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Shuttlesworth, Duane Elwood. Visually evoked responses and 
reaction times in mans Effects of interocular arid intraoc­
ular disparity. (1974) Directed bys Dr. M. Russell 
Harter. Pp. 43. 

Interocular and intraocular inhibitory effects on 

visually evoked responses (VERs) and reaction times (RTs) 

in man as a function of the degree of retinal disparity were 

studied. Evoked potentials were recorded with scalp elec­

trodes located on the midline and 2.5 cm to the right of the 

midline over the occipital area. An evoking stimulus (a 

transient light flash) was always viewed by the right eye 

while a steadily illuminated stimulus (the "inhibitory" 

stimulus) was viewed by either the left eye (interocular 

condition) or the right eye (intraocular condition). 

Three hypotheses were proposed: First, that the over­

all amplitude of the VER would decrease and reaction time 

would increase when the distance between the retinal points 

being stimulated by the continuous stimulus and the tran­

sient stimulus is reduced? second, that the inhibitory 

effect would be interocular in naturej and third, that, due 

to the stronger inhibitory effects within the central recep­

tive fields, the VER to foveal stimulation should more 

readily attenuate and RT more readily increase as the degree 

of disparity is decreased between the continuous and tran­

sient stimuli than would be the case if the two types of 

stimulation are shifted to more peripheral retinal receptive 

fields where inhibitory effects are less strong. 



Consistent with the hypotheses, it was found that the 

overall amplitude of the VER was smaller when corresponding 

retinal points were stimulated, that the effects were more 

specific in the foveal rather than the peripheral retina, 

and that the effect was interocular. In addition, the 

effects were also found to be intraocular in nature. 

The results of the present investigation only par­

tially support the findings of various animal single unit 

investigations conducted at the cortical level concerning 

the effects of stimulating corresponding and noncorrespond-

iiig retinal points, but show an interesting parallel to 

those investigations dealing with the effect at the level of 

the lateral geniculate nucleus. 

Two mechanisms were suggested to account for the re­

sults of the present investigations occlusion and lateral 

inhibition. Since the inhibitory effects occurred interocu-

larally and intraocularally, it was suggested that the mech-

anism(s) responsible for such effects operated beyond the 

retinal ganglion cell level, most likely at the lateral 

geniculate nucleus. 

In addition, the results of the present investigation 

suggested that foveal retina receptive fields are smaller 

than receptive fields in the peripheral retina, and that the 

inhibitory effects within foveal receptive fields are strong­

er than those in peripheral receptive fields. 
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Introduction 

Suzuki and Kato (1966), using electrical stimulation of 

the optic nerves, reported that 49J& of the geniculate cells 

studied were binocularly inhibited by the stimulation of the 

non-dominant eye optic nerve. Prior to this investigation 

it was commonly thought that there was a complete segrega­

tion of retinal inputs into the main lamina of the lateral 

geniculate nucleus (LGN), most units being* therefore, mon­

ocular in nature (Bishop, Burke, & Davis, 1959» Bishop, 

Kozak, Levick, & Vakkur, 19631 Hubel & Wiesel, 1965)* 

Singer (1971) reported marked inhibition of spike activity 

in 78# of the L6N cells examined when a black or white bar 

was moved across the corresponding receptive field of the 

non-dominant eye. Sanderson, Bishop, and Darian-Smith 

(1971) found similar effects in 72# of the LGN cells inves­

tigated. In that investigation, these cells had receptive 

fields located in each eye at approximately corresponding 

retinal points. The majority of the cells had concentric 

receptive fields for the dominant eye, with an excitatory 

center and an inhibitory surrounds while, at the same time 

also had an inhibitory receptive field for the non-dominant 

eye. The demonstrated inhibitory effect was, however, gen­

erally weak and was presumably mediated by interneurons 

having axons that crossed from one lamina to another within 

the LGN. 
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The binocular interaction in response to stimulation of 

binocular receptive fields of the LGN neurons reported by 

Sanderson, et al. (1971) was neither facilitatory nor sensi­

tive to stimulus orientation, and did not, therefore, pro­

vide information pertaining to the question of binocular 

summation which is, presumably, mediated by cortical mechan­

isms. Barlow, Blakemore, and Pettigrew (1967)1 and others 

(Bishop, Henry, & Smith, 19701 Minke & Auerbach, 1972; 

Pettigrew, Nikara, & Bishop, 1968) have reported that corti­

cal cells with binocular receptive fields respond maximally 

to the stimulation of slightly noncorresponding retinal 

points with patterns of optimal size and orientation. Less 

than maximal responses were found when corresponding or ex­

tremely noncorresponding retinal points were stimulated. 

(Barlow, et al., 1967; Bishop, et al., 1970; Pettigrew, et 

al., 1968). 

A mechanism similar to this could account for binocular 

inhibition in pattern-related visually evoked response (VER) 

investigations dealing with the presentation of noncorre­

sponding patterns to the same retinal points in man (Harter, 

Seiple, & Salmon, 1972). Harter (1972) points out that the 

previously mentioned single unit investigations indicate 

that the noncorrespondence of points of retinal stimulation 

is possibly "the critical variable determining the nature of 

binocular interaction (facilitation vs. inhibition)" as 

evidenced by VERs. Regan and Spekreijse (1970), Fiorentini 
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and Maffei (1970), and Harter, et al. (1972) have made sim­

ilar suggestions. It can be noted that this variable has 

not been investigated in any systematic manner in human VER 

studies (Regan, 1972). 

