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 Epstein-Barr virus is a human herpes virus that in conjunction with Malaria 

is responsible for endemic Burkitt’s lymphoma, a B-cell cancer.  The main 

distinguishing characteristic of Burkitt’s lymphoma is a constitutively active c-Myc 

protein.  The transcription factor c-Myc is considered to be a proto-oncogene, 

which is responsible for cell proliferation and differentiation.  The activation of c-

Myc leads to the production of cyclin D1 and Cdk4, which promote the G1 to S 

transition of the cell cycle.  The activation of c-Myc is dependent on the Ras/ERK 

pathway, which can be activated by extracellular signals in the form of cytokines.  

Interleukin-10 is a cytokine that is produced by Burkitt’s lymphoma cells and may 

act as an autocrine growth factor for the cancer.  It may be possible that the 

Ras/ERK pathway can be activated by interleukin-10 in Epstein-Barr virus 

infected B-cells.  This may lead to the phosphorylation of c-Myc and thus the 

promotion of the cell cycle and mitotic events in Epstein-Barr infected cells.  A 

further understanding of the role of interleukin-10, the Ras/ERK pathway and c-

Myc activation may lead to novel therapeutic interventions for Burkitt’s lymphoma 

pathogenesis in Epstein-Barr virus infected B cells.  This study was 

accomplished by treating Burkitt’s lymphoma cells, Epstein-Barr virus infected 

non-Burkitt’s lymphoma cells, and non-infected, non-Burkitt’s lymphoma cells 

with interleukin-10 and assessing the effects of interleukin-10 on the Ras/ERK 



   

pathway, c-Myc activation and Cyclin D1 production.  Phosphorylation of ERK, 

total c-Myc and Cylclin D1 levels were significantly increased (p<0.05) in Epstein-

Barr virus infected cells, where as IL-10 treatment decreased the viability of B 

cells lacking an Epstein-Barr infection.  Ultimately leading to the conclusion, that 

IL-10 increases proliferation of Epstein-Barr virus infected B-lymphocytes. 
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CHAPTER I  

INTRODUCTION 
 
 
  Epstein-Barr virus, or EBV, is a herpes virus with a double stranded 

DNA genome that will infect more than 90% of people worldwide (God & Haque, 

2010).  Under normal circumstances, although the virus remains latent in 

lymphocytes, most infections are cleared.  However in some cases over- 

proliferation of B-lymphocytes occurs and malignancies form (God & Haque, 

2010).  The exact molecular pathway for this over-proliferation is not known and 

greatly differs between different forms of lymphoma that are EBV related.  One 

such EBV related lymphatic malignancy is Burkitt’s Lymphoma (BL).  Although 

not all cases of Burkitt’s Lymphoma are EBV positive, the largest percentage of 

endemic (occurring in a specific geographical region) Burkitt’s Lymphoma, or 

eBL, are associated with EBV.  Among eBL, 95% of cases are EBV associated; 

also 5-15% of sporadic BL and 40% of HIV associated BL are EBV associated 

(Mangani et al., 2012).   
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 BL is among the most aggressive cancers known to affect humans and it is 

believed that the association of EBV plays a role in this aggressive cell growth. 

The exact role of EBV is not known, but most cases of BL have an associated 

over-expression of the oncogene c-Myc.  C-Myc is a transcription factor that is 

known to promote the cell cycle, as well as proliferation and differentiation 

(Mangani et al., 2012).  As a transcription factor c-Myc is known to be a 

helix/loop/helix/leucine zipper protein that is activated by mitogenic factors under 

normal circumstances (God & Haque, 2010).   

 Along with association of EBV with BL, it is also believed that eBL has an 

association with Malaria infection.  Malaria infection by Plasmodium falciparum 

has been found to be associated with eBL (God & Haque, 2010).   

 It is possible that reactivation of EBV replication by the severity of both 

Malaria and HIV infections could be responsible for over-proliferation of B-cells 

and the eventual development of BL.  However the question remains as to which 

molecular pathways and mitogens associated with EBV infection and co-infection 

with HIV or Malaria are actively involved in B-cell proliferation. 

 It is possible that Interleukin-10 (a cytokine) acts as a mitogen to activate 

the Ras/ERK pathway that promotes c-Myc activity in EBV infected cells.  

Interleukin-10 is known to be associated with EBV, HIV and Malaria, as well as 

play a role in growth of BL (Masood et al., 1995). 
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Ras/ERK Pathway: 

 Among the most well known pathways that stimulate and regulate 

proliferation, differentiation and cell survival is the Ras/ERK pathway (Mendoza 

et al., 2011).  This pathway results from activation of Receptor Tyrosine Kinases 

by extracellular signals, specifically mitogens, or growth factors (Mendoza et al., 

2011).  It is possible that the Ras/ERK pathway is responsible for growth of EBV 

infected cells, as well as for the activation of c-Myc in EBV associated BL. 

