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This two-part study examined the impact of variation within item families and errors 

associated with predicted item difficulty parameters on examinee test scores. Part A served as an 

extension of Shu et al.’s (2010) study to address how much variation matters within item families 

before they begin to negatively impact scores. Part A also evaluated the impact of two calibration 

strategies on examinee scores – CS1 or calibrating task model families and CS2 or calibrating 

individual items. Part B attempted to verify Bejar’s (1983) proposition, which stated that an 

explained variance of 80 percent needs to be met before predicted item difficulties could be used 

as a substitute for empirical estimates obtained from pre-testing. Both parts relied on a simulation 

approach to generate differential quality of item families and predicted item difficulties across 

different degrees of explained variance. Some quality control (QC) statistics were used to assess 

any variation in IRT statistics and their impact on examinee scores.  

The results from Part A suggested that CS1 and CS2 were appropriate for low variation 

(< 0.2 𝜎) and high variation conditions (0.2 𝜎 to 0.5	𝜎), respectively.  While a within task model 

family variation of 0.2s and 0.5s showed increased trends in bias and RMSE for moderate and 

high conditions under CS1, this variation ultimately did not result in significant score differences 

between the two calibration strategies, especially for longer tests.  

The findings from Part B showed how IRT models are robust enough to withstand error 

introduced by poorly predicted difficulty parameters used to score examinees. While the estimated 

scores remained relatively unaffected, the residual-based fit statistics (for the probability of an 

examinee endorsing an item based on the estimated scores and predicted item parameters) revealed 

larger errors as the correlations between the true and predicted item difficulties decreased. Results 



 

from the person fit analysis revealed that misfit is more likely to occur for the lower 𝑅! conditions. 

Overall, the results from both Part A and Part B showed that developing a QC system for modern 

item and test development approaches is feasible and even necessary. 
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CHAPTER I: INTRODUCTION 

Some modern item generation and test development strategies are shifting from a focus on 

developing individual items to instead focus on one of three strategies: (1) automatic item 

generation using parent items, smart items or item shells to mass produce items (e.g., clones or 

nominal variants; Haladyna & Shindoll, 1989; Bejar, 2002); (2) cognitive design of task models 

and item families adhering to complexity feature designs and specifications (Sheehan & Mislevy, 

1990; Embretson, 1999; Embretson and Daniel, 2010; Luecht, 2012; Luecht & Burke, 2020) ; or 

(3) using on-the-fly item predictions using artificial intelligence (AI) models (e.g., Settles, et al, 

2020).  All three strategies can reduce or eliminate the costs, resource demands, item-exposure 

security risks, and statistical stability of traditional item-level pretesting. However, they can also 

introduce errors in scoring or decision making when using a common set of item parameter 

estimates for an entire family of items or when making model-based predictions of the item 

parameters from item features contain nontrivial amounts of variation.    

The purpose of this study is to show how different magnitudes of variation within item 

families from an Assessment Engineering (AE; Luecht, 2006, 2007, 2009, 2012) perspective or 

different degrees of item-parameter predictions affect score and decision accuracy. This study will 

consider both within item family variation and variation due to item parameter prediction errors, 

and is thus divided into two parts – Part A and Part B. Part A of this study considers within item 

family variation by expanding the work of Shu et al’s (2010) study, which evaluated differential 

variation in item characteristics at three levels - task models, templates, and individual items, for 

a multidimensional formative assessment. The present study sought to systematically vary the 

quality of items within task models and examine their impact on examinee scores through a series 

of quality-control indicators for a unidimensional summative assessment. The second part of this 
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study, Part B, focused on evaluating the impact of item parameters - obtained through varying 

degrees of prediction – on examinee scores. More specifically, Part B sought to verify Bejar’s 

(1983) claim that there needs to be an 80-percent variance explained in predicted item difficulty 

before the predictions can be used as a substitute for empirical difficulty estimates for scoring 

purposes. Thus, this study addresses the central issue of quality-control (QC) regarding the 

performance of items within families and the impact of using predicted item parameters to detect 

how much variation matters in terms of statistical isomorphicity before it affects score precision. 

The subsequent sections of this chapter provide the context and rationale for this study, 

specifically comparing traditional versus modern item and test development methods, highlighting 

the problem areas in the former, and the implicit requirements for item-level pre-testing as a key 

part of item QC. 

Different Perspectives of Item and Test Development 

 Traditional methods of test development such as those explained in The Handbook of Test 

Development (2016), Schmeiser and Welch (2006), and the Standards of Educational and 

Psychological Testing (the Standards; AERA, APA, NCME, 2014), rely on a series of well-defined 

guidelines that support the effective creation of test specifications, item development, test 

assembly, and scoring rubrics. Their primary focus is on developing individual items, largely 

depending on the judgment and expertise of subject matter experts (SMEs) (Luecht & Burke, 

2020). These guidelines state that perhaps the most important step is recruiting qualified content 

experts and training them to develop high-quality items. They go on to discuss the many stages of 

item development: from writing items to reviewing and editing the items according to an 

organization’s editorial standards, and finally, conducting appropriateness and fairness reviews. 

Once items have passed the many stages of review, they may be embedded in operational test 
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forms to be pretested within the target examinee population. Statistical item analytics based on the 

pretest data may call for further qualitative evaluation of the items (e.g., answer key validation or 

confirmation).  Items that “pass” the operational pretesting phase are typically added to an item 

bank and designated as eligible for inclusion on future test forms.  Items with exceptionally poor 

item pretest statistics and/or other unrepairable qualitative issues such as confusing or 

inappropriate wording may be removed altogether from an item bank. These sets of guidelines 

serve as testaments to the QC mechanisms in place at every stage of item (and test) development. 

In short, QC is not a novel problem in testing. Furthermore, these QC procedures can be statistical 

or qualitative in nature.  

Statistical QC of newly developed items using traditional methods typically means 

performing an item analysis, a fundamental psychometric process that affects both test 

construction and scoring (Luecht, 2014a). Item analysis as crucial as it is, cannot begin without an 

elaborate process of extracting, cleaning, and restructuring testing data, thereby ensuring its 

quality, integrity, and accuracy (Luecht, 2014b). Once assured of the quality and integrity of the 

data, an item analysis can be performed to supplement the qualitative evaluation process during 

item review. Item analysis provides quantitative indicators in the form of statistical properties of 

examinee responses to each item on the test (Crocker & Algina, 1986; Luecht, 2014a). It further 

examines whether these statistical properties are appropriate for the ability level of examinees who 

take the test (Allen & Yen, 1979).  

Common statistical indices in a typical item analysis can be grouped into three categories 

(Crocker & Algina, 1986): 1) indices that are based on the distribution of responses to each item, 

such as item difficulty (Allen & Yen, 1979; Schemiser & Welch, 2006); 2) indices that express the 

relationship between the examinee responses to items and the criterion of interest such as item 
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discrimination (Allen & Yen 1979); and 3) indices that are a function of both the means and 

variances as well as the criterion of interest, such as reliability and validity coefficients.  These 

item performance statistics are usually obtained using classical test theory methods that use the 

number correct raw scores (Allen & Yen, 1979; Crocker & Algina, 1986; Raykov & Marcoulides, 

2010) and item response theory methods that places item difficulty, item discrimination, and 

examinee proficiency on a common scale of latent ability (Hambleton & Swaminathan, 1985; 

Hambleton et al., 1991; Lord, 1980; Wright & Stone, 1979). Both sets of methods require adequate 

data to yield stable item parameter estimates. Moreover, other variables such as 

innovative/technology-enhanced item types, computer-adaptive testing and multistage testing, 

restriction of range in test scores and homogenous samples further contribute to the complexity of 

item analysis (Luecht, 2014b). While IRT models are sophisticated enough to handle complex test 

design factors, the calibration process still requires large sample sizes to render useful item 

parameter estimates (Luecht & Burke, 2020). In addition, the continuous pre-testing of items for 

to support large-scale assessments is an expensive process that increases the risk of item exposure, 

enhancing the threat to test security. Given the high costs associated with developing and pre-

testing new items, only to find that a little over half the items can be used in operational test forms 

seems to be a poor return on investment (Case et al., 2001).  

Modern Approaches to Item and Test Development 

Alternatives to traditional item and test development seek to address the issues concerning 

their traditional counterparts by conceptualizing families of items to promote mass production and 

generalizability of item parameter estimates. One of these approaches, Automatic Item Generation 

(AIG), uses parent items as item shells, item templates, or item models (Hively et al., 1968; 

Osburn, 1968; Bormouth, 1970) to produce multiple children or sibling items using a generative 
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mechanism such as a generator (LaDuca, et al, 1986; Bejar & Yocum,1991; Bejar, 2002, 2010; 

Gorin & Embretson, 2013; Gierl & Haladyna, 2013a). Considering that the cost of developing a 

single new item using traditional methods is between $1500 to $2500, the rationale for using AIG 

is to reduce item production costs (Rudner, 2009; Gierl & Lai, 2012; Gierl & Lai, 2013a; Gierl et 

al., 2021). This generative form of item development also suggests that items nested within an 

item model are expected to behave the same way, having inherited the psychometric characteristics 

of the previously validated parent item, and thus granting them statistical or psychometric 

isomorphicity (Bejar, 2002). Thus, when the resulting item instances have similar psychometric 

characteristics, they are called isomorphs (Bejar, 2002). If their psychometric properties vary 

within an item family, they are then referred to as variants (Gierl & Lai, 2012). The psychometric 

isomorphicity of item families can therefore, go a long way in addressing the constraints produced 

by traditional pre-testing methods. 

Cognitive design of task models and item families that abide by specific task complexity 

features is the second approach to modern item and test development. This approach includes 

principled assessment design (PAD) frameworks such as cognitive design systems (Embretson, 

1998); evidence-centered design (Mislevy et al., 2003; Mislevy et al. 2002); and assessment 

engineering (Luecht, 2006, 2007, 2010, 2012). These are top-down approaches that use cognitive 

or task models that specify construct-relevant knowledge and skills as well as the relationships 

among them in terms of their complexity. These cognitively oriented specifications are intended 

to determine the difficulty of items in the family (Embretson & Daniel, 2008; Luecht et al., 2009; 

Luecht, 2013; Luecht & Burke, 2020). The purpose of using cognitive task models is to replace 

traditional test blueprints and specifications that show no connection between the blueprint 

categories and empirical estimates of item difficulty, to design item families that are intended to 
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behave the same way in terms of their content and psychometric characteristics (Luecht, 2008, 

2009; Luecht et al., 2010). Thus, one of the core principles of AE and other PAD frameworks is 

that they design classes of items to be substantively isomorphic in terms of content and complexity 

and statistically isomorphic in terms of item difficulty. In other words, by basing families of items 

on explicitly stated cognitive specifications and the evidence that is needed to demonstrate 

proficiency, there is deliberate control over their content and complexity by design (Mislevy, 2007; 

Mislevy & Haertel, 2007; Burke et al., 2020).  

Calibration of Item Families 

PAD approaches can be used to implement AIG since they are based on underlying 

cognitive specifications or cognitive theories that support the development of task models and 

templates/item models. Even though the assumption is that the resulting items from each item 

model are expected to be psychometrically isomorphic i.e., exhibiting no meaningful differences 

in their psychometric properties, this assumption needs to be verified through calibration of the 

item families. There are some methods for examining item families for their psychometric 

isomorphicity, three of which were noted in Sinharay et al’s. 2003 study. The first is the unrelated 

siblings model. This model ignores family membership of items, assuming independent item 

response functions for all tasks. Sinharay et al. (2003) applied the unrelated siblings model in the 

context of the one-parameter logistic or Rasch item response theory model.  The researchers noted 

that the limitation of this model is ignoring family membership, therefore requiring larger sample 

sizes for calibration compared to other models. The second model, the identical siblings model, 

assumes that all items within the same family have the same item response function. However, this 

model assumes total psychometric isomorphism among all items, and ignores the possible 

variability of items within the item family, thereby providing incorrect item parameter estimates. 



 7 

Finally, the third model is the related siblings model that does not assume that all the items in the 

same family have the same item response function. It is expressed as a hierarchical model, where 

the first component is expressed as a Rasch or one-parameter item response function, where the 

difficulties for the item family are assumed to be equal. The hierarchical piece specifies a 

distribution of parameters for relating each item in the family, indicating that each item-specific 

parameter is modeled as varying around a family-specific mean (Faye, et al., 2018). All three 

models have been applied in both dichotomous IRT models (Glas & van der Linden, 2003; Lathrop 

& Cheng, 2017) and polytomous IRT models (Cho et al., 2014; Geerlings et al., 2011). 

The third and final approach to modern item and test development is using AI models to 

generate items and predict their difficulties on-the-fly. Recent studies in the field of computational 

linguistics have used a combination of machine learning and natural language processing models 

to develop tests of language proficiency (Alsubait et al., 2013; Kurdi et al., 2017; Ha & Yaneva, 

2018; Settles et al., 2020). Of these studies, Settles et al. (2020) proposed that these methods could 

solve the “‘‘cold start’’ problem in language test development, by relaxing manual item creation 

requirements and alleviating the need for human pilot testing altogether.” (p. 247). In other words, 

their study sought to address the issue of obtaining difficulty estimates for generated items without 

the need for any response data. The researchers sought to automate the estimation of item difficulty 

from linguistic features of the Common European Framework Reference (CEFR) difficulty scale. 

They utilized linguistic models to estimate item difficulty of vocabulary and passage-based items 

that were spread across five item formats. The combination of machine learning, NLP, and 

linguistic models generated plausible items across the five item formats and subsequently 

computed the difficulty for each item. The researchers observed high correlations between the 

scores of their automatically generated English language test with those of the TOEFL iBT and 
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IELTS. They also found a “strong relationship” between the machine-learning and NLP estimates 

of item difficulty and IRT difficulty estimates from operational data.  

Rationale for the Present Study 

The research on modern approaches to item and test development described above 

demonstrates three important improvements over traditional methods:1) leveraging advancements 

in technology to support the item generation increases efficiency and reduces the cost per item 

over a period of time; 2) calibrations are either taking place at the family level or being produced 

on-the-fly, which at the very least reduces the sample size of items requiring traditional pre-testing; 

and 3) the items and tests generated from these methods support a stronger construct validity 

argument compared to traditional methods. Yet, relying on family-level sets of calibrations or 

predicted item parameters from item features can potentially introduce error in scoring, thereby 

affecting decisions based on these scores. It therefore becomes crucial to decide on an appropriate 

calibration strategy for item families that maintains low within-family variance or acceptable 

variation within it. Moreover, it may be essential to use predictions of item parameters that came 

from regression models with a high proportion of explained variance or 𝑅!. These two points are 

addressed by Shu et al. (2010) and Bejar (1983), respectively. Shu et al. (2010) compared three 

calibration strategies at the level of task models, templates, and individual items for a 

multidimensional formative assessment. Test forms were assembled from twelve separate item 

pools in various mixtures across seven test assembly conditions (from best to worst in terms of 

item pool quality), where each item pool varied in terms of its quality of item parameter estimates. 

One of the objectives of the study was to demonstrate that task model and template-level 

calibrations could be used only if the item templates were actually able to control difficulty. The 

second objective was to evaluate the impact of using these calibrated statistics on scoring 
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examinees, especially when using item of poor quality to assemble the test forms. This study 

provided two important findings: 1) an evaluation of root mean square deviation (RMSD) plots 

revealed that while individual item difficulty estimates varied within each test assembly condition 

or calibration strategy, the locations were more or less maintained; 2) the template based 

calibrations performed as well as the individual item calibrations even for the worst test assembly 

conditions. The findings also suggest that if a particular minimum level of item discrimination 

were achieved and variance of item difficulties within templates were within “acceptable 

tolerances” then template-level calibrations could be used for task models while meeting QC 

requirements. However, how much tolerance or variation is acceptable remains unclear. 

Bejar (1983) studied the degree to which subject matter experts could predict the difficulty 

and discrimination of items on the Test of Standard Written English. The objective of this study 

was to determine if, after substantial training of subject matter experts in rating items for their 

difficulty and discrimination, these ratings could be used to replace empirical estimates of item 

difficulty for scoring purposes. The results showed that despite extensive training of subject matter 

experts, the accuracy of the predicted item statistics was too low to be used for any further analysis. 

Moreover, it was concluded that a requirement of an explained variance of 80 percent. (𝑅! = 0.8) 

needs to be met before predicted item difficulties could be used as a substitute for empirical 

estimates obtained from pre-testing. Forty years later, with the use of AI models to predict item 

parameters, would the same explained variance need to be met for predictions to substitute 

empirical estimates? Examining the different degrees of predictions of item parameters in terms 

of their impact on examinee scores may provide some insight in answering that question.  
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Research Questions  

The present study sought to build on the work of Shu et al. (2010) and Bejar (1983) to 

specifically address: 

1) How much variation matters in task model families without impacting examinee scores?  

1a. Under which conditions would calibrating the task models and/or calibrating the 

individual items be most appropriate? 

1b. Which calibration strategy would have the most (or least) impact on examinee scores? 

2) How do different degrees of explained variance in predicted item parameters impact scores 

and person fit?  

This study aimed to answer these questions by applying a simulation approach in both parts 

A and B. Part A addressed the first research question by using item parameter estimates that were 

generated from three conditions of variation – low, moderate, and high – at three different test 

lengths, each assembled using the seven test assembly conditions from Shu et al’s (2010) study. It 

also answered the first research question as it pertained to the first two modern item development 

approaches mentioned earlier – AIG and PAD approaches. Part B addressed the second research 

question by generating predicted item parameters across different degrees of explained variance 

or 𝑅!. This study intentionally varied the quality of predicted item parameters based on the strength 

of the correlation between the predicted item difficulties and empirical item difficulty estimates, 

thereby testing Bejar’s (1983) claim. Ultimately, the goal of parts A and B was to extend, test, and 

verify findings from previous research and assess how they impact examinee scores. Parts A and 

B also intended to serve as guidelines for choosing calibration strategies that are appropriate for 

the quality of item families used in practice and provide insight regarding the use of predicted item 

parameter estimates for scoring examinees. 
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CHAPTER II: LITERATURE REVIEW 

This chapter contains two main sections. The first section examined the literature 

supporting traditional item development and quality control procedures. The literature in this 

section briefly focused on the process of developing traditional items and tests while also 

describing mainstream statistical quality control indexes used in practice. This section also 

discussed some issues with traditional statistical QC that warranted a shift in conceptualizing 

items. The second section discussed modern approaches to item and test development and 

contained two parts.  The first addressed relevant literature on the development and use of item 

families, thus focusing on Automatic Item Generation (AIG) and Principled Assessment Design 

(PAD). The second part examined literature concerning on-the-fly generation of items and their 

psychometric characteristics while also providing a brief overview of literature that has 

investigated item difficulty prediction. Finally, the literature review concluded with gaps found in 

previous studies that the present study aimed to address. 