Some evidence from pattern-related VER investigations 

suggests that the stimulation of corresponding retinal areas 

in man produces an inhibition of VER amplitude (Cobb, 

Ettlinger, & Morton, 1968; Van der Tweel, Spekreijse, & 

Regan, 1970b) when a stationary patterned stimulus is pre­

sented to a portion of one eye's visual field while the re­

maining portions of that eye, and the entire visual field of 

the other eye were stimulated with a reversing patterned 

stimulus. Other investigators, however, suggest that an en­

hancement in the amplitude of the VER occurs when corre­

sponding retinal points are stimulated (Cignaek, 1971; 

Harter, et al., 1972). In the investigation conducted by 

Harter, et al. (1972), for example, the dichoptic presenta­

tion of lines and grids to corresponding retinal areas 

evoked VERs with some components of smaller amplitude than 

did the dioptic presentation of identical stimulus patterns. 

To date, however, few investigations have dealt with the 

effects of varying the degree of correspondence of retinal 

points stimulated in man on the VER using restricted focal 

stimulation, 

Harter (1970, 1971), and Harter and White (1968, 1970) 

have pointed out that the stimulus element sizes which 
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correspond to those which elicit the optimal stimulation of 

retinal ganglion cell receptive fields in animals also 

elicits maximal amplitude VERs in humans. Non-optimal stim­

ulation with large stimuli elicits VERs of lesser amplitude 

which is believed to be due to increased amounts of lateral 

inhibition occurring within the receptive fields. The tra­

ditional definition of"a receptive field states that it is 

an area of retinal surface which, when stimulated, elicits 

a response in the cell being investigated (Hubel & Wiesel, 

1962). At any given retinal location, however, many differ­

ent receptive fields of varying size, layout, and shape may 

coexist (Thomas, 19?0). 

Pattern-related VER studies in man have suggested that 

the receptive fields of ganglion cells in the macular region 

of the retina are relatively small, having centers with dia­

meters of approximately 10* to 30' of arc subtense (Harter, 

1970, 1971; Harter & White, 1968, 1970s Jeffreys, 1969; 

MacKay, 1969; MacKay & Jeffreys, 1969; Regan, 1972, pp. 59-

61? Regan & Richards, 1971; Rietveld, Tordoir, Hagenouw, 

Lubbers, & Spoor, 1967; Spekreijse, 19665 Van der Tweel, 

Regan, & Spekreijse, 1970a). Various stimulus manipulations, 

however, appear to influence the size of both the center and 

surrounding portions of a receptive field in both man and 

animals (Barlow, Fitzhugh, & Kuffler, 1957; Glezer, 1965; 

Hallett, 1963; IKeda & Wirght, 1971, 1972; Kuffler, 1952, 

1953; Levick, Oyster, & Davis, 1965; Mcllwain, 1964, 1966). 



5 

In addition, both the size of receptive field centers and 

surrounds appear to increase in a somewhat linear fashion 

with retinal eccentricity in animals (Enroth-Cugell & 

Robson, 1966; Fischer & May, 1970; Hubel & Wiesel, 1965; 

Leicester & Stone, 1967; Wiesel, 1970; Wiesel & Hubel, 

1966), and there appears to be a correlation between changes 

in receptive field size and variations in the convergence of 

receptors onto ganglion'cells with eccentricity (Ikeda & 

Wright, 1972; Stone, 1965). Pattern-related VER studies 

suggest that the same relationship exists in the human 

retina (Harter, 1971)# It may also be noted that the inhi­

bitory effects within central receptive fields have been 

found to be somewhat stronger than similar effects in more 

peripheral retinal receptive fields in animals (Cleland, 

Dubin, & Levick, 1971; Ikeda & Wright, 1972). 

The present investigation deals with how VERs and reac­

tion times to intermittent stimulation of one retinal point 

are influenced by continuous stimulation of adjacent retinal 

points in man as a function of (a) the distance between the 

points of retinal stimulation, (b) whether the two stimuli 

are presented to the foveal or peripheral retina, and (c) 

whether both stimuli were presented to the same eye (mon-

optic stimulation) or one was presented to one eye and the 

other to the other eye (bioptic stimulation). 

While acknowledging the risk of overgeneralizing from 

animal single unit investigations to human VER 
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investigations, and assuming, as Creutzfeldt, Rosina, Ito, 

