
SIRKISOON, SHERONA R., M.S. Characterization of CitB in the Methylcitric Acid 

Cycle of Bacillus subtilis 168 and Characterization of Antimicrobial activity in the 

Mucosal Epithelial Layer and Gill Tissue of Largemouth Bass (Micropterus salmoides). 

(2014) 

Directed by Dr. Jason J. Reddick. 59 pp. 

 

 

Bacillus subtilis 168 is a Gram-positive, aerobic, rod shaped bacterial species that 

has the ability to undergo sporulation when under nutritional stress. There is an 

incomplete understanding of the metabolic pathways in B. subtilis 168 during sporulation. 

Characterizing the metabolic pathways of B. subtilis is important for understanding the 

sporulation process in pathogenic bacteria including B. anthracis (anthrax), for 

understanding cell differentiation of stem cells, and for maximizing biotechnological 

applications of B. subtilis 168. In this study, we hypothesize that citB, the only known 

aconitase in B. subtilis 168, can convert 2-methylaconitate to 2-methylisocitrate in the 

methylcitric acid cycle. This is an important step missing from the methylcitric acid cycle 

encoded by the mother cell metabolic gene (mmg) operon. In this study we utilized an 

overall approach involving purified citB protein, HPLC coupled to UV-VIS, and LC-MS 

to show that the citB protein can convert 2-methylaconitate to 2-methylisocitrate. We 

have also shown that a previously uncharacterized 2-methylisocitrate lyase (yqiQ) from B. 

subtilis 168 can convert the citB product 2-methylisocitrate to succinate and pyruvate, 

thus completing the methylcitric acid cycle. This study confirmed our hypotheses 

regarding citB and yqiQ and also achieved the first in vitro reconstitution of a complete 

methylcitric acid cycle from B. subtilis.  



There is little known about the biochemistry of largemouth bass (Micropterus 

salmoides), especially the antimicrobial properties that may be present in the outer 

mucosal layer of the skin and gills as an initial defense against bacteria, protozoa and 

fungi. Understanding the antimicrobial properties of the small antimicrobial peptides in 

largemouth bass is important for the development of new antibiotics for potential use in 

humans and for decreasing the mortality rates of largemouth bass handled in recreational 

and tournament fishing, as well as those captured and released for studies by state 

wildlife management agencies. It is hypothesized that the skin secretions and gills of 

largemouth bass contain a small, cationic, amphipathic peptide that prevents initial 

infection from microorganisms present in the environment. In this study, we have tested 

the hypothesis with in vitro experiments through the use of disc diffusion assays on 

Escherichia coli K12 and Bacillus subtilis 168 bacteria and liquid growth assays using 

Staphylococcus aureus. Results of this study show that there is antimicrobial activity in 

the gills of largemouth bass. We will also report ongoing efforts toward isolating and 

characterizing the components responsible for this antimicrobial activity.
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CHAPTER I 

 

BACILLUS SUBTILIS AND THE METHYLCITRIC ACID CYCLE 

 

 

I.A Background of Bacillus Subtilis 

 

B. subtilis is a Gram-positive, aerobic, rod shaped bacterial species that has the 

ability to undergo sporulation when under nutritional stress, similar to B. anthracis 

(anthrax), a close relative.1 Not only is B. subtilis a model organism for the study of 

sporulation, it is also used to remove sulfur components from coal and has 

biotechnological applications such as a biosurfactant production and as a source for 

antibiotic lipopeptides.2,3,4 Although the complete genome has been sequenced, many of 

the genes remain unstudied and all of the metabolic pathways encoded by these genes are 

not fully understood, including the methylcitric acid cycle.5 Characterizing the metabolic 

pathways of B. subtilis and the genes that play a role in each pathway is important for 

understanding the sporulation process in pathogenic bacteria including B. anthracis, for 

understanding cell differentiation of stem cells, and for maximizing biotechnological 

applications of B. subtilis. Also, a better understanding of key regulatory points of 

sporulation in B. subtilis will lead to a better understanding and treatment of pathogenic 

bacteria such as B. anthracis. For example, a comparison between mmgE, a gene 

expressed during sporulation, from B. subtilis and the anthrax genome showed 76% 

identical and 24% similar amino acid sequence for 29 different regions of the anthrax 
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genome suggesting that regulatory points of sporulation B. subtilis may be applied to 

regulating sporulation of anthrax.6 

I.B The Methylcitric Acid Cycle 

B. subtilis undergoes sporulation when there is a depletion of carbon, nitrogen or 

phosphorous.7 Sporulation is the result of an asymmetric division of a cell into two 

separate compartments. The larger portion of the dividing cell is termed the mother cell, 

and the smaller portion, which later becomes the spore, is termed the prespore. The 

mother cell aids in the development of the spore and lyses to release the environmentally 

resilient spore.8 Environmental stress leads to downstream signaling which turns on the 

key transcription regulator, Spo0A, by phosphorylation. Once Spo0A is activated, the 

RNA polymerase sigma factor E (σE) is turned on in the mother cell, which controls the 

expression of several genes, including the mmg (mother cell metabolic genes) operon.9 

The mmg operon encodes six genes, mmgABCDE and yqiQ (Figure 1), three of which are 

homologs of enzymes from other organisms that play a role in the methylcitric acid cycle, 

mmgDE and yqiQ.4,10 

 

 

Figure 1. Mother Cell Metabolic Gene (mmg) Operon. Proposed genes involved in  

the methylcitric acid cycle, mmgD (methylcitrate synthase), mmgE (2-methylcitrate  

dehydratase) and yqiQ (isocitrate lyase).4,8 

 

Nutritional stress triggers the expression of the methylcitric acid cycle, which is 

believed to be an emergency pathway in bacteria and fungi.11,12 The methylcitric acid 
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cycle for the metabolism of odd-carbon n-alkanes or propionyl-CoA using seven-carbon 

tricarboxylic acids in yeast is indicated by the bold arrows in Figure 2.13 In E. coli, the 

first step in the methylcitric acid cycle involves propionyl-CoA, oxaloacetate, and 2-

methylcitrate synthase, PrpC, to form 2-methylcitrate.10 The next step includes the 

dehydration of 2-methylcitrate to 2-methyl-cis-aconitate by 2-methylcitrate dehydratase, 

PrpD. The third step involves the rehydration of 2-methyl-cis-aconitate to form 2-

methylisocitrate. In E. coli, the rehydration is done by AcnB, which is one of two 

aconitases encoded in the E. coli genome. The fourth step involves the 2-methylisocitrate 

lyase, PrpB in E. coli, to produce pyruvate and succinate. The enzymes from the mmg 

operon, mmgDE and yqiQ, are homologs of the E. coli enzymes that play a role in the 

methylcitric acid pathway. The homolog in B. subtilis 168 of PrpC, 2-methylcitrate 

synthase, is mmgD. The homolog in B. subtilis 168 of PrpD, 2-methylcitrate dehydratase, 

is mmgE and for PrpB, 2-methylisocitrate lyase, it is yqiQ. In some species, an mmgE 

homolog does both steps, whereas in other species, mmgE catalyzes the dehydration step 

and an aconitase comes in to catalyze the rehydration step.10 However, reactions with 

mmgE stop at the 2-methyl-cis-aconitate product and does not go further to produce 2-

methylisocitrate, the next step in the methylcitric acid pathway.14 This suggests that there 

is a step missing in the methylcitric acid pathway that is not encoded by the mmg operon, 

the conversion of 2-methyl-cis-aconitate to 2-methylisocitrate. CitB is the only known 

aconitase in B. subtilis 168, but its function in the methylcitric acid cycle has not been 

characterized. Previous members of the Reddick lab have characterized the forward 

reactions of mmgD and mmgE enzymes. The reverse reaction of yqiQ was characterized 
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previously as well, however, the forward reaction has not been characterized since there 

is no commercially available standard of 2-methylisocitrate, the substrate for yqiQ.  

 

 
 
Figure 2. Citric Acid Cycle and Methylcitric Acid Cycle Pathway. E. coli enzymes in bold and proposed B. 

subtilis enzymes in parentheses for the methylcitric acid cycle. 4,8 
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I.C Overview of CitB and Goal 

CitB is a gene that codes for the bifunctional enzyme aconitase in Bacillus subtilis. 

The citB enzyme catalyzes the reversible conversion of cis-aconitate to isocitrate. In the 

citB null mutant of B. subtilis, citrate accumulates and chelates Mn2+ and Fe2+. This 

prevents phosphorylation of Spo0A, the main transcription factor for early sporulation-

specific genes that is activated by phosphorylation. The sporulation defect is partially 

overcome upon the addition of excess Mn2+ and Fe2+ ions. Researchers suggested that 

while citric acid accumulation causes the stage 0 block in sporulation, an additional 

function of citB is vital to sporulation at later stages. First, the citB protein has sequence 

similarity to the eukaryotic iron regulatory protein 1 (IRP-1), which is known to bind 

RNA. Expressing yeast mitochondrial aconitase in a citB null B. subtilis mutant restored 

the mutant’s ability to isomerize citrate to isocitrate.  However, this mutant expressing 

the yeast aconitase, which does not possess RNA binding activity, only underwent partial 

sporulation.11,7  It was determined that the RNA binding activity of citB  missing in the 

null mutant is essential for sporulation.  

