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Roundup®, and other glyphosate-based herbicides, are the most commonly used 

herbicides in the world, yet their effects on developing fish embryos are not clearly 

understood. In the present study, medaka embryos were exposed to 0.5 mg/L glyphosate, 

0.5 mg/L and 5 mg/L Roundup for 15 days, then allowed to mature. Embryos were 

examined at 4, 8, 15 and 100 dpf to determine if exposure to environmentally relevant 

concentrations of glyphosate and Roundup can induce developmental defects in fry after 

hatching and if exposure induces alterations in gene expression and global epigenetic 

effects, particularly DNA methylation, during early development resulting in alterations 

of reproductive success at adulthood. A significant decrease in cumulative hatching 

success for 0.5 mg/L Roundup and glyphosate exposure groups, and an increase in 

developmental abnormalities in medaka exposed to 0.5 mg/L glyphosate was observed. A 

significant downregulation of Dnmt1 and upregulation of Tet1, Tet2 and Tet3 were 

observed at 15 dpf, suggesting the role of demethylation in the observed phenotype. 

Furthermore, expression of Gpr54-1 was significantly downregulated in female brain 

samples exposed to 0.5 mg/L and 5 mg/L Roundup and in Gpr54-2 exposed to 0.5 mg/L 

Roundup. In testes samples, reproductive genes Fshr and Arα were significantly 

downregulated in medaka exposed to 0.5 mg/L Roundup and glyphosate, and in Dmrt1 

and Dnmt1 exposed to 0.5 mg/L glyphosate. The study demonstrates that Roundup and 

its active ingredient glyphosate induce direct and long-term developmental, reproductive, 

and epigenetic effects due to exposure at environmentally relevant concentrations.  
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CHAPTER I 

INTRODUCTION 
 
 

 Glyphosate (N-(phosphonomethyl) glycine) was first discovered to possess 

herbicidal properties in 1970 (Annett et al. 2014) and within four years the first 

commercial formulation was released under the name Roundup® (hereafter Roundup) 

(Annett et al. 2014, Zhang et al. 2017). Since the 1970’s use of glyphosate-based 

herbicides (GBHs) has increased 100-fold (Roy et al. 2016 (b), Zhang et al. 2017), with 

annual application globally in the range of 0.6 to 1.2 million tons, making GBHs the most 

widely used herbicides since the 1970’s (Annett et al. 2014, Mesnage et al. 2015, 

Rodrigues et al. 2017). This increase in use can be attributed to the development of 

genetically modified crops (GMOs) along with glyphosate’s action as a broad-spectrum, 

post emergent, non-selective herbicide (Annett et al. 2014, Harayashiki et al. 2013, 

Rodrigues et al. 2017, Roy et al. 2016 (a), Sulukan et al. 2017). The herbicidal action of 

glyphosate works through the inhibition of the enzyme 5-enolpyruvylshikimate-3-

phosphate synthase (EPSPS), leading to a deficiency in protein production and ultimately 

plant death (Annett et al. 2014, Lopes et al. 2014, Rodrigues et al. 2017, Roy et al. 2016 

(a), Sulukan et al. 2017). Since this mode of action is only present in plants and some 

microorganisms, it has been thought that glyphosate and Roundup were not harmful to 

non-target organisms such as animals and humans, yet mounting scientific evidence 

seems to contradict this idea (Annett et al. 2014, 19, Roy et al. 2016 (a)). 
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 Non-target organisms, particularly animals and humans, are exposed to 

glyphosate together with Roundup, as glyphosate is a key component of the Roundup 

formulation and not used without its additives (Kwiatkowska et al. 2017). Sources of 

exposure include runoff, dermal exposure from residential and commercial use, 

inhalation through spray drift in high farming areas, and by way of food consumption 

(Annett et al. 2014, Roy et al. 2016(b), WHO 2005). Concentrations of glyphosate acid 

equivalents in natural water bodies have been reported to range between 0.01 and 0.7 

mg/L, with direct application levels ranging from 1.7 to 5.2 mg/L (Annett et al. 2014, 

Harayashiki et al. 2013, Zhang et al. 2017).  

 The major metabolite of glyphosate is aminomethylphosphonic acid (AMPA), 

which is further broken down into carbon dioxide and ammonium (Annett et al. 2014, 

WHO 2005). Aminomethylphosphonic acid, while not acutely toxic, has been found to 

cause DNA damage (Guilherme et al. 2014, WHO 2005). Glyphosate is not expected to 

bioaccumulate in the food web, based on its ionic character and high solubility in water, 

yet it still may possess a threat to animal and human health due to its detected presence in 

a variety of aquatic organisms, including fish, and due to the fact that its 

biotransformation after uptake is not well known (Annett et al. 2014, WHO 2005).  

Previous studies have shown that exposure to glyphosate and/or Roundup have resulted 

in an increase in developmental abnormalities, decrease in survival rate (Yusof et al. 

2014), changes in feeding behavior (Giaquinto et al. 2017), and changes in reproductive 

parameters, including a decrease in egg production and sperm motility in different fish 

species (Lopes et al. 2014, Uren Webster et al. 2014); yet there is a lack of literature 



3 
 

regarding the toxicity of GBHs, particularly at environmentally relevant doses of 

exposure, and the epigenetic consequences associated with these exposures (Mesnage et 

al. 2015, Roy et al. 2016 (b)).  

To better understand the direct toxicity effects of glyphosate and Roundup 

exposure, the present study utilized medaka fish as a model organism. Medaka fish are 

excellent vertebrate model species for biomedical and environmental research because 

they are easy to maintain, adapt to different salinities, only take about 100-120 days to 

mature and eggs and embryo are transparent making it easy to distinguish abnormal 

phenotypes (Ishikawa 2000, Koyama et al. 2008, Wittbrodt et al. 2002). Other 

advantages of medaka include their well-characterized sex determination system, 

similarities in germ cell development mechanisms to mammals, fully annotated genome 

and availability of tools for molecular and genome research (Bhandari et al. 2015, 

Bhandari 2016) 

In developing embryos, environmental chemicals induce two types of effects: 

direct toxic effects and adult onset health effects (Bhandari et al. 2015). Direct toxicity 

can be observed within a short time of exposure while adult onset toxicity is detectable 

long after the exposure has ceased. It has been believed that higher dose exposure leads to 

direct toxicity via immediate effects on cellular processes, while low dose exposure leads 

to adult onset toxicity involving epigenetic mechanisms (Hanson and Skinner 2016), as 

the period of embryonic development is very sensitive to chemical exposure (Bhandari 

2016, Mesnage et al. 2015), and this exposure can lead to heritable or reversible 

modifications that can affect gene expression without changing DNA structure- otherwise 
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known as epigenetic changes (Patkin and Sofronov 2012). Epigenetic changes can be 

inherited, causing multigenerational effects (Patkin and Sofronov 2012). The goal of the 

present study is to investigate the developmental and epigenetic effects of exposure to 

environmentally relevant doses of glyphosate and its commercial formulation Roundup® 

(hereafter Roundup) on developing medaka fish.  