 The Ras/ERK pathway is considered to be a mitogen activated protein 

kinase (MAPK) pathway; in this case Extracellular signal-regulated kinase (ERK) 

is the MAPK.  The initial activation of Ras, and then the ultimate MAPK cascade 

is dependent on many factors.  Signals for activation can be integrated from 

Receptor Tyrosine Kinases (RTKs) and can be in a variety of forms such as 

growth factors, chemokines, hormones and phorbol esters (Mendoza et al., 

2011).   Another possible source for activation of this pathway could be cytokines 

such as Interleukins.   
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Figure 1. The Ras/ERK Pathway 
Activation of the Ras pathway by a mitogen at an RTK that leads to activation of the ERK MAPK 
cascade 

 
 
Once a signal is encountered, cross phosphorylation of tyrosine residues occurs 

on the RTKs, and ultimately the activation of Ras, a GTPase (McKay & Morrison, 

2007).  After phosphorylation the RTK activates an adaptor protein, GRB2 (Sigal, 

1988).  GRB2 then associates with a guanine nucleotide exchange factor (GEF), 

SOS, which allows for the exchange of GDP for GTP by Ras (Mendoza et al., 

2011).  Figure 1 depicts the interaction of RTK, GRB2, SOS, Ras, and the 

ultimate activation of the MAPK cascade activated by a mitogenic ligand.  MAPK 

pathways follow a specific sequence of cascading phosphorylation, in the form of 

MAPK kinase kinase (MAPKKK), then MAPK Kinase (MAPKK), and finally 
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MAPK.  At first, a GTPase, in this case Ras, is activated by an extracellular 

signal, which leads to the activation of a GTPase-regulated kinase, Raf, then 

phosphorylation of an intermediate kinase, MEK1/2, and finally phosphorylation 

of ERK1/2.   Then ERK 1/2 leads to the activation of various transcription factors 

(Mendoza et al., 2011). 

  ERK1/2 is a serine/threonine protein kinase return can phosphorylate 

residues of transcription factors (Crews, Alessandrini, & Erikson, 1991).  Once 

phosphorylated by MEK1/2, ERK1/2 is a critical aspect of cell proliferation 

(Rozengurt, 2007).  This had led to the belief that ERK plays a major role in 

oncogenesis in many malignancies (Mendoza et al., 2011).  Without the 

activation of ERK, a cell cannot progress through the cell cycle.  The 

phosphorylation of serine and threonine residues of transcription factors are 

required for cells to proceed through G1 of the cell cycle (Meloche & Pouysségur, 

2007).  Depending on which residues of transcription factors are phosphorylated 

by ERK, the cell cycle may or may not progress.   

 Phosphorylated residues on c-Myc determine cell cycle arrest and 

progression (Chang et al., 2003).  Depending on which residue is 

phosphorylated, c-Myc will either hetero-dimerize with Max or Mad, two other  

transcription factors (Figure 2).  If dimerization with Max occurs, the cell cycle 

progresses, while dimerization with Mad results in inhibition of cell survival and 

proliferation genes (Mendoza et al., 2011). 
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Figure 2. Phosphorylation of c-Myc 
Phosphorylation of c-Myc at residue Threonine 58 leads to inhibition of cell survival.  Where as, 
phosphorylation at residue Serine 62 leads to transcription of survival genes, specifically cyclins 
 
 

C-Myc: 

 C-Myc, a transcription factor, activates transcription of key genes within 

cells that regulate cell proliferation or apoptosis depending on the amount of 

expression of c-Myc at times within the cell (Chang et al., 2003).  Depending on 

the amount of c-Myc expression, a cell can undergo proliferation and 

differentiation, or in the case of de-regulated c-Myc, as in cancer cells, 

continuous proliferation in response to pro-growth signals (Dang, 1999).  A 

normal amount of c-Myc expression regulates controlled proliferation and the cell 

cycle (Nasi et al., 2001). 

 The progression of the cell cycle can be directly activated by c-Myc.  In 

particular, c-Myc has direct transcriptional activation affects on cyclin D1, D2, and 
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Cdk4 (Chang et al., 2003).  Cyclin D1 is especially important for the activation of 

the cell cycle and mitotic events and is in fact required for the progression of the 

cell through the G1 phase of the cell cycle.  Also Cdk4 is responsible for the 

phosphorylation and activation of cyclin D1 (Day et al., 2009).  C-Myc is not 

absolutely required for the expression of these cyclins and Cdk, or cyclin 

dependent kinase; it can however act as a promoting agent for cyclin and Cdk 

transcription (Chang et al., 2003).  This means that c-Myc activation can 

determine cell growth and mitotic events within the cell. 

 Activation of c-Myc occurs by phosphorylation by ERK1/2 (Figure 2).  The 

phosphorylation can take place at either Threonine 58 (T58) residues or Serine 

62 residues (S62).  Depending on the phosphorylated state of these residues, c-

Myc is either degraded by proteolysis (T58) or activated for hetero-dimerization 

(S62) (Wang et al., 2011).  Once phosphorylated at the S62 residue, c-Myc can 

then hetero-dimerize with Max (Wang et al., 2011).  Studies in yeast have shown 

that without this dimerization, c-Myc alone cannot bind DNA and thus cannot 

promote transcription (Amati et al., 1993b).   