CitB function is dictated by the iron-sulfur cluster cofactor necessary for catalytic 

activity. The cofactor is a 4Fe-4S cluster that interacts directly with citrate, aconitate, or 

isocitrate, therefore, the cluster is exposed to solvent and is susceptible to oxidation. 

Under low oxidation conditions, only one Fe atom from the 4Fe-4S cluster may be lost 

leaving a 3Fe-4S cluster and a catalytically inactive enzyme. Eventually the other three 

iron atoms are lost resulting in the apo form of the protein. Once the protein is in the apo 

form, it behaves like IRP-1, binding RNA and functioning as a posttranscriptional 
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regulator. The switch in activity, between the enzymatic function and the RNA binding 

function, is mainly due to the amount of citrate present since citrate is a chelator of iron 

and is also cotransported with iron. Therefore, at high citrate concentrations, iron is taken 

from iron-containing proteins such as aconitase, resulting in the RNA binding form of 

aconitase. The rationale is that excess citrate levels require excess aconitase levels in 

order to metabolize the citrate. 

The overall goal of this project is to discover and characterize the 2-

methylaconitate hydratase needed by the methylcitric acid cycle pathway of B. subtilis. 

The hypothesis being tested is that citB, the only known aconitase in B. subtilis, can 

convert 2-methylaconitate to 2-methylisocitrate. This is an important step missing from 

the methylcitric acid cycle encoded by the mother cell metabolic gene (mmg) operon. The 

citB enzyme has been shown to carry out the reversible reaction of converting citrate to 

isocitrate in the “normal” citrate cycle.11 To further characterize citB, we will test 

whether the expected reaction product of citB, 2-methylisocitrate, will be converted to 

pyruvate and succinate when given the proposed 2-methylisocitrate lyase, yqiQ, from B. 

subtilis.
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CHAPTER II 

EXPERIMENTAL PROCEDURES 

 

 

II.A Bacteria and Culture Methods for CitB 

B. subtilis strain AWS198 was cultured on Difco sporulation medium (DSM) 

plates with 2.5 μg/ml chloramphenicol.11 DSM plates were prepared by combining 

approximately 8 g Bacto nutrient broth, 10 g KCl, 12 g MgSO4·7H2O, 1 mL of 1 M 

Ca(NO3)2, 1 mL of 0.01 M MnCl2·6H2O and 1 mL of 0.001 M FeSO4·7H2O with water 

for a total volume of 1 L. To 500 mL of DSM 7.5 g of agar was added and autoclaved for 

20 minutes. Prior to pouring plates, 500 μL of chloramphenicol at 2.5 mg/mL was added 

to each 500 mL aliquot of DSM for a final concentration of 2.5 μg/mL. Bacteria was 

streaked onto plates using standard procedures and incubated overnight at 37 °C. A 

starter culture was prepared by adding 1 colony of bacteria to 5 mL of DSM with 2.5 

μg/mL chloramphenicol and incubated overnight at 37 °C while shaking.11  

II.B CitB Purification 

Prior to harvesting, 1 mL of the starter culture was added to 1 L of DSM until an 

OD600 of approximately 1 was reached for two separate cultures. Cells were then 

centrifuged at 6,500 rpm using a JA-10 rotor for 30 minutes at 4 °C. Pellets were washed 

with 20 mM Tris-citrate buffer at pH 7.35 then centrifuged again at the same conditions. 

The supernatant was discarded, and pellets were combined and stored at -80 °C until use. 

Cells were thawed to room temperature and resuspended in 20 mL of buffer containing 
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200 mM KCl, 50 mM Tris-HCl, 10% Triton X-100, 10% glycerol, 1 mM PMSF, 0.2 mM 

EDTA, and 0.5 mM dithiothreitol. The resuspended cell mixture was sonicated for 3 

minutes with 30 second resting intervals and centrifuged for 30 minutes at 11,500 rpm in 

a JA-20 rotor at 4 °C. The supernatant was dialyzed for 1 hour at 4 °C in 4 liters of buffer 

containing 200 mM KCl, 50 mM Tris-HCl, 10% v/v Triton X-100, 10% v/v glycerol, and 

1 mM PMSF with a final pH of 7.5. The cobalt column was prepared by packing 4 mL of 

a 50% mixture of Ni-NTA and Agarose by gravity. Once packed, 12 mL of 1x strip 

buffer containing 0.5 M NaCl, 100 mM EDTA, and 20 mM Tris-HCl (pH 7.9) was added 

to remove the nickel, then rinsed with 6 mL of water. The column was recharged with 

cobalt (II) with 10 mL of buffer containing 0.1 M cobalt (II) sulfate heptahydrate. The 

column was conditioned with 6 mL of a binding buffer containing 10 mM imidazole, 200 

mM KCl, 50 mM Tris-HCl, 10% Triton X-100 and 10% glycerol with a final pH of 7.5. 

The dialyzed supernatant was syringe filtered using a 0.45 μm filter, loaded onto the 

column, and flowed by gravity. The column was washed with 20 mL of binding buffer, 

then 12 mL of a 60 mM imidazole buffer containing 200 mM KCl, 50 mM Tris-HCl, 

10% Triton X-100, and 10% glycerol (pH 7.5). Lastly, the column was loaded with 12 

mL of the elution buffer and collected in 1 mL fractions. The elution buffer contained 

300 mM imidazole, 200 mM KCl, 50 mM Tris-HCl, 10% Triton X-100, and 10% 

glycerol (pH 7.5).11 

Each fraction was tested for the presence of aconitase by running a 10% SDS-

PAGE gel containing 4.1 mL H2O, 2.5 mL of 1.5 M Tris-HCl (pH 8.8), 3.3 mL 

acrylamide, 50 μL of 20% SDS, 120 μL 10% APS, and 15 μL TEMED. Fractions 
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showing a ~100 kDa band were dialyzed overnight at 4 °C in 4 liters of a dialysis buffer 

containing 50 mM KCl, 20 mM Tris-HCl, and 10% glycerol at pH 7.5. 

II.C CitB Activity Assays 

Prolonged exposure to air causes the Fe-S clusters in the CitB aconitase to 

become oxidized leaving the enzyme inactive. An activation buffer, freshly prepared, 

containing 50 mM Tris-Base, 8 mM dithiothreitol, and 0.8 mM Fe(NH4)2(SO4)2 was used 

to restore the Fe-S clusters. To reactivate the enzyme, 60 μL activation buffer was added 

to 40 μL enzyme and was kept at room temperature for 10 minutes before use. To test for 

activity, a 500 μl sample was prepared by adding 10 μL active enzyme to 20 mM D,L 

isocitrate and 20 mM Tris-HCl (pH 7.5) and monitored over 30 minutes at 240 nm using 

a UV-Visible spectrophotometer. HPLC, coupled with a UV-Vis detector, was utilized to 

further verify that the enzyme was active. Reverse phase chromatography was done using 

a Synergi, hydro-RP, 250 x 4.60 mm, 4 micron, 80 Å, column by Phenomenex.15 An 

isocratic method, at a 0.7 mL/min flow rate, was done using 20 mM sodium phosphate 

buffer (pH 2.9) as the mobile phase with detection at 240 nm.11 

II.D CitB Activity in the Methylcitric Acid Cycle 

To test for the 2-methylaconitate hydratase activity of the citB enzyme, a 1 mL 

reaction was prepared containing 895 μL of 20 mM Tris-HCl (pH 7.5), 0.9 mM 2-

methylcitrate, and 20 μL of mmgE. After 2 hours at room temperature, 40 μL of activated 

citB protein was added. The reaction was left at room temperature for 3 hours, and then 

quenched with 100 μL of 1 M sodium phosphate (pH 2.9). A 0.9 mM standard of 2-
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methylcitrate was prepared as well as a control containing 0.9 mM 2-methylcitrate and 20 

μL of mmgE for 5 hours at room temperature.  

II.E Further Characterization of CitB in the Methylcitric Acid Cycle 

 To further characterize the activity of citB, a reaction containing the mmgD-

synthesized 2-methylcitrate was utilized. Before experiments could begin, mmgD had to 

be purified.  

