
SLATER, JOSHUA W., M.A. Sampling from the Space of Persistence Diagrams.
(2024)
Directed by Dr. Thomas Weighill. 55 pp.

The efficacy of using persistent homology as a tool to understand “the shape of data”
has been demonstrated in a variety of different machine learning problem domains.
Like many other unsupervised techniques within machine learning, the quintessential
persistent homology pipeline is one-directional; data goes in, we use persistent homology
to compute information about topological invariant that are present with that data,
and a succinct summarization of this information, a persistence diagram, comes out. In
this work, we investigate the opposite direction of this pipeline. Using Random Walk
Metropolis (RWM), we explore spaces of grayscale images and weighted graphs whose
persistence diagrams approximates a given target persistence diagram, presenting
sampling schemes that make this process tractable. Following an overview of relevant
terminology and results, we show that our methods may be used to generate images
and weighted graphs whose underlying persistence diagrams closely approximate a
given target.

SAMPLING FROM THE SPACE OF PERSISTENCE DIAGRAMS

by

Joshua W. Slater

A Thesis Submitted to
the Faculty of The Graduate School at

The University of North Carolina at Greensboro
in Partial Fulfillment

of the Requirements for the Degree
Master of Arts

Greensboro
2024

Approved by

Committee Chair

APPROVAL PAGE

This thesis written by Joshua W. Slater has been approved by the following
committee of the Faculty of The Graduate School at The University of North Carolina
at Greensboro.

Committee Chair
Thomas Weighill

Committee Members
Michael Hull

Clifford Smyth

Jianping Sun

Date of Acceptance by Committee

Date of Final Oral Examination

ii

ACKNOWLEDGMENTS

I am deeply grateful of Dr. Weighill for his thoughtful supervision of this work, and
more broadly, for his tireless support in overseeing my journey in mathematics. In
addition, I would like to thank Dr. Hull, Dr. Smyth and Dr. Weighill for their support
throughout my time at UNCG.

iii

Table of Contents

List of Figures . v

1. Introduction and Related Works . 1

2. Background . 4
2.1. Introduction to Persistent Homology 4
2.2. Chain Complexes and Homology . 7
2.3. k-th Simplicial Homology Group and Betti Numbers 10
2.4. Filtrations . 11
2.5. Persistence Barcodes and Diagrams 16
2.6. Wasserstein Distance . 17
2.7. Stability Results . 21
2.8. Random Walk Metropolis . 26

3. Methods . 28
3.1. Point Clouds . 28
3.2. Images . 29

3.2.1. DCT Random Walk Metropolis Implementation 29
3.3. Weighted Graphs . 33

4. Results . 39
4.1. DCT Random Walk Metropolis Results 39
4.2. Graph Laplacian Random Walk Metropolis 41
4.3. Discrete Birth/Death Random Walk Metropolis 46
4.4. Closing Remarks . 51

Bibliography . 54

iv

List of Figures

2.1. Example of a simplicial complex. 5
2.3. Model 0,1,2 and 3 simplices . 6
2.4. Examples of simplices and faces. 6
2.5. Spaces that are not simplicial complexes. 7
2.6. Example simplicial complex and corresponding chain groups. 8
2.7. Geospatial data represented with a graph structure. 12
2.8. Filtered simplicial complex, and choice of basis guarenteed by the

Fundamental Theorem of Persistent Homology. 15
2.9. Persistent homology process, from sublevel set filtration to barcode. . 18

2.10. Examples of persistence barcodes and images 19
2.11. Persistence diagrams with vastly different numbers of points, but which

we want to consider as similar. 20

3.1. 8× 8 DCT basis elements. 30
3.2. Dissimilar weighted graphs which have identical persistence diagrams. 34

4.1. DCT RWM corduroy texture results. 41
4.2. DCT RWM brown bread texture results. 42
4.3. DCT RWM lettuce leaf texture results. 43
4.4. Random Walk Metropolis trace plots. 44
4.5. GL RWM binary tree results. 47
4.6. GL RWM density plot. 48
4.7. GL RWM Erdős-Renyi results. 49
4.8. GL RWM NC county data results. 50
4.9. Discrete Birth/Death RWM results. 52

4.10. Discrete Birth/Death RWM histogram. 53

v

Chapter 1: Introduction and Related
Works

There are a number of reasons one might want might want to study the persistent
homology pipeline in reverse, that is, to study instances or distributions of data which
share a common a common persistence diagram. This idea has been tangentially
explored through a variety of works and mathematical and statistical lenses over the
past decade, often with practical implications in mind. Persistent homology may
capture structures within data that, say, enhance the classification capabilities of a
model, but instances of data (and thus of corresponding persistence diagrams) may
be difficult to come by. For example, [16] details an instance in which persistent
homology proved valuable in differentiating between a variety of crystalline structures,
but collecting training data from which to build a model was infeasible.

At the risk of grave oversimplification, perspectives on how to explore relationships
between persistence diagrams and the data that generates them fall into two camps.
The first are those grounded in gradient-based optimization, sometimes referred to
as topological optimization; these are intended to generate discrete instances of data
whose underlying persistence diagrams approximate a given target persistence di-
agram. The second are those which primarily focus on sampling from a relevant
space of persistence diagrams itself, with the goal being to generate some distribu-
tion of persistence diagrams from which samples that approximate a given target
collection of persistence diagrams may be drawn. In some respects, the end goal of
these differing perspectives is highly complimentary; one attempts to utilize some
broad distribution of data as a way to generating new persistence diagrams, the
other largely forgoes the data from which persistence diagrams are based, instead fo-
cusing on the space of persistence diagrams itself to generate new persistence diagrams.

The broad idea of this work is to study sufficiently restricted spaces of data, no-
tably grayscale images and finite weighted graphs, which share a common persistence
diagram using Random Walk Metropolis methods. Although we have drawn inspira-
tion from some of the many sampling based works, namely, in that we rely on methods

1

from MCMC to explore the space of data which shares a common persistence diagram,
the overarching goals for this work align more with optimization based methods. That
is, rather than sample persistence diagrams in accordance with a model with provable
statistical guarantees, we are more interested in finding instances of data (the more
radically different from the data which generated the given target persistence diagram,
and from one another, the better) that generate a given persistence diagram, or at
least suitably approximate it.

Related Optimization-Based Work

Many optimization methods rely on some flavor of gradient descent to solve problems
of the form minx∈X L(x), where L : X → R is some loss function, and thus inherently
related to the thing one is trying to minimize. If one wishes to generate data that
approximates a given persistence diagram, the many stability results that persis-
tence diagrams enjoy with respect to the various p-Wasserstein distances motivates
their candidacy for good choices of L; given a target persistence diagram PD(y), pre-
vious work has sought to define L(x) = Wp(PD(x),PD(y)), or some variation thereof. 1

Of course, certain problems must first be overcome if we are to use the Wp dis-
tances as loss function, chief among which is that it is not immediately obvious how to
calculate gradients from these Wp. In [11], it was shown that, under the assumption
that points of a finite point cloud are distributed in general position, stability of
bottleneck distance W∞ implies the differentiability of the persistence map, i.e the
map that sends a point cloud to its persistence diagram. As a result, they demonstrate
that given a starting point cloud P and target persistence diagram D, one can apply
Newton-Raphson to iteratively transform P into a point cloud P ′ with PD(P ′) = D,
and the authors provided some convergence guarantees. Broadly, their method relies
on the correspondence between birth/death values and birth/death simplices. If you
know, for instance, that the appearance of an edge annihilates a connected component,
and thus adds a point to the persistence diagram, increasing or decreasing the distance
between the two endpoints of the edge changes when the edge appears in the filtration,
and thus when the components are merged, and thus the location of the corresponding
point in the persistence diagram.

Building off the general method established in [11],[18] proposes methods that greatly
reduces convergence time of gradient decent. Moreover, their methods extend back-
propogation to provide gradient information to entire cycles, rather than pairs of
simplices as previously.

1In practice, persistent homology based topological loss as is often used as regularization term;
for instance, see [2], [17]

2

Related Sampling Based Methods

Previous sampling-based works have largely been focused on generating samples of
persistence diagrams themselves, rather than sampling from some distribution of data
which generates persistence diagrams. For instance, [1] proposes the use of Markov
Chain Monte Carlo (MCMC) to sample from a model that intends to replicate a given
persistence diagram in a statistically reliable way.

In a similar vein, the authors in [20] propose a framework for generating additional
persistence diagrams, which they consider as pairwise interacting point processes,
from a given collection for the purposes of augmenting available topological training
data for use other machine learning algorithms. Whereas the proposed model of [1]
primarily considers interactions between points within a given persistence diagram, the
approach of [20] is twofold: they consider considering pairwise interactions between
points to capture local behavior of a given persistence diagram, while simultaneously
accounting for the spatial arrangement of persistence diagram points within a given
persistence diagram, that is, their relative proximity to the diagonal, assigning greater
importance to points with longer lifetimes.

[16] more closely aligns with the general premise of this work, in that they treat
point clouds as a prior in a broader Bayesian framework which they propose for the
purpose of preforming statistical inference on persistence diagrams, treated as Poisson
point processes. Nevertheless, the authors make efforts to avoid working with point
clouds directly, choosing instead to use persistence diagrams themselves as a proxy for
point cloud data, under the perspective that the topological features present within a
point cloud, those features which are encapsulated in persistence diagrams, are more
informative than the point cloud data itself.

Other Related Works

Neither a sampling nor optimization based work, [7] explores the space of functions
f : [0, 1] → R which share an underlying persistence diagram. This is perhaps the
work closest in spirit to ours, however, the scope of their work is restricted to function
on the unit interval rather than images or weighted graphs, and the work does not rely
on sampling methods. Instead, they rely on a notion of functional equivalence, “graph
equivalence”, to restrict the space of functions defined on the unit interval which share
a common persistence diagram to a workable (enumerable) size, employing extensive
use the elder rule and the elder rule.

3

Chapter 2: Background

2.1 Introduction to Persistent Homology

From a pragmatic point of view, persistent homology captures structural character-
istics of a given topological space as a parameter of choice varies. The general idea
is this: we gradually reconstruct our space in a discrete fashion, piece by piece, in
accordance with our choice of parameter, and record the emergence or disappearance
of topologically significant structural features, such as connected components, holes,
voids and higher dimensional analogues along the way. A fixed parameter value
provides a snapshot of the construction process; by amalgamating these snapshots, we
not only gain insight into the types of structural features present within our space,
but also gain the ability to differentiate between features that persist ; those that are
present in the snapshot at a variety of parameter values, and those which are not.

Naturally, persistent homology, along with other methods within the discipline of
topological data analysis, is a useful in problems where the structural features it
captures, such as holes, play a critical role. Before proceeding in more detail, we shall
give an informal introduction to some of the concepts that make persistent homology
mathematically rigorous.