and Probst (1969) and Mirike and Auerbach (1972) point out, 

that gross slow potentials and single unit activity are 

systematically related, several basic predictions can be 

made on the basis of the single unit, human psychophysical, 

and VER investigations cited above: First, when the dis­

tance between the points of retinal stimulation is reduced, 

a reduction in the overall amplitude of the VER and an in­

crease in reaction time is expected to occur since the con­

tinuous stimulation of one eye in response to stimulation of 

corresponding retinal points in the other eye has been found 

to inhibit single unit activity in animals and lead to a re­

duction of the amplitude of the VER in humans; second, if 

the inhibitory effect is binocular in nature, as suggested 

by animal (Sanderson, et al., 1971; Singer, 1971)» and human 

(Cobb, et al., 1968; Van der Tweel, et al., 1970b) studies, 

binocular (bioptic) viewing conditions should show the sug­

gested inhibitory effect on both VERs and reaction time; and 

third, the VER and reaction time to foveal stimulation 

should more readily attenuate and increase respectively due 

to the inhibitory effects than the VER elicited by peripher­

al stimulation since the inhibitory effects within centrally 

located retinal receptive fields have been found to be 

stronger than those found in more peripheral retinal recep­

tive fields. 
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Method 

Experimental Design 

The experimental design for this investigation is pre­

sented in Table 1. The independent variables of the experi­

ment were: (a) electrode recording positions (Og and Og), 

(b) eccentricity of retinal stimulation (foveal vs. 5° 

eccentricity), (c) behavioral task (reaction time vs. count), 

(d) stimulus presentation, or viewing conditions (monoptic 

vs. bioptic), and (e) the distance of retinal stimulation of 

the steady (constant) stimulus above or below the fixed 

flashing stimulus (+50*, +30'- +20', -HO*, 0*, -10', -20', 

-30', -50' of arc subtense respectively). The various dis­

tances were presented in orders 1 or 2 according to the pre­

sentation order designated in Table 2. The latter variable 

will be expressed in terms of min of arc of noncorrespon-

dence since this measure is appropriate for the bioptic 

viewing conditions. The 02 electrode position was selected 

because evidence has been presented indicating that binocu­

lar interaction in humans may be mediated in the right cere­

bral hemisphere (Benton & Hecaen, 1970). The 0Z electrode 

position was selected because it overlies the foveal projec­

tion location of both fovea on visual cortex. 

Two tasks were employed (reaction time and counting) in 

order to obtain am overt behavioral measure of the effects 



TABLE I 
EXPERIMENTAL DESIGN 

RECORDING POSITION 
Oz 02 

ECCENTRICITY 
0° 5° 0° •• 5° 

BEHAVIORAL MEASURE 
RT C RT C RT C RT C 

V EV\) 'ING CON DITIOK S 
B M B M B M B M B M B M B M B M 

STIMULUS PRESENTATION ORDER 
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 
Note.—Stimulus presentation orders are also replications of a given 

experimental condition. 



TABLE 2 

STIMULUS PRESENTATION ORDER 

NONCORRESPONDENCE (UIN OF ARC) 

z o 

1 
C 50 30 20 10 0 -10 -20 -30 -50 

r 
Z 
IsJ 
OK 
IsSbJ 
CCQ 

1 
-50 -30 -20 -10 0 10 20 30 50 C 

£g 
CO 3 
-J 2 

0 -10 -20 -30 -50 C 50 30 20 10 

H 

O 
10 20 30 50 C -50 -30 -20 -10 0 

Note.—C refers to the control condition. 
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of the constant stimulus light and in order to ascertain 

through an implicit response measure that the results were 

not contaminated by the overt reaction task. The dependent 

measures were VER amplitude, as measured by the absolute in­

tegral of the amplitude of the VER over a period of 448 

msecs after stimulation, and the median reaction time in 

response to each of the experimental conditions. 

For the major part 'of the experiment, four subjects 

participated in eight experimental sessions plus one control 

session. Electro-oculograms were recorded during the con­

trol session to insure that any unwanted eye movements did 

not contaminate the data. Subjects were also instructed how 

to minimize eye movement artifacts. An experimental session 

consisted of the presentation of any two of the 16 trial 

blocks found in Table 1 while recording simultaneously from 

electrode positions designated 02 and 02. For example, one 

series of conditions consisted of the subject fixating 

foveally (0°) while performing a reaction time task (RT), 

and viewing the stimulus display bioptically (B) when the 

distance between the stimuli was varied as indicated by or­

der 1 in Table 2. This sequence constituted one trial 

block. In the second trial block of the session, the sub­

ject may have been required to fixate the peripheral fixa­

tion light (5°)# count (C) the number of stimulus flashes, 

and view the display monoptically (M) while the stimuli were 

presented according to order number 2. 
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The presentation order of the trial blocks between sub­

jects was completely randomized with the restrictions that 

no two subjects received the same experimental trial blocks 

on the same day, nor did any subject receive a replication 

(presentation orders 1 and 2) of a specific condition on any 

one day. 

The presentation order of the nine levels of noncorre-

spondence, expressed in'terms of min of arc, and the control 

condition (the presentation of the evoking stimulus alone) 

for each trial block for replications 1 and 2 is presented 

in Table 2. Sixteen stimulus presentations occurred at each 

position designated in Table 2, so that, within a single 

replication, a total of 32 stimulus presentations per posi­

tion of noncorrespondence and the control condition oc­

curred. When replications 1 and 2 were combined a total of 

64 stimulus presentations contributed to a single VER. 

Subjects 

Seven subjects from the age of 22 to 33 participated in 

the experiment. Four subjects (DS, RH, MM, CS) were selec­

ted to participate in all of the conditions of the experi­

ment specified above, while the three additional subjects 

participated in a selected aspect of the investigation to 

further test the generality of the results. The refractive 

error for each subject was checked and corrected. All sub­

jects had binocular visual acuities of 20/20 or better at 
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the time of the experiment. Of the four main subjects, only 

the author (DS) had not participated in evoked potential in­

vestigations prior to the start of this experiment. 

