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Diagnostic classification Diagnostic Classification Models (DCMs) are
multidimensional confirmatory latent class models that can classify individuals into
different classes based on their attribute mastery profiles. While DCMs represent the
more prevalent parametric approach to diagnostic classification analysis, the Hamming
distance method, a newly developed nonparametric diagnostic classification method, is
quite promising in that it does not require fitting a statistical model and is less demanding
on sample size. However, both parametric and nonparametric approach have assumptions
of local item independency, which is often violated by testlet based tests. This study
proposed a conditional-correlation based nonparametric approach to assess testlet effect
and a set of testlet Hamming distance methods to account for the testlet effects in
classification analyses. Simulation studies were conducted to evaluate the proposed
methods.

In the conditional-correlation approach, the testlet effects were computed as the
average item-pair correlations within the same testlet by conditioning on attribute
profiles. The inverse of the testlet effect was then used in testlet Hamming distance
method to weight the Hamming distances for that particular testlet.

Simulation studies were conducted to evaluate the proposed methods in
conditions with varying sample size, testlet effect size, testlet size, balance of testlet size,
and balance of testlet effect size. Although the conditional-correlation based approach

often underestimated true testlet effect sizes, it was still able to detect the relative size of



different testlet effects. The developed testlet Hamming distance methods seem to be an
improvement over the estimation methods that ignore testlet effects because they
provided slightly higher classification accuracy where large testlet effects were present.
In addition, Hamming distance method and maximum likelihood estimation are robust to
local item dependency caused by low to moderate testlet effects. Recommendations for

practitioners and study limitations were provided.
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CHAPTER I

INTRODUCTION

Most current large scale assessments provide a single score regarding an
examinee’s unidimensional ability. However, there is an increasing demand for
diagnostic information about the examinee’s specific skills and attributes. The test takers
and stakeholders need such information to inform their learning and classroom
instruction. Classical test theory and item response theory generally order people on a
latent trait. These approaches are typically not useful in identifying skills and attributes
that are mastered or not mastered by examinees. Diagnostic classification models
(DCMs) have been developed to measure specific skills and knowledge, and thus provide
information about the examinee’s strengths and weaknesses in a related cognitive domain
(Dibello et al, 1995; Junker & Sijtsma, 2001; Hartz, 2002; de la Torre & Douglas, 2004;
Henson & Templin, 2007; Von Davier, 2008; Rupp,Templin & Henson, 2010).

A large number of diagnostic classification models have been developed in order
to describe the correspondence between individuals’ responses and the underlying
attributes or skills that are required to correctly answer the items in a test. Most
diagnostic models are constrained latent class models, in which the individuals’
proficiency is described in terms of discrete attributes. Individuals are evaluated as either
having mastered or not mastered each set of skills. Based on his/her mastery profile of the

skills, the examinee is classified into a specific category. For example, a Number



Subtraction test measures four attributes: convert a whole number to a fraction, separate a
whole number from a fraction, find a common denominator, borrow from whole number
part, the individual will be classified into one of the 2* =16 categories based on the set of
skills that have been mastered.

Different diagnostic classification models make different assumptions about how
attributes are used to construct item responses. Conjunctive models assume that all
measured attributes are required to correctly answer an item, whereas disjunctive models
assume that only one attribute needs to be mastered in order to have a high probability of
giving a correct answer to the item.

Although diagnostic classification models are gathering increased research
interest and have been applied in a large number of studies such as mathematical skill
diagnosis ( Tatsuoka, 1983; Hartz, 2002; de la Torre & Douglas, 2004; Henson, Templin
& Willse, 2009), language skill diagnosis test (Jang, 2008, 2009; Von Davier, 2008), and
pathological diagnosis (Templin & Henson, 2006), they have some disadvantages. For
example, diagnostic classification models heavily rely on maximum likelihood estimation
(MLE) procedure with expectation maximization (EM) or Markov Chain Monte Carlo
(MCMC) for model estimation. A large sample size is typically required for these
estimation methods to obtain accurate parameter estimation, examinee classification and
model fit testing. The necessity of a large sample size limits the application of DCM. In
addition, there are always concerns that the models that are applied in diagnosis
classification analysis are either incorrect or do not fit. In response to those obstacles

caused by sample-size limitation and model selection in traditional diagnostic modeling,



nonparametric diagnostic classification methods were developed as approximation
methods to classify examinees into different attribute mastery profiles (Willse, Henson,
& Templin, 2007; Ayers, Nugent, & Dean, 2008; Chiu, 2008; Chiu, Douglas, & Li, 2009;
Park & Lee, 2011; Chiu & Douglas, 2013;Wang,& Douglas, 2015). Compared to the
parametric methods, nonparametric methods have no requirement for large sample sizes
because no parameters are estimated and they make no assumptions about population
distribution.

Though parametric and nonparametric classification methods are different, the
classification accuracy of both are challenged by local dependencies that exist among
items because both assume or treat the items in a test as being independent from each
other. Local item dependencies (LID) can come from multiple sources. In this study, the
specific focus is on the LID caused by testlets or item grouping.