 However, Max can also act as an inhibitor for the cell cycle and promote 

apoptosis if Max/Max dimerization occurs; these Max/Max dimers can and will 

bind to the same DNA sequences as c-Myc/Max dimers (Amati et al., 1993a). 

 C-Myc in non-transformed cells will only be expressed in response to 

mitogenic stimuli, but can be constitutively expressed in transformed cells and  
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therefore does not require mitogenic activity (Luscher & Eisenman, 1990a, 

1990b).  Such a constitutive expression occurs in BL (Mangani et al., 2012). 

 Since its discovery, c-Myc has been associated with viruses.  Initially c-Myc 

was discovered to be a homologue of v-Myc, a protein found in Avian 

Myelocytomatosis virus (Vennstrom et al., 1982).  This linkage of c-Myc and 

unregulated activity remains with EBV infected BL.  In EBV infected cells the 

addition of exogenous c-Myc from BL causes oncogenic activity and down 

regulates endogenous c-Myc activity (Lombardi et al., 1987).  Also, a 

translocated chromosome 8 and 14 are required to cause oncogenic activity of c-

Myc in BL.  This translocation occurs in an immunoglobulin locus and leads to 

the constitutive activity of c-Myc and uncontrolled cell proliferation (Erikson et al., 

1983).  This un-regulated activity of c-Myc is considered to be a hallmark of BL 

pathogenesis, but it is not known what role if any EBV actually plays in this 

activity, or whether c-Myc activity can be up regulated in non-BL cell lines that  

are infected with EBV (Mangani et al., 2012).  It is possible that mitogenic activity 

could activate Ras/ERK and lead to the dimerization of c-Myc and Max in EBV 

infected cells and promote cell proliferation.  The mitogenic activity could be 

enacted by an interleukin such as IL-10. 
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Interleukin-10 Association with Burkitt’s Lymphoma, EBV, Malaria and HIV: 

 Since its discovery by Dennis Burkitt in 1962, BL has been associated with 

Malaria infection.  It has been detailed that in areas that are more prone to 

climatic changes, such as increased rainfall or are associated with greater 

Malarial risk, cases of BL are elevated (Kafuko & Burkitt, 1970).  EBV was first 

discovered, by Michael Epstein and Yvonne Barr, in BL tissue culture and then 

discovered to be the infectious agent of infectious mononucleosis (Kafuko & 

Burkitt, 1970).  More recently, supporting evidence has arisen that further 

suggests a relationship between EBV, Malaria and HIV in Africa (Rainey et al., 

2007).  Among HIV patients and BL patients, it was found that antibodies for EBV 

were present in most infected individuals, also it was noted that individuals 

resided in mosquito-borne disease areas that were common for Malaria (Rainey 

et al., 2007).   

 There is also a probability that IL-10 plays a role in BL pathogenesis.  It has 

been noted that individuals with active Malaria infections secrete large quantities 

of IL-10, of around 2000pg/mL, when serum samples have been collected (Imai 

et al., 2011).  More recently it has been noted that IL-10 is secreted in large 

amounts, and acts as an autocrine growth factor, from B-cell lines derived from 

BL patients (Benjamin et al., 1992).  Also lines derived from patients with B-cell 

lymphomas and AIDS are now known to also secrete large quantities of IL-10 

and the IL-10 consequently acts as a growth factor for these cells (Masood et al., 

1995).  Most recently it has been shown that RNA derivatives from EBV encode 
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IL-10 and can thus support growth of BL, specifically when associated with 

Latent Membrane Protein 1 (LMP1) a protein encoded for by the EBV genome 

(Kitagawa et al., 2000).  EBV-encoded RNAs or EBERs caused increased IL-10 

production in BL cells due to the encoding of an IL-10 homologue (Kitagawa et 

al., 2000).  The evidence that IL-10 is associated with EBV and may account for 

growth in BL remains to be investigated.  It is probable that the IL-10 produced 

by EBV infection plays a role not only in BL growth but also can promote 

proliferation in non-BL cells infected with EBV.  This may be due to the activation 

of Ras/ERK and phosphorylation of c-Myc. 

 

Aims of Study: 

 An understanding of the interactions of interleukin-10 and its effects on the 

Ras/ERK pathway activation of c-Myc and the cell cycle, within EBV infected 

cells, could ultimately lead to novel therapeutic targets for treatment and 

prevention of BL.  In order to accomplish this several cellular interactions must be 

addressed.  First, it must be considered that Interleukin-10 is a promoting factor 

for c-Myc, in EBV infected cells; secondly, that Ras/ERK pathway leads to the 

activation of c-Myc; and finally, that c-Myc activation leads to the production of 

Cyclin D1. 
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Interleukin-10 as a Promoting Factor for c-Myc: 

 Since the Ras/ERK pathway activates c-Myc, and IL-10 is considered to be 

an autocrine growth factor in BL (Benjamin et al. 1992), is it possible that IL-10 

could ultimately lead to the activation of c-Myc within EBV infected cells.  If this is 

true then IL-10 is also a growth factor for EBV infected cells.  Treating cells with 

IL-10 and performing Western Blot analysis tested for total c-Myc present.  