II.E.1 Bacteria and Culture Methods of mmgD 

E. coli strain BL21(DE3) replicating the mmgD-pET-28a plasmid was cultured on 

LB agar plates containing 30 μg/mL kanamycin.16 LB agar plates were prepared by 

combining approximately 11 g of Bacto Tryptone, 11 g NaCl, and 5 g yeast extract into 1 

L of water. A 500 mL aliquot of LB was removed for starter cultures and approximately 

8 g of agar was added to the remaining 500 mL of media. Both aliquots were autoclaved 

for 20 minutes. Prior to pouring plates, 500 μL of 30 mg/mL kanamycin was added to the 

500 mL aliquot containing agar for a final concentration of 30 μg/mL kanamycin. 

Bacteria was streaked onto plates using standard procedures and incubated overnight at 

37 °C. In order to recover more purified mmgD, the bacteria growth was doubled. Two 

starter cultures were prepared by adding 1 colony of bacteria and 5 μL of 30 mg/mL 

kanamycin to two 5 mL aliquots of LB for a final concentration of 30 μg/mL. The starter 

cultures were incubated overnight at 37 °C while shaking at 220 rpm. 

The following day, 2 μL of each starter culture was added to two separate 1 L 

flasks of LB containing 30 μg/mL kanamycin and incubated at 37 °C while shaking at 

245 rpm until an OD595 of approximately 0.4 was reached. The cultures were then kept at 
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room temperature until an OD595 of approximately 0.5 was reached then 0.2383 g (1 mM) 

of isopropyl β-D-1-thiogalactopyranoside (IPTG) was added to each culture and 

incubated overnight at 18 °C while shaking at 220 rpm. Cells were then centrifuged using 

a JA-10 rotor at 6500 rpm for 30 minutes at 4 °C. The supernatant was discarded and cell 

pellets were stored at -80 °C. 

II.E.2 Purification of mmgD Protein 

Cell pellets were thawed to room temperature and resuspended in 40 mL of a 1x 

binding buffer containing 0.5 M NaCl, 80 mM Tris buffer, and 5 mM imidazole (pH 8). 

Approximately 0.6 g of lysozyme was added to the resuspended cells while stirring 

gently for 15 minutes and then sonicated on ice for six 30 second intervals with 30 

second rest intervals in between. The cell lysate was centrifuged using a JA-20 rotor at 

11,000 rpm for 30 minutes at 4 °C. The supernatant was syringe filtered using a 0.45 μm 

filter to remove cell debris and loaded onto a Ni-NTA nickel affinity column. Prior to 

loading the column with the cell lysate, the column was prepared by packing 8 mL of a 

50% mixture of Ni-NTA and Agarose by gravity for a final column volume of 4 mL. 

Since the bacterial culture was doubled, the column volume needed to doubled as well. 

Once packed, the cell lysate was loaded and allowed to flow by gravity and 40 mL of 

binding buffer containing 80 mM Tris-HCl, 0.5 M NaCl, and 5 mM imidazole (pH 8). 

Next, 24 mL of wash buffer containing 60 mM imidazole was loaded and allowed to flow 

by gravity. Lastly, 24 mL of elution buffer containing 1 M imidazole was added and 

collected in 1 mL fractions. The Bradford reagent was used to test each fraction for 

protein by combining 33 μL of the fraction with 1 mL of Bradford reagent. In the 
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presence of protein, the red/brown reagent changes color to bright blue. Eight fractions 

showed a bright blue color change and were pooled and dialyzed overnight at 4 °C in 

buffer containing 25 mM Tris-HCl (pH 8). Once dialyzed, approximately 10 mL of 

protein was recovered. To this, sterile glycerol was added for a final concentration of 

10% and was stored at -80 °C in 100 μL aliqots until use.  

The purity of mmgD protein was tested using a 12% SDS-PAGE gel containing 

3.4 mL of H2O, 4 mL of 30% Acrylamide, 2.5 mL of 1.5 M Tris-HCl (pH 8.0), 50 μL of 

20% SDS, 15 μL TEMED, and 120 μL of 10% APS. An expected band around 40 kDa 

was observed, indicating purified mmgD. 

II.E.3 Reactions with mmgD Protein 

 A 1 mL reaction was prepared containing 820 μL 20 mM Tris-HCl (pH 7.5), 0.4 

mM propionyl-CoA, 0.2 mM oxaloacetate, 10 μL mmgD protein, and 100 μL mmgE 

protein. After 3 hours at room temperature, 40 μL of citB protein was added and left at 

room temperature for 2 hours. The reaction was quenched with 100 μL of 1 M sodium 

phosphate (pH 2.9). Several control reactions and standards were also prepared to verify 

the results. A control of the mmgD reaction was prepared by combining 960 μL 20mM 

Tris-HCl (pH 7.5), 0.4 mM propionyl-CoA, 0.2 mM oxaloacetate, and 10 μL mmgD 

protein at room temperature for 5 hours. A control of the mmgE reaction was prepared by 

combining 935 μL of 20 mM Tris-HCl (pH 7.5), 0.9 mM 2-methylcitrate, and 20 μL of 

mmgE protein at room temperature for 5 hours. A 0.9 mM standard of 2-methylcitrate 

was prepared as well as a 0.4 mM standard of propionyl-CoA, and a 0.2 mM standard of 

oxaloacetate. Standards of 2-methyl-cis-aconitate and 2-methylisocitrate were not 
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prepared because they are currently commercially unavailable. All reactions and controls 

were analyzed using HPLC coupled to a UV-Vis detector. Reverse phase 

chromatography was done using the same column mentioned above. The chromatography 

was done using 20 mM sodium phosphate buffer (pH 2.9) with a linear increase in 

methanol as the mobile phase and absorbance was at 240 nm.11 The gradient used in this 

method starts with 100% sodium phosphate (pH 2.9) and increases linearly to 15% 

methanol for 20 minutes.  From 20 to 25 minutes the methanol concentration continues to 

increase linearly to 40% and is held at 40% for 10 minutes. In the next five minutes there 

is a linear decrease of methanol from 40% to 0%. The sodium phosphate (pH 2.9) solvent 

is held at 100% for 10 minutes completing the 50 minute method. 

The same reactions and control samples were prepared for analysis on the LC/MS. 

The mobile phases used were 0.1% formic acid and methanol using the same gradient 

mentioned above for sodium phosphate and methanol. Reactions were quenched using 

100 μl of 0.01% formic acid. 

II.F Conversion of 2-Methylisocitrate to Succinate and Pyruvate 

II.F.1 Bacteria and Culture Methods of yqiQ 

Culture and purification methods were followed as outlined in William Booth.17 E. 

coli strain BL21(DE3) replicating the yqiQ-pET-28a plasmid was cultured on LB agar 

plates containing 30 μg/mL kanamycin. LB agar plates were prepared by combining 

approximately 11 g of Bacto Trypotone, 11 g NaCl, and 5 g yeast extract into 1 L of 

water. A 500 mL aliquot of LB was removed for starter cultures and approximately 8 g of 

agar was added to the remaining 500 mL of media. Both aliquots were autoclaved for 20 
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minutes. Prior to pouring plates, 500 μL of 30 mg/mL kanamycin was added to the 500 

mL aliquot containing agar for a final concentration of 30 μg/mL kanamycin. Bacteria 

was streaked onto plates using standard procedures and incubated overnight at 37 °C. A 

starter culture was prepared by adding 1 colony of bacteria and 5 μL of 30 mg/mL 

kanamycin to 5 mL of LB for a final concentration of 30 μg/mL. The starter culture was 

incubated overnight at 37 °C while shaking at 220 rpm. 

The following day, 2 μL of starter culture was added to 1 L of LB containing 30 

μg/mL kanamycin and incubated at 37 °C while shaking at 245 rpm until an OD595 of 

approximately 0.4 was reached. The culture was then kept at room temperature until an 

OD595 of approximately 0.5 was reached then 0.2383 g (1 mM) of isopropyl β-D-1-

thiogalactopyranoside (IPTG) was added and incubated overnight at 18 °C while shaking 

at 220 rpm. Cells were then centrifuged using a JA-10 rotor at 6500 rpm for 30 minutes at 

4 °C. The supernatant was discarded and cell pellets were stored at -80 °C. 

II.F.2 Purification of yqiQ Protein 

 Cell pellets were thawed to room temperature and resuspended in 20 mL of a 1x 

binding buffer containing 0.5 M NaCl, 80 mM Tris buffer, and 5 mM imidazole (pH 8). 

Approximately 0.3 g of lysozyme was added to the resuspended cells while stirring 

gently for 15 minutes and then sonicated on ice for six 30 second intervals with 30 

second rest intervals in between. The cell lysate was centrifuged using a JA-20 rotor at 

11,000 rpm for 30 minutes at 4 °C. The supernatant was syringe filtered using a 0.45 μm 

filter to remove cell debris and loaded onto a Ni-NTA nickel affinity column. Prior to 

loading the column with the cell lysate, the column was prepared by packing 4 mL of a 
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50% mixture of Ni-NTA and Agarose by gravity for a final column volume of 2 mL. 