A testlet is a section of the test that is comprised of a group of items based on the
same stimuli or shared passage (Wainer, 1977). Because it requires the examinee to have
a fair amount of time and requires the mental process to read and comprehend a passage
or paragraph, it will save time and cost if multiple items are created around one passage.
Examples of testlets include tests in verbal proficiency, listening comprehension,
analytical reading, and mathematics.

It is well known that items sharing a common stimuli yield dependence among
responses of an examinee. Thus, the response of an examinee to one item could be
influenced by the answer to other items in the same testlet. However, this

interdependence among items is often ignored by test models that are used to score



examinees. For example, both classical test theory and item response theory are based on
the assumption of local item independence (LII). LIl means that the examinees’ scores on
different items should not be related when conditioned on examinees’ ability level.
Nested items within the same testlet are expected to have more interdependency than the
items from a different testlet.

It was shown that ignoring this dependency by using a traditional IRT model with
the LII assumption will result in overestimation of measurement precision and bias in
item difficulty and discrimination parameter estimates (Yen, 1993; Wainer & Lukhele,
1997; Bradlow, Wainer &Wang, 1999; Wainer, & Wang, 2000). However, the influence
of testlet effects on diagnostic classification analysis is less explored. Although methods
do exist in IRT and DCM:s to measure local dependency (e.g., Yen’s Q3, LD-X2,
conditional covariance), there is little research in measuring local dependency caused by
testlets in nonparametric diagnostic classification analysis. Also, there are few existing
solutions to account for local dependency in nonparametric classification analysis.

In response to the above stated obstacles in nonparametric diagnostic
classification analysis, this study seeks to extend the nonparametric Hamming Distance
method (NP) proposed by Chiu and Douglas (2013) to testlet-based tests with the
following goals:

1) Present a nonparametric method to measure local item dependency

caused by testlets in diagnostic classification analysis;



2) Present a new nonparametric method for testlet based diagnostic
classification, that is, the testlet nonparametric Hamming distance
(testlet NP) method;

3) Investigate the performance of nonparametric methods of local item
dependency detection in different test conditions;

4) Investigate the performance of the proposed testlet NP methods in
comparison to NP method and the traditional DCM methods in
situations where different levels of local item dependency are present.

Findings of this study will provide some insights into the impact of testlet effect

on diagnostic classification analysis and the solution to account for testlet effects.
Specifically, if the proposed conditional covariance estimation method provides a
heuristic approximation of the testlet effect, it can be used to refine the items and test
design and increase the precision of diagnostic classification. Second, the proposed testlet
NP method is an initial effort to solve the LID issue in nonparametric classification
analysis. If the method is efficient, it can be applied in practical settings where only small
sample sizes are available. Third, the comparison of NP methods and traditional
parametric diagnostic analysis in a variety of testlet conditions will facilitate the

practitioners’ choice of estimation methods in specific test conditions.



CHAPTER II

LITERATURE REVIEW

The primary purpose of diagnostic classification analysis is to assign individuals
to classes according to the skills or attributes they have mastered. Two major approaches
exist in diagnostic classification analysis. One is the parametric method involving
mathematical modeling and parameter estimation, the other is the nonparametric
approach, which does not involve parameter estimation. Both approaches have the
assumption of local independence. This section begins with a description of parametric
and nonparametric diagnostic classification methods, then introduces an issue of local
dependency in diagnostic classification analysis, followed by the attempts in solving local

dependency issue in traditional diagnostic classification models.

2.1 Diagnostic Classification Modeling

Diagnostic classification models (DCMs) or cognitive diagnostic models (CDMs)
are confirmatory multidimensional latent classification models (Lazarsfeld & Henry,
1968; Rupp, Templin & Henson, 2010) in that the number of classes and latent categories
in DCMs are explicit. They are mathematical models that define the probability that an
examinee correctly answers an item as a function of the examinee’s attribute profile, i.e.,

the presence and absence of a set of attributes, which is typically represented by a vector

ai = (0,,0,,...,0, ).



1 if person i mastered attribute k;
a, = (1)
0 otherwise.
An attribute profile is assumed to provide insights into the examinee’s strengths and
weaknesses in specific attributes. According to his/her mastery of each attribute, the
examinee is classified into one of the finite number of latent classes.

Specifying the attribute mastery status of an examinee by a test requires a Q-
matrix for any approach and method. The QO matrix represents the knowledge structures
of the test and can be viewed as a loading indicator in a confirmatory factor analysis
(Rupp & Templin, 2008a). The O matrix is defined as a J x K matrix where J items are
represented by rows and K attributes are represented by columns, the entry gjx indicates

whether or not attribute & is measured by item ;.

1 if itemj requires attribute k;
9y = (2)
0 else.
Thus, a test with 20 items measuring 4 attributes will also have a 20 x 4 Q matrix.

