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The randomized response technique (RRT) was first introduced to estimate preva-

lence of sensitive characteristics for binary response variables. Extensions to quantita-

tive variables using additive and/or multiplicative scrambling were later explored for

population parameter estimation, but estimation of population distribution estimation

for sensitive variables remains underexplored.

This dissertation investigates kernel density estimation (KDE) for sensitive variables

using additive Randomized Response Technique (RRT) models, addressing the gap in

direct distribution estimation in this field. It refines prior work on direct distribution for

sensitive variables, particularly KDE under multiplicative RRT models, and explores

KDE under additive RRT models. The research encompasses the application of KDE

in the presence of auxiliary information and further study of KDE under optional

RRT models. Simulation results show that the kernel density estimator using additive

scrambling performs better and is more flexible in bandwidth selection compared to

multiplicative scrambling. Additionally, the inclusion of auxiliary variables enhances

the accuracy of sensitive variable distribution estimation. Introducing sensitivity

level W into RRT models as an option proves beneficial under certain conditions for

extreme values of W , or when noise levels are high.

By combining the strengths of KDE and additive RRT models, this research seeks

to contribute to the advancement of estimation techniques for sensitive variables

and provide valuable insights into their distribution. The findings may enhance the

understanding and application of survey sampling methodologies when dealing with

sensitive and privacy-related information.
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Chapter 1: Introduction

1.1 Sensitive Survey Questions and Related Method-

ologies

Survey sampling is a crucial tool in social science research, allowing investigators to

gather valuable insights into various phenomena by collecting data from a subset of

the population. However, the efficacy of this method hinges on the willingness of

respondents to provide honest and accurate answers to the survey questions. In the

realm of survey sampling, certain questions may tread into sensitive territory, trying

to elicit responses that individuals may feel uncomfortable disclosing. This discomfort

can stem from various sources, such as concerns about privacy, fear of judgment, or

apprehension regarding the potential consequences of divulging certain information

(Warner 1965).

The phenomenon of respondents concealing their true responses or opting not

to answer altogether, often referred to as non-response or response bias, presents a

significant challenge in survey research. Individuals may feel compelled to provide

socially desirable responses, aligning their answers with societal norms or expectations

rather than expressing their true beliefs or experiences. Additionally, the inherent
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nature of sensitive survey questions, which delve into personal or contentious topics,

can evoke resistance and reluctance among respondents.

To mitigate the adverse effects of dishonest responses on sensitive survey questions,

researchers have developed a repertoire of sampling techniques and methodological

approaches. These strategies aim to foster an environment conducive to candid and

forthcoming responses while respecting the privacy and comfort of the participants.

In addition to conventional approaches to parameter estimation for sensitive

variables, this report delves into the utilization of density estimation techniques, with

a particular focus on nonparametric methods such as kernel density estimation (KDE).

By adopting a novel perspective, researchers can glean insights into the underlying

probability distribution of sensitive variables, thereby enhancing their understanding

of respondent behaviors and attitudes. Through a nuanced examination of these

methodologies, this dissertation also discusses potential research topics that can be

explored in this field.

Over the years, a number of techniques have been proposed and refined to address

the inherent challenge of eliciting truthful responses from survey respondents while

safeguarding their privacy. This section offers a comprehensive review of several

prominent techniques that have been devised to navigate the delicate balance between

data integrity and respondent confidentiality.

A seminal contribution to this field was made by Warner (1965), who pioneered the

randomized response technique (RRT). This methodological innovation represents a

paradigm shift in survey research, offering a nuanced approach to protecting respondent

privacy while eliciting honest responses. The RRT functions by introducing controlled

noise into respondents’ original answers, effectively obfuscating individual responses

while still enabling the aggregation of data at a population level. This pre-determined
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noise serves as a protective barrier against potential biases stemming from concerns

related to social desirability or respondent discomfort, thereby creating an environment

conducive to candid and uninhibited information exchange. Since its inception,

the RRT has undergone iterative refinements and extensions through the efforts of

numerous scholars, a topic that will be examined and contextualized in Chapter 2 of

this dissertation.

Furthermore, the evolution of the RRT underscores the dynamic nature of survey

methodology, wherein innovative solutions continue to emerge in response to evolving

challenges and technological advancements. By elucidating the theoretical under-

pinnings and practical applications of methodologies such as the RRT, researchers

can enhance their understanding of the intricate interplay between data collection,

respondent behavior, and ethical considerations. Through rigorous exploration and

critical analysis, scholars are poised to contribute to the ongoing refinement and

expansion of survey methodologies, thereby fortifying the foundation upon which

empirical research is built.

Jones & Sigall (1971) introduced the concept of the bogus pipeline, a sophisticated

physiological monitoring device designed to accurately measure the intensity and

direction of emotional responses in respondents. Although in reality incapable of

such measurements, the device creates an illusion of precision, leading participants to

believe that their true emotional states cannot be concealed or manipulated as easily

as with traditional paper-and-pencil surveys. Central to the efficacy of the bogus

pipeline is the assumption that individuals are disinclined to challenge or deceive a

machine, thus fostering a heightened sense of accountability and authenticity in their

responses.

By leveraging this technique, researchers can circumvent the limitations of con-
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ventional survey methodologies, particularly in contexts where respondents may be

inclined to suppress or distort their true emotions. In experimental settings, the

implementation of the bogus pipeline has been shown to elicit more candid and

uninhibited expressions of negative emotions from participants who would typically

exercise restraint or inhibition. This phenomenon underscores the influence of per-

ceived accountability and the desire for authenticity in shaping human behavior within

research environments.

In the pursuit of enhancing survey methodology, Raghavarao & Federer (1979)

proposed the "black box" (BB) method as an innovative alternative to established

techniques such as the randomized response technique (RRT) pioneered by Warner

(1965) and its subsequent extensions by scholars like Greenberg et al. (1969), Warner

(1971), and Folsom et al. (1973). The BB method introduces a novel approach that

capitalizes on supplemented block, (v, k, r, b, λ) balanced incomplete block, and spring

balance weighing designs to elicit responses from survey participants in a manner that

ensures both data integrity and respondent anonymity.

Central to the BB method is the utilization of block totals, wherein respondents are

asked to provide a cumulative count of their responses across a set of pre-determined

questions, irrespective of the sensitivity of individual inquiries. Through carefully

constructed block designs, encompassing a range of questions and response options, the

BB method enables the derivation of estimated responses for each question included in

the survey. Importantly, however, this estimation process does not divulge individual

responses to specific questions, thereby preserving the anonymity of respondents and

safeguarding their privacy.

Given the pressing need to comprehensively explore the impact of social desirability

on responses garnered through self-report questionnaires and scales, the development
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and dissemination of concise, user-friendly assessment tools hold considerable promise

in facilitating researchers’ investigations into this pervasive response bias. In this

context, Reynolds (1982) advocates for the adoption of the 13-item form, specifically the

Marlow-Crowne scale Form C, as a pragmatic solution for assessing social desirability

response tendencies within research settings.

The recommendation of the 13-item short form by Reynolds (1982) reflects a

deliberate effort to streamline the assessment process without sacrificing the depth or

validity of the measurement. By condensing the original scale into a more compact

format, researchers are afforded a convenient and efficient means of gauging social

desirability biases, thereby expediting data collection and analysis procedures. More-

over, the accessibility and ease of administration associated with the 13-item short

form are poised to lower barriers to entry for researchers across disciplines, facilitating

broader consideration of social desirability response tendencies in both psychological

and sociological research contexts.

The central focus of the research in this dissertation revolves around the utilization

of RRT models as indispensable tools for investigating sensitive questions within

survey research. RRT models, distinguished by their innovative approach to preserv-

ing respondent confidentiality while eliciting candid responses, represent a versatile

framework that can be categorized along several dimensions to accommodate varying

research objectives and methodological considerations.

Firstly, RRT models can be classified based on the scope of their application in

surveys, encompassing three main categories:

• Full RRT: In this approach, all respondents are required to scramble their

responses to the survey questions (Warner 1965). By uniformly applying scram-
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bling techniques across the entire respondent pool, researchers aim to cultivate an

environment conducive to candid and uninhibited disclosure, thereby mitigating

concerns related to social desirability bias and respondent reluctance.

• Partial RRT: Unlike the comprehensive implementation of the full RRT, partial

RRT involves the selective utilization of randomized response techniques among

subsets of respondents within the survey sample MANGAT & SINGH (1990).

This nuanced approach allows researchers to tailor the application of RRT meth-

ods to specific subpopulations or research contexts where sensitivity levels may

vary, optimizing the balance between data integrity and respondent anonymity.

• Optional RRT: Optional RRT provides flexibility for respondents to decide

whether to scramble their responses or retain their original answers Gupta et al.

(2002). This empowerment of participants acknowledges individual preferences

and sensitivities, potentially enhancing the quality and authenticity of responses.

Notably, optional RRT has been shown to yield more accurate estimations

compared to other RRT variants, as it allows respondents to self-select into the

scrambling process based on their comfort levels with the sensitive nature of the

questions.

1.2 Density Estimation

Density estimation constitutes a fundamental task in statistical analysis, involving the

reconstruction of the underlying probability density function (PDF) from a given set of

data points. This endeavor holds significant relevance across various domains, ranging

from economics to epidemiology, where understanding the distribution of observed
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phenomena is paramount. At its core, density estimation endeavors to uncover the

underlying structure of data by discerning patterns and trends inherent within the

sample.

1.2.1 Parametric Density Estimation

Parametric methods represent a powerful approach to density estimation, founded

on the assumption that the underlying population distribution conforms to a specific

parametric form characterized by a finite set of parameters. These methodologies,

such as the method of moments (MOM) by Pearson (1894) and maximum likelihood

estimation (MLE), form the cornerstone of statistical inference by facilitating the

estimation of distribution parameters from observed data.

The method of moments (MOM) operates on the principle of equating population

moments, which are mathematical functions of the distribution parameters, with their

corresponding sample moments derived from the observed data. By aligning these

moments, MOM enables the estimation of distribution parameters through the Law

of Large Numbers, leveraging the convergence of sample moments to their population

counterparts as the sample size increases. This approach offers a straightforward

and intuitive means of parameter estimation, particularly in cases where analytical

solutions are readily attainable.

Conversely, maximum likelihood estimation (MLE) represents a more sophisticated

framework for parameter estimation, predicated on the principle of maximizing the

likelihood function given the observed sample data. In essence, MLE seeks to identify

the parameter values that render the observed data most probable under the assumed

parametric model. By optimizing the likelihood function, MLE provides estimates
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that are asymptotically unbiased, efficient, and consistent, making it a versatile and

widely-used tool in statistical modeling and inference.

The distinguishing feature of MLE lies in its emphasis on the likelihood of observ-

ing the sample data, rather than the moments of the underlying distribution. This

affords MLE greater flexibility in accommodating complex data structures and distri-

butional forms, while also enabling the incorporation of prior information through the

specification of appropriate likelihood functions. Despite its computational intensity

and reliance on iterative optimization techniques, MLE offers a robust and versatile

framework for parameter estimation across a wide range of statistical models and

applications.

In summary, parametric methods such as MOM and MLE offer powerful tools

for density estimation by leveraging the assumed parametric form of the underlying

distribution. While MOM provides a straightforward approach based on moment

matching, MLE offers a more flexible and sophisticated framework grounded in

likelihood maximization. By harnessing the principles of statistical inference, these

methodologies enable researchers to extract valuable insights from observed data and

make informed decisions in various scientific and practical contexts.

1.2.2 Non-parametric Density Estimation

While parametric methods offer a streamlined approach to density estimation by lever-

aging assumptions about the population distribution, non-parametric methods adopt a

more flexible stance by eschewing such assumptions altogether. Instead of constraining

the analysis to a predefined distributional form, non-parametric methods endeavor to

estimate the density across the entire sample space, thereby accommodating diverse
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data structures and distributions. Kernel density estimation (KDE) proposed by

Rosenblatt (1956) and Parzen (1962) emerges as a prominent non-parametric tech-

nique, renowned for its versatility and efficacy in capturing the underlying structure

of data.

KDE operates by assigning a kernel function to each data point, with the den-

sity estimate at any given point being determined by the weighted contributions of

neighboring data points. The kernel density estimate is given by

f̂h(x) =
1

n

n∑
i=1

1

h
K(

x−Xi

h
), (1.1)

where the kernel function K(x), typically symmetric and bounded, governs the spread

of influence exerted by each data point, while the bandwidth parameter h regulates

the smoothness of the resulting density estimate. As presented in (1.1), the KDE

estimate at a specific point is computed as the weighted average of kernel functions

centered around each data point, normalized by the sample size and bandwidth.

Importantly, KDE exhibits a number of advantages over parametric approaches,

particularly in scenarios characterized by small sample sizes or non-standard data

distributions. By leveraging the entirety of the sample data, KDE offers a robust

and flexible means of estimating the underlying density function, thereby facilitating

nuanced insights into the distributional characteristics of the observed phenomena.

Furthermore, as the sample size increases, the KDE approximation tends to converge

towards the true PDF under certain conditions, underscoring its efficacy in capturing

the underlying structure of data with increasing fidelity.
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1.3 Outline of the Dissertation

In this dissertation, the central objective revolves around advancing the methodol-

ogy of estimating the entire distribution of sensitive variables through KDE within

the framework of RRT models. This approach aims to provide a comprehensive

understanding of the underlying distribution, offering broader insights compared to

traditional point estimators.