Working with topological spaces is, in general, difficult from a computational perspec-
tive. For instance, it is difficult to rigorously codify the representation of the torus T2

as the unit square with opposite sides identified, or as the product S1× S1 within even
the generous confines allowed by modern computers. It is therefore critical that we
have a system of representing spaces, potentially topologically feature-rich spaces, in
a way that is computationally feasible. To that end, vertices, edges and triangles are
easy to work with from a computational perspective, and, while it is difficult to model
the torus as a quotient space computationally, it is relatively simple to model the
torus via triangulation. And crucially, from a topological perspective the triangulated
torus is indistinguishable from the real thing. In order to make analysis of complex,
potentially high dimensional spaces, or pragmatically, complex, high-dimensional data
feasible, we will both extend and refine the familiar idea of triangulation to more

4

Figure 2.1

(a) A smooth torus. (b) A triangulated torus.

Figure 2.2. Two representations of the torus

general contexts through simplicies (sing. simplex) and simplicial complexes ;

Definition 2.1. A k-simplex

σ = [x0, x1, . . . , xk]

is the convex hull of an ordered set of k+ 1 points x0, . . . , xk ∈ Rm in general position,
where m ≥ k. If σ is a k-simplex, then the convex hull of any non-empty subset of
{x0, . . . , xk} defines a face of σ. The ordering x0, x1, . . . , xk determines an orientation
of σ.

Considering specific examples helps shed light on this definition; a 0-simplex is identi-
fied with a point, which, perhaps intuitively, has no faces. A 1-simplex is an edge; it

5

Figure 2.3. (Left to Right) - The model 0,1,2 and 3-simplices.

a

b c

d

0-simplices: {a, b, c, d}

1-simplices: {ab, bc, cd, ad, ac}

2-simplices: {abc}

X

Figure 2.4. Examples of simplices and faces:

has two faces, namely, the two endpoints, which are themselves 0-simplices. And a
two simplex, a filled triangle, has three 1-simplex faces, and 3-zero simplex faces (see
Figure 2.4).

Simplices suffice as building blocks for any reasonable space. But what does it
mean to "build" with these simplices? In three dimensions, we should expect our
constructions to parallel the triangulation of the torus 2.2b. That example highlights
some important properties that we should like to incorporate in our own constructions,
namely, the construction is a collection of vertices, (straight) edges, and filled triangles,
and that adjacent triangles intersect at an edge.

Definition 2.2. A simplicial complex X is a collection of simplices 1 such that

1. For any simplex σ ∈ X , all faces of σ are also contained in X

2. For any two simplices σ, τ with nonempty intersection, σ ∩ τ is a face of both σ
and τ .

Figure 2.5 shows examples of spaces that fail to be a simplicial complex. This work
is primarily focused on weighted graphs, which carry a natural simplicial complex
structure; we identify nodes with 0-simplices and edges with 1-simplices. Regardless,
having defined what it means to be a simplicial complex, it now makes sense to
consider maps between these structures:

1We assume when we write σ = [v0, . . . , vk] that the ordering of the vertices of σ v0, . . . , vk is the
correct orientation of σ in X

6

b

a c
d

f

e
g

h i

j

Figure 2.5. (Left) - This space fails condition (2), since the intersection of [abc] and
[def] is not a face of either. (Right) - This space fails condition (1), since the filled
square is not a simplex

Definition 2.3. A simplicial map f : X → Y is a map from the vertices (0-simplices)
of X to the vertices of Y, with the property that if σ = [v1, . . . , vn] ∈ X , the set
{f(v1), . . . f(vn)} spans a simplex in Y.

Perhaps the most clear and relevant example of simplicial maps those induced by
inclusion; a subcomplex S of a simplicial complex X is a collection of simplices in X
that form a simplicial complex in their own right. By definition then, the inclusion
i : S → X is a simplicial map, and maps of this type will play an important role when
we define filtrations in a later section.

2.2 Chain Complexes and Homology

Having defined the types of structures with which we will work, simplicial complexes,
we shall move on to further develop the framework which allows us to concord structural
features present within them. While this work is focused mainly on detecting connected
components, which are admittedly, plainly seen in the weighted graphs we are interested
in, the ideas of this section generalize to detecting holes, voids, and higher dimensional
analogues. The big idea is this: we can group simplices within a given simplical complex
by dimension, assign to each of these collections a (free) vector space structure, and
study relationships between these vector spaces vis-à-vis the behavior of linear maps
that obey a particular composition condition. The most fundamental constructions in
this section are chain groups :

Definition 2.4 (Chain Groups). Let X be a simplicial complex, and let F be a field.
For k ∈ N, the kth-chain group, denoted Ck(X), is the free F-vector space over the set
of k-simplicies in X . By convention, we take Ck = {0} for k < 0.

7

a

b c

d

0-simplices: {a, b, c, d}

1-simplices: {ab, bc, cd, ad, ac}

2-simplices: {abc}

C0(X): {0, a, b, c, d, a+ b, a+ c, a+ d, . . . , a+ b+ c+ d}

C1(X): {ab, bc, cd, ad, ac, ab+ bc, ab+ ac, . . . , ab+ bc+ cd+ ad+ ac}

C2(X): {0, abc}

X

Figure 2.6. Example simplicial complex and corresponding chain groups

By assigning a simplicial complex this additional structure, in particular a vector
space structure, we gain access to many of the tools, techniques and jargon of linear
algebra. And naturally, having constructed a collection of vector spaces, we shall now
move to discuss the maps between these spaces. Moreover, simplicial maps induce
maps on chain groups in the following way - given a simplicial map f : X → Y, we
can define a map f̂k : Ck(X)→ Ck(Y) via

f̂k(σ) =

{
0 f(σ) is not a k-simplex
f(σ) else

and extending linearly 2. On the other hand, restricting to a particular simplicial
complex X , we can also construct maps Ck(X)→ Ck−1(X). These maps, intuitively
named boundary maps, are the star of the homology show:

Definition 2.5 (Boundary Maps). For k ≥ 1, the kth boundary map ∂k : Ck(X)→
Ck−1(X) is defined by

σ = [v0, v1, . . . , vk] 7→
k∑

i=0

(−1)i [v0, . . . , v̂i, . . . , vn]

where [v0, . . . , v̂i, . . . , vk] is the (k − 1)-face of σ spanned by {v0, . . . , vk} − {vi}, and
extending linearly. Under the convention that C−1(X) is trivial, ∂0 is define to be the
zero map.

2If f is not injective on the vertices of σ, then f(σ) = 0

8

Taking F = F2, the previous expression thus reduces from an alternating sum of
(k − 1)-faces to

f(σ) =
k∑

i=0

[v0, . . . , v̂i, . . . , vn]

Given that these ∂k are linear maps, we can start to ask questions about kernels and
images: A k-chain x ∈ Ck(X) is called a cycle if ∂k(x) = 0, and/or a boundary if
x = ∂k+1(y) for some y ∈ Ck+1(X).

This definition of boundary maps leads to an important property, quintessential
to boundary maps both here, and in other contexts. Observe, for any k-simplex σ, we
have

∂k−1∂k(σ) = ∂k−1

(
k∑

i=0

(−1)i [v0, . . . , v̂i, . . . , vk]

)
=
∑
j<i

(−1)i(−1)j [v0, . . . , v̂j, . . . , v̂i, . . . , vk]

+
∑
j>i

(−1)i(−1)j−1 [v0, . . . , v̂i, . . . , v̂j, . . . vk]

= 0

since any term from the first summation will appear in the second with opposite
sign. In other words, every element in the image of ∂k is jointly in the kernel of
∂k−1, Im(∂k), i.e ⊆ Ker(∂k−1). What do elements in the kernel of ∂k, cycles, look like?
Roughly, they correspond to loops, or cycles, in the simplicial complex. Continuing
with our running example, one can easily see that AB +BC + CA is an element in
the kernel of ∂1, so too is AD +DC + CA, or AB +BC + CD +DA.

Meanwhile, elements in the image of ∂k, our boundaries, are formal combinations of
faces of (k + 1)-simplices, but the insight that composing boundary maps gives us
the zero transformation gives us more; those chain group elements that in the image
of a boundary map constitute the boundary of a filled in "hole". And the fact that
∂k+1∂k = 0 allows us to quotient out elements that are jointly a boundary and a cycle.
Hopefully, this informal discussion gives credence to the idea that homology is, roughly
speaking, a way of detecting holes that are indeed holes, in that they are holes that
are not "filled in".

9

2.3 k-th Simplicial Homology Group and Betti Num-
bers

Definition 2.6. The k-th simplicial homology group of X , denoted Hk(X), is given by

Hk(X) = Ker(∂k)/Im(∂k+1)

We refer to dim(Hk(X)) is called the k-th Betti number of X .

We have seen that a simplicial map f : X → Y induces a map on chain groups,
f̂ : Ck(X)→ Ck(Y). Simultaneously, the Ck(X) are linked via boundary maps, so too
are the Ck(Y). In fact, there is an important link between simplicial maps, boundary
maps, and maps on homology:

Lemma 2.7. Let f : X → Y be a simplicial map, with induced map on chain groups
f̂k : Ck(X)→ Ck(Y). Then

1. The following diagram commutes:

. . . Ck+1(X) Ck(X) . . .

. . . Ck+1(Y) Ck(Y) . . .

∂k+1

∂k+1

f̂k+1 f̂k

∂k+2

∂k+2

∂k

∂k

2. f̂k : Ck(X)→ Ck(Y) preserves cycles and boundaries. In other words, f̂k induces
a map f∗ : Hk(X)→ Hk(Y).

Proof. By linearity, it suffices to show equality ∂k f̂k+1 = f̂k ∂k on individual simplices.
Let σ = [v0, . . . , vk+1] ∈ Ck+1(X). If f(σ) is a (k + 1)-simplex in Y , we have that f is
injective on the vertices of σ and thus

∂k (f̂k+1(σ)) =
k∑

i=0

(−1)i [f(v0), . . . ˆf(vi), . . . f(vk)]

=
k∑

i=0

(−1)i f̂k([v0, . . . , v̂i, . . . vk])

= f̂k (∂k(σ))

On the other hand, if f(σ) is not a (k + 1)-simplex, then f is not injective on vertices.
If f maps the k + 1 vertices of σ to n < k vertices in Y , then the image of every face

10

of σ under f̂k is zero, and otherwise, f takes the k + 1 vertices of σ to k vertices in Y ,
so order the vertices of σ such that f(v0) = f(v1). Observe now that

f([v0, v2, . . . , vk]) = [f(v0), f(v2), . . . , f(vk)]

= [f(v1), f(v2), . . . , f(vk)]

= f([v1, v2, . . . , vk])

Other k-faces of σ, contain the vertices v0 and v1; f̂k maps such faces to zero, since
their image cannot be a k-simplex in Y . Thus

∂k (f̂k+1(σ)) =
k∑

i=0

(−1)i [f(v0), . . . ˆf(vi), . . . f(vk)]

= [f(v0), f(v2), . . . , f(vk)]− [f(v1), f(v2), . . . , f(vk)] = 0

f̂k (∂k(σ)) =
k∑

i=1

f̂k([v0, v1, . . . , v̂i, . . . vk])

= [f(v0), f(v2), . . . , f(vk)]− [f(v1), f(v2), . . . , f(vk)] = 0

and thus ∂k f̂k+1 = f̂k ∂k. Moreover, f̂k preserves boundaries and cycles, for if τ =∑
αiσi is a k-cycle, then ∂k(τ) = 0, and thus

(∂k f̂k)(σ) = f̂k−1 (∂k(σ)) = f̂k−1(0) = 0

and if η =
∑

αjσj is a k-boundary, say η = ∂k+1(τ), then

f̂k(η) = (f̂k∂k+1)(τ) = ∂k+1(f̂k+1(τ))

and so f̂k(η) is a k-boundary as well. Thus f̂k induces a well-defined map on homology
f∗k : Hk(X → Hk(Y),

Hk(X) ∋ [σ] 7→ [f̂k(σ)] ∈ Hk(Y)

2.4 Filtrations

At this point, we have developed the mathematical foundation for the "snapshot"
portion of persistent homology: given a simplicial complex X , calculating, say, H0(X),
allows us to both count and identify representative vertices for connected components
in X .