In recent decades, a large number of DCMs have been proposed (DiBello,
Roussos, & Stout, 2007; Rupp &Templin, 2008a) based on the condensation rule, that is,
the interaction between attributes and items. Those models in the recent literature can be
categorized into the following categories: compensatory models and noncompensatory
models. Under the noncompensatory models, there are conjunctive models and
disjunctive models. Under the assumption of noncompensatory conjunctive models, the

examinee must master all attributes required by the item in order to get the item right.
7



Under the disjunctive noncompensatory models, mastering a subset of required skills by
the item is sufficient for having a high probability of answering the item right. Mastery of
more attributes does not dramatically increase the probability. Common conjunctive
models include Deterministic Input, Noisy “And” gate model (DINA; Junker & Sijtsma,
2001), Noisy Input, Deterministic “And” gate model (NIDA, Junker & Sijtsma, 2001),
and the Reparametrized Unified Model (RUM; Hartz, 2002), whereas the most famous
example of a disjunctive model is the Deterministic Input Noisy “Or” gate model (DINO;
Templin & Henson, 2006). In contrast to noncompensatory models, compensatory
models allow the probability of giving a correct answer to increase with the mastery of
additional attributes. The general diagnostic model (GDM; Von Davier, 2005, 2008) and
compensatory RUM (a special case of GDM; Hartz, 2002) are the two most commonly
used compensatory models.

Although there are a plethora of DCM models, generalized models or frameworks
have been developed to subsume many traditional DCM models, such as GDM ( Von
Davier, 2005, 2008 ), the log-linear cognitive diagnostic model ( LCDM; Henson,
Templin & Willse, 2009), and Generalized DINA(G-DINA; de la Torre, 2011). This
study uses the LCDM as its modeling framework because it is easy to develop new
models by adding or changing parameters within this framework. In the next sections,
more detailed discussion of some major noncompensatory models and compensatory

models, as well as the LCDM, are provided.



2.1.1 Noncompensatory Models

Henson et al. (2009) defined noncompensatory models as models where the
relationship between any attribute and the item response depends on the examinee’s
mastery status on the remaining attributes measured by that item. Based on the
dependency between item response and attribute mastery, noncompensatory models can
be further divided into conjunctive and disjunctive models.

The DINA model is probably the most commonly used conjunctive model. In the
DINA model, items divide the examinees into two classes, examinees who have mastered
all attributes required by the item and those who have not. Let &; indicate whether person

i mastered all skills required by item j,

K
& =[ax 3)
k=1

where s is the slipping parameter and represents the probability that an examinee misses
item j when possessing all attributes required by item j, whereas g, the guessing
parameter, represents the probability of an examinee giving a correct answer even if

he/she hasn’t mastered all attributes required by item j. The parameterss; and g;are

defined as
Sj:P(X[j:O|{ij:1) 4)

g =P(X; =0[; =0) )



Thus in the DINA model, each item has one slipping parameter and one guessing

parameter. The probability of a person giving a correct response is defined as

P(X, =11&,.5,,8)) = (1=s))% g % (©)

Although the DINA model has been widely used because of its simplicity and less
demands on sample size, one concern is that the DINA model is too restrictive because it
partitions examinees into only two classes per item: the examinees who have mastered all
attributes required by item j and examinees who have not mastered all attributes. That is,
the examinees lacking one attribute will have the same probability of answering the item
correctly as examinees lacking more attributes. However, there are situations where the
examinee has a higher probability of answering the item right when he/she only lacks one
required attribute as opposed to lacking more required attributes.

Additional conjunctive models have been developed to account for this concern.
One such model is the Noncompensatory Reparametrized Unified Model (NC-RUM,
Dibello et al., 1995; Hartz, 2002; Dibello et al., 2007). The model has two variants, one
of which is called the full NC-RUM, the other is called the reduced NC-RUM. In this
section, the reduced NC-RUM is discussed.

The reduced NC-RUM accounts for different contributions of each attribute and
each item. This model is based on the unified model of Dibello et al.(1995). Given an
examinee’s attribute profile a;, the reduced RUM defines the probability that examinee i

correctly answers item j as

10



K
P(X; :1|ai):nj|_|rjkqjk(l_aik) (7)
k=

—

Where 77;‘ is defined as the baseline probability of a correct answer when all the skills
required by item j are mastered and correctly applied. When compared to the DINA
model, 77;‘ is equal to not slipping (i.e., 1-six). Parameter I’;c represents the penalty to the
probability of correct response to item j when attribute & is not mastered. For an examinee

who has not mastered one skill, the item probability is reduced by a factor equal to r;( for

each nonmastered skill. The larger I’;c is, the smaller the penalty. The parameter I’;c is

*

constrained to be 0 < 7 <I.

Both the DINA model and the reduced NC-RUM assume that the examinee
should master all attributes required by the item in order to have the highest probability
of giving a correct answer. However, in some situations, mastery of one attribute is
enough to answer the item correctly.

Disjunctive models assume that mastery of an additional attribute does not
increase the probability of a correct answer or it just increases the probability relatively
little. Based on the DINA model, Templin and Henson (2006) proposed the DINO model
to address this situation. Similar to the DINA model, there is only a slipping parameter

s; and a guessing parameter g; in the DINO model. Instead of using§;, they used &) to

represent the latent variable and it is defined differently

11



K 4k
@ =1-[]0-a) ®)
k=1

The value ¢ indicates whether person i has mastered at least one skill required by item /,
@) =1 when the examinee mastered at least one attribute required by the item and ;=0

only when the examinee has not mastered any required attributes. Hence, in the DINO

model, the probability that an examinee correctly answers an item is defined as
P(Xy-:l‘a)lj,sj,gj):(I—Sj)%gj% (9)

The DINO model has similarity to the DINA model in that examinees only have
two probabilities of a correct response. The class of examinees that mastered one skill
have the same probability of giving a correct answer as the examinees that master all

measured skills.