Traditional Item and Test Development 

Drasgow et al. (2006) envisioned 21st century testing programs as those that leverage the power 

of technological advancements and innovative assessment frameworks to become an integrated 

system of systems. With large scale testing programs requiring an increasing number of high-

quality items to support continuous testing, it becomes imperative to reconceptualize how items 

and tests are developed to meet these demands and cater to the evolving needs of testing programs. 

Traditional item and test development practices are limited in their ability to meet these demands 

for a few reasons: 1) they are labor-intensive and time consuming; 2) they require continuous item 

pretesting; 3) they lack the robustness to handle complex assessment design. 
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Traditional item development is a rigorous process that requires suitably trained item 

writers to develop and refine items that can eventually perform well on an exam (Welch, 2006). 

These methods place the onus of producing high-quality items on the item writer (Mosier et al., 

1945).  The items are usually multiple-choice questions, which are still widely used today even as 

innovative item types gain popularity (Parshall et al., 2002). Mosier et al. (1945) who provided 

one of the earliest guidelines for writing multiple choice items, said that items must be phrased in 

such a manner that all examinees can understand the task set, and those who have the requisite 

knowledge will provide the correct answers. Since then, there have been extensive guidelines 

developed across the years for item and test development. However, violations still occur despite 

following these guidelines, making it challenging to develop test items that meet psychometric 

standards without adequate pretesting. Ultimately, current item development practices, even when 

executed by the most skilled item writers, represent creative expressions of their ideas of the 

construct.  Each item, is therefore, designed to be unique and less generalizable, thereby favoring 

more of an artisanal result over a scientific process.  

Second, once items are developed, they are subjected to both qualitative and statistical 

review. It is at this point that items are pretested and then analyzed to obtain their performance 

statistics. Since there is no mechanism for establishing reliable a priori estimates of item 

performance statistics, pretesting is essential. Moreover, previous studies have shown that despite 

receiving extensive training on item performance, primarily focusing on understanding what 

makes an item difficult, item writers’ predictions of item difficulty are inaccurate, reinforcing the 

need for pretest statistics obtained through item analysis to determine next steps (Camerer & 

Johnson, 1991; Lorge & Diamond, 1954; Nathan & Koedinger, 2000; Nathan et al., 2001; 

Tinkelman & Sherman, 1947). 
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Item analyses are typically performed using classical test theory and/or item response 

theory methods to produce indexes such as item difficulty, item discrimination, and reliability to 

gauge whether an item is suitable for the test. In classical test theory, item difficulty, more 

commonly referred to as a p-value, refers to the proportion of examinees who answered the item 

correctly and reflects whether the level of difficulty is well-suited for the intended purpose of the 

test (Crocker & Algina, 1986; Luecht, 2014a). While testing organizations may vary in their choice 

of appropriate item difficulties for their tests based on operational policy, item difficulties in the 

range of 0.3 – 0.7 tend to provide the most information about differences in examinees taking the 

test (Allen & Yen, 1979). Items that have difficulties close to 0 or 1 are typically flagged for further 

review or completely discarded from use.  

Item discrimination is an index that denotes how well items differentiate between 

examinees who are relatively high on the criterion of interest versus those who are comparatively 

low (Crocker & Algina, 1986; Schmeiser & Welch, 2006). While there are five parameters of item 

discrimination – index of discrimination, point biserial correlation, biserial correlation, phi 

coefficient, and the tetrachoric correlation coefficient – the point biserial and biserial correlations 

are commonly used in both credentialing exams and achievement tests (Luecht, 2014a; Schemiser 

& Welch, 2006). The point biserial correlation represents a Pearson product-moment correlation 

between a dichotomously scored item and the total test score, where the total score is computed 

with that item removed. High point biserial correlations are desirable while low or negative point 

biserial correlations signify that the item is either not discriminating well between examines or 

indicating that low scoring students on the total test score are performing better relative to high 

scoring students. When the underlying distribution of the dichotomously scored item is normal, 

the correlation is then called a biserial correlation (Allen & Yen, 1979). In practice, items that have 
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a point biserial correlation lower than 0.10 or biserial correlation lower than 0.21 are flagged for 

further review (Luecht, 2014a).  

Other statistical indices include key validation analysis (Luecht, 2014a) and the reliability 

of test items generally measured by coefficient alpha (Crocker & Algina, 1986; Cronbach, 1951). 

A key validation analysis or distractor analysis helps in identifying incorrect response options that 

show high positive correlations with the total scores or high proportion of examinees choosing 

them over the answer key. Such results warrant a review of item distractors for multiple-choice 

and other forms of selected-response items. A reliability index representing the internal 

consistency of the items on the test – coefficient alpha - is a function of the number of items on 

the test and the average inter-correlation among items. 

Item response theory (IRT), considered to be an improvement over classical test theory 

methods, estimates item and person characteristics such that they are on the same underlying scale 

(De Ayala, 2009; Hambleton & Swaminathan, 1985; Hambleton et al., 1991; Luecht, 2014).  Most 

IRT models assume that the latent variable or trait is unidimensional, although there are models 

that can be used to tackle multidimensional representations of the latent variable (Reckase, 2009). 

The basic premise of IRT is that the items can differentiate among people located at different points 

along the unidimensional continuum (De Ayala, 2009). These models attempt to explain the 

relationship among the characteristics of items, the responses to the items, and the latent variable 

of interest. They also make three important assumptions of monotonicity, unidimensionality, and 

invariance that when held, offer several analytical advantages over classical test theory 

(Hambleton et al., 1991).  There are a variety of models that can be used to evaluate the quality of 

dichotomous and polytomous items that have either ordered or nominal score categories.   
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Items with negative slopes or item discrimination parameters, extreme values of item 

difficulty, and high values of the pseudo-guessing parameter are typically flagged for additional 

review or are ultimately discarded from use. In addition, item and test characteristic curves (TCCs), 

item and test information functions (TIFs) are plotted to examine their performance. Since IRT 

models are regression models with unobserved explanatory variables, regression-based diagnostic 

statistics can be used to evaluate fit between the observed item response scores and model-based 

predictions (Luecht, 2014b). Ames and Penfield (2015) provide a comprehensive overview of item 

fit statistics that they group as chi-squared approaches and likelihood ratio approaches.  

Despite having a host of techniques to establish statistical quality control over traditionally 

developed items, challenges remain. Luecht (2014b) identified several issues in item analysis that 

are encountered in credentialing programs: 1) small sample size; 2) homogeneity of the population 

and restriction of range; 3) establishing a consistent reference group; 4) complexities arising from 

using technology-enhanced items and computer-adaptive or multistage tests. Item analysis 

requires a large enough sample size to produce stable item parameter estimates. The sample size 

may vary depending on the measurement model used and while classical test theory offers some 

flexibility, IRT models are generally quite data hungry.  In other words, these measurement models 

require adequate high quality response data to provide useful item parameter estimates. Thus, item 

pretesting can be an expensive process, especially when considering small testing programs.  

Homogenous populations, meaning those professionals who share the same qualifications 

and training to meet eligibility criteria for certification exams, impact item analysis by imposing a 

restriction on the range of total scores. These restrictions on the variance of total scores can 

diminish their correlations with item scores or sub scores. While corrections for these variance 

restrictions are available, they may not provide accurate results when using small sample sizes. 
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Moreover, with credentialing tests being designed to provide maximum precision at the cut score, 

items may be designed to be very easy or difficult, systematically reducing their variance. 

Furthermore, the item-total score correlation may be lower as well. When statistically evaluating 

these items, it may deceptively appear that they are of low quality, when in fact they are meeting 

the specific requirements of test design. 

Luecht (2014b) defines a reference group as, “a designated subset of the larger population 

of test takers and can be useful to help maintain reasonable consistency of the sampling used in 

IAs and other data analyses over time”. (p. 138).  Even though all examinees obtain scores, it is 

only the reference group that is included in the item analysis, and on which quality assurance is 

performed.  Although driven by policy, the reference group is useful in evaluating results of the 

item analysis and therefore, an important consideration. 

As the needs of testing programs evolve to include innovative item types or technological 

enhanced items, and computer adaptive tests, item analysis becomes increasingly more complex 

to support their continuous use. Technology-enhanced items require the identification of a valid 

score scale to compute their item-total correlations, which can be challenging to achieve in 

practice. Computer-adaptive tests and multistage tests aim to customize the difficulty of test forms 

to examinee ability to provide them with an enhanced testing experience. In addition to placing a 

burden on item banks, such tests further add to the complexity of item analysis. For these reasons, 

traditional item analysis may be inappropriate for evaluating innovative items and items for 

computer adaptive or multistage tests.  

Despite the rigor involved in developing and analyzing traditionally developed items, the 

fact remains that they are individual items which are unique and not exchangeable in terms of their 

psychometric properties (Luecht & Burke, 2020). If these items operate in unpredictable ways and 
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fail to survive pretesting protocols, then the concern is whether traditional item development and 

quality control mechanisms can be sustainable in the long run. Alternative approaches may be 

needed to address these issues, particularly, redefining how items are conceptualized and used for 

testing purposes. Some alternatives such as model-based approaches have proposed a paradigm 

shift in thinking from developing individual items to developing families of items. These item 

families have been argued to be exchangeable in terms of their content and psychometric 

characteristics such as difficulty, thereby making the item development more efficient and 

sustainable than traditional methods. The next section describes modern alternatives to traditional 

item and test development, where two of the approaches involve developing item families instead 

of individual items, while the third demonstrates automatic generation of items along with their 

estimates of difficulty.  

Alternatives to Traditional Pre-Testing 

Some alternatives to traditional pre-testing take the form of model-based approaches. 

Model-based approaches indicate a template-based type of item generation, involving an item 

model or template to develop a family of items that operate in psychometrically and structurally 

predictable ways. The literature on these approaches proposes the use of an item model or template 

to develop large numbers of items that can satisfy the need for high demand in large scale 

assessments. The other type of model-based of approach forgoes the use of templates in favor of 

large language models to automatically produce items and estimate their difficulty on-the-fly. This 

approach has primarily been used in the area of language assessment. Both template-based and 

non-template-based methods will be discussed in the subsequent sections. 
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Automatic Item Generation (AIG) 

AIG suggests an iterative process of item generation that is guided by the systematic 

manipulation of elements present in an item model – a template that houses fixed and variables 

elements for the generation of multiple items (LaDuca et al., 1986; Haladyna, 2013; Osburn, 1968). 

More recently, Gierl and Lai (2013) defined AIG as, “the process of using models to generate 

items with the aid of computer technology.” (p. 1). 

While AIG may be a modern form of item development, its conception can be dated back 

to the 1960s and 1970s; specifically, Hively et al. (1968), who used item forms to develop items 

for a test of basic arithmetic skills. Their approach towards developing items for the arithmetic test 

was based on templates (item forms), which had fixed and variable elements. The items were 

intended to be “hypothetically equivalent”, assessing the same skill and having the same difficulty 

for each diagnostic category. Bormuth (1972) proposed a theory of item generation from prose and 

believed that traditional methods of item writing were subjective and inefficient. His theory stated 

that prose text could be transformed into “wh-questions”. While Bormuth’s theory may have 

propelled the conversation surrounding item generation from prose, Finn (1975) highlighted 

certain limitations of syntactic analysis and proposed a solution to these limitations using 

Fillmore’s (1968) grammar. These studies asserted a rule-based method of item generation that 

could potentially suppress the subjectivity involved in item writing and promote similar structural 

and psychometric characteristics amongst the items produced. More recent literature has utilized 

item models and rule-based generation to argue a three-step approach to generating items (Gierl 

& Lai, 2013a). 

 Prior to item generation, test developers must first identify the content and cognitive 

domain of interest by collaborating with content experts. The purpose of specifying both a content 
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and cognitive domain is to establish the construct to be measured as well as the knowledge, skills, 

and abilities (KSAs) that are required to solve assessment tasks associated with that construct. 

Next, cognitive models are developed either using a cognitive theory (Bejar, 1993; Embretson, 

1998, 1999) or parent items (a sample of what should be modelled) (Bejar, 2003; Drasgow et al., 

2006; Gierl & Lai, 2016; Gierl et al., 2021). Thus, the cognitive model specifies how the content 

is organized in the knowledge domain.   

Once the cognitive model is developed, the development of an item model involves 

organizing the content in a test item format complete with the stem, response options, and any 

auxiliary information deemed necessary by content experts (Gierl & Lai, 2013a). Item models can 

be developed in two ways – to develop isomorphs or variants. To develop isomorphs, the 

incidentals or features that are unlikely to affect item difficulty are identified and manipulated 

(Irvine and Kyllonen, 2002; Gierl & Lai, 2012; Gierl & Lai, 2013a). However, when the goal of 

item generation is to develop variants, then radicals or elements of an item model that are likely to 

affect item difficulty can be altered (Irvine and Kyllonen, 2002; Gierl & Lai, 2012; Gierl & Lai, 

2013a).  

Implementing AIG in practice can be achieved in two ways – strong theory and weak 

theory (Drasgow et al., 2006). Some early examples of using strong theory to generate items in the 

domains of mental rotation (Bejar, 1993) and matrix completion items (Embretson, 1998). Bejar 

(1993) explored the feasibility of using response generative modeling (RGM) to the domain of 

mental rotation. Both studies explored the use of cognitive theory and processes underlying solving 

tasks, indicating a top-down approach towards item generation. They also found that the generated 

items were well supported by cognitive theory, which could also be used to control their difficulty. 

Other studies have further explored the top-down approach towards item generation – using 
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schema theory to generate mathematics items (Singley & Bennett, 2002), generating abstract 

reasoning items (Embretson, 2002), figural inductive reasoning items (Arendasy & Sommer, 

2005), mental rotation items (Arendasy & Sommer, 2010), and developing item models for the 

broad content domain of medical surgery (Gierl & Lai, 2013b). These studies suggest that item 

models developed using strong theory yield instances with acceptable psychometric 

characteristics.  

Weak theory on the other hand, relies on a parent item with known psychometric 

properties, wherein content experts identify and vary incidental features of items that can be 

manipulated to generate isomorphs (Drasgow et al., 2006). Several studies have used weak theory 

to generate items. LaDuca et al. (1986) described a complex method to generate test items for 

medical tests. They used existing items with good psychometric properties and identified changes 

to the stem and associated changes to the options. Bejar et al.  (2003) used weak theory to develop 

item models for the quantitative section of the GRE. Since there was no underlying cognitive 

model to support item calibration, the item models were calibrated using the Expected Response 

Function (ERF) (Mislevy et al, 1994). A sample of variants were pretested, and the resulting 

information was used to calibrate the item model. Since the variants were not empirically 

calibrated, their item parameters remained unknown. The ERF was the approach used by the 

researchers to account for the uncertainty. They first conducted a simulation study to examine the 

impact of different levels of isomorphicity on score precision. The results of the simulation study 

suggested that an adaptive test based on item models would be psychometrically feasible provided 

there was only a moderate lack of isomorphicity. Thus, the researchers proceeded with an 

experimental on-the-fly adaptive test where items on the GRE quantitative section were 

exclusively developed by item models used in the simulation study. This was followed by an 
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experimental linear test also administered to the same sample who took the adaptive test. The 

previous GRE quantitative scores of the test taking population were compared to their scores on 

the experimental adaptive and linear tests. The correlation between the two sets of scores 

(experimental and operational) was found to be 0.87. Thus, despite using the ERF approach 

(attenuated item parameters) to calibrate the item models, the overall test appeared to perform 

similarly to the operational GRE quantitative test. 

Other studies that used weak theory to implement AIG include Bejar and Yocom’s (1991) 

work with hidden figure items and Lai et al.’s (2016) work with oral radiology. Both studies used 

parent items to generate item clones, rendering these items psychometrically isomorphic. For both 

domains (spatial ability and oral radiology), cognitive models did not exist at the time of their 

publication. Moreover, these studies suggest that weak theory can be beneficial for generating item 

clones for the purpose of repeatedly evaluating examinees on a specific topic. 

Benefits of AIG. AIG has several benefits over traditional item generation methods and 

has demonstrated that it is a promising method of developing item families. Some of its benefits 

are discussed below. 

Cost and efficiency. Perhaps the most well-known benefit of AIG is its ability to generate 

hundreds or thousands of items from various item models, thereby meeting the high demand for 

items and offering an economical alternative to traditional item development (Bejar et al., 2002; 

Graf et al., 2005). Studies such as Lai et al. (2009) and Choi et al. (2016) found that after training 

content experts in AIG, 64, 280 items across various subjects (math, science, literature, and social 

studies) and more than two million unique math items for grades 6 and 7 from 350 item templates 

could be generated, respectively. These studies implied that while item modeling efforts may 
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require more time than developing individual items, the time and costs may be offset by the large 

number of instances developed from them.  

 Until recently, there were few studies that discussed the costs associated with AIG. Kosh 

et al. (2019) found that when implementing AIG for the first time in a K-12 education setting, 

AIG is “more effective than traditional item writing if a testing program requires 247 or more 

items within a content area.” (p. 51). This statement was made based on the assumption that 

one manually developed item costs $1 to produce. They also noted that while the initial cost of 

implementing AIG was high because the technological infrastructure was non-

existent, subsequent implementations became more cost effective provided the need for items is 

substantial within one content area. 

Intelligent calibration and efficient item analysis.  Item models developed based on 

strong theory’s use of cognitive models and/or theoretical underpinnings of test performance 

provides an underlying structure that adequately explains examinee test performance and 

facilitates prediction of psychometric properties of instances without having to field-test each 

one (Bejar, 1990; 1993; 1996; Embretson, 1998; 1999; 2002; Gierl & Lai, 2012; Gierl et al., 

2012). Enright et al. (2002a) used item models to evaluate the impact of item design features on 

difficulty and discrimination. They found that feature variation accounted for 90% of the 

variance in difficulty and 50% of the variance in discrimination in rate word problems. Feature 

variation accounted for 61% of the variance in difficulty but did not explain the variance in 

discrimination of probability problems. Well-designed item models, that is, those based on a 

sound understanding of the item features that influence item discrimination and difficulty, can 

yield instances that are psychometrically similar. However, understanding which features to 

extract from items and contribute to their difficulty may require extensive research.  
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Maintaining test security. Item exposure, inevitable while using computer-based and 

computer-adaptive tests (CAT), leaves tests highly susceptible to content theft that threatens 

overall test security (Drasgow et al., 2006; Lai et al., 2009; Wainer, 2002). Moreover, test security 

breaches are known to take place when large-scale assessments reuse test items (Wainer, 2000 as 

cited in Lai, et al., 2009). Using AIG to develop item models that generate both isomorphs and 

variants can enlarge and replenish item banks on which CAT is dependent. For example, Gitomer 

and Bennett (2003) found that using AIG to produce variants of the same item meant that similar 

items could be used from the item bank, decreasing item exposure altogether.   