Chapter 2 will offer a comprehensive literature review, consolidating current

research on RRT models, KDE, and their convergence within the realm of sensitive

survey research.

In Chapters 3 - 5, the research is organized into several key areas of investigation,

each delving into distinct aspects of KDE under various RRT models:

• Validation and Expansion of Theoretical Findings: Chapter 3 of the dissertation

will be dedicated to validating and expanding upon the theoretical founda-

tions laid by prior research concerning KDE under multiplicative RRT models.

Building upon existing literature, this Chapter seeks to validate the theoretical

framework of KDE in the context of multiplicative RRT, while exploring new

avenues for improvement and extension.

In continuation, Chapter 3 will also extend its focus to the application of KDE

under more commonly-used additive RRT models, which are widely regarded

as superior to multiplicative RRT models in certain contexts such as privacy

protection and ease of implementation.

• Incorporation of Auxiliary Information: Chapter 4 will delve into the integration

of auxiliary information into additive RRT models when utilizing KDE. By
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leveraging auxiliary data sources, this Chapter aims to enhance the accuracy

and efficiency of KDE-based estimators.

• Exploration of KDE under Optional RRT Models: Chapter 5 will explore the

application of KDE within the context of optional RRT models. This Chapter

will highlight the advantages of optionality, which generally leads to better

estimation outcomes compared to non-optionality in most cases.

Chapter 6 will offer a general discussion of the research introduced in this disserta-

tion. It will also summarize the most significant findings and some future directions

for the work presented in this dissertation.
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Chapter 2: Literature Review

As discussed in Section 1.1, the randomized response technique (RRT) was initially

introduced by Warner (1965) as a strategic response to mitigate the influence of social

desirability bias (SDB), particularly concerning binary sensitive variables. Over time,

this foundational RRT framework has undergone extensive refinement and expansion

by numerous researchers, evolving to accommodate the study of quantitative sensitive

variables through the incorporation of additive and/or multiplicative scrambling

mechanisms. These include Warner (1971), Pollock & Bek (1976), Eichhorn & Hayre

(1983), Gupta et al. (2002), Diana & Perri (2011), Blair et al. (2015), Gupta et al.

(2018), and Khalil et al. (2021). A considerable body of research has been dedicated

to estimating population parameters, such as the mean or variance, of distributions

governed by RRT models, by researchers including Gupta et al. (2010), Sousa et al.

(2010), Gupta et al. (2012), Khalil, Gupta & Hanif (2018), Mehta & Aggarwal (2018),

Gupta et al. (2020), and Narjis & Shabbir (2020). However, there remains a notable

gap in the literature concerning the direct estimation of the underlying distribution of

these sensitive variables.

In this Chapter, we aim to provide a comprehensive overview of prior research en-

deavors focusing on the estimation of population parameters, with a primary emphasis

on mean estimators, within the framework of various RRT models. These studies have
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played a pivotal role in elucidating the nuances of parameter estimation under RRT

methodologies, offering valuable insights into the challenges and opportunities inherent

in this domain. Additionally, we will synthesize the limited existing literature on the

estimation of density curves under RRT models, highlighting notable contributions

and potential avenues for further exploration.

By synthesizing and contextualizing prior research findings, this section seeks to lay

the groundwork for the subsequent discussion on the estimation of sensitive variable

distributions within RRT frameworks. Through a systematic examination of existing

methodologies and empirical findings, we aim to elucidate the current landscape of

knowledge in this field by pinpointing existing gaps and opportunities for future

research initiatives. Ultimately, this endeavor seeks to enhance our comprehension of

statistical inference within RRT models, thus fostering more resilient and well-informed

decision-making within the sphere of sensitive survey research.

2.1 Estimating Population Parameters of a Sensitive

Variable

2.1.1 Binary RRT Models

Warner’s Binary Model

In his seminal work, Warner (1965) introduced the Randomized Response Technique

(RRT) as a groundbreaking method aimed at enhancing response rates in surveys

addressing sensitive topics. Recognizing the inherent challenges associated with

eliciting truthful responses on sensitive matters, Warner devised a novel approach to

13



mitigate response bias while safeguarding respondent privacy. The essence of Warner’s

innovation lies in the utilization of randomization devices, which afford respondents a

degree of anonymity and confidentiality in their responses.

At the core of Warner’s binary model is the strategic implementation of random

prompts, whereby respondents are randomly directed to answer sensitive questions

either directly or indirectly (see Figure 2.1). This randomized prompting mechanism

serves to obscure the true nature of the questions being answered, thereby preserving

respondent privacy and confidentiality. By randomizing the prompt process, the

investigator remains unaware of the specific question posed to each respondent, ensuring

that only the final response (yes/no) is known.

Central to Warner’s design is the pre-determined proportion of respondents

prompted to answer the direct or the indirect question, a crucial element in un-

raveling the overall survey results. By carefully controlling the ratio of respondents

subjected to each prompting condition, Warner effectively balances the trade-off

between privacy protection and data accuracy. This pre-determined proportion serves

as a key parameter in the estimation process, enabling researchers to derive unbiased

estimates of the prevalence of sensitive traits within the population.

Let

π = Proportion of respondents with the sensitive trait

py = Probability of a "yes" response

p = Probability of respondent answering the sensitive question directly, p ̸= 1
2

1− p = Probability of respondent answering the sensitive question indirectly

n = Sample size

Then

py = pπ + (1− p)(1− π). (2.1)
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Figure 2.1. Warner’s Binary RRT Model

This leads to an estimate of π (defined for p ̸= 1
2
) which is given as

π̂ =
p̂y − (1− p)

2p− 1
. (2.2)

The variance of the above estimator under simple random sampling with replace-

ment (SRSWR) is

V ar(π̂) =
π(1− π)

n
+

p(1− p)

n(2p− 1)2
. (2.3)

In essence, Warner’s pioneering work on RRT revolutionized survey methodology

by introducing a nuanced approach to addressing response bias and safeguarding

respondent privacy. By harnessing the power of randomization and pre-determined

proportions, Warner’s binary model offers a robust framework for eliciting truthful

responses on sensitive topics, thereby advancing the integrity and reliability of survey

research in sensitive domains.
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Binary Unrelated-Question Model

Expanding upon the groundwork laid by Warner (1965), Greenberg et al. (1969)

introduced an innovative extension to the unrelated-question design within the frame-

work of RRT. Departing from the conventional approach of employing two relevant

questions to partition the sample, Greenberg proposed a novel method that divided

the sample into two distinct groups differently.

In Greenberg’s design (Figure 2.2), respondents were presented with two options,

one of which pertained to a non-sensitive, innocuous attribute unrelated to the sensitive

topic under investigation. By introducing this unrelated attribute, Greenberg sought

to bolster respondents’ confidence in the anonymity afforded by the technique, thereby

fostering a greater willingness to provide truthful responses. The rationale behind this

approach lies in the notion that by coupling the sensitive question with an innocuous

alternative, respondents perceive a heightened level of privacy protection, which in

turn encourages more honest and forthcoming responses.

Figure 2.2. Binary Unrelated-Question Model
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Let

πA = Proportion of respondents with the sensitive trait A

πY = Proportion of respondents with the unrelated trait Y

λ = Probability of a "yes" response

p = Probability of respondent answering the sensitive question directly

1− p = Probability of respondent answering the unrelated question

Then

λ = pπA + (1− p)(1− πY ). (2.4)

This leads to an estimate of πA which is given as

π̂A =
λ̂− (1− p)πY

p
. (2.5)

with the variance, under SRSWR, given by

V ar(π̂A) =
λ(1− λ)

np2
. (2.6)

This unrelated-question design represents a strategic refinement aimed at enhancing

the efficacy of the RRT in eliciting accurate and reliable data on sensitive topics. By

leveraging the psychological principle of perceived anonymity, Greenberg’s approach

capitalizes on respondents’ perceptions of privacy and confidentiality to engender

greater disclosure and candor in their responses.

In essence, Greenberg’s contribution underscores the importance of psychological

factors in shaping respondent behavior within the context of survey research. By

incorporating elements that bolster respondents’ confidence in the confidentiality of

their responses, Greenberg’s extension to the unrelated-question design represents a
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significant advancement in the methodology of RRT, offering a nuanced approach to

mitigating response bias and enhancing the veracity of survey data.

Binary Unrelated-Question Model With Untruthfulness

Both of the RRT models discussed above operate under the assumption of complete

respondent honesty. However, in real-world scenarios, this assumption may not always

hold true, leading to potential biases in the estimation process. Situations where

respondents may be inclined to provide untruthful responses can arise, particularly

in the context of highly sensitive questions or when adequate respondent training is

lacking.

To address the challenge of untruthful responses, Young et al. (2019) proposed

a binary uncorrelated-question model as an additional safeguard within the RRT

framework. This innovative model introduces an extra layer of precaution to mitigate

the impact of respondent dishonesty on the estimation of sensitive traits.

The binary uncorrelated-question model, as developed by Young et al. (2019),

entails a two-question design aimed at discerning and redirecting potentially untruthful

responses. In the first question (Figure 2.3), respondents are queried about their trust

in the randomization process, drawing upon the methodology outlined by Greenberg

et al. (1969). This initial inquiry serves as a precursor to gauge respondents’ willingness

to engage honestly in the survey process.

Subsequently, in the second question (Figure 2.4), respondents are presented with

a choice: if they express trust in the randomization process, they are directed to

respond using the established Greenberg et al. (1969) model for sensitive questions.

Conversely, if respondents indicate a lack of trust in the randomization process, they

are redirected to answer an unrelated question, thereby circumventing the sensitive
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inquiry altogether.

This two-question design effectively leverages respondent trust as a determinant

for the appropriate course of action in the survey process. By offering respondents an

alternative response pathway in cases of mistrust or potential dishonesty, the binary

uncorrelated-question model introduces a strategic mechanism for safeguarding the

integrity of survey data.

Figure 2.3. Binary Unrelated-Question Model With Untruthfulness (Question 1)

Let

πa = Proportion of respondents who trust the model

πx = Proportion of respondents with the sensitive trait

πy = Proportion of respondents with some unrelated trait

πb = Proportion of respondents with some other unrelated trait

pyi = Probability of a "yes" response to Question i (i = 1, 2)

pb = Probability of respondent answering the question about trust in Question 1

p = Probability of respondent answering the sensitive question directly in Question

2
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Figure 2.4. Binary Unrelated-Question Model With Untruthfulness (Question 2)

Then

py1 = pbπa + (1− pb)πb, (2.7)

py2 = πa[pπx + (1− p)πy] + (1− πa)πy. (2.8)

This leads to

π̂a =
p̂y1 − (1− pb)πb

pb
and π̂x =

p̂y2 − πy(1− ˆπap)

ˆπap
(2.9)

with the variances given by

V ar(π̂a) =
py1(1− py1)

npb
and V ar(π̂x

∗) =
py2(1− py2)

n(πap)2
+

py1(1− py1)p
2(πy − py2)

2

np2b(πap)4
,

(2.10)

where π̂x
∗ is an unbiased estimator of πx up to first-order approximation.

In essence, Young et al. (2019)’s innovative approach represents a proactive measure

to address the complexities inherent in survey research, particularly in contexts where
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respondent honesty may be compromised. Through the integration of a binary

uncorrelated-question model within the RRT framework, researchers gain a valuable

tool for mitigating the impact of respondent bias on the estimation of sensitive traits,

thereby enhancing the reliability and validity of survey findings.

2.1.2 Quantitative RRT Models

In addition to binary RRT models, there exists another significant category known

as quantitative RRT models, based on the type of questions posed and the potential

responses elicited. Unlike binary models that only accommodate yes/no responses,

quantitative RRT models expand the spectrum by allowing respondents to provide

numerical values as their answers. This broader range of potential responses introduces

a greater degree of flexibility in the scrambling process, as the responses can vary

along a continuous scale rather than being limited to a binary choice.

The exploration of quantitative RRT models has received considerable attention

in the research community over the past decades, with numerous studies dedicated

to understanding their intricacies and applications. These studies delve into various

aspects of quantitative RRT models, shedding light on their theoretical foundations,

practical implementation, and implications for survey research methodologies. Below,

we discuss some noteworthy studies that have contributed to the advancement of

quantitative RRT models.

Greenberg’s Quantitative Model

This quantitative model introduced by Greenberg et al. (1971) builds upon the

foundation laid by the unrelated-question model pioneered by Greenberg et al. (1969)
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for binary data. In essence, it represents an extension and refinement of the earlier

model, catering to the nuanced complexities inherent in survey research on sensitive

topics.

In the framework proposed by Greenberg et al. (1971), a pre-determined fraction

of respondents is tasked with answering the sensitive question, while the remaining

respondents are presented with an unrelated query. This strategic allocation of

questions serves to diversify the survey instrument, mitigating potential biases and

enhancing the reliability of responses.

The rationale behind this approach lies in its capacity to create a balanced

survey design that safeguards respondent privacy while eliciting meaningful data. By

incorporating both sensitive and unrelated questions, the model seeks to minimize the

perceived intrusiveness of the survey, thereby fostering a more conducive environment

for candid responses.