2.1.2 Compensatory Models

In compensatory models, the conditional association between one item and one
required attribute is independent of the examinee’s mastery status of other attributes
(Henson et al., 2009). Examples of compensatory DCMs include the additive GDM
models (Von Davier & Yamamoto, 2004) and the compensatory version of RUM model
(C- RUM; Hartz, 2002). C- RUM is a special case of GDM (Von Davier, 2005). GDM
generalizes to dichotomous and polytomous responses as well dichotomous and

polytomous Q matrix entry (attributes). In addition, with an interaction term added, it

12



becomes a conjunctive model. C-RUM only considers the additive portion and
dichotomous responses and its item response function is

k * *
exp() .7 auq;, —7TT;)
P(XU :1|al): Zk 1 _]k* J J (10)

k *
1+ exp(Zkzl rjka’ikqjk —1;)

In the C-RUM, the probability is at the lowest when no required attributes are
mastered and the kernel = - lTj (similar to a guessing parameter). The probability of a
correct answer is increased as a function of each measured attribute that is mastered. The
increase rate is defined by r;( (7’;c > 0). This is different from the reduced RUM model,
where the probability of a correct response decreases as a function of each required

attribute not being mastered at the rate of r;( .

2.1.3 The LCDM Framework

Henson et al. (2009) developed the LCDM by adding interaction terms to the
GDM that account for the interaction between skills, and restricting the application to
dichotomous item response and attribute. Therefore, as Henson et al. (2009) suggested,
LCDM can also be understood a simple extension of the binary special case of the GDM.

Under LCDM, the probability that an individual with attribute profile a; giving a

correct response to item j is defined as

exp[A;, +ATh(q . ,a;,)]
P(XU:1|al)— p 7,0 j (qjk k) (11)

1+ eXp[/]j’O + A/Th(qjk Q)]

13



Where the meanings of aix and gjx are the same as previously described, 4, , is the
intercept and represents the log-odds when an examinee does not possess any required

attributes, 4; represents the weight for the j™ item, and Afh(q k> @y) is the sum of linear

combinations of the interaction effect and all main effects of the required attributes. 4 ()

is the mapping function which relates slope (weight), attributes, and Q matrix to the

response function. The function /]/_T (g, ay) is unfolded as

k-1

k
Z Aj,(k,k‘),Zakak‘ijqjk'"' (12)

k=1 k'>k

k
/1].Th(qj'kaaik) = Z/L',k,lakqj'k +
k=1

Here A, is the weight for the main effect of attribute & in item j, and A, ; ;. , is the

weight for the interaction effect of attribute k£ and &’ for item j. There are as many main
effects as the required attributes by item ;.

By constraining slope parameters, the item response functions for many well-
known DCMs such as DINA, DINO, and C-RUM can be formed. For example, when the
main effects in Equation 11 are constrained to zero, and only the highest interaction

remains, the probability of a correct response for the DINA model is expressed as

k
eXp(/]‘/,o +/1j,C |_| a/fjk)
=1

P(X,=1|a)= (13)

x
I+exp(A; o+ 4, ¢ |_| a’t)
k=1

Where C represents the highest interaction. If any attribute is not mastered, the whole

interaction effect will be zero.

14



For a test that measures two attributes, when constraining A, =A,. =-1,,.,
Equation 11 becomes the item response function of the DINO model

exp(Ay + A, 0y + A0y +(=A,,.)0,0,)

P(X,=1lla)=
v 1+exp(Ay + A0y + A0y +(=A,4)0,0,)

(14)

The sign in front of A; can be generally determined by (=1)°!, where c indicates the type

of effect. For example, c is equal to 1 for main effects, and equal to 2 for two-way
interaction effects, and so on.
When the slope parameters for interactions are fixed at 0 and only the main

effects are kept, Equation 11 becomes the item response function of the C-RUM model,

k
exp(A o+ D Ao @ad i)
POY, =110, = = (15)

k
1+ eXp(/]i,o + Z Ai,l,(k)aikqjk)
k=1

Several software packages have the capacity of estimating the LCDM, such as Mplus
(Muthen & Muthen, 1998; Rupp, Templin, & Henson, 2010; Templin, 2013), R “CDM”
package, and the flexMIRT computer software (Cai, 2012). In addition, the LCDM has
been used in a few studies to develop new diagnostic models (Choi, 2010; Hout & Cai,

2012; Hansen, 2013).

2.2 Nonparametric Diagnostic Classification

All DCMs discussed previously have been estimated with the EM algorithm or by

Markov Chain Monte Carlo (MCMC). Those estimation algorithms usually require large
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sample sizes and involve heavy computing procedures with special software, which limits
the breadth of DCM application (Choi & Douglas, 2013; Wang & Douglas, 2015).
Nonparametric classification analyses are alternatives to parametric DCMs in this aspect.
Compared to DCMs, nonparametric methods do not involve any probability computation
or parameter estimation, and thus typically do not require large samples size and heavy
computing procedures. A few nonparametric classification methods have been proposed
in recent years. In the following paragraphs, one hybrid method that includes both
nonparametric computation and parametric information and two nonparametric methods

are discussed.