Certainly, the ability of homology to identify connected components, holes, and

11

Figure 2.7. Example of geospatial data represented with a graph structure. In this
case, each node represents a county, with node coloration representing the population.
The data used to generate this graph was taken from [8].

higher dimensional analogues is notable in and of itself. With the aid of filtrations, the
“persistent” part of persistent homology, we can say more, extending the ideas of ho-
mology to work with structural features induced by functions defined on a topological
space. This is particularly relevant in domains where the structural characteristics of
the space itself is not of particular interest. For instance, geospatial data (see Figure
2.7) is often represented by graphs, where nodes representing a tangible geographic
feature, such as cities, are endowed with some value, say population. While the macro
graph structures can be of interest in such cases, often, we are often more interested
in studying relationships and patterns that arise from the node values, such as the
location of local minima or maxima. To extend the idea of homology to functions
defined on a simplicial complex, in our case, graphs with the obvious simplicial complex
structure, we will need to define a few more bits of terminology:

Definition 2.8 (Sublevel Set). Let X be a simplicial complex, and f : Vert(X)→ R
be a (not necessarily continuous) function. For t ∈ R, the t−sublevel set , denoted
Xt(f) is given by

Xt(f) = {σ ∈ X | f(v) ≤ t for all vertices v ∈ σ}

Each Xt(f) is clearly a subcomplex of X . Furthermore, for s < t, there is a simplicial
map its : Xs(f)→ Xt(f), the inclusion map, which in turn induces a maps on homology

12

as indicated in the following diagram:

. . . Xs(f) Xt(f) . . .

. . . Hk(Xs(f)) Hk(Xt(f)) . . .
(i ts)∗

i ts

Definition 2.9 (Sublevel Set Filtration). A sublevel set filtration is an ordered
sequence a1 < a2 < · · · < ar < . . . together with a sequence of simplicial complexes

Xa1 ⊆ Xa2 ⊆ · · · ⊆ Xar ⊆ . . .

ordered by inclusion.

In practice, filtered simplicial complexes often arise from sublevel sets; if X is a
simplicial complex, with f : X → R, given any ordered sequence of real numbers
a1 < a2 < . . . we can construct a sublevel set filtration, by taking sublevel sets:

Xa1(f) ⊆ Xa2(f) ⊆ . . .

The inclusions its : Xs → Xt are simplicial maps, hence induce linear maps on homology
it∗s, with

is∗r ◦ it∗s = it∗r r ≤ s ≤ t

Such pairings of homology groups Hk(Xs) and maps its satisfying the composition rule
above are referred to as persistence modules. Note that we have placed no restrictions
on either the dimension of the homology groups Hk(Xs), or required the sequence
· · · → Hk(Xs)→ . . . terminates, in the sense that there exists s ∈ R such that

its : Hk(Xs)→ Hk(Xt)

is an isomorphism for all t ≥ s. If both of these conditions are true, however, we say
that the module is of finite type; these are the vast majority of modules that arise
in practice. Another useful bit of terminology associated with persistence modules is
the idea of tameness ; a persistence modules is said to be tame if, for all s ∈ R, there
exists some small half open inverval [s, t) such that the maps

its : Hk(Xs)→ Hk(Xr), s ≤ r < t

are isomorphisms.

We would like to extract a bit more information from these persistence modules;

13

namely, in order to synthesize the homological perspectives from the various Xk into
a singular, unified perspective, we would like these inclusions to either preserve or
annihilate equivalence classes of k-cycles; a representative k-cycle for particular topo-
logical feature, say a connected component, should remain as such for as long as the
feature is present in the sublevel set filtration, and fact that we may do so underpins
all of persistent homology.

Theorem 2.10 (Fundamental Theorem of Persistent Homology [24]). Let

Xr1
i1−→ Xr2

i2−→ . . .
in−1−−→ Xrn

be a filtered simplicial complex, with induced maps on homology i∗1 . . . i∗(n−1). For each
dimension k, we can choose a basis Brj for Hk(Xrk) such that, for each b ∈ Brj , either

1. i∗j(b) = 0

2. i∗j(b) ∈ Brj+1
, and if i∗j(b) = i∗j(c) ̸= 0 for some c ∈ Brj , then b = c

In essence, the Fundamental Theorem of Persistent Homology gives us a sequence of
bases that are consistent from the point of view of homology; consistent in the sense
that we may choose a basis that yields a consistent pairing between topological features
and corresponding representative class in homology over the entirety of a filtration.
Once we have chosen a suitable basis, we can compare, like-for-like, representatives
for a topological feature within homology groups across different filtration values;
and we want to unambiguously interchange between speaking of topological features,
(holes, connected components, the like) and the labels prescribed by homology, i.e the
corresponding equivalence class.

As filtered simplicial complexes change, topological features emerge and disappear
along with these changes. A feature [τ]. is said to be born at rs if it is not in the
image of i∗s. On the other hand, a feature is said to die at rs if s is the smallest index
for which, either

1. i∗s([τ]) = 0, i.e the feature is annihilated at rs.

2. i∗s([τ]) = i∗s[σ] for some [σ] ∈ Bs, i.e the feature merges with an older feature σ
at rs. In this case, [τ] is destroyed, but the older feature σ persists.

The lifetime of a feature born at b and destroyed at d is d− b 3. Note that a feature
may have infinite lifetime.

In Figure 2.8, there is a clear hierarchy of equivalence classes in terms of birth
3Note d− b ≥ 0, since a feature cannot be annihilated before it is created!

14

a a

b c

a

b c

d a

b c

d

Xr1 Xr2

Xr3 Xr4

[a] [a] [a] [a]

[b] [b]

Xr1 Xr2 Xr3 Xr4

Figure 2.8. (Top) A filtered simplicial complex - (Bottom) - One such possible choice
of bases for H0, guaranteed by the fundamental theorem of persistent homology, with
the property that equivalence classes are preserved or annihilated by the maps on
homology induced by the inclusion maps in the filtration. In 0th homology, equivalence
class [a] is first to appear, and so following the elder rule, it is the component that is
preserved when [a] and [b] merge in Xr4 .

15

times; [a] is the first class to appear, and as a result, [a] rather than [b] is the class
that is preserved when the two classes merge in Xr4 . The convention to preserve the
oldest (in terms of birth time) feature when two features are merged is referred to as
the elder rule. 4

Having constructed a persistence modules (Hk(Xs), i
t
∗s), and having subsequently

chosen a suitable basis for each homology group Hk(Xrj) in accordance with the
Fundamental Theorem of Persistent Homology, we can answer questions as to how
many features persist over a given interval [s, t] by examining the rank of the linear
map it∗s; if this map is not of full rank, then some feature present in Xs is not in Xt,
and thus must have merged with another component or been annihilated at some Xr

for r ∈ (s, t]. Following the insights of [12], ranks serve as a persistent analogue of
Betti numbers; they tell us how many bars like those seen in the bottom of Figure 2.8,
are present in a given interval I, and by proxy, how many k-dimensional topological
features are present in the simplicial complexes {Xr}r∈I . And whether one is interested
in detecting local extrema, connected components, holes, or other higher dimensional
analogues, the lifetime of a feature, is a descriptor for the feature’s importance in the
overall structure of the space.

2.5 Persistence Barcodes and Diagrams

Given that we are able to frame much of persistent homology purely in terms of ranks
of linear maps, the intervals upon which these maps have full rank, and those that
do not, to fully solidify the idea of persistence bar-codes, and later, of persistence
diagrams, we need a more succinct summery of the topological features captured
by persistent homology than what is offered by persistence modules as defined. In
some sense, there is a great deal of superfluous information built into persistence
modules; we need not care about the ranks of all maps between homology groups;
only the ones which provide meaningful information about the birth and death of
topological features. If the types of topological invariants that persistent homology
detects are enough to distinguish spaces, we might expect that information about
the appearance/annihilation of these features is enough to characterize a persistence
module. To that end, we will follow [21] in recalling a special case of persistence
modules, interval modules and the presentation of an important theorem:

Definition 2.11. Given a half open interval (a, b], an interval module I[a, b] is a
4It is possible that two or more classes may be born simultaneously; in this case the elder rule is

not well-defined. In practice, we tend not to care about such instances; different choices will yield
identical barcodes.

16

persistence module, with

I[a, b]t =

{
F, t ∈ (a, b]

0 else
its =

{
idF, s, t ∈ (a, b], s ≤ t

0 else

Theorem 2.12 (Normal Form Theorem [5]). Let (Hk(Xs), i
t
s) be an R-index persistence

module of finite type. Then there exists a finite collection (Iα,mα)
N
α=1 of intervals

Iα = (bα, dα] or Iα = (bα,∞) with multiplicities mα such that

(Hk(Xs), i
t
s)
∼=

N⊕
α=1

Imα
α [bα, dα]

The elements of this sum, Iα are called bars.

It is no coincidence that the intervals that are referenced in Theorem 2.12 are ex-
pressed in terms of b’s and d’s; the Normal Form Theorem allows us to completely
characterize persistence modules arising from filtered simplical complexes purely in
terms of the births and deaths of topological features, with each interval module
I[b, d] corresponding to a topological feature that persists on the interval (b, d]. The
unique interval module decomposition guaranteed by the Normal Form Theorem is
referred to as the barcode of the filtered simplicial complex {Xs}; Barcodes have an
equivalent representation, the persistence diagram; recall that “bars” in the barcode
are representative of a particular topological feature present in the filtration. The left
endpoint of a given bar represents the filtration value b at which the feature appeared,
and the corresponding right endpoint, if it exists, represents the filtration value d at
which the feature is annihilated. Thus instead of representing a feature with a bar,
we can represent a feature with an ordered pair (b, d), and construct a plot of these
points. Such plots are called persistence diagrams and, although we shall use the terms
“persistence barcode” and “persistence diagrams” interchangeably owing to the clear
correspondence between the two, it is worth mentioning differences in how the relative
significance of a feature is manifested between the two. In persistence barcodes, the
relative significance of a feature is seen through the length of its corresponding bar.
On the other hand, the relative significance of a feature is seen through its vertical
distance from the diagonal in persistence diagrams; nevertheless, characterizations are
given by the lifetime of the feature, d− b.