Once packed, the cell lysate was loaded and allowed to flow by gravity and 20 mL of 

binding buffer containing 80 mM Tris-HCl, 0.5 M NaCl, and 5 mM imidazole (pH 8). 

Next, 12 mL of wash buffer containing 60 mM imidazole was loaded and allowed to flow 

by gravity. Lastly, 12 mL of elution buffer containing 1 M imidazole was added and 

collected in 1 mL fractions. The Bradford reagent was used to test each fraction for 

protein by combining 33 μL of the fraction with 1 mL of Bradford reagent. In the 

presence of protein, the red/brown reagent changes color to bright blue. Fractions 2, 3, 

and 4 showed a bright blue color change, therefore, these fractions were pooled and 

dialyzed overnight at 4 °C in buffer containing 25 mM Tris-HCl (pH 8). After dialysis, 

approximately 2.8 mL of protein was recovered. To this, 400 μL of 80% glycerol was 

added for a 10% final concentration of glycerol and was stored at -80 °C in 100 μL 

aliqots until use.  

 The purity of yqiQ protein was tested using a 12% SDS-PAGE gel containing 3.4 

ml of H2O, 4 ml of 30% Acrylamide, 2.5 ml of 1.5 M Tris-HCl (pH 8.0), 50 μl of 20% 

SDS, 15 μl TEMED, and 120 μl of 10% APS. An expected band around 30 kDa was 

observed, indicating that yqiQ was successfully purified. 

II.F.3 Reactions with yqiQ Protein 

 A complete 1 mL reaction was prepared by combining 520 μL of 20 mM Tris-

HCl (pH 7.5), 0.4 mM propionyl-CoA, 0.2 mM oxaloacetate, 2 mM DTT, 2 mM MgCl2, 

and 10 μL of mmgD protein, and 100 μL of mmgE protein. After three hours at room 

temperature, 40 μL of activated citB protein and .05 mg of yqiQ protein were added. The 
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reaction was left at room temperature overnight. Control reactions of mmgD, mmgD + 

mmgE, and mmgD + mmgE + citB were prepared similarly and were left at room 

temperature overnight. Standards of 0.2 mM oxaloacetate, 0.4 mM propionyl-CoA, 0.9 

mM 2-methylcitrate, 0.4 mM succinate, 0.4 mM pyruvate, and 2 mM DTT were also 

prepared. All reactions, controls, and standards were quenched with either 100 μL of 1 M 

sodium phosphate (pH 2.9) or 100 μL 0.01% formic acid and analyzed on the HPLC UV-

Vis and on the LC/MS. 
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CHAPTER III 

RESULTS AND DISCUSSION 

 

 

III.A CitB SDS-PAGE Results 

CitB has a molecular weight of 100 kDa. A band is observed around ~100 kDa 

indicating that citB was successfully purified. To test for activity, a reverse reaction 

containing isocitrate and citB protein was carried out using the UV-Vis 

spectrophotometer.  
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Figure 3. 10% SDS-PAGE Gel of citB Protein. Lanes labeled M contain 5 μl  

molecular weight ladder. Lanes labeled citB contain 20 μl purified protein. 
 

III.B Confirmation of CitB Activity in the Citric Acid Cycle 

 Results from the UV-Vis spectrophotometer of the reverse reaction of citB and 

isocitrate showed an increase of absorbance over the time, indicating an active enzyme. 

The positive slope from the complete reaction compared to various negative-control 

reactions suggests that the aconitate product was being produced by citB. To further 

characterize functional citB, reactions and controls were confirmed using HPLC with 

ultraviolet detection
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Figure 4. HPLC Chromatograms of Citric Acid Cycle Standards. A, B, and C are 1mM standards of citrate, 

cis-aconitate, and isocitrate, respectively. 

 

Results of the HPLC chromatograms (Figure 4) illustrate that commercially 

available citrate standard comes off of the column around 8 minutes. The commercially 

available standard for cis-aconitate comes off around 12 minutes and the standard for 

isocitrate comes out around 5 minutes. The standards for citrate and isocitrate are 

distinguishable since they come off of the column with different retention times. This 

trend of isocitrate eluting from the column before citrate will be applied analogously to 

1mM Isocitrate 

1mM cis-aconitate 

1mM Citrate A 

B 

C 
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our analyses for 2-methylcitrate and 2-methylisocitrate for reactions in the Methylcitric 

acid cycle where most products are not commercially available.  

 

 

 

 
 

Figure 5. HPLC Chromatograms of Isocitrate and citB Enzyme with Positive and Negative Controls. D 

shows the reaction of CitB with 1 mM isocitrate for 5 hours which has an additional peak that lines up with 

cis-aconitate. E has 1 mM isocitrate with no enzyme. F shows the active enzyme with no substrate. 

 

 The reverse reaction of isocitrate and citB should produce cis-aconitate. As 

revealed in Figure 5D, where a reaction of isocitrate and citB was carried out, a 

characteristic peak of cis-aconitate, around 12 minutes, is observed. A control incubated 

CitB No Substrate 

Iso no enzyme 

CitB iso 5hr 

D 

E 

F 
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in the same way, but lacking enzyme was done by combining isocitrate and the activation 

buffer used for citB as shown in Figure 5E. There is no peak around 12 minutes 

confirming that no cis-aconitate is being made. In Figure 5F, a control containing active 

citB but no isocitrate, is shown. There are no peaks around 5 minutes or 12 minutes, 

which further demonstrates that no reaction is occurring without the substrate present. 

 

 

 
 

Figure 6. HPLC Chromatograms of Cis-aconitate and citB Enzyme with Negative Control. G contains a 

reaction of 1 mM cis-aconitate with CitB for 5 hours and has an additional peak that lines up with citrate. H 

shows 1 mM cis-aconitate with no enzyme. 

 

 In Figure 6G, the HPLC chromatogram shows a reaction containing 1 mM cis-

aconitate and active citB for 5 hours. A peak around 9 minutes is observed, similar to that 

of citrate, which has a retention time around 8.6 minutes. This suggests that citB is 

rehydrating the cis-aconitate to form citrate, the next step in the reverse direction of the 

citric acid cycle. A control containing 1 mM cis-aconitate and activation buffer without 

Cis-aconitate  
no enzyme 

CitB cis-aconitate 5hr G 

H 
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enzyme was performed and no peak is observed around 9 minutes proving that a reaction 

is not occurring without citB present. 

 

 

 
 

Figure 7. HPLC Chromatograms of Citrate and CitB with Negative Control. I shows the reaction of CitB 

with 1 mM citrate for 5 hours. J shows 1 mM citrate with no enzyme. 

 

 The forward reaction containing 1 mM citrate and active citB is shown in Figure 

7I. A control containing 1 mM citrate and activation buffer without enzyme is shown in 

Figure 7J. Both HPLC chromatograms look similar with an intense peak around 9 

minutes, which is characteristic of citrate. This suggests that the forward reaction of citB 

is not as favorable as the reverse reaction.18 The reaction is possibly driven in the forward 

direction by the overall forward direction of the citric acid cycle.  

Results from the HPLC UV-VIS show that functional citB was isolated and can 

work in reverse taking isocitrate and converting it to cis-aconitate (Figure 5) as is 

Citrate No Enzyme 

CitB citrate 5hr 
I 

J 
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expected. When treated with 1 mM of D,L isocitrate or 1 mM cis-aconitate over 30 

minutes, 1 hour, 2 hours, 5 hours, or overnight, an expected cis-aconitate peak was 

observed confirming the aconitase is active in the citric acid cycle. Therefore, citB can 

carry out two steps in reverse; the first is taking isocitrate and dehydrating it to form cis-

aconitate and the second is taking cis-aconitate and rehydrating it to form citrate. 

Although this activity of the citB enzyme has been previously characterized, this is the 

first time the Reddick group has been able to show this.  

III.C CitB Activity in the Methylcitric Acid Cycle 

Experiments demonstrating the known enzyme activity (aconitase) of the purified 

citB demonstrate that the enzyme is active and fully functional in our hands. Therefore, 

the role of citB in the methylcitric acid pathway can be examined
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Figure 8. HPLC Chromatograms of 2-Methylcitrate, mmgE and citB Enzymes with Negative Control. A 

shows the commercial standard of 0.9 mM 2-Methylcitrate. The structure is also shown with asterisks next 

to the two chiral centers. B shows the 5 hour reaction of 0.9 mM 2-Methylcitrate with mmgE as a negative 

control. C shows the reaction of 0.9 mM 2-Methylcitrate and mmgE for 2 hours then citB for an additional 

3 hours. Peaks are labeled respectively. In the upper left corner of B and C, the 10 to 15 minute region of 

the chromatogram is zoomed in. 