Let

Y = Response to the sensitive question

B = Response to the unrelated question

p = Probability of respondent answering the sensitive question

1− p = Probability of respondent answering the unrelated question

µY = Population mean of the sensitive variable

µB = Population mean of the unrelated variable

n = Sample size

Z = Reported response, where

Z =


Y with probability p

B with probability 1− p

(2.11)
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Then

Z̄ = E(Z) = pµY + (1− p)µB. (2.12)

This leads to

ˆµY,Greenberg =
Z̄ − (1− p)µB

p
. (2.13)

with the variance, under SRSWR, given by

V ar( ˆµY,Greenberg) =
σ2
Z

np2
. (2.14)

Warner’s Quantitative Model

In contrast to the quantitative model proposed by Greenberg et al. (1971), which

extends the binary model, Warner (1971) introduced a novel approach that involves

incorporating a random number drawn from a known distribution to the sensitive

value. This pioneering concept marked a significant departure from conventional

survey methodologies, offering a fresh perspective on addressing response bias in

sensitive surveys.

The innovation put forth by Warner (1971) received considerable attention within

the research community, prompting further exploration and refinement of the additive

RRT model. Building upon Warner’s foundational work, Pollock & Bek (1976) delved

deeper into the additive RRT model, elucidating its underlying principles and exploring

its implications for survey research. While Pollock’s focus primarily centered on the

additive RRT model, brief mention was made of the multiplicative RRT models,

hinting at the broader landscape of RRT methodologies.

Expanding upon the groundwork laid by Warner (1971) and Pollock & Bek (1976),

Eichhorn & Hayre (1983) continued the investigation into the multiplicative RRT model,
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further advancing our understanding of its intricacies and applications. Eichhorn’s

research contributed valuable insights into the theoretical underpinnings and practical

considerations associated with multiplicative RRT models, shedding light on their

potential utility in sensitive survey research.

Collectively, the contributions of Warner (1971), Pollock & Bek (1976), and Eich-

horn & Hayre (1983) have moved the development and refinement of RRT methodolo-

gies further, enriching the methodological toolkit available to researchers in sensitive

survey domains. By exploring alternative approaches to question design and response

elicitation, these scholars have paved the way for more nuanced and effective strategies

for collecting data on sensitive topics.

Additive Model

Pollock & Bek (1976) further developed the concept of additive scrambling within

quantitative RRT models. In the additive model proposed by Pollock & Bek (1976),

respondents are tasked with summing their response to a sensitive question with a

randomly generated value drawn from a known distribution.

Let

Y = Response to the sensitive question

S = Scrambling variable (independent of Y )

µY = Population mean of the sensitive variable

µS = Population mean of the scrambling variable

σ2
Y = Variance of the sensitive variable

σ2
S = Variance of the scrambling variable

Z = Reported response, where Z = Y + S
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Then

E(Z) = E(Y ) + E(S) = µY + µS. (2.15)

An unbiased estimator of mean of sensitive variable is given by

ˆµY,Warner = Z̄ − µS. (2.16)

The variance of this estimator, under SRSWR, is given by

V ar( ˆµY,Warner) = V ar(Z̄) =
σ2
Z

n
=

σ2
Y

n
+

σ2
S

n
. (2.17)

By incorporating random additive components into respondents’ answers, this

model introduces a level of noise that obscures the true nature of the sensitive question,

thus safeguarding respondent privacy while preserving the integrity of the survey data.

Multiplicative Model

Eichhorn & Hayre (1983) carried forward the investigations initiated by Pollock &

Bek (1976), building upon their groundwork to introduce a novel quantitative RRT

model centered on multiplicative scrambling. In this innovative model, respondents

are instructed to multiply their true response to a sensitive question by a randomly

generated number drawn from a pre-defined distribution. This multiplication process

injects a degree of variability into the respondent’s answer, thereby enhancing the

confidentiality and privacy of their responses.

Let

Y = Response to the sensitive question

S = Scrambling variable (independent of X)
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µY = Population mean of the sensitive variable

θ = Population mean of the scrambling variable

σ2
Y = Variance of the sensitive variable

γ2 = Variance of the scrambling variable

Z = Reported response, where Z = Y S

An unbiased estimator of mean of sensitive variable is given by

ˆµY,multi =
Z̄

θ
(2.18)

with the variance, under SRSWR, given by

V ar(µ̂Y,multi) =
σ2 + (γ/θ)2E(Y 2)

n
. (2.19)

Eichhorn’s exploration of the multiplicative RRT model represents a notable

advancement in survey methodology, offering a refined approach to mitigating response

bias in sensitive surveys. By incorporating multiplicative scrambling techniques, this

model introduces a layer of randomness that obfuscates the individual’s true answer,

thereby safeguarding respondent privacy while preserving the integrity of the survey

data.

Optional Multiplicative Model

In the RRT models explored thus far, there exists an implicit assumption that all

respondents perceive the posed question as sensitive. However, the reality may differ,

as a subset of respondents might not perceive the question as sensitive and may be

inclined to provide their true responses without the need for scrambling. This nuanced
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scenario prompted Gupta et al. (2002) to introduce the concept of optionality into

the multiplicative RRT model proposed by Eichhorn & Hayre (1983).

Within this innovative model, respondents are afforded the flexibility to choose

between providing a true response or opting for a scrambled response to certain

questions. This introduction of choice grants respondents agency over their responses,

allowing them to exercise discretion based on their individual perceptions of question

sensitivity. Importantly, the investigator remains unaware of the type of response

provided by each respondent, preserving respondent confidentiality and ensuring the

integrity of the survey data.

Let

Y = Response to the sensitive question

S = Scrambling variable

µY = Population mean of the sensitive variable

µS = Population mean of the scrambling variable

σ2
S = Variance of the scrambling variable

W = Sensitivity level (Proportion of people who find the question sensitive)

Z = Reported response, where

Z =


Y S with probability W

Y with probability 1−W

(2.20)

Let µS = 1, then E(Z) = µY , and one can obtain an estimate of µY , given by

µ̂Y = Z̄ (2.21)
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with the variance, under SRSWR, given by

V ar(µ̂Y ) =
σ2
Y +Wσ2

S(σ
2
Y + µ2

Y )

n
. (2.22)

An estimator of W is given by

Ŵ =
1
n
Σn

i=1log(Zi)− log( 1
n
Σn

i=1Zi)

E[log(S)]
. (2.23)

The incorporation of optionality into the multiplicative RRT model represents a

significant advancement in survey methodology, offering a refined approach to address-

ing variability in respondent perceptions of question sensitivity. By acknowledging and

accommodating individual differences in sensitivity perception, this model enhances

the accuracy and reliability of the survey results, thereby enriching the overall quality

of data collected.

Furthermore, the optional model enables the estimation of the sensitivity level

associated with each question, providing valuable insights into the distribution of

sensitivity perceptions within the surveyed population. This estimation process

contributes to a deeper understanding of respondent behavior and attitudes, facilitating

more nuanced analyses and interpretations of survey findings.

In essence, the introduction of optionality into the multiplicative RRT model reflects

a commitment to methodological innovation and responsiveness to the complexities of

real-world survey settings. By empowering respondents with choice and discretion,

this model promotes transparency, trust, and cooperation, fostering a more conducive

environment for candid responses and meaningful data collection.
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Two-Stage Optional Additive Model

Considering that a non-zero scrambled response within multiplicative RRT models

often signifies the existence of sensitive behavior to some degree, additive RRT models

emerge as a preferable choice in numerous instances. The rationale behind this

preference lies in the enhanced privacy protection afforded by additive models, which

effectively obscure the true nature of respondents’ sensitive behaviors while ensuring

the integrity of the survey data. Moreover, additive models offer a more user-friendly

approach, particularly for survey participants with limited mathematical proficiency,

as they entail simpler computational procedures and intuitive response mechanisms.

In recognition of the practical advantages offered by additive RRT models, Gupta

et al. (2010) proposed an optional additive RRT model to address scenarios where

respondents may benefit from additional privacy safeguards or encounter challenges in

navigating the survey process due to mathematical constraints. By offering respondents

the flexibility to opt for either their true responses or scrambled responses, the model

empowers individuals to exercise informed choices regarding their participation in

sensitive surveys.

Furthermore, the optional additive RRT model employs a split-sample methodology

to concurrently estimate the sensitivity level without approximations. This approach

ensures robust and precise estimation, thereby enhancing the reliability and accuracy of

survey findings. By integrating advanced statistical techniques with user-centric design

principles, Gupta’s model represents a significant advancement in survey methodology,

offering researchers a comprehensive toolkit for navigating the intricacies of sensitive

data collection with integrity and confidence.
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Let

Y = Response to the sensitive question

Si = Scrambling variable used for the ith sub-sample (i = 1, 2)

µY = Population mean of the sensitive variable

θi = Population mean of the scrambling variable Si (i = 1, 2, θ1 ̸= θ2)

σ2
Si

= Variance of the scrambling variable Si (i = 1, 2)

ni = Size of the ith sub-sample (i = 1, 2)

W = Sensitivity level (Proportion of people who find the question sensitive)

Z = Reported response, where

Zi =


Y + Si with probability W

Y with probability 1−W

, i = 1, 2 (2.24)

Then the mean for Zi is given by

E(Zi) = µY + θiW, (2.25)

where E(Si) = θi.

This leads to

µ̂Y =
θ1Z̄2 − θ2Z̄1

θ1 − θ2
(2.26)

and

Ŵ =
Z̄1 − Z̄2

θ1 − θ2
. (2.27)
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with the variances, under SRSWR, given by

V ar(µ̂Y ) =
1

(θ2 − θ1)2

[
θ22
σ2
Z1

n1

+ θ21
σ2
Z2

n2

]
(2.28)

and

V ar(Ŵ ) =
1

(θ2 − θ1)2

[
σ2
Z1

n1

+
σ2
Z2

n2

]
, (2.29)

where σ2
Zi

= σ2
Y + σ2

Si
W + θ2iW (1−W ).

Linear Combination Model

Diana & Perri (2011) undertook a comprehensive review and comparative analysis of

the diverse quantitative RRT models documented in existing literature. Drawing upon

a wide array of research findings and methodologies, their review sought to elucidate

the strengths, weaknesses, and unique characteristics of each model, thereby providing

valuable insights into the landscape of quantitative RRT methodologies.

Building upon their extensive review, Diana & Perri (2011) proposed a unified

framework for conducting surveys on sensitive topics with quantitative responses. This

general model represents a synthesis of the most effective strategies and techniques

identified through their comparative analysis, offering researchers a versatile and

adaptable approach to addressing response bias and safeguarding respondent privacy.

A notable feature of the model proposed by Diana & Perri (2011) is the integration

of both additive and multiplicative scrambling techniques. By combining these two

approaches, the model aims to optimize the balance between privacy protection and

survey efficiency. Additive scrambling introduces variability into respondents’ answers

by adding a random value to their true response, while multiplicative scrambling scales

the response by a random factor, further obscuring the true nature of the sensitive
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question.

The rationale behind this combined approach lies in its capacity to offer a compre-

hensive and robust solution to the challenges inherent in survey research on sensitive

topics. By leveraging the complementary strengths of additive and multiplicative

scrambling, the proposed model seeks to maximize respondent confidentiality while

minimizing the impact on data accuracy and survey efficiency.

Let

Y = Response to the sensitive question

S = Additive scrambling variable

D = Multiplicative scrambling variable

µY = Population mean of the sensitive variable

µS = Population mean of the scrambling variable S

µD = Population mean of the scrambling variable D

σ2
Y = Variance of the sensitive variable

σ2
S = Variance of the scrambling variable S

σ2
D = Variance of the scrambling variable D

Z = Reported response, where Z = DY + S

Also, Y, S, and D are mutually independent.

Let µS = 0 and µD = 1, then E(Z) = µY , and one can obtain an estimate of µY ,

given by

µ̂Y = Z̄ (2.30)

with the variance, under SRSWR, given by

V ar(µ̂Y ) =
σ2
D(µ

2
Y + σ2

Y ) + σ2
Y + σ2

S

n
. (2.31)
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In essence, the work of Diana & Perri (2011) represents a significant contribution to

the field of survey methodology, offering researchers a practical and effective framework

for conducting surveys on sensitive topics with quantitative responses. Through their

review, comparative analysis, and proposal of a general model, Diana & Perri (2011)

have advanced our understanding of quantitative RRT methodologies and provided

valuable guidance for researchers seeking to navigate the complexities of survey research

in sensitive domains.

2.1.3 Use of Auxiliary Information Under Quantitative RRT

Models

In survey sampling, auxiliary information serves as a valuable tool for refining the

accuracy of estimators used to infer population parameters from finite samples. When

auxiliary variables exhibit a strong correlation with the variable of interest, leveraging

this additional information can lead to more precise estimates of population parameters.

Consequently, in scenarios where data on a non-sensitive variable correlates closely

with a sensitive variable, integrating auxiliary information into quantitative RRT

models can yield improved estimations.

Numerous studies have explored the integration of auxiliary information into

quantitative RRT models, seeking to enhance the robustness and accuracy of survey

estimates. By harnessing auxiliary variables that share a high degree of correlation

with sensitive traits, researchers aim to bolster the reliability of RRT-based estimators

and mitigate potential biases inherent in survey data.

These investigations delve into the theoretical foundations and practical implica-

tions of incorporating auxiliary information into quantitative RRT models, shedding
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light on the efficacy and limitations of this approach. By examining the interaction

between auxiliary variables and sensitive traits, researchers endeavor to identify opti-

mal strategies for integrating auxiliary information into RRT methodologies, thereby

maximizing the precision and validity of survey estimates.