 

Ras/ERK Activation of c-Myc: 

 If c-Myc is activated in EBV infected cells by IL-10, then it is probable that 

the activation of c-Myc is due to the activation of the Ras/ERK pathway.  If the 

Ras/ERK pathway is an integral part of c-Myc activation of EBV infected cells, 

then it can be said that phosphorylation by ERK leads to the activation of c-Myc.  

Also, depending on the phosphorylated state of c-Myc it can be determined if IL-

10 and the Ras/ERK pathway promotes cell cycle progression in EBV infected 

cells.  IL-10 treated cells were tested for the phosphorylation state of ERK, as 

well as for c-Myc phosphorylation; this was ascertained using Western Blot and a 

comparison of the amount of phosphorylated ERK to total amount of ERK was 

determined. In addition, total versus phosphorylated c-Myc was accounted for, 

using immunoprecipitation and Western Blot. 
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Cyclin Promotion by c-Myc: 

 In order to determine the state of the cell cycle within EBV infected cells due 

to IL-10 treatment, cyclin D1 production must be accounted for.  If after treatment 

of IL-10, the Ras/ERK pathway is activated, c-Myc is phosphorylated, and 

cyclinD1 is transcribed then it is probable that IL-10 is in fact a growth factor for 

EBV infected cells.  Therefore Western Blot analysis was performed in order to 

obtain the total amount of cyclin D1 present in the cells treated with IL-10.   

 If IL-10 is a mitogenic agent for B cells then novel targets within the 

Ras/ERK pathway could be explored for therapeutic measures and the state of 

the cell cycle in EBV infected cells could be arrested.  The cessation of the cell 

cycle in EBV infected cells by targeting components of the Ras/ERK pathway 

could lead to better treatments and prevention of BL.  
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CHAPTER II 

MATERIALS AND METHODS 
 

 
Cell Culture and IL-10 Treatment: 

 Cells were grown in culture and treated with IL-10 or left untreated.  Three 

cell lines were used: Raji, a BL line, IM9, an EBV positive non-BL line, and 8226, 

a non-EBV and non-BL line.  The cells were grown in RPMI-1640 (Thermo 

Scientific) medium, with 10% fetal bovine serum (Atlanta Biological), and 

penicillin, streptomycin and fungicide (GIBCO).  Cell culture was maintained at 

37 degrees Celsius, with 5% CO2.  Before experiments all cells were serum 

starved by centrifuging stock cell lines at 3000 rpm, then removing the RPMI 

containing 10% fetal bovine serum and replacing the serum containing media 

with media devoid of fetal bovine serum.  Cells were then serum starved for 24 

hours before again centrifuging the cells removing the medium and replacing the 

medium with RPMI containing 10% fetal bovine serum. This was done to ensure 

cell cycle synchronization at G0.  Cell counts were not completed.  Cells were 

then plated with 1 mL of stock cells solution and 5 mL of full medium in 60mm 

tissue culture plates. After plating, treatment of the cells was completed. Plates of 

treated cells from each line received 0, 0.1 nM or 0.2 nM of IL-10 (Cell Signaling 

Tech.), for 24 hours, as well as for 48 hours for Cyclin D experiments.  



  14 

Protein Extraction: 

 After treatment, cells were harvested.  This was done by centrifugation at 

3500 rpm for 10 minutes.  Cellular pellets from centrifugation were incubated with 

lysis buffer (0.25 M NaCl, 0.1% NP40, 50 mM HEPES pH 7.0, 5 mM EDTA, and 

protease/phosphatase inhibitors (Thermo Scientific)).  Once incubated with lysis 

buffer the cells were freeze/thawed for three cycles each consisting of 10 

minutes.  After three cycles of freezing and thawing the extracts were micro-

centrifuged at 12000 rpm at 4 degrees Celsius for 10 minutes.  The supernatant 

containing protein extracts was then collected and prepared for SDS-PAGE. 

 The extracts were subjected to a Bradford protein assay test using a 

spectrophotometer (Eppendorf) in order to obtain protein amounts in ug/ul. 

 

SDS-PAGE: 

 The extracts were then separated using SDS-PAGE.  20ug of the extracts 

were placed into 2x protein loading buffer (125 mM Tris pH 6.8, 20% glycerol, 

10% Beta-mercaptoethanol, 4% SDS, .025% Bromophenol blue) and loaded into 

a 10% polyacrylamide gel.  The gel was then subjected to electrophoresis in 1x 

SDS running buffer solution (25 mM Tris, 192 mM glycine, 0.1% SDS). 
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Western Blot Analysis: 

 After electrophoresis gels were placed into transfer cassettes (Bio-Rad) 

along with Immobilon (EMD Millipore) paper and the proteins were transferred.  