Diagnostic and formative assessments.  Based on previous research, ideally, a cognitive 

model of task performance is needed to support item model development. Cognition is also a main 

component of Cognitive Diagnostic Assessment (CDA), identifying the attributes to be measured 

(de la Torre & Minchen, 2014). Research and theory surrounding AIG is largely based on the Item 

Response Theory (IRT) framework, focusing on unidimensional assessments with limited 

diagnostic and formative information (Bai, 2019). Futhermore, Bai (2019) argues that since CDA 

and AIG overlap in the first stage (developing a cognitive model), perhaps this overlap can 

substantially reduce the difficulty of implementing AIG in formative assessments. For example, 

Choi et al. (2018) conducted an empirical study, evaluating the usefulness of administering AIG 

math items via a formative assessment system to Korean high school students. Students could 

instantly view feedback for incorrectly scored items, which provided explanations for solving the 

item correctly. Moreover, once they understood the feedback, they could take several more 

practice problems that were similar yet different to the question they got wrong to further improve 

their skills. The results found that 45.6% of students were satisfied with the iterative process using 

item clones for practice.  
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The literature on AIG highlights its ability to mass produce items and over time, reduce the 

high costs and inefficiencies associated with traditional item development. However, it also 

introduces the problem of calibrating these items, possibly amplifying the issues involved in item 

analysis described in the previous section. This is likely to be the case if traditional item analyses 

are used to calibrate the AIG items. However, procedures for calibrating families of items have 

been proposed and rely on the premise that items within families are statistically and structurally 

exchangeable or isomorphic in nature. For AIG to be truly successful at overcoming the limitations 

of traditional item development, it needs to be successful in mass production and calibration of 

items to avoid pre-testing bottlenecks. Isomorphic instances can help in reducing the size of the 

item pool that needs to be pretested, thereby saving resources that would have otherwise been 

engaged in pretesting each item. However, the extent to which item families are isomorphic rests 

completely on how the item model is designed. When item models are based on either cognitive 

theory or task models, their design reflects both content and complexity features, thereby making 

isomorphicity a greater possibility. 

Cognitive Design with Task Model Specification Features 

Creating isomorphic item families requires a granular understanding of their cognitive 

and/or content complexity. The literature on Principled Assessment Design (PAD) offers 

frameworks that can be used to develop item families that are driven exclusively by cognitive 

specifications and theory. Some of the PAD approaches are cognitive design systems (Embretson, 

1998), evidence-centered design (ECD; Mislevy, et al., 2003), and assessment engineering (AE; 

Luecht, 2006, 2007, 2013).  

Item families designed by cognitive theory can follow Embretson’s (1998) cognitive design 

system. This approach involves developing cognitive models for each type of item, specifically 
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identifying processes for solving it as well as stimulus features present in the item that could impact 

its difficulty. Thus, difficulty of an item is decomposed into the cognitive processes responsible 

for solving an item, the stimulus features of the item, and the relationship between the two. The 

item stimulus features can also be manipulated to vary their relationship with the response 

processes, thereby impacting the difficulty of the item. As a result, difficulty and sources of 

cognitive complexity are identified at the item level. Moreover, Embretson (1998, 1999) argued 

that such manipulations affect construct representation (Embretson, 1983), one of the key elements 

for formulating a construct validity argument. Therefore, the cognitive design approach has several 

advantages over traditional item development efforts. Using cognitive models, the psychometric 

properties of items, namely their difficulty, can be predicted reasonably well – comparable to a 

multiple correlation of 0.70 (Embretson, 1999). Incorporating cognitive operations into 

psychometric models ensures that there is adequate knowledge concerning the underlying process 

of how items are solved, which when controlled by an item generation algorithm can produce items 

with predicted psychometric characteristics – a generative approach to psychometric modeling 

(Bejar, 1990; Bejar, 1993). Adopting the cognitive system of item generation therefore implies 

that difficulty can be controlled and used to produce isomorphic item families based on specific 

combinations of item features.  

Other applications of Embretson’s (1998) cognitive design system include Gorin and 

Embretson (2006)’s study, which examined the relationship between the cognitive features of 

reading comprehension items and item difficulty. They found that the two issues that could affect 

the psychometric properties are the relative proportion of variable elements in the item structures 

and the differences between the substituted elements (Embretson, 2002). They also state that one 



 26 

of the benefits of the cognitive design system approach is that construct validity is assessed at the 

item level.  

Embretson and Daniel (2008) modified earlier cognitive models on mathematical problem 

solving, proposing five stages of cognitive processing – encoding, integration, solution planning, 

solution execution, and decision. They identified 12 variables across the five stages that affected 

cognitive complexity. They used both the Linear Logistic Test Model (LLTM; Fischer ,1973) and 

regression models to investigate the impact of quantifying cognitive complexity in mathematical 

solving problems on item difficulty. The results suggested that two out of the 12 variables had a 

statistically significant impact on item difficulty using regression analysis, while the LLTM 

showed eight out of the 12 variables had a statistically significant impact on difficulty. Moreover, 

standard errors for the model coefficients were much smaller for the LLTM than the regression 

model coefficients. 

Daniel and Embretson (2010) further investigated the impact of the cognitive variables 

identified in Embretson and Daniel (2008), specifically, source of equation and number of subgoals 

on item difficulty by intentionally controlling for these features in item design. The source of the 

equation and number of subgoals correspond to the encoding and solution planning stages of their 

earlier study. Thus, items without the presentation of an equation are significantly more cognitively 

complex than those with the equations. Together, the work of Gorin and Embretson (2006), 

Embretson and Daniel (2008), and Daniel and Embretson (2010) show that the cognitive design 

system can be used to automatically generate items and predict their difficulty to some extent. 

Although not a direct application of the cognitive design system, Bejar and Yocom‘s 

(1991) study preceded Embretson’s (1998) work and suggested a generative approach to 

psychometric modeling. The generative approach proposed in their study encoded the cognitive 
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structures involved in solving hidden figure items into an item generation algorithm to produce 

isomorphs. A Hugh transform pattern recognition algorithm was used as templates to generate item 

clones. Since the objective of the study was to use a modeling approach that would represent both 

response consistency and response difficulty, the templates were able to explain both reasonably 

well. Moreover, the researchers advocated this approach of generating isomorphs as a method of 

continuous validation by testing the knowledge of response processes during each administration 

of the test.  Embretson’s and Bejar’s work, along with supporting studies by Gorin (2005) and 

Embretson and Kingston (2018), demonstrate that item generation can rapidly mass produce item 

families while simultaneously anticipating their psychometric properties.  

Item family design based on task models typically stem from evidence-centered design 

(ECD; Mislevy et al., 2003) or assessment engineering (AE; 2006a, 2006b, 2012a). Luecht and 

Burke (2020) state that, “the term “task model” is generally associated with evidence-centered 

design (ECD) to conceptualize the tasks that elicit evidence in support of proficiency claims 

(Mislevy et al., 2003; Mislevy, 2006; Mislevy & Riconscente, 2006; Mislevy & Haertel, 2007).” 

(p. 11).  ECD proposes an evidence-based framework that supports a structured and systematic 

method of developing assessment tasks. Mislevy et al. (2003) defined ECD as: 

A set of activities and artifacts that facilitate explicit thinking about (a) given the purpose 

of the assessment, what content and skills are both useful and interesting to claim about examinees; 

(b) what is the reasonable and observable evidence in student work or performance required to 

support the claims; and (c) how tasks (items) can be developed within the constraints of the 

assessment to provide students with an optimal opportunity to provide the observable evidence 

that is consistent with their achieving the intended claim. (pp. 314–315). 
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Huff et al.’s (2012) study developed task models to automatically generate items using the 

ECD framework. It serves as a prominent example of how task models can be used to generate 

isomorphic item families. The researchers designed task models for an Advanced Placement (AP) 

science course. In their study, they used the ECD-based task model to address two salient 

requirements for developing item templates: 1) ensuring that the templates had sufficient 

information for an item generation algorithm to generate items; and 2) explaining the factors that 

affect difficulty well enough such that resulting item instances operate in psychometrically similar 

ways. They state that the task models used in the study provided specific requirements extracted 

from broader proficiency claims and evidence, thereby providing the foundation for item templates 

to operationalize them. Thus, task models and item templates operate along a continuum, moving 

from general claims to more specific items. Moreover, when task models target a particular 

proficiency claim, they consider how students’ knowledge progress along a proficiency continuum 

and how task features affect its cognitive complexity. Such an evidence-based development of 

item templates involves translating task complexity into features of the item template that remained 

fixed or variable, along with any necessary constraints on the range of each feature. Although not 

explicitly based on cognitive processing or theory, ECD provides evidentiary support for 

explaining and controlling difficulty of resulting items through task models and item templates. 

Finally, Huff et al. (2012) developed less challenging, moderately challenging, and more 

challenging item families from four templates, resulting in a total of 1,787 items. While these items 

were not administered or evaluated for their psychometric characteristics, the researchers argue 

that their approach enhanced the generation of high-quality items. They also encourage quality 

control procedures and strict evaluation methods for task models and item templates to throughout 

the design process to further improve their quality. 
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The second method of developing item families using task models is Assessment 

Engineering (Luecht, 2008, 2009, 2012a). The concept of a task model under the AE framework 

focuses on “a structured specification of the cognitive complexity undergirding an entire family of 

items.” (Luecht & Burke, 2020, p. 33). AE and ECD operate in similar ways. As Luecht (2012a) 

states, “AE shares many features and some terminology with other approaches to principled 

assessment design, including evidence-centered design (ECD; Mislevy, 2006; Mislevy et al., 2003; 

Mislevy & Riconscente, 2006).” (p. 59). Central to the AE system are task models and item 

templates. Task models are based on construct maps comprise of ordered, measurable tasks, along 

a scale of proficiency, from low to high. The ordering of such proficiency claims assumes that 

those on the high-end of the scale have mastered claims on the lower end of the scale (Luecht, 

2007, 2008; Luecht et al., 2009). In other words, cognitive complexity is at the forefront of 

construct mapping and task model development. Task models are developed to explicitly specify 

the combination of declarative knowledge and procedural skills required to support the proficiency 

claims along the ordinal scale of the construct. Luecht (2007) described the rules for building task 

models as: 

1. Task models should be incremental–that is, ordered by complexity. 

2. Task models at the same level must reflect conjunctive performance. 

3. Higher performance assumes that lower-level knowledge and skills have been 

successfully mastered. (p. 32) 

When ordered by complexity, task models or task model families (containing between a 

few to several item templates) essentially differ in their location on the proficiency scale (Luecht, 

2013a). This is because they target proficiency claims that are relatively more or less difficult to 
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other task model families on the scale. Figure 1 presents a task model map that illustrates how task 

model families are positioned along the continuum of proficiency.  

The development of the task models, templates, and items can be targeted at different 

points of the difficulty scale proportional to the needed measurement precision (Masters, 2010).  

In terms of quality control, Masters and Luecht (2010) note that items produced using AE are 

engineered to maintain the template and/or task model location (difficulty), such that their 

psychometric characteristics reside within an acceptable degree of variation. They go on to say 

that if the templates are validated through pilot testing, and function along the intended scale of 

difficulty, or that the variation is within tolerable limits, then pre-testing can be relaxed. In other 

words, item families developed using AE-based task models are completely exchangeable or 

isomorphic (Luecht, 2007; Luecht et al., 2010). 

Figure 1. A Task Model Map with Task Model Families, Item Models, and Items 

  

Note. A Task Model Map with Task Model Families Comprising of Item Models and Items. 

From Reconceptualizing Items: From Clones and Automatic Item Generation to Task Model 

Families, by R.M. Luecht and M. J. Burke, 2020. Copyright 2020 by Richard Luecht. Reprinted 

with permission. 
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There are several examples of how task models have been used to develop item families in 

various contexts. Luecht et al. (2009) provided an empirical proof-of-concept of task modeling in 

a large-scale assessment context, using computerized performance exercises measuring accounting 

and auditing simulation problems. The computerized performance exercises were modified 

versions of accounting simulations on a national licensing exam and were reverse engineered to 

create task models. The exercises were reverse engineered with the help of subject matter experts, 

in such a manner as to express their difficulty using cognitive specifications. Complexity scores 

for each computerized performance exercise was determined based on the descriptions provided 

by the content experts and a task model coding schema. Content experts were also asked to provide 

ratings of difficulty for each exercise. Finally, the computerized performance exercises were also 

field-tested in professional accounting schools, where a partial credit model was used to analyze 

the response data. Correlations between these estimates and the complexity scores for the task 

models was 0.92, suggesting an ordered relationship between the AE task models and empirical 

difficulties of the computerized performance exercises. The results also demonstrate the benefits 

of using task models for operational use to develop a large number of items for the licensure exam. 

Task models can be used in place of traditional test blueprints to support operational item 

development with the controlled psychometric characteristics of items. 

Luecht et al. (2010) developed task models for a multidimensional high school algebra test 

and a multidimensional high school reading comprehension test. Task models were developed for 

four diagnostic algebra constructs and four constructs for reading comprehension using the task 

model grammar defined earlier. Their study shows that using task models to replace traditional test 

blueprints can advocate for an “integrated test specification” that can allow items to be written to 

a specific target difficulty.  
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Masters (2010) described a method of using AE and item templates to develop sets of 

extended matching, true-false, and multiple-choice items with statistical characteristics that are 

suited to the needs of a licensure testing program. His study showed that item variants developed 

using AE item templates fit the Rasch calibration/scoring model as well, if not better than items 

developed in traditional ways; the item variants from the same template yield similar classical and 

IRT statistics. One key result of the study was a method to use AE to evaluate the performance of 

item writers over time. 

Luecht (2012b) used AE task model and templates to demonstrate how item family 

hierarchical structures could be used for computer-adaptive testing (CAT). Luecht (2012b) states: 

From a CAT perspective, we need to adapt on the radical features by either selecting 

families having particular combinations of radical attributes or features (Geerlings et al., 

2011) or actually manipulating on the fly those features that would provide the most 

precision at the current, provisional estimate of an examinee’s proficiency score (Luecht, 

2009; also see Bejar et al., 2003). What is apparent is that either conception of an adaptive 

test involves family-based hierarchy of units and fundamentally changes both the nature of 

item selection as well as the nature of the scoring outlined earlier. (pp. 206-207). 

There were also two main findings from this CAT simulation study: 1) random variation 

within item families did not affect IRT scores of examinees as long as the items were randomly 

selected from item families; and 2) conditional covariances between the within family item 

difficulty and item discrimination parameters should be carefully examined to reduce any potential 

residual covariance between them. 

Lai and Gierl (2012) developed AE task models using two cognitive models in mathematics 

and reading comprehension. Only one item template was created for each task model. They used 
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a three-step approach to create item templates: 1) applying relevant features of the task model 

within a given context; 2) applying each feature of the task model to the item template based on 

the context such that all constraints are met; and 3) ensuring that the item template is constrained 

to control non-cognitive effects on difficulty. Fifteen item templates were developed for 

mathematics and reading comprehension. Using their IGOR software, they found that the median 

number of items generated per template was 18, although IGOR generated a total of 10,301 items 

from the 15 templates. They found that mathematics item templates generated more items than 

reading comprehension item templates. Furthermore, they explained some of the benefits of using 

AE to generate items: 1) task models allow the generated items to be explicitly linked to the test 

construct; 2) the items generated from templates based on task models also allow different items 

to test the same set of cognitive features; and 3) AE-based item generation can be used to generate 

large item banks in a systematic manner. 

Statistical Isomorphism within PAD. According to Luecht and Burke (2020), statistical 

isomorphism in the context of task model families means establishing a set of family-level 

parameters that can be used for scoring examinees. They further argue that statistical isomorphism 

only means that items within a family have similar but not identical psychometric characteristics. 

Thus, even though using family-level parameters for scoring purposes does ignore the within 

family variation in item parameters, the variation itself is inconsequential in terms of its impact on 

scores. 

Procedures for calibrating item families are varied in their approach and complexity. For 

example, Bejar et al. (2003) used a three-parameter logistic model to compute the expected 

response function for an item family, averaging the item characteristic curve over all the item 
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instances for the item family. They found that under certain circumstances there was no bias, but 

measurement precision was reduced. 

Sinharay et al. (2003) proposed three approaches for modeling item families in the context 

of the one-parameter logistic or Rasch IRT model. The first approach was the unrelated siblings 

model that assumed independent item response functions for all items within an item family. This 

model ignores item family membership. The model can be expressed as follows: 

 

𝑃)𝑌"# = 1,θ" , 𝑏#0 =
𝑒𝑥𝑝)θ" − 𝑏#0

1 + 𝑒𝑥𝑝)θ" − 𝑏#0
																																						 

 

where 𝑃)𝑌"#,θ" , 𝑏#0 is the probability of success on item j for examinee i, θ" is the latent trait for 

the examinee i, and 𝑏# is the difficulty of item j. For this and subsequent models, the scale 

indeterminacy in the latent trait is addressed by setting the mean of the θs to 0.  

The identical siblings model assumes that all items with the family have identical item 

response functions, and is expressed as: 

 

𝑃)𝑌"# = 1,θ" , 𝑏#$0 =
𝑒𝑥𝑝)θ" − 𝑏#$0

1 + 𝑒𝑥𝑝)θ" − 𝑏#$0
																																	 

 

where 𝑏#$ is the difficulty of item j that is a member of item family g, thus all 𝑏#$s for item family 

g are assumed to be equal. This model therefore represents complete psychometric isomorphism 

among all the items within an item family. Sinharay et al. (2003) stated that the limitation of this 

model was that it failed to account for the variability among the items within a family, providing 

incorrect item parameter estimates. Fay et al. (2018) added that the identical siblings model could 

(1) 

(2) 
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not investigate psychometric isomorphism on its own but could be used together with the related 

siblings model to assess it in limited ways. They describe the related siblings model as one that 

does not assume that all items within a family have the same item response function, thereby 

allowing for some departure from true psychometric isomorphism. Instead, the related siblings 

model is described as having its first component from equation 2 while the second is a hierarchical 

model, that specified a distribution to relate the parameters for tasks from the same family: 

𝑏#$~𝑁 9µ%! , σ%!
! <	 

 

which specifies that each item-specific parameter 𝑏#$	is modeled as varying around a family-

specific mean, µ%!.  

