

)
1

[
2

////////////////////////////////////////////////

Figure 3.1. Proof by picture

From (3.1.18) and (3.1.11), we already noted that if a > 0, then a ′ > 0. By

(3.1.6), we also have c ′ = a > 0, and so it only remains to show that b ′ > a ′ + c ′ in

order to confirm that [a ′, b ′, c ′] is also a reduced form.

From the definition of the irrational number θ in (3.1.10), we have n − θ =

(b+
√
D)/2a and so

√
D

a
=
b+
√
D

2a
− b−

√
D

2a
= n− θ − b−

√
D

2a
. (3.1.56)

From (3.1.11), we have

0 < 1− θ. (3.1.57)

If we subtract θ from both sides of (3.1.55), and make use of both (3.1.56) and (3.1.57),

we obtain

0 < 1− θ <
√
D

a
. (3.1.58)
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Since a > 0, this implies in turn that a(1− θ) <
√
D, or

0 <
√
D − a(1− θ). (3.1.59)

By (3.1.26) and (3.1.27), we recall that

[√
D(1− θ)− a(1− θ)2

]
= b ′ − a ′ − c ′. (3.1.60)

Factoring the left hand side of (3.1.60) as (1 − θ)[
√
D − a(1 − θ)], and using the

inequalities in (3.1.57) and (3.1.59), we conclude from (3.1.60) that b ′ − a ′ − c ′ > 0,

or b ′ > a ′ + c ′. This completes the proof of Theorem 3.1.4.

As an illustration of Theorem 3.1.4, we consider the set of all reduced forms of

discriminant D = 28. We have

R(28) = {[6, 10, 3], [7, 14, 6], [2, 6, 1], [3, 8, 3], [6, 14, 7], [1, 6, 2], [3, 10, 6]} .

If we start with the reduced form [1, 6, 2], Theorem 3.1.4 guarantees that the first step

of the reduction algorithm applied to this form takes us to exactly one of the forms

in the set R(28) above. We find that [1, 6, 2] 6−→ [2, 6, 1]. In turn, the reduced form

[2, 6, 1] must be sent to a form in R(28), and we find that [2, 6, 1] 3−→ [1, 6, 2]. If we

consider the infinite sequence of forms generated by the reduction algorithm, starting

with [1, 6, 2], we obtain the following “purely periodic” repeating pattern:

[1, 6, 2]
6−→ [2, 6, 1]

3−→ [1, 6, 2]
6−→ [2, 6, 1]

3−→ [1, 6, 2]
6−→ [2, 6, 1]

3−→ . . . . (3.1.61)

Our goal is to show that such a purely periodic repeating pattern always occurs when

the reduction algorithm is applied to a starting form f that is reduced . Since the

repeating pattern in (3.1.61) is the norm when we apply the reduction algorithm to a

reduced form, we find it useful to introduce the following diagram that summarizes
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compactly the overall pattern:

[1, 6, 2]
6−→ [2, 6, 1]←−↩

3

. (3.1.62)

The curved arrow at the end of this diagram indicates that the form [2, 6, 1] is sent

back to the starting form [1, 6, 2], and this cycle of length 2 repeats over and over as

the reduction algorithm is applied indefinitely.

Since the pattern in (3.1.62) is the norm for reduced forms, we have a special

name for it. We call such a pattern a “cycle of reduced forms.” There are five other

reduced forms of discriminant D = 28, and they all form a separate cycle:

[3, 8, 3]
3−→ [6, 10, 3]

2−→ [7, 14, 6]
2−→ [6, 14, 7]

2−→ [3, 10, 6]←−↩
3

. (3.1.63)

It is clear that all reduced forms in a given cycle lie in the same equivalence class

of forms under the action of SL2(Z). For example, the two forms in (3.1.62) both

lie in the principal class. However, we pose the question: Is the same true for the

forms in (3.1.63)? Do they all lie in the principal class as well, or do they all lie in

a separate class from the principal class? In the first case, all forms of discriminant

D = 28 would fall into a single class, and in the second case, there would be exactly

two classes of forms. The fact that the second case holds is guaranteed by Theorem

3.1.11, which is stated and proved later in this section.

In order to prove that the reduced forms of a given discriminant are naturally

aligned into disjoint cycles, we find it useful to introduce some new terminology. Let

D ∈ Z+ be a discriminant as previously defined, and let f = [a, b, c] be an arbitrary

form of discriminant D. Using our reduction algorithm, we obtain the new form

f ′ = [a ′, b ′, c ′] when we apply S(n) to f = [a, b, c], where n =
⌈
b+
√
D

2a

⌉
. Given f ,
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the form f ′, also of discriminant D, is uniquely defined, and therefore we have a

well-defined map, denoted by I(f) = f ′. Theorem 3.1.4 guarantees that if f is a

reduced form, then I(f) is also a reduced form.

Definition 3.1.6. Given an arbitrary form f of discriminant D, the uniquely defined

form f ′ = I(f) is called the right neighbor of f . The shorthand used previously was

f
n−→ f ′, and the “right neighbor” terminology reflects this diagrammatic picture.

It is convenient to also introduce the notion of the “left neighbor” of f , which

we now define. Given an arbitrary form f = [a, b, c] of discriminant D ∈ Z+, we set

m =

⌈
b+
√
D

2c

⌉
(3.1.64)

(recall that c 6= 0 by our choice of D). The left neighbor of f , which we denote by

f v := J(f), is obtained from f by applying the transformation matrix

T(m) =

0 −1

1 m

 (3.1.65)

with detT(m) = 1 to f , where m is given as in (3.1.64). The form f v = [av, bv, cv] we

obtain has coefficients given by

av = c (3.1.66)

bv = −b+ 2cm (3.1.67)

cv = a− bm+ cm2, (3.1.68)

where (bv)2 − 4avcv = D. Given f , the form f v is clearly uniquely defined. The

following theorem, which mimics Theorem 3.1.4, should come as no surprise given our

past experience.
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Theorem 3.1.7. Let D ∈ Z+ be a fixed discriminant. If f = [a, b, c] is a reduced form

of discriminant D, then f v = [av, bv, cv] is also a reduced form of discriminant D.

Proof. Let f = [a, b, c] be a reduced form of discriminant D, and set ` = b− 2c. Note

that

D − ` 2 = b2 − 4ac− (b− 2c)2

= b2 − 4ac−
[
b2 − 4bc+ 4c2

]
= 4c(b− a− c) > 0,

with the last inequality holding since c > 0 and b > a+ c by assumption. We conclude

that ` 2 < D, or equivalently

|`| <
√
D. (3.1.69)

Therefore, |b− 2c| = |2c− b| <
√
D, which may be rewritten as −

√
D < 2c− b <

√
D,

or equivalently

b−
√
D < 2c < b+

√
D. (3.1.70)

From (3.1.38), we know that
√
D < b, and so (3.1.70) may be extended to

0 < b−
√
D < 2c < b+

√
D. (3.1.71)

Since 2c > 0, we may divide (3.1.71) throughout by 2c to obtain

0 <
b−
√
D

2c
< 1 <

b+
√
D

2c
. (3.1.72)

Given the inherent symmetry in Definition 3.1.1 for a reduced form, we note that if

[a, b, c] is a reduced form of discriminant D, so is [c, b, a]. This observation gives us

a direct deduction of the inequalities in (3.1.72) from those in (3.1.51). Comparing
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(3.1.64) and (3.1.72), we conclude that

m ≥ 2 (3.1.73)

in (3.1.64) when f is a reduced form. We also note that the number ϕ defined by

ϕ = m− b+
√
D

2c
(3.1.74)

is an irrational number that satisfies the inequalities

0 < ϕ < 1. (3.1.75)

We may rewrite (3.1.74) in the form b+
√
D = 2cm− 2cϕ, or

− b+ 2cm =
√
D + 2cϕ. (3.1.76)

By use of (3.1.76), we can rewrite (3.1.67) as

bv =
√
D + 2cϕ. (3.1.77)

We may also express cv compactly in terms of ϕ by using (3.1.74) to obtain

m2 =

(
b+
√
D

2c

)2

+
(b+

√
D)ϕ

c
+ ϕ2,

or

m2 =
b2 + 2b

√
D +D

4c2
+

(b+
√
D)ϕ

c
+ ϕ2. (3.1.78)

We may now rewrite (3.1.68), using (3.1.78) and (3.1.74), in the form

cv =
b2 + 2b

√
D +D

4c
+ (b+

√
D)ϕ+ cϕ2 − b

(
b+
√
D

2c

)
− bϕ+ a,
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or

cv = cϕ2 + ϕ
√
D, (3.1.79)

since
b2 + 2b

√
D +D − 2b2 − 2b

√
D + 4ac

4c
= 0

follows from D = b2 − 4ac. From (3.1.75) and (3.1.79), we note that if c > 0, then

cv > 0. Since f = [a, b, c] is a reduced form by assumption, we have c > 0 and so

cv > 0 in this case. Since av = c by (3.1.66), we also have av > 0 in this case. To

prove that f v is a reduced form, it remains to show that bv > av + cv.

Combining (3.1.72) and (3.1.73) and using the same “proof by picture” as

illustrated in Figure 3.1, we find that

1 < m− b−
√
D

2c
. (3.1.80)

From (3.1.74), we have m− ϕ = (b+
√
D)/2c, and so

√
D

c
=
b+
√
D

2c
− b−

√
D

2c
= m− ϕ− b−

√
D

2c
. (3.1.81)

From (3.1.75), we have

0 < 1− ϕ, (3.1.82)

and if we subtract ϕ from both sides of (3.1.80) and make use of (3.1.81), we obtain

0 < 1− ϕ <
√
D

c
. (3.1.83)

Since c > 0, this implies in turn that c(1− ϕ) <
√
D, or

0 <
√
D − c(1− ϕ). (3.1.84)
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If we combine (3.1.77), (3.1.66), and (3.1.79), we obtain

bv − av − cv =
√
D + 2cϕ− c−

(
cϕ2 + ϕ

√
D
)

=
√
D − ϕ

√
D − c+ 2cϕ− cϕ2

=
[√

D(1− ϕ)− c(1− ϕ)2
]

= (1− ϕ)
[√

D − c(1− ϕ)
]
.

Using the inequalities in (3.1.82) and (3.1.84), we conclude that bv − av − cv > 0, or

bv > av + cv. This completes the proof of Theorem 3.1.7.

If D ∈ Z+ is a fixed discriminant as previously defined, we let R(D) denote the

set of all reduced forms of discriminant D. By Theorem 3.1.2, we know that R(D) is

a finite nonempty set. If we restrict the map I sending a form f to its right neighbor

f ′ to the set R(D), we have

I : R(D)→ R(D). (3.1.85)

This follows from Theorem 3.1.4, which states that I(f) ∈ R(D) if f ∈ R(D). This

restricted map has several interesting properties, the first of which is given by

Proposition 3.1.8. The restricted map I : R(D)→ R(D) is a bijection.

In order to prove Proposition 3.1.8, we make use of the left neighbor map

J defined immediately after Definition 3.1.6. More specifically, we make use of the

restriction of J to R(D). By Theorem 3.1.7, we know that the restricted map

J : R(D)→ R(D) (3.1.86)

is well-defined since J(f) ∈ R(D), assuming that f ∈ R(D). We also show that the

restricted map defined by (3.1.86) is a bijection, and is in fact the inverse of the map
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defined in (3.1.85).

The proof of Proposition 3.1.8 depends upon the lemma below, which is of

interest in its own right.

Lemma 3.1.9. Assume that f = [a, b, c] ∈ R(D) and n =
⌈
b+
√
D

2a

⌉
. Also, assume that

I(f) = f1 = [a1, b1, c1]. If we set m =
⌈
b1+
√
D

2c1

⌉
, then n = m.

Remark. By (3.1.15), we know that c1 = a and so m =
⌈
b1+
√
D

2a

⌉
. Even so, it is

not obvious that n = m since we generally have b 6= b1 (recall from (3.1.14) that

b1 = −b + 2an). This is best illustrated by an example. Suppose that D = 33 and

f = [4, 9, 3], which is clearly reduced. We find that (9 +
√
33)/(2 · 4) = 1.843 . . . ,

and so n = 2. If we apply S(2) to f , we obtain f1 = [1, 7, 4]. We find that

(7 +
√
33)/(2 · 4) = 1.593 . . . , and so m = 2, in accordance with Lemma 3.1.9. But

the decimal answers to which we are applying the ceiling operation are distinct from

each other, and it is not immediately clear why one number could not be just below 2,

say, and the other just above 2, producing a situation where m 6= n.

Proof. Since f is a reduced form, we know that a > 0, and that 2 ≤ n by (3.1.51).

From (3.1.14), we have

− b+ 2an = b1. (3.1.87)

We know that f1 is a reduced form by Theorem 3.1.4. By the definition of the ceiling

of a number, the integer m ≥ 2 (see (3.1.73)) is uniquely determined by the following

inequalities (recall that c1 = a):

m− 1 <
b1 +

√
D

2a
< m. (3.1.88)

85



If we multiply every term in (3.1.88) through by the positive integer 2a, we obtain

2a(m− 1) < b1 +
√
D < 2am, (3.1.89)

or

− b1 + 2a(m− 1) <
√
D < −b1 + 2am. (3.1.90)

The inequalities in (3.1.90) show that m is the smallest positive integer such that the

expression −b1 + 2az is greater than
√
D when m is substituted in for z. By (3.1.87),

we have

− b1 + 2an = b, (3.1.91)

and since
√
D < b by (3.1.38), we have

√
D < −b1 +2an. Since n is a positive integer

such that the expression −b1 + 2az is greater than
√
D when n is substituted in for z,

and m is the smallest positive integer with this property, we conclude that

m ≤ n. (3.1.92)

Subtracting 2a from both sides of (3.1.91) gives

−b1 + 2a(n− 1) = b− 2a,

and we know that b − 2a <
√
D by (3.1.47). This shows that if we set z equal to

any positive integer less than n, the expression −b1 + 2az is less than
√
D. Since

√
D < −b1 + 2am by (3.1.90), we can not have m < n. Combined with (3.1.92), we

conclude that m = n. This completes the proof of Lemma 3.1.9.

Proof of Proposition 3.1.8. In terms of the notation used in Lemma 3.1.9, we claim

that J (f1) = f . By Lemma 3.1.9, we have m = n, and so the form J (f1) is obtained

from f1 by applying the transformation matrix T(n) to f1. We have f · S(n) = f1

86



and f1 ·T(n) = J (f1), and so f · S(n) ·T(n) = J (f1). This shows that the matrix

product S(n) ·T(n) takes f to J (f1), and an easy calculation shows that

S(n) ·T(n) =

1 0

0 1

 ,

the 2×2 identity matrix, so indeed J (f1) = f . This shows that for any given f ∈ R(D),

we have J(I(f)) = f , which implies that the restricted map I : R(D) → R(D) is

one-to-one. To see this, assume that f, g ∈ R(D), and that I(f) = I(g). We then

have J(I(f)) = J(I(g)), or f = g. Recalling that a one-to-one map from a finite set

to itself is always surjective, we conclude that the restricted map I : R(D)→ R(D) is

a bijection, which completes the proof of Proposition 3.1.8.

Proposition 3.1.8 is crucial to showing how (and why!) the set of reduced

forms R(D) is partitioned into disjoint cycles under the action of the restricted map

I : R(D)→ R(D). Assume that we apply our reduction algorithm to a given reduced

form f = f0. If I (f0) = f0, then f0 will be in a cycle that consists only of itself, and

there is nothing more to say. Assume on the other hand that I (f0) = f1 6= f0, and

that a maximum number of t steps in the reduction algorithm can be made in such

a way that all of the forms appearing in the beginning of the sequence are mutually

distinct from each other. In that case, the sequence of forms would begin as follows:

f0 → f1 → · · · → ft, t ≥ 1, (3.1.93)

where f0, f1, . . . , ft are all distinct from each other, but ft+1 ∈ {f0, f1, . . . , ft}. By

Theorem 3.1.4, and the fact that R(D) is a finite set, we know that there exists a

uniquely defined positive integer t ∈ Z+ with exactly this property (again, we are

assuming that I (f0) 6= f0). We claim that in this case, we must have ft+1 = f0. To
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prove this claim, assume on the contrary that I (ft) = ft+1 = fj for some j ∈ Z+

with 1 ≤ j ≤ t. Note that we also have I (fj−1) = fj, and by assumption fj−1 and

ft are distinct from each other since 0 ≤ j − 1 ≤ t − 1. This contradicts the fact

that the restricted map I : R(D) → R(D) is one-to-one by Proposition 3.1.8, and

so ft+1 = f0, establishing our claim. Having established that I (ft) = f0 here means

that we have attained the goal enunciated just below equation (3.1.61), showing that

a purely periodic repeating pattern always occurs when the reduction algorithm is

applied to a starting form f = f0 that is reduced . Again, we use the following diagram

to compactly summarize this pattern:

f0
n0−→ f1

n1−→ · · · nt−1−−→ ft←−↩
nt

. (3.1.94)

If t ≥ 1, then fj+1 is obtained from fj by the application of S(nj) to fj for each j

with 0 ≤ j ≤ t− 1. As a special case of (3.1.94), it is entirely possible to have just a

single reduced form f0 in the diagram, which we denote by

f0←−−↩
n0

. (3.1.95)

Again, we call the pattern displayed in (3.1.94) a “cycle of reduced forms,” where by

construction all t + 1 of the forms appearing in (3.1.94) are assumed to be distinct

from each other.

The question still remains as to why these cycles of reduced forms create a

partitioning of the set of reduced forms R(D). Any mathematical partition can be

established via an equivalence relation.

Definition 3.1.10. We write f ≈ g if and only if f, g ∈ R(D) are such that g lies in

the cycle generated from the starting form f .
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In order to show that this definition gives an equivalence relation on the forms in

R(D), we must prove that the following three properties hold assuming that f, g, and

h are arbitrarily chosen forms in R(D):

i) We have f ≈ f (reflexive property).

ii) If f ≈ g, then g ≈ f (symmetric property).

iii) If f ≈ g and g ≈ h, f ≈ h (transitive property).