Apparatus 

The subjects were seated in an electrically shielded 

partially light- and sound-proofed 8* X 12' cubicle. The 

subjects were light-adapted and the illumination level of 

the room was .29 mL. The two stimulus displays (one for 

each eye) were binocularly fused by means of an American 

Optical Company Phoropter (Model No. 590 PC). The visual 

field was divided in half by a 27.5 X 225 cm black partition 

which extended from the center of the Phoropter to a point 

between the two stimulus displays. The display viewed by 

each eye contained a cross-like configuration composed of 

a series of 0.5 cm holes spaced at a distance of 0.75 cm, or 

10' of arc subtense, from center to center. Eleven holes 

were placed in each horizontal and vertical components of 

the cross. 

The flashing (evoking) light was presented in the cen­

tral hole of the cross and was always viewed by the right 

eye. The steadily illuminated (constant) light was presented 

at various positions on the vertical portion of the cross, 

and was viewed by either the right (monoptic conditions) or 

left (bioptic conditions) eye. These two lights, subtending 

2.86* of arc, were presented by means of fiber optics which 
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were inserted into the desired holes from the rear of the 

display. The evoking flashes, generated by a Grass PS-2 

photostimulator, had a luminance level of 9.65 a dura­

tion of 10 usee, and were presented aperiodically on a ran­

dom interval schedule with a mean interval of 1.25 sec. The 

constant illumination light had a luminance level of 2.74 mL 

and was generated "by an incandescent light. Both the light 

flashes and the constant light source were presented to the 

end distal to the display. 

Eccentricity of stimulation was controlled by having 

the subjects fixate either the center of the crosses (0° 

eccentricity) or a point of light located 5° "to the right of 

the central portion of the cross (5° eccentricity). The en­

tire stimulus display was back-illuminated with a dim incan­

descent light having a luminance level of 1.69 mL. This 

permitted the holes forming the crosses, except those con­

taining the fiber optics, and the eccentric fixation point 

light source to serve as fixation references. Each of the 

peripheral fixation points subtended 1.5* of arc, and were 

easy to fixate. Prisms of 7*0 and spherical lenses of 

+0.25 D were positioned in the Phoropter so as to permit bi­

nocular fusion of the two displays at approximately optical 

infinity. 

A Grason-Stadler 901B noise generator provided suffi­

cient white noise (63 dB SPL) to mask extraneous auditory 

stimuli. The same noise generator served to produce an 
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auditory feedback click of 68 dB SPL whenever the subject 

failed to make a key-release response within the 500 msec 

interval following flash presentation under the reaction 

time conditions of the experiment. 

Visually evoked responses were recorded monopolarly 

from the surface of the scalp with the active electrodes 

placed 2.5 cm above the inion (Ô ) along the midline, and 

2.5 cm to the right of ihis electrode from the midline (Og). 

The reference electrode was attached to the right earlobe. 

Electroencephalograms (and electro-oculograms during the 

control session) were amplified by a Grass 7WC polygraph 

with the ̂  amplitude high and low frequency filters set at 

35 and 1 Hz respectively. Ongoing brain activity was moni­

tored on a Dumont 708 A oscilloscope and the Grass Model 7WC 

polygraph. 

A Computer Automation Alpha 16 mini-computer was set to 

sample and store 448 msecs of activity following stimulus on­

set. Each of the 10 channels of the computer was divided 

into three data arrays so that records of the VERs recorded 

from positions 0g and 02» and the reaction time frequency 

distributions could be stored simultaneously. The number of 

stimulus presentations per position of noncorrespondence was 

controlled by a Lehigh Valley predetermining counter set at 

16. The recorded information was displayed on a Tektronix 

Type RM 504 oscilloscope, photographed, and punched onto 

paper tape for future data analysis. 
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A key-release reaction time response initiated a pulse-

former which generated a seven msec square pulse. This 

pulse was recorded in the appropriate data bin of the compu­

ter which corresponded to the latency of the reaction time 

response. Reaction time responses were accumulated and 

stored in the computer to form the reaction time distribu­

tion, and, at the end of each trial block punched onto paper 

tape for future data analysis. 

Procedure 

Prior to the start of the investigation the correct in-

terocular distance and necessary corrective spherical and 

cylindrical lenses for each subject were determined. These 

values were used throughout the experiment, and prior to 

each experimental session the Phoropter was checked to in­

sure that the proper lenses and interocular distance for a 

particular subject were in position. Electrodes were placed 

on the scalp at positions 0̂  and Ogi care being taken to in­

sure that skin resistance was 10,000 ohms or less, before 

the subject entered the experimental chamber. Subjects were 

then given instructions concerning the proper fixation point 

and behavioral task for the trial block to be presented. 