Although these models can be used to calibrate automatically generated items, evaluating 

their psychometric isomorphicity requires additional procedures. Sinharay and Johnson (2005) 

advocated the use of Bayes factors (BFs) to compare the unrelated and related siblings models, 

which would possibly provide evidence in favor of the related siblings model over the identical 

siblings model, since it considers the family structure in the model. However, Fay et al. (2018) 

note that Bayes factors only indicated the presence of psychometric isomorphism versus a 

complete absence of it. Their study attempted to estimate the amount of possible psychometric 

isomorphism in items within a family using a set of statistical and graphical procedures. They go 

on to state several benefits of their approach: 1) requires only one model – the related siblings 

model; 2) allows for separate characterization of psychometric isomorphism for each of the item 

families; 3) can be instantiated differently depending on the number of items within an item family; 

and 4) uses graphical approaches using the IRT model as well as the classical test theory 

approaches to detect isomorphism in multiple choice items. They used BFs to provide evidence in 

(3) 
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favor of invariant items within a family, where BFs of three or larger confirmed psychometric 

isomorphism while BFs of 0.33 or lower indicated non-invariance of items within a family. Their 

study found that BFs were useful for flagging items within a family that were not performing as 

expected. They also found that using multiple sources of evidence - BFs, item characteristic curves, 

and percent of examinees selecting each response option for an isomorphic item that was said to 

be invariant over test forms – was helpful in determining whether items within a family were truly 

psychometrically isomorphic. 

Embretson’s (1999) generalization of the linear logistic test model (LLTM; Fischer, 1973) 

serves as an alternative to the previously discussed item family calibration methods by using linear 

combinations of item features or PAD specifications to predict family-level item parameters 

(Luecht & Burke, 2020). Thus, the item family discrimination and difficulty parameters can be 

expressed as weighted combinations of the item features, where the weights are specified by 

designers of the item models or through empirical research (Luecht & Burke, 2020).  Moreover, 

statistical isomorphism via item modeling efforts resurrected the idea of being able to predict item 

characteristics, especially item difficulty, in a systematic manner, since previous studies had 

directed difficulty prediction of traditionally developed items (Bejar, 1990, 1993; Drum et al., 

1981; Embretson & Wetzel, 1987; Enright et al., 2002a; Mitchell, 1983; Freedle & Kostin, 1993; 

Kostin, 2004).  

More complex approaches towards family-level calibrations involve hierarchical IRT 

models. Glas and van der Linden (2003) developed a hierarchical item response model to deal with 

differences between the distributions of item parameters of families of item clones. They 

demonstrated that task models and/or templates can be calibrated instead of individual items, using 

a hierarchical Bayes framework. In other words, there was one set of parameters estimated for an 
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entire family of items from a task model or template. The advantages of such an approach are: 1) 

less pretesting; 2) robust parameter estimation; and 3) misfit is minimized if the families are well 

formed (Luecht, 2007).  

Geerlings et al.’s (2011) study also applied a hierarchical IRT model for item families 

generated through different combinations of design rules. Items within families were said to differ 

based on their surface features (incidentals; Irvine, 2002). The researchers combined the item 

cloning model (ICM; see Glas & van der Linden, 2001, 2003) and the LLTM for “the expected 

value of the item difficulty parameters for each family.” Using a data-augmented Gibbs sampler, 

the researchers estimated the parameters of the model based on a Bayesian framework. The 

researchers fit three linear item cloning models (LICM) to test hypotheses based on previously 

validated theory concerning item difficulty for non-verbal intelligence tests. The first model was 

a baseline model, containing a different dummy rule for each of the 11 item families created. The 

second and third models were constructed based on two of the design rules supported by theory. 

The three models were compared using the deviance information criterion (DIC). Results showed 

that easier items had larger item discrimination parameters than difficult items. The study indicates 

that the LICM can be applied to automatically generated item families, increasing the cost-

effectiveness of item generation. 

Quality Control Procedures for Task Model and Item Families. Evaluating the 

statistical isomorphism of task models under the AE framework is imperative as it ensures that 

they are functioning as intended. Focusing on task models also means that any random or 

systematic variation occurring within them can be controlled by adjusting the item models (Luecht, 

2012a). Luecht and Burke (2020) argue that statistical isomorphism can be evaluated in three ways: 

1) deviations of task model family characteristics; 2) comparing the expected response functions 
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of family-level characteristics with item level characteristics; and 3) person fit across item families. 

They explain that deviations of task model family characteristics involve examining two types of 

residuals based on the expected response function of the task model family, given by:  

 

𝐸𝑅𝐹(𝜃; 𝜉) = 	𝜋& =	E = 𝑈'𝑃&'(𝜃)
(

')*

 

 

where C denotes score categories, f denotes the task model family, U represents the item response 

score, and P is the probability. 

The first method is to examine the deviations between the ERF and the scored item 

responses (Luecht & Burke, 2020): 

𝜀+ = 𝑢":& −	𝜋&	 

 

where 𝑢":&  is an observed binary item score for an item in task-model family. 

The second method is to compare the deviations between the task model ERF and the 

individual ERF for items within a family (Luecht & Burke, 2020): 

 

𝜀- =	𝜋":& −	𝜋&	 

 

Luecht and Burke (2020) also suggest that evaluating residuals in terms of unconditional or 

conditional means, variances, and covariances can be useful in different ways. They state: 

Unconditional aggregations of the residuals can be useful for general flagging 

purposes relative to empirically based thresholds, tolerances, or expected values. For 

(4) 

(5) 

(6) 
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example, many IRT-based item fit statistics compare the sum of squared residuals to an 

expected variance (Wright & Masters, 1982; Lord, 1980). Conditional statistics can further 

identify item model or item design flaws relative to a proficiency level or for one or more 

examinee or mode-based grouping variables—much like differential item functioning (DIF) 

analyses. (p. 42). 

Finally, they discuss the importance of evaluating statistical isomorphism within the IRT 

framework in terms of person fit – residuals that are aggregated by a grouping variable and possibly 

conditioned on score intervals along the ability scale. They go on to say that issues concerning 

person fit “signal some type of differential interaction between the items and the examinees in the 

focal and referential groups.” (p. 42). Delving further into these results would mean re-designing 

task and item models that may be contributing to the problematic results. They advocate for the 

use of graphical presentations of fit statistics that can effectively visualize aberrance or residuals 

that may be larger than anticipated. When task and/or item models deviate from tolerable limits of 

statistical isomorphism, Luecht and Burke (2020) recommend eliminating those items from 

scoring, but more importantly, emphasize proactivity in terms of rectifying the cognitive 

specifications that drive the task models or the fixed/variable elements of the item models. 

Conclusions from the Literature on AIG and PAD. The literature on AIG and PAD 

describes procedures for generating item families while simultaneously attempting to predict their 

psychometric characteristics. These procedures offer several benefits: 1) mass producing items to 

support the demand for large item banks; 2) reducing the sample size needed to calibrate stable 

item parameter estimates; 3) rapid assembly of test forms for low and high stakes testing; and 4) 

calibrating item families, using family-level parameters for scoring purposes.  The literature also 

highlights the importance of developing and using analytical and investigative mechanisms to 
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ensure that task and/or item models are working as intended. However, these studies do not delve 

into exactly how much variation can be tolerated within item families before the task or cognitive 

models on which they were based are rendered ineffective.  

Bejar et al. (2003), Shu et al. (2010), Luecht (2012b) have addressed the topic of variation 

within item and task model families, but ultimately left an important question answered: how much 

variation matters? Specifying the magnitude of variation within item families and examining their 

impact on scores provides important information. First, it can help set exact tolerances or limits of 

variation within item families, which can support task and item model development. For example, 

if a variation of 0.2 within item families has negligible impact on scores versus a variation of 0.5, 

then task model and item families can be designed to maintain a variation of 0.2 or lower. It would 

still require QC mechanisms to ensure that the items within the family do not exceed the 0.2 limit, 

but understanding how much variation can be ignored provides concrete guidelines for QC. 

Second, examining the differential quality of item families on scores can locate where along the 

score scale would the error be at its maximum. In other words, would a variation of 0.5 impact 

scores in the middle of the proficiency scale or at the tail ends or both?  

Understanding exactly how much variation within item families impacts scores and to what 

extent scores along the scale are affected, helps researchers more accurately anticipate the 

consequences of such variation as opposed to merely hypothesizing them. Moreover, using modern 

approaches as a substitute for traditional methods of item and test development proves useful not 

only when they overcome their limitations, but also maintain, if not, improve score precision. Since 

the literature thus far has not adequately answered these questions, the present study aimed to 

address this gap by examining the impact of specific variation within item families on scores. 
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The next section deviates from item families altogether to examine on-going item 

generation and estimation of item difficulty without the need for pretesting. These studies utilize 

large language models and machine learning techniques to achieve this form of test development. 

On-the-fly Generation of Items with Predicted Item Characteristics 

While AIG and PAD focus on generating families of items, the third and final modern 

approach towards item development involves on-the-fly item generation, producing new items 

with an estimated difficulty that completely bypasses the need for pretesting. Obtaining the 

estimated difficulty of items can be achieved by using the Linear Logistic Test Model (LLTM; 

Fischer, 1973), where difficulty is decomposed into a linear combination of item features that are 

determined to impact it. Several studies have used the LLTM and other regression-based 

approaches to predict item difficulty in the areas of language testing, mathematics reasoning, and 

cognitive abilities. They are briefly discussed below. 

A Brief Overview of Research in Item Difficulty Modeling (IDM). Perhaps one of the 

earliest applications of Fischer’s (1973) LLTM was Embretson and Wetzel’s (1987) study on 

paragraph comprehension. The researchers expanded the work of Drum, et al. (1981) by proposing 

the component latent trait model for paragraph comprehension multiple-choice items, drawing 

from Kintsch’s (1998) construction-integration (CI) model. In general, the component latent trait 

model involves two stages – text representation and response decision - and underlying cognitive 

processes of encoding, coherence, and integration for one or both stages. Text representation 

involves comprehension of the text while response decision involves comparing the question stem 

and alternatives to the text itself.   Encoding and coherence in the text representation stage involve 

converting visual stimuli into meaningful representations and integrating interpretation of the text 

with other facts and inferences, respectively (Embretson &Wetzel, 1987). The decision process 
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also includes encoding and coherence, which concern the questions associated with the text, 

specifically, making meaningful representations of the alternatives, mapping the alternatives back 

to the text, and evaluating the truth behind the alternatives (Embretson & Wetzel, 1987). The 

researchers investigated the effects of surface variables examined in Drum et al.’s (1981) study as 

well as the component latent trait model on the difficulty of 75 reading comprehension items in 

the Armed Services Vocational Aptitude Battery (ASVAB). The Linear Logistic Latent Trait 

Model (LLTM; Fischer, 1973) was used to analyze several cognitive models of item difficulty. 

The results suggested that the item feature predictors over passage feature predictors influenced 

item difficulty at the text representation stage.  

Gorin (2005) applied the LLTM to experimentally manipulate reading comprehension 

items generated based on ETS’s Graduate Record Examination’s (GRE) verbal measure. The 

experimental conditions under which the items were generated and tested were driven by 

Embretson and Wetzel’s (1987) work. More specifically, the experimental manipulations were 

based on passage propositional density and syntax modification; passage passive voice and 

negative wording modification; passage order of information change; and response alternative-

passage overlap change. The results revealed that manipulation of some passage features increased 

item difficulty while others did not. For example, an increased use of negative wording increased 

item difficulty in some cases while altering the order of information presented did not affect 

difficulty. While experimental manipulations of several cognitive features did not yield significant 

results, this study proved that algorithmic changes in cognitive features can impact item difficulty. 

Several other studies used regression methods to explain variance in item difficulty of 

language assessment items. Drum, et al. (1981) proposed a framework that included passage and 

item features that could predict reading comprehension item difficulty. They identified four 
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structural components of reading comprehension assessments – passage, question stem, correct 

answer, and distractors. Using several stepwise multiple regression analyses, the study found that 

plausibility of the distractors explained about 70 percent of the variance in item difficulty. Freedle 

and Kostin (1993) argued that 70 percent of the variance in item difficulty is misleading because 

of the apparent flaws in the stepwise regression analyses. They state that two or three predictors 

instead of the ten identified in Drum et al.’s (1981) study would have been sufficient based on the 

small sample of items (20-36) from which they were extracted. Drum et al. (1981) also highlighted 

differences in item difficulty for younger versus older readers. They found that predictors such as 

word recognition and word meaning in passages made items more difficult for younger readers 

than older readers.  

Freedle and Kostin (1993) explored the role of text and text-related variables in predicting 

the difficulties of reading comprehension items from the Test of English as a Foreign Language 

(TOEFL). The items sampled for this study pertained to main idea, inference, and supporting 

statements. The purpose of the study was to examine whether twelve categories of variables 

identified based on experimental literature affected reading item difficulty. The twelve categories 

are negations, referentials, fronted structures, vocabulary, rhetorical organization, location of 

relevant information, lexical overlap, sentence and paragraph length, number of paragraphs, and 

abstractness of text. The researchers used 213 items from 20 test forms of the TOEFL. The item 

difficulty measure used was the equated delta based on a sample of 2000 examinees. Results from 

stepwise regression analyses found that lexical overlap, sentence length, paragraph length, 

rhetorical organizers, negations, referentials, and passage length accounted for nearly 58 percent 

of the variance in item difficulty. 
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Kostin (2004) investigated the effects of 49 variables - nested within three categories 

(word-level, sentence-level, and task-processing variables) - on the difficulty of TOEFL dialogue 

items. Dialogue items are essentially listening comprehension items wherein examinees listen to a 

recorded conversation between two people and answer multiple-choice questions regarding the 

conversation they heard. The item difficulty measure used in this study was the equated delta, 

wherein higher values are associated with more difficult items and lower values with easier items. 

Results of the multiple regression analyses revealed that the variables identified explained about 

40 percent of variance in the item difficulty of the dialogue items.  

Gorin (2011) study also used regression analysis to evaluate the contribution of nine item 

features towards complexity of 33 sentence-recall tasks. The predictive value of the nine item 

features had an R squared of 0.56 with a sample of 151 students. Adjusted R squared of 0.33 were 

found when Gorin regressed the nine item features on the effect sizes for each of the 33 sentence-

recall tasks. Although this study was conducted a few years after the studies on paragraph 

comprehension items, when advances in artificial intelligence could support the quantification of 

text analysis, the R squared or explained variance in item difficulty remained quite low. This 

seemed to be the case even though sound cognitive models were used to identify item features that 

affect complexity. These results raise two questions: are the cognitive models flawed in some 

capacity? Or are linear regression approaches inappropriate for analyzing cognitive complexity of 

language? 

Susanti et al. (2017) investigated factors that affect item difficulty of multiple-choice 

English vocabulary questions. Three factors – reading passage difficulty, semantic similarity 

between correct answers and distractors, and distractor word difficulty level – were examined for 

their contributions to item difficulty of the vocabulary questions. The researchers automatically 
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used various combinations of the three factors to automatically generate 120 vocabulary items 

modelled after items used on the TOEFL. These items were administered to English language 

learners, grouped by their standardized English proficiency score. A one-way ANOVA was used 

to test for significant differences between the mean difficulties of items classified according to the 

three factors. The results showed that distractor word difficulty level had the most significant 

impact on item difficulty. 

Mathematics and Quantitative Reasoning. Other extensions of the LLTM have been 

applied to the domain of mathematical problem solving and reading comprehension. Embretson 

and Daniel (2008) highlight the advantages of the using LLTM - “elaborating construct validity at 

the item level, defining variables for test design, predicting parameters of new items, item banking 

by sources of complexity and providing a basis for item design and item generation.” (p. 328). 

Even though the LLTM was meant to serve an explanatory purpose – linking cognitive features to 

item difficulty - it has not been fully leveraged to explore this further (Embretson, 1999; Embretson 

and Daniel, 2008). Thus, in their study, Embretson and Daniel (2008) modified earlier cognitive 

models on mathematical problem solving, proposing five stages of cognitive processing – 

encoding, integration, solution planning, solution execution, and decision. They identified 12 

variables across the five stages that affected cognitive complexity. They used both LLTM and 

regression models to investigate the impact of quantifying cognitive complexity in mathematical 

solving problems on item difficulty. The results suggested that two out of the 12 variables had a 

statistically significant impact on item difficulty using regression analysis, while the LLTM 

showed eight out of the 12 variables had a statistically significant impact on difficulty. Moreover, 

standard errors for the model coefficients were much smaller for the LLTM than the regression 

model coefficients. 
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Daniel and Embretson (2010) further investigated the impact of the cognitive variables 

identified in Embretson and Daniel (2008), specifically, source of equation and number of subgoals 

on item difficulty by intentionally controlling for these features in item design. The source of the 

equation and number of subgoals correspond to the encoding and solution planning stages of their 

earlier study. They used the LLTM and 2PL constrained model, and a linear mixed modelling 

procedure to examine the effects of these cognitive variables on item difficulty. Results from all 

three models suggest that when equations are provided in the item, the solution planning stage is 

straightforward, causing items to be less cognitively complex. When the equation is not provided 

in the item, the solution planning stage becomes more cognitively complex, involving more steps 

to arrive at the solution. Thus, items without the presentation of an equation are significantly more 

cognitively complex than those with the equations. 

Several studies were also conducted on IDM using different items from the quantitative 

reasoning section on the GRE. For example, Sebrechts et al. (1996) conducted detailed analyses 

of solutions to 20 algebra word problems administered on the GRE quantitative reasoning section. 

The problems were classified based on their attributes – problem complexity, need to apply 

algebraic concepts, and problem content. Regression analyses revealed that these attributed 

accounted for 37 to 62 percent of variance in item difficulty. Moreover, four solution strategies 

were identified – equation formulation, ratio setup, simulation, and other approaches. It was 

observed that students with high math ability used more equation strategies and fewer unsystematic 

approaches than students with low math ability. Deane et al. (2006) studied items that assessed 

linear equations and simple rational equations. They found that two-equation problems were more 

difficult than one-equation problems. Enright & Sheehan (2002b) investigated variables that could 

be attributed to item difficulty of arithmetic and algebra problems. They found that rate problems 
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increased in complexity when an additional constraint was introduced. Moreover, with regards to 

problems that required less than three steps to solve them, those that had mathematical keys were 

more difficult than those whose keys were a quantity. 

Cognitive Abilities. Hornke and Habon (1986) developed classification system of cognitive 

operations for abstract reasoning items derived from cognition research on matrix items. The 

primary objective of this study was to use 14 cognitive operations in item development and 

subsequently evaluate their impact on Rasch item difficulty. Using this classification, 616 items 

were generated and presented in 35 smaller tests of 24 items each.  A multiple regression model 

was used, where the Rasch difficulty estimate as the dependent variable and the item design 

features as independent variables. The classification system predicted the difficulties for the 

generated items quite well (R = .65).  