2.6 Wasserstein Distance

Notions of “distance” are an integral part of mathematics, both the pure and applied
spheres; the same is certainly true within the realm of persistent homology, particularly
with regards to persistence diagrams, viewed as mathematical objects unto themselves.

17

a a

b c

a

b c

d a

b c

d

Xr1 Xr2

Xr3 Xr4

[a] [a] [a] [a]

[b] [b]

Xr1 Xr2 Xr3 Xr4

Filtered Simplicial Complex

Fundamental Theorem of Persistent Homology for H0

H0 Barcode

r1 r2 r3 r4

Figure 2.9. The barcode is the last piece of the puzzle in the persistent homology
pipeline; the Normal Form Theorem 2.12 guarantees its existence and uniqueness for
a filtered simplicial complex, and it provides a digestible summary of all topological
features detected by homology at various filtration values. In this instance, the blue
bar is finite; it represents the connected component labeled with basis element [b] that
appears at filtration value r2, and is merged with the connected component labeled
[a] at r4 according to the elder rule. Meanwhile, the component associated with [a] is
created at filtration value r1, and is never merged or destroyed; it “dies” at ∞.

18

Figure 2.10. The 0-th dimensional persistence barcode (left) and persistence diagram
(right) for the graph in Figure 2.7. By convention, we draw a “line at infinity” in
persistence diagrams to represent a topological feature with infinite lifetime; this is
the horizontal gray dotted line in the persistence diagram.

Defining a distance which meaningfully captures differences and similarities between
persistence diagrams is non-trivial. If one is to define a distance on the space of
persistence diagrams, they must contend with the fact that persistence diagrams come
in all sizes, from diagrams with one point, to diagrams with 10, 000 points, to diagrams
with one point with multiplicity 10, 000; all are possible, and any distance defined on
the space of persistence diagrams must be able to cope with these different possibilities.
More important, such a distance should reflect one of the key heuristics of persistent
homology; that a point’s lifetime is inherently related to its relative significance, even
when persistence diagrams are studied in the absence of any underlying association
with topological spaces. To that end, we should like to regard the persistence diagrams
in Figure 2.11 as being similar.

Although it is difficult to see how we might define a distance on the space of persis-
tence diagrams, it is not difficult to compute distances for pairs of points between two
diagrams; persistence diagram points are merely points in R2, any of the distances
induced by the p-norms will suffice. From this point of view, given persistence diagrams
5

PX = {p1, . . . , pN}, PY = {p′1 . . . p′N}
5We are being a bit sloppy with notation here for the purposes of motivating the Wasserstein

distance; persistence diagrams in general are not sets, but multisets.

19

Figure 2.11. These two persistence diagrams differ drastically in terms of the number
of points; the diagram on the left has 101, and the diagram on the left has 1. Given
the heuristic of associating a point’s lifetime with its relative significance however, we
should like any distance defined on the space of persistence diagrams to value these
diagrams as “close”.

each with the same number of points, we can define a distance between PX and PY

to be the minimal matching cost of between the two diagrams;

d(PX ,PY) = inf
ϕ:PX→PY

(
N∑
i=1

||pi − ϕ(pi)||qq

)1/q

where the infimum is take over all bijections ϕ : PX → PY . Such a notion of distance
generally enforces that high persistence points in one diagram are to be matched to
high persistence points in the other, and as such, informatively captures differences
and similarities between high persistence features in the spaces underlying PX and PY .
On the other hand, persistence diagrams do not all have the same number of points;
we must work a bit more to ensure that a matching between persistence diagrams,
even those with different cardinalities, is possible. To that end, we will adopt the
convention that points within either diagram may be matched to the diagonal ∆,
where

∆ = {(a, a) | a ∈ R}

and additionally, that points on the diagonal exist with infinite multiplicity. Intuitively,
points close to the diagonal are of relatively low significance from the perspective of
persistent homology. If such points happen to be paired as part of an optimal matching,

20

so be it; otherwise, their contribution to the overall distance between persistence
diagrams should be small, since the relative significance of their underlying feature to
their underlying space is small. This is the idea behind the q-Wasserstein distance,
Wq, and the bottleneck distance, W∞.

Definition 2.13 (Wasserstein and Bottleneck Distances [23]). Let PX and PY be
persistence diagrams. The qth-Wasserstein distance, Wq, is given by

Wq(PX ,PY) = inf
ϕ:PX∪∆→PY ∪∆

(∑
pi∈PX∪∆

||pi − ϕ(pi)||qq

)1/q

where ϕ : PX ∪∆→ PY ∪∆ is a matching. By convention, we take ∞−∞ = 0. W∞
is referred to as the bottleneck distance, and is defined similarly:

W∞(PX ,PY) = inf
ϕ:PX∪∆→PY ∪∆

sup
pi∈PX∪∆

||pi − ϕ(pi)||∞

The sum in Definition 2.13 can be though of in three parts;

1. Points in PX that are matched to points in Y under ϕ.

2. Points p = (b, d) ∈ PX that are matched to the diagonal ∆ (with cost d−b
2(q−1)/q).

3. Points p′ = (b′, d′) ∈ PY that are matched to the diagonal ∆ (with cost d′−b′

2(q−1)/q).

2.7 Stability Results

Overcoming the harmful effects of noise is a fundamental problem in data science and
machine learning; when we build models, we expect that they will exhibit some degree
of stability. If our model is worth its salt, we should be able to make small changes to
inputs, whether adversarial or unintentionally, as an artifact of the data collection
process, and get roughly proportional small changes in outputs; if we are building a
classifier, changing a single pixel within the image of a cat should not substantially
impact the result of classifier.

To conclude this overview of persistent homology, we will give an overview of one
of the most important facets of the study of persistent homology and persistence
diagrams; the stability of persistence diagrams with respect to the bottleneck and
q-Wasserstein distances

21

[Example of
optimal matching for the 1-Wasserstein distance.]Two persistence diagrams, D1 and
D2, along with an optimal matching between the two with regards to W1; In this case,

W1(D1, D2) = 3

Theorem 2.14 (Bottleneck Stability Theorem [4]). Let X be a triangulable metric
space, and let F and G be finite-type persistence modules induced by the sublevel set
filtations of f, g : X → R respectively. Then

W∞(Dgm(F),Dgm(G)) ≤ ||f − g||∞

Theorem 2.15 (Wasserstein Stability Theorem [23]). Let X be a CW-Complex, and
let f, g : X → R be monotone functions. Then

Wq(Dgm(F),Dgm(G)) ≤ ||f − g||Lq

where ||f − g||Lq is the Lq distance,

||f − g||Lq = q

√∑
σ∈X

max
x∈σ
|f(x)− g(x)|q

These results give the following guarantee; if one makes small change to a function
f defined over a simplicial complex X this will result in a small(er) change on the
level of persistence diagrams. From a pragmatic point of view, this results means the
types of topological features within data that are captured by persistent homology
are robust to noise.

22

Graph Laplacians

Graph Laplacians are relatively easy to define; given a finite simple graph G = (V,E),
the Graph Laplacian of G is defined by the matrix L = D−A, where D is the degree
matrix of G, and A is the adjacency matrix of G, with

Aij =

{
1 there is an edge between vertices iandj.
0 else

This definition, though simple, does little to motivate the connection between the
graph Laplacian and the Laplacian operator from multivariable calculus, nor does it
ostensibly motivate why the eigenvectors of the graph Laplacian enjoy the properties
they do. In this section, we will briefly speak to the connection between the Laplacian
operator of calculus and the graph Laplacian, mainly following [22], and additionally,
discuss some of the properties the graph Laplacian enjoys.

Connecting the Graph Laplacian to the Laplacian Operator

Given a twice continuously differentiable scalar function f : Rn → R, the Laplacian of
f is the divergence of the gradient of f ,

∆f = ∇ · ∇f =
n∑

i=1

∂2f

∂x2
i

How can we transplant this definition to a graph G = (V,E), on which we may define
functions, but where there is no clear analogue of “gradient” or “directional derivative”?
For starters, we can discretize the derivative when working with graphs; given an edge
e = (u, v), we can define

∂f(u)

∂v
= f(v)− f(u)

The gradient at vertex u, ∇uf , is simply the row vector of all such partials where e is
an edge emanating from u:

∇uf =

[
∂f(u)

∂v
∀e ∈ E s.t e = (u, v) for some v ∈ V

]
Defining∇ as such has two important implications; for finite graphs,∇ has a convenient
matrix representation. If we fix an orientation for all edges ek ∈ E, and an ordering
e1, . . . , en, we can define the |V | × |E| incidence matrix E of G, with rows indexed by
vertices, columns indexed by edges, and with

Eik =

1 (i, j) = ek for some j ∈ V

−1 (j, i) = ek for some j ∈ V

0 else

23

and defining E as such allows us to write ∇f = ETf . Secondly, observe that ∇ defines
an operator, which takes in functions f defined on the vertices of G, and outputs ∇f ,
a function defined on the edges of G, via

(∇f)(u, v) = ∂f(u)

∂v

We can extend the notion of divergence to graphs as well; in Euclidean space, diver-
gence operator works over vector fields, measuring the flux through an infinitesimal
volume about a point. On G, therefore, we expect divergence should measure the
net outflow of an edge function at each vertex in G. If ∇ is an operator from vertex
functions of G to edge functions of G, we should expect divergence to be an operator in
the other direction; from edge functions to vertex functions on G. What could be more
natural than the dual of ∇? In this case, we have an explicit matrix representation of
divergence; it is given by the incidence matrix E.

At this point, we should verify that our intuition aligns with the standard definition
for the graph Laplacian; in other words;

Lemma 2.16. EET = L

Proof. Obeserve that

EikEjk =

1 i = j, (i, j) is the kth edge of G
−1, i ̸= j, (j, i) is the kth edge of G
0 else

and so

(EET)ij =
∑
k

EikEjk =

∑

k|i∈ek 1 = deg(i), i = j

−1, i ̸= j, (i, j) ∈ E

0 else

which is precisely L.

We knew that L was symmetric, as the difference of two symmetric matrices, but this
lemma tells more; namely, that L is positive semi-definite.

Graph Laplacian Eigenvectors

Eigenvectors, or eigenfunctions, of graph Laplacians play a fundamental role in this
work and, as such, it is worth examining some of their properties. Notably, as a

24

positive semi-definite matrix L possesses an orthonormal basis of eigenvectors, each
with corresponding non-negative eigenvalue. It is worth mentioning that, although
there are few closed expressions for eigenvectors of simple graphs in general, zero is an
eigenvalue of any graph Laplacian L, with corresponding eigenvector 1 = [1, 1, . . . , 1];
in fact, the multiplicity of the eigenvalue 0 is gives the number of connected compo-
nents of G.