The cassettes were placed into a transfer buffer consisting of 1x electroblotting 

buffer (0.25 mM Tris, 1.92 M glycine, pH 8.3) plus 20% methanol.  Gels were 

then transferred overnight at 100 mAmps, after which the Immobilon blot was 

placed in a 5% non-fat milk, 1 x PBS and 0.1% Tween-20 blocking solution and 

incubated at 4 degrees Celsius for one hour. 

 

Immunostaining: 

 After blocking, the blot was placed into a 1:1000 dilution of appropriate 

rabbit or mouse primary antibody and 5% non-fat milk, 1 X PBS and 0.1% 

Tween-20 blocking solution.  A rabbit monoclonal anti-ERK (Cell Signaling Tech.) 

and rabbit monoclonal anti-Phospho-ERK antibodies (Cell Signaling Tech.) were 

used for the ERK experiments.  A rabbit monoclonal anti-c-Myc antibody (Cell 

Signaling Tech.) was used for Western-Blot.  For the immunoprecipitation the 

same anti-c-Myc antibody was used, but mouse monoclonal anti-Phospho-Serine 

(Santa Cruz Biotech.) and anti-Phospho-Threonine (Santa Cruz Biotech.) 

antibodies were also used.  Finally, for the Western Blot of cyclin D1, a mouse 

monoclonal anti-cyclin D1 antibody (Santa Cruz Biotech.) was used.  This was 

then incubated at four degrees Celsius overnight.  After incubation the blot was 

washed three times, at 10 minutes each, in a 1 X PBS and 0.1% Tween-20 wash 
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solution.  Following washing, the blot was placed in a 1:5000 goat anti-rabbit, or 

anti-mouse, secondary antibody-conjugated to HRP (Both from DSHB) in 5% 

non-fat milk, 1 X PBS and 0.1% Tween-20 blocking solution and incubated at 

room temperature for one hour.  The blot was then washed 3 times more in 

washing solution.  At this point ECL developing agent (BioExpress) was added to 

the blot.  Each Blot was also probed with a mouse monoclonal anti-tubulin 

antibody (DSHB) to ensure equal loading of protein extracts. 

 

Image Developing and Protein Band Quantification: 

 The developed blot was imaged using a Bio-Rad ChemiDoc™ XRS+ 

System, and ChemiDoc Image Lab™ image acquisition and analysis software.  

After imaging, protein bands were quantified using Bio-Rad QuanityOne™ 

software. 

 

Immunoprecipitation of c-Myc: 

 Immunoprecipitation of c-Myc was done for all cell types.  This was 

accomplished by first growing cell culture of previously serum starved cells, in 

100mm tissue culture plates.  Three plates were grown for each cell type,  
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consisting of 5mL serum starved cells in 5mL of RPMI for a total of 10mL per 

plate.  One plate was not treated, while one was treated with 0.1nM IL-10 and the 

last plate received 0.2nM IL-10.  All plates were incubated for 24 hours. 

 At this point the cells were harvested and pellets were placed in 250uL c-

Myc Binding Buffer (20mM Tris pH 7.5, 50mM NaCl, 0.5% Triton X-100, 0.5% 

deoxycholic acid, 0.5% SDS, and 1mM EDTA, and protease/phosphatase 

inhibitors (Thermo Scientific)).  The cells were then sonicated, with Fisher 

Scientific sonicator for 10 seconds, and centrifuged at 4 degrees Celsius for 10 

minutes, after centrifugation the supernatant protein levels were measured using 

a Bradford protein assay test (Eppendorf).  Then amounts equal to 100ug of total 

protein were added to 250uL of Binding Buffer and anti-c-Myc monoclonal rabbit 

antibody (Cell Signaling Tech.).  These were then incubated at 4 degrees, under 

constant rotation, for one hour.  Upon completion of the one-hour incubation, 

40uL of Protein AIG Agarose beads (50 % slurry) (Santa Cruz Biotech.) was 

added to each sample and again incubated in the same manner as mentioned 

above for another hour.   

 At the end of this hour the samples were centrifuged and the supernatant 

removed; the remaining pellets were then washed 3 times with the Binding 

Buffer.  At this time 20uL of 2X protein dye was added to the samples and SDS-

PAGE and then Western Blotting were completed.  Three Western Blots were 

performed for each cell line and then one of each was probed for total c-Myc  
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(Cell Signaling Tech.), phospho-threonine (Santa Cruz Biotech.), and phospho-

serine (Santa Cruz Biotech).  The amounts of phospho-threonine and phospho-

serine were then compared to the total amount of c-Myc present. 