The most prominent method by which epigenetics regulates gene expression is 

through DNA methylation (Kim et al. 2017), in which a methyl group is added to the 5th 

position of a cytosine ring at a cytosine-guanine dinucleotide. Areas rich in CpG 

dinucleotides are referred to as CpG islands. Methylation of CpG islands, particularly 

those located in the promoter region of genes, have restrictive, silencing effects on genes, 

while gene body methylation can lead to gene expression (Aluru et al. 2015, Dhingra et 

al. 2014, Goll and Bestor 2005, Seritrakul et al. 2017).    

DNA methlytransferases (DNMTs) enzymes work to catalyze the process of DNA 

methylation, thereby making them essential for the creation of new DNA methylation 

patterns and the maintenance of existing patterns (Aluru et al. 2015, Yuan et al. 2017). 

Dnmt1 works as a maintenance methyltransferase, preferably methylating hemi-

methylated CpGs, ensuring the same methylation pattern during DNA replication and cell 

division, while DNMT3 enzymes, known as de novo methyltransferases, work to 

establish new methylation patterns of hypomethylated DNA necessary for tissue-specific 

differentiation occurring during development (Aluru et al. 2015, Diotel et al. 2017, Liu et 

al. 2016, Seritrakul et al. 2017). Other enzymes active in DNA methylation are ten-

eleven translocation (TET) enzymes which oxidize 5-methylcytosine (5mC) to 5-
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hydroxymethylcytosine (5hmC), leading to DNA demethylation by removing 5mC from 

the genome (De la Rica et al. 2016, Liu et al. 2016, Seritrakul et al. 2017). 

The reproductive system in animals is the complex result of the endocrine and 

central nervous system working together to create and release a series of hormones from 

the hypothalamic-pituitary-gonadal axis (HPG axis) (Cao et al. 2018). Kisspeptin, 

encoded by the gene Kiss1, is a neuroendocrine hormone (Song et al. 2015) which acts 

by binding to the G protein-coupled receptor Gpr54 (Usuda et al. 2014). In non-mammal 

vertebrates, such as medaka, there also exists a Kiss2 gene along with its receptor Gpr54-

2 (Nakajo et al. 2018, Song et al. 2015). The binding of these neuroreceptors play an 

important role in stimulating the hypothalamic-pituitary-gonadal axis causing the 

production of gonadotropin-releasing hormone (GnRH) within the hypothalamus (Nakajo 

et al. 2018, Zhang et al. 2017). GnRH is important in regulating reproduction because it 

activates the synthesis and release of gonadotrophins including follicle-stimulating 

hormone (FSH) and luteinizing hormone (LH) from the pituitary (Gárriz et al. 2017; 

Khor et al. 2016, Nakajo et al. 2018, Zhang et al. 2017). These hormones and their 

receptors play an important role in regulating the production of sexual steroids and 

gametogenesis (Gárriz et al. 2017). 

In females, LH triggers ovulation, the development of the corpus luteum, and 

prompts theca cells to produce androgens, while FSH works to promote follicular 

maturation, ultimately leading to ovulation (Cao et al. 2018). Steroid hormones in 

vertebrates are synthesized from cholesterol which must be transported from the 

cytoplasm to the inner mitochondrial membrane (Rathor et al. 2017). This vital step is 
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facilitated by the lipid transfer protein known as steroidogenic acute regulatory (StAR) 

protein (Rathor et al. 2017). Transcription factor forkhead box L2 (Foxl2), which is 

primarily expressed in the somatic cells of the female gonad, works to suppress the 

expression of Dmrt1 making it a vital sex determining gene in females (Herpin et al. 

2013). Expression of Foxl2 is closely associated with Aromatase (cyp19a1a), which is 

responsible for the synthesis of estrogens from androgen in females (Murozumi et al. 

2014). Estrogen and androgen are key hormones involved in reproduction, which are 

activated by binding to their respective receptors (Fergus et al. 2013, Oliveira et al. 

2002). In females’ estrogen is essential for ovarian differentiation and plays a key role in 

regulating gene expression in both males and females (Bertho et at. 2016, Fergus et al. 

2013, Schulz et al. 2010).  

In males, FSH and LH are thought to function similarly to their counterparts in 

mammals in which FSH promotes spermatogenesis in the testis through the binding of its 

receptor in Sertoli cells while LH stimulates Leydig cell production of androgens, 

including testosterone (Zhang et al. 2015). Androgens are involved in a variety of 

reproduction related processes including spermatogenesis, the expression of behaviors 

related to reproduction and the development of secondary sex characteristics (Oliveira et 

al. 2002). Lastly, Dmrt1 gene expression was measured in 100 dpf testes due to its 

involvement in testicular formation and spermatogenesis, often being referred to as the 

male sex determining gene (Herpin et al. 2013).  

Another important gene measured in the study to help confirm phenotype is 

acetylcholinesterase (AChE), which is responsible for catalyzing the breakdown of the 
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neurotransmitter acetylcholine (Lopes et al. 2017, Menéndez-Helman et al. 2012). The 

inhibition of AChE leads to the buildup of acetylcholine, resulting in cholinergic 

overactivity which can result in death. (Lopes et al. 2017, Menéndez-Helman et al. 

2012). Due to its importance in the physiological function of fish, acetylcholinesterase is 

frequently used as a biomarker in studies relating to exposure of a variety of 

organophosphate chemicals such as glyphosate (Glusczak et al. 2006, Menéndez-Helman 

et al. 2012).  