Proof. i) We just proved (and (3.1.94) gives a pictorial representation) that f lies

in the cycle obtained from applying the reduction algorithm to the starting reduced

form f since the cycle always returns back to f . ii) The assumption that f ≈ g is

illustrated in the following diagram:

f → · · · → g → · · ·←−↩ .

What is crucial here is that we always cycle back to the starting form f and so f lies

in the cycle generated from the starting form g. iii) This proof is also easy to visualize

by using diagrams. Given our assumptions, we could have a diagram like this:

f → · · · → g → · · · → h→ · · ·←−↩ ,

or like this:

f → · · · → h→ · · · → g → · · ·←−↩ .

Either way, it is clear that f ≈ h. This completes the proof that the relationship given

in Definition 3.1.10 provides an equivalence relation on the forms in R(D).

From an algorithmic standpoint, we may carve out the partitioning of R(D)

into disjoint cycles as follows. Start with any given form f ∈ R(D) and generate
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the corresponding cycle of reduced forms using f as a starting form. If all forms in

R(D) appear in this one cycle, then we are done. Otherwise, take a reduced form g

not in this cycle and generate the corresponding cycle of reduced forms using g as a

starting form. Since Definition 3.1.10 gives an equivalence relation on the forms in

R(D), these two cycles are disjoint. If all the forms in R(D) are now accounted for,

we are done. Otherwise, we continue in this way until we have completely exhausted

the finite nonempty set R(D) and have obtained a representation of R(D) as a union

of mutually disjoint cycles of forms.

We next move on to a very important theorem, which boils down to say that

the number of disjoint cycles that the forms in R(D) fall into is exactly equal to t(D),

this being the number of equivalence classes of forms of discriminant D under the

action of SL2(Z).

Theorem 3.1.11. Let D ∈ Z+ be a fixed discriminant. Assume that f = [a, b, c] is a

reduced form of discriminant D, and let

f = f0, f1, f2, . . . (3.1.96)

be the infinite sequence of reduced forms generated when the reduction algorithm is

applied to the form f as the starting form. If f ∗ is any reduced form of discriminant D

lying in the same equivalence class as f , then f ∗ must appear in the sequence (3.1.96).

Remark. If g is any form that appears in the sequence (3.1.96), then we know that g

is a reduced form by Theorem 3.1.4, and that g lies in the same equivalence class as f

under the action of SL2(Z). Theorem 3.1.11 tells us that the converse result holds;

namely, if g is a reduced form lying in the same equivalence class as f , then g is one of

the forms appearing in the sequence (3.1.96). Therefore, if g is reduced and it does not
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appear in the sequence (3.1.96), then g is not in the same equivalence class as f . This

implies that each equivalence class of forms under the action of SL2(Z) corresponds to

exactly one cycle of forms; so if we compute how many disjoint cycles of reduced forms

there are of discriminant D, then we have at the same time computed the number of

equivalence classes of forms t(D). In our earlier example involving reduced forms of

discriminant D = 28, we saw that the reduced form [3, 8, 3] does not appear in the

cycle (3.1.62), and therefore [3, 8, 3] is not in the principal class by Theorem 3.1.11.

Given that all of the reduced forms of discriminant D = 28 are accounted for in the

two cycles (3.1.62) and (3.1.63), we see that there are exactly two classes of forms

when D = 28, namely, t(28) = 2.

Proof of Theorem 3.1.11. By assumption, f = [a, b, c] = f0 is a given reduced form

of discriminant D. We are also assuming that f ∗ = [a∗, b∗, c∗] is a reduced form of

discriminant D lying in the same equivalence class as f . By definition, this means

that there exists a matrix

A =

r s

t u

 ∈ SL2(Z) (3.1.97)

such that f ·A = f ∗. From page 173 of [5], we have

a∗ = f(r, t) = ar2 + brt+ ct2 (3.1.98)

b∗ = 2ars+ b(ru+ st) + 2ctu (3.1.99)

c∗ = f(s, u) = as2 + bsu+ cu2. (3.1.100)

We also claim that

a∗ + c∗ − b∗ = f(r − s, t− u). (3.1.101)
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To see this, we note that

f(r − s, t− u) = a(r − s)2 + b(r − s)(t− u) + c(t− u)2

= a
[
r2 − 2rs+ s2

]
+ b [rt− ru− st+ su] + c

[
t2 − 2tu+ u2

]
= f(r, t) + f(s, u)− 2ars− b(ru+ st)− 2ctu

= a∗ + c∗ − b∗

by (3.1.98), (3.1.99), and (3.1.100). Since f ∗ is a reduced form by assumption, we

have a∗ > 0, c∗ > 0, and

a∗ + c∗ − b∗ < 0. (3.1.102)

We claim that we must have

t 6= u. (3.1.103)

Assume on the contrary that t = u. This implies that

f(r − s, t− u) = f(r − s, 0)

= a(r − s)2

≥ 0,

since a > 0 (recall that f is reduced). On the other hand, (3.1.101) and (3.1.102)

combine to say that f(r− s, t−u) < 0, which shows the contradiction. Thus, we must

have t 6= u.

From (3.1.103), we see that we must have either t > u or t < u. Without loss

of generality, we now show that our situation may be arranged in such a way that

t < u. (3.1.104)
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If (3.1.104) already holds within the matrix A in (3.1.97), then we are done. If we

have

t > u (3.1.105)

in (3.1.97), then we replace the matrix A by

−A =

−r −s
−t −u

 .

This causes no trouble since −A ∈ SL2(Z) as well, and it easy to check that −A takes

f to f ∗ just as the matrix A does. If (3.1.105) holds, then we have −t < −u, which

shows that (3.1.104) holds with respect to the replacement matrix −A. We therefore

assume from this point forward that (3.1.104) holds with respect to the matrix A in

(3.1.97).

From this point on, our proof of Theorem 3.1.11 breaks down into three cases,

depending upon the value of t.

Case I: t = 0. Recall that ru− st = 1 since A ∈ SL2(Z). If t = 0, then ru = 1, which

implies that either r = u = 1 or r = u = −1, since r and u are both integers. By

(3.1.104), we have 0 < u, and so r = u = 1. We have t = 0, and we claim that we

must have s = 0 in this case as well. Since c∗ > 0 and 0 > a∗ + c∗ − b∗, we have

c∗ = f(s, u) = f(s, 1) > 0 > f(r − s, t− u) = f(1− s,−1) = f(s− 1, 1).

The key inequalities here may be rewritten more explicitly as

as2 + bs+ c > 0 > a(s− 1)2 + b(s− 1) + c. (3.1.106)
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If we set s = 0 in (3.1.106), we obtain

c > 0 > a− b+ c, (3.1.107)

and these two inequalities are consistent with our assumption that f is a reduced

form. If we can show that at most one integer value for s can be plugged in such

that the inequalities in (3.1.106) are satisfied, then we may conclude that s = 0.

The easiest way to show this is to consider the graph of the quadratic polynomial

φ(x) = f(x, 1) = ax2+bx+c. Since b2−4ac > 0 by assumption, and a > 0, this graph

is a parabola that opens upward and crosses the x-axis at two distinct points, say at

x1 and x2, with x1 < x2. Note that (3.1.106) says that the integer s must satisfy

φ(s− 1) < 0 < φ(s). (3.1.108)

Since s − 1 < s, this can only happen if s − 1 < x2 < s, and this in turn can only

happen for at most one integer value of s, namely s = dx2e, where x2 is an irrational

number since D = b2 − 4ac is not a perfect square. Since r = u = 1 and s = t = 0 in

this case, we conclude that

A =

1 0

0 1

 ,

and so f = f ∗ by (3.1.97), which implies that f ∗ lies in the sequence (3.1.96).

Case II: t < 0. We have f ·A = f ∗, with certain assumptions in place concerning the

matrix A. The first step of the reduction algorithm, applied to f , is carried out via the

matrix S(n), where n is given by (3.1.8). We have f · S(n) = f1 = [a1, b1, c1], where

f1 is a reduced form as well by Theorem 3.1.4. We now wish to compute the matrix

transformation that takes us from f1 to f ∗. First note that f1 · S(n)−1 = f , and it is
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easy to check that

S(n)−1 =

0 −1

1 n

 ,

which we earlier denoted by T(n) in (3.1.65). Combining f1 · S(n)−1 = f with

f ·A = f ∗ gives

f1 · S(n)−1 ·A = f ∗.

We have

S(n)−1 ·A =

 −t −u

r + nt s+ nu

 , (3.1.109)

and if this last matrix is set equal to

A1 =

r1 s1

t1 u1

 ,

we have

f1 ·A1 = f ∗, (3.1.110)

which gives us the transformation matrix A1 taking f1 to f ∗. Note that

r1 − s1 = −t+ u > 0, (3.1.111)

with this last inequality holding by (3.1.104). Since A1 ∈ SL2(Z) is such that

f1 ·A1 = f ∗, we see by (3.1.101) that

a∗ + c∗ − b∗ = f1 (r1 − s1, t1 − u1) . (3.1.112)

By (3.1.102), we have

f1 (r1 − s1, t1 − u1) < 0. (3.1.113)
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The left side of (3.1.113) is equal to

a1 (r1 − s1)2 + b1 (r1 − s1) (t1 − u1) + c1 (t1 − u1)2 . (3.1.114)

Since f1 is a reduced form, we have a1 > 0 and c1 > 0, and thus the only way that

the expression in (3.1.114) can be negative is if t1 − u1 < 0 (recall from (3.1.111) that

r1 − s1 > 0, and we also have b1 > 0). Thus, we have

t1 < u1, (3.1.115)

which shows that (3.1.104) holds with respect to the matrix A1 that is employed in

(3.1.97) taking us from f1 to f ∗. This is important because if it so happened that

t1 = 0, we could conclude by Case I above that

A1 =

1 0

0 1

 ,

and so f1 = f ∗ (recall that (3.1.104) was a crucial ingredient used in the argument to

verify Case I). From (3.1.109), we have t1 = r + nt, and it is critical at this stage in

the proof to establish that

t < t1 ≤ 0,

or equivalently

t < r + nt ≤ 0. (3.1.116)

The two inequalities in (3.1.116) may be replaced by two other inequalities that are

easier to establish. We claim that the inequality

n− 1 <
r

(−t)
(3.1.117)
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implies the left inequality in (3.1.116). Assuming that (3.1.117) holds, and recalling

that in the present Case II that t < 0, we have 0 < −t, and so (−t)(n − 1) < r, or

t − nt < r, or finally t < r + nt, which proves our claim. We next claim that the

inequality
r

(−t)
≤ n (3.1.118)

implies the right inequality in (3.1.116). Assuming that (3.1.118) holds, and with

0 < −t, we have r ≤ (−t)n, or r + nt ≤ 0, which proves the claim. Therefore, if we

can prove the inequalities in (3.1.117) and (3.1.118), then we will have established

both inequalities in (3.1.116).

We first prove (3.1.117). This involves the clever use of the quadratic polynomial

ψ(x) = f(x,−1) = ax2 − bx+ c, (3.1.119)

which was first encountered in Lemma 3.1.5. Since a > 0 and (−b)2 − 4ac > 0, the

graph of this polynomial is a parabola that opens upward and crosses the x-axis at

two distinct points, namely (b±
√
D)/2a, with (b+

√
D)/2a being the rightmost root

by the forward direction of Lemma 3.1.5, in particular (3.1.46). We now claim that

if we evaluate ψ(x) at the rational number r/(−t), we obtain a positive answer. To

see this, recall from (3.1.98) that f(r, t) > 0 since f ∗ is a reduced form. Thus, we

have 0 < ar2 + brt+ ct2. If we divide both sides of this last inequality by the positive

integer t2, we obtain

0 < a
(r
t

)2
+ b
(r
t

)
+ c = a

[
r

(−t)

]2
− b
[

r

(−t)

]
+ c = ψ

(
r

(−t)

)
, (3.1.120)

which proves our claim. We also claim that if we evaluate ψ(x) at the rational number

(r − s)/(−t+ u), noting that −t+ u 6= 0 by (3.1.104), we obtain a negative answer.
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To see this, recall from (3.1.101) and (3.1.102) that f(r − s, t− u) < 0 since f ∗ is a

reduced form. Thus, we have 0 > a(r − s)2 + b(r − s)(t− u) + c(t− u)2. If we divide

both sides of this last inequality by the positive integer (t− u)2, we obtain

0 > a

[
(r − s)
(t− u)

]2
+ b

[
(r − s)
(t− u)

]
+ c = a

[
(r − s)
(−t+ u)

]2
− b
[
(r − s)
(−t+ u)

]
+ c, (3.1.121)

and thus we have

ψ

(
(r − s)
(−t+ u)

)
< 0,

which verifies our claim. Our next claim is that

(r − s)
(−t+ u)

<
r

(−t)
. (3.1.122)

To see this, note that 0 < ru − st = 1, which implies −rt + st < −rt + ru, or

(−t)(r − s) < r(−t + u). Recalling that 0 < −t in the present Case II, and that

0 < −t + u by (3.1.104), we obtain a verification of (3.1.122) by cross division. In

terms of the parabolic graph of ψ(x), since ψ(x) takes on a negative value when

x = (r − s)/(−t+ u) and (b+
√
D)/2a is the rightmost root of ψ(x), we must have

(r−s)/(−t+u) < (b+
√
D)/2a. Combining (3.1.120) and (3.1.122) shows that r/(−t)

must lie to the right of this rightmost root of ψ(x). We conclude that

(r − s)
(−t+ u)

<
(b+

√
D)

2a
<

r

(−t)
. (3.1.123)

Combining (3.1.123) with (3.1.7) confirms that n − 1 < r/(−t), which proves the

inequality in (3.1.117).

To prove the inequality in (3.1.118), assume on the contrary that we have

n < r/(−t). By (3.1.7), we have (b +
√
D)/2a < n, and putting these last two
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inequalities together with (3.1.123) gives

(r − s)
(−t+ u)

< n <
r

(−t)
. (3.1.124)

Recalling that 0 < −t in the present Case II, and that 0 < −t + u by (3.1.104), if

we multiply the inequalities in (3.1.124) through by the product of positive integers

(−t) · (−t+ u), we obtain

(−t)(r − s) < n(−t)(−t+ u) < r(−t+ u),

or

− rt+ st < nt(t− u) < −rt+ ru. (3.1.125)

Each of the three expressions appearing in this string of inequalities is an integer, and

since each of the inequalities in (3.1.125) is strict, we may conclude that −rt+st+2 ≤

−rt + ru, which in turn implies that 2 ≤ ru − st, which contradicts the known

value ru− st = 1. Since we arrived at this contradiction under the assumption that

n < r/(−t), the inequality in (3.1.118) must hold. Thus, we have established both

inequalities in (3.1.116).

With the inequalities in (3.1.116) now established, we are ready to conclude

our analysis of Case II, with the help of Case I. We carry out this final part of the

argument by a process of induction. Before we begin, let us review our progress to

this point. We started with a reduced form f = [a, b, c] and a transformation matrix

A =

r s

t u

 ∈ SL2(Z)

with t < u taking f to the reduced form f ∗ = [a∗, b∗, c∗]. Case I shows that under
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these circumstances, if t = 0, then

A =

1 0

0 1

 ,

f = f ∗, and f ∗ appears in the sequence (3.1.96). If t < 0, in Case II, we consider

the right neighbor f1 of f , which is also reduced. We then have a well-defined

transformation matrix

A1 =

r1 s1

t1 u1

 ∈ SL2(Z)

with t1 < u1 taking f1 to f ∗ such that, by (3.1.116), we have t < t1 ≤ 0. If t1 = 0,

then by Case I we have

A1 =

1 0

0 1

 ,

f1 = f ∗, and again f ∗ appears in the sequence (3.1.96). If t1 < 0, we arrive back in

Case II, and we then consider the right neighbor f2 of f1, which itself is a reduced

form. Again, we have a well-defined transformation matrix

A2 =

r2 s2

t2 u2

 ∈ SL2(Z)

with t2 < u2 taking f2 to f ∗ such that t1 < t2 ≤ 0. If t2 = 0, then we have f2 = f ∗,

and so f ∗ again appears in the sequence (3.1.96). If t2 < 0, we consider the right

neighbor f3 of f2, and proceed in exactly the same manner. Since t, t1, t2, . . . are all

negative integers, and the inequalities t < t1 < t2 < · · · are all strict, this inductive

procedure must terminate after a finite number of steps with tj = 0 and fj = f ∗ for

some form fj in the sequence (3.1.96). In this way, the proof of Theorem 3.1.11 is
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complete if we land in either Case I or Case II.

If we do not land in either Case I or Case II, we finally consider the last possible

case.

Case III: t > 0. If t > 0, note that we still have (see (3.1.120))

0 < ψ

(
r

(−t)

)
, (3.1.126)

since this inequality holds regardless of the sign of t, provided of course that t 6= 0.

We also have

ψ

(
(r − s)
(−t+ u)

)
< 0, (3.1.127)

by use of the inequality in (3.1.121). On the other hand, the inequality in (3.1.122)

no longer holds, so we must start from scratch in this case. We have 0 < ru− st = 1,

which leads to −rt+ st < −rt+ ru, or (−t)(r − s) < r(−t+ u). Since 0 < −t+ u by

(3.1.104), we have [(−t)(r − s)]/(−t+ u) < r, and since −t < 0 in Case III, we have

r

(−t)
<

(r − s)
(−t+ u)

. (3.1.128)

In terms of the parabolic graph of ψ(x), we see from (3.1.127) that the rational number

(r − s)/(−t+ u) must fall between the two distinct roots of ψ(x), and so

b−
√
D

2a
<

(r − s)
(−t+ u)

.