 

Cell Viability: 

 Cell viability counts for both treated and untreated cell lines were done 

using a Guava easyCyte™ flow cytometer.  Centrifuged cells were washed with 

1X PBS and placed into GuavaViaCount solution and loaded into the flow 

cytometer.  Cell counts were obtained using Guava easyCyte™ 6-2L software. 

 

Microscopy and Imaging: 

 Cells were observed for phenotypic changes using an inverted Olympus® 

light microscope.  Morphological differences such as, cell shape and size, were 

recorded by obtaining images of treated and untreated cell lines at 200x 

magnification. 

 

Repetition and Statistics: 

 All experiments were done in triplicate and results from protein band 

quantification were analyzed using a student t-test, using Microsoft® Excel. 
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CHAPTER III 

RESULTS 
 

 
Viability of EBV+ Cells is not Affected by IL-10 but non-EBV Cells are Less 

Viable: 

 In order to determine if IL-10 has an effect on the overall viability of B cells, 

cells were grown in culture with either 0, 0.1 nM, or 0.2 nM IL-10 for 24 hours.  

The cells were then harvested and incubated with GuavaViaCount solution. 

Viability was assessed using the Flow Cytometer to determine if the cell nucleus 

was intact
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Figure 3. Overall viability of B cells in response to IL-10 
*p<0.05 when compared to the control 
**p<0.05 when compared to 0.1 nM of IL-10 
 

 
 The overall viability of cells treated with either 0.1 nM or 0.2 nM IL-10 was 

not affected in EBV-positive cells, but was decreased in the non-EBV cell line, 

8226 (Figure 3).  The decrease in viability for 8226 cells was significant (p<0.05) 

between the control and both the 0.1 nM treatment group and 0.2 nM treatment 

group.  Additionally a significant decrease (p<0.05) in viability was found between 

the 0.1 nM group and the 0.2 nM group. 
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After Treatment with IL-10 EBV+ Cells Change Morphologically: 

 To assess whether IL-10 effects the appearance of B cells, cells were 

treated with 0, 0.1 nM, or 0.2 nM IL-10 and grown in culture for 24 hours.  After 

treatment with IL-10 cells were observed under the microscope and changes in 

cell shape and size were noted for each cell line (Figure 4).  

 

 
 
Figure 4.  Images showing changes between cell lines before and after IL-10 treatment. 
Obtained using an inverted microscope (200x). 
 

 
 When IM9 (EBV+) cells were treated with 0.1 nM IL-10 (B1) the cells began 

to aggregate together and form masses of cells that adhered together much like 

the observed control state of the Raji cells (BL, EBV+) (A).  The masses formed 

by Raji cells increased in size with 0.1 nM IL-10 treatment as well (A2).  IM9 cells 
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also took on a more rounded and somewhat smaller appearance; similar to the 

untreated Raji cells.  With 0.2 nM IL-10 treatment both IM9 and Raji (A2 and B2) 

cells decreased in number and had less formation of masses.   

 It can also be noted that 8226 (EBV-) cells began to undergo what 

appeared to be apoptosis, or possibly necrosis, after treatment with 0.1 nM IL-10 

(C1) and were mostly dead leaving only cellular debris after 0.2 nM treatment 

(C2). 

 

Phosphorylation of ERK Increases with IL-10 Treatment in EBV+ Cells: 

 To quantify the amount of phosphorylation of ERK in response to IL-10, 

cells were again grown for 24 hours under the same treatment conditions as 

mentioned above.  After 24 hours proteins were extracted and SDS-PAGE and 

Western Blot were performed for each cell line (Figure 5).  Proteins were 

quantified and the results were placed into an Excel sheet for statistical analysis. 
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Figure 5.  Western Blots of the phosphorylation state of ERK in EBV + B cells.  
 
 

 
 
Figure 6.  The percent of phosphorylation of ERK in relation to total ERK for EBV + B cells. 
*p<0.05 when compared to the control group. 

 
 
 When considering the levels of expression of ERK in the treated cells and 

obtaining percentages of phosphorylation of ERK, it was observed that a 

significant increase in the ratio of P-ERK/ERK occurs in both EBV+ cell lines.  

The increase was significant with p<0.05 in the 0.2 nM IL-10 treatment in IM9 

cells after 24 hours, and the increase was significant with p<0.05 in the 0.1 nM 

IL-10 treatment group for Raji cells after 24 hours (Figure 6).  Due to an overall 
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lack of protein the levels of expression in EBV- (8226) cells were not obtained.   

This is most likely due to decreased viability of these cells after IL-10 treatment.  

This was demonstrated by the possible apoptotic activity observed under the 

microscope and a decreased viability (Figure 3 and 4). 

 

C-Myc Expression Levels Increase in EBV+ Cells but not in BL: 

 To determine if IL-10 causes a change in expression of c-Myc with in B 

cells, all three cell lines were again treated and grown in culture for 24 hours.  