This study has two major aims, the first of which is to test the hypothesis that 

glyphosate and Roundup exposure induces developmental defects in embryos and fry 

after hatching. This aim will focus on the effect of exposure to environmentally relevant 

concentrations of glyphosate and Roundup on developmental endpoints such as hatching 

success and developmental defects. Aim 2 will test the hypothesis that glyphosate and 

Roundup exposure induces alterations in gene expression and global epigenetic effects, 

particularly DNA methylation during early development, which results in alteration of 

reproductive success at adulthood. In adult medaka, reproductive endpoints such as 

fecundity (egg laying capacity) and fertilization efficiency (% of fertilized 

eggs/replicate/day) were examined and associated changes in expression of genes relating 

to the reproductive axis were determined by quantitative real-time PCR.  
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CHAPTER II 
 

MATERIALS AND METHODS 
 
 

2.1 Fish Maintenance 

All animal procedures were conducted in accordance with the procedures 

described by the National Research Council of the US National Academics, “Guide for 

the care and use of laboratory animals”; and with UNCG guidelines for the humane 

treatment of test organisms during culture and experimentation. Experimental protocols 

and study plan were approved by UNCG Institutional Animal Care and Use Committee 

(protocol #17-006). Hd-rR strain of the wild-type medaka fish (Oryzias latipes) were 

cultured in the Department of Biology at The University of North Carolina at Greensboro 

from an inbred line. Fish were allowed to mature in 10-gallon tanks with constant 

aeration and water flow of approximately 20 gallons/day. Water temperature was 

maintained at 25 ± 1°C, while fish were kept under a light: dark cycle of 14 hr: 10 hr and 

fed TetraMin Tropical Flakes twice daily. Additional culture conditions include: pH: 6.8-

7.2, total alkalinity: 0-40 ppm, nitrate: 0-20 ppm, nitrite: 0 ppm and ammonia: 0- 0.25 

ppm.  

2.2 Sampling and Chemical Exposure 

Upon maturation to adulthood, (approximately 100-120 days) medaka were 

allowed to spawn and eggs were gently collected by hand from mature females and 

placed into deionized water (DI) containing 0.05% methylene blue. Methylene blue 
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treatment is necessary, as medaka embryos develop fungal infections if not treated. 

Collected eggs were then sorted and fertilized eggs were placed into non-treated, sterile, 

48 well plates and exposed to DI water with 0.05% methylene blue for approximately 8 

hours. At approximately 8 hours post fertilization (hpf) the water in each well plate was 

changed to the appropriate exposure solution. Exposure lasted from 8 hpf until 15 days 

post fertilization (dpf), with daily changes of 50% of exposure media. Upon hatching, fry 

were transferred to petri dishes containing exposure media without methylene blue. At 15 

dpf the exposure media in the petri dishes was changed to control media, with medaka 

later being allowed to reach sexual maturity in 10-gallon tanks.   

Nominal exposure solutions included: control (DI water), 0.5 mg/L glyphosate 

and two concentrations of Roundup; 0.5 mg/L and 5 mg/L glyphosate acid equivalent. 

Glyphosate was acquired from Sigma-Aldrich, while Roundup® Ready to Use 

(hereinafter “Roundup) was purchased from a local garden center. The lower exposure 

concentration of 0.5 mg/L was chosen to represent an environmentally relevant dose, 

given that the current maximum contaminant level (MCL) set by the U.S. Environmental 

Protection Agency (EPA) for glyphosate in drinking water in the United States is 0.7 

mg/L (Battaglin et al. 2002, Monsanto 2014). The higher exposure concentration of 5 

mg/L Roundup was chosen to represent an upper bound of direct application, as 

concentrations of Roundup (glyphosate acid equivalent) have been reported to range from 

1.7 to 5.2 mg/L in areas following direct application (Annett et al. 2014, Harayashiki et 

al. 2013).  
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Medaka samples were collected at 4, 8, 15, and 100 dpf (or upon reaching sexual 

maturity). Refer to Figure 1 for detail of numbers and timeline for sample collection. 

Embryo samples collected at 4 dpf were flash frozen, while fry samples collected at 8 dpf 

and 15 dpf were euthanized using MS-220 (250 mg/L) before being flash frozen in liquid 

nitrogen. Upon reaching sexual maturity, the remaining medaka fish were allowed to 

spawn and eggs were collected from females in order to measure fecundity and 

fertilization efficiency. After eggs were collected, the mature medaka were humanely 

sacrificed using MS-220 (250 mg/L) and the brain, gonads, liver and gills were 

subsequently dissected, and flash frozen in liquid nitrogen. Weight and length of each 

fish was recorded along with the weight of the liver and gonads. All samples were stored 

at -80°C until genomic analysis was performed. 

 

 
 
Figure 1. Experimental Design and Sampling Time Points After Embryonic Exposure of 
Medaka to Glyphosate and Roundup. 
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Timepoints for sample collection in the experiment were chosen based on four 

critical timepoints in the medaka lifecycle. Epigenetic gene activity was measured at 4 

dpf to gain insight into the epigenetic effects of Roundup and glyphosate during the 

critical period of development prior to hatching, 8 dpf was chosen as a time point 

surrounding hatching and 15 dpf was chosen to represent a time point during maturation. 

Tissue samples were ultimately collected and analyzed at 100 dpf to give insight into the 

long term reproductive and epigenetic effects of early glyphosate and Roundup exposure.   

2.3 Phenotype 

Embryos from 0 dpf until hatching were examined daily under a 

stereomicroscope, and any developmental abnormalities were recorded. Photos were 

taken of each fry on the day of hatching and of all surviving fry at 15 dpf. Microscopic 

observations were performed using a Nikon SMZ1000 stereomicroscope equipped with a 

PlanApo objective; while pictures were captured using a Moticam 2300- 3 megapixel 

CMOS camera running under the Images Plus capture package. Pictures were later 

analyzed for changes in phenotype compared to control. 

2.4 Fecundity and Fertilization Efficiency 

Upon maturation, remaining medaka in each replicate were placed into mating 

pairs at a ratio of 2 females: 1 male, unless death by treatment was high enough to not 

enable this ratio. Egg clutches were collected by hand from mating females 

approximately 1 hour after the lights turned on. Eggs were examined under the 

stereoscope and the mean number of eggs per female per day (fecundity) was calculated, 

along with whether the eggs were fertilized or not (fertilization efficiency) for a period of 
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seven consecutive days. Statistical significance was determined using two-tailed T-test 

against control with standard error.   