More broadly, graph Laplacian eigenvectors play a fundamental role in connected os-
tensibly unrelated properties of the underlying graph G; the “smoothness” of functions
defined on the nodes of G, the connectivity of G, and graph partitioning. For starters,
it’s not too difficult to see that

(fTLf)(i) =
∑
j∼i

(f(i)− f(j))2

which, using terminology from [22], is a measure of the “local smoothness” of f ; it is
large when f(i) differs greatly from f(j) where i ∼ j, and small when f(i) ≈ f(j)
for i ∼ j. Minimizing fTLf is a well studied problem in linear algebra; in general,
quotients of the form

xTAx

xTx

are referred to as Reyleigh Quotients, and for real symmetric matrices, which include
graph Laplacians, we have a special case of the Courant-Fischer Theorem to work
with:

Theorem 2.17 (Courant-Fischer Theorem). Let A be a symmetric real n× n matrix
with eigenvalues λ1 ≤ · · · ≤ λn, and corresponding eigenvectors v1, . . . vn. Then

λ1 = min
||x||=1

xTAx = min
x ̸=0

xTAx

xTx

λ2 = min
||x||=1
x⊥v1

xTAx = min
x ̸=0
x⊥v1

xTAx

xTx

...

λn = max
||x||=1

xTAx = max
x ̸=0

xTAx

xTx

The proof of this result is beyond the scope of this work; see [14] for reference. Never-
theless, the relationship between the magnitude of an eigenvalue and the “smoothness”
of its corresponding eigenfunction is now firmly established. From the perspective
of persistent homology, “smoothness” means that any local extrema present within

25

Laplacian eigenfunctions, the very things which persistent homology detects, will be
manifested as points close to the diagonal in persistence diagrams. On that note, we
can be more specific about the possible values that their local extrema may take;

Lemma 2.18. Eigenfunctions of a graph Laplacian matrix L cannot have non-negative
local minima or non-positive local maxima.

Proof. We show that eigenfunctions of L cannot have non-negative local minima; the
other direction follows similarly. BWOC, suppose that eigenfunction f has a positive
local minima at i. Then (Lf)(i) = λf(i) > 0. On the other hand,

(Lf)(i) =
∑
j∼i

f(i)− f(j) ≤ 0

a contradiction.

2.8 Random Walk Metropolis

Sampling from a continuous probability distribution with unknown probability density
function (pdf) is a fundamental problem in statistics. Often, we have a rough idea of
how our unknown distribution ought to be parameterized, and we may even get as far
as writing down an explicit expression for the unknown density function. Naturally,
the expressions we propose must fulfil the most basic of requirements for continuous
probability distributions; they must integrate to 1, and computing the integral for
our proposed expressions may be utterly intractable. Problems of this type may be
formulated more rigorously; given that p(x) ∝ p̃(x), where p̃ is known, how can we
sample from p?

The Random Walk Metropolis Algorithm (RWM)6, although not necessarily a sampling
method method in and of itself, is well-suited for situations of this type. Under RWM,
we are not forced to preform calculations on the unknown distribution p directly; we
only require use of the pseudo-likelihood function p̃ ∝ p, and a chosen probability
distribution q satisfying

q(y |x) = q(x | y)
Essentially, RWM iteratively constructs a Markov Chain {Xn}n=0,1,2,... whose distribu-
tion, in the long term, approximates p. The first phase of RWM is the initialization
phase; a point X0 is chosen arbitrarily, and we compute α = p̃(X0). The second phase
is iterative; for each step i where i = 0, 1, 2, . . . we preform the following:

1. Generation of Candidate State: Given the Markov Chain is at state Xi, a
new state X̃ is proposed according to the distribution q(X̃ |Xi).

6RWM is sometimes referred to as the Metropolis-Hastings Algorithm

26

2. Acceptance/Rejection of Candidate State: Let

α(X̃,Xi) =
p̃(X̃) · q(X̃ |Xi)

p̃(Xi) · q(Xi | X̃)
=

p̃(X̃)

p̃(Xi)

Let b ∼ U [0, 1], that is, b is randomly chosen from the unit uniform distribution.
If b < α(X̃,Xi), we reject the proposed move; otherwise, we accept the proposed
move.

3. Update the Markov Chain: Update the Markov Chain

X0, . . . , Xi

by setting the (i+ 1)th state of the Markov Chain via

Xi+1 =

{
Xi the proposed move was rejected.
X̃ the proposed move was accepted.

27

Chapter 3: Methods

Persistence diagrams, viewed pragmatically as a tool rather than an object of mathe-
matical interest, enjoy many desirable properties; the stability of persistence diagrams
with respect to the various p-Wasserstein and Bottleneck distances and the invarience
of persistence diagrams to rotational or translational transformations are practically
useful properties; both contribute to persistent homology’s position as a noise-agnostic
tool within the broader realm of data science. Unfortunately, if one wishes to traverse
the TDA pipeline backwards, i.e to take a persistence diagram, and deduce what kind
of data generated it, these benefits turn into hindrances at best, and make the problem
largely intractable at worst. Any method that seeks to explore the space of data
that share a common persistence diagram must reckon with the possibility that this
space is almost certainly infinite, and ostensibly different data may share a common
persistence diagram.

Although the ideas of TDA have been applied to a wide variety of data types,
in practice, point clouds, images and weighted graphs are among the most studied.
We will examine the difficulties of exploring the space of data corresponding to a
pre-specified target persistence diagram in each of these, case by case, and where
applicable, explicitly define methodology used.

3.1 Point Clouds

Exploring the space of point clouds that approximate a target persistence diagram is
perhaps the most difficult case. Here, key features of persistent homology; invariance
to rotation and translation, are completely adversarial to sampling based methods if
no restriction are made. Most notably, the space of point clouds that approximate
a given persistence diagram is not a probability distribution; if we managed to find
a point cloud that generated the persistence diagram we seek, then all translates,
and all rotations, great and small, would do so as well. For these reasons, we do not
attempt to sample from the space of point cloud data in this work.

28

3.2 Images

Grayscale images are another data type which have thoroughly been studied through
the lens of persistent homology. Often, images are endowed with a variant of the
simplicial complex structure defined in Section 2.2, a cubical complex structure, where
intuitively, triangular based simplices are replaced with those based on squares, which
is more reflective of the inherent pixel structure in image data, and more computa-
tionally efficient. The broad persistent homology pipeline remains unchanged if we
replace “simplicial complex” with “cubical complex”, so we shall not delve further into
detail here; see [19] for a comprehensive reference.

Working with image data has several advantages over point clouds. Chiefly, the
set of images 1 of a fixed size is, although large, clearly finite if we consider pixel
intensities to take value in {0, 1, . . . , 255}; this immediately implies that the space of
all images which generate a pre-specified persistence diagram, even considering all
possible translates and rotations, is finite as well.

It is unlikely that attempting to sample over the space of all possible images, pixel by
pixel, will be a tractable endeavor; we would like any algorithm that is able to explore
the space of persistence diagrams corresponding to a pre-specified persistence diagram
to do so in a reasonable amount of time. It is therefore reasonable to seek a compressed
representation of this space; discrete cosine transforms (DCT) have a long history in
image compression, allowing an image I to be expressed as a linear combination of
2-dimensional cosine frequencies. Unlike other methods that decompose an image into
a linear combination of basis vectors, like principal component analysis or singular
value decomposition, these basis elements are not specific to an image or dataset; they
are pre-determined (Figure 3.1). By restricting to a select few of these basis elements,
particularly those possessing the largest magnitude coefficients in the expression of I
as a linear combination of two-dimensional frequencies, one can compress the image
in a manner that preserves perceptual similarity.

3.2.1 DCT Random Walk Metropolis Implementation

Suppose we are given an n×n grayscale image I with corresponding target dimension-0
persistence diagram T . We first apply the discrete cosine transformation to I to get
its corresponding representation in terms of the DCT basis vectors; the output of the

1Here, we consider grayscale images, which may be represent by an n×n matrix whose coefficients
take values 0, 1, 2, . . . , 255; clearly the result still holds if we consider RGB images of a fixed size

29

Figure 3.1. A DCT basis for 8× 8 images. [9]

DCT is an n× n matrix D, whose i, jth entry is given by

Di,j =
C(i)C(j)√

2n

n−1∑
k=0

n−1∑
l=0

Ik,l cos
(
(2k + 1)iπ

2n

)
cos

(
(2l + 1)jπ

2n

)
where Ik,l is the pixel intensity at the (k, l)-th pixel in I and where

C(i) =

{
1√
2

i = 0

1 else

The magnitude of the Di,j is a measure of that 2-dimensional basis frequency’s relative
importance to I. This hierarchy provides us a natural way to select k << n of the
n× n possible basis frequencies for the purposes of RWM, with the number of basis
frequencies we choose k determines the dimension of the RWM parameter space. If
{b1, . . . bk} is the set of basis frequencies we have chosen, then we run RWM over the
linear combinations

k∑
i=1

aibi

of these vectors as follows:

1. Initialization: Let α0 = [a1, . . . ak]
T be chosen with αi ∼ N [0, 1]. α0 is the

starting point for RWM, whose corresponding image I0 is given by

I0 =
k∑

i=1

aibi

30

Calculate the dimension-0 persistence diagram P0 for I0, and set l = p̃(P0), with
pseudolikelihood function p̃ given by

p̃(P0)) = exp (−γ ·W2(P0,P))

where γ ∈ R+ is a chosen penalty constant and where W2(P0, T) is 2-Wasserstein
distance between the persistence diagram P0 and a pre-specified target persistence
diagram T . Observe that p̃(P) ≈ 1 when P is close to T in the 2-Wasserstein
distance, and p̃(P) ≈ 0 when P and T differ largely. The hyperparameter γ can
be tuned to increase or decrease the acceptance rate of the model.

2. Propose a Move: Suppose after r iterations our position in parameter space
is given by αp = [ar,1, . . . , ar,k], with corresponding image

Ir =
k∑

i=1

ar,ibi

and persistence diagram Pr. Sample α′ = [a′1, . . . , a
′
k]

T , where for a chosen step
size ϵ,

a′i ∼ N (ar,i, ϵ)

Let I ′ be the image corresponding to α′, that is

I ′ =
k∑

i=1

a′ibi

and let P ′ be its corresponding persistence diagram.

3. Evaluate the Proposed Move: Compute the acceptance ratio

A =
p̃(P ′)

p̃(Pr)
=

exp (−γ ·W2(P ′, T))
exp (−γ ·W2(Pr, T))

4. Update: Let c ∼ U [0, 1]. If c < A, we accept the proposed move to α′, and set
αr+1 = α′. Otherwise, we reject the proposed move, and set αr+1 = αr.