The body of research surrounding quantitative RRT models in the presence of

auxiliary information underscores the importance of methodological innovation and

empirical inquiry in survey sampling. Through systematic analysis and empirical

validation, scholars strive to refine existing methodologies and develop novel approaches

that enhance the accuracy and reliability of survey estimates. By elucidating the

role of auxiliary information in quantitative RRT models, these studies contribute

to the advancement of survey methodology and the attainment of more robust and

meaningful insights from survey data. Some of these studies are discussed below.

Ratio Estimator

Sousa et al. (2010) introduced a ratio estimator within the framework of the additive

RRT model. Their approach involved estimating the mean of the sensitive variable

through an enhanced estimator, utilizing a non-sensitive auxiliary variable under a

non-optional RRT model. In their model, Y represents the sensitive study variable,

which cannot be directly observed, while X stands for the non-sensitive auxiliary

variable, positively correlated with Y . Additionally, S denotes a scrambling variable

independent of both X and Y , with a mean of µS = 0 and variance of σ2
S. Let µX be

the known true population mean and σ2
X be the known variance of the non-sensitive

auxiliary variable X. Let µY be the unknown true population mean and σ2
Y be the

unknown variance of the sensitive study variable Y . For an additive RRT model, the

respondent is asked to provide a scrambled response for Y given by Z = Y + S.
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Assuming E(S) = 0, we get E(Z) = E(Y ) and the unbiased ordinary estimator

under this RRT model is given by,

µ0 = z̄. (2.32)

The mean squared error (MSE) of the above basic estimator, under simple random

sampling without replacement (SRSWOR), is given by

MSE(µ̂0) =
1− f

n
(σ2

Y + σ2
S), (2.33)

where f = n
N

and N and n are the size of the finite population and the simple random

sample drawn from it, respectively.

Based on this basic mean estimator, Sousa et al. (2010) proposed the ratio estimator

for the mean of the sensitive variable Y , which is given by

µ̂R = z̄
(µX

x̄

)
, (2.34)

where z̄ is the sample mean of reported responses and x̄ is the sample mean of the

auxiliary variable.

The MSE of the above ratio estimator, under SRSWOR, is given by

MSE(µ̂R) ≈
1− f

n
µ2
z(C

2
x + C2

z − 2ρzxCzCx), (2.35)

where f = n
N

, Cz = Sz

µz
and Cx = Sx

µx
are the coefficients of variation of Z and X,

respectively, and ρzx = Szx

SzSx
is the coefficient of correlation between Z and X.

Sousa et al. (2010) also compared the efficiency of the ratio estimator, in terms

35



of its MSE in (2.35), with the MSE of the basic mean estimator from (2.33), it was

established that the estimator proposed by Sousa et al. (2010) is more efficient.

It can be observed that MSE(µ̂R) < MSE(µ̂0) if

ρ >
1

2

Cx

Cy

√
1 +

σ2
S

σ2
Y

. (2.36)

Regression Estimator

Gupta et al. (2012) proposed a regression estimator based on a non-optional RRT

model and later extended it to a more general version. The basic regression estimator

is given by

µ̂Reg = z̄ + β̂zx(µX − x̄), (2.37)

where β̂zx is the sample regression coefficient between Z and X, and Z = Y + S is

the scrambled response on Y .

The MSE of the above estimator, under SRSWOR, is given by

MSE(µ̂Reg) ≈
1− f

n
S2
y

[(
1 +

S2
s

S2
y

)
− ρ2yx

]
. (2.38)

It can be verified that:

• MSE(µ̂Reg) < MSE(µ̂0) if

ρ2yx > 0; (2.39)

• MSE(µ̂Reg) < MSE(µ̂R) if

(Cx − Czρzx)
2 > 0. (2.40)
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These conditions will always hold true indicating that up to first order of approxi-

mation, the regression estimator µ̂Reg outperforms both the ordinary mean estimator

µ̂0 and the ratio estimator µ̂R.

Gupta et al. (2014) further improved the above estimators (i.e. ratio estimator

and basic regression estimator) by using optional RRT methodology.

Regression-Cum-Ratio Estimator

As mentioned previously, Gupta et al. (2012) later proposed a regression-cum-ratio

estimator that combines both the regression estimator and ratio estimator. This

estimator is given by

µ̂RCR = [k1z̄ + k2(µX − x̄)]
(µX

x̄

)
, (2.41)

where k1 and k2 are constants.

The optimum values of k1 and k2 are given by

k1,opt =
1− 1−f

n
C2

x

1− 1−f
n

(
C2

x − C2
z (1− ρ2zx)

) (2.42)

and

k2,opt =
µY

µX

(
1 + k1,opt

(ρzxCz

Cx

− 2
))

. (2.43)

Substituting the optimum values of k1 and k2 in (2.42) and (2.43), we get

MSE(µ̂RCR)min ≈
1−f
n
Ȳ 2C2

z (1− ρ2zx)(1−
1−f
n
C2

x)
1−f
n
C2

z (1− ρ2zx) + (1− 1−f
n
C2

x)
(2.44)
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It can be verified that

• MSE(µ̂RCR)min < MSE(µ̂0) if

1− f

n
(S2

y + S2
s ) > 0; (2.45)

• MSE(µ̂RCR)min < MSE(µ̂R) if

(Cx

Cz

− ρzx
)2

+
1−f
n
C2

z (1− ρ2zx)
2

1−f
n
C2

z (1− ρ2zx) + (1− 1−f
n
C2

x)
> 0. (2.46)

• MSE(µ̂RCR)min < MSE(µ̂Reg) if

1− f

n
C2

z (1− ρ2zx) > 0. (2.47)

Based on these conditions, it can be inferred that the generalized regression-cum-

ratio estimator µ̂RCR outperforms not only the basic mean estimator µ̂0 and the

regression estimator µ̂Reg but also the ratio estimator µ̂R when 1−f
n
C2

x < 1.

Generalized Estimator

Khalil, Noor-ul Amin & Hanif (2018) introduced a generalized mean estimator for

sensitive variables with a robust approach that can effectively account for measurement

errors on both the reported response Z and the non-sensitive auxiliary variable X

which is positively correlated with the sensitive study variable Y . This generalized

estimator is given by

µ̂Gen = [z̄ + k(X̄ − x̄)]

[
aX̄ + b

λ(ax̄+ b) + (1− λ)(aX̄ + b)

]v
, (2.48)
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where k and v are suitable constants and λ is an unknown constant determined through

optimality considerations.

In (2.48), assuming a(̸= 0) and b as known parameters of the auxiliary variable X,

diverse estimators can be derived by employing different values of these parameters.

These parameters include the coefficient of variation (Cx), population correlation

coefficient (ρzx), coefficient of skewness (β1(x)), etc. Moreover, setting v = 1 leads to

various ratio estimators, while v = −1 results in product estimators. This inherent

flexibility of the generalized mean estimator enriches the applicability of the estimation

approach.

Let the measurement errors associated with the reported response Z and the non-

sensitive auxiliary variable X respectively be given by Ui = zi − Zi and Vi = xi −Xi.

These measurement errors are assumed to be random and uncorrelated with mean

zero and variances S2
U and S2

V , respectively.

With the optimum value of λ,

MSE(µ̂Gen)min ≈ θ

(
S2
Z + S2

U − ρ2ZXS
2
ZS

2
X

S2
X + S2

V

)
. (2.49)

It can be verified that when measurement errors are present,

• MSE(µ̂Gen)min < MSE∗(µ̂0) if

ρ2ZX

S2
ZS

2
X

S2
X + S2

V

> 0; (2.50)

• MSE(µ̂Gen)min < MSE∗(µ̂R) if

(
αZ̄

αX̄ + β

√
S2
X + S2

V − ρZXSZSX√
S2
X + S2

V

)2

> 0. (2.51)
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2.2 Estimating the Distribution of a Study Variable

As discussed in Section 1.2, density estimation emerges as a valuable tool in the

analysis of sensitive variables. By capturing the intricate nuances of the variable of

interest, density estimation furnishes researchers with a comprehensive understanding

of its underlying distribution through the depiction of its potential density curve.

This broader information encompasses not only the central tendency but also the

variability and shape of the distribution, offering insights that extend beyond mere

point estimates.

Furthermore, the utility of density estimation extends beyond descriptive purposes,

facilitating the subsequent inference of population parameters associated with the

variable under study. Through the estimated density curve, researchers can derive a

plethora of population characteristics, including moments, quantiles, and other key

descriptors. This wealth of information enables a deeper exploration of the variable’s

properties and empowers researchers to make informed decisions and draw meaningful

conclusions from the data.

In essence, density estimation serves as a cornerstone in the analytical toolkit of

researchers, providing a multifaceted lens through which to examine sensitive variables.

By illuminating the distributional characteristics of the variable of interest, density

estimation fosters a deeper understanding of its behavior and informs subsequent

statistical analyses and inferential procedures.
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2.2.1 Density Estimation in the Presence of Auxiliary Infor-

mation

The integration of auxiliary information has emerged as a promising avenue for

enhancing the accuracy and precision of density estimators. While existing research

has yet to specifically address the estimation of density curves for sensitive variables

in conjunction with auxiliary information, studies have explored the utilization of

auxiliary data to bolster density estimation for non-sensitive variables. These include

Rao et al. (1990), Dubnicka (2009), and Mostafa & Ahmad (2019).

In these investigations, researchers have examined the efficacy of incorporating

auxiliary information into the density estimation process for general non-sensitive

variables. By leveraging auxiliary data sources that provide additional insights into

the underlying distribution, researchers have sought to refine and optimize density

estimators, thereby improving their performance and reliability.

The rationale behind incorporating auxiliary information lies in its potential to

complement and enrich the information gleaned from the primary dataset. Auxiliary

data, which may encompass demographic characteristics, contextual variables, or

external covariates, offer valuable insights into the underlying structure of the data,

enhancing the precision and robustness of density estimators.

While the specific application of auxiliary information to the estimation of density

curves for sensitive variables remains unexplored in the existing literature, the principles

and methodologies established in studies on non-sensitive variables offer valuable

insights and potential avenues for future research. By adapting and extending existing

techniques for incorporating auxiliary information, researchers may develop innovative

approaches tailored to the unique challenges and considerations inherent in estimating
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density curves for sensitive variables.

Estimation of Population Distribution Functions and Quantiles Using

Auxiliary Information

Rao et al. (1990) explores the efficiency and accuracy of various estimators for popula-

tion distribution functions and quantiles under different sampling designs, focusing on

both design-based and model-based approaches. Initially, it highlights the limitations

of customary design-based estimators compared to model-based ones, particularly in

utilizing auxiliary population information. The study then introduces design-based

ratio and difference estimators, contrasting them with a model-based method proposed

by Chambers & Dunstan (1986). Through simulation studies using populations of sugar

cane farms and synthetic datasets, the paper demonstrates the advantages of design-

based estimators over model-based ones, especially under model mis-specifications

and for large samples.

The results reveal that design-based estimators, particularly the difference es-

timators, exhibit superior performance in terms of relative mean errors and root

mean square errors compared to model-based estimators under various scenarios. The

study emphasizes the importance of incorporating auxiliary information in estimating

population distribution functions and quantiles, showing that design-based estimators

offer greater robustness and efficiency, especially for larger sample sizes. Additionally,

the article discusses variance estimation techniques for the proposed estimators and

highlights the potential for further extensions to handle more complex sampling designs

and multiple auxiliary variables. Overall, the findings underscore the significance of

adopting appropriate estimation methods that leverage auxiliary information effec-

tively to enhance the accuracy and efficiency of population distribution function and
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quantile estimates.

Kernel Density Estimation With Missing Data Using Auxiliary Information

Dubnicka (2009) proposed a method for estimating the density of a response variable,

possibly missing observations at random, with available auxiliary data. The kernel

density estimator is based on the Horvitz-Thompson estimator, assuming the missing-

ness of the response variable at random. Simulation studies demonstrated the superior

performance of the proposed density estimator in terms of integrated squared error

(ISE) compared to the complete-case density estimator. Moreover, it performed nearly

as well as the density estimator utilizing the full dataset, as if no values were missing.

The authors preferred the modified Horvitz-Thompson-type kernel density esti-

mator initially by Horvitz & Thompson (1952) with Nadaraya-Watson estimates by

(Nadaraya 1964) and Watson (1964) of propensity scores over other Horvitz-Thompson-

type density estimators due to its nature as a density function and the relative ease

of obtaining Nadaraya-Watson probability estimates. Additionally, the Sheather-

Jones bandwidth selection procedure based on observed responses exhibited the best

performance across various true densities.

In practical applications, the modified Horvitz-Thompson-type kernel density esti-

mator effectively adjusted the complete-case kernel density estimator to accommodate

scenarios where HIV patients with low CD4 counts are more likely to miss visits later

in the study due to declining health. This suggests that when auxiliary variables highly

correlated with the response are available, this modified kernel density estimator may

be suitable even when the response variable is not missing at random.

Areas for further investigation include bandwidth selection for the Nadaraya-

Watson estimator of propensity scores and developing methods to test for the equality
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of densities. Future research aims to extend methods for estimating the conditional

density of the response variable given auxiliary variables when responses are not

completely observed. This includes testing for the equality of densities to determine

differences among treatment groups and extending improved conditional density

estimators to scenarios where the response variable is missing at random, along with

addressing issues of bandwidth selection.