2.5 Gene Expression 

All embryos, fry, and whole tissue samples were homogenized, and DNA/RNA 

was extracted using the ZymoResearch Z-R Duet MiniPrep Kit protocol using DNAse 

and proteinase K treatment. The purity and integrity of RNA for real time qPCR was 

measured using Thermo Scientific Nano Drop 2000/2000c Spectrophotometer. RNA was 

then reverse transcribed into cDNA using Applied Biosystems High Capacity cDNA 

Synthesis kits standard protocol. To assess gene expression, Power-Up SYBR Green 

Master reagents were used alongside primers that were specifically designed for the 

medaka genes of interest presented in the study (Table 1). mRNA levels were quantified 

using real-time qPCR (△△CT method) run under the QuantStudio Design and Analysis 

Software and gene expression data is presented as fold change against control. Statistical 

significance was determined using two-tailed T-test against control with standard error. 
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Table 1. Forward and Reverse Primer Sequences Designed for Medaka Genes of Interest.  

Primer Name Forward Primer Sequence Reverse Primer Sequence 

Tet1-5p & Tet1-3p 5’ ACC-TTC-ATC-TTC-ACC-CGG-TT 3’ 5’ CTG-AGA-GAC-GAG-GGT-GGT-TT 3’ 

Tet2-5p & Tet2-3p 5’ AAG-AAG-GAC-AGA-CAG-AGG-GC 3’ 5’ GGG-TTG-TAC-TGT-ACT-GGG-CT 3’ 

Tet3-5p & Tet3-3p 5’ CTG-CTC-GGA-ACA-CCT-TGA-AC 3’ 5’ CCC-TAT-GCT-GTT-CTG-TTG-CC 3’ 

xDnmt1-F & xDnmt1-R 5’ AAC-AGG-TGG-AGA-GCT-ACG-AC 3’ 5’ CAG-CTC-TCC-TTT-TCC-CCA-GA 3’ 

xDnmt3aa-F & xDnmt3aa-R 5’ TTT-GAG-GCT-TTA-CAG-GTG-GC 3’ 5’ CTG-TCT-GGT-CTG-AAG-CTC-CA 3’ 

KISS1F & KISS1R 5’ ATC-TGA-TGG-AGG-GAC-TCC-AAT-G 

3’ 

5’ TGG-CGT-TTC-TTT-ATA-GCC-ACA-G 3’ 

KISS2F & KISS2R 5’ TGA-AGC-TCC-CTC-TGA-TGT-CC 3’ 5’ CCA-CCC-ACA-TGT-CCT-TGA-C 3’ 

GPR54-1F & GPR54-1R 5’ CTT-CTG-TCC-ATC-CCT-GTG-GT 3’ 5’ TCG-CTG-CAG-TAA-ATC-TGT-GG 3’ 

GPR54-2F & GPR54-2R 5’ ATC-TGG-ACG-AGG-ATG-AGG-AG 3’ 5’ CGA-GAA-GAA-CAA-AGG-GAC-CA 3’ 

xStar-F & xStar-R 5’ GCT-CCC-TTC-TAA-GTT-CTC-GC 3’ 5’ CCT-GCT-CGC-TTA-GAA-TGC-TG 3’ 

xFshr-F & xFshr-R 5’ TGA-GTT-GGT-GGT-GCT-AGA-CA 3’ 5’ CAA-CAG-CTT-CTT-CAG-GCC-AG 3’ 

xLhr-F & xLhr-R 5’ TTT-TGC-CCT-GAA-AAG-CCT-CC 3’ 5’ CTC-TAA-AAC-TTT-GTT-TCC-GCC-G 3’ 

mdERa-F-qPCR-188 & mdERa-R-

qPCR-188 

5’ATC-GCT-CCC-GGT-TCT-ATA-TCA-G 3’ 5’ AAG-CAT-CAC-CTT-GTC-CCA-AC 3’ 

xDmrt1-F & xDmrt1-R 5’CTT-CTG-CCG-CTG-GAA-AGA-C 3’ 5’ CCT-CCT-ATC-GGC-GAC-CTG 3’ 

mdARa-F & mdARa-R  5’ GGC-ATG-AGG-ATT-TGT-TTC-CA 3’ 5’ CAG-GTG-GTT-CTG-CTT-ACC-TG 3’ 

xCyp19a1a-F & xCyp19a1a-R 5’ TGT-TGA-CGA-GAA-AGA-GCT-GC 3’ 5’ GCT-GTC-TTG-TGC-CTC-TGA-TG 3’ 

xFoxL2-F & xFoxL2-R 5’ CCT-CGT-CCT-ACA-ACC-CCT-AG 3’ 5’ GTG-ACC-CAT-GCC-GTT-GTA-AG 3’ 

mdEF1a-F6 & mdEF1a-R6 5’ AGA-AGG-AAG-CCG-CTG-AGA-TGG 3’ 5’ GCT-CAG-CCT-TCA-GTT-TGT-CCA-A 3’ 
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CHAPTER III 

RESULTS 
 
 

3.1 Aim 1 

To evaluate the first aim of the study and test whether environmentally relevant 

concentrations of glyphosate and Roundup exposure can induce developmental defects in 

medaka, developmental endpoints such as hatching success and developmental 

abnormalities were evaluated in each treatment group on the day of hatching. 

3.2 Hatching Success 

Cumulative hatching success (defined as hatching 7-12 dpf) was calculated for 

each treatment group and is displayed below in Figure 2. The average rate of hatching per 

treatment group, given all replicates, was 58.7%, 44.5%, 54.9% and 35.2% (for control, 

0.5 mg/L Roundup, 5 mg/L Roundup and 0.5 mg/L glyphosate, respectively).
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Figure 2. Cumulative Hatching Success. Values expressed as the average percentage of 
fish that hatched between 7-12 dpf from each treatment group. 
 
 

Compared to control, cumulative hatching success was significantly decreased (*p 

< 0.05) in medaka exposed to 0.5 mg/L Roundup and 0.5 mg/L glyphosate, indicating 

that environmentally relevant doses of both treatment groups resulted in an overall 

decrease in hatching success. The cumulative hatching success was then broken down 

into normal hatching (defined as hatching 7-10 dpf) and delayed hatching (defined as 

hatching 11-12 dpf). Statistical significance (*p < 0.05) was observed for both normal 

(Figure 3) and delayed (Figure 4) hatching for 0.5 mg/L Roundup.  
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Figure 3. Normal Hatching Success. Values expressed as the average percentage of fish 
that hatched between 7-10 dpf from each treatment group. 
 