Bejar (1990) explored generative approach of psychometric modeling of three-dimensional 

spatial rotation items by manipulating the angular disparity between two figures. Angular disparity 

was linked to psychometric difficulty in this study as previous literature had found that it impacted 

the item response time and correctness. A three-dimensional rotation test consisting of 80 items 

was constructed and administered to high school students. Both response and response-time data 

were collected. A dichotomous IRT model was modified to model response latency, thus, 

expressing the response as a proportion of the total time taken to respond to an item. The findings 

did confirm that angular disparity contributed to item difficulty and go on to suggest that the 

modified measurement model used is practically feasible. In other words, the approach of 

incorporating information of how examinees are likely to solve items into the measurement model 

widespread applications to psychometric modeling. Moreover, empirically verifying item features 
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that contribute to its difficulty implies that a generative approach towards item development can 

produce items with predicted psychometric characteristics. 

Embretson (1998) used Carpenter et al.’s (1990) processing theory to determine item 

stimulus properties that could be manipulated to control the item difficulty of abstract reasoning 

items. Based on the processing theory, which states that generating and evaluating relationships 

across rows and columns of matrix problems, utilizes working memory and abstraction capacity 

to solve items. An increase in working memory capacity is needed to correctly answer an item 

when the numbers and levels of relationships also increase. Item structures were developed to 

account for the different combinations of the number and level of relationships. They were then 

used to generate individual test items using 22 objects and seven attributes. A proportion of .773 

explained variance in item difficulty was attributed to the item structural model. As far as the 

cognitive processing theory was concerned, the study found that working memory capacity 

contributed significantly to item difficulty and response time, with a proportion of .71 explained 

variance in item difficulty.  

In summary, the findings from the IDM literature vary in their extent to predict the 

difficulty of items, depending on the content domain. However, the studies that found higher 

proportion of variance explained in difficulty did not go on to evaluate the impact of the predicted 

difficulties on test scores. The very purpose of controlling difficulty is to ensure that items or item 

families operate in predictable ways. If this has been successfully established through experimental 

design and hypothesis testing, then these predicted item parameters can be used for scoring 

purposes. 

Recent Developments in the Field of Computational Linguistics. With the latest 

advancements in machine learning and language models, the field of computational linguistics has 
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produced some research concerning on-fly-generation of items with estimated difficulties. Two of 

these studies, reflecting research at Duolingo, investigate the automatic generation of items and 

tests using a combination machine learning and NLP models. The first study, Settles et al. (2020) 

discussed in Chapter I, attempted to solve the “cold start” problem in language test development 

by using machine learning and natural language processing to automatically produce reading, 

writing, listening, and speaking tasks. They also used linguistic models to estimate the difficulty 

of these tasks.  

The second study by McCarthy et al. (2021), developed a multi-task generalized linear 

model with Bidirectional Encoder Representations from Transformers (BERT) to “jump-start” 

item difficulty estimates of newly developed items for a high-stakes English proficiency test. 

Although Settles et al. (2020) described the automatic estimation of item difficulty from linguistic 

features of the CEFR difficulty scale to solve the cold-start problem, McCarthy et al. (2021) sought 

to use direct supervised learning of item difficulties from test takers. They combined IRT 

approaches with the work of Settles et al. (2020) to develop a single model that produces a priori 

estimates of difficulty to guide pilot testing and “jump-start” difficulty estimates of new items that 

are similar to existing items. The study used “BERT-derived passage embeddings to facilitate 

strong generalization to new test items.” (p. 884).  They also created an item-split dataset, where 

they randomly sampled 3% of items, and held out on sessions where at least one of those items 

were administered - approximately 20% of sessions. The remaining sessions were used for 

training. In the evaluation phase of the item-split experiments, they only evaluated results on the 

held-out items and not the entire sessions. The results of their study demonstrated that 3,000 pilot 

item administrations were adequate for good performance with a large item bank, whereas the 

2PL-IRT model required 200 times as many administrations to achieve similar performance. They 
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also showed that the BERT Linear Logistic Test Model (LLTM) item parameter estimates 

generalize well even for new items that have not yet been piloted. Thus, their model demonstrated 

that it improves upon the performance of Settles et al. (2020) by incorporating test-taker response 

data and matches the 2PL-IRT to a large extent. 

Overall Conclusions from the Literature Review 

The objective of this literature review was to synthesize the work that has been done thus 

far in both traditional and modern methods of item and test development while highlighting gaps 

in this literature, some of which the present study intended to address. The research conducted on 

AIG, PAD, and on-the-fly generation of items and their estimates of psychometric characteristics, 

has attempted to address the limitations of traditional item and test development. These studies 

usher in a new way of thinking of how items and tests can be developed. While these studies went 

to great lengths to tackle the limitations of traditional item and test development, they were also 

accompanied by their own challenges – challenges unique to these approaches that must be 

addressed if they are to become the mainstream ways of designing tests for the 21st century. The 

literature also prioritized research questions that focus on what modern approaches are and how 

they work over when and how they impact scores. A possible reason for this is because there is no 

consensus amongst experts in the field with regards to the best method for developing and 

calibrating item families while verifying their quality. The calibration method of choice largely 

depends on the goal of calibration and the willingness to accept the trade-offs that accompany it. 

Another possible reason for a lack of guidelines that support statistical QC of these item 

families is that more research is needed to support a set of procedures to achieve this. Traditional 

methods have seven decades of research to support their procedures whereas modern approaches 

have at best three decades of fragmented research that individually approaches these issues instead 



 51 

of more collective approaches. The literature is also limited in their discussions on how the various 

item generation and family calibration methods impact scores beyond correlations with other tests 

or operational item characteristics. The research thus far has also approached item family 

generation and isomorphicity, calibration of item families, and prediction of their psychometric 

characteristics as separate but related topics. The works of Bejar et al. (2003), Embretson (1998, 

1999, 2006, 2008, 2010, 2018), Luecht (2009, 2012a, 2012b, 2013), and Shu et al. (2010) 

attempted to address these issues together but leave the question of variation within item families 

largely unanswered. The fact that these studies even exist suggest that further investigation of the 

quality of item families and how predicted item parameters can affect scores is worth exploring. 

Thus, more research is needed to: 1) determine appropriate calibration strategies of item families 

in different contexts; 2) examine variation of items within families and determining acceptable 

tolerances of variation in item characteristics; 3) assess the impact of using different variations of 

isomorphic items on scoring; and 4) evaluate the impact of on-fly-estimates of item characteristics 

on scoring. The present two-part study intended to take a step forward in this direction in an attempt 

to address all four of these issues. 
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CHAPTER III: METHODS 

This chapter provides an overview of the study design conditions, data generation, and 

simulation process for a two-part study that extends the previous work of Shu et al. (2010) and 

Bejar (1983). As discussed in Chapter I, there are three approaches to modern item development 

– reverse engineering a parent item using AIG, cognitive modelling of item instances, and 

generating items on-the-fly using machine learning and NLP methods. The methods outlined in 

Part A of this study address the first two approaches by examining the quality control and impact 

of variation within task model families on test scores. Part B discusses methods that address the 

third approach of modern item development (on-the-fly item generation using NLP methods) by 

examining the quality of item difficulty predictions and the effects of prediction errors on test 

scores. An overview of the methods in Parts A and B is provided in Table 1. 

Table 1. Overview of Methods used in Part A and Part B 

Variables/Evaluation 
Measures 

Part A Part B 

Test length 25, 50, 75 items 25, 50, 75 items 
Calibration Strategy (CS) CS1 – calibrating the task 

models 
CS2 – calibrating the 

individual items 

- 

𝑅! - 0.9, 0.8, 0.7, 0.6, 0.5 
Evaluation Measures Root Mean Square Deviation 

(RMSD) 
Bias 

Root Mean Square Error 
(RMSE) 

Conditional residual analysis 

Bias 
Root Mean Square Error 

(RMSE) 
Conditional residual analysis 

including person fit 
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Part A 

 The first part of this study was based on Shu et al.’s (2010) study, which examined 

the role of QC and QA (quality-assurance) in a multidimensional formative assessment framework. 

The study was a large-scale simulation that involved multiple sources of potential variation for the 

multidimensional formative assessments of two test lengths – 8 and 20 items per trait, levels of 

item discrimination or subtest reliability, the quality control over items written to AE task model 

and template specifications (no variance within task model, moderate variance of templates within 

task models, and variance of both items and templates within task models, and the quality of test 

forms across seven proportional mixtures of items drawn from various item pools). The present 

study serves as a replication and extension of Shu et al.’s (2010) QC study by examining exactly 

how much variation matters within task model families without impacting scores.  

This study considered a unidimensional summative achievement test that would be 

typically administered at the end of the school year, to assess mainstream students’ performance 

on learning goals, objectives, and grade-level competencies as determined by states across the 

United States. Dichotomous responses were generated using the three-parameter IRT logistic 

model. The task models, templates, and items that were used in the simulations, were represented 

by various distributions of item discrimination parameters and item difficulty parameters. Test 

forms of three test lengths, 25, 50, and 75 items, were assembled based on a systematic selection 

of items generated under three variation conditions, low, moderate, and high, in various mixtures. 

For each test length, there were three pools of items that vary in terms of the quality of item 

parameters. Assembling test forms from different mixtures of these variation conditions allowed 

them to represent a comprehensive range of quality. 
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Item Pool Generation for the Simulations 

The item responses were simulated using the IRT three-parameter logistic model (3PLM) 

to generate dichotomous response data: 

𝑃)𝑢" = 1, 𝜃# , ξ𝑖0 = 𝑐" +
1 − 𝑐"

1 + 𝑒𝑥𝑝K−𝐷𝑎")𝜃# − 𝑏"0N
	 

where 𝑎" denotes the item discrimination, 𝑏" is the item difficulty, 𝑐" refers to the lower asymptote 

(𝑐" 	= 	𝑐	 = 	0.15),	and θ is a proficiency score for j = 1,….., N examinees. 

Three test lengths were considered in this study – 25, 50, and 75 items. The construct was 

measured by a well-defined cognitive test specification called a task model map (Luecht et al., 

2010). The task model maps for the three tests are presented in Figure 2. Only one item was 

administered per task model (based on the test length). The test lengths were chosen to represent 

short, moderate, and long summative tests such that each would be long enough to provide 

acceptable validity evidence for the construct (Shu et al., 2010). 

Figure 2. Task Model Maps for 25-, 50-, and 75-Item Tests 

 

(7) 
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Item pools from three variation conditions were developed for each test length, 

representing low, moderate, and high variation, respectively. Thus, there were a total of nine item 

pools. Each pool consisted of n × 30 items, where n is the number of task models (n = 25, 50, or 

75 task models). The 30 replications of each task model consisted of three templates generated for 

each task model and ten item replications generated for each template. For the n = 25 task models, 

there were 750 items for each of the three variation conditions: i) 25 × 3 templates and ii) 10 

replications or items from each template. Similarly, there were 1500 items for n = 50, and 2250 

for n = 75 task models, respectively as presented in Table 2.  

The differential variation within task model families was based on low, moderate, and large 

conditions used in previous literature (Bejar et al., 2003; Luecht, 2013c; Chen & Choi, 2023). 

However, the exact magnitude of variation for each condition was modeled after the standard 

errors of actual item parameter estimates from an end-of-grade (EOG) test, by varying the sample 

size for calibration. For example, when the 3PL model was used to calibrate a sample size of 300 

examinees, the average standard error of estimates was found to be 0.5, thus providing the worst-

case scenario.  When the sample size increased to about 800 examinees, the average standard error 

of item parameter estimates was approximately 0.2, indicating relatively moderate variation 

compared to the large variation condition. Finally, a sample size of 3000 examinees or more 
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resulted in the average standard error of item parameter estimates being less than 0.1, forming the 

low variation condition. Varying the calibration sample size was carried out to reflect practical 

settings where obtaining large samples is not always possible, thereby causing the standard error 

of item parameters to fluctuate accordingly.  

Since the AE framework involves a three-step item-family generation process, task models, 

item models or templates, and then the items themselves, the task models were generated first. The 

task models were sampled from target distributions of:  i) item discriminations, 𝑎& ~ N(μaf  = 1.3, 

σaf = 0.3);;  ii) item difficulties, 𝑏& ~ N(μbf = 0,  σbf = 1); and iii) the pseudo-guessing or lower 

asymptote parameters, 𝑐& = 0.15. Each set of task model parameters were then used to generate 

three item models, using the same means as the task models, but with a standard deviation of 0.1, 

for both the item discriminations and item difficulties, thereby showing slight variation between 

the templates within a task model family. The item parameters for the 10 items generated from 

each of the three item templates were constrained to be equal to achieve the lowest possible 

variation within item families. Thus, the low variation condition contains item families generated 

from extremely well-constructed task models and templates, with minimal variation within them. 

This process was repeated for all three test lengths so that 25 (50, or 75) sets of task model 

parameters, 3 sets of item template parameters, and 10 items within each item template were 

generated. 

The moderate variation condition generated task model parameters sampled from target 

distributions of:  i) item discriminations, 𝑎& ~ N(μaf  = 1.3, σaf = 0.3);;  ii) item difficulties, 𝑏& ~ 

N(μbf = 0,  σbf = 1); and iii) the pseudo-guessing or lower asymptote parameters, 𝑐& = 0.15. Like 

the low variation condition, the task model parameters were used to generate the item model 

parameters, using a standard deviation of 0.2 for the item difficulty and item discrimination 
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parameters, introducing moderate variation in the item characteristics for each template associated 

with a given task model. This implies flaws in item template design perhaps in terms of cognitive 

skills or knowledge within a particular task model. The item template parameters were used to 

generate the item parameters for individual items within them, once again constraining them to be 

equal since the design flaws are restricted to the item template level for the three test lengths. 

Finally, the high variation condition sampled from target distributions of: i) item 

discriminations, 𝑎& ~ N(μaf  = 1.3, σaf = 0.3);;  ii) item difficulties, 𝑏& ~ N(μbf = 0,  σbf = 1); and iii) 

the pseudo-guessing or lower asymptote parameters, 𝑐& = 0.15. This condition introduced variation 

in the item parameters for the templates and the items associated with each template. It also 

represented poorly constructed AE task models and templates, with very little quality control 

during item writing with respect to the item difficulty. For all three test lengths, the means of the 

task models and a standard deviation of 0.5 for the item difficulty and item discrimination 

parameters were used to generate the item templates. The resulting item template parameters were 

then used to generate significantly flawed item families with a variation of 0.5 in item difficulty 

and item discrimination distributions. Thus, the high variation condition represented the worst-

case scenario – flawed task models, item templates, and items.  

 

 

 

 

 

 

 



 

 58 

58 

Table 2. General Item Pool Characteristics 

Characteristics of Item 
Pools Low Variation Moderate Variation High Variation 

Number of Task Models 
for each test 25 50 75 25 50 75 25 50 75 

Number of Replications 30 30 30 30 30 30 30 30 30 

Number of Templates 75 150 225 75 150 225 75 150 225 

Number of Items 750 1500 2250 750 1500 2250 750 1500 2250 
Within TM Variation in a 

parameters 0.10 0.10 0.10 0.20 0.20 0.20 0.50 0.50 0.50 

Within TM Variation in b 
parameters 0.10 0.10 0.10 0.20 0.20 0.20 0.50 0.50 0.50 

Within Template 
Variation in a parameters 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.50 

Within Template 
Variation in b parameters 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.50 

 

Test Form Assembly 

There were seven different quality conditions representing different mixtures of items from 

drawn from the nine item pools of varying item quality. Table 3 presents a summary of the seven 

test-assembly conditions. Using the 25-item tests as an example, condition I required 100 percent 

of items to be selected from the low variation pool. This condition represents a best-case scenario 

wherein the item characteristics vary only in terms of intended task model difficulty. Conditions 

II required 75 percent of items to be selected from the low variation pool and 25 percent from the 

moderate variation pool. Conditions III to VI required a majority of items to be selected from the 

moderate and high-variation pools to assemble test forms representing sub-optimal conditions 

from an AE perspective. Finally, condition VII represented the worst condition, where task models 

and templates have been poorly designed from an AE perspective. There were 30 replications or 

test forms of 25, 50, and 75 items at each of the seven test assembly conditions. Thus, 210 25-item 

tests, 210 50-item tests, and 210 75-item tests from low, moderate, and high variation pools, 
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respectively. Furthermore, there were a total of six hundred and thirty test forms assembled and 

administered to examinees drawn randomly from a univariate normal distribution. Both the test 

form generation and assembly were developed using R-programming (R Core Team, 2022).  

Table 3. Test Form Assembly Conditions 

 Item Pools 
Condition Low Variation Moderate Variation High Variation 

I 100% 0 0 
II 75% 25% 0 
III 25% 75% 0 
IV 0 100% 0 
V 0 75% 25% 
VI 0 25% 75% 
VII 0 0 100% 

 

Response Data Generation 

The response data were generated by sampling the item parameters from a particular pool 

as described above to create a 25- or 50- or 75-item test form matching the task model 

specifications. The actual simulation of response data followed the routine procedures outlined in 

most unidimensional IRT studies. The item pools consisted of I items with parameters ξ" = (𝑎" , 𝑏" , 

𝑐", i=1,…,I. The item parameters were sampled from the different variation conditions as described 

above to create a 25- or 50- or 75-item test form matching the differential variation of task models. 

The target distributions from which the item parameters were sampled are: i) item discriminations, 

a ~ N(µ., σ.);  ii) item difficulties, b ~ N(µ%, σ%);  ); and iii) the pseudo-guessing or lower 

asymptote parameters, c = 0.15 (as defined in Shu et al., 2010), where N denotes the Gaussian 

normal distribution.  These sample item pool parameters were used in equation 7 to generate 

dichotomous response data (0 = incorrect, 1 = correct) for the entire pool of items, given that the 

sample proficiency score  θ ~ N((µ/ 	= 	0, σ/	 = 	1). Using (7), the “true score” for each item can 
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be obtained i.e.,  𝑃"#, using ξ" and θ#  (i=1,…,I items and j=1,…,N examinees). Next, a uniform 

random real-valued number was generated within the interval 0 ≤ π"# ≤ 1. If 𝑃"#≥ π"#, the scored 

item response was set to u"# 	=1, otherwise u"#= 0. Two data sets were generated for each test form. 

The sample calibration data sets had N = 1500 examinees completing each test form and one 

scoring data set was generated, N = 1000 response vectors for each test form. The calibration data 

set was used to estimate item parameter estimates under each of the two calibration strategies while 

the scoring data set was used to obtain estimates of θ# using the item parameter estimates from the 

calibration data set. 