Model-Assisted Kernel Density Estimation in the Presence of Auxiliary

Information

Suppose the non-sensitive study variable Y is observed in s units and is predictable in

s̄ units in a finite population U . Suppose the functional relationship between Y and

an auxiliary variable X can be described by a parametric regression model as follows:

yi = µ(xi,β) + σ(xi)ϵi; i ∈ U, (2.52)

where

• µ(·, ·) - known mean function;

• σ(·, ·) - known strictly positive function;

• β - unknown model parameter vector;

• ϵ - i.i.d. with zero mean and unit variance.

Mostafa & Ahmad (2019) proposed the following model-assisted kernel density
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estimator for f(y):

f̂par(y;h) =
1

N

[∑
i∈s

di{Kh(y − yi)−Kh(y − ŷi)}+
∑
i∈U

Kh(y − ŷi)
]
, (2.53)

where ŷi = µ(xi, β̂) and β̂ is the design-weighted least squares estimate of β using

the sampling weights di. K(x) is a known kernel, typically a symmetric and bounded

probability density function (pdf). The bandwidth, denoted as h, is a positive value

that determines the smoothness of the density curve.

The estimator proposed in the study demonstrated commendable performance

compared to traditional kernel density estimators (KDEs) that do not take into account

auxiliary information. This superiority was particularly notable under circumstances

where the relationship between the auxiliary variable and the primary study variable

was accurately modeled.

The empirical findings underscored the efficacy of the proposed estimator in

leveraging auxiliary information to enhance the accuracy and precision of density

estimation. By incorporating auxiliary variables that capture additional dimensions

of the data, the proposed estimator was able to capture more nuanced patterns and

trends in the underlying distribution, resulting in superior performance compared to

traditional KDEs.

2.2.2 Density Estimation Under a Multiplicative RRT Model

Poole (1974) pioneered the idea of estimating the distribution function of a continu-

ous type random variable using a variation of Warner’s linear randomized response

multiplicative RRT models in Warner (1971). Poole’s technique, illustrated through

the estimation of income distribution from a sample of 500 individuals, showcased

45



the potential use of such methods in maintaining data confidentiality. Warner’s ran-

domized response procedure, where respondents answer one of two randomly chosen

questions to ensure anonymity, laid the groundwork for Poole’s approach, which

involved concealing true responses by multiplying them with random numbers.

The methodology presented in Poole’s work extends the randomized response

technique to estimate the entire distribution of a quantitative variable, not just

its mean and variance. Through theoretical development, Poole (1974) established

a method to estimate distribution functions of continuous variables by concealing

respondents’ true answers and using known properties of the distribution of random

multipliers.

The estimation procedure outlined by Poole (1974) involves survey participants

multiplying their responses by random numbers, thereby concealing their true answers.

Utilizing the recorded randomized responses, along with known properties of the

random multiplier distribution, Poole’s method enables the estimation of distribution

functions for sensitive quantitative variables. The article provides both theoretical

underpinnings and practical implementation steps, offering a valuable contribution to

the literature on survey methodology and data privacy.

2.2.3 Analysis and Optimization of Kernel Density Estimation

Wand & Jones (1994) discussed the principles, applications, and analysis of kernel

smoothers. For a general kernel density estimate f̂h(x) in (1.1), its mean squared error

(MSE) at a single point x0 is given by

MSE(f̂h(x0)) =
h4c2K

(
f ′′(x0)

)2
4

+
f(x0)

nh

∫
K2(y)dy +O(h4) +O(

1

nh
), (2.54)
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where K(y) is a pre-determined kernel function, h is the bandwidth, and cK =∫
y2K(y)dy.

Then the mean integrated square (MISE), i.e. the overall MSE of entire function,

is given by

MISE(f̂h(x)) = AMISE(f̂h(x)) +O(h4) +O(
1

nh
), (2.55)

where AMISE (asymptotic MISE) =
h4c2K

∫
(f ′′(x0)

)2

dx

4
+

∫
K2(y)dy

nh
.

The optimal bandwidth hopt that minimizes the above AMISE is given by

hopt =

( ∫
K2(y)dy

nc2K
∫
(f ′′(x0)

)2
dx

)1/5

(2.56)

2.2.4 Kernel Density Estimation Under a Multiplicative RRT

Model

Referring to Poole (1974) and Wand & Jones (1994), Ahmad (2002) later introduced the

kernel estimation of the density curve of a sensitive variable based on a multiplicative

RRT model with partial theoretical results.

Let

Y = Sensitive study variable

S = Scrambling variable (independent of Y ; S ∼ Uniform(0, T ), T > 0

n = Sample size

h = Bandwidth

Z = Reported response, where Z = Y · S

F (s), G(y), Q(z) = Cumulative distribution function (CDF) of S, Y, and Z, respec-

tively
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f(s), g(y), q(z) = Probability density function (PDF) of S, Y, and Z, respectively

Ahmad (2002) proposed the following kernel density estimator using multiplicative

RRT models:

ĝM(y) = −yT 2q̂′KDE(yT ), (2.57)

where q̂KDE(z) = (1/nh)
∑n

i=1K[(z − Zi)/h].

With the first-order approximation, the approximate MSE (AMSE) of ĝM(y) is

given by

AMSE(ĝM(y)) =
y2T 4q(yT )

nh3
R(K ′) +

c2Kh
4

4
y2T 4

(
q
′′′
(yT )

)2

, (2.58)

where R(K ′) =
∫
K ′2(x)dx, and cK =

∫
x2K(x)dx.

In the special case where scrambling variable S follows Uniform(0, 1), its approxi-

mate mean integrated squared error (AMISE) is given by

AMISE(ĝM(y)) =
R(K ′)

∫
y2q(y)dy

nh3
+

c2Kh
4R(ϕ

′′′
q )

4
, (2.59)

where ϕ
′′′
q = yq

′′′
(y).

The minimized AMISE(ĝM(y)) occurs at

hopt,M =
(R(K ′)

∫
y2q(y)dy

cKR(ϕ′′′
q )n

)1/7
. (2.60)

This hopt,M value can be considered as the optimal bandwidth.
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Chapter 3: Kernel Density Estimation

Using Additive Randomized Response

Technique (RRT) Models

3.1 Introduction

Existing research on RRT models, such as Gupta et al. (2012), indicates a prevalent

preference for additive scrambling over multiplicative scrambling, owing to its various

advantages. Notably, additive RRT models outperform multiplicative RRT models in

terms of mean estimators, while also providing better privacy protection. For example,

in multiplicative RRT models, a non-zero scrambled response inherently reveals that

the true response cannot be zero, thereby compromising privacy. Furthermore, the

intuitive nature of additive models renders them more accessible, particularly for

survey respondents with limited mathematical proficiency.

Motivated by these insights, this Chapter centers on the transition from employing

kernel density estimation (KDE) for multiplicative RRT to the additive RRT model.

In this Chapter, we build upon the pioneering work of Ahmad (2002) by extending
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and validating the theoretical framework of KDE within a more general context.

We investigate the application of KDE using an additive RRT model and propose a

corresponding KDE estimator. We then proceed to derive expressions for both the

mean square error (MSE) and its integrated form (MISE) for this proposed estimator,

ensuring accuracy up to the first order of approximation. Furthermore, we conduct

a comprehensive performance evaluation by comparing the efficacy of our proposed

estimator with that of the kernel density estimator relying on multiplicative RRT

models.

3.2 Review Kernel Density Estimation Under a Mul-

tiplicative RRT Model

As discussed in Section 2.2, Ahmad (2002) introduced the kernel estimation of the

density curve of a sensitive variable based on multiplicative RRT models with some

theoretical results. Ahmad’s pioneering work laid the theoretical groundwork for this

innovative methodology, providing initial insights into its feasibility and efficacy in

capturing the underlying distribution of sensitive variables.

Building upon Ahmad’s seminal contributions, our research endeavors to extend

and generalize the theoretical framework established in his work to accommodate

a broader spectrum of scenarios. By relaxing certain constraints and allowing for

increased variability or noise within the model, we aim to enhance its applicability

and robustness across diverse survey settings.

To validate the extended theoretical framework, we conducted a comprehensive

simulation study, wherein the proposed methodology was subjected to rigorous testing
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under various conditions and scenarios. Through meticulous analysis and empirical

validation, we sought to ascertain the validity and reliability of the theoretical results,

thus bolstering confidence in the efficacy of the proposed approach.

3.2.1 Extending and Validating Multiplicative Kernel Density

Estimator

For multiplicative scrambling models, the respondent is asked to provide a scrambled

response for Y given by

ZM = Y · S, (3.1)

where Y is the sensitive study variable, and the scrambling variable S ∼ U(0, T ) is

independent of Y . Let F (s), G(y), Q(z) denote the CDF of S, Y, Z, respectively, with

corresponding pdf f(s), g(y), and q(z).

During the simulation process, it was detected that slight modifications may be

required in 2.60 to calculate the optimal bandwidth h∗. The modified version is shown

as follows:

h∗
opt,M =

(3R(K ′)
∫
y2q(y)dy

c2KR(ϕ′′′
q )n

)1/7
, (3.2)

where R(K ′) =
∫
K ′2(x)dx, cK =

∫
x2K(x)dx, and ϕ

′′′
q = yq

′′′
(y).

From Table 3.1, the theoretical asymptotic MISE (AMISE) of the special case

T = 1 by Ahmad (2002) is a reasonably good match to the empirical MISE values.

This correspondence between theoretical results and empirical observations suggests

that the theoretical framework proposed by Ahmad (2002) effectively captures the
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underlying dynamics of the multiplicative RRT model.

Table 3.1. Theoretical AMISEs and empirical MISEs of multiplicative kernel density
estimator with h = 0.4, 0.6, 0.8, and optimal value for T = 1.

h MISEE MISET

n
100 0.4 0.2363 0.2247
500 0.4 0.0497 0.0452
1000 0.4 0.0273 0.0228

n
100 0.6 0.0724 0.0701
500 0.6 0.0186 0.0176
1000 0.6 0.0136 0.0110

n
100 0.8 0.0382 0.0332
500 0.8 0.0143 0.0108
1000 0.8 0.0116 0.0080

h∗
opt,M MISEE MISET

n
100 0.9770 0.0265 0.0269
500 0.7766 0.0146 0.0167
1000 0.7034 0.0120 0.0072

Moreover, our analysis reveals that employing the optimal bandwidth, as defined in

(3.2), consistently yields lower MISE values across most cases. This finding underscores

the importance of selecting an appropriate bandwidth parameter in kernel density

estimation, as it directly influences the accuracy and precision of the density estimate.

By optimizing the bandwidth parameter according to the proposed formula, researchers

can achieve superior performance in estimating the density curve of sensitive variables

within the context of multiplicative RRT models.

We also extended 2.59 of the special case T = 1 to a more general case where T is

any positive number. The generalized AMISE is given by

AMISE(ĝM(y)) =
T 2R(K ′)

∫
y2q(y)dy

nh3
+

T 2c2Kh
4R(ϕ

′′′
q,T )

4
, (3.3)

where ϕ
′′′
q,T = yTq

′′′
(yT ).

52



3.3 Proposed Kernel Density Estimator Under an

Additive RRT Model

We propose a kernel density estimator in the context of additive RRT models. For

additive scrambling models, the respondent is asked to provide a scrambled response

for Y given by

ZA = Y + S, (3.4)

where Y is the sensitive study variable, and the scrambling variable S ∼ U(0, T ) is

independent of Y . Let F (s), G(y), Q(z) denote the CDF of S, Y, Z, respectively, with

corresponding pdf f(s), g(y), and q(z).

Since S ∼ U(0, T ), F (s) = s/T, s ∈ [0, T ].

G(y) = P (Z − S ≤ y)

=

∫ ∞

0

q(z)[1− F (z − y)]dz

=

∫ y+T

y

dQ(z)− 1

T

∫ y+T

y

(z − y)q(z)dz +Q(y)−Q(0)

= Q(y + T )−Q(0)− 1

T

∫ y+T

y

(z − y)q(z)dz. (3.5)

Using KDE, G(y) can be estimated by

Ĝ(y) = Q̂KDE(y + T )− Q̂KDE(0)−
1

T

∫ y+T

y

(z − y)q̂KDE(z)dz, (3.6)

where Q̂KDE(z) =
∫ z

−∞ q̂KDE(w)dw, and q̂KDE(z) = (1/nh)
∑n

i=1K[(z − Zi)/h] with
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the kernel K(x) and the bandwidth h.