 

 
 
Figure 4. Delayed Hatching Success. Values expressed as the average percentage of fish 
that hatched between 11-12 dpf from all treatment groups. 
 
 
3.3 Developmental Abnormalities 
 

Based on photographs of each fry taken on the day of hatching, several 

developmental abnormalities were observed including: spinal curvature, enlarged yolk 

sac, uninflated swim bladder and greying of yolk sac.    
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(A)                                                (B) 
 
Figure 5. Photographic Depiction of Spinal Curvature. 8dpf picture of hatched fry 
displaying A) Normal spinal curvature- Control B) Severe spinal curvature- 0.5 mg/L 
glyphosate.  
 
 

One common phenotypic abnormality observed on the day of hatching was severe 

spinal curvature (Figure 5). The average rate of severe spinal curvature for each treatment 

group, given all replicates, was 1.7%, 27.9%, 1.8% and 25% (for control, 0.5 mg/L 

Roundup, 5 mg/L Roundup and 0.5 mg/L glyphosate, respectively). The average rate of 

severe spinal curvature increased in medaka exposed to 0.5 mg/L Roundup and 

glyphosate treatments, with significance observed in medaka exposed to 0.5 mg/L 

glyphosate compared to control (Figure 6) (*p< 0.05). 
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Figure 6. Severe Spinal Curvature. The average rate of fry hatched with severe spinal 
curvature in each treatment group.  
 
 

In addition to severe spinal curvature, other developmental abnormalities included 
 

 enlarged yolk sac, uninflated swim bladder and severe greying of the yolk sac (Figure 7). 
 
 

        
(a)                                  (b)                                         (c) 

 
Figure 7. Photographic Depiction of Developmental Abnormalities. Normal fry (a) and 
developmental abnormalities observed post hatch including enlarged yolk sac and 
uninflated swim bladder (b) and severe greying of yolk sac (c). 
 
 

A fry was classified as “poor development” if it possessed three out of four  
 

developmental abnormalities. The average rate of fry qualifying as poor development for 
 
each treatment group, given all replicates, was 4.3%, 18.2%, 10.10%, and 33.2% (for 
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control, 0.5 mg/L Roundup, 5 mg/L Roundup and 0.5 mg/L glyphosate, respectively).  
 
Significance (*p < 0.05) was observed for 0.5 mg/L glyphosate compared to control  
 
(Figure 8). 

 
 

 
 
Figure 8. Fry Exhibiting Poor Development. The average rate of fry hatched with 3 out of 
4 abnormalities including severe spinal curvature, enlarged yolk sac, greying of yolk sac 
and uninflated swim bladder.  
 
 
3.4 Aim 2 
 

To evaluate the hypothesis that environmentally relevant doses of glyphosate and 

Roundup exposure induces epigenetic effects during early development resulting in 

alterations in reproductive success at adulthood, epigenetic genes were measured at 4, 8 

and 15 dpf, and both epigenetic and reproductive genes were measured upon maturation, 

as well as fecundity and fertilization efficiency endpoints measured. 
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3.5 Epigenetic Genes - Dnmt1 and Dnmt3aa- 4, 8 and 15 dpf  

Gene expression of Dnmt1 and Dnmt3aa were measured in samples collected at 4, 

8 and 15 dpf (Figure 9). While no significance was observed in gene expression levels at 

4 and 8dpf, Dnmt1 expression was downregulated in all treatment groups at 15 dpf, with 

significance observed for both 0.5 mg/L and 5 mg/L Roundup.  
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(A)                                                     (B) 

 
                                  (C)                                                             (D)

  

                                 (E)                                                                    (F) 

Figure 9. Epigenetic Gene Expression of Dnmt1 and Dnmt3aa Measured at 4, 8 and 15 
dpf. Gene expression levels of Dnmt1 and Dnmt3aa at 4 dpf (A, B), 8 dpf (C, D) and 15 
dpf (E, F) in medaka embryos/fry, expressed as fold change against control. Significance 
was observed at 15 dpf with asterisks indicating significance (* p < 0.05, ** p< 0.01).  
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3.6 Epigenetic Genes- Tet1, Tet2, Tet3- 4, 8, and 15 dpf  
 

Gene expression levels of Tet1, Tet2 and Tet3 were measured at 4, 8 and 15 dpf 

and expression profiles are presented below in Figure 10. Significant upregulation of all 

Tet genes was observed in a dose dependent manner at 15 dpf for the 0.5 mg/L and 5 

mg/L Roundup treatment groups, and for Tet1 and Tet3 in the 0.5 mg/L glyphosate 

treatment group. While no significance was observed for any of the Tet genes at 4 and 8 

dpf, the general trend of expression was downregulation of all Tet genes in medaka 

exposed to 0.5 mg/L Roundup at 4 dpf and upregulation in all Tet genes at 8 dpf for the 

same treatment group. This pattern appears to have the reverse effect in the 5 mg/L 

Roundup treatment group for the same time points.   
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(A)                                                           (B)         

                                                                 

 
(C)                                                               (D)   

 
                                 (E)                                                                    (F)  
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                                 (G)                                                                     (H) 
 

 
      (I) 

Figure 10. Epigenetic Gene Expression of Tet1, Tet2, and Tet3 Measured at 4, 8 and 15 
dpf. Gene expression levels of Tet1, Tet2 and Tet3 at 4 dpf (A-C), 8 dpf (D-F) and 15 dpf 
(G-I) in medaka embryos/fry, expressed as fold change against control. Significance was 
observed at 15 dpf with asterisks indicating significance (* p < 0.05, ** p< 0.01, 
***p<0.001). 
 
 
3.7 Acetylcholinesterase- 4, 8 and 15 dpf  
  

Ache expression profiles for 4, 8 and 15 dpf are displayed below in Figure 11. 
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and in all treatment groups at 15 dpf, with significance observed for the 5 mg/L Roundup 
 
treatment group at 15 dpf. 
 