A preview of ongoing electrical activity of the subject 

was monitored on both a Grass 7WC polygraph and a Dumont 708 

A oscilloscope. The onset of white noise signaled the be­

ginning of a stimulus trial, and preceded the onset of the 
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stimulus presentation by 5 sees. The evoking stimulus was 

then presented 16 times. The order of stimulus presentation 

for the steadily illuminated light was determined by the or­

der established in Table 2. Two trial blocks were presented 

in each experimental session. A single trial block lasted 

approximately 1$ min, and an entire experimental session 

lasted approximately 4-5 min. The subjects were allowed a 

15 min break between trial blocks. Since the experimental 

conditions changed between trial blocks it was necessary to 

reinstruct the subject concerning fixation point and behav­

ioral task prior to the beginning of each trial block. The 

recorded VER and reaction time information was punched onto 

paper tape for later data analysis. 

The data were arranged into 30 data arrays for each 

trial block. Given that 10 arrays were needed for sorting 

the nine positions and control condition, 20 arrays were 

allotted for the VERs recorded at positions 0% and Og. and 

10 arrays were allotted for the reaction time distributions. 

Each trial block, which also constituted a single replica­

tion of a given experimental condition, was stored separate­

ly on paper tape and later combined with the second replica­

tion for data analysis. The combined replications were 

analyzed in the following manner: First, for the VER data, 

the algebraic integral of the amplitude of the entire VER 

recorded during the 8 msecs following stimulus onset was 

found in the Alpha 16 computer and used as the zero baseline 



17 

voltage for the VER. Following the determination of the 

"baseline, the absolute integral over the 448 msec interval 

of the amplitude of the VER in reference to the baseline was 

found. This information was then encoded on data cards, and 

through the use of the Triangle University Computer Center 

of the Research Triangle of North Carolina's IBM-370-165 

computer a 2 X 2 X 2 X 2 X 9 Bio-Med 08V repeated measures 

analysis of variance was performed. The Bio-Med 08V analy­

sis of variance program is part of the University of Cali­

fornia at Los Angeles' Bio-Med statistical package. The 

levels of the independent variables in the analysis corre­

sponded to, respectively, recording positions, degree of 

eccentricity, behavioral task, viewing conditions, and the 

degree of noncorrespondence. 

The reaction time distributions were analyzed in the 

following manners The Alpha 16 computer was instructed to 

provide a digital printout of the reaction time distribution 

for the 448 msec recording time interval. Since each bin 

within the data array represented seven msecs, the resulting 

printout, obtained from a Fabri-Tek Model 201 High Speed 

Printer, provided a reference standard to which the inte­

grated reaction time distribution for each subject for each 

position of noncorrespondence of stimulation could be com­

pared. The median reaction time could then be readily de­

termined by finding the central data point of the reaction 

time distribution, comparing its position within the array 
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with the reference, and obtaining the median reaction time 

for that bin in msecs. This information was placed on data 

cards and analyzed by a 2 X 2 X 9 Bio-Med 08V repeated mea­

sures analysis of variance program. The levels of the in­

dependent variables in this analysis corresponded to the 

eccentricity of stimulation# viewing conditions, and the 

nine levels of noncorrespondence of stimulation respective­

ly. 
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Results 

A representative sample of the VERs to bioptic and mon-

optic foveal stimulation for two subjects (DS and RH), under 

conditions of reaction time response and 02 recording loca­

tion, is presented in Figure 1. The VER for the monoptic 0' 

of arc noncorrespondence stimulus condition is missing due 

to the difficulty in placing both the steadily illuminated 

light and the evoking stimulus light at the same position in 

the display for this condition. Visual inspection of the 

data indicates that, under both foveal bioptic and monoptic 

conditions, there was a reduction in the overall amplitude 

of the VER as a function of the degree of correspondence of 

retinal stimulation, the smallest amplitude VERs being 

evoked when the stimuli were in correspondence, and the lar­

ger amplitude VERs being evoked when the stimuli were in 

various degrees of noncorrespondence. 

Figure 2 presents the individual and group data for 

each of the positions of noncorrespondence and the control 

condition (C), under both bioptic and monoptic stimulus con­

ditions at fixation points corresponding to 0° (foveal) and 

5° (peripheral) eccentricity. The analysis of variance con­

ducted on the absolute intergral of the amplitude of the VERs 

as a function of the correspondence of stimulation indicated 

a single significant effect, viz., the degree of 
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noncorrespondence of stimulation (p <•05); whereas all other 

factors and their interactions were nonsignificant. The de­

gree of noncorrespondence of stimulation effect indicated 

that when the steadily illuminated light and the evoking 

stimulus light were in positions of noncorrespondence (+10' 

— +50* of arc subtense) larger amplitude VERs were found 

than when the two light sources were in correspondence (0' 

of arc). Both the group and individual data indicated that 

this effect was most pronounced under the foveal (0°) fixa­

tion condition. The peripheral fixation conditions showed 

little evidence of VER amplitude variations as a function 

of positions of noncorrespondence of retinal stimulation. 

Although the interaction between foveal and peripheral view­

ing conditions and the degree of noncorrespondence was evi­

dent in the data from all subjects, it only approached sig­

nificance at the .05 level. The failure of this interaction 

to reach statistical significance was due to the variable 

degree to which the interaction was evident in the indivi­

dual subjects. 