Calibration Strategies (CS) 

There were two calibration strategies that were used to calibrate each of the 630 datasets: i) 

CS1 calibrating the 25, 50, and 75 individual task models; and ii) CS2 calibrating the 750, 1500, or 

2250 items individual items, ignoring the family of items per template.  Only two calibration strategies 

were used in this study as opposed to the three in Shu et al.’s (2010) study, which included calibrations 

of the templates. Calibration of the templates were not considered because the results of their study 

found that calibration of templates and calibration of individual items performed equally well even for 

the worst test assembly conditions V, VI, and VII.  

For the task model calibrations, the data consisted of 25, 50, or 75 response columns, one for 

each of the task models associated with the different test lengths. For the individual item calibrations, 

the datasets were calibrated separately, and the item-level statistics were used to score the simulated 

examinees. 

Calibrations and Scoring 

Calibrations using the strategies mentioned in the previous section was performed in flexMIRT 

3.6.4 (Vector Psychometric Group, 2021) using the three-parameter logistic model (3 PLM) from 

Equation 7. Scoring was performed on the separate scoring data sets (where scoring depends on 
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previously calibrated IRT item statistics) using flexMIRT 3.6.4 (Vector Psychometric Group, 2021). 

While the flexMIRT software offers four scoring methods – maximum likelihood (ML) scoring, 

summed score to expected a posteriori (EAP) conversion table, Bayes expected a posteriori (EAP) 

score, and maximum a posteriori (MAP) scores, only the Bayes EAP method and its associated 

standard error was used in this study, using the 3 PLM item parameter estimates obtained from the 

calibration data. 

Data Analysis  

The focus of this study is to establish how much variation matters within task model 

families without impacting scores. Thus, this study used the indicators described in subsequent 

sections as quality control statistics within the context of AE.  

QC Indicators using Variation of IRT Statistics 

The variation of item statistics within task model families, across the seven test assembly 

conditions, and the two calibration strategies warrants an evaluation of item fit under these 

different conditions. This can be achieved by using the root mean square standard deviation 

(RMSD): 

𝑅𝑀𝑆𝐷	 = 	V
∑ )𝜉X12 − 𝜉X12"0

!3
")*

𝑛  

 

where 𝜉X1 refers to the IRT 𝑎" , 𝑏" , 𝑎𝑛𝑑	𝑐" parameter estimates from flexMIRT and h and ℎ4 denote 

the calibration strategies, CS1 and CS2.  

QC Indicators for Assessing Impact of Item Quality on Examinee Scores 

The calibrated three-parameter IRT estimates was used to score each of the 1000 examinees 

and the resulting score estimates was compared to the generated proficiencies, θ#. The response 

vectors for these 1000 examinees were generated for each of the thirty test forms under the 

(8) 
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different simulation conditions, and subsequently scored using the item parameter estimates from 

the two calibration strategies CS1 and CS2 for the same set of conditions. Thus, each simulated 

examinee was scored twice, using the two calibration strategies, having two sets of scores: i) the 

first set of scores was based on the task-model calibrated item statistics; and ii) the second set of 

scores was based on the individual item statistics. The individual residual error estimate for each 

simulated examinee, j = 1,…., N, on a given test can be expressed as: 

𝑒# = θ\# − θ#																																																																																																																														(9) 

where θ5]  denotes the EAP estimate using the 3 PL model with item parameter estimates 

from each of the two calibration strategies i.e., calibration estimates from the task models and 

individual items. The residuals indicate the measurement of error, where the expected value of the 

residuals should ideally be 0. If the expected value of the residuals is non-zero, then θ5]  will contain 

bias, expressed as: 

𝑏𝑖𝑎𝑠 =
1
𝑁E𝑒#

6

#)*

 

Negative and positive bias indicates an underestimate or overestimation of θ# (the true 

proficiency score), respectively. Another QC indicator associated with residual error is the Root 

Mean Square Error (RMSE), defined in this study as: 

𝑅𝑀𝑆𝐸 = `
1
NEe7!

8

7)*

 

RMSE is the square root of the mean square error or in the case of this study, the average 

standard error of the estimate, given that θ# are known. The RMSE was used to compare the true 

(10) 

(11) 
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theta to the estimated thetas under the different study conditions, with smaller values being 

desirable. 

Finally, a conditional residual analysis (Luecht, 2016) was conducted to compare the two 

calibration strategies, using the conditional standard error of measurement (CSEM), which are 

proportional to the test information function (TIF): 

 

σ)𝜃\9,θ90 = 𝐶𝑆𝐸𝑀)θ\,θ0 = [𝑇𝐼𝐹(θ)]:1 

Based on Equation 12, it then makes sense to normalize the differences in calibration 

strategies 1 and 2 (CS1 and CS2) relative to the pooled CSEM. The conditional standardized 

difference function or the normalized difference becomes: 

δ9 =
µ)θ\9,(<#0 − µ)θ\9,(<$0

iσ:!)θ\9,(<#,θ9,(<#0 + σ:!)θ\9,(<$,θ9,(<$0
 

where the denominator is the pooled conditional standard error of estimate, averaged over the 

response patterns. The proficiency scores, θs are subscripted as CS1 and CS2 to represent the two 

calibration strategies that were used in this study. Luecht (2016) describes conditioning on the raw 

scores, X, as serving two purposes: 

First, it provides a readily interpretable score metric that can be understood by both 

psychometricians and non-psychometricians. Second, it is directly applicable to various 

types of raw-score-to-scale score look-up tables used by many testing programs. [Note that 

these procedures also readily extend to transformations of the estimated θ scores.] (p. 1) 

The conditional normalized difference functions and plots of the normalized difference 

along the raw-score scale depict a clear picture of where along the raw-score scale the differences 

in the calibration strategies would occur. The plots present the normalized differences for the 

(12) 

(13) 
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range, |𝛿9 | ≤ 0.2 Luecht (2016) explains, “empirical experience has shown that a criterion absolute 

value of less than 0.2 typically precludes nontrivial score or classification differences.” (p. 1). 

The conditional residual analysis indicates the extent of the differences between the two 

calibration strategies in terms of their impact on scoring.  [Note: also see Luecht & Ackerman, 

2018 for an expanded discussion of residual analytics from simulation studies.] 

PART B 

The second part of this study addressed the claim made by Bejar (1983) that there needs to 

be an explained variance of 0.8 (𝑅! = 0.8) in predicted difficulties for these estimates to substitute 

the empirical difficulties in scoring examinees. The Part B study examined how good the predicted 

difficulties need to be for IDM research to provide useful enough estimates to tackle examinee 

scoring and potential person (mis)fit. Different degrees of prediction in item difficulty parameters 

were generated at  𝑅! of 0.9, 0.8, 0.7, 0.6, and 0.5 and used to score response data from simulated 

examinees generated from a target distribution of the three-parameter logistic model parameters.  

Item Parameter Generation for the Simulations 

The item parameters generated for the simulations were based on the three-parameter 

logistic model from (7). Since the focus of this study was to assess the differential quality of 

predicted item difficulties on examinee scores, the “true” and predicted item difficulties, b and 𝑏\, 

were generated for different conditions of 𝑅!. A correlation matrix was used to generate five 

variants of each item relative to a source set of n = 200 item difficulties to support test lengths of 

25, 50, and 75 items. The correlations of the true item difficulties with their variants using the 

different  𝑅! (0.9, 0.8, 0.7, 0.6, and 0.5) are shown in Table 4. Scatterplots of the true and estimated 

item difficulties are presented in Figure 3. 
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The item difficulties were sampled from a multivariate normal distribution with µ =

[0,0,0,0,0,0]	and the correlation matrix from the description above. Since the focus of this study 

was on the quality of the predicted item difficulty parameters, the item discrimination and lower 

asymptote parameters were set to 1.3 and 0.15, respectively, for each 𝑅! condition, thereby making 

it a modified one-parameter logistic model with a fixed pseudo-guessing parameter. Test forms of 

25, 50, and 75 items were created to score 30 response datasets.  

Table 4. Correlations of the True Item Difficulties with their Variants at R^2 Of 0.9, 0.8, 

0.7, 0.6, And 0.5 

1 0.948 0.894 0.837 0.775 0.707 
0.948 1 0.847 0.793 0.735 0.670 
0.894 0.847 1 0.748 0.693 0.688 
0.837 0.793 0.748 1 0.649 0.591 
0.775 0.735 0.693 0.649 1 0.548 
0.707 0.670 0.688 0.591 0.548 1 

 

Figure 3. Scatterplots of the True and Estimated Item Difficulties at Different Degrees of 

R2 
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Response Data Generation 

The true proficiency score, θ# was sampled from a standard normal distribution, θ ~ N(0, 

1). Using Equation 7, the true item difficulty parameter estimates (the first column of the six 

columns of multivariate data generated), item discrimination parameters randomly sampled from 

a normal distribution with low variance, a ~ N(μa  = 1.3, σa = 0.05), 𝑎𝑛𝑑𝑐" = 𝑐 = 0.15, the “true 

score” for each item can be obtained i.e.,  𝑃"#, for i=1,…,I items and j=1,…,N examinees. Next, a 

uniform random real-valued number was generated within the interval 0 ≤ π"# ≤ 1. If 𝑃"#≥ π"#, the 

scored item response was set to u"# 	=1, otherwise u"#= 0. This process as carried out for the three 

test lengths (25, 50, and 75 items) to generate 30 scoring data sets of N = 5000 response vectors. 
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Unlike Part A, this part of the study focused only on scoring the data with the predicted item 

parameter estimates and not comparing different calibration strategies. Thus, calibration data sets 

were not generated for Part B. 

Scoring 

Once the scoring data sets containing the item-level responses were generated, IRT scoring 

was performed in flexMIRT 3.6.4 (Vector Psychometric Group, 2021), to obtain the Bayes 

expected a posteriori (EAP) estimates along with their associated conditional standard errors (i.e. 

the standard deviations of the examinee-level posterior distributions) using the predicted item 

difficulty parameter estimates obtained under each of the item-difficulty prediction conditions.  

Data Analysis 

The objective of Part B was to examine the impact of the quality of the different degrees 

of predicted item parameter estimates on examinee scores and person fit. The QC indicators 

described in Part A relied on residuals calculated based on the EAP estimates of examinees. 

However, in this study, QC was evaluated in terms of residual-based fit statistics based on the 

difference between an examinee’s observed item-score and predicted probability for endorsing an 

item for each 𝑅! condition. Thus, the individual residual error of estimate for a particular 

examinee, j = 1,…., N, on a particular test form was expressed as: 

𝑒"# = 𝑢"# − 𝑃(𝜃# , 𝑣") 

 

where 𝑢"# denotes an examinee’s observed item score and 𝑃(𝜃# , 𝑣") is the probability of an 

examinee endorsing an item based on the EAP estimates and predicted item parameters. 

For each examinee, the mean, standard deviation, and RMSE were calculated across the 

items such that: 

(14) 
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 Calculating the residuals using this approach addressed the possibility that IRT scores can 

be reasonably insulated from errors in item difficulty prediction. In other words, there may not 

be substantial differences in scores based on item parameter estimates that were of poor quality. 

However, differences may be noticeable in terms of fit. 

 The impact of the differential quality of predicted item difficulties on person fit was 

evaluated using the 𝑙B index (Drasgow et al., 1985). The 𝑙B or person fit index, derived from the 

log likelihood function, is computed for each examinee. It is then compared to some threshold, 

usually |𝑧| > 𝑧C , where 𝑧C  = - 1.645(Magis et al., 2012). Using notations from van Krimpen-

Stoop and Meijer (1999, as cited in Magis et al., 2012), the likelihood function for any response 

pattern for the 3 PL model described by Equation 7 is: 

𝐿(𝜃) =r𝑃"(𝜃)9'
3

")*

	𝑄"(𝜃)*:9' 

where 	𝑄"(𝜃)*:9' = 1 - 𝑃"(𝜃) or the probability of an incorrect response. 

𝑙D = log 𝐿(𝜃) = 	E{𝑋" log 𝑃"(𝜃) + (1 − 𝑋") log𝑄"(𝜃)}
3

")* 	
 

 

 

(16) 

(17) 

(18) 

(19) 

(15) 
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Since 𝑙D	 is not standardized and its distribution depends on	𝜃, Drasgow et al. (1985) proposed a 

standardized version of 𝑙D: 

𝑙B =
𝑙D − 𝐸(𝑙D)	

𝑉(𝑙D)
*
!E
		 

 

where 𝐸(𝑙D)	and 𝑉(𝑙D) are the mean and variance of 𝑙D, respectively (van Krimpen-Stoop & 

Meijer, 1999, as cited in Magis et al., 2012): 

𝐸(𝑙D) = 	E{𝑃"(𝜃) 	log 𝑃"(𝜃) + 	𝑄"(𝜃) 	log𝑄"(𝜃)}
3

")*

	 

 

𝑉(𝑙D) = 	E𝑃"(𝜃)	𝑄"(𝜃)
3

")*

{log
𝑃"(𝜃)
𝑄"(𝜃)

|
!

 

 

Once 𝑙B was calculated for each examinee, the |𝑧| > 𝑧C (𝑧C  = - 1.645) was used to 

determine if the response pattern was a misfitting one. Means and standard deviations of the person 

fit statistics were reported each 𝑅! condition and test length. The distributions of the person fit 

statistics were plot using stacked histograms to compare differences, if any, across the 𝑅! 

conditions. All person fit analyses were conducted using the PerFit package in the R programming 

language (R Core Team, 2022; Tendeiro et al., 2016). 

Review of Research Questions 

The analyses described in this chapter were directed at answering the two research questions 

in this study.  

1) How much variation matters in task model families without impacting examinee scores?  

(20) 

(21) 

(22) 
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1a. Under which conditions would calibrating the task models and/or calibrating the 

individual items be most appropriate? 

Plots of RMSD of the variation in the item parameter estimates for each test length 

were developed and patterns were examined across the seven test assembly conditions. In 

addition, plots of the means of the item difficulty estimates were developed, conditional on 

task model location, where b = (-1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5) for each test length and 

classified by calibration strategy. These plots intended to demonstrate whether the task 

model locations were (or were not) maintained under a particular test assembly condition. 

1b. Which calibration strategy would have the most (or least) impact on examinee scores? 

 Bias statistics were grouped by the test assembly condition and the calibration 

strategy to examine whether increases occur at conditions III and higher for CS1, where the 

quality control of the template and item variance progressively worsened. Such increases 

are likely to suggest the negative impact of poor-quality items on scoring. The results 

would also serve as an indicator suggesting that CS1 would be inappropriate when there is 

a substandard quality of templates and items resulting from them.  

 Plots of the RMSE statistics for the three test lengths across the seven test assembly 

conditions and two calibration strategies were developed. RMSE values for proficiency 

score estimates using CS1 item statistics would be expected to increase for conditions V-

VII since these conditions required test forms to be assembled from a selection of 

moderate- to high-variation items. Should the plots confirm these results, it would suggest 

that using CS1 may negatively impact scoring for these conditions. Using the conditional 

residual analysis to compute the normalized difference, plots were developed to depict 

whether the magnitude of differences between the two calibration strategies were large or 
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small using |𝛿9 | ≤ 0.2. If a majority of the normalized differences are large and negative, it 

would suggest that CS1 results in lower scores than using CS2. Thus, under such 

circumstances, using CS2 may be more appropriate.  

2. How do different degrees of explained variance in predicted item parameters impact scores 

and person fit?  

The residual-based summary statistics may reveal larger errors, especially the 

RMSE statistics and standard deviation of the residuals as the correlations with the true 

item difficulty parameters decreases. The potential increase in error may be due to the poor 

estimation of the predicted probability of endorsing an item, i.e., 𝑃)𝜃# , 𝑣"0.	 Moreover, the 

person fit analysis would suggest the proportion of misfit across the 𝑅! conditions. The 

stacked histograms presenting the distribution of the person fit statistics for each 

𝑅!	condition would show the extent of misfit as the correlations between true and predicted 

difficulties decreased. 

Conclusion 

This chapter detailed the methods used in this study to answer the research questions for 

parts A and B. The methods focus on some of the QC mechanisms that can be used to verify if 

task model families and predicted item difficulty parameters meet their design-specific 

assumptions. To date, little has been done to address the role of QC in modern item and test 

generation methods, specifically evaluating their impact on test scores. This study explored this 

by proposing some QC procedures to assess within-family variation and prediction error in terms 

of their impact on test scores. 
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CHAPTER IV: RESULTS 

This chapter presents the results of the simulation study for Parts A and B. Each section 

is organized by re-stating the purpose and summarizing the results relative to each research 

question. 

PART A 

The purpose of Part A was twofold. First, Part A compared how the two calibration 

strategies performed across seven test-assembly conditions: (1) CS1 collapsed the generated 

response data by item family, effectively calibrating a single set of item parameters for each task 

model family and (2) CS2 treated the items as unique. (As a reminder, the within-family variation 

was introduced via the “true” item parameters. The resulting comparisons suggest what might 

happen when the process of creating items fails to adequately control the degree of statistical 

isomorphism within families.) From an estimation perspective, CS1 used all the available item-

response data per task model for calibration purposes producing more stable item-parameter 

estimates by ignoring the within-family variation.  In contrast, CS2 treated the items as unique to 

optimize data-model fit but at the cost of relatively less stable item parameter estimates since the 

sample size per item reduced. The second and, in some ways, more critical purpose of Part A was 

to evaluate the impact of each calibration strategy with respect to the test scores given differing 

magnitudes of simulated within-family variation in the item parameters.  

Calibrating at the task-model level for test forms that were assembled from primarily the 

low variation pools would appear to be a preferred strategy when feasible since, per AE 

specifications, all items within each family should be isomorphic by design. In this case, any 

variation within task model families is expected to be well-controlled, inducing only minor 

amounts of additional random noise during the estimation process. That is, CS1 should produce a 
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single set of highly stable item parameter estimates for each item family implying a more efficient 

calibration design. In addition, CS1, if empirically supported as being effective, eliminates the need 

for pilot testing individual items. However, when the items used to generate test forms are sampled 

from item families with more varied statistical item characteristics, calibrating at the task model 

level could prove problematic.  That is, if the variation matters and is simply ignored within 

families, the item parameter estimates could be unstable, lead to data-model misfit similar to 

extreme “item parameter drift”, and ultimately lead to scoring accuracy issues. 

The second purpose was to investigate the consequences of using task model calibrations 

for scoring purposes under different magnitudes of where within family variation was low to quite 

severe. The operating assumption under CS1 is that the hierarchical structure of the task model 

family could be exploited regardless of the magnitude of within-family variation in the item 

parameters. And if scoring accuracy is impacted under the higher variation conditions, the obvious 

question becomes, “How much variation matters?”. These issues and the results are discussed 

below. The relevant research question as follows.  