 

 

(A)                                                                   (B) 
 

       
                                                (C) 

 
Figure 11. Acetylcholinesterase Gene Expression Measured at 4, 8 and 15 dpf. Gene 
expression levels of acetylcholinesterase (Ache) at 4 dpf (A), 8 dpf (B) and 15 dpf (C) in 
medaka embryos/fry, expressed as fold change against control. Significance was 
observed at 15 dpf with asterisks indicating significance (*p < 0.05). 
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3.8 Fecundity and Fertilization Efficiency 
 

Fertilization efficiency and fecundity were calculated for each treatment group 
 
and displayed below in Figure 12. Fecundity, represented as the average number of  
 
eggs/female/day (mean ± SE) for each treatment group, given all replicates, was 5.5 ±  
 
1.7, 4.5 ± 2.3, 6.3 ± 2.2 and 3.0 ± 1.4 (for control, 0.5 mg/L Roundup, 5 mg/L Roundup 
 
and 0.5 mg/L glyphosate respectively). Fertilization efficiency represented as the  
 
average percentage of fertilized eggs/replicate/day (mean ± SE) for each treatment group, 
 
given all replicates, was 63.4 ± 19.3, 58.6 ± 25.3, 47.5 ± 16.6 and 40.6 ± 20.5 (for  
 
control, 0.5 mg/L Roundup, 5 mg/L Roundup and 0.5 mg/L glyphosate respectively).  
 
While not significant, glyphosate appears to have a negative effect on both fertilization  
 
efficiency and fecundity compared to control. 

 
 

  
(A)                                                                  (B) 

 
Figure 12. Fecundity and Fertilization Efficiency of Mature Medaka. Fecundity (A) 
represented as the average number of eggs per female per day and fertilization efficiency 
(B) represented as the average percent of fertilized eggs per replicate per day taken from 
each treatment group upon maturation for a period of seven consecutive days. 
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3.9 Epigenetic Genes – Dnmt1- 100dpf  
 

Dnmt1 expression levels were measured in ovaries and testes from mature female 
 
and male medaka respectfully in each treatment group. Dnmt1 expression was  
 
significantly lower (p < 0.01) in testes exposed to 0.5 mg/L glyphosate (Figure 13).  

 
 

 
(A)                                                                    (B) 

 
Figure 13. Dnmt1 Gene Expression in Mature Male Medaka Gonads. Epigenetic gene 
expression levels of Dnmt1 in 100 dpf ovaries (A) and testes (B) expressed as fold 
change against control. Significance was observed in testes with asterisks indicating 
significance (** p< 0.01).  
 
 
3.10 Reproductive Genes- Kiss1, Kiss2, Gpr54-1, Gpr54-2- 100dpf-Brain 
 

Previous studies have shown that endocrine disrupting chemicals can cause 

reproductive dysfunction due to their effect on kisspeptin neurons (Usuda et al. 2014), 

thus in the present study, Kiss1, Kiss2, Gpr54-1 and Gpr54-2 levels were measured in 

male and female brain samples upon maturation (Figure 14). In female brain samples, 

Gpr54-1 was significantly downregulated in medaka exposed to 0.5 and 5 mg/L Roundup 

while Gpr54-2 was significantly downregulated in medaka exposed to 0.5 mg/L 

Roundup. No significance was observed for any gene or receptor in the male brain.  
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(G)                                                                 (H)  

Figure 14. Reproductive Gene Expression of Kiss1, Kiss2, Gpr54-1 and Gpr54-2 
Measured in Mature Medaka Brain Samples. Reproductive gene expression levels of 
Kiss1, Kiss2, Gpr54-1 and Gpr54-2 for each treatment group in 100 dpf female brain 
samples (A-D) and male brain samples (E-H) expressed as fold change against control. 
Significance was observed in Gpr54-1 and Gpr54-2 in female brain samples with 
asterisks indicating significance (* p< 0.05). 
 
 
3.11 Reproductive Genes- Star, Fshr, Lhr, Erα, Cyp19a1a, FoxL2-100dpf- Ovaries 
 

Gene expression levels of Star, Fshr, Lhr, Erα, Cyp19a1a and FoxL2 were 

measured in mature medaka ovary samples from each treatment group. Gene expression 

profiles are displayed below in Figure 15. Gene expression for medaka exposed to 0.5 

mg/L glyphosate showed a tendency to decrease in all reproductive genes, while gene 

expression in medaka exposed to 5 mg/L Roundup showed a tendency to increase in all 

genes measured in 100 dpf ovaries with the exception of Cyp19a1a, compared to control 

although there was no significance.   
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(A)                                                                 (B) 

 

 
(C)                                                               (D)   

 
                                  (E)                                                                   (F) 
 
Figure 15. Expression of Star, Fshr, Lhr, Erα, Cyp19a1a and FoxL2 in Mature Female 
Ovaries. Reproductive gene expression levels for each treatment group of Star (A), Fshr 
(B), Lhr (C), Erα (D), Cyp19a1a (E), and FoxL2 (F) measured in 100 dpf female ovary 
samples. No significance was observed in any of the genes.  
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3.12 Reproductive Genes-Star, Fshr, Lhr, Erα, Arα, Dmrt1-100dpf- Testes 
 

Gene expression levels of Star, Fshr, Lhr, Erα, Arα and Dmrt1 were measured in 

mature medaka testes samples from each treatment group. Gene expression profiles are 

displayed below in Figure 16. Expression levels of Fshr and Arα were significantly 

downregulated in 0.5 mg/L Roundup and glyphosate treatment groups. Dmrt1 expression 

also showed a tendency to decrease in medaka exposed to 0.5 mg/L Roundup and 

glyphosate, with significance observed in the 0.5 mg/L glyphosate treatment group.  
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(A)                                                          (B) 

 
(C)                                                                  (D) 

 
                                 (E)                                                                  (F) 
 
Figure 16. Reproductive Gene Expression of Star, Fshr, Lhr, Erα, Arα, and Dmrt1 in 
Mature Male Testes. Reproductive gene expression levels for each treatment group of 
Star (A), Fshr (B), Lhr (C), Erα (D), Arα (E), and Dmrt1 (F) measured in 100 dpf male 
testes samples. Significant downregulation was observed in Fshr and Arα for 0.5 mg/L 
Roundup and in Fshr, Arα and Dmrt1 for 0.5 mg/L glyphosate. Significance is indicated 
by asterisks (*p<0.05, ** p< 0.01). 
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CHAPTER IV 
 

DISCUSSION 
 
 

Due to its increasing use, its prevalence in aquatic environments, and its presence 

in surface and ground waters, it is vital to evaluate the health effects of glyphosate and 

Roundup exposure. The focus of this study was to determine whether or not exposure to 

environmentally relevant concentrations of glyphosate and Roundup during critical 

periods of development induced developmental defects in the form of changes in 

hatching success and developmental abnormalities, and whether or not this exposure 

resulted in changes in gene expression and global epigenetic effects, particularly DNA 

methylation, which resulted in alterations of reproductive success at adulthood. 