Taking the derivative of both sides of (3.6), the proposed kernel density estimator

is given by

ĝA(y) =
1

T

(
Q̂KDE(y + T )− Q̂KDE(y)

)
=

1

T

∫ y+T

y

q̂KDE(w)dw. (3.7)

3.4 Efficiency and Bandwidth Selection for Kernel

Density Estimator with Additive RRT Models

To estimate the mean integrated square error (MISE) of the proposed kernel density

estimator ĝA(y), we first need to find the mean square error (MSE) of ĝA(y) at any

point y as follows:

MSE(ĝA(y)) = E

(
ĝA(y)− g(y)

)2

= E

(
1

T

∫ y+T

y

q̂(w)dw − g(y)

)2

=
1

T 2

∫ y+T

y

MSE(q̂(w))dw + E

(
1

T

∫ y+T

y

q(w)dw − g(y)

)2

=
1

T 2

∫ y+T

y

MSE(q̂(w))dw +
1

T 2

( ∫ y+T

y

q(w)dw
)2

+
(
g(y)

)2
− 2g(y)

T

∫ y+T

y

q(w)dw. (3.8)

Wand & Jones (1994) derived the approximate MSE (AMSE) expression for kernel

density estimation in a general sense. Thus, for Model (3.4) the AMSE(q̂(w)) can be
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expressed as follows:

AMSE(q̂(w)) =
h4c2K

(
q′′(w)

)2
4

+
q(w)

nh

∫ (
K(y)

)2
dy, (3.9)

where cK =
∫
x2K(y)dy.

From (3.8) and (3.9), using the Taylor’s approximation and retaining terms of

order up to 2, the AMSE and the approximate mean integrated squared error (AMISE)

of ĝA(y) are given by

AMSE(ĝA(y)) =
h4c2K
4T 2

∫ y+T

y

(
q′′(w)

)2
dw +

∫ (
K(y)

)2
dy

nhT 2

∫ y+T

y

q(w)dw

+
1

T 2

( ∫ y+T

y

q(w)dw
)2

+
(
g(y)

)2 − 2g(y)

T

∫ y+T

y

q(w)dw (3.10)

and

AMISE(ĝA(y)) =
h4c2K
4T 2

∫∫ y+T

y

(
q′′(w)

)2
dwdy +

∫ (
K(y)

)2
dy

nhT 2

∫∫ y+T

y

q(w)dwdy

+
1

T 2

∫ ( ∫ y+T

y

q(w)dw
)2
dy +

∫ (
g(y)

)2
dy

− 2

T

∫
g(y)

∫ y+T

y

q(w)dwdy. (3.11)

Differentiating (3.11) with respect to h we get the following optimal value of h:

hopt,A =

(∫
K2(y)dy

nc2K
·

∫∫ y+T

y
q(w)dwdy∫∫ y+T

y

(
q′′(w)

)2
dwdy

)1/5

, (3.12)

which minimizes the AMISE.
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3.5 Simulation Study

In this section, we present results of a simulation study with particular focus on the

performance of the proposed kernel density estimator ĝA(y) using additive scrambling

as compared to the kernel density estimator ĝM(y) using multiplicative scrambling.

In the simulation study, we consider a finite population of size N = 5, 000 generated

from a normal distribution with the mean µY = 5 and variance σ2
Y = 5. The scrambling

variable S is taken to be a uniform variate from U(0, T ), where T = 1, 5, 10. For a

multiplicative RRT model, the reported response is given by ZM = Y · S, and for an

additive RRT model, the reported response is given by ZA = Y + S.

For both models mentioned above, we choose the normal kernel when using KDE,

which means k(x) = χ(x), and χ is the standard normal density function. The

simulation study can be divided into two parts. In the first part, the bandwidth h

is pre-defined as h = 0.4, 0.6, 0.8 during the KDE process so that we can observe

the relationship between MISE and the sample size n, the scrambling scale T and

the bandwidth h. In the second part, we use the optimal bandwidth hopt obtained

from (3.2) and (3.12) that would theoretically minimize AMISE so as to compare the

performance of the density estimators.

3.5.1 Comparison of Kernel Density Estimators

We consider three sample sizes: n = 100, 500, 1000, using SRSWOR (simple random

sampling without replacement). Coding for the simulations was done in R and results

are averaged over 1,000 iterations. The empirical MISE of the kernel density estimator
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ĝ(y) is computed by

MISEE(ĝ(y)) =
1

1000

1000∑
i=1

∫ (
ĝ(y)− g(y)

)2
dy,

where ĝ(y) = {ĝM(y), ĝA(y)}.

Tables 3.2 and 3.3 provide valuable insights into the comparison between theoretical

AMISEs and empirical MISEs for kernel density estimators employing various RRT

models. A notable observation is the close match between the theoretical AMISEs and

the empirical MISEs, indicating a robust alignment between theoretical expectations

and real-world performance across different RRT models.

Upon closer examination, it becomes apparent that instances characterized by

T = 0 typically exhibit the lowest MISE values, indicative of superior estimation

accuracy under minimal noise conditions. As the value of T increases, the MISE values

for the kernel density estimators tend to ascend correspondingly. This trend holds

intuitive appeal, as higher values of T correspond to greater levels of noise introduced

into respondents’ true responses. Consequently, the increasing magnitude of MISEs

with higher T values reflects the deleterious impact of heightened noise levels on the

accuracy and precision of estimation.

This observed trend underscores the importance of judiciously selecting the level

of noise introduced in RRT models, striking a delicate balance between privacy

preservation and estimation accuracy. While the T = 0 case offers the advantage of

no noise and consequently lower MISE values, higher T values necessitate a trade-off

between increased privacy protection and compromised estimation quality.

In Table 3.2, we present the outcomes obtained from the multiplicative kernel

density estimator ĝM(y) alongside the proposed additive kernel density estimator
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ĝA(y), employing bandwidth values of h = 0.4, 0.6, 0.8. The results unveil a consistent

trend wherein the proposed additive kernel density estimator consistently outperforms

its multiplicative counterpart, as evidenced by its consistently smaller MISE values

across varying bandwidth settings.

It is worth noting that slight adjustments to the bandwidth parameter can exert

substantial influence on the MISE values of the multiplicative kernel density estimator

ĝM(y), while exerting comparatively less impact on the MISE values of the additive

kernel density estimator ĝA(y). For example, in scenarios characterized by T = 1 and

n = 500, the MISE of ĝA(y) exhibits relative stability even as the bandwidth decreases

from 0.8 to 0.6 and further to 0.4. In stark contrast, the MISE of ĝM (y) demonstrates

significant fluctuations, escalating approximately 15.9 times, 23.3 times, and 49.7

times higher than those of ĝA(y) correspondingly. This observed trend persists across

all analyzed cases, underscoring the robustness of the proposed additive kernel density

estimator to variations in bandwidth selection.

Furthermore, the presence of NAs in Table 3.2 underscores the potential pitfalls

associated with suboptimal bandwidth selection in multiplicative RRT-based KDEs,

as it may impede the effectiveness of density estimation.
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Table 3.2. Theoretical (bold) AMISEs and empirical MISEs of the kernel density
estimators with h = 0.4, 0.6, 0.8. T = 1.
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Table 3.2 (Continued). Theoretical (bold) AMISEs and empirical MISEs of the kernel
density estimators with h = 0.4, 0.6, 0.8. T = 5.
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Table 3.2 (Continued). Theoretical (bold) AMISEs and empirical MISEs of the kernel
density estimators with h = 0.4, 0.6, 0.8. T = 10.
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Turning to Table 3.3, the findings confirm the superior efficiency of the proposed

additive kernel density estimator ĝA(y) over its multiplicative counterpart ĝM(y).

Notably, for T = 10, the MISE of ĝM(y) exceeds that of ĝA(y) by approximately 23.7

times, 9.7 times, and 6.8 times for sample sizes of n = 100, n = 500, and n = 1000

respectively. Regardless of the value of T , the additive RRT-based kernel density

estimator consistently achieves a lower minimum MISE compared to its multiplicative

counterpart, underscoring its enhanced performance across diverse sample sizes and

scenarios.

Table 3.3. Theoretical (bold) AMISEs and empirical MISEs of the kernel density
estimators using the optimal bandwidth. T = 1.
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Table 3.3 (Continued). Theoretical (bold) AMISEs and empirical MISEs of the kernel
density estimators using the optimal bandwidth. T = 5.

Table 3.3 (Continued). Theoretical (bold) AMISEs and empirical MISEs of the kernel
density estimators using the optimal bandwidth. T = 10.
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3.5.2 Evaluation of Additive Kernel Density Estimator via

Cross-Validation

Now we consider estimating the following target densities by our proposed additive

density estimator ĝA(y):

I. Normal N(5, 5)

II. Poisson Pois(2)

III. Mixture of two normal 0.5N(1, 1) + 0.5N(5, 1)

The simulation procedure is consistent with that outlined in Section 3.5.1. We

compare the performance of ĝA(y) using the optimal bandwidth obtained from the

cross-validation method to that of ĝA(y) using the theoretical optimal bandwidth in

(3.12), because in reality, we do not have access to the latter, and we can only do

bandwidth selection based on the given data.

The Least-Squares (Unbiased) Cross-Validation selector proposed by Scott &

Terrell (1987) is defined as

ĥUCV := argmin
h>0

UCV(h)

where UCV(h) :=
∫
q̂(z;h)2dz − (2/n)

∑n
i=1 q̂−i(Zi;h).

Table 3.4 shows the empirical MISE of the additive kernel density estimator ĝA(y)

when utilizing the above bandwidth selector and the theoretical optimal bandwidth in

three distinct target densities. In practice, where the theoretical optimal bandwidth

is unknown, the proposed additive kernel density estimator ĝA(y) performs well via

the cross-validation method. The MISE of ĝA(y) using the UCV bandwidth selector
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is fairly close to that of ĝA(y) using the theoretical optimal bandwidth, and that

theoretical value falls within the 95% percentile interval.

Table 3.4. Performance of the additive kernel density estimators with the optimal
bandwidth using the cross-validation method and the theoretical value. T = 1.

+: mean of the bandwidth using the cross-validation method under 1,000 iterations.
*: 2.5th and 97.5th percentiles of the bandwidth using the cross-validation method
under 1,000 iterations.
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Table 3.4 (Continued). Performance of the additive kernel density estimators with
the optimal bandwidth using the cross-validation method and the theoretical value.
T = 5.
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Table 3.4 (Continued). Performance of the additive kernel density estimators with
the optimal bandwidth using the cross-validation method and the theoretical value.
T = 10.
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3.6 A Numerical Example

In this section, we present a detailed numerical example to illustrate the practical

application of the proposed additive kernel density estimator. Consider a hypothetical

scenario where we aim to investigate a finite population comprising N = 5, 000

individuals, with the sensitive variable Y following a normal distribution with a mean

of µY = 5 and a variance of σ2
Y = 5. To facilitate our analysis, we draw a single sample

of size n = 500 from this population and employ the additive RRT model to collect

the data. Under this model, the reported response Z is given by Z = Y + S, where

the scrambling variable S follows a uniform distribution, U(0, T = 5).

Using the UCV bandwidth selector, we obtain the optimal bandwidth hopt as

hopt = 0.5902 and then plug it into the KDE process to derive the estimation results.

The estimation results are presented in Figure 3.1. The MISE of the additive kernel

density estimate ĝA(y) is about 0.0085, which is consistent with the corresponding

theoretical AMSE and empirical MISE in Tables 3.3 and 3.4. The additive kernel

density estimator can make a reasonably good estimate of the true density curve.

Upon visual inspection, we observe that the additive kernel density estimator

closely approximates the true density curve, demonstrating its efficacy in capturing

the underlying distribution of the sensitive variable. As depicted in Figure 3.1,

both the additive kernel density estimate and the true density curve exhibit similar

characteristics, including a bell-shaped distribution that is symmetric and centered

around the mean value of 5. While there may be slight deviations in the tails of the

true density curve, overall, the additive kernel density estimator provides a reasonably

accurate representation of the underlying distribution.
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Figure 3.1. Estimation results for the quantitative sensitive variable based on random-
ized data. The red line is the true density curve g(y) and the black line represents the
additive kernel density estimate ĝA(y). The MISE is also reported.

3.7 Concluding Chapter Remarks

In this Chapter, we introduce a novel kernel density estimator rooted in additive RRT

models, which hold widespread utility in survey sampling owing to their numerous

advantages over multiplicative RRT models. We highlight the fact that multiplicative

models are prone to privacy violation whereas there is no such concern with additive

models. Also, respondents with limited mathematical proficiency may find an additive

model easier to use. Moreover, through a series of simulation experiments, we

demonstrate the superior efficiency of employing additive RRT models in comparison

to alternative methodologies.

In practical applications, the challenge of determining the optimal bandwidth

for kernel density estimation often arises, especially in the absence of theoretical
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guidelines. To address this challenge, we leverage a readily available data-driven

approach for bandwidth selection, such as the cross-validation method, to derive an

optimal bandwidth directly from the observed data. By adopting this pragmatic

approach, researchers can effectively leverage the existing methodology of additive

kernel density estimation in real-world survey settings, without the need for complex

theoretical calculations.

It is noteworthy that the current literature lacks extensive exploration of the

comprehensive distribution of sensitive variables through simulation studies. By

integrating such empirical investigations into our study, we not only validate the

theoretical foundations of our proposed methodology but also contribute to a broader

understanding of this burgeoning field of inquiry. We aspire that our research will

provide fresh perspectives and insights, enriching the discourse surrounding the

estimation of sensitive variables in survey research and fostering further exploration

in this evolving domain.

70



Chapter 4: Kernel Density Estimation

of a Sensitive Variable in the Presence

of Auxiliary Information

4.1 Introduction

In this Chapter, we delve deeper into the research conducted by Shou & Gupta (2023)

(see Chapter 3), aiming to broaden its scope and implications. Our focus shifts towards

the integration of auxiliary variables within the RRT framework, a novel approach

that has the potential to refine the precision of density estimators and unveil novel

insights into the distribution patterns of sensitive variables under RRT models.