5. Iterate: Repeat steps 2-4 for a predetermined number of iterations.

31

Algorithm 1 DCT RWM Algorithm
1:
2: given I ▷ grayscale image
3: given T :: PD(I) ▷ target persistence diagram
4: given γ ∈ R+ ▷ tuneable penalty hyperparameter
5:
6: function p̃(P :: PersistenceDiagram)
7: return exp (−γ ·W2(P), T))
8: end function
9:

10: let α = [a1, . . . , ak]
T ∼ N [0, 1]

11: let I =
∑k

i=1 aibi
12: let P = PD(I) ▷ dim-0 persistence diagram
13: let chains = [α]
14:
15: for i=1,. . . , M do
16: let α′ = [a′1, . . . , a

′
k]

T ∼ N (µ = α, σ = ϵ) ▷ for step size ϵ

17: let I ′ =
∑k

i=1 aivi
18: let P ′ = PD(I ′)
19:
20: let A = p̃(P ′)/p̃(P)
21: let c ∼ U(0, 1)
22:
23: if c < A then ▷ proposed move was accepted
24: append chains, α′

25: α← α′

26: P ← P ′

27: end if
28: end for

32

3.3 Weighted Graphs

Throughout the remained of this work, we will consider a weighted graph to be an
ordered tuple G = (V,E, f), where V is the set of vertices of G, E is the set of edges,
and where f : V → R is a function on the vertices of G. To define a sublevel set
filtration structure on weighted graphs, we use the following conventions:

• We consider vertices to be 0-simplices, and edges to be 1-simplices. We do not
consider any higher dimensional simplices.

• For a ∈ R the sublevel Xa(f) consists of all vertices v which take value f(v) ≤ a
and edges e = (i, j) satisfying f(i), f(j) ≤ a.

Weighted graphs face some of the same difficulties as grayscale images; in fact, one may
represent a grayscale image via a weighted grid graph, with node values being given
by pixel intensities. Just as with images, we might naively try running RWM over the
all the nodes of the graph, and in turn, face the same difficulties achieving mixture
and convergence when our graph has large numbers of nodes. On the other hand,
functions on a graph G have a natural decomposition in terms of graph Laplacian
eigenvectors; just as with PCA and DCT, by restricting to linear combinations of the
first k << |V | graph Laplacian eigenvectors, 2 we are able to drastically reduce the
dimensionality of the RWM parameter space.

All is not solved, however. Persistent homolgy’s invariance under translations and
rotations makes exploration of the space of point clouds that approximate a given
persistence diagram difficult; these data types suffer from an another problem. Namely,
values that are beyond the largest finite death value are not not seen by the persistent
homology process, and are thus free to increase without bound (see Figure 3.2, for
instance). This is yet another reason why running RWM over linear combinations of
all graph Laplacian eigenvectors is not well-founded; graph Laplacian eigenvectors
constitute a basis for all possible functions defined on the vertices of G, including
those with arbitrarily large coefficients on vertices ignored by the persistent homology
process.

Of course, we are free to impose cutoffs on the linear combinations of graph Lapla-
cian eigenvectors to alleviate this problem somewhat, rejecting all proposed graph
functions f during RWM if, for any v ∈ V , f(v) > α for some pre-chosen α. The
graph Laplacian eigenvectors themselves have some natural protections against this
phenomena. Recall that graph Laplacian eigenvectors corresponding to eigenvalues
greater than 0 cannot have non-negative local minima or non-positive local maxima; if

2We assume that the graph Laplacian eigenvectors are ordered by increasing eigenvalue.

33

(a) G1 (b) G2

Figure 3.2. Two weighted graphs, G1 and G2 with significantly different node functions,
but which generate identical persistence diagrams

we wish to scale a node or a collection of nodes of G to be arbitrarily large using linear
combinations of a proper subset of the graph Laplacian eigenvectors of G without
changing the underlying persistence diagram, we must balance the increases that we
achieve with decreases that will occur from scaling the various (negative) local minima.

The stability of persistence diagrams with respect to the q-Wasserstein distance
presents challenges as well, in that it means we cannot assume that the distributions
were are exploring using RWM constitute probability distributions at all under the
pseudo-likelihood function p̃(P) = exp (−γWq(P , T)) (Algorithm 1). If there happens
to be an infinite subset A of the full parameter space that perfectly approximates a
given persistence diagram, then stability means that all parameters within tubular
neighborhood of A will have high likelihood as well.

Proposition 3.1. Let G = (V,E) be a graph, with normalized graph Laplacian
eigenvectors v1, . . . vn. Then the q-Wasserstein distance is stable with respect to
persistence diagrams induced by functions defined by linear combinations of graph
Laplacian eigenvectors. That is, if

α = [α1, . . . , αn]

β = [β1, . . . , βn]

are sufficiently close in the Euclidean 2-norm, the functions fα, fβ : V → R defined by

fα =
n∑

i=1

αivi

fβ =
n∑

i=1

βivi

34

induce persistence diagrams that are are close in terms of the q-Wasserstein distance.

Proof. Let the number of vertices of G be m, and let V be the m × n matrix with
columns v1, . . . , vn. The mapping

α = [α1, . . . , αn] 7→ fα :=
n∑

i=1

αivi

may be viewed as α 7→ V α, which is clearly uniformly continuous.

On the other hand, if G has m vertices, any sublevel set filtration defined on G
can have at most m 1-simplices,

(
m
2

)
2-simplices, and so forth. Thus if ||f − g||qq < c

in the Euclidean q-norm (where we are viewing functions f, g : V → R as vectors in
Rm), then in Lq norm || · ||Lq , we have

||f − g||qLq
=
∑
σ∈G

max
x∈σ
|f(x)− g(x)|q ≤ mc+

(
m

2

)
c+ · · ·+

(
m

m

)
c

at worst. Thus for any ϵ > 0, we can choose

δ <
ϵ∑m

i=1

(
m
i

)
so that if ||α− β||qq < δ for α, β ∈ Rn, we have

||fα − fβ||Lq =
∑
σ∈G

||f(σ)− f(σ)||q

≤ mδ +

(
m

2

)
δ + · · ·+

(
m

m

)
δ < ϵ

By [23], the q-Wasserstein distance between the persistence diagrams induced by fα
and fβ is bounded above by ||fα − fβ||Lq , so the claim follows.

Proposition 3.1 implies the q-Wasserstein distance is stable when we restrict to taking
linear combinations of subsets of graph Laplacian eigenvectors S = {v1, . . . , vk} as
well. In particular, if P̃ is a target persistence diagram, and α = [α1, . . . αk] is such
that

fα =
k∑

i=1

αivi

induces a persistence diagram Pα identical to P̃ , then we can choose a neighborhood
N about α with the property that for any β = [β1, . . . , βk] ∈ N , the function

fβ =
k∑

i=1

βivi

35

induces a persistence diagram Pβ whose q-Wasserstein distance to Pα, and thus to P̃
is bounded above. In turn, this means that our specified pseudoliklihood function

p̃(P) = exp (−Wq(P , P̃))

will have likelihood bounded below on N . In other words, the spaces we are attempting
to sample from are not probability distributions if there are infinitely many αj with
Wq(Pαj

, P̃) = 0.

Taking linear combinations of graph Laplacian eigenvectors is not the only way
we can explore the space of weighted graphs that approximate a given persistence
diagram, however. And although the naive method of running RWM over all nodes is
intractable for the aforementioned reasons, allowing each node to vary independently
as we run RWM is a desirable feature if we wish to comprehensively explore the space
of weighted graphs that approximate a given persistence diagram. Certainly, we will
need to restrict the values nodes can take if we wish to vary them independently of
one another. And from the point of view of persistent homology, the only values
that matter, and the only values that make one function on the nodes of a graph G
distinguishable from another are those values which appear as births values or death
values in the corresponding persistence diagrams. To that end, we introduce a result
that provides some theoretical justification for this idea.

Theorem 3.2. Let f : X → R be a tame function on simplicial complex X inducing
a sublevel set filration with persistence diagram D = {(b1, d1), (b2, d2), . . . , (bn, dn)}.
Denote the collections of all finite birth/death values by b and d, respectively. Then
there exists a tame function f̂ : X → R, taking values only in b ∪ d, which induces a
persistence diagram identical to that of f .

Proof. Let f : K → R define a sublevel set filtration on K, with corresponding
persistence diagram P . Collecting all intervals finite birth/death values into sets b, d
respectively, define a new function f̂ : K → R via

f̂(x) =

{
infγ {f(x) ≤ γ | γ ∈ b ∪ d}, f(x) ≤ max {d}
maxx f else

and observe since f(x) ≤ f̂(x), there is an induced inclusion on chain complexes
Ki(f̂)→ Ki(f) at every threshold i. Moreover, for τ ∈ b ∪ d, Kτ (f̂) ∼= Kτ (f), for

x ∈ f−1((−∞, τ]) =⇒ f(x) ≤ τ

=⇒ inf
γ
{f(x) ≤ γ | γ ∈ B ∪D} ≤ τ

=⇒ x ∈ f̂−1((−∞, τ])

36

By the discussion in Section 2.5, it suffices to show that rank(pji) = rank(p̂ji). Certainly
if i, j ∈ b ∪ d, the result is trivial, since Kτ (f) ∼= Kτ (f̂) for τ ∈ b ∪ d. Otherwise, by
tameness, let

γ = sup
β∈b∪d

{β ≤ i}

τ = sup
β∈b∪d

{β ≤ j}

The inclusions Kα(f̂)→ Kα(f), α ∈ R constitute a chain map, and so the following
diagram commutes:

H(Kγ(f)) H(Ki(f)) H(Kτ (f)) H(Kj(f))

H(Kγ(f̂)) H(Ki(f̂)) H(Kτ (f̂)) H(Kj(f̂))

∼=

∼=

g

pτi

p̂τi

∼=

pjτ

f

p̂jτ

∼=

∼=∼=

piγ

p̂iγ

The commutivity of the leftmost square implies that g is an isomorphism, and similarly,
the commutivity of the rightmost square implies that f is an isomorphism. Since

pjτ p
τ
i g = f p̂jτ p̂

τ
i

with f, g isomorphisms, it follows rank(pjτ pτi) = rank(p̂jτ p̂τi), which in turn implies
rank(pki) = rank(p̂ji).

By Theorem 3.2 we can restrict the possible values each vertex in a weighted graph
takes to values that are finite birth/death values in the target persistence diagram.
Under this perspective, there are only finitely many different functions f : V → R
defined on the vertices of a graph G, and, while the number of such functions may be
far too large to enumerate exhaustively, we can modify the RWM methods detailed
in 2 to explore different arrangements of node values that yield approximations of
a target persistence diagram, detailed in 2. Under the discrete perspective, we are
not running RWM over the vertices themselves; rather, we fix an ordering of possible
values each node may take, say

S = [v1, v2, . . . , vN]

and “move” about the product space

S × · · · × S︸ ︷︷ ︸
|V | times

by varying the index i = 1, . . . , N from which a node draws its value from S.