Previous studies have reported changes in hatching success and the presence of 

developmental abnormalities, including tail malformations, yolk sac edema, spinal 

curvature and pericardial edema in fish species exposed to Roundup and/or glyphosate, 

yet many of these studies were conducted using environmentally irrelevant 

concentrations (Sulukan et al. 2017, Uren Webster et al. 2014, Yusof et al. 2014, Zhang 

et al. 2017). Yusof et al. (2014) reported a dose-dependent increase in developmental 

abnormalities in Java medaka exposed to Roundup (glyphosate acid equivalent) including 

shrunken yolk, abnormal body curvature, slow development and disproportionate head 

and body size, yet the concentrations used in the study were 20-100 times the highest 

concentration used in the present study. In the present study, using environmentally 
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relevant concentrations, an increase in severe spinal curvature and other abnormalities 

including enlarged yolk sac, greying of yolk sac and uninflated swim bladder were 

observed in medaka exposed to 0.5 mg/L glyphosate. Sulukan et al. (2017) reported 

similar findings in which a significant increase in body malformations (including tail 

malformations, short tail and head malformations) were observed in zebrafish starting at 

1 mg/L glyphosate; while other malformations, including pericardial edema, yolk sac 

edema and spinal curvature were significantly increased as well, but only in exposure 

groups exceeding 1 mg/L glyphosate including: 5, 10 and 100 mg/L glyphosate, which 

were concentrations greater than those used in the present study.  

Cumulative hatching success was also found to be significantly decreased in 

medaka exposed to 0.5 mg/L Roundup and 0.5 mg/L glyphosate. Previous studies 

evaluating the effects of glyphosate on hatching success have reported an increase in 

hatching rate following glyphosate exposure, contradicting our current findings, yet 

significance in the previous studies was not observed until exposure concentrations 

reached 10 mg/L glyphosate and 400 mg/L glyphosate respectfully (Uren Webster et al. 

2014, Zhang et al. 2017), proposing the idea that hatching rate might result in different 

outcomes based on exposure concentration.  

In the present study Ache gene expression was significantly decreased at 15 dpf in 

fry exposed to 5 mg/L Roundup. Exposure to glyphosate and GBHs has previously been 

shown to cause a decrease in AChE activity and gene expression in a variety of fish 

species, confirming the results found in the present study (Glusczak et al. 2006, Glusczak 

et al. 2007, Lopes et al. 2017). Glusczak et al. (2006) found that exposing piava 
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(Leporinus obtusidens) to 3, 6, 10 and 20 mg/L Roundup (glyphosate acid equivalent) for 

96 hours resulted in a significant decrease in AChE activity in the brain for all exposure 

groups, while Lopes et al. (2017) reported a significant decrease in Ache gene expression 

in brain samples of male zebrafish exposed to 5 and 10 mg/L glyphosate after 24 hours 

exposure. A decrease in Ache gene expression suggests a buildup of acetylcholine in the 

synapse, leading to an increase in hypercholinergic activity, resulting in negative effects 

on aquatic species, as proper AChE function is essential for swimming, orientation, 

predator avoidance and prey capture throughout the life cycle of aquatic species 

(Glusczak et al. 2006).  

The present study is unique in that it focused on the effects of early life exposure 

in both early life and later in adulthood. No significant difference was observed in 

fecundity and fertilization efficiency in the fish at adulthood. Although no study has been 

performed focusing on the effects of developmental exposure on adult reproductive 

health, a recent study reported a significant decrease in fecundity after adult zebrafish 

were exposed to 10 mg/L glyphosate for 21 days (Uren Webster et al. 2014). The same 

study reported no significant difference in fertilization efficiency given any of the 

exposure groups (0.01, 0.5 and 10 mg/L Roundup (glyphosate acid equivalent) and 10 

mg/L glyphosate) (Uren Webster et al. 2014). Using concentrations similar to those in the 

current study, Folmar et al. (1979) reported no change in fecundity 30 days after 

exposing rainbow trout to 0.02, 0.2 and 2 mg/L Roundup (glyphosate acid equivalent) for 

12 hours. It appears that glyphosate and Roundup might affect fecundity at higher 
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exposure concentrations and have little effect on fertilization efficiency at 

environmentally relevant concentrations.  

Downregulation of Dnmt1 expression with significance observed for 0.5 mg/L 

and 5 mg/L Roundup, and a significant upregulation in expression of Tet1, Tet2 and Tet3 

in almost every exposure group, was observed at 15 dpf. Together the decrease in Dnmt1 

expression and increase in Tet1, Tet2 and Tet3 expression suggests an overall decrease in 

DNA methylation. This decrease in overall DNA methylation is the result of active DNA 

demethylation by TET enzymes through the oxidation of 5mC, and passive DNA 

methylation due to the decrease in Dnmt1 expression, resulting in newly incorporated 

cytosines during cellular replication remaining unmethylated, resulting in an overall 

decrease in DNA methylation (Aluru et al. 2015, De la Rica et al. 2016, Diotel et al. 

2017, Liu et al. 2016, Moore et al. 2013, Seritrakul et al. 2017). The present results 

suggest epigenetic activation of the genome at the 15 dpf stage in response to 

developmental exposure to glyphosate and Roundup, corresponding to the free-

swimming larvae stage in medaka. These findings provide support for the relevance of 

epigenetic mechanisms in the observed phenotypic abnormalities. A significant decrease 

in Dnmt1 was also observed in testes samples exposed to 0.5 mg/L glyphosate at 100 dpf, 

suggesting the persistence of passive DNA demethylation mechanisms in males at 

adulthood.  