Combining (3.1.126) and (3.1.128) shows that r/(−t) must lie to the left of the leftmost

root of ψ(x). We conclude that

r

(−t)
<
b−
√
D

2a
<

(r − s)
(−t+ u)

. (3.1.129)

From (3.1.46), we have (b −
√
D)/2a < 1, which depends directly upon f = [a, b, c]
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being a reduced form. Combining this last inequality with (3.1.129) gives r/(−t) < 1,

and since −t < 0, we conclude that

− t < r, (3.1.130)

which is the crucial inequality that we need in Case III. From the beginning, we started

with a transformation matrix

A =

r s

t u

 ∈ SL2(Z)

with t < u which takes the reduced form f = [a, b, c] to the reduced form f ∗ =

[a∗, b∗, c∗], namely

f ·A = f ∗. (3.1.131)

From (3.1.131), we see that

f ∗ ·A−1 = f, (3.1.132)

and an easy calculation shows that

A−1 =

 u −s

−t r

 . (3.1.133)

From this new angle, we imagine starting with the reduced form f ∗, and using the

transformation matrix A−1 to take us to the reduced form f = [a, b, c]. The inequality

in (3.1.130) is the exact analogue to (3.1.104) when we earlier went from f to f ∗.

Since the lower left entry in A−1 is negative, we are in the exact setting we were

in earlier going from f to f ∗ in Case II. By our earlier work in Cases I and II, we

may conclude that f lies in the cycle generated from the starting form f ∗. Appealing

to Definition 3.1.10, in particular to the symmetric property of that definition, we
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conclude that f ∗ appears in the sequence (3.1.96) in Case III as well, which completes

the proof of Theorem 3.1.11.

The theory presented above allows us to answer a question posed at the

beginning of this section: “How does one determine when two arbitrary forms of

discriminant D lie in the same equivalence class?” Theorem 3.1.11, in particular, tells

us that two arbitrarily given forms of discriminant D lie in the same equivalence class

if and only if the reduction algorithm takes them to reduced forms which are members

of the same cycle.

As an illustration of the theory developed in this section, we present a list of

all cycles of reduced forms in Table 3.1.3 for those discriminants explicitly described

at the beginning of Section 2.2, beginning with D = 5 and ending with D = 65. The

“principal cycle of discriminant D”, by definition, is the cycle of reduced forms obtained

when the reduction algorithm is applied to the principal form of discriminant D (recall

that the principal form itself is never a reduced form). In Table 3.1.3, we number each

cycle separately, with the first cycle displayed for a given discriminant being always

the principal cycle of that discriminant. Imprimitive cycles are represented with an

asterisk ∗ before their associated number, while the primitive cycles are always listed

first and are unmarked. Being aware of these conventions allows one to quickly scan

through Table 3.1.3 and work out the value of h(D) and t(D) for each value of D

included. A leisurely comparison between Table 3.1.3 and Table 2.5.1 shows perfect

agreement in the value of h(D) for each D listed. The numbers above the arrows in

Table 3.1.3 were already defined earlier in this section. An arrow going straight out at

the end of a line with a number above it takes you to the first form on the next line.

Using the convention established earlier in this section, the curved arrows take you all

the way back to the beginning of the cycle.
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Table 3.1.3. All cycles of reduced forms of discriminant D with 5 ≤ D ≤ 65.

D Cycles of All Reduced Forms

5 1) [1, 3, 1]←−↩
3

8 1) [1, 4, 2] 4−→ [2, 4, 1]←−↩
2

12 1) [1, 4, 1]←−↩
4

2) [3, 6, 2] 2−→ [2, 6, 3]←−↩
3

13 1) [1, 5, 3] 5−→ [3, 5, 1]
2−→ [3, 7, 3]←−↩

2

17 1) [1, 5, 2] 5−→ [2, 5, 1]
3−→ [4, 7, 2]

2−→ [4, 9, 4]
2−→ [2, 7, 4]←−↩

3

20 1) [1, 6, 4] 6−→ [4, 6, 1]
2−→ [5, 10, 4]

2−→ [4, 10, 5]←−↩
2

∗2) [2, 6, 2]←−↩
3

21 1) [1, 5, 1]←−↩
5

2) [5, 9, 3] 2−→ [5, 11, 5]
2−→ [3, 9, 5]←−↩

3

24 1) [1, 6, 3] 6−→ [3, 6, 1]←−↩
2

2) [5, 8, 2] 2−→ [6, 12, 5]
2−→ [5, 12, 6]

2−→ [2, 8, 5]←−↩
4

28 1) [1, 6, 2] 6−→ [2, 6, 1]←−↩
3

2) [6, 10, 3] 2−→ [7, 14, 6]
2−→ [6, 14, 7]

2−→ [3, 10, 6]
3−→ [3, 8, 3]←−↩

3

29 1) [1, 7, 5] 7−→ [5, 7, 1]
2−→ [7, 13, 5]

2−→ [7, 15, 7]
2−→ [5, 13, 7]←−↩

2
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D Cycles of All Reduced Forms

32 1) [1, 6, 1]←−↩
6

2) [7, 12, 4] 2−→ [8, 16, 7]
2−→ [7, 16, 8]

2−→ [4, 12, 7]←−↩
3

∗3) [4, 8, 2] 2−→ [2, 8, 4]←−↩
4

33 1) [1, 7, 4] 7−→ [4, 7, 1]
2−→ [3, 9, 4]

3−→ [4, 9, 3]←−↩
2

2) [6, 9, 2] 2−→ [8, 15, 6]
2−→ [8, 17, 8]

2−→ [6, 15, 8]
2−→ [2, 9, 6]

4−→ [2, 7, 2]←−↩
4

37 1) [1, 7, 3] 7−→ [3, 7, 1]
3−→ [7, 11, 3]

2−→ [9, 17, 7]
2−→

[9, 19, 9]
2−→ [7, 17, 9]

2−→ [3, 11, 7]←−↩
3

40 1) [1, 8, 6] 8−→ [6, 8, 1]
2−→ [9, 16, 6]

2−→ [10, 20, 9]
2−→ [9, 20, 10]

2−→ [6, 16, 9]←−↩
2

2) [5, 10, 3] 2−→ [3, 10, 5]
3−→ [2, 8, 3]

4−→ [3, 8, 2]←−↩
3

41 1) [1, 7, 2] 7−→ [2, 7, 1]
4−→ [5, 9, 2]

2−→ [4, 11, 5]
3−→ [8, 13, 4]

2−→ [10, 19, 8]
2−→

[10, 21, 10]
2−→ [8, 19, 10]

2−→ [4, 13, 8]
3−→ [5, 11, 4]

2−→ [2, 9, 5]←−↩
4

44 1) [1, 8, 5] 8−→ [5, 8, 1]
2−→ [5, 12, 5]←−↩

2

2) [7, 10, 2] 2−→ [10, 18, 7]
2−→ [11, 22, 10]

2−→ [10, 22, 11]
2−→ [7, 18, 10]

2−→ [2, 10, 7]←−↩
5

45 1) [1, 7, 1]←−↩
7

2) [9, 15, 5] 2−→ [11, 21, 9]
2−→ [11, 23, 11]

2−→ [9, 21, 11]
2−→ [5, 15, 9]←−↩

3

∗3) [3, 9, 3]←−↩
3
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D Cycles of All Reduced Forms

48 1) [1, 8, 4] 8−→ [4, 8, 1]←−↩
2

2) [8, 12, 3] 2−→ [11, 20, 8]
2−→ [12, 24, 11]

2−→ [11, 24, 12]
2−→ [8, 20, 11]

2−→ [3, 12, 8]←−↩
4

∗3) [2, 8, 2]←−↩
4

∗4) [6, 12, 4] 2−→ [4, 12, 6]←−↩
3

52 1) [1, 8, 3] 8−→ [3, 8, 1]
3−→ [4, 10, 3]

3−→ [9, 14, 4]
2−→ [12, 22, 9]

2−→

[13, 26, 12]
2−→ [12, 26, 13]

2−→ [9, 22, 12]
2−→ [4, 14, 9]

3−→ [3, 10, 4]←−↩
3

∗2) [6, 10, 2] 2−→ [6, 14, 6]
2−→ [2, 10, 6]←−↩

5

53 1) [1, 9, 7] 9−→ [7, 9, 1]
2−→ [11, 19, 7]

2−→ [13, 25, 11]
2−→

[13, 27, 13]
2−→ [11, 25, 13]

2−→ [7, 19, 11]←−↩
2

56 1) [1, 8, 2] 8−→ [2, 8, 1]←−↩
4

2) [10, 16, 5] 2−→ [13, 24, 10]
2−→ [14, 28, 13]

2−→ [13, 28, 14]
2−→

[10, 24, 13]
2−→ [5, 16, 10]

3−→ [7, 14, 5]
2−→ [5, 14, 7]←−↩

3

57 1) [1, 9, 6] 9−→ [6, 9, 1]
2−→ [7, 15, 6]

2−→ [4, 13, 7]
3−→

[4, 11, 4]
3−→ [7, 13, 4]

2−→ [6, 15, 7]←−↩
2

2) [8, 11, 2] 2−→ [12, 21, 8]
2−→ [14, 27, 12]

2−→ [14, 29, 14]
2−→

[12, 27, 14]
2−→ [8, 21, 12]

2−→ [2, 11, 8]
5−→ [3, 9, 2]

3−→ [2, 9, 3]←−↩
5
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D Cycles of All Reduced Forms

60 1) [1, 8, 1]←−↩
8

2) [11, 18, 6] 2−→ [14, 26, 11]
2−→ [15, 30, 14]

2−→ [14, 30, 15]
2−→ [11, 26, 14]

2−→ [6, 18, 11]←−↩
3

3) [7, 12, 3] 2−→ [7, 16, 7]
2−→ [3, 12, 7]←−↩

4

4) [5, 10, 2] 2−→ [2, 10, 5]←−↩
5

61 1) [1, 9, 5] 9−→ [5, 9, 1]
2−→ [3, 11, 5]

4−→ [9, 13, 3]
2−→ [13, 23, 9]

2−→ [15, 29, 13]
2−→

[15, 31, 15]
2−→ [13, 29, 15]

2−→ [9, 23, 13]
2−→ [3, 13, 9]

4−→ [5, 11, 3]←−↩
2

65 1) [1, 9, 4] 9−→ [4, 9, 1]
3−→ [10, 15, 4]

2−→ [14, 25, 10]
2−→ [16, 31, 14]

2−→

[16, 33, 16]
2−→ [14, 31, 16]

2−→ [10, 25, 14]
2−→ [4, 15, 10]←−↩

3

2) [7, 11, 2] 2−→ [8, 17, 7]
2−→ [5, 15, 8]

3−→ [8, 15, 5]
2−→

[7, 17, 8]
2−→ [2, 11, 7]

5−→ [2, 9, 2]←−↩
5

3.2. Solving the Fermat-Pell 4 -Equation using Reduced Forms

In this section, we use the theory presented in Section 3.1, and specifically

Theorem 3.1.11, to find all solutions to the Fermat-Pell 4 -Equation (2.3.1). Theorem

2.3.3 plays a crucial role in this discussion since it allows us to obtain all solutions to

(2.3.1) from a knowledge of all automorphs of a given primitive form f of discriminant

D ∈ Z+. Theorem 3.1.11 is particularly helpful in terms of describing Aut (f) when

the form f is reduced. With these comments in mind, we often assume throughout

this section that f ∈ Q(D) is a form that is both primitive and reduced. We have

already verified that such a form always exists for any given discriminant D ∈ Z+.
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The basic idea is fairly simple. Given a reduced form f ∈ Q(D), we move

through the cycle of reduced forms to which f belongs, multiplying the S(n) matrices

together as we go, and every time we return to f in the cycle we obtain an automorph

of f . It is easy to see that infinitely many distinct automorphs of f are obtained as

we run through the cycle over and over again.

We first require a lemma, and for this initial result we can momentarily relax

all restrictions on the form f .

Lemma 3.2.1. Let f = f0 be an arbitrary form in Q(D), and assume that when

the Zagier reduction algorithm is applied to f0 that we obtain the following uniquely

defined infinite sequence of forms:

f0
n0−→ f1

n1−→ f2
n2−→ · · · . (3.2.1)

By the right group action of SL2(Z) on Q(D), we know for each ` ∈ Z≥0 that

f0 ·U` = f`+1, where

U` =
∏̀
j=0

S(nj). (3.2.2)

If we set p−2 = 0, p−1 = 1, q−2 = −1, q−1 = 0, and define recursively

pj = njpj−1 − pj−2 for j = 0, 1, 2, . . . (3.2.3)

qj = njqj−1 − qj−2 for j = 0, 1, 2, . . . , (3.2.4)

then for each ` ∈ Z≥0 we have

U` =

 p
`

p
`−1

−q
`
−q

`−1

 . (3.2.5)

Remark. The values p−2 = 0, p−1 = 1, q−2 = −1, q−1 = 0, as well as the recursive
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formulas (3.2.3) and (3.2.4), play a crucial role in the theory of minus continued

fractions as presented in Section 4.2. Indeed, Lemma 3.2.1 is our first link tying

together Zagier’s reduction theory for indefinite binary quadratic forms and the theory

of minus continued fractions. For future reference, we observe that

p0 = n0p−1 − p−2 = n0 (3.2.6)

and

q0 = n0q−1 − q−2 = 1. (3.2.7)

We also note that if we look at the matrix on the right hand side of (3.2.5) when

` = −1 that we obtain the identity matrix in SL2(Z): p−1 p−2

−q−1 −q−2

 =

1 0

0 1

 = I.

Proof of Lemma 3.2.1. We proceed by induction. For the base case, when ` = 0, we

may use (3.2.6) and (3.2.7) to obtain p0 p−1

−q0 −q−1

 =

n0 1

−1 0

 = S(n0),

which equals U0 by (3.2.2). Now assume that (3.2.5) holds for some integer ` ∈ Z≥0.

Making use of the induction hypothesis, we obtain

U` · S(n`+1
) =

 p
`

p
`−1

−q
`
−q

`−1

 ·
n`+1

1

−1 0

 =

 n
`+1
p
`
− p

`−1
p
`

−(n
`+1
q
`
− q

`−1
) −q

`

 ,
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and we note that this last matrix is equal to p
`+1

p
`

−q
`+1
−q

`


by (3.2.3) and (3.2.4). Since the first matrix product in the string of equalities above

is equal to U`+1 by (3.2.2), the induction step is complete.

By use of this lemma, the following easy corollary may be derived.

Corollary 3.2.2. If f = f0 ∈ Q(D) is a reduced form, then in terms of the notation

instituted in Lemma 3.2.1, we have

1 = q0 < q1 < q2 < · · · . (3.2.8)

Proof. Since f0 is reduced by assumption, every form in the diagram (3.2.1) is reduced

as well by Theorem 3.1.4. By the forward direction of Lemma 3.1.5, we see that

nj ∈ Z≥2 for j = 0, 1, 2, . . . . Looking ahead to Section 4.2, we prove (3.2.8) by

induction under the weaker assumption that nj ∈ Z≥2 for j = 1, 2, 3, . . . [see (4.2.3)].

The referred to induction proof is laid out just under (4.2.7a).

We now have all of the results needed to give a constructive proof of Theorem

2.3.5, which states that the Fermat-Pell 4 -Equation t2 −Du2 = 4 has an integer pair

solution (t0, u0) ∈ Z2 with u0 ∈ Z+.

Proof of Theorem 2.3.5. Let f = [a, b, c] = f0 ∈ Q(D) be a form that is both primitive

and reduced. Assume that there are exactly m ∈ Z+ forms lying in the cycle of

reduced forms to which f belongs, and therefore that we have the following diagram:

f0
n0−→ f1

n1−→ · · · → fm−1←−−−↩
nm−1

. (3.2.9)
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From this diagram, we see that Um−1 =
∏m−1

j=0 S(nj) is an automorph of the primitive

form f . Combining (3.2.5) and Theorem 2.3.3, we see that

au = −qm−1, (3.2.10)

where a ∈ Z+ and u is an integer that along with another integer t0 satisfies the

Diophantine equation t20 − Du2 = 4. By Corollary 3.2.2, we have 0 < qm−1. By

(3.2.10), we see that u = −qm−1/a is a negative integer. If we set u0 = −u ∈ Z+,

then t20 −Du20 = 4, completing the proof. This proof is constructive since the theory

presented in Section 3.1 allows us to assemble the diagram in (3.2.9), which in turn

leads us directly to being able to compute the integers u0 and t0 as shown above.

Proceeding along the same lines laid out in the proof of Theorem 2.3.5, we

may prove the following stronger result.

Corollary 3.2.3. Given a fixed discriminant D ∈ Z+, the Fermat-Pell 4 -Equation

(2.3.1) possesses an infinite number of distinct integer pair solutions. Also, if g ∈ Q(D)

is a primitive form, then Aut (g) is a set with infinitely many distinct elements.

Proof. Just as in the proof of Theorem 2.3.5, let f = [a, b, c] = f0 ∈ Q(D) be a form

that is both primitive and reduced, and assume again that we have diagram (3.2.9) in

effect. Not only is Um−1 an automorph of the primitive form f , but we also see from

the diagram that U2m−1,U3m−1, . . . are all in Aut (f) as well. By (3.2.8), we see that

qm−1, q2m−1, q3m−1, . . . constitutes an infinite sequence of mutually distinct positive

integers. Combining (3.2.5) and Theorem 2.3.3, we see that each positive integer

qkm−1
a

for k = 1, 2, 3, . . . , (3.2.11)

is the u–value in an integer pair solution (t, u) of (2.3.1). Since all of the integers
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in (3.2.11) are mutually distinct, we see that (2.3.1) possesses an infinite number of

distinct integer pair solutions.