After 24 hours the cells were harvested and SDS-PAGE and Western Blot were 

performed (Figure 7).  The levels of c-Myc were not obtained in 8226 cells due to 

an overall lack of protein derived from these cells.  Following the quantification of 

protein levels the data were placed into a spreadsheet and statistical analysis 

was performed (Figure 8).  
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Figure 7.  Levels of total c-Myc expression for EBV + B Cells. 
 
 

 
 
Figure 8.  Total levels of transcription factor c-Myc for EBV + B cells. 
*p<0.05  when compare to the control. 

 
 
 When the total levels of c-Myc expression were obtained (Figure 8) in both 

IM9 and Raji cell lines, c-Myc expression significantly increased, with p<0.05, in 

IM9 cells within the 0.1 nM IL-10 treatment group.  There was no significant 

change in expression in the Raji cell line. 
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Overall Phosphorylation of c-Myc Decreases with 0.1 nM IL-10 Treatment in 

EBV+ Cells: 

 To assess if any differences in phosphorylation of c-Myc occur in response 

to IL-10 immunoprecipitation of c-Myc protein was performed.  Initially IM9 and 

Raji cells were grown in large amounts and treated with 0, 0.1 nM, or 0.2 nM IL-

10.  The cells were harvested and c-Myc was precipitated from the protein 

extracts.  The precipitated protein was separated by SDS-PAGE and then 

Western Blots were performed.  Western Blots were probed for total c-Myc, 

phospho-Serine, and phospho-Threonine (Figure 9).  Due to the absence of c-

Myc in 8226 cells an immunoprecipitation was not completed. 

 The levels of protein were then obtained.  The amount of phosphorylation at 

each residue was compared to total amount of c-Myc present and percentages 

were obtained.  The data were placed into a spreadsheet for statistical analysis 

(Figure 10).  
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Figure 9.  Immunoprecipitation showing the relative phosphorylation of c-Myc at Serine and 
Threonine residues. 

 
 

 
 
Figure 10.  Immunoprecipitation of percent phosphorylation by residue for c-Myc. 
*p< 0.05 when compared to the control. 
 

 
 When immunoprecipitation for c-Myc (Figure 9) was completed on Raji and 

IM9 cells it was found that in IM9 cells the levels of phosphorylation at the Serine  

62 residue of c-Myc, in the 0.1 nM IL-10 group, decreased with p<0.05 (Figure 

10) when compared to the control.  There was not a significant change in Raji 

cells. 
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Cyclin D1 Expression Increases in EBV+ Cells with IL-10 Treatment: 

 To ascertain if IL-10 causes any significant effects to the levels of cyclin 

D1 expression cells were again treated and grown in culture.  However, cells 

were grown for 48 hours instead of 24 hours due to cyclin D1 appearing later in 

the cell cycle.  After treatment cells were harvested, proteins extracted and SDS-

PAGE and Western Blot were performed (Figure 11).  The data obtained from 

the Western Blot were then placed into a spreadsheet and statistical analysis 

performed. 

 

 
 
Figure 11.  Levels of expression of cyclin D1 expression in EBV+ cells. 
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Figure 12.  Cyclin D1 expression in EBV+ cells. 
*p<0.05 when compared to the control. 
 
 
 When looking at cyclin D1 expression (Figure 11), it was found that in the 

0.1 nM IL-10 treatment group cyclin D1 after 48 hours had a significant increase, 

with p<0.05 when compared to the control (Figure 12), in both IM9 and Raji cell 

lines.  Again levels for the 8226 cell line were not obtained due to an overall lack 

of protein. 

 

 

 



  30 

CHAPTER IV 

DISCUSSION 
 

 
Viability in non-EBV Cells is Decreased with IL-10 Treatment: 

 The results of the viability test that were performed on EBV – cells (8226) 

indicated that cells, which do not possess the virus, begin to die in response to 

IL-10, which is the normal response associated with B cells that are in no way 

transformed.  However, both cell lines that were EBV + (Raji and IM9) exhibited 

little to no difference in viability in response to IL-10.  This indicated that 

presence of the virus does in fact change the cell’s response to IL-10, causing an 

abnormal response. 

 This response could be due to the IL-10 homologue encoded by LMP1 

gene from the viral genome.  The virus changes the cell’s response so that, 

during latency viral products are not toxic to the cell.  How this occurs remains 

unknown; by possibly examining the amount of LMP1 transcripts this could be 

further explained.  Also, if LMP1 could be inhibited and then EBV + cells treated, 

it could be noted whether or not the cells become less viable in the presence of 
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IL-10.  This would signify that LMP1 does increase the viability of cells in the 

presence of IL-10.  This needs to be addressed in the future and could be done 

by utilizing qRT-PCR and examining the amount of LMP1 produced by EBV + 

cells. 

 

EBV+ Cells Exhibit a Morphology Similar to BL in the Presence of Low 

Doses of IL-10: 

 The IM9 cells, when treated with 0.1 nM IL-10 began to appear similar to 

Raji cells.  After treatment the cells aggregated and formed masses similar to the 

Raji control as well as the Raji treated 0.1 nM IL-10 group.  In higher doses (0.2 

nM IL-10) this change in morphology was reversed in IM9 cells and actually 

resulted in Raji cells exhibiting a more normal morphology. 