 

The HPLC chromatogram in Figure 8A shows the commercial 0.9 mM 2-

methylcitrate which has a peak with a retention time around 15 minutes and a smaller 

peak around 11 minutes. There are 2 chiral centers in 2-methylcitrate, giving rise to four 

diastereomers, with each set of enantiomers showing up as two peaks on the 

A 

B 

C 
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chromatogram.  A reaction mixture containing 0.9 mM 2-methylcitrate and mmgE 

(Figure 8B) has a peak around 11 minutes and 15 minutes, characteristic peaks of 2-

methylcitrate. The peak around 15 minutes is split and there is an additional peak around 

18 minutes indicating that the product, 2-methylaconitate, is being made. The separate 

peaks suggest that both the cis and trans isomers are present. The chromatogram shown 

in Figure 8C depicts a reaction containing 0.9 mM 2-methylcitrate and mmgE for 2 hours 

then activated citB for and additional 3 hours. Additionally, there is a hump around the 10 

minute region of the chromatogram which is zoomed in and shown in the upper left 

corner of Figure 8C. Results demonstrate that citB is taking the 2-methyl-cis-aconitate 

and converting it to 2-methylisocitrate. Note that the 2-methylisocitrate peak is slightly 

before the two peaks from 2-methylcitrate. This is consistent with the characteristics of 

the commercially available standards of citrate and isocitrate. We expect these methyl 

analogs of citrate and isocitrate to behave with a similar trend in the chromatography. 

These experiments have shown a new peak that is not only citB dependent, but is also 

dependent on the conversion of 2-methylcitrate by mmgE. However, at this point we only 

have UV-detected peaks showing the activity of the citB enzyme in the methylcitric acid 

cycle, therefore, more detailed characterization was done using MS.  
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Figure 9. LC/MS Chromatograms of 2-Methylcitrate, mmgE and citB Enzymes with Negative Control. A 

shows the commercial standard of 0.9 mM 2-Methylcitrate. B shows the 5 hour reaction of 0.9 mM 2-

methylcitrate with mmgE as a negative control. Lastly, C shows the reaction of 0.9 mM 2-methylcitrate and 

mmgE for 2 hours then citB for an additional 3 hours. Reaction schematics are shown in B and C 

respectively. 

 

Confirmation of the HPLC results was carried out using LC/MS, which requires 

different chromatography conditions. The LC/MS requires a volatile solvent, therefore, 

0.1% Formic acid and methanol were used as the two mobile phases instead of the 20 

mM Sodium Phosphate buffer.  Similar controls and reactions were prepared, under the 

same conditions used in Figure 8, for analysis by LC/MS in order to confirm results from 

A 

C 
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the HPLC. Figure 9A shows the LC/MS chromatogram of the commercial 2-

methylcitrate, which has a relative mass to charge ratio of 205. Two peaks are observed, 

as seen in the HPLC UV-Vis chromatograms, for the mixture of 85% (2SR, 3SR)- and 

15% (2RS, 3SR)-stereoisomers.19 The major peak, with a retention time around 16 

minutes, is the (2S, 3S)- and (2R, 3R)-stereoisomers and the minor peak around 14 

minutes is the (2S, 3R)- and (2R, 3S)-stereoisomers. The chromatogram in Figure 9B 

represents a reaction containing 2-methylcitrate and mmgE that was recently done by 

Natalie Hage, an undergraduate student in the Reddick lab, using a method with a higher 

methanol gradient. In the LC/MS method used for all the other reactions, the 2-

methylaconitate peak does not show up suggesting that it does not come off of the 

column, or does not ionize for mass detection as easily as the other analytes in the 

mixture. In case the less polar 2-methylaconitate products were too tightly retained on the 

column, the concentration and time of the second mobile phase, methanol, was increased 

in order to remove the 2-methylaconitate from the column. Evidence of the mmgE 

product, 2-methyl-cis-aconitate, is seen in Figure 9B where a peak with the 2-

methylaconitate mass to charge ratio of 188 is observed around 22 minutes. In Figure 9C, 

the chromatogram represents a reaction containing 2-methylcitrate, mmgE and citB. 

There is an additional peak around 11 minutes, which is slightly before the first peak of 

2-methylcitrate, with a mass to charge ratio of 205 signifying that 2-methylisocitrate is 

being made. 
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III.D Further Characterization of CitB in the Methylcitric Acid Cycle 

 CitB was further characterized by using mmgD to produce 2-methylcitrate instead 

of the commercially available standard. Reactions were analyzed via HPLC with UV 

detection and LC/MS. 
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Figure 10. HPLC Chromatograms of Standard Controls. A shows the commercial standard of 0.2 mM 

Oxaloacetate. B shows the commercial standard of 0.4 mM Propionyl-CoA. C shows the commercial 

standard of 0.9 mM 2-Methylcitrate. Structures for each standard are shown in A, B, and C respectively. 
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In Figure 10, HPLC chromatograms of commercially available standards from the 

methylcitric acid pathway are shown. A standard of 0.2 mM oxaloacetate is presented in 

Figure 10A with a peak around 4 minutes. A second standard containing 0.4 mM 

propionyl-CoA is displayed in Figure 10B with a peak around 30 minutes. The third 

standard containing 0.9 mM 2-methylcitrate (Figure 10C) has a peak around 15 minutes. 

 
mmgD + E 3h citB 2h  

 

mmgD + E no citB 5h 

 
 
Figure 11. HPLC Chromatograms of the mmgD, mmgE and citB reaction and Negative Control. A shows a 

reaction containing 0.2 mM Oxaloacetate, 0.4 mM Propionyl coA, mmgD and mmgE for 3 hours then citB 

for 2 hours. B depicts the negative control containing everything except citB. In the upper left corner of A 

and B the 10-15 minute region of the chromatogram is zoomed in. 

 

 Results from Figure 11A, a reaction containing propionyl-CoA, oxaloacetate, 

mmgD, mmgE, and citB, shows a peak around 10 minutes similar to that in the reaction 

with the commercial 2-methylcitrate. This is consistent with citB making 2-

methylisocitrate from the naturally synthesized 2-methylcitrate by mmgD. A control 

without citB lacked this peak around the 10 minute region (Figure 11B). To confirm the 

A 
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results from the HPLC UV-Vis the same standards, reaction, and control was done using 

LC/MS. 
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Figure 12. LC/MS Chromatograms of Methylcitric Acid Cycle Standards. A shows the commercial 

standard of 0.2 mM Oxaloacetate. B shows the commercial standard of 0.4 mM Propionyl coA. C shows 

the commercial standard of 0.9 mM 2-Methylcitrate. Structures for each standard are shown in A, B, and C 

respectively. 
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The commercially available standard of propionyl-CoA has a relative mass to 

charge ratio of 821 with a retention time around 33 minutes as seen in Figure 12A. 

Oxaloacetate has a relative mass to charge ratio of 132 and a retention time around 4 

minutes (Figure 12B). As observed previously, 2-methylcitrate has a relative mass to 

charge ratio of 205 and a peak around 14 and 16 minutes for the mixture of stereoisomers. 
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Figure 13. LC/MS Chromatograms of the mmgD, mmgE, and citB Reactions. A shows a reaction containing 

0.2 mM Oxaloacetate, 0.4 mM Propionyl coA, and mmgD overnight. B shows a reaction containing 0.2 

mM Oxaloacetate, 0.4 mM Propionyl coA, mmgD, and mmgE overnight. C shows a reaction containing 0.2 

mM Oxaloacetate, 0.4 mM Propionyl coA, mmgD, mmgE for 3 hours then citB overnight. 

 

 A reaction containing oxaloacetate, propionyl-CoA and mmgD is shown in figure 

13A. A single peak with a mass to charge ratio of 205 around 14 minutes is observed in 

the LC/MS chromatogram which is characteristic of 2-methylcitrate. However, the 

second peak around 16 minutes is not observed. This is due to the stereoselectivity of 

mmgD, which only produces either the (2R, 3S)- or (2S, 3R)-stereoisomer, which 
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together elute at 14 minutes. In the following chromatogram (Figure 13B) a reaction was 

prepared with oxaloacetate, propionyl-CoA, mmgD and mmgE. The characteristic peak of 

2-methylcitrate disappears suggesting that it is being converted to the next product in the 

methylcitric acid pathway, 2-methyl-cis-aconitate, by mmgE. As previously stated, the 

method gradient used for these experiments was not optimized to get the 2-

methylaconitate product by LC/MS. Lastly, the third chromatogram (Figure 13C) 

represents a reaction containing oxaloacetate, propionyl-CoA, mmgD, mmgE, and citB. 