Now assume that g = [a∗, b∗, c∗] ∈ Q(D) is a primitive form, but not necessarily

reduced. We saw above that there exists an infinite sequence of integer pair solutions

to (2.3.1) which may be put in to the form (t1, u1), (t2, u2), (t3, u3), . . . , where we have

0 < u1 < u2 < u3 < · · · . Looking at the 2 × 2 matrices in (2.3.3) that make up

the set Aut (g), we have an infinite number of distinct integers a∗u1, a
∗u2, a

∗u3, . . .

appearing in the lower left entry and so Aut (g) is a set with infinitely many distinct

elements.

Looking back at Example 2.3.4, the automorph given for the form f = [2, 6, 2]

of discriminant D = 20 is simply S(3), which is equal to U0 (in Table 3.1.3, we see

that [2, 6, 2] is the only reduced form in its cycle). The automorph given for the form

f = [4, 12, 6] of discriminant D = 48 is equal to S(3) · S(2), which is U1 in this case

(in Table 3.1.3, we see that [4, 12, 6] is one of two reduced forms in a cycle). Finally,

the automorph given for the form f = [1, 6, 4] of discriminant D = 20 is equal to

S(6) · S(2) · S(2) · S(2), which is U3 in this case (in Table 3.1.3, we see that [1, 6, 4] is

one of four reduced forms in a cycle).

For the remainder of this section, our goal is to start with a reduced (not

necessarily primitive) form f = f0 of discriminant D ∈ Z+ and to describe the

countably large infinite set of all matrices in Aut (f). The basic structure of Aut (f) is

easy to describe, as seen in the following theorem. In the statement below, to obtain

a matrix in the form −U−3, for example, we raise the multiplicative inverse U−1 to

the 3rd power and then multiply every entry of the resulting matrix by −1.

Theorem 3.2.4. If f is a reduced form of discriminant D ∈ Z+, then there exists a
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matrix U ∈ SL2(Z) such that every element in Aut (f) can be written uniquely in the

form ±Uk, as k ∈ Z ranges over all the integers.

Proof. Assume that there are exactly m ∈ Z+ forms lying in the cycle of reduced

forms to which f = f0 belongs, and therefore that we have the following diagram:

f0
n0−→ f1

n1−→ · · · → fm−1←−−−↩
nm−1

, (3.2.12)

recalling that f0, f1, . . . , fm−1 are all distinct from each other if m ≥ 2. From this

diagram, we see that Um−1 =
∏m−1

j=0 S(nj) is an automorph of the reduced form f .

Set U = Um−1. Recalling from Theorem 2.3.2 that Aut (f) is a subgroup of SL2(Z),

we note that every power Uk, for all k ∈ Z, lies in Aut (f). Also from Section 2.3, we

recall that

−I =

−1 0

0 −1

 ∈ Aut (f).

This means that every 2 × 2 matrix of the form (±I) · Uk, for all k ∈ Z, lies in

Aut (f). In terms of the notation introduced above, we have (−I) ·A = −A for every

A ∈ SL2(Z). We also note that −I commutes with every matrix A ∈ SL2(Z), namely,

(−I) ·A = A · (−I). (3.2.13)

Now that we know that ±Uk ∈ Aut (f) for every k ∈ Z, we wish to prove the

opposite inclusion, namely, that every A ∈ Aut (f) is equal to either Uk or −Uk for

some k ∈ Z. This requires that we take a careful look back at the proof of Theorem

3.1.11. At the beginning of this proof, we assume that f ∗ = [a∗, b∗, c∗] is a reduced

form of discriminant D lying in the same equivalence class as f , and therefore that
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there exists a matrix

A =

r s

t u

 ∈ SL2(Z) (3.2.14)

such that f ·A = f ∗. Of course, we are allowed to let f ∗ = f in this setting, and

then A ∈ Aut (f). The proof of Theorem 3.1.11 gives a methodical analysis of the

shape that A must take. For example, it is shown that we must have t 6= u. If t < u,

there are three cases to consider. If t = 0 (Case I), we find that A = I. If t < 0

(Case II), we find that f ∗ = f = fj for some j ∈ Z+. A look back at the proof also

shows that A =
∏j−1

i=0 S(ni) in this case. The only j ∈ Z+ such that fj = f are

j = m, 2m, 3m, . . . . If j = m, then A = Um−1 = U. In general, if j = km for some

k ∈ Z+, then A = Uk = Ukm−1. It is of interest to note that for any given ` ∈ Z≥0,

the lower left entry of U` is −q` by Lemma 3.2.1 and the lower right entry is −q
`−1

.

By Corollary 3.2.2, we have

q−1 = 0 < 1 = q0 < q1 < q2 < · · · , (3.2.15)

and so −q
`
< −q

`−1
, as well as −q

`
< 0, which shows the consistency with the

assumptions in Case II. This also shows that I,U0,U1,U2, . . . are all mutually distinct

matrices, and so I,U,U2,U3, . . . are all mutually distinct as well. If t > 0 (Case III),

we find that A−1 = Uk for some k ∈ Z+, or that A = U−k for some k ∈ Z+. For any

given ` ∈ Z≥0, we note by Lemma 3.2.1 that

U−1` =

−q`−1
−p

`−1

q
`

p
`

 . (3.2.16)

The lower left entry of U−1` is q
`
, which is positive for each ` ∈ Z≥0 by (3.2.15),

and thus no matrix U−1` , with ` ∈ Z≥0, falls into the set {I,U0,U1, . . . }. Also from
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(3.2.15), we may conclude that U−10 ,U−11 ,U−12 , . . . are all mutually distinct among

themselves. This in turn allows us to conclude that the matrices listed below

{. . . ,U−2,U−1, I,U,U2, . . . } (3.2.17)

are all mutually distinct from each other as well, meaning that set notation is justified

here.

So far, we have assumed that the inequality t < u holds in the matrix (3.2.14).

If t > u instead, then −A ∈ Aut (f) has second row entries −t, −u, with −t < −u,

which puts us back into the setting already covered above, and so −A = Uk for some

k ∈ Z, or A = −Uk for some k ∈ Z. Every matrix of the form −Uk, for k ∈ Z, has a

lower left entry greater than its lower right entry, and so none of these matrices fall

into the set in (3.2.17). They are all distinct among themselves as well. We conclude

that every A ∈ Aut (f) is uniquely expressible either in the form Uk, or as −Uk, for

some k ∈ Z.

Now that we have a complete description of the countably infinite set Aut (f),

attached to any reduced form f of discriminantD ∈ Z+, we may derive a few important

corollaries.

Corollary 3.2.5. If f is a reduced form of discriminant D ∈ Z+, then the infinite

group Aut (f) is abelian.

Proof. There are technically four cases depending upon plus or minus signs. It suffices

to consider one case. Assume that A1,A2 ∈ Aut (f), with A1 = Uk1 and A2 = −Uk2 ,

for integers k1, k2 ∈ Z. Then A1 ·A2 = Uk1 ·
(
−I ·Uk2

)
= (−I) ·

(
Uk1 ·Uk2

)
, where

(3.2.13) and the associative law were used in the second equality. Since we have

Uk1 ·Uk2 = Uk1+k2 = Uk2 ·Uk1 , we may conclude that A1 ·A2 = A2 ·A1.
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Now let f = f0 = [a, b, c] be a form that is both primitive and reduced, of

discriminant D ∈ Z+. Since we have an exact description of Aut (f) by Theorem 3.2.4,

and f is primitive by assumption, we may directly apply Theorem 2.3.3 to obtain all

solutions to the Fermat-Pell 4 -Equation (2.3.1). Of particular interest is the minimal

solution (t1, u1) of (2.3.1), as uniquely characterized in Definition 2.3.6. Looking at

(2.3.3), it is apparent that in searching through all A ∈ Aut (f), we wish to find the

smallest positive lower left entry possible in A, which we denote by q∗, in order to find

u1. Looking back through the proof of Theorem 3.2.4, and taking particular note of

(3.2.15), it is evident that q∗ = qm−1, where m ∈ Z+ is the number of reduced forms

in the cycle to which f belongs. These considerations furnish us with an algorithm for

finding the minimal solution (t1, u1) of (2.3.1), which only requires having in hand the

diagram (3.2.12) attached to a primitive cycle of discriminant D ∈ Z+. In Example

3.2.6 below, we present a concrete example illustrating this algorithm, and afterwards

we give a more formal description of the algorithm itself.

Example 3.2.6. Consider the primitive and reduced form f = [9, 17, 7] of discriminant

D = 37. According to Table 3.1.3, the form f lies in a cycle of reduced forms of length

m = 7. Starting with f = f0, and going around the cycle exactly once, leads to the

values displayed in Table 3.2.1 below.

Table 3.2.1. Sample computations illustrating Algorithm 3.2.7

j −2 −1 0 1 2 3 4 5 6

nj 2 2 2 3 7 3 2

pj 0 1 2 3 4 9 59 168 277

qj −1 0 1 2 3 7 46 131 216
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In this case, we have

U = U6 =

 p6 p5

−q6 −q5

 =

 277 168

−216 −131

 .

Comparison with Theorem 2.3.3 gives u = −q6/a = −216/9 = −24 as well as

t = p6 + (−q5) = 277 − 131 = 146. In any such computation involving the matrix

Um−1, the u–value computed in this way will always be negative, and so u1 = qm−1/a

is the sought-after least positive integer in the minimal solution pair (t1, u1) of (2.3.1).

The quantity t = pm−1 + (−qm−2) computed in this way will always be positive (see

Section 4.1 for a proof of this fact) and so t1 = pm−1 +(−qm−2). The minimal solution

pair (t1, u1) = (146, 24) for D = 37 found here agrees with the answer found earlier in

Table 2.3.1 by use of the brute-force algorithm described in Section 2.3.

Using Example 3.2.6 as inspiration, we may now give a concise description of

an efficient and effective algorithm that can be used to calculate the minimal solution

pair (t1, u1) of the Fermat-Pell 4 -Equation (2.3.1).

Algorithm 3.2.7. Let f = f0 = [a, b, c] be a primitive and reduced form of discrimi-

nant D ∈ Z+ lying in a cycle of reduced forms of length m ∈ Z+. If n0, . . . , nm−1 are

the integers (all in Z≥2) taking us around diagram (3.2.12) exactly once, we compute

p0, . . . , pm−1 and q0, . . . , qm−1 recursively using (3.2.3) and (3.2.4), respectively. Then

t1 = pm−1 − qm−2 and u1 = qm−1/a.
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CHAPTER IV

REAL QUADRATIC IRRATIONALS

AND MINUS CONTINUED FRACTIONS

4.1. Real Quadratic Irrationals and the Fundamental Unit

In this section, we offer a solution to Exercise 2 on page 138 of Zagier’s book

[8]. This exercise, as proposed in Zagier’s book, deals specifically with fundamental

discriminants (such discriminants are defined right below Definition 2.2.16), but our

solution applies to any given discriminant D ∈ Z+, as long as we restrict ourselves to

classes of forms containing only forms that are primitive.

In (2.3.20), we defined the fundamental unit ε1(D) associated to a fixed dis-

criminant D ∈ Z+. According to this definition, we require the minimal solution

(t1, u1) of the Fermat-Pell 4 -Equation (2.3.1) in order to obtain this unit. However,

there is an alternate method to compute ε1(D) involving primitive cycles of reduced

forms of discriminant D, which is inspired by Zagier’s Exercise 2. This method is

based upon the following result.

Theorem 4.1.1. Assume that D ∈ Z+ is a fixed discriminant and let f0, . . . , fm−1 be

the set of all reduced forms lying in a primitive cycle of discriminant D. Then

ε1(D) = Z(f0) · · ·Z(fm−1), (4.1.1)

where the function Z is that given in Definition 2.4.2.

As an example, consider the forms f0 = [1, 5, 3], f1 = [3, 5, 1], and f2 = [3, 7, 3], which

make up the principle cycle of discriminant 13 (clearly a primitive cycle as well). An
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easy computation shows that

Z(f0) · Z(f1) · Z(f2) =
5 +
√
13

2
· 5 +

√
13

6
· 7 +

√
13

6
=

11 + 3
√
13

2
= ε1(13).

In order to prove Theorem 4.1.1, we first need to establish some preliminary

results that are important in their own right. Returning to the reduction theory of

Section 3.1, we recall that if f = f0 = [a0, b0, c0] is an arbitrary form of discriminant

D ∈ Z+, then the reduction algorithm produces a uniquely determined infinite sequence

of right neighboring forms f1 = [a1, b1, c1] , f2 = [a2, b2, c2] , . . . , and the key ingredients

of this sequence are encapsulated in the following diagram (the same diagram as

already displayed in (3.2.1))

f0
n0−→ f1

n1−→ f2
n2−→ · · · . (4.1.2)

We have f0 · S(n0) = f1, f0 · S(n0) · S(n1) = f2, and in general f0 · Uj = fj+1 for

j = 0, 1, 2, . . . , making use of the notation introduced in Lemma 3.2.1. Associated to

each form fj , for j = 0, 1, 2, . . . , is a uniquely defined real quadratic irrational number

βj defined by

βj =
bj +
√
D

2aj
. (4.1.3)

We also use the notation βj = Z(fj), introduced in Definition 2.4.2. With regard

to diagram (4.1.2), we recall from (3.1.8) that nj = dZ(fj)e for j = 0, 1, 2, . . . . This

leads us to introduce a new diagram involving the β’s which matches step by step

with diagram (4.1.2):

β0
n0−→ β1

n1−→ β2
n2−→ · · · . (4.1.4)
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We now show that if we start with the real quadratic irrational number

β = β0 =
b0 +

√
D

2a0
, (4.1.5)

then diagram (4.1.4) may be constructed from scratch (with respect to both the β’s

and the n’s) using a well-defined algorithm which is identical to the generation of

the minus continued fraction expansion of the real number β. The first step of the

minus continued fraction algorithm, as applied to β (see Section 4.2), is to compute

the number n∗0 = bβ0c + 1. Since β0, as an irrational number, lies strictly between

two integers, we have n∗0 = dβ0e, and so n∗0 has the same value as n0 in (4.1.2). Since

f0 · S(n0) = f1, we have β1 = S(n0)
w · β0 by (2.4.12). Writing this out explicitly gives

β1 =

 0 1

−1 n0

 · β0 = 1

−β0 + n0

, (4.1.6)

which is an exact match with (4.2.1). Since β1 is also an irrational number, the same

argument gives n1 = dβ1e = bβ1c+ 1, as well as β2 = 1/(n1 − β1). Because all of the

β’s corresponding to the f ’s in (4.1.2) are irrational numbers, continuing in this way

reproduces precisely the same infinite sequences of β’s and n’s given by the minus

continued fraction algorithm defined by (4.2.1) and (4.2.2). This shows that diagram

(4.1.4) is generated directly upon application of the minus continued fraction algorithm

to the real number β0 given in (4.1.5). It is worth noting that the minus continued

fraction algorithm is applicable to any real number β, so that the present section

concerns a special (though highly important) case of a much more general algorithm.

The following lemma is crucial to the proof of Theorem 4.1.1.
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Lemma 4.1.2. Given the diagrams (4.1.2) and (4.1.4), and (4.1.5), we have

βj =
−qj−2β + pj−2
−qj−1β + pj−1

for j = 0, 1, 2, . . . , (4.1.7)

where the p’s and q’s are exactly those defined within the statement of Lemma 3.2.1.

Proof. For j = 0, (4.1.7) translates into the statement β0 = β, which is correct. For

j ∈ Z+, we make use of Corollary 2.4.8, which shows that since f0 ·Uj−1 = fj, we

then have

Z(fj) = βj = (Uj−1)
w · β.

By (3.2.5), we have

(Uj−1)
w =

−qj−2 pj−2

−qj−1 pj−1

 ,

from which (4.1.7) follows.

Before moving on to the proof of Theorem 4.1.1, we quickly derive two relations which

are special cases of results which are found to appear in Section 4.2. Going back to

(3.2.5), since Uj ∈ SL2(Z) for j = 0, 1, 2 . . . , we note that (see (4.2.14))

pj−1qj − pjqj−1 = 1 for j = 0, 1, 2, . . . . (4.1.8)

It is easy to check that (4.1.8) also holds for j = −1. We next show that (4.1.7) leads

directly to (4.2.17). Fixing j ∈ Z+, (4.1.7) gives −qj−1βjβ + pj−1βj = −qj−2β + pj−2,

and solving for β gives (see (4.2.17))

β =
pj−1βj − pj−2
qj−1βj − qj−2

. (4.1.9)

Proof of Theorem 4.1.1. In this proof, it is beneficial to work instead with the product

β1 · · · βm, which is equal to the product on the right hand side of (4.1.1) since β0 = βm.
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If we write down explicitly the equations in (4.1.7) for j = 1, 2, 3, we see something of

immediate interest:

β1 =
1

−q0β + p0
, β2 =

−q0β + p0
−q1β + p1

, β3 =
−q1β + p1
−q2β + p2

, (4.1.10)

which shows that the denominator of βj is equal to the numerator of βj+1 for j =

1, 2, 3, . . . . We readily conclude from (4.1.10) that

β1 · · · βm =
1

pm−1 − qm−1β
, (4.1.11)

so we just need to rework the expression on the right hand side of (4.1.11). Our goal,

to complete the proof, is to show that

1

pm−1 − qm−1β
=
t1 + u1

√
D

2
, (4.1.12)

where (t1, u1) is the minimal solution of (2.3.1). Recall that t1 and u1 are both positive

integers by definition. We are assuming here that f = f0 = [a, b, c] is a primitive and

reduced form of discriminant D ∈ Z+ and that

β = β0 =
b+
√
D

2a
. (4.1.13)

Recall from Section 3.2 that

au = −qm−1, (4.1.14)

where u is a negative integer and that

u1 = −u. (4.1.15)

We also have

pm−1 =
t− bu

2
, (4.1.16)
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as well as

pm−1 − qm−2 = t. (4.1.17)

As of right now, we do not know whether the value of t in (4.1.17) is positive or

negative, but we do know that

t1 = |t| 6= 0. (4.1.18)

Plugging (4.1.13), (4.1.14), and (4.1.16) into the expression on the left hand side of

(4.1.12) gives

1

pm−1 − qm−1β
=

1
(t−bu)

2
+ au

[
b+
√
D

2a

]
=

2

t− bu+ bu+ u
√
D

=
2

(t+ u
√
D)
· (t− u

√
D)

(t− u
√
D)

=
t− u

√
D

2
,

with the last equality holding since (t, u) is an integer pair solution to (2.3.1). So far,

we have

β1 · · · βm =
t− u

√
D

2
, (4.1.19)

and because of (4.1.15) it only remains to prove that t is a positive integer in order to

finally establish (4.1.12), in light of (4.1.18). By Lemma 3.1.5, we note that 1 < βj

for j = 1, . . . ,m, and so by (4.1.19) we have

1 <
t+ u1

√
D

2
. (4.1.20)

Since 4 = t21 − Du21, we have 0 < t21 − Du21, which implies that u1
√
D < t1, or

−t1+u1
√
D < 0. We have either t = t1 or t = −t1. If t = −t1 held, we would conclude
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that t+ u1
√
D < 0, in contradiction to (4.1.20). We therefore must have t = t1 ∈ Z+,

which completes the proof of Theorem 4.1.1. Knowing that t, as defined by (4.1.17),

is positive also consolidates the validity of Algorithm 3.2.7, clearing up the one point

still in question regarding this algorithm.