37

Algorithm 2 Discrete Birth/Death RWM Algorithm
1:
2: given G = (V,E, fT) ▷ |V | = k
3: given T :: PD(G) = {(b1, d1), . . . , (bk, dk)}, bi, di <∞
4: given γ ∈ R+ ▷ tuneable penalty hyperparameter
5:
6: function p̃(P :: PersistenceDiagram)
7: return exp (−γ ·W2(P), T))
8: end function
9:

10: let S = sort([b1, d1, . . . bk, dk]) ▷ (sorted) possible node values
11: let M = length(S).
12:
13: let inds = [i1, . . . ik], is ∼ randint(0 : M) ▷ starting indices
14: let f = [S[i1], . . . ,S[ik]] ▷ initial node weights
15: let G0 = (V,E, f) ▷ initial weighted graph
16: let P = PD(G0) ▷ initial persistence diagram
17:
18: let chains = [G0]
19:
20: for i=1, . . . , N do
21: let inds′ = [i′1, . . . , i

′
k], i′s = randchoice({is − 1, is, is + 1})] 3

22: let f ′ = [S[i′1], . . . ,S[i′k]]
23: let G′ = (V,E, f ′

24: let P ′ = PD(G′)
25:
26: let A = p̃(P ′)/p̃(P)
27: let c ∼ U(0, 1)
28:
29: if c < A then ▷ proposed move was accepted
30: append chains, G′

31: inds← inds′

32: α← α′

33: P ← P ′

34: end if
35: end for

38

Chapter 4: Results

In this section, we will showcase how our methods perform on a mixture of real-world
and synthetic data, presenting instances in which our methods find success, and,
where relevant, providing commentary on limitations of our methods. All code for this
section was written in Julia, and persistence diagram computations were performed
using the Ripserer library [6].

4.1 DCT Random Walk Metropolis Results

All images used throughout this section are from the KTH-TIPS dataset [15], which
has seen some use in other TDA works, such as [3]. All experiments in this section
were performed in accordance with the following procedure:

1. Image Preprocessing: Although the procedure described in Algorithm 1 works
with images of any size, we choose to down-sample the 200 × 200 pixel KTH
images to 32 × 32 pixels to reduce computation time. A target persistence
diagram T is derived from the down-sampled image.

2. DCT RWM Parameters: We run DCT RWM (Algorithm 1) for a total
of 100,000 iterations; the first 10,000 iterations are not tracked to allow the
model time to explore the parameter space before settling into areas of the
parameter space with high pseudoliklihood. Proposed moves follow a normal
distribution with standard deviation 0.05 and the penalty hyperparameter γ
was experimentally chosen to be 40.0.

3. Experiments: We repeat DCT RWM runs using the hyperparameters specified
in 2 with 4, 8, 16 and 32 DCT basis vectors to demonstrate the impact that the
choice of number of DCT basis elements to use has on the ability of the DCT
RWM procedure to find images which have underlying persistence diagram close
to T .

The effectiveness of the proposed methods varies greatly depending on the type of
image from which the underlying target persistence diagram is generated. In Figure

39

4.1, for example, DCT is able to provide a good reconstruction of the given image,
even when the number of DCT basis vectors we choose is heavily restricted. In such
cases, the DCT RWM method has a tendency to favor linear combinations of these
basis vectors which roughly reproduce the given image. The rightmost image in Figure
4.1a is indicative of a larger trend with the DCT RWM method; there is a tendency
for the sampling process to favor linear combinations with large positive values for the
coefficient of the first DCT basis vector (the constant vector), and attempt to have
the other vectors compensate. This is made more evident by the selection of trace
plots from a DCT RWM run shown in Figure 4.4.

As can be see in Figures 4.1, 4.2 and 4.3, the number of DCT basis vectors cho-
sen has a drastic effect on the images found by DCT RWM, and in turn, the quality
of persistence diagrams found by the method. Choosing too few basis elements results
in simplistic images, and therefore, persistence diagrams that do not fully reflect
the topology captured within the target persistence diagram. On the other hand,
there appears to be diminishing returns found in increasing the number of DCT basis
vectors over which to run RWM; choosing too many basis vectors not only inhibits the
mixing potential of the DCT RWM model, it also can lead to spurious artifacts be-
ing found in even the best persistence diagrams found by the method (see Figure 4.2b).

Regardless of the number of basis vectors chosen, however, the DCT RWM method
struggles in general to mix, that is, to settle into concentrated, discernible regions in
parameter space, despite finding strong candidate images whose persistence diagrams
closely approximate the given target; this is indicative that our model is better suited
for finding individual images whose persistence diagram approximates a given target,
rather than sampling from some broader distribution. Most curiously, the parameter
corresponding to the coefficient of the constant DCT basis vector, which is almost
always the most prominent DCT basis vector in the DCT decomposition of a given
real-world image, has a tendency to increase dramatically over time (for instance, see
Figure 4.4). It is therefore likely that the addition of a prior distribution that restricts
the ability of parameters to charge off would result in better mixing of the model.
The reason for such behavior is not yet understood, and perhaps warrants further
investigation in future works.

One might intuitively expect that using a small number of DCT basis vectors ought to
result in DCT RWM finding images of relatively low topological complexity; indeed,
this is reflected in Figures 4.2a and 4.3a. As we increase the number of DCT basis
vectors, we that DCT RWM is able to find increasingly more complicated images
whose peristence diagrams more closely align with the given target. There appears to
be diminishing returns to increasing the number of DCT basis vectors used in DCT

40

(a) Images found by the DCT RWM method: (top) - corduroy texture image from
which the target persistence diagram was generated (bottom, left to right) - images
corresponding to the best persistence diagram found by DCT RWM with use of 4,
8, 16 and 32 DCT vectors, respectively.

(b) Persistence diagrams corresponding to the images in Figure 4.1a

Figure 4.1

RWM; in Figure 4.1a, Figure 4.2a and Figure 4.3a, runs utilizing 32 DCT basis vectors
found images with extraneous persistence diagram points even in the best case.

4.2 Graph Laplacian Random Walk Metropolis

In short, the graph Laplacian Random Walk Metropolis (GL RWM) method shares
many of the same positive and negative qualities seen in DCT RWM, albeit with
better mixing in toy examples. The methods and parameters used to generate the
results of this section are detailed as follows:

1. Generation of Target Data: The methods of GL RWM are amendable to

41

(a) Images found by the DCT RWM method: (top) - brown bread texture image from
which the target persistence diagram was generated (bottom, left to right) - images
corresponding to the best persistence diagram found by DCT RWM with use of 4, 8, 16
and 32 DCT vectors, respectively.

(b) Persistence diagrams corresponding to the images in Figure 4.2a

Figure 4.2

42

(a) Images found by the DCT RWM method: (top) - lettuce leaf texture image from
which the target persistence diagram was generated (bottom, left to right) - images
corresponding to the best persistence diagram found by DCT RWM with use of 4, 8, 16
and 32 DCT vectors, respectively.

(b) Persistence diagrams corresponding to the images in Figure 4.3a

Figure 4.3

43

Figure 4.4. Trace plots for coefficients of the first 4 DCT basis elements, where
sampling is attempting to approximate the persistence diagram corresponding to the
given image in Figure 4.2 with 4 DCT basis vectors. In particular, note that coefficient
of the first eigenvector grows larger and larger over time, which in turn inhibits the
overall mixing of the model.

44

any graph structure, but we showcase two particular graph types in this work;
Erdős-Renyi graphs [10], where we pre-specify a number of nodes n and an edge
probability p, and binary trees with a pre-specified node valence. We then choose
a vector f whose length is given by the number of nodes in the graph G, with
each entry sampled from the standard uniform distribution U [0, 1]. f defines a
function on the vertices of G which induces a target persistence diagram T .

2. GL RWM Parameters: We run GL RWM for a total of 200,000 iterations;
the first 10,000 iterations are not tracked to allow the model time to explore
the parameter space before settling into areas of the parameter space with high
pseudoliklihood. Proposed moves follow a normal distribution with standard
deviation 0.01 and the penalty hyperparameter γ was experimentally chosen to
be 10.0.

3. Experiments: We preform GL RWM with the hyperparameters specified in 2.
In each of the examples presented, we use 8 graph Laplacian eigenvectors.

Figures 4.5 and 4.7 provide examples of how GL RWM preforms on simple graphs. In
such instances, one should expect GL RWM to find multiple variations of weighted
graphs structures, each generating the same target persistence diagram. While the
search capabilities of GL RWM in these cases are by no means comprehensive, it is
able to find distinct graphs, each with a persistence diagram approximating a given
target, albeit with some extraneous artifacts in the case of 4.5.

The situation changes drastically when we seek to work with more complicated data; in
particular, GL RWM systematically produces persistence diagrams that underestimate
the number of persistence diagram points in the target persistence diagram. Given
the relative smoothness of graph Laplacian eigenvectors, one might expect that the
choice of the number of graph Laplacian eigenvectors to use in the GL RWM process
should be based on the number of persistence points in the target persistence diagram.
This approach has two main flaws. Most important, increasing the number of graph
Laplacian eigenvectors often results in poor mixing. Experimentally, increasing the
number of graph Laplacian eigenvectors not only suffers from diminishing returns,
if taken too far, it actively harms the ability of the model to find reasonable graph
structures at all.

The second problem with this approach is that, although the graph Laplacian eigenvec-
tors are relatively smooth, there are no results that bound the number of persistence
diagram points each eigenvector can contribute.

Remark. The fact that we cannot bound the number of persistence diagram points
of each graph Laplacian eigenvector ties into a conjecture of Courant and Herrman

45

[13], which, in the case of discrete graphs, posits that linear combinations of the
first k graph Laplacian eigenvectors of a graph G can have at most k nodal domains.
This is tangentially related to the problem of choosing an optimal number of graph
Laplacian eigenvectors from which to run GL RWM; that is, we might hope if the
Courant-Herrman conjecture is true, it would provide a theoretical lower bound for the
number of graph Laplacian Eigenvectors necessary to replicate a persistence diagram
with a given number of points. Unfortunately, the conjecture is not true in general, a
5-pointed star graph suffices as a counter-example, and, to the best of our knowledge,
there has been little progress made in finding restricted cases of discrete graphs in
which it holds true.

4.3 Discrete Birth/Death Random Walk Metropolis

We provide implementation details for all Discrete Birth/Death Random Walk Metropo-
lis (DRWM) experiments:

1. Generation of Target Data: In general, the procedure for generating graphs
and target persistence diagrams follows the GL RWM setup exactly; DRWM can
be used on arbitrary weighted graphs, but for the purposes of comparison with
GL RWM, we demonstrate its exploration capabilities on the same Erdős-Renyi
graph G and target persistence diagram T as was seen in Figure 4.7a. We
extract all finite birth/death values from T , and sort them in increasing order
to specify the possible values the vertices of G can take.

2. DRWM Parameters: We run DRWM for a total of 200,000 iterations for the
experiment in this section; the first 10,000 iterations are not tracked to allow
the model time to explore the parameter space before settling into areas of the
parameter space with high pseudoliklihood. Proposed moves follow a normal
distribution with standard deviation 0.01 and the penalty hyperparameter γ
was experimentally chosen to be 10.0.

Moving from the continuous sampling methods discussed previous to a more discrete
approach comes with benefits and drawbacks alike. On the one hand, restricting
nodes to values only found in the target persistence diagram allows for enhanced
exploration capabilities of the model, seen in the large variety of graphs found by
the model which share a common persistence diagram in 4.9. In many instances, the
different weighted graphs found by the discrete birth/death RWM method can be
slightly tweaked themselves without changing the underlying persistence diagram such
instances may be useful from the perspective of data augmentation, but we are more
interested in discovering largely distinct weighted graph structures than variants of a
single type.