2.2.1 Hamming Distance Method

Chiu and Douglas (2013) used the Hamming distance to determine the cognitive
profile that generates the closest ideal response pattern to the observed response pattern.
To distinguish it from other nonparametric methods, we call it Nonparametric Hamming
Distance Method (NP). NP does not use any item parameters of any diagnostic models
and thus can be applied with any sample size. In their simulation study, Chiu and
Douglas (2013) found that NP performed perfectly when the slipping and guessing
parameters are 0, and has an accurate classification rate higher than .67 when the model
is the DINA or NIDA with the maximum slipping and guessing parameters no greater
than .3. NP showed superiority to DINA-EM when the O matrix had misspecified entries.
Specifically, it deteriorated less than DINA-EM when the percentage of O matrix
specifications increased. However, its performance severely deteriorated when the model

is misspecified.
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In information theory, the Hamming distance between two equal-length strings is
the number of paired symbols at the same location that are different from each other. It
measures the minimum number of substitutions needed to change one string to the other
string. For example, in string A = (1, 1, 0, 1), and string B =(1, 0, 1, 1), we can observe
two pairs of numbers that are different. Therefore, the Hamming distance of string A and

B is 2. Hamming distance is often expressed as

J
dh(yzn):Zb/j _,Z/ | (16)
J=l

y; is j™ symbol in vector y
17;is the j* symbol in vector

Because the Hamming distance represents the number of paired symbols at the
same location that are different from each other, it can only be applied to dichotomous
DCMs, where the attribute and Q matrix entry are both dichotomous. In a test that

follows the DINA rule, the combination of a. vector and O matrix creates an ideal

K
response (i.e., expected response)/7; = |_| a,”* , which is the j component of the ideal
k=1

response pattern ;. Only if the examinee has mastered all attributes that have been
measured, 17;; =1, otherwise 1;;= 0. In a test that follows the DINO condensation rule,

the combination a; vector and QO matrix will create an ideal response
K

n; =1- |_| (1-a, )" . If the examinee has mastered any single attribute measured by the
k=1
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item, it will create a value of 7;;=1, if the examinee has not mastered any attribute
requested by the item, 1;;= 1. Thus 7; is a vector filled with binary values 1’s and 0’s.
The value of 7;; relies on the O matrix and is a function of the underlying attribute
pattern a;. For each one of the 2¥ attribute patterns, an ideal response patterns n?,
n%, n3,n?* can be constructed. Because 1;; is determined by a;, the distance between the
observed response pattern and the ideal response pattern under attribute a,, is defined as
D (i, am) form=1,2,..., 2%

Classification is achieved through minimizing the distance between the observed
response pattern and ideal response patterns under all attribute profiles, which will

produce the estimator
4 =argminD(y,a,) m0O(,2,...,2%) (17)

The ideal response pattern that has the minimum Hamming distance from the
observed response pattern is considered the estimated response pattern, and its
corresponding a. vector will be the examinee’s estimated attribute profile. Wang and
Douglas (2015) mathematically proved that the consistency of the NP method does not
depend on sample size.

Chiu and Douglas (2013) also proposed the weighted NP method. In this method,
the distance between each pair of ideal item response and observed item response is
weighted by the inverse of the observed item variance. Therefore, items with smaller

variance will have larger weights.
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Chiu and Douglas’s (2013) simulation study found that weighted NP resulted in
fewer ties, that is, there were less ideal response patterns that have the same distance with
the observed response pattern. However, this weighting scheme contradicts our
knowledge in both classical test theory and item response theory, which agrees that an
item with larger variance typically provides more information about the ability
estimation, whereas smaller variance may indicate that this item has low discriminality.

McCoy and Willse (2014) compared the performance of NP and another
diagnostic classification analysis, neural network approach (Shu, Henson, & Willse,
2013) with MLE as the baseline estimation method. Data were generated from the DINA
model while manipulating several factors including item numbers, sample size, number
of attributes, and correlation among attributes. Findings suggested that NP moderately
outperformed neural network approach (NN) and was comparable to MLE in classifying
examinees in complicated structure, and slightly outperformed MLE and NN in simple
structure conditions. NN was comparable when test was short, the number of attributes

was larger, had simple structure, and low correlation among each other.

2.2.2 Cluster Analysis Approach

Some researchers attempted to use cluster analysis to classify examinees (Willse,
Henson, & Templin, 2007; Ayers, Nugent, & Dean, 2008; Chiu, Douglas, & Li, 2009;

Park,& Lee, 2011). Take Chiu, Douglas and Li’s (2009) cluster analysis approach to
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diagnostic classification for instance. In this method, the ith examinee’s kth attribute
scores W, =(W,,,W,,,...., W) are first estimated by a sum-score for attribute k using only

the items measuring each attribute

J
Wi =2 Yy (19)

J=1

The vector W was then taken as the entry for a user-selected cluster analysis (e.g.,
K-mean method and hierarchical agglomerative cluster analysis) with a pre-defined
number of clusters as 2. Chiu et al. (2009) showed that the K-means cluster analysis
and hierarchical agglomerative cluster analysis (HACA) were quite comparable to DINA-
EM classification when the number of test items is over 4. Although the classification
results were better for DINA-MMLE and K-means when the sample size N=500 than
when N=100, this trend was not true for HACA because it does not involve fitting either
item parameters or cluster centers. This result suggests that the cluster analysis approach

is influenced by test size but not by sample size.