4.2. The Theory of Minus Continued Fractions

The theory of positive continued fractions assumed its classic form long ago

and expositions of this theory may be found in most books that cover Elementary

Number Theory. The theory of minus continued fractions is of more recent vintage

and is definitely less well known; however, this theory has all of the same remarkable

features as its classical counterpart and it is the theory of continued fractions directly

connected to Zagier’s reduction theory of indefinite binary quadratic forms, as already

noted in Section 4.1. Given that the theory of minus continued fractions is not as

widely known as it deserves, we give a detailed exposition of it here following the very

nice presentation of Katok [4].

In the following, let β = β0 ∈ R be any given fixed real number. We may define

an infinite sequence of integers n0, n1, n2, . . . , and an infinite sequence of real numbers

β0, β1, β2, . . . inductively and uniquely by use of the following system of equations:

n0 = bβ0c+ 1, β1 =
1

n0 − β0
, (4.2.1)

nj = bβjc+ 1, βj+1 =
1

nj − βj
for j = 1, 2, 3, . . . . (4.2.2)

Note that n0 > β0 and nj > βj for j = 1, 2, 3, . . . , and so each quotient in (4.2.1)

and (4.2.2) is well-defined and strictly positive so that β1, β2, . . . ∈ R>0. Also, note

that 0 < n0 − β0 ≤ 1, which implies that 1 ≤ β1; we have β1 = 1 if and only if

β ∈ Z. This implies in turn that n1 ≥ 2. Now, assume that j ∈ Z+ is fixed. We
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have 0 < nj − βj ≤ 1, which implies that 1 ≤ βj+1, again with βj+1 = 1 if and only if

βj ∈ Z. This in turn implies that nj+1 ≥ 2. The following general fact has now been

established:

nj ∈ Z≥2 for j = 1, 2, 3, . . . . (4.2.3)

We next define a corresponding infinite sequence of rational numbers as follows:

r0 = n0; r1 = n0 −
1

n1

; r2 = n0 −
1

n1 −
1

n2

; (4.2.4)

and in general,

rj = n0 −
1

n1 −
1

n2 −
1

. . .
nj−2 −

1

nj−1 −
1

nj

. (4.2.5)

To verify that we completely avoid division by zero when forming such complicated

quotients, we first take a more careful look at the formation of these expressions.

Consider the value r3. By (4.2.3), we see that

1 < n2 −
1

n3

,

and so

0 <
1

n2 −
1

n3

< 1.

Again, by (4.2.3), we have

1 < n1 −
1

n2 −
1

n3

,
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and so

0 <
1

n1 −
1

n2 −
1

n3

< 1.

For rj with j ≥ 4 fixed, we have the following inequalities for the expression at the

“bottom” :

0 <
1

nj−2 −
1

nj−1 −
1

nj

< 1,

which holds by the same reasoning as above. We then subtract this number from

nj−3 ≥ 2 to obtain a number that is greater than 1, take the reciprocal to obtain a

number strictly between 0 and 1, and continue in this way, avoiding division by zero

in every case.

Given an infinite sequence of integers n0, n1, n2, . . . with n0 ∈ Z arbitrary and

nj ∈ Z≥2 for j = 1, 2, 3, . . ., we introduce the following notation based upon (4.2.4)

and (4.2.5) above:

r0 = (n0) = n0; r1 = (n0, n1) = n0 −
1

n1

; r2 = (n0, n1, n2) = n0 −
1

n1 −
1

n2

;

and in general,

rj = (n0, n1, n2, . . . , nj) = n0 −
1

n1 −
1

n2 −
1

. . .
nj−2 −

1

nj−1 −
1

nj

for j = 3, 4, 5, . . . .

It is clear that r0, r1, r2, . . . are all rational numbers since Q forms a field. Our primary

goal in this section is the proof of the following theorem.
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Theorem 4.2.1. Given an arbitrary real number β ∈ R, along with the correspond-

ing uniquely defined infinite sequence of integers n0, n1, n2, . . . and rational numbers

r0, r1, r2, . . . as defined above, we have lim
j→∞

rj = β.

Proof. We first define two new infinite sequences of integers: p−2, p−1, p0, p1, . . . and

q−2, q−1, q0, q1, . . . inductively from the n’s as follows:

p−2 = 0, p−1 = 1, pj = njpj−1 − pj−2 for j = 0, 1, 2, . . . (4.2.6)

q−2 = −1, q−1 = 0, qj = njqj−1 − qj−2 for j = 0, 1, 2, . . . . (4.2.7)

We will eventually prove that rj = pj/qj for j = 0, 1, 2, . . . , but we first wish to show

that

1 = q0 < q1 < q2 < · · · , which implies in turn that lim
j→∞

qj =∞. (4.2.7a)

We first note that

q0 = n0q−1 − q−2 = 1 and q1 = n1q0 − q−1 = n1,

and since 2 ≤ n1, we see that q0 = 1 < q1. We now proceed by induction. Assume

j ≥ 2 is given, and that 0 < qj−2 < qj−1 holds. We need to establish that qj−1 < qj

follows. From (4.2.3), we know that 2 ≤ nj, and so 2qj−1 ≤ njqj−1. By the inductive

hypothesis, we have

qj−2 + qj−1 < qj−1 + qj−1 = 2qj−1,

and so

qj−2 + qj−1 < njqj−1.

This implies that

qj−1 < njqj−1 − qj−2 = qj,
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or that qj−1 < qj, which completes the proof of (4.2.7a).

In order to mimic the usual theory of positive continued fractions, we now

introduce polynomials of several variables having similar properties to the usual

“continuant polynomials.” These are defined as follows:

L0( ) = 1; (4.2.8a)

L1 (x1) = x1; and in general for j = 2, 3, 4, . . . , (4.2.8b)

Lj (x1, . . . , xj) = xjLj−1 (x1, . . . , xj−1)− Lj−2 (x1, . . . , xj−2) . (4.2.8)

For example, when j = 2, we have

L2 (x1, x2) = x2L1 (x1)− L0( ) = x2x1 − 1

(note that L0( ) = 1 is a polynomial dependent upon zero variables). When j = 3, we

have

L3 (x1, x2, x3) = x3L2 (x1, x2)− L1 (x1)

= x3 (x2x1 − 1)− x1

= x1x2x3 − x1 − x3,

and when j = 4, we have

L4 (x1, x2, x3, x4) = x4L3 (x1, x2, x3)− L2 (x1, x2)

= x4 [x1x2x3 − x1 − x3]− (x1x2 − 1)

= x1x2x3x4 − x1x4 − x3x4 − x1x2 + 1.
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Note that q0 = 1 = L0( ), and that q1 = n1 = L1 (n1); we claim in general that

qj = Lj (n1, . . . , nj) for j = 2, 3, 4, . . . . (4.2.9)

We have

q2 = n2q1 − q0 = n2n1 − 1 = L2 (n1, n2) ,

and we now proceed by induction. Assume that j ≥ 3 is given, and that both

qj−2 = Lj−2 (n1, . . . , nj−2) and qj−1 = Lj−1 (n1, . . . , nj−1) hold. By (4.2.8), we have

Lj (n1, . . . , nj) = njLj−1 (n1, . . . , nj−1)− Lj−2 (n1, . . . , nj−2)

= njqj−1 − qj−2 = qj,

with the last equality holding by (4.2.7), which completes the inductive step.

In a similar way, we now show that p0 = L1 (n0), p1 = L2 (n0, n1), and, in

general,

pj = Lj+1 (n0, . . . , nj) for j = 2, 3, 4, . . . . (4.2.10)

We first note that

p0 = n0p−1 − p−2 = n0 = L1 (n0) ,

and

p1 = n1p0 − p−1 = n1n0 − 1 = L2 (n0, n1) .

Now, assume that j ≥ 2 is given, and that both pj−2 = Lj−1 (n0, . . . , nj−2) and

pj−1 = Lj (n0, . . . , nj−1) hold. By (4.2.8), we have

Lj+1 (n0, . . . , nj) = njLj (n0, . . . , nj−1)− Lj−1 (n0, . . . , nj−2)

= njpj−1 − pj−2 = pj,
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with the last equality holding by (4.2.6), which completes the inductive step.

Next, we move towards proving that

rj =
pj
qj

for j = 0, 1, 2, . . . . (4.2.11)

The first few cases are easy to verify:

r0 = n0 =
n0

1
=
p0
q0
;

r1 =
n0n1 − 1

n1

=
p1
q1
;

and using (4.2.9) and (4.2.10), we obtain:

r2 = n0 −
1

n1n2 − 1

n2

= n0 −
n2

n1n2 − 1

=
n0 (n1n2 − 1)− n2

n1n2 − 1
=

n0n1n2 − n0 − n2

n1n2 − 1

=
L3 (n0, n1, n2)

L2 (n1, n2)
=

p2
q2
.

Our goal is to prove, in general, that

rj =
Lj+1 (n0, . . . , nj)

Lj (n1, . . . , nj)
for j = 1, 2, 3, . . . . (4.2.12)

In combination with (4.2.9) and (4.2.10), we see that (4.2.11) is an immediate con-

sequence of (4.2.12). We have already verified (4.2.12) for j = 1 and j = 2. We will

prove the general case by induction. Assume that j ≥ 3 is given, and that (4.2.12)

holds for j − 1; that is,

rj−1 = (n0, . . . , nj−1) =
Lj (n0, . . . , nj−1)

Lj−1 (n1, . . . , nj−1)
. (4.2.13)

Looking at the expression of rj in (4.2.5), we first note that rj may be rewritten as a
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continued fraction which depends only upon j terms instead of the usual j + 1 terms:

rj = (n0, . . . , nj−2, y) , where y = nj−1 −
1

nj
.

By the inductive hypothesis (4.2.13), which applies to an expression with j terms in

its continued fraction, we have

rj =
Lj (n0, . . . , nj−2, y)

Lj−1 (n1, . . . , nj−2, y)

=
yLj−1 (n0, . . . , nj−2)− Lj−2 (n0, . . . , nj−3)

yLj−2 (n1, . . . , nj−2)− Lj−3 (n1, . . . , nj−3)
,

with the last equality holding by (4.2.8). We note that if j = 3, then the polynomial

Lj−3 (n1, . . . , nj−3) is equal to L0( ) = 1. Using our expression for y = nj−1 − (1/nj),

we have

rj =

(
nj−1 − 1

nj

)
Lj−1 (n0, . . . , nj−2)− Lj−2 (n0, . . . , nj−3)(

nj−1 − 1
nj

)
Lj−2 (n1, . . . , nj−2)− Lj−3 (n1, . . . , nj−3)

,

or

rj =
nj−1Lj−1 (n0, . . . , nj−2)− Lj−2 (n0, . . . , nj−3)− 1

nj
Lj−1 (n0, . . . , nj−2)

nj−1Lj−2 (n1, . . . , nj−2)− Lj−3 (n1, . . . , nj−3)− 1
nj
Lj−2 (n1, . . . , nj−2)

=
Lj (n0, . . . , nj−1)− 1

nj
Lj−1 (n0, . . . , nj−2)

Lj−1 (n1, . . . , nj−1)− 1
nj
Lj−2 (n1, . . . , nj−2)

,

with the last equality holding again by (4.2.8). Multiplying the top and bottom of

this last quotient by nj gives

rj =
njLj (n0, . . . , nj−1)− Lj−1 (n0, . . . , nj−2)

njLj−1 (n1, . . . , nj−1)− Lj−2 (n1, . . . , nj−2)
,

or finally, by (4.2.8),

rj =
Lj+1 (n0, . . . , nj)

Lj (n1, . . . , nj)
.

This completes the induction process, and establishes (4.2.12) for j = 3, 4, 5, . . . .
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We now wish to show that

pj−1qj − pjqj−1 = 1 for j = −1, 0, 1, 2, . . . . (4.2.14)

We begin by checking a few base cases. For j = −1, we have

p−2q−1 − p−1q−2 = 0 · 0− (1)(−1) = 1,

and for j = 0, we have

p−1q0 − p0q−1 = 1 · 1− p0 · 0 = 1.

Now, assume that j ∈ Z+ is fixed. From (4.2.6) and (4.2.7), we obtain

pj−1qj − pjqj−1 = pj−1 (njqj−1 − qj−2)− (njpj−1 − pj−2) qj−1

= −pj−1qj−2 + pj−2qj−1

= pj−2qj−1 − pj−1qj−2.

This shows that if pj−2qj−1 − pj−1qj−2 = 1, then we also obtain pj−1qj − pjqj−1 = 1.

Having already established the base cases above, we see that (4.2.14) holds for all

j = −1, 0, 1, 2, . . . .

From (4.2.14), we may now prove with ease that the infinite sequence of rational

numbers r0, r1, r2, . . . is strictly decreasing. Assuming that j ∈ Z+ is fixed, we already

proved in (4.2.7a) that the product qj · qj−1 is a positive integer. Dividing both sides

of (4.2.14) by qjqj−1 gives

pj−1
qj−1

− pj
qj

=
1

qjqj−1
> 0.

When j = 1, we have r0 − r1 > 0 by (4.2.11); when j = 2, we have r1 − r2 > 0; and in
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general, we have rk > rk+1 for k = 0, 1, 2, . . . . We now wish to show that the strictly

decreasing sequence r0 > r1 > r2 > r3 > · · · is bounded below by n0 − 1. Since

r0 = n0 > n0 − 1 clearly holds, we just need to show that n0 − 1 < rj for all j ∈ Z+.

By (4.2.5), we may write rj for each j ∈ Z+ in the form rj = n0 − xj, where

xj =
1

n1 −
1

n2 −
1

. . .
nj−2 −

1

nj−1 −
1

nj

.

The proof that n0 − 1 < rj = n0 − xj for each j ∈ Z+ is equivalent to showing that

xj < 1. We will prove even more strictly that 0 < xj < 1 for j = 1, 2, 3, . . . . We begin

by examining a few cases directly. For j = 1, we have x1 = 1/n1, and since n1 ∈ Z≥2,

we have 0 < x1 < 1. If j = 2, then

x2 =
1

n1 −
1

n2

,

and since n1, n2 ∈ Z≥2, we have 1 < n1 − (1/n2), and so 0 < x2 < 1. The case j = 3

was already covered just below equation (4.2.5), and by the same reasoning, we may

conclude that 0 < xj < 1 for all j ∈ Z≥4 as well, proving that n0 − 1 < rj for all

j = 0, 1, 2, 3, . . . .

The completeness axiom for the real number system guarantees that a strictly

decreasing infinite sequence of real numbers that is bounded below converges to a

unique real number. In order to complete the proof of Theorem 4.2.1, it only remains

to show that the limit value of the infinite sequence of rational numbers r0, r1, r2, . . .

is exactly equal to the real number β with which we started.
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We recall from the beginning of this section that 1 ≤ βj for all j = 1, 2, 3, . . . .

We claim that

1 ≤ βjqj−1 − qj−2 for j = 1, 2, 3, . . . (4.2.15)

as well. We first verify (4.2.15) directly for the two smallest values of j. For j = 1,

we have β1q0 − q−1 = β1, and since 1 ≤ β1, this case is done. For j = 2, since 1 ≤ β2

and 2 ≤ n1 = q1, we have 2 ≤ β2q1, which implies that 1 ≤ β2q1 − 1 = β2q1 − q0,

and so this case is verified. Now, assume that j ∈ Z≥3 is fixed. From the strict

inequalities in (4.2.7a), and the fact that all of the q’s are integers, we may conclude

that qj−2 + 1 ≤ qj−1. Since qj−1 ∈ Z+ and 1 ≤ βj, we have qj−1 ≤ βjqj−1. Combining

these inequalities gives qj−2 + 1 ≤ βjqj−1, or

1 ≤ βjqj−1 − qj−2,

which establishes the claim in (4.2.15) for j = 1, 2, 3, . . . .

From (4.2.1), we have n0 − β = 1/β1, or β − n0 = −(1/β1), and so

β = n0 −
1

β1
= (n0, β1) ,

where (n0, β1) refers to the continued fraction notation that was introduced right

before the statement of Theorem 4.2.1. From (4.2.2), we have n1 − β1 = 1/β2, or

β1 − n1 = −(1/β2), and so

β1 = n1 −
1

β2
.

Combining this equation with the equation above for β gives

β = n0 −
1

n1 −
1

β2

= (n0, n1, β2) .