The characteristic peak of 2-methylisocitrate is observed around 11 minutes (the same 

observed when starting with the commercial 2-methylcitrate, shown in Figure 12C), 

confirming that citB carries out the missing step in the methylcitric acid cycle.  

III.E Conversion of 2-Methylisocitrate to Succinate and Pyruvate 

 Since there is no commercially available standard for 2-methylisocitrate, the 

product of citB cannot be confirmed by comparison to an authentic standard of 2-

methylisocitrate. Therefore, yqiQ was utilized to carry out the next step in the 

methylcitric acid pathway, converting 2-methylisocitrate to succinate and pyruvate, 

which are commercially available.
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Figure 14. LC/MS Chromatograms of the mmgD, mmgE, citB, and yqiQ Reaction and Controls. A shows 

the commercial standard of 0.4 mM Succinate. B shows a control containing 2 mM DTT. Lastly, C shows 

the full reaction containing 0.2 mM Oxaloacetate, 0.4 mM Propionyl coA, 2 mM DTT, 2 mM MgCl2, 

mmgD, and mmgE for 3 hours then citB and yqiQ overnight. 

 

 A standard of 0.4 mM succinate is shown in the LC/MS chromatogram in Figure 

14A, which has a mass to charge ratio of 117 and retention time around 11 minutes. 

Another standard containing 2 mM DTT is shown in Figure 14B. DTT was used to 

reduce sulfur groups present in citB and yqiQ. Figure 14C shows the complete reaction 

containing 0.2 mM oxaloacetate, 0.4 mM propionyl-CoA, mmgD, mmgE, citB, and yqiQ. 
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A peak around 11 minutes with a mass to charge ratio of 117 is observed which is 

characteristic of succinate. This confirms that citB is making 2-methylisocitrate and that 

yqiQ can go in the forward direction to make succinate and pyruvate. The standard for 

pyruvate and the pyruvate product from the complete reaction is not being shown in these 

experiments. Pyruvate has a relative mass to charge ratio of 87 and the lowest mass 

detection of the MS was set to 100, therefore, peaks for pyruvate cannot be observed. 

However, experiments on the HPLC show that pyruvate is being made when yqiQ is 

added to the reaction. This further confirms the product of citB and the function of yqiQ 

in the forward direction. 
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CHAPTER IV 

CONCLUSION 

 

 

In conclusion, we have confirmed that citB can carry out the reverse reaction in 

the citric acid cycle of converting isocitrate to cis-aconitate and can also convert cis-

aconitate to citrate using HPLC coupled to a UV-Vis detector. We have shown that citB 

acts as a 2-methyl-cis-aconitate rehydratase by converting 2-methyl-cis-aconitate to 2-

methylisocitrate, completing the missing step in the methylcitric acid cycle encoded by 

the mmg operon. We have also shown the forward reaction of yqiQ as 2-methylisocitrate 

lyase, converting 2-methylisocitrate to succinate and pyruvate using HPLC and LC-MS. 

In the process we have achieved the first reconstitution of the full methylcitric acid in B. 

subtilis. The methylcitric acid cycle is a metabolic pathway dedicated to the metabolism 

of propionate, a capability which has so far been unknown in this important model 

organism. Further aims of this project include repeating these reactions and controls on 

the LC/MS using an optimized method to show the 2-methyl-cis-aconitate peak and to 

verify reproducibility of results.   
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CHAPTER V 

ANTIMICROBIAL PEPTIDES AND LARGEMOUTH BASS 

 

 

V.A Fishing Statistics and Largemouth Bass 

There is little known about the biochemistry of largemouth bass (Micropterus 

salmoides), especially the antimicrobial properties that may be present in the outer 

mucosal layer of the skin as an initial defense against bacteria, protozoa and fungi. The 

American Sport fishing Association and the 2011 National Survey of Fishing, Hunting 

and Wildlife-Associated Recreation reported that there are approximately 60 million 

anglers in the United States (this is more than two times the number of people attending 

all of the NFL games in 2011 combined). Retail sales from anglers have generated 

approximately 46 billion dollars, and more than 828,000 jobs. Of the 27.1 million 

freshwater anglers, 10.6 million fish for largemouth bass.20 The mortality rates of 

largemouth bass during tournament fishing can be as low as 0-24% or as high as 85% 

often due to infection of mishandled fish.21 There is a problem with current overuse of 

antibiotics, which facilitate mutant resistant strains of bacteria for humans and with the 

potential for high mortality rates of the popular sport fish, largemouth bass, during 

tournament fishing. Understanding the antimicrobial defense system of largemouth bass 

is important for the development of new antibiotics for potential use in humans and for 

decreasing the mortality rates of largemouth bass handled in recreational and tournament 
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fishing, as well as those captured and released for studies by state wildlife management 

agencies. 

V.B Background of Largemouth Bass 

Largemouth bass (Micropterus salmoides) are freshwater fish that are apex 

predators in southeastern waters. Many anglers target these fish because of their 

enthusiastic fight when captured.22 During fishing tournaments, catch and release is used 

to prevent over fishing. However, lesions appear at sites where the mucosal layer is 

removed from handling and weighing of the fish, allowing bacterial infections that lead to 

fish mortality.21 This suggests that the largemouth bass possess some type of 

antimicrobial defense that is degraded upon a loss of the outer epithelial mucosal layer.  

Fish inhabit an aqueous environment that is filled with many pathogens and 

microorganisms, which are in continuous contact with the gastrointestinal tract, gills, and 

epithelial layer of the fish. To overcome the constant threat of infection, an initial defense 

system is needed. Antimicrobial peptides (AMPs) in a wide variety of organisms, 

including many aquatic species, play an important role in the initial defense against a 

variety of microorganisms including bacteria, parasites, viruses and fungi and are present 

in many aquatic species.23 They are typically less than 100 amino acids long, have a net 

positive charge at physiological pH, are amphipathic, and have a linear a-helical 

structure.24,25  

There are several different ways that AMPs kill bacteria such as targeting 

cytoplasmic components, interfering with their metabolism, and disruption of the 

membrane.24 The proposed mechanism for killing bacteria by fish AMPs is that the 
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cationic antimicrobial peptide binds to the anionic surface of the bacteria and causes the 

cells to lyse, by a mechanism similar to that of detergents.26  

Recently, several AMPs have been discovered in fish, specifically from their 

initial protective barriers including the mucosal epithelial layer, intestinal mucus, and 

gills. Examples of AMPs isolated from the mucosal epithelial layer of fish include 

pleurocidin from winter flounder (Pleuronectes americanus), parasin I from catfish 

(Parasilurus asotus), pardaxin from moses sole fish (Pardachirus marmoratus), and 

pelteobagrin from yellow catfish (Pelteobagrus fulvidraco).27,28 AMPs have also been 

isolated from the gills of fish which include chrysophsin from red sea bream 

(Chrysophyrs major) and piscidin 4 from hybrid striped bass (Morone chrysops x Morone 

saxatilis).23 This list includes both fresh and saltwater fish. 

V.C Expected Significance and Goal 

With the emergence of mutant bacterial strains becoming resistant to all known 

forms of antibiotics and the overuse of antibiotics by humans, an alternative form of 

treatment is necessary. AMPs can also be more effective in certain physiological 

environments where antibiotics are not useful. For example, patients with cystic fibrosis 

have high concentrations of NaCl in their pulmonary mucosa, which prevented the 

immune system from killing bacteria, allowing the development of lung diseases. 

Pleurocidin, an AMP isolated from the outer mucosal layer of winter flounder, was found 

to have bactericidal properties at high NaCl concentrations and could potentially aid in 

the antibacterial treatment in patients with cystic fibrosis.26  
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 The rationale that underlies the research is that the inadvertent removal of the 

mucosal layer from the skin of largemouth bass can result in bacterial infections that are 

often fatal. Furthermore, fish gills are not only continuously exposed to microbes but also 

have a rich blood supply with only a thin epithelial layer as protection from pathogens 

entering the circulatory system.25 This research will allow new investigations of the 

antimicrobial properties present in the mucosal layer, which is important because we may 

be able to lower the mortality rates during tournament fishing, wildlife management 

studies, and possibly lead to the development of a new antibiotic for human use.  

The overall goal of this project is to purify and characterize antimicrobial activity 

from the skin or gills of largemouth bass. The hypothesis is that largemouth bass contain 

an antimicrobial peptide in the outer mucosal layer or the gill tissue that should inhibit 

bacterial growth when treated with concentrated fish sample. This hypothesis is 

supported by the fact that small antimicrobial peptides were isolated from several 

freshwater and saltwater fish species.  In this study, we have tested the hypothesis with in 

vitro experiments through the use of disc diffusion assays on Escherichia coli K12 and 

Bacillus subtilis 168 and liquid growth assays using Staphylococcus aureus. 
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CHAPTER VI 

EXPERIMENTAL PROCEDURES 

 

 

VI.A Bacteria and Culture Methods 

B. subtilis strain 168 or E. coli strain K-12 were streaked on Luria Bertani (LB) 

agar plates and incubated overnight at 37 °C. B. subtilis strain 168 is a tryptophan 

auxotroph, therefore, 0.02 mg/ml tryptophan was supplied for every culture of B. subtilis. 