46

(a) (Left to right) - target graph, the graph whose persistence diagram best approx-
imates that of the target, and an alternative weighted graph configuration found by
the model whose persistence diagram also approximates that of the target. The
presence of these different graphs is reflected in the density plots in Figure 4.6

(b) Persistence diagrams corresponding to the middle and right graphs in Figure 4.5a.

Figure 4.5

47

Figure 4.6. Density plot for the GL RWM run in Figure 4.5utilizing 8 graph Laplacian
eigenvectors.

48

(a) (Left to right) - target graph, the graph whose persistence diagram best approx-
imates that of the target, and an alternative weighted graph configuration found by
the model whose persistence diagram also approximates that of the target.

(b) Persistence diagrams corresponding to the middle and right graphs in Figure 4.7a

Figure 4.7

49

(a) (Left to right) - target graph, the graph whose persistence diagram best ap-
proximates that of the target. Note that even under such optimal conditions, GL
RWM is not able to generate a graph whose corresponding persistence diagram has
a similar amount of persistence diagram points as the target.

(b) Comparison of the target and best persistence diagrams corresponding to the graphs
in 4.8a

Figure 4.8

50

On the other hand, this exploration capability comes at the expense of mixing,
which is virtually non-existent 4.10. We believe that the chief culprit of this phenom-
ena is the dimensionality of the search space, and the admittedly ad hoc method by
which we allow the node values to change. Although we are able to restrict each node
to take only a finite range of values, even if future work devises methods that allow
mixing on small scale graphs, it is unlikely that this method will be able to scale to
large-scale graph-based data science problems; for this reason, we do not attempt to
apply this method on images, or the graph in 4.8a.

4.4 Closing Remarks

In this work, we presented methods for exploring the spaces of grayscale image and
weighted graph data whose underlying persistence diagrams approximate a given
target. We observed that all methods were capable of finding distinct examples of data
whose persistence diagrams closely approximate a given target, and, simultaneously,
all methods suffered from relatively poor mixing.

We see two avenues for future works to improve upon the methods presented. Cer-
tainly, a more sophisticated pseudo-likelihood function would likely improve mixing,
as undoubtedly would the imposition of further restrictions on what values a vertex
or pixel may take, perhaps in accordance with some prior distribution.

With regard to the DCT RWM and GL RWM methods, perhaps the biggest im-
provements may be found in choosing better basis for the respective data types. Both
the DCT basis and graph Laplacian eigenvectors enjoy a variety of nice properties,
including having an obvious relationship with the data they are used to represent,
but there may exists other bases which can be fashioned to be more topologically
descriptive or relevant. To that end, many of the topological properties that one may
expect linear combinations of graph Laplacian eigenvectors to have, such as bounds
for the number of local minima exhibited by such linear combinations, need not hold
in general. Such bounds would place the problem of how many basis vectors to use
upon firmer theoretical ground.

The inherent high-dimensionality of the search space in the proposed discrete birth/death
RWM method limits severely limits its practicality, as stated. At the same time our
approach was quite simplistic; it is possible that the theoretical guarantees presented
in 3.2 can be adapted to a more sophisticated form, or perhaps used as a preliminary
exploratory phase in a larger ensemble of statistical models.

51

(a) A target graph, the same that was seen in 4.7a

(b) Each of these graphs found by the discrete RWM method has a persistence diagram
that matches that in 4.9a.

Figure 4.9

52

Figure 4.10. A plot of the number of visits each node has to each different value in a
given target persistence diagram. Note that the distribution of visit is nearly uniform,
indicating that the model is completely failing to settle into a stationary distribution
over the course of a run.

53

Bibliography

[1] Robert J. Adler, Sarit Agami, and Pratyush Pranav. “Modeling and replicating
statistical topology and evidence for CMB nonhomogeneity”. In: Proceedings of
the National Academy of Sciences 114.45 (Oct. 2017), pp. 11878–11883. issn:
1091-6490. doi: 10.1073/pnas.1706885114. url: http://dx.doi.org/10.
1073/pnas.1706885114.

[2] Chao Chen et al. “TopoReg: A Topological Regularizer for Classifiers”. In: CoRR
abs/1806.10714 (2018). arXiv: 1806.10714. url: http://arxiv.org/abs/
1806.10714.

[3] Yu-Min Chung and Austin Lawson. “Persistence Curves: A canonical framework
for summarizing persistence diagrams”. In: CoRR abs/1904.07768 (2019). arXiv:
1904.07768. url: http://arxiv.org/abs/1904.07768.

[4] David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. “Stability of
persistence diagrams”. In: Proceedings of the Twenty-First Annual Symposium
on Computational Geometry. SCG ’05. Pisa, Italy: Association for Computing
Machinery, 2005, pp. 263–271. isbn: 1581139918. doi: 10.1145/1064092.
1064133. url: https://doi.org/10.1145/1064092.1064133.

[5] William Crawley-Boevey. “Decomposition of pointwise finite-dimensional per-
sistence modules”. In: Journal of Algebra and its Applications 14.05 (2015),
p. 1550066.

[6] Matija Čufar. “Ripserer.jl: flexible and efficient persistent homology computation
in Julia”. In: Journal of Open Source Software 5.54 (2020), p. 2614. doi: 10.
21105/joss.02614. url: https://doi.org/10.21105/joss.02614.

[7] Justin Curry. The Fiber of the Persistence Map for Functions on the Interval.
2019. arXiv: 1706.06059 [math.AT].

[8] Daryl Deford. Dual Graphs for 2010 Census Units. url: https://people.
csail.mit.edu/ddeford/dual_graphs.html.

[9] Devcore. 8x8 DCT (discrete cosine transformation). Wikipedia. 2012. url:
https://commons.wikimedia.org/wiki/File:DCT-8x8.png.

54

https://doi.org/10.1073/pnas.1706885114
http://dx.doi.org/10.1073/pnas.1706885114
http://dx.doi.org/10.1073/pnas.1706885114
https://arxiv.org/abs/1806.10714
http://arxiv.org/abs/1806.10714
http://arxiv.org/abs/1806.10714
https://arxiv.org/abs/1904.07768
http://arxiv.org/abs/1904.07768
https://doi.org/10.1145/1064092.1064133
https://doi.org/10.1145/1064092.1064133
https://doi.org/10.1145/1064092.1064133
https://doi.org/10.21105/joss.02614
https://doi.org/10.21105/joss.02614
https://doi.org/10.21105/joss.02614
https://arxiv.org/abs/1706.06059
https://people.csail.mit.edu/ddeford/dual_graphs.html
https://people.csail.mit.edu/ddeford/dual_graphs.html
https://commons.wikimedia.org/wiki/File:DCT-8x8.png

[10] P ERDdS and A R&wi. “On random graphs I”. In: Publ. math. debrecen 6.290-297
(1959), p. 18.

[11] Marcio Gameiro, Yasuaki Hiraoka, and Ippei Obayashi. “Continuation of point
clouds via persistence diagrams”. In: Physica D: Nonlinear Phenomena 334 (Nov.
2016), pp. 118–132. issn: 0167-2789. doi: 10.1016/j.physd.2015.11.011.
url: http://dx.doi.org/10.1016/j.physd.2015.11.011.

[12] Robert Ghrist. “Barcodes: The persistent topology of data”. In: BULLETIN
(New Series) OF THE AMERICAN MATHEMATICAL SOCIETY 45 (Feb.
2008). doi: 10.1090/S0273-0979-07-01191-3.

[13] Graham ML Gladwell and H Zhu. “Courant’s nodal line theorem and its discrete
counterparts”. In: Quarterly Journal of Mechanics and Applied Mathematics
55.1 (2002), pp. 1–15.

[14] Jonathan Kelner. An Algorithmist’s Toolkit: Lecture 3. Sept. 2009.

[15] P Mallikarjuna et al. “THE KTH-TIPS2 database”. In: (July 2006).

[16] Vasileios Maroulas, Farzana Nasrin, and Christopher Oballe. A Bayesian Frame-
work for Persistent Homology. 2019. arXiv: 1901.02034 [stat.ME].

[17] Michael Moor et al. “Topological Autoencoders”. In: CoRR abs/1906.00722
(2019). arXiv: 1906.00722. url: http://arxiv.org/abs/1906.00722.

[18] Arnur Nigmetov and Dmitriy Morozov. Topological Optimization with Big Steps.
2023. arXiv: 2203.16748 [cs.CG].

[19] Evan Oman. “An Introduction to Computational Cubical Homology”. PhD thesis.
May 2013. doi: 10.13140/RG.2.1.4417.7761.

[20] Theodore Papamarkou et al. “A Random Persistence Diagram Generator”. In:
arXiv e-prints, arXiv:2104.07737 (Apr. 2021), arXiv:2104.07737. doi: 10.48550/
arXiv.2104.07737. arXiv: 2104.07737 [stat.ML].

[21] Leonid Polterovich et al. Topological Persistence in Geometry and Analysis. 2021.
arXiv: 1904.04044 [math.AT].

[22] David I. Shuman et al. “Signal Processing on Graphs: Extending High-Dimensional
Data Analysis to Networks and Other Irregular Data Domains”. In: CoRR
abs/1211.0053 (2012). arXiv: 1211.0053. url: http://arxiv.org/abs/1211.
0053.

[23] Primoz Skraba and Katharine Turner. Wasserstein Stability for Persistence
Diagrams. 2023. arXiv: 2006.16824 [math.AT].

[24] Afra Zomorodian and Gunnar Carlsson. “Computing persistent homology”. In:
Proceedings of the twentieth annual symposium on Computational geometry.
2004, pp. 347–356.

55

https://doi.org/10.1016/j.physd.2015.11.011
http://dx.doi.org/10.1016/j.physd.2015.11.011
https://doi.org/10.1090/S0273-0979-07-01191-3
https://arxiv.org/abs/1901.02034
https://arxiv.org/abs/1906.00722
http://arxiv.org/abs/1906.00722
https://arxiv.org/abs/2203.16748
https://doi.org/10.13140/RG.2.1.4417.7761
https://doi.org/10.48550/arXiv.2104.07737
https://doi.org/10.48550/arXiv.2104.07737
https://arxiv.org/abs/2104.07737
https://arxiv.org/abs/1904.04044
https://arxiv.org/abs/1211.0053
http://arxiv.org/abs/1211.0053
http://arxiv.org/abs/1211.0053
https://arxiv.org/abs/2006.16824

	List of Figures
	Introduction and Related Works
	Background
	Introduction to Persistent Homology
	Chain Complexes and Homology
	k-th Simplicial Homology Group and Betti Numbers
	Filtrations
	Persistence Barcodes and Diagrams
	Wasserstein Distance
	Stability Results
	Random Walk Metropolis

	Methods
	Point Clouds
	Images
	DCT Random Walk Metropolis Implementation

	Weighted Graphs

	Results
	DCT Random Walk Metropolis Results
	Graph Laplacian Random Walk Metropolis
	Discrete Birth/Death Random Walk Metropolis
	Closing Remarks

	Bibliography