2.2.3 Sum-Score Approach to Attribute Classification

In addition to the nonparametric and parametric methods, Henson, Templin and
Douglas (2007) proposed a hybrid approach which combines attribute sum-score and
mastery/nonmastery cutoffs to estimate attribute mastery. The cutoffs were estimated
through the DCM model. Three different methods of computing sum-score were
proposed, and they are the simple sum-score (SSS), the complex sum-score (CSS), and

the weighted complex sum-score (WCSS). SSC and CSC are computed in the same way
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as in the cluster analysis approach (Equation 19), except that SSC is based on simple
structure items, whereas CSC is based on complex structure items. The limitation of SSC
and CSC is that both assume all items contribute equally in measuring the attributes. As

an alternative, WSC weighs each score by terms formed by the RUM calibrated item

parameters, 77" andr” .

J
Wy =2 7 (=1 )Yyq,, (20)

J=1

Simulation studies (Henson et al.,2007) with 10,000 examinees found that the
performance of the three methods are comparable to RUM classification, and WCSS is
always more accurate than the other two sum-score methods in different test lengths-,
attribute number- and correlation- conditions. This result suggests that the use of sum-
scores combined with model-based cutoffs can be applied in settings where simple
diagnostic classification is desirable. However, one limitation of WCSS is that it requires
the pre-calibrated item parameters in order to find the weights, another limitation is that
the cutoff scores are set by finding the cutoffs of attribute mastery in the population
through model calibration, which weakens its benefit in diagnostic classification over the

parametric approach.

2.3 Local Item Dependence

Conditional independence of item scores or local item independence has been
assumed in classical true score theory, item response theory, latent class analysis, factor
analysis, and diagnostic classification modeling (Lord & Novick, 1968; Yen, 1984, 1993;
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Rupp & Templin, 2008; Rupp, Templin & Henson, 2009). Local item independence (LI)
is defined such that an examinee’s responses to all items are independent of each other
while conditioning on his/her latent ability (or latent abilities combinations).

Because of the assumption of LI, item response theory states that given an
examinee’s ability 0, the probability that the examinee correctly answers K- independent

dichotomous items is the product of probability of answering each item correctly.
P(x; =1,x, =1,...,x; =1[0) = P(x, =1[0)x P(x, =1[8)x..x P(x;, =1| 6) (21)

For DCM, “conditional independence...means that the response on any given
item is only a function of the set of measured attributes” (Rupp, Templin & Henson,

2009, p.159). Mathematically, conditional independence in DCM is expressed as
J
P(X|ai):|_|P(x\ai) (22)
J=l

Conditional independence is also an assumption for nonparametric NP methods.
Wang & Douglas (2015) explicitly specified two assumptions of NP methods: 1) for
examinee 7, his/her item responses to all J items are statistically independent conditional
on attribute vector a;; 2) for all examinees, their responses to a specific item are
statistically independent. Local item independency assumption is necessary for the
consistency of nonparametric classification.

Macdonald (1981, 1994) and Stout (2002) argued that the LID assumption can be
weakened in a way that the item responses are mutually independent. When the weak

LID holds, it is more likely that the strong LID is met (McDonald & Mok, 1995).
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2.3.1 Source of Local Dependency

When there is shared variance between items conditional on the measured ability
or attribute profiles, the LI assumption is violated, and the source of local item
dependency (LID) should be investigated. LID can be categorized into two major
categories: those caused by dimension of measurement (i.e., construct
underrepresentation) and those caused by nuisance variations (i.e., construct irrelevant
variance). The former should be accounted for in the modeling process. For example, a
test contains items that are designed to assess distinct components belonging to a general
common latent trait (Steinberg et al., 2000), or a multidimensional test that is modeled
with unidimensional IRT models (Ackerman, 1992). The other causes are really
considered nuisance dimensions and are hard to be accounted for by an extra dimension
in the model. For example, Yen (1993) identified several potential causes of local
dependencies: 1) external assistance or interference, such as instruction assistance may
help students perform better on some items or disruption may influence the students’
score on some items negatively; 2) item chaining, when items are organized in steps, the
answer to previous items will help the answer to later items; 3) content, when items that
measure the same content are often locally dependent; and 4) passage dependence, in that
several items share a passage or have the same setting, LID can occur. Those items are
often called testlet items. LID among testlet items could arise from the student’s
differential level of special interest or background knowledge about the passage or the
information used to answer the items is interrelated in the passage, or the item-chaining

effect.
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Other sources of LID could come from speediness, fatigue, item format (construct
response), and raters. Those nuisance dimensions are generally due to test design. Even
though the fitted models are appropriate and number of ability dimension specified are
sufficient, those nuisance dimension could still cause shared variance among items.