A starter culture was prepared by adding 1 colony of bacteria to 5 mL of LB media and 

was incubated overnight at 37 °C while shaking. LB media was prepared by adding 

approximately 10 g of Bacto Tryptone, 5 g of yeast extract, and 10 g of NaCl to one liter 

of water which was then brought to a pH of 7.5, using HCl, and autoclaved. At times a 

M9 minimal medium was used instead of LB for the disc diffusion assay. A stock 

solution of M9 salts was prepared with 33.9 g Na2HPO4, 15.1 g KH2PO4, 2.5 g NaCl, and 

5.1 g NH4Cl per 1 liter. The M9 minimal medium was prepared by combining 140 mL 

M9 salts, 1.4 mL of 1 M MgSO4, and 70 μL of 1 M CaCl2 with water for a final volume 

of 700 mL. For agar plates, 600 mL of media (LB or M9 minimal) was mixed with 9 g of 

agar and autoclaved.  For top agar, 100 mL of media was mixed with 1 g of agar and 

autoclaved. To the 600 mL of sterile medium was added 12 mL of sterile 20% glucose 

and to the 100 mL of medium 2 mL of sterile 20% glucose was added. Just before use the 

sterile top agar was microwaved until it was fully melted. 
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VI.B Antimicrobial Disc Diffusion Assay 

To carry out the disc diffusion assay, 200 μL of an overnight starter culture was 

added to 9 mL top agar, (1% agar in LB or M9 minimal medium). The bacteria and top 

agar mixture was poured onto a pre warmed LB or M9 minimal medium plate. Discs 

were placed on different parts of the plate and were treated with different concentrations 

of the fish sample (see below). Unless stated otherwise, a disc treated with 2 μL of 

Kanamycin (30 mg/mL) was used as a positive control on each plate. Plates were 

incubated overnight at 37 °C. 

VI.C Fish Extraction Methods 

VI.C.1 From Outer Mucosal Coating 

Wild largemouth bass (with the minimum legal size of 14 inches in length; 

individuals in this study were between 14-22 inches) were captured and the mucosal 

coating was scraped from the fish using a plastic spatula while avoiding the area around 

the anal vent to prevent contamination.26 The material was stored at 4 °C until use. To 

this 1 mL of 50 mM Tris-HCl (pH 8.0) was added and the sample was centrifuged at 

13,000 rpm for five minutes. Either 10, 30, or 50 μL of sample was added to individual 

discs in the diffusion assays. However, there appeared to be no antimicrobial activity in 

the outer mucosal coating of the fish. Due to the low sample volume, the fish sample was 

concentrated by placing 500 μL of sample into a SpeedVac overnight then reconstituting 

in 50 μL of water. A disc diffusion assay was carried out on both LB agar plates and M9 

minimal medium plates. Another sample preparation approach was taken by 

homogenizing the fish skin and mucosal layer.  
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VI.C.2 From Intact Skin Tissue 

Wild largemouth bass (with the minimum legal size of 14 inches in length; 

individuals in this study were between 14-22 inches) were filleted with the removal of 

intact skin by conventional means.   

VI.C.2.a Solid Phase Skin Extraction 

Just prior to homogenization and extraction, the skin was chopped into small ~ 1 

square inch pieces before adding approximately 150 mL of 0.2 M Sodium Acetate and 

0.2% Triton X-100. Once homogenized, the sample was centrifuged at 4 °C using a JA-

10 rotor at 13,500 rpm for 20 minutes. The supernatant was stored at -20 °C until use. 

Reversed phase solid phase extraction was done using a Sep-Pak Vac 3cc (200 mg) solid 

phase extraction C18 column. The column was conditioned and equilibrated with 2 mL of 

acetonitrile, then 2 mL 0.1% trifluoroacetic (TFA), and then 2 mL of 0.2 M sodium 

acetate containing 0.2% Triton X-100 and allowed to flow by gravity. Once equilibrated, 

2 mL of fish supernatant was added and the column was washed with 2 mL of 0.1% TFA. 

Sample was eluted with 500 μL of 60% acetonitrile and 0.1% TFA. Another elution step 

was carried out using 500 μL of the acetonitrile and TFA mixture.26 After each filtration 

step the extract was collected and tested by doing a disc diffusion assay using 50 μL of 

each extract.  

VI.C.2.b Concentrated Skin 

Supernatant from the intact skin tissue was concentrated by placing 1 mL aliquots 

into 10 microcentrifuge tubes in the SpeedVac overnight. The sample was reconstituted 

in approximately 1.1 mL of methanol, centrifuged at 13,000 rpm for five minutes and 
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stored at -20 °C. As an additional control, 10 ml of the 0.2 M sodium acetate and 0.2% 

Triton X-100 buffer was also concentrated overnight and reconstituted in 1.1 mL of 

methanol. A disc diffusion assay was conducted using 30 μL of the concentrated fish 

sample, 30 μL of the concentrated buffer, 30 μL methanol and 2 μL of kanamycin (30 

mg/mL).  

VI.C.2.c Skin Preparation without Triton X-100 

Due to the effects of the Triton on B. subtilis strain 168, a sample preparation 

without Triton X-100 was done. The intact skin tissue was acidified by boiling for five 

minutes in 1% acetic acid at a 1:4 dilution. The fish skin was homogenized and 

centrifuged at 11,500 rpm using a JA-20 rotor for 20 minutes. The supernatant was 

concentrated, reconstituted in 1 mL of methanol, and stored at -20 °C.29  

VI.C.2.d Solid Phase Skin Extraction with PMSF 

Another attempt was made by following the procedures stated above for preparing 

the intact skin tissue, however, 1 mM phenylmethylsulfonyl fluoride (PMSF), a protein 

inhibitor, was added to the 0.2 M sodium acetate and 0.2% Triton X-100 buffer prior to 

homogenization. Reverse solid phase extraction was done using a C18 column as stated 

previously with changes made only to the elution step. The sample was eluted off of the 

column with 5 mL of 60% acetonitrile and 0.1% TFA in water for a total of 9 different 

fractions. Another elution step was done using 100% acetonitrile. After each filtration 

step the extract was collected and 2 mL of each was concentrated then reconstituted in 

100 μL of 50 mM Tris-HCl (pH 7.5). 
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VI.D Liquid Growth Assay 

The liquid growth assay, completed by Joseph Egan from the Cech lab, was done 

against Staphylococcus aureus wild type bacteria. Berberine, derived from many plants 

including goldenseal, was used as a positive antibacterial control. All test samples and 

controls were done in triplicate in 96 well plates. The plates were incubated at 37 °C for 

12 hours then the absorbance was read at 600 nm at the end of the 12 hour incubation 

period.  

VI.D.1 Liquid Assay of Mucosal Layer 

 The mucosal sample was prepared as outlined previously. The sample was syringe 

filtered and 1 mL of 50 mM Tris-HCl (pH 8) was added then centrifuged at 13,000 rpm 

for 5 minutes. The sample was stored at 4 °C until use. A 2 ml aliquot of the fish slime 

was lyophilized overnight then reconstituted in 500 μL of methanol. Similarly, 2 mL of 

50 mM Tris-HCl (pH 8) was lyophilized overnight and reconstituted in 500 μL of 

methanol, which was used as a vehicle control.  

VI.D.1 Liquid Assay of Gill Tissue 

The gill arches were removed from wild largemouth bass (with the minimum 

legal size of 14 inches in length) and the lamellae were trimmed then placed in 1% 

boiling acetic acid at a 1:4 dilution for five minutes. The sample was immediately placed 

on ice and homogenized on ice. Next, the tissue was centrifuged at  15,000 x g for 45 

minutes at 4 °C. Once centrifuged, 5 mL of sample was lyophilized overnight and were 

reconstituted in methanol or hexanes. A liquid growth assay was done using S. aureus 

and various amounts of the extracts. 
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CHAPTER VII 

RESULTS AND DISCUSSION 

 

VII.A Concentrated Mucosal Sample 

A disc diffusion assay with the concentrated mucosal sample is shown in Figure 

15. In region A, an area of no growth is observed around the disc treated with 2 μL of 

kanamycin (30 mg/mL) as the positive control. However, discs treated with 10, 30, or 50 

μL of concentrated mucosal sample show no growth inhibition. This may be due to the 

way the sample was prepared or because of the small sample size. The sample was 

reconstituted in water, which may have diluted the sample and did not completely 

dissolve the hydrophobic regions of antimicrobial peptide. Therefore, methanol was used 

to reconstitute concentrated fish samples in further experiments. Methanol is a polar 

organic solvent, which may dissolve the amphipathic peptide. 
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Figure 15. Concentrated Mucosal Sample. Region A  

contains 2 ul Kanamycin (30 mg/ml). Regions B,  

C, and D contains10, 30, or 50 ul of concentrated  

mucosal sample in water, respectively. 