To date no studies have been conducted analyzing the epigenetic effects of 

glyphosate and/or Roundup exposure utilizing model organisms. One study exposing 

human peripheral blood mononuclear cells (PBMCs) to 0.25 mM and 0.5 mM 
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concentrations of glyphosate reported a significant decrease (p= 0.017) in global DNA 

methylation at 0.25 mM with borderline significance (p = 0.084) observed at 0.5 mM 

(Kwiatkowska et al. 2017). These results further support the notion that exposure to 

glyphosate and Roundup result in a decrease in DNA methylation.   

The direct consequence of exposure to glyphosate and/or Roundup on Kiss1, 

Kiss2, Gpr54-1 and Gpr54-2 gene expression have not been previously reported in any 

model system. Following developmental exposure to glyphosate and Roundup, female 

brain samples showed a significant decrease in Gpr54-1 gene expression in medaka 

exposed to 0.5 mg/L and 5 mg/L Roundup alongside a significant decrease in Gpr54-2 

expression for medaka exposed to 0.5 mg/L Roundup. Previous research, primarily 

focused on the effects of endocrine disrupting chemicals (EDC) on Kiss1 activity, have 

shown a decrease in hypothalamic Kiss1 expression in exposed fetuses following 

maternal ovine exposure to a mixture of EDC’s and other environmental contaminants 

(sewer sludge) (Bellingham et al. 2009, Tena-Sempere 2009). Furthermore, a significant 

decrease in Kiss1 hypothalamic mRNA levels was observed in rats at puberty following 

neonatal exposure to BPA, while neonatal exposure to synthetic oestrogen, estrodial 

benzoate (EB), caused a significant dose-dependent decrease in hypothalamic Kiss1 

mRNA expression levels in both female and male rats proceeding puberty (Navarro et al. 

2009, Tena-Sempere 2009). Since 2003, the Kiss/Gpr54 system has been established as a 

major regulator of the reproductive system, necessary in fertility and the timing of 

puberty (Page et al. 2011, Tena-Sempere 2009). Together the evidence above suggests 

that exposure to EDC’s, including Roundup, during critical periods in development, 
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cause an effect on the Kiss/Gpr54  system which has the potential to result in 

reproductive consequences at adulthood due to the effect that the Kiss/Gpr54 system has 

on stimulating the HPG axis and consequently the production of GnRH, leading to the 

release of gonadotrophins which play a major role in reproduction (Nakajo et al. 2018, 

Zhang et al. 2017). The present results suggest that glyphosate and Roundup are capable 

of inducing effects on the brain reproductive axis through the downregulation of the Kiss 

and GnRH signaling system. 

While there was no significant difference in gene expression levels measured in 

mature ovary samples, there was significant downregulation of Fshr and Arα gene 

expression in mature testes observed in medaka exposed to 0.5 mg/L Roundup and 0.5 

mg/L glyphosate, and a significant downregulation of Dmrt1 gene expression in mature 

testes from medaka exposed to 0.5 mg/L glyphosate. These results suggest that 

glyphosate and Roundup affect the male reproductive system by modulating genes 

required for spermatogenesis. Several previous studies have evaluated the effects of 

glyphosate and/or GBHs on male reproductive parameters (Harayashiki et al. 2013, Hued 

et al. 2012, Lopes et al. 2014, Owagboriaye et al. 2017, Romano et al. 2010). In studies 

utilizing fish as a model organism, sperm motility, motility period, DNA integrity, 

mitochondrial functionality and a reduction in mating success have all been reported as a 

consequence of glyphosate and/or GBH exposure, with concentrations ranging from 0.13 

mg/L to 10 mg/L (Harayashiki et al. 2013, Hued et al. 2012, Lopes et al. 2014). Roundup 

was also shown to decrease testosterone, FSH and LH levels, as well as cause a 

significant reduction in sperm count and percent motility in male albino rats exposed to 
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3.6, 50.4 and 248.4 mg/kg bw/d for 12 weeks (Owagboriaye et al. 2017). Another study 

focusing on male developmental consequences following GBH exposure found reduced 

testosterone production, a delay in puberty and alterations in the function and structure of 

testes starting at exposure concentrations of 5 mg/kg bw/d in prepubertal Wistar rats 

(Romana et al. 2010).  In summary, the findings in the current and previous studies, 

support the idea that glyphosate and Roundup exposure result in negative consequences 

for parameters related to male sexual reproduction.   

In the current study many of the significant effects were observed at the exposure 

level of 0.5 mg/L for both glyphosate and Roundup, while previous literature has 

observed developmental and reproductive effects of glyphosate and Roundup at much 

higher concentrations. Glyphosate and GBHs have been characterized as endocrine-

disrupting chemicals (EDC) due to their ability to interfere with a variety of endocrine-

signaling systems including steroid hormones (Myers et al. 2016). One characteristic of 

EDCs, in addition to their ability to alter gene expression patterns and hormone systems, 

is their ability to display non-monotonic dose-responses (Myers et al. 2016, Vandenberg 

2014). A non-monotonic dose response can take the shape of a U-shaped curve in which 

low (environmentally relevant) and high dose levels exhibit a greater response compared 

to intermediate dosing levels (Vandenberg 2014). A non-monotonic dose response can 

help explain the developmental and reproductive results observed for exposure to 

glyphosate and Roundup in the present, and previous studies, in which the majority of 

responses have been observed at low (environmentally relevant) and extremely high 
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concentrations, but a lack of response is often observed at intermediate dose levels, 

mainly 5 mg/L Roundup in the present study.  

This study illustrated that exposure to environmentally relevant doses of 

glyphosate and Roundup during critical periods of development in medaka fish can lead 

to developmental abnormalities including a decrease in cumulative hatching success, 

increase in developmental abnormalities and changes in gene expression of epigenetic 

and reproductive genes. Studies evaluating the toxic effects of glyphosate and Roundup 

exposure, particularly long-term studies at environmentally relevant doses that compare 

glyphosate and Roundup simultaneously, are lacking. The present study is unique in that 

it is the first to illustrate long-term epigenetic effects of early exposure to glyphosate and 

Roundup, and to explore the effects of glyphosate and Roundup on Kisspeptin genes and 

receptors in the brain. Due to the fact that medaka are a biomedical research model 

organism there use as a model organism in the present study provides significant insight 

into both ecological and human health risks rendered by glyphosate and Roundup 

exposure.   
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