Drawing inspiration from the work of Mostafa & Ahmad (2019), we propose

a novel methodology that augments the traditional kernel density estimator with

auxiliary variables, thereby enriching the accuracy and robustness of the density

estimation process. By leveraging auxiliary information in tandem with the core

RRT framework, we aim to unlock new dimensions of understanding regarding the

distributional characteristics of sensitive variables.
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To empirically validate the efficacy of our proposed methodology, we conduct

extensive simulations under varied conditions and scenarios. These simulations serve as

a comprehensive evaluation of the proposed approach, shedding light on its performance

across a spectrum of factors including noise levels, sample size, and the correlation

between auxiliary variables and sensitive variables.

Through this rigorous empirical analysis, we aim to elucidate the advantages

of incorporating auxiliary information into the RRT framework, demonstrating its

potential to enhance the accuracy and reliability of density estimators in sensitive

survey research.

4.2 Proposed Kernel Density Estimator

We extend the additive kernel density estimator presented by Shou & Gupta (2023)

(see Chapter 3) by incorporating auxiliary information within the RRT framework,

drawing inspiration from the methodology developed by Mostafa & Ahmad (2019)

(see Section 2.2.1).

Let Y be the sensitive study variable with mean µY and variance σ2
Y . Let X

be a non-sensitive auxiliary variable with mean µX and variance σ2
X , which satisfies

the condition in (4.1). Let S be a scrambling variable with mean µS and variance

σ2
S, independent of Y , and S follows a uniform distribution of U(0, T ), where T is a

pre-selected number. The respondent is asked to report a scrambled response for Y

given by Z = Y + S in the context of additive RRT models.

Consider a finite population N where the scrambled response Z is observed in n

units and is predictable in (N − n) units. Assume that the relationship between Z

and the auxiliary variable X can be described by the following parametric regression
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model:

zi = µ(xi,β) + σ(xi)ϵi; i ∈ U, (4.1)

where µ(·, ·) is a known mean function, σ(·, ·) is a known, strictly positive function,

β is the unknown model parameter vector, and ϵ′is are independent and identically

distributed (i.i.d.) random variables with zero mean and unit variance.

Under simple random sampling (SRS), the proposed additive kernel density esti-

mator with auxiliary information is given by

ĝAux(y) =
1

T

∫ y+T

y

q̂∗kde(w)dw, (4.2)

where

q̂∗kde(z) =
1

n

∑
i∈s

{Kh(z − zi)−Kh(z − β̂xi)}+
1

N

∑
i∈U

Kh(z − β̂xi) (4.3)

with the kernel K(x) and the bandwidth h.

4.3 Efficiency and Bandwidth Selection for the Pro-

posed Kernel Density Estimator

To obtain the asymptotic mean integrated squared error (AMISE) of the proposed

kernel density estimator ĝAux(y), we first need to find the asymptotic mean squared

error (AMSE) of q̂∗kde(z) as follows:

Bias(q̂∗kde(z)) =
1

2
h2cKq

′′(z) +O(h2), (4.4)
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where cK =
∫
y2K(y)dy.

V ar(q̂∗kde(z)) =
δ

nh3

[
β2E(X2)− 2βE(XZ) + E(Z2)

]
{K ′(z)}2 +O(

1

Nh3
)

=
δ

nh3

[
β2(σ2

X + µ2
X)− 2β(β · σ2

X + µX(µY + µS)) + σ2
Y + σ2

S + (µY

+ µS)
2
]
{K ′(z)}2 +O(

1

Nh3
), (4.5)

where δ = 1− n/N .

Then

MSE(q̂∗kde(z)) = Bias2(q̂KDE∗(z)) + V ar(q̂KDE∗(z))

=
1

4
h4c2K{q′′(z)}2 +

δ

nh3

[
(βµX − µY )

2 − β2σ2
X − 2βµXµS + σ2

Y + σ2
S

+ µ2
S + 2µY µS

]
+O(h4 +

1

Nh3
) (4.6)

and

AMSE(q̂∗kde(z)) ≈
1

4
h4c2K{q′′(z)}2 +

δ

nh3

[
(βµX − µY )

2 − β2σ2
X − 2βµXµS + σ2

Y + σ2
S

+ µ2
S + 2µY µS

]
. (4.7)

Now we have

MSE(ĝAux(y)) = E

(
ĝAux(y)− g(y)

)2

=
1

T 2

∫ y+T

y

MSE(q̂∗kde(w))dw +
1

T 2

( ∫ y+T

y

q(w)dw
)2

+
(
g(y)

)2
− 2g(y)

T

∫ y+T

y

q(w)dw. (4.8)

74



From (4.7) and (4.8), using the Taylor’s approximation and retaining terms of

order up to 2, the AMSE and AMISE of ĝAux(y) are given by

AMSE(ĝAux(y)) ≈
h4c2K
4T 2

∫ y+T

y

(
q′′(w)

)2
dw +

δM

nh3T
{K ′(y)}2

+
1

T 2

( ∫ y+T

y

q(w)dw
)2

+
(
g(y)

)2
− 2g(y)

T

∫ y+T

y

q(w)dw (4.9)

and

AMISE(ĝAux(y)) ≈
h4c2K
4T 2

∫∫ y+T

y

(
q′′(w)

)2
dwdy +

δM

nh3T

∫
{K ′(y)}2dy

+
1

T 2

∫ ( ∫ y+T

y

q(w)dw
)2
dy +

∫ (
g(y)

)2
dy

− 2

T

∫
g(y)

∫ y+T

y

q(w)dwdy, (4.10)

where M = (βµX − µY )
2 − β2σ2

X − 2βµXµS + σ2
Y + σ2

S + µ2
S + 2µY µS.

Differentiating (4.10) with respect to h, we get the following optimum value:

hopt,Aux =

(
3δMT

∫
{K ′(y)}2dy

nc2K
∫∫ y+T

y

(
q′′(w)

)2
dwdy

)1/7

, (4.11)

which minimizes the AMISE.

4.4 Simulation Study

In this section, we present the results of a simulation study, with a specific emphasis

on evaluating the performance of the proposed kernel density estimator ĝAux(y) when
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utilizing a non-sensitive auxiliary variable, in contrast to the additive kernel density

estimator ĝA(y) discussed in Section 3, where auxiliary information is ignored.

4.4.1 Simulation Procedure

In the simulation study, we consider a finite population of size N = 5, 000 generated

from a normal distribution with mean µY = 5 and variance σ2
Y = 5. The scrambling

variable S is taken to be a uniform variate from U(0, T ), where T can take on values

of 1, 5, and 10. The reported response is given by Z = Y + S under additive RRT

models.

Inspired by Mostafa & Ahmad (2019), three models, denoted as Models I–III, are

utilized in the simulation study to represent three distinct forms of the relationship

between X and Y . These models include a linear relationship (Model I: y = 1 +

2(x− 0.5) + ϵ), a logarithmic relationship (Model II: y = 2.5 log(x+ 1.5) + ϵ), and

a hard-to-detect nonlinear relationship (Model III: y = ±
√
2x + 0.6ϵ), respectively.

In each model, the errors ϵ are regulated to achieve both low (ρ ≈ 0.36) and high

(ρ ≈ 0.75) correlations between X and Y .

We consider three sample sizes: n = {100, 500, 1000}, using SRSWOR (simple

random sampling without replacement). We choose the normal kernel when using

KDE, which means K(x) = ϕ(x), and ϕ is the standard normal density function. The

bandwidth h is determined through the Least-Squares (Unbiased) Cross-Validation

(UCV) selector, which is defined as

ĥUCV := argmin
h>0

UCV(h),

where UCV(h) :=
∫
q̂(z;h)2dz − (2/n)

∑n
i=1 q̂−i(Zi;h).
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Coding for the simulations was done in R and results are averaged over 500

iterations. The empirical MISE of the kernel density estimator ĝ(y) is computed by

MISEE(ĝ(y)) =
1

500

500∑
i=1

∫ (
ĝ(y)− g(y)

)2
dy,

where ĝ(y) = {ĝA(y), ĝAux(y)}.

4.4.2 Simulation Results

The results from the simulations, as detailed in Table 4.1, illustrate how the per-

formance of the proposed kernel density estimator ĝAux(y), which incorporates the

auxiliary variable X, compares to that of the additive kernel density estimator ĝA(y),

which does not use X, across different scenarios. For higher values of T (T = 5 and

10), i.e. with greater noise, it is evident that the additive kernel density estimator

ĝA(y) not utilizing the auxiliary variable X yields the highest MISE since it does not

leverage the auxiliary information. In contrast, the proposed kernel density estimator

ĝAux(y) using the auxiliary variable X with a high correlation to the study variable

Y yields the smallest MISE, demonstrating the advantage of incorporating relevant

auxiliary information. Additionally, the proposed kernel density estimator ĝAux(y)

employing the auxiliary variable X with a low correlation to the study variable Y

produces a worse MISE compared to the high correlation case, yet still outperforms

the additive kernel density estimator ĝA(y) not using X.

We may also note that when T = 1, utilizing the auxiliary variable X results in a

worse MISE compared to not utilizing it. This observation can be attributed to the

relatively small amount of noise present at T = 1, which has minimal impact on the

estimation process. In other words, when using the approximation in (4.4), (4.5), and
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(4.6), some inaccuracies emerge. These inaccuracies become more pronounced when

there is a low degree of noise (T = 1) but tend to be less noticeable when the degree

of noise is higher (T = 5 and 10). As evidenced by the second and third columns in

Table 4.1, the MISE values with scrambling are very similar to the original MISE

values without scrambling. Consequently, when we employ auxiliary information to

predict non-sampled z’s and subsequently increase the sample size, more variation

is introduced into the estimation process, leading to an eventual increase in MISE,

particularly when the correlation between X and Y is low.

78



Ta
bl

e
4.

1.
T

he
or

et
ic

al
(b

ol
d
)

A
M

IS
E

s
an

d
em

pi
ri

ca
lM

IS
E

s
of

th
e

pr
op

os
ed

ke
rn

el
de

ns
ity

es
ti

m
at

or
ĝ A

u
x
(y
)

w
it

h
au

xi
lia

ry
va

ri
ab

le
X

an
d

th
e

ad
di

ti
ve

ke
rn

el
de

ns
ity

es
ti

m
at

or
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4.5 Concluding Chapter Remarks

In this Chapter, we proposed a kernel density estimator under additive RRT models

in the presence of auxiliary information. Our study explores the integration of a

non-sensitive auxiliary variable to enhance the accuracy of estimating the distribution

of a sensitive variable. This innovative approach aims to maintain respondent privacy

while improving the precision of sensitive data analysis. Drawing inspiration from

prior research, we present our methodology and conduct a comprehensive simulation

study to assess its performance. The results shed light on the influence of noise, sample

size, and the correlation between the study variable and auxiliary variable on the

accuracy of estimation, underscoring the advantages of incorporating auxiliary data

within additive RRT models.
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Chapter 5: Kernel Density Estimation

Using Optional Randomized Response

Technique Models

5.1 Introduction

In this Chapter, we introduce an extension to the kernel density estimator within the

framework of KDE using additive RRT models. Our aim is to broaden the scope of

direct distribution estimation by accommodating scenarios where respondents have

the flexibility to choose between providing true or scrambled responses, facilitated

by the incorporation of sensitivity level denoted as W . This sensitivity level W has

been extensively studied in the context of population parameter estimation using RRT

models. These include Gupta et al. (2014), Kalucha et al. (2016), Gupta et al. (2017),

Khalil et al. (2021), Mehta & Aggarwal (2018), and Narjis & Shabbir (2020).

Our research involves deriving the theoretical results for this extended estimator

and conducting a comprehensive simulation study to assess its performance under

various conditions. By incorporating the sensitivity level W , the proposed estimator
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holds the potential to provide higher accuracy and robustness in handling sensitive

data scenarios, making it a crucial contribution to the field of direct distribution

estimation using RRT models.

5.2 Proposed Kernel Density Estimator

We propose a kernel density estimator within the framework of optional RRT models

using additive scrambling. Let Y denote the sensitive study variable with a mean of

µY and a variance of σ2
Y . Let S represent a scrambling variable with a mean of µS and

a variance of σ2
S, which is independent of Y . S follows a uniform distribution denoted

by U(0, T ), where T is a pre-selected number. Let W be the sensitivity level of the

underlying sensitive question. In this model, the reported response Z is given by

Z =


Y, with probability 1−W

Y + S, with probability W

(5.1)

Let F (s), G(y), Q(z) denote the CDF of S, Y, Z, respectively, with corresponding pdf

f(s), g(y), and q(z).

Since S ∼ U(0, T ), F (s) = (1−W ) + sW/T, s ∈ [0, T ].

G(y) = P (Z − S ≤ y)

=

∫ ∞

0

q(z)[1− F (z − y)]dz

= W

∫ y+T

y

(
1− z − y

T

)
dQ(z) +Wq(y) +Q(y)−Q(0)

= WQ(y + T ) + (1−W )Q(y)− W

T

∫ y+T

y

(z − y)q(z)dz +Wq(y). (5.2)
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Taking the derivative of both sides of (5.2), we get

g(y) = Wq(y + T ) + (1−W )q(y)− W

T

(
(y + T )q(y + T )− yq(y)

)
+

W

T

∫ y+T

y

q(z)dz +
Wy

T

(
q(y + T )− q(y)

)
+Wq′(y)

= (1−W )q(y) +
W

T

∫ y+T

y

q(z)dz +Wq′(y) (5.3)

Using KDE, g(y) can be estimated by

ĝ(y) = (1−W )q̂KDE(z) +
W

T

∫ y+T

y

q̂KDE(z)dz +Wq̂′KDE(z), (5.4)

where q̂KDE(z) = (1/nh)
∑n

i=1 K[(z−Zi)/h] with the kernel K(x) and the bandwidth

h.