 

VII.B Solid Phase Skin Extraction 

 Results from the solid phase skin extraction tested using the disc diffusion assay, 

on E. coli k12, are shown in figure 16. Region A is a positive control, the disc was treated 

with 2 μL of Kanamycin (30 mg/ml).  Region B contains the unextracted sample and 

region C shows the crude flow through. Region D shows the wash flow through and 

region E and F show the first and second eluent. Aside from the positive control, no 

growth inhibition is observed. Once again, this may be due to sample preparation and the 

small sample size or there may be no antimicrobial activity in this area of the fish.  
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Figure 16. Fish Skin Extract. Region A contains 2 ul Kanamycin (30 mg/ml). Region B contains 50 ul 

unextracted Sample. Region C contains 50 ul of crude flow through. Region D contains 50 ul of the wash 

flow through. Region E contains 50 ul of the first eluent and region F contains 50 ul of the second eluent.  

 

VII.C Concentrated Skin 

Figure 17 shows the disc diffusion assay on B. subtilis 168 with concentrated fish 

skin samples. Region A contains the positive control of 2 μL kanamycin (30 mg/mL) and 

regions B, C, and D contain 10, 30, or 50 μL of concentrated fish skin reconstituted in 

methanol. Region E was treated with 30 μL of concentrated buffer containing 0.2 M 

sodium acetate and 0.2% Triton X-100. Region F contains 30 μL unconcentrated fish 

skin sample and region G shows 30 μL of methanol. An area of no growth was observed 

around the discs treated with the concentrated fish samples. However, an area of no 

growth was also observed around the disc treated with concentrated buffer. A search of 

the previous literature revealed that B. subtilis strain 168 is sensitive to Triton X-100 and 

will lyse in the presence of concentrated amounts of Triton.30 
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Figure 17. Concentrated Skin Sample. Region a contains 2 ul Kanamycin (30 mg/ml). Regions B, C, and D 

contains10, 30, and 50 ul concentrated skin sample in MeOH respectively. Region E contains 30 ul 

concentrated 0.2 M Sodium Acetate and 0.2% Triton. Region F contains 30 ul unconcentrated skin sample 

and region G contains 30 ul Methanol. 

 

VII.D Skin Tissue without Triton X-100 

A disc diffusion assay, with acidified skin tissue, is shown in Figure 18. Region A 

contains the positive control of 2 μL kanamycin (30 mg/ml). Region B and C contain 

either 30 or 50 μL of concentrated sample, reconstituted in methanol. There was no 

growth inhibition around any of the discs treated with the concentrated acidified fish 

sample. 
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Figure 18. Concentrated Skin Tissue without Triton  

X-100. Region A contains 2 ul Kanamycin (30 mg/ml).  

Region B contains 30 ul concentrated skin sample in  

methanol. Region C contains 50 ul concentrated skin  

sample in methanol and region D contains 30 ul methanol. 

 

VII.E Solid Phase Skin Extraction with PMSF 

Figure 19 shows the disc diffusion assay with fish skin extract containing PMSF. 

Region A is a positive control of 2 μL kanamycin (30 mg/mL). Region B and C shows 

the concentrated crude flow through or the concentrated wash flow through reconstituted 

in methanol. Regions D – L displays the concentrated 60% ACN eluent. Regions M – N 

depicts the concentrated 100% ACN eluent and region O contains the concentrated 

unextracted crude sample. Results show growth inhibition of B. subtilis 168 when treated 

with the extracted concentrated fish sample, region D, and with the concentrated 

unextracted sample, region O. However, the concentrated fish sample also contains 0.2% 

of Triton X-100 which has been known to cause B. subtilis to lyse when concentrated.30 
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Reverse phase solid phase extraction was done using a C18 column and the fraction 

showing activity was analyzed by mass spectrometry for the presence of triton. The MS 

results in Figure 20 shows that Triton X-100 was still present in the fraction showing 

activity. Therefore, B. subtilis growth inhibition was more than likely due to the presence 

of triton rather than an antimicrobial peptide.  
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Figure 19. Fish Skin Extract with PMSF. Region A  

contains 2 ul Kanamycin (30 mg/ml). Region B contains  

concentrated crude flow through. Region C contains  

concentrated 0.1% TFA wash flow through. Regions D – 

L contains concentrated 60% ACN eluent. Regions M – 

N contains concentrated 100% ACN eluent and region O  

contains unextracted skin sample. 
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Figure 20. Spectrum of Concentrated Fraction 1 from Skin Extraction with PMSF (Labeled Region D in 

Figure 19). Fractions of Triton X-100 (647 g/mol) are observed throughout spectrum. 

 

VII.F Liquid Assay of Mucosal Layer 

 A liquid growth assay was used for the following experiments instead of the disc 

diffusion assay because and overnight incubation period was used for the disc diffusion 

assay, which may have been too long to observe low levels of growth inhibition. For 

example, if there was an early suppression of growth after several hours this was 

probably overcome by the bacteria overnight and falsely indicating no antimicrobial 

activity. The assay was carried out by Joseph Egan, an undergraduate student in Prof. 

Nadja Cech’s laboratory at UNCG, with mucosal fish sample against S. aureus is shown 
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in Table 1. A decrease in absorbance indicates growth inhibition of the bacteria. As a 

control, 50 μl of the buffer containing 50 mM Tris-HCl (pH 8) was tested. The mucosal 

layer, 50 μl, shows an increase in S. aureus growth instead of inhibition. This may be due 

to carbohydrates or lipids in the mucosal layer, which may be promoting growth.  

 
Table 1. Liquid Assay of Mucosal Layer. 

 

Volume
Average 

Absorbance

% 

inhibition
Std Dev Std Dev. %

0.254 0.228 50uL 0.202 25.031 0.07 6.94

0.374 0.243 50uL 0.323 -60.331 0.07 7.04

0.245 0.264 0uL 0.269 0 0.03 2.69Blank 0.298

Sample ID Absorbance Values (OD 600)

Vehicle 0.123

Mucosal Layer 0.353

 
 

VII.G Liquid Assay of Fish Gills 

 Results of the liquid growth assay, against S. aureus, with concentrated fish gill 

sample is shown in Figure 21. The gill sample was reconstituted in hexanes and methanol. 

A concentration of either 20 or 200 parts per million (ppm) was assayed by Joseph Egan. 

Growth inhibition is observed with gill tissue indicating antimicrobial activity. Although 

the gill tissue, reconstituted in hexanes, shows inhibition with the 200 ppm concentration, 

the standard deviation is too high to be considered repeatable. Therefore, further 

experiments with the concentrated gill sample are reconstituted in methanol.  
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Figure 21. Liquid Assay with Fish Gills. Percent inhibition against S. aureus with concentrated fish gills 

reconstituted in hexanes or methanol. Assay was done using either 20 or 200 parts per million (ppm) of 

concentrated fish gill sample. Assay completed by Joseph Egan. 

 

VII.H Dose Response Inhibition of S. aureus 

 To further characterize the antimicrobial activity observed from the gill tissue, an 

inhibition curve against S. aureus, completed by Joseph Egan, is shown in Figure 22. A 

standard curve of Berberine, an antibiotic from the golden seal plant, is shown as the 

green line in Figure 22. Concentrations of gill tissue ranging from 0 – 400 ppm is shown 

as the orange line in Figure 22 and a dose response inhibition is observed. However, at 

concentrations higher than 100 ppm, the absorbance increases instead of decreasing in a 

dose responsive manner. This was more than likely due to the turbidity of the gill tissue 

extract causing the increase in absorbance rather than an increase in bacterial growth. 
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Figure 22. Liquid Assay Inhibition Curve of Fish Gills. A standard Berberine curve is shown in green. 

Concentrated fish gills were reconstituted in methanol and dose response inhibition was done using 0 – 400 

ppm of fish gill sample. Assay completed by Joseph Egan. 
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CHAPTER VIII 

CONCLUSION 

 

In conclusion, we have shown that there is antimicrobial activity in the acidified 

gill tissue of largemouth bass. These experiments are an initial step in isolating and 

characterizing an AMP from largemouth bass. We will next fractionate this activity using 

reverse phase and cation exchange column chromatography, while selecting active 

fractions using the liquid growth assay. Sequencing of the expected AMP will be done 

using mass spectrometry and Edman degradation.  Once successful, we will be in 

position to produce quantities of the peptide chemically or by biotechnological means for 

future studies and commercial applications. 
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