Figure 3 presents the median reaction time data for 

both the individual and group data for each of the positions 

of noncorrespondence of stimulation under both bioptic and 

monoptic stimulus conditions at fixation points corresponding 

to 0° and 5° eccentricity. The analysis of variance conduc­

ted on the reaction time data indicated two significant main 

effects: First, that foveal stimulation resulted in faster 
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reaction times than peripheral stimulation (p<.05)s and 

second, that reaction times varied as a function of the 

positions of noncorrespondence of retinal stimulation (p< 

.01). An analysis of the individual data implies that re­

action times under foveal conditions increased as the stead­

ily illuminated light was moved closer to the flashing stim­

ulus. Under the peripheral conditions# however, relatively 

little change in reaction time occurred as a function of the 

stimulation of corresponding and noncorresponding retinal 

points. 

Individual differences suggested two subjects (CS and 

MM) showed consistent differences between the peripheral 

monoptic and bioptic conditions of the experiment. The re­

maining two subjects (DS and RH) showed no differences in 

their reaction times to peripheral monoptic and bioptic 

stimulation. 

Three additional subjects were added to further sub­

stantiate the generality of the foveal monoptic and bioptic 

reaction time and VER results of the main part of the experi­

ment. A 2 X 2 X 9 analysis of variance was conducted on the 

VER information for all seven subjects in the experiment. 

The levels of the independent variables were electrode posi­

tion, monoptic and bioptic viewing conditions, and the nine 

levels of noncorrespondence of points of retinal stimulation. 

Reaction time information was analyzed by a 2 X 9 analysis 

of variance with the levels of the independent variables 
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corresponding to monoptic and bioptic stimulus conditions 

and the nine levels of noncorrespondence oi' retinal stimu­

lation. The results of both analyses supported the findings 

of the major part of the present investigation. 
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Discussion 

The VER and reaction time data support the following 

hypotheses: (a) a reduction in the distance between the 

points of retinal stimulation would result in increased in­

hibition — that is, the presentation of the continuous 

stimulus in close correspondence to the intermittent stimu­

lus would decrease the response to the intermittent stimulus) 

(b) the presentation of the continuous stimulus to one eye 

would inhibit the response to stimulation of the other eye, 

indicating that the inhibitory effect is binocular in nature. 

The hypothesis that the inhibitory effect would be more pro­

nounced under foveal than peripheral conditions of stimula­

tion was supported whei} trends in individual data were con­

sidered. On the basis of the information presented in the 

following discussion, it is proposed that the reported 

changes in VER amplitude, as well as related reaction time 

changes, most likely reflect the effects of mechanisms oper­

ating at the geniculate level of the visual system. 

As noted in the introduction, various animal single 

unit investigations (Barlow, et al., 1967i Bishop, et al., 

1970* Pettigrew, et al., 1968) have indicated that binocu­

lar ly driven cortical units generally show increased, or 

facilitated activity when receptive fields of both retinas 

are stimulated, other investigators (Burns & Fritchard, 

1968t Noda, Creutzfeldt, & Freeman, 1971) have found similar 
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results. The degree of facilitation, however, depends on 

the correspondence of points of retinal stimulation. As 

disparity varied in these animal experiments, an inverted 

"U"-shaped function was generated; maximal activity occur­

ring when the disparity falls within 10* to 6° of arc, de­

pending on the unit being measured; minimal activity oc­

curring when extremely disparate retinal points are 

stimulated; and an intermediate level of activity occurring 

when corresponding retinal points are stimulated. 

The results of the present investigation are only par­

tially consistent with this inverted "U"-shaped function. A 

compatible finding was that VER amplitude was greater when 

slightly noncorresponding (optimal) as compared to corre­

sponding retinal points were stimulated. Although only 

indirectly related, the faster reaction times obtained un­

der the former conditions are in agreement with the electro­

physiological findings. Unlike the single unit data, stimu­

lation of the most disparate noncorresponding points (the 

control condition when the continuous stimulus was withheld) 

resulted in VERs (and reaction times) which were quite sim­

ilar to those found when less disparate ("optimal") non-

corresponding retinal points were stimulated. In other 

words, with increasing disparity, an increase in facilitation 

was not followed by a decrease as would have been predicted 

from the inverted U-shaped functionfor the single unit data. 

It appears, therefore, that the VER results, as well as the 
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reaction time data, obtained in the present investigation 

cannot be readily explained in terms of the types of mechan­

isms postulated to account for the activity of single units 

at the cortical level. 

It may be noted that a reduction in VER amplitude to 

transient stimulation of one eye due to continuous stimula­

tion of the other eye has been reported by other investiga­

tors (Lansing, 1964; Lehmann & Fender, 196?, 1968} Riggs & 

Whittle, 1968; Shipley, 1969; Spekreijse, Van der Tweel, & 

Regan, 1972). Such stimulation appears to result in binocu­

lar or interocular suppression. On the other hand, a number 

of human VER investigations have indicated that an enhance­

ment or facilitation of VER amplitude occurs when a tran­

sient stimulus is presented to both eyes (Bartlett, Eason, 

& White, 1968; Ciganek, 1970; Harter, et al., 1972; Perry, 

Childers, & McCoy, 1968; White & Bonelli, 1970). It appears, 

therefore, that the nature of binocular interaction depends 

in large measure on the type of stimulation being applied to 

the two eyes. If the stimulus applied to both eyes is tran­

sitory, binocular facilitation will occur; if continuous 

stimulation is applied to one eye and a transient stimulus 

to the other, the evoked potential to the transitory stim­

ulus may be suppressed. 