Similarly, we have β2 = n2 − (1/β3), and so β = (n0, n1, n2, β3). In general we have
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βj = nj − (1/βj+1) for j = 1, 2, 3, . . . , and

β = (n0, . . . , nj−1, βj) for j = 1, 2, 3, . . . . (4.2.16)

Now, fix k ∈ Z+. By (4.2.11), we have

rk−1 = (n0, . . . , nk−1) =
pk−1
qk−1

,

which shows that pk−1 and qk−1 depend strictly upon the first k integers n0, . . . , nk−1

in the infinite sequence of n’s. For rk = (n0, . . . , nk−1, nk), we have

rk =
pk
qk

=
nkpk−1 − pk−2
nkqk−1 − qk−2

,

by (4.2.6) and (4.2.7). We found in (4.2.16) that β = (n0, . . . , nk−1, βk), and if we

compare to the expression for rk above and replace the nk there by the βk in the

continued fraction expression for β, we deduce that

β =
βkpk−1 − pk−2
βkqk−1 − qk−2

. (4.2.17)

For example, if k = 1, then (4.2.17) becomes

β =
β1p0 − p−1
β1q0 − q−1

=
β1n0 − 1

β1
,

which is correct.

We are finally ready to prove that limj→∞ rj = β. For any fixed k ∈ Z+, by

(4.2.11) and (4.2.17), we have

rk−1 − β =
pk−1
qk−1

− β =
pk−1
qk−1

− βkpk−1 − pk−2
βkqk−1 − qk−2

.
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Forming a common denominator gives

rk−1 − β =
pk−1 (βkqk−1 − qk−2)− qk−1 (βkpk−1 − pk−2)

qk−1 (βkqk−1 − qk−2)

=
pk−2qk−1 − pk−1qk−2
qk−1 (βkqk−1 − qk−2)

,

or finally

rk−1 − β =
1

qk−1 (βkqk−1 − qk−2)
, (4.2.18)

with this last equality following from (4.2.14). Given the inequalities in (4.2.15), we

know that the number βkqk−1 − qk−2 in the denominator on the right side of (4.2.18)

is positive. Since qj is positive for every j ∈ Z≥0, we see that the number rk−1 − β in

(4.2.18) is also positive. By (4.2.15), we have

0 <
1

βkqk−1 − qk−2
≤ 1,

and the preceding comments combined with (4.2.18) allow us to deduce that

|rk−1 − β| = rk−1 − β ≤
1

qk−1
,

or

|rj − β| = rj − β ≤
1

qj
for j = 0, 1, 2, . . . . (4.2.19)

This shows that β < · · · < rj < · · · < r1 < r0, since we already know that the infinite

sequence of r’s is strictly decreasing. Combined with the limit limj→∞ qj = ∞ in

(4.2.7a), we conclude from (4.2.19) that limj→∞ rj = β. This completes the proof of

Theorem 4.2.1.

Given the notation introduced earlier in this section that rj = (n0, . . . , nj)

for j = 0, 1, 2, . . . , and the result just proven that limj→∞ rj = β, it makes sense to
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introduce one last piece of notation, declaring that

β = (n0, n1, n2, . . . ) . (4.2.20)

Given the behavior of the rational numbers r0, r1, r2, . . . with respect to the limit

value β, it is natural to call these rational numbers “ the convergents to β ”. A concrete

example illustrating the numerics of the convergence process in the employ of minus

continued fractions is provided at the end of Section 5.2.
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CHAPTER V

MINUS CONTINUED FRACTIONS

AND THE FERMAT-PELL 1 -EQUATION

5.1. A Modified Version of the English Method

This section is motivated by the presentation of the “English method”, due to

Brouncker and Wallis, found in the exercises to §1.9 of the book by Edwards [2]. Their

method is directly connected to the classical theory of continued fractions, and our

modification consists in revamping their algorithm by connecting it with the theory of

minus continued fractions instead.

In the following, let d ∈ Z+ denote a fixed positive integer that is not a

perfect square. We wish to find nontrivial integer pair solutions, with y > 0, to the

corresponding Fermat-Pell 1 -Equation

x2 − dy2 = 1 (5.1.1)

through the use of the English method. The connection of this algorithmic method to

Zagier’s reduction theory for indefinite binary quadratic forms as well as to the theory

of minus continued fractions is made in Section 5.2.

We initiate our algorithmic approach by first setting

p−2 = 0; q−2 = −1; k−2 = −d; p−1 = 1; q−1 = 0; k−1 = 1; r−1 = 0. (5.1.2)

By construction, we have

p2−2 − dq2−2 = k−2, (5.1.3a)

138



and

p2−1 − dq2−1 = k−1. (5.1.3)

As our first step, we set

r0 = n0 =
⌈√

d
⌉
, (5.1.4)

and we note that n0 ≥ 2. Also note that r0 satisfies the congruence

r−1 + r0 ≡ 0 (mod k−1)

automatically since k−1 = 1, and r0 is the smallest positive integer satisfying this

congruence such that
⌈√

d
⌉
≤ r0. We set C =

⌈√
d
⌉
from this point forward. Our

goal is to give a well-defined algorithm by which six infinite sequences of integers are

generated; these sequences are as follows:

k−2, k−1, k0, k1, k2, . . .

r−1, r0, r1, r2, . . .

n0, n1, n2, . . .

p−2, p−1, p0, p1, p2, . . .

q−2, q−1, q0, q1, q2, . . .

s−1, s0, s1, s2, . . . .

We set s−1 = −d, and note that s−1 = r2−1 − d holds by construction. In general,

we set sj = r2j − d for j = −1, 0, 1, 2, . . . , and we note that s−1, s0, s1, s2, . . . are all

nonzero since d > 0 is not a perfect square. In this section, we focus on the algorithm

that allows us to generate these six infinite sequences in a uniquely determined way.

In the next section, we show in detail how these sequences of integers are related to
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the minus continued fraction expansion of
√
d, as well as how they provide nontrivial

integer pair solutions to the Fermat-Pell 1 -Equation x2 − dy2 = 1.

For future reference, we note that

r−1 + r0
k−1

= r0 = n0, (5.1.5)

and also that

n0 =

⌈
r−1 +

√
d

k−1

⌉
=
⌈√

d
⌉
. (5.1.6)

Both (5.1.5) and (5.1.6) lay down a pattern that is consistent throughout the algorithm.

We may now set

p0 = n0p−1 − p−2 = n0 · 1− 0 = n0 (5.1.7)

and

q0 = n0q−1 − q−2 = n0 · 0− (−1) = 1, (5.1.8)

and these relations again form part of a pattern that is consistent throughout. By

construction, we have s−1 = k−2 · k−1. The next step is to compute k0, which is

determined by the following relationship:

r20 − d = s0 = k−1 · k0 = k0, (5.1.9)

with the last equality holding since k−1 = 1 by definition. Since r20 > d by (5.1.4), we

see that both s0 and k0 are positive integers. We also note that

k0 = r20 − d = p20 − d · q20 (5.1.10)

by (5.1.5), (5.1.7), and (5.1.8) above. Equations (5.1.3a), (5.1.3), and (5.1.10) are the
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first three in an infinite sequence of equations:

p2j − dq2j = kj holding for j = −2,−1, 0, 1, 2, . . . , (5.1.11)

that we wish to establish.

Our next step is to compute r1. Before we move on to this next step, we

first make some general comments about our algorithm. Recall that r0 = C ∈ Z≥2,

and in general we will always choose each rj for j = 0, 1, 2, . . . in our algorithm so

that rj ≥ C for each j = 0, 1, 2, . . . , which implies that rj ∈ Z≥2 for all j ≥ 0. This

implies in turn that r2j > d for all j ≥ 0, and so r2j − d = sj > 0 for all j ≥ 0, so that

s0, s1, s2, . . . are all positive integers. In (5.1.9), we computed k0 by using the formula

s0 = k−1 · k0, and in general we will prove that kj−1 | sj for j = 0, 1, 2, . . . , and based

on this, we will define

kj =
sj
kj−1

for j = 0, 1, 2, . . . . (5.1.12)

Since each sj is a positive integer and k−1 = 1, this recursive process will guarantee

that k0, k1, k2, . . . are all positive integers as well. By definition, we have

p−2q−1 − p−1q−2 = 0 · 0− 1(−1) = 1,

and from (5.1.7) and (5.1.8), we have

p−1q0 − p0q−1 = 1 · 1− n0 · 0 = 1.

We will show in general that

pj−1qj − pjqj−1 = 1 for j = −1, 0, 1, 2, . . . . (5.1.13)

This implies that gcd (pj, qj) = 1 for j = −1, 0, 1, 2, . . . by Corollary 1.1.6. Equation
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(5.1.6) gives us the formula for n0, and once we have n1, n2, n3, . . . in hand, we will

find that

pj = njpj−1 − pj−2 for j = 0, 1, 2, . . . (5.1.14)

and

qj = njqj−1 − qj−2 for j = 0, 1, 2, . . . . (5.1.15)

We have already seen the use of these recursive formulas in (5.1.7) and (5.1.8) for

j = 0. Note that (5.1.14) and (5.1.15) allow us to compute pj and qj in terms of the

previous two values for p and q, respectively. However, it is of interest to note that pj

and qj may be computed in terms of pj−1 and qj−1 alone. The formulas that apply in

this context are

pj =
pj−1rj + dqj−1

kj−1
for j = −1, 0, 1, 2, . . . (5.1.16)

and

qj =
qj−1rj + pj−1

kj−1
for j = −1, 0, 1, 2, . . . . (5.1.17)

We first check that these two formulas are consistent with the initialization data set

up in (5.1.2). When j = −1, the right side of (5.1.16) reads as follows:

p−2r−1 + dq−2
k−2

=
0 · 0 + d · (−1)

−d
= 1,

in agreement with the value p−1 = 1. When j = −1, the right side of (5.1.17) reads

as follows:
q−2r−1 + p−2

k−2
=

(−1) · 0 + 0

−d
= 0,

in agreement with the value q−1 = 0. We now check (5.1.16) gives the same answer as

in (5.1.7) when j = 0. When j = 0, by use of (5.1.4), the right side of (5.1.16) reads
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as:
p−1r0 + dq−1

k−1
=

1 · n0 + d · 0
1

= n0,

which agrees with the value p0 = n0 in (5.1.7). We also check (5.1.17) gives the same

answer as in (5.1.8) when j = 0. When j = 0, by use of (5.1.4), the right side of

(5.1.17) reads as:
q−1r0 + p−1

k−1
=

0 · n0 + 1

1
= 1,

which agrees with the value q0 = 1 in (5.1.8). In the implementation of our algorithm,

we use (5.1.16) and (5.1.17) instead of (5.1.14) and (5.1.15) to generate the integers

p0, p1, p2, . . . and q0, q1, q2, . . . .

There are two (equivalent) ways to compute rj . The first method requires only

rj−1 and kj−1, whereas the second method requires pj−1, qj−1, and kj−1. Even though

the second method appears to be more complicated, it is the method used in the

implementation of our algorithm. We now demonstrate the first method by showing

how to use it to compute r1. The integer r1 is uniquely determined as the smallest

positive integer satisfying the congruence r0 + r1 ≡ 0 (mod k0) such that C ≤ r1.

This congruence is satisfied if there exists an integer n such that r0 + r1 = nk0, or

r1 = −r0 + nk0. Indeed, our task is to find the smallest positive integer n such that
√
d < C ≤ −r0 + nk0 = r1. Our claim is that this uniquely defined integer n is given

by the formula

n =

⌈
r0 +

√
d

k0

⌉
. (5.1.18)

To prove this claim, we recall that the integer n determined by (5.1.18) is the unique

integer n such that

n− 1 <
r0 +

√
d

k0
< n, (5.1.19)

where, since the quantity (r0 +
√
d)/k0 is an irrational number, both inequalities are
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strict. If we multiply the inequalities in (5.1.19) through by the positive integer k0,

we have (n− 1)k0 < r0 +
√
d < nk0, or −r0 + (n− 1)k0 <

√
d < −r0 +nk0. These last

inequalities show indeed that the integer n determined by (5.1.18) is the least positive

integer such that the expression −r0 + nk0 is greater than
√
d. If we set n1 = n here,

then (5.1.18) reads as

n1 =

⌈
r0 +

√
d

k0

⌉
, (5.1.20)

and we immediately see the similarity of this to (5.1.6). We also see from above that

n1 =
r0 + r1
k0

, (5.1.21)

which is the next step in the pattern that begins with (5.1.5).

We now demonstrate the second method mentioned above by showing how

to use it to compute r1. The integer r1 is the uniquely determined smallest positive

integer satisfying the congruence q0r1 + p0 ≡ 0 (mod k0) such that C ≤ r1. Since

q0 = 1 and p0 = r0, we see that this congruence simply reads as r0 + r1 ≡ 0 (mod k0),

so that the integer r1 obtained here is exactly the same one obtained through the use

of the first method discussed just above.

Using the first method, we can actually compute n1 right away from the already

known values of r0 and k0 by use of (5.1.20), and then we could set r1 = −r0 + k0n1.

Using the second method, however, we first compute r1, and then we use (5.1.21) to

obtain n1 ∈ Z+.

Using the second method, the positive integer r1 has been chosen in such a way

that the congruence q0r1 + p0 ≡ 0 (mod k0) is satisfied. This means that the number

(q0r1 + p0)/k0 is actually an integer, and it is a positive integer since q0, r1, p0, and k0
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are all positive integers. In light of this, we set

q1 =
q0r1 + p0

k0
, (5.1.22)

and note that q1 ∈ Z+. We claim that the positive integer p0r1 + dq0 is also divisible

by k0. To see this, we note that

q0 (p0r1 + dq0) = q0p0r1 + dq20 = q0p0r1 + p20 − k0

by (5.1.10), or

q0 (p0r1 + dq0) = p0 (q0r1 + p0)− k0. (5.1.23)

Since we saw above that k0 | (q0r1 + p0), we see from (5.1.23) that k0 | q0 (p0r1 + dq0).

Since gcd (k0, q0) = 1, which is easy to see since q0 = 1, we may conclude from Theorem

1.1.8 that k0 | (p0r1 + dq0), proving the claim above. Based on this, we set

p1 =
p0r1 + dq0

k0
, (5.1.24)

and note that p1 ∈ Z+. We see that (5.1.24) is just (5.1.16) with j = 1, and that

(5.1.22) is just (5.1.17) with j = 1. We now wish to verify (5.1.13) for j = 1, noting

that we have already verified (5.1.13) with j = −1 and j = 0. We have

p0q1 − q0p1 =
p0 (q0r1 + p0)

k0
− q0 (p0r1 + dq0)

k0
=
p20 − dq20

k0
=
k0
k0
,

with the first equality holding by (5.1.22) and (5.1.24), and the last equality holding

by (5.1.10). Thus, we have

p0q1 − q0p1 = 1, (5.1.25)

which confirms (5.1.13) for j = 1. This implies in turn that gcd (p1, q1) = 1 by

Corollary 1.1.6.
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By definition, we have s1 = r21 − d, and s1 ∈ Z+ since C ≤ r1. We now wish to

confirm that s1 is divisible by k0. For this, we require the following algebraic identity:

(
p2 − dq2

) (
r2 − d · 12

)
= (pr + dq · 1)2 − d (p · 1 + qr)2 , (5.1.26)

which is easily verified by expanding out both sides and comparing. Any identity of

this shape is known as a “composition formula.” Using (5.1.10) and the definition of

s1 in conjunction with (5.1.26) gives:

k0 · s1 =
(
p20 − dq20

) (
r21 − d · 12

)
= (p0r1 + dq0 · 1)2 − d (p0 · 1 + q0 · r1)2 . (5.1.27)

Recall that both k0 and s1 are positive integers. We also have k0 | (p0r1 + dq0), as well

as k0 | (q0r1 + p0). Thus, by (5.1.27) there exists a positive integer u ∈ Z+ such that

k0s1 = k20u,

which implies that k0u = s1, and so k0 | s1, confirming that s1 is divisible by k0. We

set

k1 =
s1
k0
, (5.1.28)

and note that k1 ∈ Z+. We note that (5.1.28) is consistent with (5.1.12) when j = 1.

We have s1 = k0k1 from (5.1.28), and plugging into (5.1.27) gives

k20k1 = (p0r1 + dq0)
2 − d (q0r1 + p0)

2 ,

or

k1 =

[
p0r1 + dq0

k0

]2
− d

[
q0r1 + p0

k0

]2
, (5.1.29)

which gives

p21 − dq21 = k1 (5.1.30)
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by (5.1.22) and (5.1.24). This last equation is consistent with (5.1.11) when j = 1.

Another general pattern that we wish to establish is the following:

gcd (kj, qj) = 1 for j = −2,−1, 0, 1, 2, . . . . (5.1.31)

This clearly holds for j = −2 since k−2 = −d and q−2 = −1 and for j = −1 as well

since k−1 = 1 and q−1 = 0. It also holds for j = 0 since q0 = 1. We now verify it for

j = 1. We already know from (5.1.25) that

gcd (p1, q1) = 1, (5.1.32)

and from (5.1.30) we have p21 = k1 + dq21. If we had gcd (k1, q1) > 1, there would be a

prime number t > 1 such that t | k1 and t | q1. But then, by (5.1.30), we would have

t | p1 as well, which contradicts (5.1.32), so we must have

gcd (k1, q1) = 1. (5.1.33)

The general case of this for j ∈ Z≥2 will be proven later.

We also wish to establish the following:

kj | (qjrj − pj) for j = −1, 0, 1, 2, . . . . (5.1.34)

We already know that k−1, k0, and k1 are all positive integers, and as a complement

to (5.1.34), we will later show that

kj ∈ Z+ for j = −1, 0, 1, 2, . . . . (5.1.35)

We note that (5.1.34) clearly holds when j = −1 since k−1 = 1, and when j = 0 this

is equally clear since q0r0 − p0 = 1 · r0 − r0 = 0 by (5.1.5), (5.1.7), and (5.1.8). For
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j = 1, we have, by (5.1.22), (5.1.24), and (5.1.28),

q1r1 − p1 =
q0r

2
1 + p0r1
k0

− p0r1 + dq0
k0

=
q0 (r

2
1 − d)
k0

=
q0s1
k0

= q0k1

and so k1 | (q1r1 − p1).