 The 8226 cells appear to be apoptotic with 0.1 nM IL-10 treatment and 

only cellular debris was present with 0.2 nM IL-10 treatment.  This result aligns 

with the viability data that were also obtained from this cell line that showed a 

significant decrease in the number of viable cells when treated with IL-10. 

 The changes present in the IM9 cell line are probably likely due to the 

increased proliferation of cells.  The increased proliferation could lead to a mass 

formation due to the number of cells being replicated during a decreased amount  

of time.  With faster replication times cells have a higher probability of 

experiencing mutations and therefore are likely to become cancerous.  This could 

be confirmed for the IM9 cells with further genetic screening. 
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IL-10 Up-regulates ERK and Proliferation in EBV Infected B Cells: 

 The results of the ERK and phospho-ERK experiments demonstrate that 

IL-10 plays a role in up-regulation of replication of EBV-infected B cells during a 

latent infection.  Binding of IL-10 to its corresponding RTK increases the activity 

of the Ras/ERK pathway, phosphorylating ERK.  When observing the changes in 

phosphorylation of ERK in relation to treatment in the IM9 cell line, the cells 

appear to have increased activity that is relatable to the increased activity seen in 

BL.  The results from the IM9 cells correlate with the results from the known BL 

cell line Raji. 

 The results do not fully confirm that IL-10 is responsible for BL it merely 

suggests that IL-10 may play a significant role in the initial increase in cell 

proliferation associated with BL.  Further research comparing the amount of 

mRNA transcripts for ERK could support this to a greater extent.  If the 

transcripts are also elevated, an overall increase of ERK production by the cell  

could possibly be attributed to increased levels of IL-10.  Also the amount of viral 

genes that are transcribed and whether or not viral proteins are elevated after IL-

10 treatment could further relate the increase in ERK activity to the virus and not 

endogenous cellular activity. 
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The Total Amount of c-Myc is Increased by IL-10, but Phosphorylation 

Decreases: 

 The increased activity of ERK when cells were exposed to IL-10 could 

account for the increased presence of c-Myc, but does not explain the lack of 

phosphorylation of c-Myc associated with IL-10 treatment.  It would be suspected 

that phosphorylation would increase due to increased kinase activity of ERK. 

 However, this is not the case; instead of an increase in phosphorylative 

activity there is a decrease in response to IL-10, especially in the 0.1 nM group.  

What can be said about this is that it resembles the response of the Raji cells to 

0.1 nM treatment.  This resemblance actually adds credibility to the thought that 

IL-10 plays a role in the development of BL, since the EBV + cells begin to 

resemble the intracellular activity that is associated with BL cells.  This does not 

mean that c-Myc is constitutively active in the EBV + cells after treatment but it 

could point to the potential for constitutive activity to develop.  Karyotyping and  

observing whether or not a chromosomal translocation has occurred, such as the 

translocation from chromosome 8 to 14 that is prevalent in BL could further 

assess this. 
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Cyclin D1 Increases in EBV + Cells after 48 Hours in Response to IL-10: 

Cyclin D1 was found to be elevated in both IM9 and Raji cell lines after 48 

hours in response to 0.1 nM IL-10.  The increased activity of ERK combined with 

increased presence of c-Myc in turn translates to increased transcription of 

Cyclin D1 and progression of the cell cycle thus initiating replication. 

The results indicates that IL-10 is in fact a mitogen for EBV + B cells.  

Since the Ras pathway is activated, ERK is phosphorylated, and c-Myc levels 

increase, it can be said that IL-10 follows the traditional cascade of an RTK 

receptor (Mendoza et al., 2011). 

The mitogenic activity could possibly be a link between Malaria and BL.  

The increased presence of IL-10 during Malaria infection and a latent EBV 

infection could account for the initial stages of over-proliferation that accompany 

early BL pathogenesis.  This is not the ultimate cause of BL but likely plays a role 

in its progression.  To further investigate the effect of IL-10 on proliferation in the 

future transcript levels should be compared to protein levels after treatment, and 

inhibition studies should be completed to see if proliferation decreases when c-

Myc is inhibited. 

Viral genes and the exact role that they play in the increased proliferation 

associated with IL-10 should be assessed.  The main viral gene responsible is 

more than likely LMP1 (Kitagawa et al., 2000). 
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Significance of Study: 

 The ultimate goal of this study was to determine if IL-10 could be 

considered an association between EBV and Malaria resulting in BL.  The results 

of this study show that IL-10 does have the potential to act as a mitogen in EBV + 

B cells.  This could ultimately lead to potential treatment targets for BL.  More 

importantly this could lead to the development of preventative measures toward 

BL.  Further understanding of this relationship is needed.  But the results 

presented here are the beginnings of understanding a linkage between EBV and 

Malaria and the ultimate development of BL. 
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