Investigations of single unit activity at the cortical 

level in animals typically have not studied the effects of 

presenting continuous stimulation to one eye on the 
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transient response to flash stimuli presented to the other 

eye. This paradigm, however, has teen employed to investi­

gate the binocular receptive fields of single units in the 

LGN of the cat (Sanderson, et al., 1971). The LGN single 

unit data reflect trends similar to those observed in the 

present study, and suggest a possible explanation. 

Sanderson, et al. (1971) found that, to a considerable 

extent, the spontaneous "activity of binocular units within 

the main lamina of the LGN, and, to a lesser extent, the 

driven activity due to the stimulation of the dominant eye, 

was inhibited by the stimulation of the non-dominant eye. 

The inhibitory effect was maximal when approximately corre­

sponding retinal points were stimulated. Inhibition pro­

gressively decreased when the stimulus presented to the non-

dominant eye was presented to increasingly noncorresponding 

retinal points. The decrease in VER amplitude obtained in 

the present study could reflect, through presynaptic corti­

cal activity, the same inhibitory mechanisms noted at the 

LGN by these investigators. The longer RTs associated with 

reduced VERs may be a behavioral consequence of such inhibi­

tion. 

Such inhibitory binocular interaction (due to the stim­

ulation of corresponding retinal points) could result from a 

form of binocular occlusion. Binocular occlusion occurs 

when the stimulation of one eye drives a cell at a suffi­

ciently high rate that additional stimulation of the other 
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eye is less effective in further increasing the response 

level of the cell (Noda, et al., 19?1» Pettigrew, et al., 

1968). In the present study, the attenuation in the evoked 

response (and longer RTs) to transient stimulation of a 

given retinal area of one eye, which resulted from stimula­

tion of the corresponding area of the other eye, may reflect 

binocular occlusion. That is, continuous stimulation of one 

eye could activate that* part of the cortex which also must 

respond to a transient stimulus presented to the other eye. 

As the response to continuous stimulation approaches satura­

tion level, the extent to which that particular cortical 

area could respond to additional transient stimulation of the 

other eye would be reduced. 

When noncorresponding retinal points are stimulated, the 

cortical area activated by continuous stimulation of one eye 

may be appreciably different from that activated by the tran­

sient stimulation of the other eye. Thus, occlusion would 

not be expected to result. If in fact occlusion did occur in 

this experiment, the data suggest that substantially differ­

ent populations of cells were involved when the degree of 

noncorrespondence of the points of retinal stimulation 

reached 50' of arc. The control condition, which theore­

tically represented the stimulation of widely disparate 

retinal points, produced VERs and reaction times similar to 

those obtained with stimulation of 50* of arc disparity. 
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Another equally possible mechanism which may have been 

responsible for the results of the present investigation is 

lateral inhibition. The presentation of the steadily illum­

inated light source to corresponding retinal points may have 

produced maximal amounts of lateral inhibition in binocular 

single units at the LGN level. The amount of lateral inhi­

bition would be expected to increase as the disparity or 

distance between the two stimuli is reduced, as was the case 

in the present experiment. The data of the present experi­

ment suggest that virtually all inhibition occurred when the 

degree of noncorrespondence was less than 50* of arc sub­

tense. The control condition indicated that beyond 50' of 

arc disparity, no further changes in evoked responses were 

found. 

It is difficult to determine which of these two mechan­

isms, lateral inhibition or binocular occlusion, best ac­

counts for the present data. One would expect lateral in­

hibition to extend over considerable distances (as measured 

in the visual field). Considering the size of the stimulus 

spot of light and the effects of diffusion of light in the 

optical system of the eye, the areal extent of the inhibi­

tory effect was relatively small. This gives some support 

to binocular occlusion, in contrast to lateral inhibition, 

as the better explanation of the results. 

If it is assumed that a binocular occlusion type mechan­

ism was operating in the present study, then the present data 
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are consistent with previous data obtained in studies of the 

areal extent of receptive field centers in the foveal retina 

in man. Indirect evidence has "been offered indicating that 

receptive field centers in man range in diameter from 10* to 

30' of arc in the fovea (Bryngdahl, 1966; Harter, 1970, 

19?1» Harter & White, 1968, 1970; Jeffreys, 1969; MacKay, 

1969; MacKay & Jeffreys, 1969} Regan, 1972, pp. 59-61*, 

Regan & Richards, 1971i .Rietveld, et al., 1967s Spekreijse, 

1966; Van der Tweel, £t al., 1970a). In the present study, 

the stimulation of corresponding receptive field centers 

could have produced the inhibitory effect due to occlusion, 

while the stimulation of noncorresponding regions of the re­

ceptive field (central portion of one eye and surround of 

the other eye) could not have produced this effect. 

Evidence has been offered that the size of receptive 

field centers and surrounds increase with retinal eccen­

tricity in animals (Enroth-Cugell & Robson, 1966; Fischer & 

May, 1970; Hubel & Wiesel, 1965; Leicester & Stone, 1967; 

Wiesel, I960; Wiesel & Hubel, 1966), and in man (Bryngdahl, 

1966; Hallett, 1963; Harter, 1970; Rietveld, et al., 1967). 