Yet another general pattern we wish to establish is the following:

q−1j · pj ≡ rj (mod kj) for j = 0, 1, 2, . . . . (5.1.36)

Once we know that kj ∈ Z+ for j = 0, 1, 2, . . . (see (5.1.35)), then working modulo kj

for any fixed j ∈ Z≥0 makes sense. We will also later show that

qj ∈ Z+ for j = 0, 1, 2, . . . (5.1.37)

and

pj ∈ Z+ for j = −1, 0, 1, 2, . . . . (5.1.38)

Once we know that gcd (kj, qj) = 1 for j = 0, 1, 2, . . . (see (5.1.31)), then with (5.1.37)

we see that qj is invertible modulo kj, and (5.1.36) makes sense. We easily verify

(5.1.36) when j = 0 since q0 = 1 and p0 = n0 = r0. For j = 1, we recall that

k1 | (q1r1 − p1), and so

p1 ≡ q1r1 (mod k1). (5.1.39)

Since q1 ∈ Z+ by (5.1.22) and gcd (k1, q1) = 1 by (5.1.33), the integer q1 is invertible

modulo k1, and if we multiply both sides of (5.1.39) by the multiplicative inverse of q1

modulo k1, we obtain q−11 · p1 ≡ r1 (mod k1), which confirms (5.1.36) for j = 1.

Going back to (5.1.34), we will later establish the following identity which

actually implies (5.1.34) in general, so it really just suffices to prove the following
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identity:

qjrj − pj = qj−1kj for j = −1, 0, 1, 2, . . . . (5.1.40)

For j = −1, we have q−1r−1 − p−1 = 0 · 0− 1 = −1 = (−1) · 1 = q−2 · k−1. For j = 0,

by (5.1.5), (5.1.7), and (5.1.8), we have q0r0 − p0 = 1 · r0 − r0 = 0 = 0 · k0 = q−1 · k0,

which may be rewritten for later use as

q0r0 − q−1k0 = p0. (5.1.40a)

We already proved just above (5.1.36) that (5.1.40) holds when j = 1.

We will also later establish the following identity, which is quite similar to

(5.1.40):

pjrj − dqj = pj−1kj for j = −1, 0, 1, 2, . . . . (5.1.41)

For j = −1, we have p−1r−1 − dq−1 = 1 · 0− d · 0 = 0 = 0 · 1 = p−2k−1. For j = 0, by

(5.1.5), (5.1.7), (5.1.8), and (5.1.10), we have p0r0−dq0 = r20−d = 1 ·(r20 − d) = p−1k0,

which may be rewritten for later use as

p0r0 − p−1k0 = dq0. (5.1.42)

For j = 1, by (5.1.22), (5.1.24), and (5.1.28), we have

p1r1 − dq1 =
p0r

2
1 + dq0r1
k0

− dq0r1 + dp0
k0

=
p0 (r

2
1 − d)
k0

=
p0s1
k0

= p0k1.

There is yet one more divisibility statement that we would like to establish,

namely:

kj−1 | (rj−1 + rj) for j = 0, 1, 2, . . . , (5.1.43)
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and based on this, we define

nj =
rj−1 + rj
kj−1

for j = 0, 1, 2, . . . . (5.1.44)

Note that (5.1.43) is automatic when j = 0 since k−1 = 1. We previously saw that our

definitions led to n0 = (r−1 + r0) /k−1 in (5.1.5), which is identical to (5.1.44) when

j = 0. Using either the first or the second method mentioned earlier, we chose r1 to be

the smallest positive integer satisfying the congruence q0r1+p0 = r1+r0 ≡ 0 (mod k0)

such that C ≤ r1. As an immediate consequence, we have k0 | (r0 + r1), which is

(5.1.43) with j = 1. In this case, we set (see (5.1.21)) n1 = (r0 + r1) /k0, which is

identical to (5.1.44) when j = 1. We will later establish (5.1.43) in general, and based

on this and (5.1.35), we use (5.1.44) as our definition of nj for j = 0, 1, 2, . . . .

We will later prove in general that we have

nj =

⌈
rj−1 +

√
d

kj−1

⌉
for j = 0, 1, 2, . . . . (5.1.45)

By (5.1.6) and (5.1.20), we already know that (5.1.45) holds when j = 0 and j = 1,

respectively.

We now finally wish to establish (5.1.14) and (5.1.15) for j = 1. To confirm

(5.1.14) for j = 1, we note that, by (5.1.21), (5.1.42), and (5.1.24), in that order, we

have

n1p0 − p−1 =
p0 (r0 + r1)

k0
− p−1k0

k0
=
p0r1 + (p0r0 − p−1k0)

k0

=
p0r1 + dq0

k0
= p1.

To confirm (5.1.15) for j = 1, we note that, by (5.1.21), (5.1.40a), and (5.1.22), in
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that order, we have

n1q0 − q−1 =
q0 (r0 + r1)

k0
− q−1k0

k0
=
q0r1 + (q0r0 − q−1k0)

k0

=
q0r1 + p0

k0
= q1.

Let us now take stock of what we have already proven, and what we still need

to establish. We summarize our situation with the following sequence of statements:

(A) kj ∈ Z+ for j = −1, 0, 1, 2, . . . . This is already known for j = −1, 0, 1.

(B)
⌈√

d
⌉
= C ≤ rj for j = 0, 1, 2, . . . . These inequalities hold by the very construc-

tion of our algorithm. This is already established for j = 0, 1.

(C) sj := r2j − d ∈ Z+ for j = 0, 1, 2, . . . . This positivity statement is an immediate

corollary of (B).

(D) qj ∈ Z+ for j = 0, 1, 2, . . . . This is already known for j = 0, 1.

(E) pj ∈ Z+ for j = −1, 0, 1, 2, . . . . This is already known for j = −1, 0, 1.

(F) nj ∈ Z+ for j = 0, 1, 2, . . . . This is already known for j = 0, 1.

(G) p2j − dq2j = kj for j = −2,−1, 0, 1, 2, . . . . This is already known for

j = −2,−1, 0, 1.

(H) kj−1 | sj for j = −1, 0, 1, 2, . . . . This is already known for j = −1, 0, 1.

(I) Based upon (H), we define kj := sj/kj−1 for j = −1, 0, 1, 2, . . . . We then

automatically have sj = kj−1 · kj for j = −1, 0, 1, 2, . . . .

(J) pj−1qj−pjqj−1 = 1 for j = −1, 0, 1, 2, . . . . This is already known for j = −1, 0, 1.
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(K) gcd (pj, qj) = 1 for j = −1, 0, 1, 2, . . . . This is an immediate corollary of (J) by

Corollary 1.1.6.

(L) kj−1 | (rj−1 + rj) for j = 0, 1, 2, . . . . This is already known for j = 0, 1.

(M) Based upon (L), we define nj := (rj−1 + rj) /kj−1 for j = 0, 1, 2, . . . .

(N) nj =
⌈
rj−1+

√
d

kj−1

⌉
for j = 0, 1, 2, . . . . This is already known for j = 0, 1.

(O) pj = njpj−1 − pj−2 for j = 0, 1, 2, . . . . This is already known for j = 0, 1.

(P) qj = njqj−1 − qj−2 for j = 0, 1, 2, . . . . This is already known for j = 0, 1.

(Q) kj−1 | (pj−1rj + dqj−1) for j = −1, 0, 1, 2, . . . . This is already known for

j = −1, 0, 1.

(R) Based upon (Q), we define pj = (pj−1rj + dqj−1) /kj−1 for j = −1, 0, 1, 2, . . . .

(S) kj−1 | (qj−1rj + pj−1) for j = −1, 0, 1, 2, . . . . This is already known for

j = −1, 0, 1.

(T) Based upon (S), we define qj = (qj−1rj + pj−1) /kj−1 for j = −1, 0, 1, 2, . . . .

(U) gcd (kj, qj) = 1 for j = −2,−1, 0, 1, 2, . . . . This is already known for

j = −2,−1, 0, 1.

(V) The crucial step in the algorithm is the following: Given a fixed j ∈ Z≥0

so that kj, qj, and pj are all positive integers (by (A), (D), and (E)), and

gcd (kj, qj) = 1 (by (U)), we choose rj+1 to be the smallest positive integer

satisfying the congruence

rj+1 + q−1j · pj ≡ 0 (mod kj) (5.1.46)
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such that C ≤ rj+1.

(W) qjrj − pj = qj−1kj for j = −1, 0, 1, 2, . . . . This is already known for j = −1, 0, 1.

(X) pjrj−dqj = pj−1kj for j = −1, 0, 1, 2, . . . . This is already known for j = −1, 0, 1.

(Y) q−1j · pj ≡ rj (mod kj) for j = 0, 1, 2, . . . . This is already known for j = 0, 1.

Based upon what we already have in place, we now wish to obtain rj, nj, qj, pj, sj ,

and kj for j = 2, and to establish all of the statements (A) – (Y) above with respect

to this next level in the algorithm. Each new level in the algorithm is obtained from

the previous ones in exactly the same way, and so if we go through the details for this

next j = 2 level, then the same arguments take us forward to j = 3, 4, 5, . . . .

We first choose r2 to be the unique smallest positive integer satisfying the

congruence

r2 + q−11 · p1 ≡ 0 (mod k1) (5.1.47)

such that C ≤ r2. By construction, (B) holds for j = 2. We already know by (Y) for

j = 1 that q−11 · p1 ≡ r1 (mod k1), and thus in (5.1.47) we have chosen r2 to be the

smallest positive integer satisfying the congruence

r1 + r2 ≡ 0 (mod k1) (5.1.48)

such that C ≤ r2. The congruence in (5.1.48) implies in turn that k1 | (r1 + r2) (thus

(L) is satisfied for j = 2), and we set

n2 =
r1 + r2
k1

. (5.1.49)

Note that n2 ∈ Z+ since k1, r1, and r2 are all positive integers, and so (F) is satisfied

for j = 2. By the same argument used in proving the claim in connection with (5.1.18),
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we see that

n2 =

⌈
r1 +

√
d

k1

⌉
,

and so (N) holds for j = 2. From (5.1.47), we have

q1r2 + p1 ≡ 0 (mod k1), (5.1.50)

and thus (S) is satisfied for j = 2. We set

q2 =
q1r2 + p1

k1
(5.1.51)

and note that q2 ∈ Z+ since k1, q1, p1, and r2 are all positive integers, and thus (D) is

satisfied for j = 2. To confirm that k1 | (p1r2 + dq1) (see (Q)), we use (G) for j = 1,

to see that

q1 (p1r2 + dq1) = q1p1r2 + dq21 = q1p1r2 + p21 − k1,

or

q1 (p1r2 + dq1) = p1 (q1r2 + p1)− k1.

By (5.1.50), we see that k1 | q1 (p1r2 + dq1), and since gcd (k1, q1) = 1 (by (U) with

j = 1), we conclude by Theorem 1.1.8 that

k1 | (p1r2 + dq1) , (5.1.52)

and thus (Q) is satisfied for j = 2. We now set

p2 =
p1r2 + dq1

k1
, (5.1.53)

and note that p2 ∈ Z+ since k1, q1, p1, d, and r2 are all positive integers. Thus, (E) is
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satisfied for j = 2. We now confirm (J) for j = 2. By (5.1.51) and (5.1.53), we have

p1q2 − q1p2 =
p1 (q1r2 + p1)

k1
− q1 (p1r2 + dq1)

k1

=
p21 − dq21

k1
=
k1
k1
,

with the last equality holding by (G) for j = 1, or

p1q2 − p2q1 = 1. (5.1.54)

This implies (K) as well for j = 2, namely

gcd (p2, q2) = 1. (5.1.55)

By definition, s2 = r22 − d, and s2 ∈ Z+ since C ≤ r2. Using this definition, (G) for

j = 1, and the algebraic identity in (5.1.26), we obtain

k1 · s2 =
(
p21 − dq21

) (
r22 − d · 12

)
= (p1r2 + dq1 · 1)2 − d (p1 · 1 + q1r2)

2 . (5.1.56)

Recall that k1 and s2 are both positive integers, that k1 | (p1r2 + dq1) by (5.1.52),

and that k1 | (q1r2 + p1) by (5.1.50), so that by (5.1.56) there exists a positive integer

u ∈ Z+ such that k1s2 = k21u. This implies that s2 = k1u, and so k1 | s2, which

confirms (H) for j = 2. We set k2 = s2/k1, which implies that

s2 = k1k2. (5.1.57)

We note that k2 = u ∈ Z+, and so (A) is satisfied for j = 2. Plugging (5.1.57) into

the left hand side of (5.1.56) gives k21k2 = (p1r2 + dq1)
2 − d (q1r2 + p1)

2, or

k2 =

[
p1r2 + dq1

k1

]2
− d

[
q1r2 + p1

k1

]2
, (5.1.58)
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which gives

p22 − dq22 = k2 (5.1.59)

by (5.1.51) and (5.1.53). This confirms (G) for j = 2.

We now wish to verify (U) for j = 2. By (5.1.55), we have gcd (p2, q2) = 1,

and by (5.1.59), we have p22 = k2 + dq22. If we had gcd (k2, q2) > 1 (we know already

that k2 and q2 are positive integers), there would be a prime number t > 1 such that

t | k2 and t | q2. But then, by (5.1.59), we would have t | p2 as well, which contradicts

(5.1.55), so we must have

gcd (k2, q2) = 1. (5.1.60)

This confirms (U) for j = 2. We next wish to verify (W) for j = 2. By (5.1.51),

(5.1.53), and (5.1.57), we have

q2r2 − p2 =
q1r

2
2 + p1r2
k1

− p1r2 + dq1
k1

=
q1 (r

2
2 − d)
k1

=
q1s2
k1

= q1k2. (5.1.61)

This confirms (W) for j = 2. We also have

p2r2 − dq2 =
p1r

2
2 + dq1r2
k1

− dq1r2 + dp1
k1

=
p1 (r

2
2 − d)
k1

=
p1s2
k1

= p1k2, (5.1.62)

which confirms (X) for j = 2. To confirm (Y) for j = 2, we note from (5.1.61) that

k2 | (q2r2 − p2), and so

p2 ≡ q2r2 (mod k2). (5.1.63)

Since q2 ∈ Z+, and gcd (k2, q2) = 1 by (5.1.60), the integer q2 is invertible modulo k2,

and if we multiply both sides of (5.1.63) by the multiplicative inverse of q2 modulo k2,

then q−12 · p2 ≡ r2 (mod k2), which confirms (Y) for j = 2. To confirm (O) for j = 2,
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we note that by (5.1.49), and by (X) for j = 1, that

n2p1 − p0 =
p1 (r1 + r2)

k1
− p0k1

k1
=
p1r2 + (p1r1 − p0k1)

k1
=
p1r2 + dq1

k1
,

and so, by (5.1.53), we have p2 = n2p1 − p0, which confirms (O) for j = 2. To confirm

(P) for j = 2, we note that by (5.1.49), and by (W) for j = 1, that

n2q1 − q0 =
q1 (r1 + r2)

k1
− q0k1

k1
=
q1r2 + (q1r1 − q0k1)

k1
=
q1r2 + p1

k1
,

and so, by (5.1.51), we have q2 = n2q1 − q0, which confirms (P) for j = 2.

5.2. Finding Solutions to the Fermat-Pell 1 -Equation

In the following, let d ∈ Z+ denote a fixed positive integer that is not a perfect

square. In this section, we connect the algorithm described in Section 5.1 to Zagier’s

reduction theory for indefinite binary quadratic forms, to the Fermat-Pell 1 -Equation

x2 − dy2 = 1, (5.2.1)

and to the minus continued fraction expansion of
√
d as well. We consistently use the

notations and numbering laid down in Section 5.1, and a capital letter reference such

as (A) refers to statement (A) in Section 5.1.

First, set f0 = [k−1, 2r−1, k−2] = [1, 0,−d ], noting that f0 is a form of dis-

criminant D = 4d ∈ Z+. We claim that in this case, D is a discriminant satisfying

Assumption 2.2.1. Clearly, D ≡ 0 (mod 4), and we just need to show that D is not a

perfect square. Since d > 1 is not a perfect square, we know by Theorem 1.1.13 that

there exists a prime p such that the exponent ep(d) appearing in the prime factorization

of d is odd. If p is an odd prime, then ep(D) = ep(d) is still odd, and D is not a perfect

square, again by Theorem 1.1.13. If p = 2, then e2(D) = e2(d) + 2 is still odd, and

again D is not a perfect square by Theorem 1.1.13, proving our claim. Furthermore,
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note that f0 is the principal form of discriminant D by Definition 2.2.2. Our goal is

to apply the Zagier reduction algorithm to f0 and make a careful comparison to the

algorithm presented in Section 5.1. After the proper correspondences are made, an

exact agreement is seen to hold (see Theorem 5.2.1 below).

In terms of the notation introduced in Section 5.1, we define the following

infinite sequence of forms:

fj = [kj−1, 2rj−1, kj−2] for j = 0, 1, 2, . . . (5.2.2)

(note that when j = 0 we obtain the same f0 as in the paragraph above). Recall that

sj−1 = kj−1kj−2 for j = 0, 1, 2, . . . by (I), and thus

4r2j−1 − 4kj−1kj−2 = 4r2j−1 − 4sj−1 (5.2.3)

for j = 0, 1, 2, . . . . Remembering that sj−1 = r2j−1 − d, or that r2j−1 − sj−1 = d for

j = 0, 1, 2, . . . , the expression in (5.2.3) is seen to be equal to D = 4d for j = 0, 1, 2, . . . .

This shows that each form fj defined in the sequence in (5.2.2) has discriminant equal

to D.