In diagnostic classification analysis, LID is often interpreted as the result of under
-specification of Q matrix (Tatsuoka, 1983), where the omitted attributes might cause a
dependency among items. With an incomplete Q matrix, examinees with certain attribute
profiles could not be estimated (Henson, 2004). If those examinees happen to have
different distribution for those unspecified attributes, differential item functioning (DIF)
might occur, where examinees with the same attribute profile have different probabilities
of answering an item right are from different groups (Zhang, 2006; Hou, de la Torre &
Nandakumar, 2014). Similarly, when polytomous attribute spaces are modeled with
dichotomous models, LID could occur because there are still unexplained variances
among examinees.

In addition to the incompleteness of the Q matrix and differential item
functioning, the previously listed sources in Yen (1993) such as item chaining and
passage dependence could also cause LID in DCM. For example, many diagnostic
assessments regarding English language proficiency are based on reading comprehension
passages (Buck, Tatsuoka, & Kostin, 1997; Jang, 2008, 2009; Sawaki, Kim & Gentile,
2009) Though the under-specification of Q matrix and DIF has been widely studied in

DCM literature (e.g., Zhang, 2006; Rupp & Templin, 2008b; DeCarlo, 2011; Hou, de la

24



Torre & Nandakumar, 2014; Macdonald, 2014), LID caused by within testlet
dependency has not been frequently discussed.

Locally dependent items contribute less information about the person’s assessed
ability than locally independent items because the more that a pair of items are related,
the more they are redundant to each other. Ignoring LID might result in biased estimation
of item and person parameters, overestimation of reliability and possibly the
misinterpretation of measured latent space (Yen, 1984, 1993; Sireci, Thissen, & Wainer,
1991; Wainer & Thissen, 1996; Chen & Thissen, 1997; Embretson & Reise, 2000).
Ackerman (1987) reported that when LID exists, the item discrimination parameters of
locally dependent items are over-estimated, difficulty estimates tend to homogeneous.
Yen (1993) found information function is inflated when LID items were treated as
independent items. When fitting a 3PL model to testlet item data, Wainer & Wang (2000)
found that the estimates for the item discrimination and guessing parameters were
substantially overestimated, although the item difficulties were well estimated. DeMars
(2006) found that the fitted 3PL model inflated the reliability for ability estimates when
the LID exists.

How examinee parameters are influenced by testlet effects or LID were not as
thoroughly addressed by studies of LID. Baghaei & Aryadoust (2015) compared the
multidimensional Rasch model and unidimensional model when testlet effects were
present, and found that the ability estimations by the two models are close to each other.
Specifically, the overall theta variance is 1.73 by the four-dimensional model and 1.70 by

the unidimensional model. The study by Jiao, Kamata, Wang and Jin (2012) has similar
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findings where the calibration models (Testlet model, Rasch model, and Multilevel
Model) do not have significant impact on person ability calibration bias. Another study
by Jiao & Zhang (2014) found that ignoring item clustering effects produced higher
errors on item parameter estimates but not on the accuracy of ability parameter estimates,
while ignoring person clustering effects yielded higher total errors in ability parameter
estimates but not in item parameter estimates.

McCoy (2015) investigated the effect of increasing systematic within-skill profile
variation using DCMs caused continuous abilities variation on skill mastery
classification. It was found when there was LID, the difference between nonmastery and
mastery of attribute profile on a continuous ability, the classification accuracy notably
dropped.

In summary, studies of LID in item response theory generally found that LID
could cause inaccurate parameter estimation and overestimation of test precision but had
less impact on person ability estimation. Though, the study on the influence of LID
caused by testlet effects on parametric and nonparametric diagnostic classification
analyses is rather scarce. While testlet effects do not have a significant impact on
classification accuracy in IRT study, how testlet effects impact classification accuracy in

diagnostic classification modeling is not well understood.

2.3.2 Detection of Local Item Dependency

As previously mentioned, the usefulness of latent ability estimation and the
precision of item parameter estimation depends on specifying the correct form of the item

response function and the assumptions of LI, monotonicity, and unidimensionality. LID
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and unidimensionality are usually discussed together. Because of the importance of LID,
a variety of LID checking procedures have been developed, some are parametric
approaches like Yen’s Q3 (Yen, 1984), Chen & Thissen’s (2000) G* and LD-X?, the
others are nonparametric procedures such as Mantel-Haenszel test and conditional
covariance based approach. In parametric procedures, a unidimensional model is fit to the
data, then LID is tested between each item pairs. If the LI assumption fails, a
multidimensional model or a unidimensional model that allows for LID is needed. In
contrast with parametric LID detection, nonparametric LID assessments do not require
model specification. In the following, a few parametric LID measurement indices and a

nonparametric LID detection method are discussed.

2.3.2.1 Parametric Measurement of LID

Yen’s Q3 (Yen, 1984), Chen and Thissen’s G* and LD-X? (Chen & Thissen,
2000) are all indices to assess item-pair LID. Among them, Yen’s Q3 is most commonly
used in IRT (Yen, 1984, 1993; Zenisky, Hambleton, & Sireci, 2006; Pommerich &
Segall, 2008). It is defined as the correlation between a test taker’s residuals on a pair of

items after fitting a 3PL to the data. The computation is given by
d; =x,~P,(8) (23)

Q3/_‘/' =Tia. (24)

77T

Whered;, is the examinee’s residual of the J™ item, x; 1s the observed score of the i
examine on the j” item, F;(6) is the probability that the i™ examinee gives correct
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response to the j item, or expected raw score for a dichotomous item. The correlation of
these scores taken over examinees is Q;;; . O3 can be transformed to a Z score which has a
normal distribution. It has a mean of 0 and a variance of 1/ (N-3).