The lack of differentiation in VER amplitude as a function 

of the degree of noncorrespondence in retinal points in the 

peripheral retina in the present study may have been due to 

the larger size of receptive fields in the peripheral retina. 

The larger size of receptive fields in the peripheral retina 

may have resulted in an extremely small percentage of the 
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total area of the field being stimulated. This could have 

reduced the magnitude of the inhibitory effect to a level 

beyond the sensitivity of the VER measure used. A second 

possibility is that had the range of retinal stimulation 

been increased beyond the 50' of arc distance for the peri­

pheral viewing conditions, some differentiation in VER am­

plitude, and perhaps even reaction time, would have been 

found. Such a suggestion is based on the assumption that 

the inhibitory effects within receptive fields at 5° eccen­

tricity would be sufficient to allow for some differentia­

tion in activity to occur as a function of the noncorrespon-

dence of retinal stimulation. A third possibility is that 

the mechanisms underlying the inhibitory effect were not 

operating in the peripheral area of retinal stimulation. 

In view of the above discussion, the hypothesis that 

the inhibitory effect would be found under the bioptic con­

dition, indicating that it was post-chiasmal in nature, 

appears to be supported by the results of the present inves­

tigation. It should be noted, however, that inhibitory 

effects due to the distance between the two stimuli were 

evident when both stimuli were presented to the same eye 

(monoptic viewing'conditions). Thus, an intraocular type 

inhibitory mechanism could have been operating at the reti­

nal and/or ganglion cell level of the visual system. How­

ever, since the inhibitory effect was very similar under 

both the monoptic and bioptic viewing conditions» it would 
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be more parsimonious to propose that the inhibitory effect 

was operating beyond the ganglion cell level, most likely 

at the LGN as discussed above. 

Summary 

Interocular and intraocular inhibitory effects on VERs 

and reaction times were studied as a function of the degree 

of disparity of retinal'stimulation. The degree of dispar­

ity was manipulated by presenting a steadily illuminated 

stimulus light in various positions above and below an e-

voking stimulus light. The evoking stimulus light was al­

ways viewed by the right eye, while the continuous (steadily 

illuminated) stimulus light was viewed either by the left 

eye (bioptic condition) or the right eye (monoptic condi­

tion) . 

Three hypotheses were proposed: First, that the over­

all amplitude of the VER would decrease, and reaction time 

increase, when the distance between the retinal points being 

stimulated was reduced} second, that the inhibitory effect 

would be interocular in nature; and third, that, due to 

stronger inhibitory effects within central retina receptive 

fields relative to inhibitory effects within peripheral 

retina receptive fields, the VER would more readily atten­

uate, and reaction time more readily increase, under foveal 

conditions of stimulation than under peripheral conditions 

of stimulation. 
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Various cortical single unit investigations in animals 

have suggested that an inverted "U"-shaped function would 

occur when the degree of retinal disparity was varied. The 

stimulation of corresponding retinal points has been found 

to produce an increase in single unit activity, while the 

stimulation of slightly disparate retinal points produces 

an additional enhancement, or facilitation of single unit 

activity. The stimulation of widely disparate retinal 

points produces the least amount of facilitation of single 

unit activity in the cortex. At the LGN the stimulation of 

corresponding retinal points produces a decrease in single 

unit activity, while the stimulation of increasingly dis­

parate retinal points produces a progressive increase in 

activity. The stimulation of widely disparate retinal 

points, however, apparently does not produce further de­

creases in single unit activity at this level of the vis­

ual system. 

The results of the present investigation only partially 

support the trends suggested by cortical single unit inves­

tigations, and appear to more readily reflect what is 

occurring at the LGN. When corresponding retinal points 

were stimulated a decrease in the amplitude of the VER, and 

an increase in reaction time was observed. When noncorre-

sponding retinal points were stimulated VER amplitude was 

enhanced, and faster reaction times occurred. The stimula­

tion of widely disparate retinal points, however, failed to 
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produce a further decrease in VER amplitude as would have 

"been expected on the basis of cortical single unit activi­

ty. In addition, such stimulation did not significantly 

affect reaction times in comparison with the stimulation of 

slightly disparate retinal points. Two mechanisms were 

suggested to account for the results of the present inves­

tigations occlusion and lateral inhibition. Both mechan­

isms appear to be equally possible alternatives. 

The second hypothesis, that the inhibitory effect was 

interocular in nature, was supported by the results of the 

present investigation. But, the inhibitory effect was also 

found to occur intraocularally. If one parsimoniously pos­

tulates a single mechanism to.account for both the inter­

ocular and intraocular inhibitory effects, it would have to 

be operating beyond the ganglion cell level, most likely at 

the LGN. 

The third hypothesis was partially supported by the re­

sults of the present investigation. The VER to foveal stim­

ulation more readily attenuated, and the reaction time more 

readily increased, than did VERs and reaction times to peri­

pheral stimulation. This suggests, perhaps, that the inhi­

bitory effects within central retina receptive fields were 

stronger than those found in more peripheral retina recep­

tive fields. In addition, these findings indirectly sug­

gest that the size of foveal receptive fields are consider­

ably smaller than the size of peripheral receptive fields, 
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not only in overall areal extent, but also in regard to 

the relative size of receptive field centers and surrounds. 
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