Theorem 5.2.1. In terms of the sequence n0, n1, n2, . . . of integers defined in Section

5.1, the diagram

f0
n0−→ f1

n1−→ f2
n2−→ · · ·

coincides exactly with what is obtained when we apply the Zagier reduction algorithm

to the starting form f0.

Proof. When we apply the reduction algorithm to the form f0 = [1, 0,−d ], we first

compute

n0 =

⌈
b+
√
D

2a

⌉
=

⌈
0 +
√
4d

2 · 1

⌉
=
⌈√

d
⌉
,
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and we see that this matches the value of n0 in (5.1.4). Given a = 1, b = 0, and

c = −d, we see from (3.1.4) that a ′ = n2
0 − d = k0, with the second equality holding

by (5.1.5) and (5.1.9). By (3.1.5), we have b ′ = 2n0 = 2r0, with (5.1.5) used again in

the second equality. By (3.1.6), we have c ′ = 1 = k−1, where (5.1.2) is used in the

second equality. Thus, the first step of the reduction algorithm applied to f0 gives us

f0 = [1, 0,−d ] n0−→ [k0, 2r0, k−1],

and the second form is equal to f1, as defined in (5.2.2). More generally, let j ≥ 1 be

a given integer and consider the form fj = [kj−1, 2rj−1, kj−2] = [a, b, c]. We have

nj =

⌈
b+
√
D

2a

⌉
=

⌈
2rj−1 +

√
4d

2kj−1

⌉
=

⌈
rj−1 +

√
d

kj−1

⌉
,

in concordance with (N). Referring back to (3.1.4), (3.1.5), and (3.1.6), if we can

confirm that each of the second equalities below hold:

a ′ = an2
j − bnj + c = kj, (5.2.4)

b ′ = 2anj − b = 2rj, and (5.2.5)

c ′ = a = kj−1, (5.2.6)

then the reduction algorithm is shown to take fj to fj+1, completing the proof of this

theorem by induction. Clearly, (5.2.6) holds. By (M), we have kj−1nj = rj−1 + rj, or

rj = kj−1nj − rj−1, so that 2rj = 2kj−1nj − 2rj−1, which confirms (5.2.5). To prove

that (5.2.4) holds, first note that by (C) we have r2j − sj = d = r2j−1 − sj−1, and so

sj = r2j − r2j−1 + sj−1. (5.2.7)
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By (I), we have sj = kj−1kj and sj−1 = kj−2kj−1, so that (5.2.7) may be rewritten as

kj =
(r2j − r2j−1)

kj−1
+ kj−2,

or

kj =
r2j−1 + 2rj−1rj + r2j

kj−1
+
−2r2j−1 − 2rj−1rj

kj−1
+ kj−2

= kj−1

[
rj−1 + rj
kj−1

]2
− (2rj−1)

[
rj−1 + rj
kj−1

]
+ kj−2.

By (M), we conclude that kj = kj−1n
2
j − 2rj−1nj + kj−2, which finally confirms (5.2.4)

as well.

Note that f0, as defined above, is equal to x2 − dy2, which is exactly the form

on the left hand side of (5.2.1). If we set x = p−1 = 1 and y = q−1 = 0, we obtain one

of the two trivial integer pair solutions to (5.2.1). We now wish to show that there

exists an integer j ≥ 0 such that x = pj and y = qj provides yet another integer pair

solution to (5.2.1). By (D) and (E), we know that pj and qj are both positive integers

for each index j ≥ 0, and thus if (pj, qj) is an integer pair solution to (5.2.1) for some

index j ≥ 0, then it is necessarily a nontrivial solution pair to (5.2.1). Recall from (G)

that p2j − dq2j = kj for all integers j ≥ 0. The left hand side of this relation is the form

x2 − dy2 with x = pj and y = qj, and thus if we can prove that at least one member

ki of the infinite sequence of positive integers k0, k1, k2, . . . is equal to 1, then we have

in hand a nontrivial solution pair (pi, qi) to the Fermat-Pell 1 -Equation. It is exactly

the crucial link established in Theorem 5.2.1 that allows us to prove that ki = 1 for

some i ∈ Z≥0. To see the connection, we quickly review what happens when we apply

the Zagier reduction algorithm to the principal form f0 = [1, 0,−d ] of discriminant

D = 4d ∈ Z+. As we confirmed earlier (see Table 3.1.2 and the discussion immediately
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above this Table), the reduction algorithm takes the principal form f0 to a reduced

form f1 in the principal class in exactly one step. With reference to Theorem 5.2.1,

this means that by Theorem 3.1.4, f1, f2, f3, . . . are all reduced forms, making up the

principal cycle of discriminant D. From (5.2.2), we have

f1 = [k0, 2r0, 1], (5.2.8)

and we now know that f1 is a reduced form of discriminant D = 4d ∈ Z+. If k0 = 1,

then p20 − dq20 = r20 − d = 1 by (5.1.10), and we have right off the bat a nontrivial

solution pair (p0, q0) = (r0, 1) to (5.2.1). Note that in this case, d is one less than a

perfect square:

r20 − 1 = d, if k0 = 1. (5.2.9)

Since f2 = [k1, 2r1, k0], f3 = [k2, 2r2, k1], . . . , proving that ki = 1 for some i ∈ Z≥0 is

tantamount to proving that one of the forms in the principal cycle of discriminant D

has an a–coefficient equal to 1. Therefore, once Theorem 5.2.3 below is established, a

straightforward algorithm to compute a nontrivial solution pair to (5.2.1) in a finite

number of steps is readily available since the principal cycle of discriminant D contains

a finite number of forms, even if the number of such forms can be surprisingly large

for some discriminants! In other words, the following result is an immediate corollary

to Theorem 5.2.3.

Corollary 5.2.2. If d ∈ Z+ is a fixed positive integer that is not a perfect square,

then the Fermat-Pell 1 -Equation (5.2.1) possesses an integer pair solution (p, q) ∈ Z2

with q ∈ Z+.

Theorem 5.2.3. If d ∈ Z+ is a fixed positive integer that is not a perfect square, then

the principal cycle of discriminant D = 4d contains a form whose a–coefficient is equal
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to one.

Proof. We noted above that f1 = [k0, 2r0, 1] is a reduced form lying in the principle

cycle of discriminant D. We claim that the form f ∗ = [1, 2r0, k0] is also a reduced

form lying in the principle cycle of discriminant D. Note that our proof is complete

once this claim is confirmed. Since f1 = [a, b, c] is a reduced form of discriminant D,

it is immediate by Definition 3.1.1 that f ∗ = [c, b, a] is a reduced form of discriminant

D as well. We just need to show that f ∗ lies in the principal cycle of discriminant D.

By Theorem 3.1.11, it suffices to prove that f ∗ lies in the same equivalence class as f1.

To show that f ∗ ∼ f1, we apply the reduction algorithm to f ∗. We first obtain

n∗ =

⌈
2r0 +

√
4d

2 · 1

⌉
=
⌈
r0 +

√
d
⌉
= 2r0, (5.2.10)

with the last equality holding since r0 =
⌈√

d
⌉
. If we represent this first step of the

reduction algorithm by

f ∗
n∗−→ [a ′, b ′, c ′], (5.2.11)

then

a ′ = (n∗)2 − 2r0n
∗ + k0 (5.2.12)

b ′ = 2n∗ − 2r0 (5.2.13)

c ′ = 1 (5.2.14)

by (3.1.4), (3.1.5), and (3.1.6), respectively. From (5.2.10), we see that the right hand

side of (5.2.12) is equal to (2r0)
2− 2r0(2r0) + k0 = k0, which matches the a–coefficient

of f1. Similarly, the right hand side of (5.2.13) is equal to 2(2r0)− 2r0 = 2r0, which

matches the b–coefficient of f1. Finally, the right hand side of (5.2.14) is equal to the
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c–coefficient of f1, and therefore (5.2.11) may be replaced by

f ∗
n∗−→ f1, (5.2.15)

confirming that f ∗ ∼ f1, and completing the proof of Theorem 5.2.3.

In Example 5.2.4 below, we illustrate the algorithm for finding a nontrivial

solution pair to (5.2.1) arising naturally from the statement of Theorem 5.2.3.

Example 5.2.4. Assume that d = 5, and so f0 = [1, 0,−5]. According to Theorem

5.2.1, we obtain the sequence of integers n0, n1, n2, . . . defined in Section 5.1 by

applying the Zagier reduction algorithm to the starting form f0. We proceed until we

obtain a form fm, with m ∈ Z+, whose a–coefficient is equal to 1. A straightforward

computation yields the following:

f0 = [1, 0,−5] 3−→ [4, 6, 1]
2−→ [5, 10, 4]

2−→ [4, 10, 5]
2−→ [1, 6, 4].

We see that m = 4, and since f4 = [k3, 2r3, k2] with k3 = 1, our nontrivial solution pair

to x2 − 5y2 = 1 is (p3, q3). With the values n0 = 3, n1 = 2, n2 = 2, n3 = 2 in hand, we

may compute p0, p1, p2, p3 recursively using (O), and similarly q0, q1, q2, q3 using (P).

We find that p0 = 3, p1 = 5, p2 = 7, and p3 = 9. We also have q0 = 1, q1 = 2, q2 = 3,

and q3 = 4, and we verify indeed that

92 − 5(4)2 = 81− 80 = 1,

giving a nontrivial solution pair (9, 4) to the Fermat-Pell 1 -Equation with d = 5 as

expected. There is also a nice pattern to the k–values, starting with k−1:

k−1 = 1, k0 = 4, k1 = 5, k2 = 4, k3 = 1. (5.2.16)
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With some further refinements, the following algorithm may be justified using

our discussion above as a jumping off point.

Algorithm 5.2.5. If d ∈ Z+ is a fixed positive integer that is not a perfect square,

and there are m ∈ Z+ distinct forms in the principal cycle of discriminant D = 4d,

then (pm−1, qm−1) is a nontrivial integer pair solution to the Fermat-Pell 1 -Equation

x2 − dy2 = 1.

We require two lemmas to confirm the effectual use of Algorithm 5.2.5.

Lemma 5.2.6. If d ∈ Z+ is a fixed positive integer that is not a perfect square,

then the principal cycle of discriminant D = 4d contains exactly one form whose

a–coefficient is equal to 1.

Proof. By Theorem 5.2.3, we know that there exists at least one reduced form [a, b, c]

lying in the principal cycle of discriminant D with a = 1. To prove that there are no

other such forms, recall from (3.1.41) that any reduced form of discriminant D is of

the shape [
a, k + 2a, k + a− D − k2

4a

]
, (5.2.17)

where the integers a and k simultaneously satisfy the four conditions in (3.1.42). Recall

that the b–coefficient

b = k + 2a (5.2.18)

has the same parity as D by the Remark at the end of Section 2.1, and by (5.2.18) we

see that the integer k has the same parity as b and D. Since D is even by assumption,

k is even as well. If a = 1, then we have

0 <
√
D − k < 2 (5.2.19)
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by the 4th condition in (3.1.42). We know that
√
D is an irrational number and there

is exactly one even integer ` lying to the left of
√
D whose distance to

√
D is less

than 2. By (5.2.19), we have k = `, and this shows that if a = 1, then k is uniquely

determined. Going back to (5.2.17), we obtain exactly one reduced form of this shape

with a = 1 and k = `, which completes the proof.

Lemma 5.2.7. The uniquely defined form of discriminant D = 4d specified in Lemma

5.2.6 is the form f ∗ = [1, 2r0, k0] introduced in the proof of Theorem 5.2.3. The form

f ∗ is the left neighbor of the form f1 in (5.2.8).

Proof. We verified in the proof of Theorem 5.2.3 that f ∗ is a reduced form lying in the

principal cycle of discriminant D, and its a–coefficient is equal to 1. We also verified

in (5.2.15) that f1 is the right neighbor of f ∗. Since f ∗ is reduced and I(f ∗) = f1, we

see from the proof of Proposition 3.1.8 that J(f1) = f ∗, proving that f ∗ is the left

neighbor of f1.

Justification of Algorithm 5.2.5. If m = 1, there is only one reduced form in the

principal cycle of discriminant D = 4d, and so the reduced form f1 = [k0, 2r0, 1] must

be the same as the reduced form f ∗ = [1, 2r0, k0]. This implies that k0 = 1 and so

p20 − dq20 = 1, confirming that (pm−1, qm−1) is a nontrivial integer pair solution to

(5.2.1). If m > 1, the principal cycle of reduced forms may be visualized by use of the

diagram:

f1
n1−→ · · · → fm←−−↩

nm

. (5.2.20)

By Lemma 5.2.7, we see that f ∗ = fm, and fm = [km−1, 2rm−1, km−2] by (5.2.2). Since

p2m−1 − dq2m−1 = km−1 = 1, our verification is complete in this case as well. If m > 1,

it is of interest to note that based upon Lemma 5.2.6, no pair of the form (pj, qj), for
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j = 0, . . . ,m− 2, will be a solution to (5.2.1) since p2j − dq2j = kj > 1 for these values

of j. We do not solve (5.2.1), so to speak, until we arrive at the last form fm in the

cycle.

Using the same argument as was used in Section 2.3 (just above Definition

2.3.6), we can define the unique minimal solution pair (x1, y1) to the Fermat-Pell

1 -Equation (5.2.1). Both pm−1 and qm−1 in Algorithm 5.2.5 are positive integers, so it

is natural to ask if we sometimes obtain the optimally smallest solution pm−1 = x1

and qm−1 = y1. Indeed, it is true that Algorithm 5.2.5 not only gives us a nontrivial

integer pair solution to (5.2.1), but even better, this algorithm always outputs the

minimal solution itself. Unfortunately, we do not offer a proof of this statement here

since further refined techniques are required for this proof. In the Table 5.2.1 below,

we display the nontrivial integer pair solution (pm−1, qm−1) to (5.2.1) arising from

Algorithm 5.2.5 for all values of d ∈ Z+ less than 16 that are not perfect squares.

Table 5.2.1. Solution pair (pm−1, qm−1) to (5.2.1) using Algorithm 5.2.5

d (pm−1, qm−1)

2 (3, 2)

3 (2, 1)

5 (9, 4)

6 (5, 2)

7 (8, 3)

8 (3, 1)

d (pm−1, qm−1)

10 (19, 6)

11 (10, 3)

12 (7, 2)

13 (649, 180)

14 (15, 4)

15 (4, 1)
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As we saw in Section 4.1, corresponding to the diagram

f0
n0−→ f1

n1−→ f2
n2−→ · · · , (5.2.21)

with f0 = [1, 0,−d ] of discriminant D = 4d ∈ Z+, is the parallel diagram

β0
n0−→ β1

n1−→ β2
n2−→ · · · , (5.2.22)

with β0 = Z(f0) =
√
d. According to the theory in Section 4.2, we have the minus

continued fraction representation

√
d = (n0, n1, n2, . . . ). (5.2.23)

Recall that n0 =
⌈√

d
⌉
, which gives the first entry in (5.2.23). The other entries in

(5.2.23) are readily extracted from Table 3.1.3. For example, when d = 5, we look at

the principal cycle of discriminant D = 20 to obtain

√
5 = (3, 2, 2, 2, 6, 2, 2, 2, 6, 2, 2, 2, 6, . . . ). (5.2.24)

Given the infinite periodic repeating pattern of the four integers 2, 2, 2, 6 in (5.2.24),

we may abbreviate the representation in (5.2.24) as

√
5 =

(
3, 2, 2, 2, 6

)
, (5.2.25)

since no information is lost by using (5.2.25) instead of (5.2.24). Proceeding in this

way, we display in Table 5.2.2 below the minus continued fraction representation of
√
d for all values of d ∈ Z+ less than 16 that are not perfect squares.
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Table 5.2.2. Minus continued fraction representation of β =
√
d

d (n0, n1, n2, . . . )

2
(
2, 2, 4

)
3
(
2, 4
)

5
(
3, 2, 2, 2, 6

)
6
(
3, 2, 6

)
7
(
3, 3, 6

)
8
(
3, 6
)

d (n0, n1, n2, . . . )

10
(
4, 2, 2, 2, 2, 2, 8

)
11

(
4, 2, 2, 8

)
12

(
4, 2, 8

)
13

(
4, 3, 3, 2, 2, 2, 2, 2, 3, 3, 8

)
14

(
4, 4, 8

)
15

(
4, 8
)

Finally, as we saw in Section 4.2, the theory of minus continued fractions

provides us with an infinite sequence of rational numbers converging strictly downwards

to the limit value β. If β is an irrational number such as
√
5, this is of interest in

terms of obtaining a better and better decimal approximation to a number that

can be typically difficult to handle otherwise. To give a good idea of just how

fast the convergence to the limit value takes place in terms of the minus continued

fraction algorithm, we display in Table 5.2.3 below the rational number convergents

r0, r1, r2, . . . , r20 to β =
√
5. We note that r20 gives an approximation to

√
5 that is

correct to 12 decimal places to the right of the decimal point.
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Table 5.2.3. Convergents for
√
5

j pj qj rj = pj/qj

0 3 1 3.00000000000000000000

1 5 2 2.50000000000000000000

2 7 3 2.33333333333333333333

3 9 4 2.25000000000000000000

4 47 21 2.23809523809523809524

5 85 38 2.23684210526315789474

6 123 55 2.23636363636363636364

7 161 72 2.23611111111111111111

8 843 377 2.23607427055702917772

9 1525 682 2.23607038123167155425

10 2207 987 2.23606889564336372847

11 2889 1292 2.23606811145510835913

12 15127 6765 2.23606799704360679970

13 27365 12238 2.23606798496486353979

14 39603 17711 2.23606798035119417311

15 51841 23184 2.23606797791580400276

16 271443 121393 2.23606797756048536571

17 491045 219602 2.23606797752297337911

18 710647 317811 2.23606797750864507522

19 930249 416020 2.23606797750108167877

20 4870847 2178309 2.23606797749997819409
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