The sensitivity level W in (5.4) can be estimated through a pre-survey utilizing the

binary RRT model introduced by Warner (1965) (see Section 2.1.1). This method not

only enables the estimation of W but also offers guidance on the preferred utilization

of optional RRT models.

From (2.2) and (2.3), an unbiased estimator of W is given by

Ŵ =
p̂y − (1− p)

2p− 1
, (5.5)

where p is a pre-determined parameter denoting the probability of a respondent

answering the sensitive question directly during the pre-survey, p ̸= 1
2
. p̂y = m1

m
, where

m1 denotes the count of respondents answering ’yes’ within a sample of size m.
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The variance of the above estimator is

V ar(Ŵ ) =
W (1−W )

m
+

p(1− p)

m(2p− 1)2
. (5.6)

We now propose our additive kernel density estimator utilizing optional RRT

models, defined as

ĝW (y) = (1− Ŵ )q̂KDE(z) +
Ŵ

T

∫ y+T

y

q̂KDE(z)dz + Ŵ q̂′KDE(z). (5.7)

5.3 Efficiency and Bandwidth Selection in Optional

Additive Kernel Density Estimator

To estimate the mean integrated square error (MISE) of the proposed kernel density

estimator ĝW (y), we first compute the mean square error (MSE) of ĝW (y) at any point

y as follows:

MSE(ĝW (y)) = E

(
ĝW (y)− g(y)

)2

= E

(
(1− Ŵ )q̂KDE(z) +

Ŵ

T

∫ y+T

y

q̂KDE(z)dz + Ŵ q̂′KDE(z)− g(y)

)2

= E

(
W − Ŵ )q̂KDE(y) +

Ŵ −W

T

∫ y+T

y

q̂KDE(z)dz

+
Ŵ −W

T
q̂′KDE(y) + (1−W )(q̂KDE(y)− q(y))

+
W

T

∫ y+T

y

(q̂KDE(y)− q(y))dz +W (q̂′KDE(y)− q(y))

+ (1−W )q(y) +
W

T

∫ y+T

y

q(z)dz +Wq′(y)− g(y)

)2
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MSE(ĝW (y)) = q2(y)MSE(Ŵ ) +
1

T 2

(∫ y+T

y

q(z)dz

)2

MSE(Ŵ ) +
1

T 2
q′2(y)MSE( ˆ̂W )

+ (1−W )2MSE(q̂KDE(y)) +
W 2

T 2

∫ y+T

y

MSE(q̂KDE(z))dz

+W 2MSE(q̂′KDE(y)) +

(
(1−W )q(y) +

W

T

∫ y+T

y

q(z)dz

+Wq′(y)− g(y)

)2

(5.8)

Wand & Jones (1994) provided an expression for the approximate MSE (AMSE)

in the context of kernel density estimation, offering a generalized framework. Thus,

for Model (5.1), the AMSE of q̂KDE(u) can be represented as follows:

AMSE(q̂KDE(u)) =
h4c2K

(
q′′(u)

)2
4

+
q(u)

nh

∫ (
K(y)

)2
dy, (5.9)

where cK =
∫
y2K(y)dy.

Then substituting (5.7) and (5.9), using the Taylor’s approximation, and retaining

terms of order up to 2, the approximate mean integrated square error (AMISE) of

ĝW (y) is given by

AMISE(ĝW (y)) =

∫
AMSE(ĝW (y))dy
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AMISE(ĝW (y)) =

(
W (1−W )

m
+

p(1− p)

m(2p− 1)2

)(∫
q2(y)dy

+
1

T 2

∫ ( ∫ y+T

y

q(z)dz
)2
dy +

1

T 2

∫
q′2(y)dy

)
+ (1−W )2

(
h4c2K
4

∫ (
q′′(y)

)2
dy +

∫ (
K(y)

)2
dy)

nh

)
+W 2

(
h4c2K
4T 2

∫∫ y+T

y

(q′′(z)
)2
dzdy +

∫ (
K(y)

)2
dy

nhT 2

∫∫ y+T

y

q(z)dzdy

)
+

∫ (
(1−W )q(y) +

W

T

∫ y+T

y

q(z)dz +Wq′(y)− g(y)

)2

dy

(5.10)

By differentiating (5.10) with respect to h, we derive the optimal value of h as

follows:

hopt,W =

( ∫
(K(y))2dy

n

(
(1−W )2 + W 2

T 2

∫∫ y+T

Y
q(z)dz

)
c2K

(
(1−W )2

∫
(q′′(y))2dy + W 2

T 2

∫∫ y+T

y
(q′′(z))2dz

))1/5

, (5.11)

which minimizes the AMISE.

5.4 Simulation Study

We conduct a simulation study to assess the performance of our proposed additive

kernel density estimator ĝW (y) utilizing an optional RRT model, in contrast to the

original additive kernel density estimator ĝA(y) employing a non-optional RRT model.

In the simulation study, we consider a finite population of size N = 10, 000,

generated from a normal distribution with a mean of µY = 5 and a variance of σ2
Y = 5.

The scrambling variable S is uniformly distributed from U(0, T ), where T = 5, 10. For

87



the non-optional additive RRT model, the reported response is given by ZA = Y + S;

for the optional additive RRT model, the reported response is defined in Model (5.1).

We consider three sample sizes: n = {100, 500, 1000}, employing simple random

sampling without replacement (SRSWOR). For KDE, we opt for the normal kernel,

denoted as K(x) = ϕ(x), where ϕ represents the standard normal density function.

The bandwidth h is determined using the Least-Squares (Unbiased) Cross-Validation

(UCV) selector, defined as:

ĥUCV := argmin
h>0

UCV(h),

where UCV(h) :=
∫
q̂(z;h)2dz − (2/n)

∑n
i=1 q̂−i(Zi;h).

Coding for the simulations was done in R and results are averaged over 1,000

iterations. The empirical MISE of the kernel density estimator ĝ(y) is computed by

MISEE(ĝ(y)) =
1

1000

1000∑
i=1

∫ (
ĝ(y)− g(y)

)2
dy,

where ĝ(y) = {ĝA(y), ĝW (y)}.

In Table 5.1, rows with W = 1 display theoretical (bold) AMISEs and empirical

MISEs of the additive kernel density estimator ĝA(y) under a non-optional RRT model,

while the remaining rows with W = 0.1, ..., 0.99 display theoretical (bold) AMISEs

and empirical MISEs of our proposed kernel density estimator ĝW (y) under an optional

RRT model. It is evident that the theoretical AMISEs closely match the empirical

MISEs for both kernel density estimators ĝA(y) and ĝW (y) using different RRT models.

Observations from Table 5.1 suggest that, for high noise levels (T = 5 and 10),

the proposed kernel density estimator ĝW (y) under an optional RRT model tends to
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outperform the additive kernel density estimator ĝA(y) under a non-optional RRT

model in most cases. As n increases, the performance of ĝW (y) improves significantly.

For instance, when W = 0.2, the empirical MISE of ĝW (y) decreases by 12.5% for

n = 100, 36.2% for n = 500, and 41.1% for n = 1000 upon incorporating optionality

into additive RRT models.

Moreover, as T increases, the performance of ĝW (y) also improves noticeably. For

the same W = 0.2, the empirical MISE of ĝW (y) decreases by 62.3% for n = 100,

69.0% for n = 500, and 70.9% for n = 1000 when optionality is incorporated into

additive RRT models.

We may also note that when W approaches 0.5, using optional RRT models

does not guarantee improved performance. This observation may arise from the

increased ambiguity and complexity introduced when respondents are equally likely

to provide either true or scrambled responses. In such cases, accurately estimating

the sensitivity level and effectively integrating scrambled responses into the analysis

becomes challenging.
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Table 5.1. Theoretical (bold) AMISEs and empirical MISEs of the proposed kernel
density estimator ĝW (y) with optional RRT model and the additive kernel density
estimator ĝA(y) with non-optional RRT model. n = 100.
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Table 5.1 (Continued). Theoretical (bold) AMISEs and empirical MISEs of the
proposed kernel density estimator ĝW (y) with optional RRT model and the additive
kernel density estimator ĝA(y) with non-optional RRT model. n = 500.
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Table 5.1 (Continued). Theoretical (bold) AMISEs and empirical MISEs of the
proposed kernel density estimator ĝW (y) with optional RRT model and the additive
kernel density estimator ĝA(y) with non-optional RRT model. n = 1000.
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5.5 Concluding Chapter Remarks

In this Chapter, we proposed and evaluated an additive kernel density estimator under

an optional RRT model, comparing its performance to the original additive kernel

density estimator under a non-optional RRT model. Our findings reveal that the

proposed additive kernel density estimator generally outperforms the original additive

kernel density estimator, especially in scenarios with high noise levels, indicating

the enhanced accuracy and robustness of density estimation when optionality is

incorporated into RRT models. Moreover, increasing the sample size leads to significant

improvements in the performance of proposed additive kernel density estimator. Higher

noise levels also contribute to improved performance. However, challenges arise when

the sensitivity level approaches 0.5, diminishing the benefits of optional RRT models

due to increased ambiguity in distinguishing between true and scrambled responses.

Overall, our study highlights the potential of optional RRT models in enhancing the

accuracy and reliability of kernel density estimation, particularly in sensitive data

scenarios. By allowing respondents the flexibility to choose between providing true

or scrambled responses, optional RRT models offer a valuable tool for mitigating

respondent bias and enhancing data quality in scenarios where respondents may be

reluctant to disclose sensitive information.
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Chapter 6: Concluding Remarks and

Future Directions

6.1 Concluding Remarks

In this dissertation, we addressed the challenge of estimating distributions of sensitive

variables by investigating kernel density estimation (KDE) under various randomized

response technique (RRT) models. The research focused on refining prior methodologies

and exploring new avenues to improve the accuracy and efficiency of distribution

estimation in sensitive data scenarios.

We introduced a kernel density estimator based on additive RRT models, leveraging

their widespread use and advantageous properties in survey sampling. Through

comprehensive simulation studies, it was also demonstrated that employing additive

RRT models leads to significant improvements in the efficiency of our kernel density

estimator. Furthermore, the incorporation of auxiliary information proved instrumental

in enhancing the precision of sensitive variable distribution estimation, showcasing

the potential of additive RRT models in integrating non-sensitive auxiliary variables.

Moreover, the investigation extended to include optional RRT models, which offer

respondents the flexibility to choose between providing true or scrambled responses.
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The findings indicated that optional RRT models enhance the accuracy and reliability

of KDE, particularly in scenarios with high noise levels.

Overall, the research contributes to advancing estimation techniques for sensitive

variables, offering valuable insights into their distribution while maintaining respondent

privacy. By combining the strengths of KDE with various RRT models, the study

provides a robust framework for addressing the challenges associated with sensitive

data analysis in survey sampling. It is hoped that these findings will stimulate

further research in this growing area and facilitate the development of more effective

methodologies for handling sensitive data in surveys.

6.2 Future Directions

One potential area of focus involves investigating intermediate sensitivity levels within

optional RRT models. As observed in our study, challenges arise when sensitivity levels

approach 0.5, diminishing the benefits of optionality and introducing ambiguity in

response interpretation. Future research could delve into strategies for mitigating the

impact of intermediate sensitivity levels on density estimation, exploring innovative

approaches to improve the accuracy and reliability of estimation under such conditions.

Another promising direction is the integration of auxiliary information and option-

ality within additive RRT models to enhance the efficiency of kernel density estimators.

Additionally, exploring a generalized kernel density estimator under optionality, which

includes both additive and multiplicative scrambling, could optimize the balance

between privacy protection and survey efficiency.

In the framework where both additive and multiplicative scrambling are used,

respondents who consider a question as sensitive and trust the models could use
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additive scrambling for their true responses. Conversely, respondents who view the

question as sensitive but do not trust the models could apply a combination of additive

and multiplicative scrambling. This dual-layer approach could optimize the balance

between privacy protection and survey efficiency, potentially making respondents feel

more comfortable providing their answers to sensitive survey questions.

Moreover, there is significant potential in conducting a thorough comparison

between mean estimates derived from the proposed kernel density estimators and

those obtained through population parameter estimation within the framework of

additive RRT models. Inspired by earlier simulation results, a meticulous analysis of

the performance of direct distribution estimation compared to traditional population

parameter estimation offers a promising avenue for extracting valuable insights. By

undertaking comprehensive evaluations, researchers can discern the strengths and

limitations of each approach, leading to a greater understanding of their efficacy across

varied scenarios.

Additionally, applying our proposed methods to real-world data can provide further

validation. This would involve selecting response data for sensitive questions collected

using an anonymous survey method, scrambling it, and evaluating the estimators’

performance in recovering the distribution of true non-scrambled responses. Such

practical applications can help to confirm the robustness and reliability of the proposed

estimators in real-world settings, offering a more comprehensive perspective on their

effectiveness.
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