Research Question #1. How much variation matters in task model families without 

impacting examinee scores?  Corollary Question 1a. Under which conditions would 

calibrating the task models and/or calibrating the individual items be most appropriate? 

Variation in IRT Statistics 

As discussed in Chapter III, the variation of item statistics within task model families, 

across the seven test assembly conditions (item parameter variability within families), and the two 

calibration strategies warranted an evaluation of item fit under these different conditions.  Two 

types of statistics can be used based on a score residual, 

𝑒" = 𝜌~" − 𝜌"                 (23) 
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where 𝜌~" is an estimated item parameter and 𝜌" is the true [generated] item parameter.  Bias is the 

simple average, 𝐵𝐼𝐴𝑆 = 𝑛:* ∑ 𝑒"" . The root mean standard deviation is 𝑅𝑀𝑆𝐷 =

�𝑛:*∑ (𝑒" − �̅�)!" . 

The RMSD statistics for each of the item parameter estimates to were used to compare CS1 

and CS2 and determine which calibration strategy might yield the more appropriate item parameter 

estimates for test assembly purposes. RMSD patterns for CS1 and CS2 for the three test lengths are 

presented in Figure 4. The upward trajectory of the RMSD patterns for the item discrimination and 

item difficulty estimates across the seven test assembly conditions were expected as the variation 

within task model family increased from 0.1s to 0.5s. (Note that 3PL pseudo-guessing parameters 

were fixed to 0.15 during the item pool generation phase and therefore would not be expected to 

vary much across the test assembly conditions, calibration strategies, and test lengths.)  

For condition I, where the within task model variation in difficulty and discrimination was 

low or at 0.1s standard deviation, the RMSD ranged between 0.05-0.08, respectively. These 

estimates increased above 0.3 once variation within task model families and templates increased 

to 0.2s (within-family standard deviation units) for conditions II, III, and IV. Conditions V, VI, 

and VII saw a sharp increase in RMSD, where the variation within task models, templates, and 

items was at 0.5s, indicating that the item families were not functioning isomorphically as 

intended. This is especially true for the difficulty estimates for the 25- and 50-item tests.  

Strictly considering these item parameter estimation results, calibrating task models when 

isomorphism is questionable seems ill-advised.  This would especially be true when evaluating the 

psychometric properties of test forms (e.g., reliability or measurement information) or considering 

using those item parameters in IRT scale linking. Where empirical quality control procedures 

indicate large variation in the item operating characteristics for particular item families, the wise 
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strategy would be to implement CS2 (i.e., calibrate the items in those families as unique rather than 

isomorphic instances from the family). Although the RMSD patterns continued to increase across 

the seven test assembly conditions for the three different test lengths, the magnitude of residual 

error appeared to decrease with increased test length.  

Figure 4. Variation in IRT Statistics across Calibration Strategies, Test Lengths, and Test 

Assembly Conditions 

  

 

 

  

An important design assumption under the AE framework is that task models should be 

“located” on the proficiency scale as a function of their design-based cognitive complexity (task 

model difficulty). In the present context, task models were “designed” based on the task model 
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maps specified in Chapter III. In addition to comprising an isomorphic collection of items, each 

task model family should maintain its intended location on the task model map.  That is, there 

should not be task model family drift in the parameter estimates. This assumption was verified by 

evaluating whether the mean difficulty conditioned on the task model location maintained the 

design-specified locations (𝑏" =	−1.5, −1.0, −0.5, 0, 0.5, 1.0, 1.5). In other words, the task model 

difficulty was obtained by aggregating the difficulty parameters across the 30 replications for each 

task model for each test assembly condition and test length. These results are presented in Figures 

5 and 6 for CS1 and CS2, respectively. 

Figure 5. Mean Difficulty Estimates by Task Model Location for CS1 across the Seven Test 

Assembly Conditions and Three Test Lengths 
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Figure 6. Mean Difficulty Estimates by Task Model Location for CS2 across the Seven Test 

Assembly Conditions and Three Test Lengths 

 

  

 

 



 

  78 

The plots in Figures 5 and 6 represent the mean difficulty estimates obtained from CS1 and 

CS2, respectively for the 25-, 50-, and 75-item tests. They illustrate that while the individual 

difficulty estimates may vary for a particular test assembly condition or calibration strategy, on 

average, they maintained their locations reasonably well. Thus, despite sampling from the three 

item pools using different mixtures of item parameter variation, the task model locations, on 

average, remained relatively unaffected. 

Corollary Research Question 1b. Which calibration strategy would have the most (or least) 

impact on examinee scores? 

Impact of Item Quality and Calibration Strategy on Examinee Scores 

The item parameter estimates from CS1 and CS2 were used to score each simulated 

examinee that were generated as part of the scoring datasets (N = 1000). Thus, each simulated 

examinee was scored twice – using the task model family calibrated statistics, and the individual 

item statistics. These item parameter estimates were used for all 1000 examinees for each of the 

seven test assembly conditions and three test lengths. There were three types of QC statistics 

calculated for examinee scores – bias, RMSE, and the conditional standard error (CSEM) of 

normalized difference between CS1 and CS2.  

Focusing on scores, the residual becomes 

𝑒# = 𝜃\# − 𝜃# ,                                       (24)  

where 𝜃\# is an expected a posteriori (EAP) proficiency score estimate for j=1,…,N 

examinees 𝜃# is the true [generated] proficiency score.  Bias is the simple average, 𝐵𝐼𝐴𝑆 =

𝑁:*∑ 𝑒## . The more general root mean squared error was used here as 𝑅𝑀𝑆𝐸 = i𝑁:* ∑ 𝑒#!# , 

noting that the RMSE incorporates the squared bias. 
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The bias statistics for the seven test assembly conditions and three test lengths are presented 

in Table 5. They were further broken down by calibration strategy. Negative bias indicates that the 

true proficiency scores were underestimated, while positive bias indicates overestimation. 

Condition I, where the variation within the task model family was approximately 0.1 at the task 

model only, saw minimal bias between the two calibration strategies across the test lengths. This 

implies that when the variation is at 0.1s or below, scoring examinees using the task model 

parameters may not be problematic since the task models, item models, and items adhered to the 

quality constraints in terms of their intended design. This finding also applies to condition II, where 

variation within the task model family increased to 0.2s.  

The bias progressively increases from condition III onwards, where scoring examinees 

using the task model calibration statistics, introduces relatively more error than conditions I and 

II. Conditions V-VII show more pronounced differences when using CS1 parameter estimates for 

scoring purposes but do decrease with an increase in test length. Using item-level statistics to score 

examinees under these conditions seemed to significantly reduce the error between the true scores 

and EAPs. Even in these conditions, an alternative calibration method would be to use the item-

model or template statistics to score examinees. For example, Shu et al. (2010) had found this 

hybrid method to be robust in providing accurate scores. Calibrating at the item-model (template) 

level would still bypass the need to pre-test every item and potentially reduce the high costs 

associated with item-level calibrations. It would also mean that less items are exposed during the 

pretesting phase, reducing threats to test security. 
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Table 5. Bias of θ Estimates for each Calibration Strategy, across Test Assembly 

Conditions and Test Lengths 

    Test Length 
Test Assembly 

Condition 
Calibration 

Strategy 25 50 75 

I CS1 0.006 -0.003 0.005 
CS2 0.006 -0.003 0.006 

II CS1 -0.004 -0.005 0.007 
CS2 -0.005 -0.006 0.008 

III CS1 0.050 0.041 -0.016 
CS2 0.001 0.001 -0.007 

IV CS1 0.085 -0.074 0.021 
CS2 0.003 -0.005 -0.019 

V CS1 0.109 0.081 -0.052 
CS2 -0.001 0.002 -0.002 

VI CS1 -0.113 -0.081 -0.060 
CS2 -0.005 -0.002 0.001 

VII CS1 0.139 -0.090 -0.083 
CS2 -0.002 -0.002 -0.003 

 

The RMSE results are presented in Figure 7 for each test length. The plots indicate that the 

total magnitude of variation was quite similar for CS1 and CS2 up until we reach condition IV. As 

the variation in the item parameters within families increased toward 0.5s (conditions V, VI, and 

VII), the RMSE values showed a clear increase. Despite the general upward trend for both CS1 

and CS2 for the high variation conditions, unilaterally using the CS1 family-level item parameter 

estimates to score examinees resulted in relatively higher RMSE values compared to CS2. That 

being said, the difference between the two calibration strategies in terms of their impact on scores 

appears to be mitigated somewhat as the test length increased. In addition, on using CS1 estimates 

for conditions I-IV in the case of the 75-item tests seemed to result in relatively less error variance 

compared to CS2—although the difference is very subtle. Overall, these findings suggest that when 
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operating under the assumption of statistical isomorphism (CS1)—even though it is clearly 

violated—there are scoring accuracy issues, particularly for the 25- and 50-item tests. 

Figure 7. QC Variation in Examinee Scores across Calibration Strategies, Test Lengths, 

and Test Assembly Conditions using RMSE 

   

 

 

The third QC statistic used to assess the impact of calibration strategy on test scores was 

the normalized score difference (Luecht, 2016). This type of conditional statistic provided a direct 

comparison between CS1 and CS2 using the conditional standard errors of estimate (CSEMs) as the 

normalizing values. That is, the normalized difference is evaluated relative to the [pooled] 

asymptotic standard error of estimate—similar to an “effect size”.  This type of QC mechanism 
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was conditioned on the readily interpretable number-correct scores to demonstrate where along 

the score scale the error would be most evident when comparing the two calibration strategies.  

The CSEM normalized differences for each test length and test assembly condition are 

presented in Figures 8 to 10. The plots show the raw scores (number-correct) on the horizontal 

axes and the normalized differences on the vertical axes for each test length. An absolute value of 

≤ 0.2 was used as the threshold for detecting any sizeable differences in scores between the two 

calibration strategies (Luecht, 2016). This range is represented by the dark green dashed-dot lines 

on each plot. The plots illustrate that the majority of the normalized differences lie well within this 

“acceptable difference” range for each test assembly condition, and across test lengths. The 

exceptions are conditions V and VII for the 25-item tests.  For these two conditions in particular, 

some of the normalized differences hovered near the |0.2| acceptable effect-size range, but only 

for the lowest raw scores. Those differences dissipated at the longer test lengths (see Figures 9 and 

10). 

Figure 8. QC Variation in Scores between the Two Calibration Strategies Based on the 

Conditional Standard Error (CSEM) Normalized Differences for 25-Item Tests 
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Figure 9. QC Variation in Scores between the Two Calibration Strategies Based on the 

Conditional Standard Error (CSEM) Normalized Differences for 50-Item Tests 
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Figure 10. QC Variation in Scores between the Two Calibration Strategies Based on the 

Conditional Standard Error (CSEM) Normalized Differences for 75-Item Tests 
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Although it may appear that these results may slightly contradict the trends demonstrated 

for the bias and RMSE statistics the normalized difference plots shows that the error variations 

were, in a relative sense, well within ±0.2 CSEMs, and negligible in a practical sense.  In contrast, 

the bias statistics reported earlier for CS1 tended to over-emphasize relatively small amounts of 

bias for conditions III-VII across the test. It should further be noted that the differences in bias 

across these test assembly conditions were more pronounced than the differences in RMSE 

between the two calibration strategies. When reconsidering those findings in light of the CSEM 

normalized difference results, the ultimate conclusion is that IRT models are robust enough to 

withstand the amount of [random] within-family item parameter variation introduced in this study. 

For example, even introducing high variation of 0.5s within task- and item-model families did not 

have a serious impact on the scores. These findings are further supported by Luecht’s (2024) study 

examining the impact of variation within item families on IRT linear equating parameters estimates 

and scores. 

In conclusion, the results from Part A suggest the following. First, they provide sufficient 

evidence to support calibrating task model families when the within family variation is at 0.1s or 

below. However, this tolerance limit can be relaxed to some extent, possibly up to the moderate 

variation of 0.2, with longer tests. Second even though within task model family variation of 0.2s 

and 0.5s showed increase trends in bias and RMSE for conditions III-VII under CS1, this variation 

ultimately did not result in significant score differences between the two calibration strategies, 

especially for longer tests.  (That said, all of error in this study was purely random. In practice, 

larger and systematic bias in the within-family item parameter estimates could have more dire 

consequences for operational scoring.) 
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PART B 

Part B focused more on the quality of item difficulty predictions. This part of this study 

originated from the literature on item difficulty modeling (IDM) and/or computational linguistics. 

Thus, Part B aimed to specifically address how poorly predicted difficulty parameters could impact 

scores. 

Research Question #2. How do different degrees of explained variance in predicted item 

parameters impact scores and person fit?  

Quality of Predicted Item Difficulties and their Impact on Examinee Scores  

Part B involved the generation of predicted item difficulty parameters of differential quality 

across 𝑅! conditions of 0.9, 0.8, 0.7, 0.6, and 0.5. These parameters, along with fixed item 

discrimination and guessing parameters, were used to score relatively large datasets (N = 5000) 

to obtain EAP estimates. The simulations were repeated for each 𝑅! condition and test lengths of 

25, 50, and 75 items. As previously stated in Chapter III, although the goal of this study was to 

assess the impact of poor-quality item difficulty parameters on scores, it also sought to account 

for the possibility of scores being relatively insulated from errors in item difficulty prediction. 

Thus, once the EAP estimates were obtained for each 𝑅! condition, they were correlated with the 

true proficiency scores obtained during response data generation to examine whether the 

correlations did in fact decrease as the prediction of item difficulty progressively worsened. These 

correlations are presented in Tables 6-8 where each table has the results for a given test length.  
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Table 6. Correlations between True Proficiency Scores and EAP Estimates for each R2 

Condition for 25-Item Tests 

 

Table 7. Correlations between True Proficiency Scores and EAP Estimates for each R2 

Condition for 50-Item Tests 

 1 2 3 4 5 6 
  1. True EAP --      

2. EAPs at 0.9 0.996 --     

3. EAPs at 0.8 0.995 0.999 --    

4. EAPs at 0.7 0.995 0.999 0.999 --   

5. EAPs at 0.6 0.994 0.999 0.998 0.998 --  

6. EAPs at 0.5 0.995 0.998 0.998 0.997 0.996 -- 
 

Table 8. Correlations between True Proficiency Scores and EAP Estimates for each R2 

Condition for 75-Item Tests 

 1 2 3 4 5 6 
  1. True EAP --      

2. EAPs at 0.9 0.998 --     

3. EAPs at 0.8 0.997 0.999 --    

4. EAPs at 0.7 0.998 0.999 0.998 --   

5. EAPs at 0.6 0.996 0.999 0.999 0.998 --  

6. EAPs at 0.5 0.997 0.999 0.999 0.998 0.998 -- 
 

 1 2 3 4 5 6 
    1.  True EAP --      

2. EAPs at 0.9 0.994 --     
3. EAPs at 0.8 0.992 0.999 --    
4. EAPs at 0.7 0.993 0.998 0.997 --   
5. EAPs at 0.6 0.992 0.997 0.998 0.996 --  
6. EAPs at 0.5 0.990 0.997 0.997 0.995 0.995 -- 



 

  88 

The correlations between the true scores and the EAP estimates for each 𝑅! condition were 

consistently above 0.99, indicating a near perfect correlation between the them, contradicting 

expectations regarding decreasing correlations as the quality of difficulty prediction degenerated. 

These initial results suggest that IRT scoring is and should be insulated from item difficulty 

prediction errors that occur with decreasing correlations between the true difficulty parameters and 

the estimates sampled with varied degrees of correlations with those parameters. In other words, 

even with poorly predicted item parameter estimates, the estimated scores are likely to be highly 

correlated with the true proficiency scores.  

This finding could be due to the monotonic relationship between raw scores and EAPs—a 

finding that holds even for more complicated IRT models. That is, as raw scores increase, so do 

the IRT proficiency estimates. Moreover, this relationship is explicit for the Rasch model, given 

the sufficiency of raw scores for unconditional maximum likelihood estimation. It would certainly 

hold in this study given the modified 1PL model used (i.e. with fixed discrimination and pseudo-

guessing parameters). The well-known monotone relationship between raw scores and IRT 

estimates implies that we should probably not expect to see any pronounced differences in the rank 

ordering of the estimated scores regardless of how poorly the item difficulties are "predicted".  

Given these initial results, residuals were calculated slightly differently from Part A. Since 

there appeared to be no direct impact of the poorly predicted difficulty parameters on test scores, 

residual-based fit statistics were calculated based on the observed score for each examinee and 

their predicted score to discover any noticeable differences. Table 9 presents the mean and standard 

deviation of these residuals along with the RMSE across the 25-, 50-, and 75-item tests. Figure 9 

depicts the RMSE values plot across 𝑅! conditions and test length to observe any patterns in the 

residual error.  
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Table 9. Residual-based Fit Statistics for the different R2 Conditions across Test Lengths 

 25-Item Test 50-Item Test  75-Item Test 
R-squared 
Condition M SD RMSE M SD RMSE M SD RMSE 

0.9 -0.004 0.139 0.278 -0.005 0.151 0.307 -0.012 0.157 0.293 
0.8 -0.009 0.164 0.301 0.000 0.174 0.321 -0.011 0.174 0.306 
0.7 0.001 0.189 0.311 0.002 0.185 0.332 -0.005 0.193 0.322 
0.6 0.006 0.193 0.320 -0.001 0.188 0.335 -0.005 0.205 0.333 

0.5 0.008 0.221 0.345 0.006 0.204 0.348 -0.004 0.215 0.341 
 

Figure 11. RMSE for the Predicted Probabilities, P(θj,vi) across Test Lengths 

	

 

The residual-based fit statistics showed larger errors in terms of the standard deviations 

and RMSE as the correlations between the true and predicted item difficulty parameters decreased. 

However, these results seemed relatively invariant to test length in this study (see Figure 9). The 

larger errors could possibly be attributed to the poorly predicted 𝑃(𝜃# , 𝑣") or predicted probabilities 

of endorsing an item because of the predicted item difficulty parameters for each 𝑅! condition. In 

any case, there did not appear to be any directly observable, serious impact of the poorly predicted 
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item difficulty estimates on the scores. However, there were subtle differences observed in terms 

of the RMSEs.  

Quality of Predicted Item Difficulties and their Impact on Person Fit 

The 𝑙B person fit statistic (Drasgow et al., 1985) was computed for each examinee under 

the different 𝑅!	conditions across the three test lengths. The means and standard deviations for the 

person fit statistics across these conditions are presented Table 10. Differences between the 

average 𝑙B for each 𝑅! and true proficiency score conditions were more noticeable as the 

correlations between the true and predicted item difficulties decreased.  

Table 10. Descriptive Statistics of the lz Person Fit Statistic for each R2 Condition and Test 

Length 

R!Condition/Test 
Length 25-Item Test 50-Item Test 75-Item Test 

 M SD M SD M SD 
True EAP 0.967 0.783 1.149 0.775 1.335 0.787 

0.9 0.882 0.705 1.101 0.680 1.036 0.722 
0.8 0.781 0.694 0.447 0.766 0.797 0.748 
0.7 0.445 0.808 0.386 0.760 0.485 0.769 
0.6 0.494 0.762 0.238 0.782 0.372 0.757 
0.5 0.222 0.840 -0.062 0.896 0.152 0.807 

 

Figures 12-14 display the density estimates of the distributions of 𝑙B statistic for each 𝑅! 

condition for 25-, 50-, and 75-item tests. These plots are intended to help visualize the differences 

in person fit across the different conditions for each test length. The plot at the very bottom of each 

figure represents the distribution of the person fit statistics for the true proficiency scores. The 

plots above it represent 𝑅! conditions 0.9, 0.8, 0.7, 0.6, and 0.5, respectively. For each plot, the 

mean 𝑙B is indicated using the colored dashed lines that are superimposed on each distribution. 
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Figure 12. Distribution of the Person Fit Statistics for each R2 Condition for the 25-Item 

Tests 

 

Figure 13. Distribution of the Person Fit Statistics for each R2 Condition for the 50-Item 

Tests 
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Figure 14. Distribution of the Person Fit Statistics for each R2 Condition for the 75-Item 

Tests 

 

The distributions of the 𝑙B statistics progressively shifted towards the left of the true 

distribution, suggesting that person fit did get worse with a decline in correlations between the true 

and predicted item difficulties. These differences in distributions and potential misfit for the lower 

𝑅! conditions can possibly be attributed to the poorly predicted 𝑃(𝜃# , 𝑣") resulting from increased 

prediction error in item difficulty for these conditions. There also did not appear to be any trends 

in misfit across the different test lengths. Given that there are appreciable differences in potential 

misfit as the 𝑅! falls below 0.8, it can be argued that Bejar’s (1983) proposed requirement of an 

explained variance of 0.8 in predicted difficulties is quite reasonable.  

Summary 

This chapter presented the results for Parts A and B, directly addressing their respective 

research questions from Chapter I. The results from Part A highlighted differences between the 

two calibration strategies across the seven test assembly conditions where CS1 were found to be 

more appropriate for lower variation conditions and CS2 for higher variation conditions. In terms 
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of addressing just how much variation matters, as the variation within task and item model families 

increased from 0.1 to 0.5 standard deviations, bias statistics and RMSE increased for test assembly 

conditions III-VII. However, when examining the normalized score differences relative to the 

average CSEM for the two calibration strategies across the seven test assembly conditions, little 

difference was found between the two sets of estimated scores.  

The results from Part B provided insight into how robust IRT models can be even when 

using poorly predicted difficulty parameters to score examinees. While the estimated scores from 

each 𝑅! condition highly correlated with the true proficiency scores, the residual-based fit statistics 

for P(𝜃# , 𝑣") revealed larger errors as the correlations between the true and predicted item 

difficulties decreased. Results from the person fit analyses revealed misfit is more likely to be 

observed for the lower 𝑅! conditions. Thus, IDM research should ideally continue its investigation 

of the impact of predicted difficulties on scores as well as person fit. Overall, the results from both 

parts A and B clearly showed how and when test scores may or may not be affected as test design 

conditions vary from optimal to inadequate.   

 

 

 

 

 

 

 

 
 
 
 



 

  94 

 CHAPTER V: CONCLUSIONS 

The overarching purpose of this study was to address gaps in the literature on modern 

approaches toward item and test development, stated in Chapter II. These were to: 1) determine 

appropriate calibration strategies for item families in different contexts; 2) examine variation of 

items within families and determining acceptable tolerances of variation in item characteristics; 3) 

assess the impact of using differential quality of item families on scoring; and 4) evaluate the 

impact of on-fly-estimates of item characteristics on scoring. Each of these limitations will be 

addressed based on the findings from Parts A and B in the sections that follow. This chapter finally 

concludes with study implications, limitations, and future opportunities for research. 

Summary of Findings 

Determine Appropriate Calibration Strategies for Item Families in Different Contexts 

One of the anticipated benefits of implementing a principled design framework like AE—

a framework that focuses on designing task-model families rather than writing unique items—is 

that overall item generation process can become more systematic, predictable and scalable 

(Luecht, 2012; Luecht & Burke, 2020). A second benefit is that AE introduces detailed cognitive 

task specifications when designing each task model with the explicit expectation that each family 

of items will function isomorphically while maintaining the task model’s location on the 

proficiency scale. That is not just wishful thinking.  AE expects strong quality control (QC) 

procedures to be implemented to monitor and verify the psychometric integrity of each task model. 

When problems are identified, we can modify cognitive task constraints to mitigate them. Both 

these benefits suggest that if implemented correctly, an AE-like design strategy supports the 

statistical control of difficulty, such that item families within a task model operate in 

psychometrically predictable ways (Luecht & Burke, 2020). If items within a task model family 
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are truly isomorphic, family-level calibrations can be used provided that the difficulty of these 

items met QC specified tolerances.  

Part A sought to determine what these tolerances might be as well as which calibration 

strategy (calibrating at the family-level or individual items) would be appropriate in both ideal and 

non-ideal conditions. The two calibration strategies were compared across low, medium, and high 

variation test assembly conditions of 0.1, 0.2, and 0.5 standard deviations within task and item-

model families across the three test lengths of 25-, 50-, and 75-item tests. The RMSD plots for the 

item discrimination and difficulty estimates showed increasing values across the seven test 

assembly conditions, where calibrating at the task model level was more suitable for the low and 

medium variation conditions than the high variation condition.  

For calibration purposes, a QC tolerance limit of 0.2s within task model families might be 

recommended as the maximum acceptable variation allowable to collapse the data and calibrate at 

the task model level. For example, if a task model was designed to target a b-parameter (item 

difficulty) of 0.6 and the standard deviation of the estimated item difficulty parameter estimates 

was 𝑠)𝑏\&0 = 0.19, then calibrating at the family (task model) level might be suitable. Those task 

model item parameter estimates could continue to be used but monitored to ensure that the 

acceptability threshold (tolerance) in the within-family item parameter estimates was not 

exceeded.  Conversely, for item families where the tolerances were exceeded, we might need to 

adopt a different calibration strategy similar to CS2 (also see Shu et al., 2010). That is, from a QC 

perspective, we assumed that the affected item families are no longer functioning according to 

their design specifications.  Therefore, we will need to continue to pilot test those items and 

calibrate them as independent instances until we can solve the task model family design issues 

needed for empirically substantiated isomorphism. 
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Examine Within-Family Variation and Determine Acceptable Tolerances of Variation in Item 

Characteristics 

On-going quality control (QC) plays an essential role within AE framework to monitor and 

empirically verify statistical isomorphism—especially with respect to item difficulty (task model 

family location). Variation within item families was induced at 0.1s, 0.2s, and 0.5s standard 

deviation units to attempt to determine the breaking point at which the accuracy of IRT item 

parameters was compromised or significantly deviated from the intended locations. While there 

was evidence from Part A to suggest that a QC tolerance of 0.2s could be recommended for using 

family-level calibrations over individual item calibrations, establishing a tolerance limit within 

task and item model families for scoring was comparatively less straightforward. This was possibly 

because the CSEM normalized difference between the score estimates from the two calibration 

strategies was minimal across the low, medium, and high variation conditions. Moreover, it 

suggested that IRT scores are robust enough to withstand error introduced by using family-level 

calibrations to score examinees even for the high variation conditions. While these results are 

reassuring in so far as that test scores seemingly remain unaffected despite high within-family 

variation, it becomes difficult to specify and justify a tolerance limit based on this evidence. Thus, 

it may be a matter of policy, based on empirical research to establish acceptable tolerances for 

within-family variation for scoring examinees. From a strictly AE QC standpoint, however, 

variation should ideally be as low as possible.   

Assess the Impact of Using Differential Quality of Item Families on Scoring 

Part A addressed this issue by assessing the combined impact of using each calibration 

strategy across the different conditions of variation within task and item model families using three 

types of QC statistics – bias, RMSE, and the CSEM of normalized differences. The bias statistics 
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did see an increase in magnitude for family-level calibrations for moderate and high variation 

conditions. In this study, the within family variance was uniform across the range of difficulty based on 

which the task models were designed. The bias of the EAP estimates indicated that they were overestimated 

for the moderate and high variation conditions. This could be because this study used a combination of the 

3PL model and EAP scoring method, since using EAP estimates alone would not necessarily result in an 

increase in average bias. Given that there is less information for the theta estimates at the lower end of the 

ability scale, further reduced by the pseudo-guessing parameters, the bias for the EAP estimates at the lower 

end of the ability scale is relatively higher than those at the higher end of the scale. This may be reflected 

in the relatively large average bias for those moderate and high variation conditions when calibrating at the 

task model level. Alternatively, using a 2 PL model with MLE estimates may reduce the average bias of 

score estimates. 

The RMSE values also increased for the moderate and high variation conditions for both 

calibration strategies, with family-level calibrations showing relatively larger values at high 

variation conditions than item level calibrations. Yet, these differences between the two calibration 

strategies tended to decrease with an increase in test length. The score estimates obtained by using 

each calibration strategy were compared by normalizing the differences between these score 

estimates relative to the average CSEM for the two calibration strategies. Despite using item 

parameter estimates from the moderate to high variation conditions to score examinees, there was 

no evidence to suggest any substantial differences between the two sets of scores. The test scores 

for all three test lengths were not severely impacted because of using item families from moderate 

to high variation conditions. 
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Evaluate the Impact of On-the-fly Estimates of Item Characteristics on Scoring and Person 

Fit 

Part B attempted to verify Bejar’s (1983) proposition that there needs to be an explained 

variance of 0.8 (𝑅! = 0.8) in predicted difficulties for these estimates to substitute the empirical 

difficulties in scoring examinees. Since the estimated scores from the different 𝑅! conditions 

correlated highly with the true proficiency scores, the residual-based fit statistics were analyzed to 

detect larger error for the 𝑅! conditions less than 0.8. The results did show subtle increases in the 

magnitude of error as the correlations between the true and predicted item difficulty parameters 

decreased.  

Person fit analyses also showed differences between the distributions of the 𝑙B statistics for 

the true score condition and the lower 𝑅! conditions of 0.7 and below, suggesting that misfit may 

more likely occur at these conditions. In terms of how good the predicted difficulties need to be 

for IDM research to provide useful enough estimates to tackle examinee scoring and potential 

person (mis)fit, Bejar’s (1983) proposition seems to hold. Even though the results suggest that 

scores are not directly impacted when using poorly predicted difficulty parameters, the risk of 

introducing error in terms of person (mis)fit could be relatively greater than using predicted 

difficulties from higher 𝑅! conditions. If examinees’ expected item-score patterns are 

compromised as a result of using poorly predicted item difficulty parameters, it would suggest that 

the response data does not fit the IRT model or that the responses to the items deviate from the 

expected responses for the model (Ames & Penfield, 2015; Felt et al., 2017; Meijer & Sijtsma, 

2001). It could also indicate that these unlikely item-score patterns are being driven by factors 

other than the test construct being measured (Meijer, 2002). Therefore, despite scores being 
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unaffected, the indirect impact in terms of person fit could bring into question the decisions made 

based on these test scores. 

Implications 

This study presented various scenarios of calibration and scoring using differential quality 

of item families and predicted item difficulty estimates. It highlighted potential concerns of 

calibrating at the family-level under high variation conditions and issues regarding person fit when 

utilizing poorly predicted difficulty parameters. Therefore, the most important implication of this 

study is that it shows that developing a QC system for item families and item difficulty modeling 

(IDM), as well as setting specific acceptable tolerances is entirely possible, and even necessary. It 

also implies that assumptions made during item and test design require constant verification, 

supporting an iterative process towards item and test development. In other words, when calibrated 

items and/or item families fall outside the acceptable limits, it demonstrates the need for further 

revision before they can be made operational.   

Second, even though other complex calibration procedures could have been used 

(Geerlings et al., 2011) at the task model level, using a hierarchical calibration system, when items 

within a family were indeed isomorphic, implied that a relatively straightforward calibration 

procedure could be implemented in practice. Thus, when items within a family are found to be 

acceptable based on QC criteria, response data can be re-organized to support calibration at the 

family-level without the use of specialized software or complex statistical models. 

Third, findings from most of the IDM research across content domains typically stop at 

correlating predicted item parameters and scores with their empirical or operational counterparts 

(Embretson & Kingston, 2018; McCarthy et al., 2021; Settles et al., 2018). This study has 

demonstrated why those correlations are likely to be high, justifying the need for IDM research to 



 

  100 

look beyond the correlations to study impact on person fit. Thus, the results from this study 

highlight the need for QC in IDM work for evaluating the impact of resulting predictions on scores 

and person fit. 

Limitations  

Although this two-part simulation study attempted to be comprehensive in its approach by 

demonstrating the possibilities across a variety of optimal and sub-optimal conditions, the findings 

reflect a highly controlled set of simulations which may differ from operational practice. For 

example, in practice, systematic [non-random] errors in the item-family operating characteristics 

could evolve, especially if item families generated via artificial intelligence (AI) were based on 

flawed neural nets that led to subtle biases.  In any case, these findings are limited in 

generalizability to the rather simplistic assumptions, simulated contexts, study design conditions, 

and constraints used in this study.  

Three rather convenient assumptions were made in this study. First, all noise within task 

model families was random in nature. In that sense, the error introduced here was effectively 

indistinguishable from random sampling or measurement errors typically encountered during IRT 

parameter estimation. The introduction of plausible non-random errors should be investigated in 

future research.   The second assumption was that items within families were assigned to randomly 

equivalent groups. This assumption eliminated the need to consider the impact of variation in the 

item parameter estimates within families on equating or linking procedures with non-equivalent 

groups (e.g., linking IRT scales over time and conditions of measurement). Luecht (2024) offered 

a small-scale look at this issue by simulating a non-equivalent groups linking design to explore the 

impact of variability within item families on IRT linear equating parameters estimates and scores.  

Similar to the findings of the present study, his simulation study found that scoring bias, 
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estimation, and equating errors increased relative to traditional IRT equating results but not 

substantially enough to attribute its cause to variant item families. In any case, more complex 

simulations could be used to help push on the empirical boundaries of acceptable variability in the 

item parameter estimations when examinee groups are not randomly equivalent.  

The final assumption was that the item families and predicted difficulty estimates (Part B) 

were established specifically to meet the variation conditions in this study, meaning that they were 

generated to be almost exactly at that level of within-family variability as well as the variability in 

the predicted difficulties. For example, variation was also kept uniform at the task and item model 

levels as well as for the item discrimination and difficulties using the strict 0.1s, 0.2s, and 0.5s 

specifications. It is entirely possible that item families developed in practice may not vary in this 

uniform and tightly controlled manner. Thus, more empirical research is needed to support the 

results of this study in terms of the magnitude of variation, setting QC tolerance limits, and 

exploring their impact in the context of a non-equivalent groups design. 

The calibration procedures used in this study represent only one method of calibrating item 

families. A more comprehensive comparison of the different item family calibration methods at 

the different variation conditions is needed to understand if the results would vary based on 

methodology (also see Geerlings, Glas & van der Linden, 2011; Sinharay & Johnson, 2012). The 

same applies to the QC statistics used in this study, which are only some of the ways of evaluating 

whether item families and predicted difficulty parameters are functioning as intended.   

Future Work 

This study outlines the possible and potential impact of poorly designed item families and 

predicted difficulties on scores under different conditions. There is still more empirical research 

to be done in this area that can support the design of a larger QC framework for modern item and 
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test development approaches. First, developing families of items and/or items with predicted item 

parameter estimates using Large Language Models (LLMs) can accelerate the development and 

implementation of a QC system, if these models are trained to do so. For example, LLMs can be 

trained to develop and review items, similar to the training given to content experts. Some of this 

work in item development is currently being done in the medical field (Benoit, 2023; Gilson et al., 

2023; von Davier, 2023; Walker et al., 2023). Moreover, recent research using AE in IDM to 

enhance score interpretation, trained content experts to assess items for their complexity on very 

specific criteria and found that difficulty could be predicted at 𝑅! of greater than 0.77 (Hu, 2024; 

Li, 2024; Whitney et al., 2024; Wilmurth et al., 2024). With more sophisticated generative pre-

trained transformer models (GPT) such as the GPT 4.0 (OpenAI, 2023), it is reasonable to suggest 

that these models can be trained to support at least some of the QC work. It may be possible to 

achieve this using Wei et al. ‘s (2022) chain-of-thought prompting strategy, which breaks down 

instructions for GPT models into sequential, interrelated steps, thereby enabling them to engage in 

complex reasoning.  

Second, subsequent studies can explore variation in different innovative item types that 

require different scoring protocols, relying on polytomous item response models. In this case, a 

separate QC system may be needed using residual-based statistics that are more appropriate for 

these conditions.  

Third, another area of research could be extending this study’s simulation design to include 

tests in certification and licensure, where score precision is needed at a specific cut-score. An in-

depth analysis of item and person fit statistics for certification and licensure exams would also help 

in assessing their quality and impact on test scores. 
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Fourth, this study explored the use of calibration strategies, scoring procedures, and 

residuals analyses in different statistical contexts. Further research is needed in analyzing 

substantive isomorphism, where items within a family should ideally be comparable in terms of 

content standards and cognitive complexity (Luecht & Burke, 2020). Moreover, examining the 

same study conditions in terms of their impact on different student groups such as English 

Language Learners (ELLs) or students with disabilities who require testing accommodations could 

also be explored. For example, residual analyses can be grouped by the different student 

subgroups. 

Fifth, Part B explored the impact of errors introduced in item difficulty on test scores. In 

addition, more empirical research needed to explore how the covariance between item 

discrimination and item difficulty parameters can impact examinee scores under the different 𝑅! 

conditions. 

Finally, future work can expand Luecht’s (2024) study to include a comparison of different 

proportion of common items amongst test forms that come from item families with different 

within-family variation. Such a comparison can be informative in establishing conditions under 

which item families can be used to serve as anchor items or least highlight conditions under which 

they would be inappropriate. Thus, there are several possibilities for future research to explore, 

eventually working towards developing guidelines and QC systems that support the 

implementation of modern item and test development approaches to suit the needs of different 

assessment programs.  
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