LD-X? reflects the discrepancy between observed and expected counts after the

data is fit to a model. It is computed from the observed and expected bivariate response
frequencies for a given item pair. Chen and Thissen (1997) proposed to use Pearson X?

and likelihood ratio G* to measure the discrepancy. The two statistics are computed in

the following manners (Liu, 2011),

1 1
X2 — z Z xpqu *p¥q (25)

11 E
G*=-22, 2.0y, 1og{ 5 ] (26)

Where O, . and E_  respectively are the observed and expected bivariate response
pq Pq

frequencies for a given item pair. The observed cell counts can simply be computed by
crosstabulating all the examinees’ dichotomous responses, the expected (marginal)
frequencies are obtained by taking the product of correct response probabilities and
incorrect response probabilities of the given item pair and then integrating the products

over the latent space (&)
E, . =N[PR©)" P,(6)'[1-P(O)]*[1-P,(6)] f(6)d6 (27)
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It was found that Yen’s Q3 often results in negative bias because the residuals are
calculated by estimated 0 that relies on all item responses (Yen, 1984). Most of all, if the
fitted model is wrong, the resulting index might fail (Hattie, 1984). On the other hand,

sufficient sample size is required for computing Chen and Thissen’s (1997) LD-X? and
G? that use the estimated marginal frequencies from a fitted 2PLM or 3PLM.

2.3.2.2 Item Pair Conditional Covariance

The nonparametric measurement of LID is based on the conditional covariance
structure of the item scores. The conditional-covariance (CC) based approaches are
widely used in nonparametric IRT (Birnbaum, 1968; Rasch, 1960) based research and
application (Stout, 2001). For example, a few CC based approaches have been proposed
to detect multidimensionality, such as DIMTEST (Stout, 1987; Nandakumar & Stout,
1993; Stout, 1987; Stout, Froelich & Gao, 2000), HCA/CCPROX (Roussos, Stout, &
Marden, 1998), and DETECT (Kim, 1994; Zhang & Stout, 1999). In contrast with
parametric methods, nonparametric procedures do not depend on any parametric form for
item response functions. In addition, the previously mentioned procedures are all based
on conditional covariance of the item pairs. The assumption of using item pair
conditional covariance to estimate multidimensionality is that the covariance of two item
response scores conditional on the target 6 or fs should be zero or a small negative value.
Let U; and U, denote all the examinees’ responses to item i and j, when weak local

independency holds,
cov(U,,U;16)=0 (28)
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The number correct score S _.. is often used to represent theta when computer item-pair

(=)

conditional covariance.
cof/(Ul.,Uj | S-) =0 (29)

S, _... is the sumscore with scores on items i and j excluded. Douglas, Kim, Habing and

(=)
Gao (1998) further expanded the ideal of conditional covariance to detecting LID in
testlet items, that is, conditional on an unidimensional 6 and A. P(U, =1|6,4,) and

P(U, =1|86,A,) are increasing in each of the latent variables. The parameters 6 and A,

respectively, are the target ability or the ability that a given test is assumed to measure,
and the nuisance ability which is not the construct of interest but influences the

examinee’s response to the item. To include multidimensionality into the assumption,
Douglas et al (1998) also pointed out that LID can only hold on complete space (©O,/\)

where
AN=(A,...A) (30)
P(U, :uian =u; |9>/1i,/1j):P[Ui =u | ga/]i]P[Uj =u; |6,/1]] (31)

fori# j; A and A, represents the nuisance dimension measured by item 7 and item j

respectively. This situation can be found where a test consists of stand-alone items that
measure a distinct nuisance dimension in addition to the target ability (Douglas et al.,

1998).
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In diagnostic classification modeling, unidimensionality is not assumed. Instead,
the attribute profile is considered as the complete latent space. Extending CC-approach to

diagnostic classification modeling, if the test meet the LI assumption, it must satisfy

P, :ui’Uj =u; |a)=PU, =y, |a]P[U_,- :u_,'la] (32)

If LID exists among items within the same passage, the average cov(U,,U, |a) >0 over
all item pairs within the same testlet, and large average cov(U,,U |a) suggests large
LID. Approximating testlet effect with LID, larger cov(U,,U; | @) suggests larger testlet

effect size.

2.4 Strategies for Dealing with Local Item Dependency

Various approaches in IRT modeling have been proposed to account for the
construct relevant and irrelevant LID. For example, the Mixture Rasch model was
proposed to address LID caused by un-modeled dimensions that occurred because latent
classes had been combined (Rost, 1990).

There are two existing approaches that address the issue of LID in testlet-based
tests. The first approach is to fit the data with a unidimensional polytomous model where
all items associated with a common stimulus are combined to create one polytomous item
(Lee & Kolen, 2001; Cao, Lu &Tao, 2014). This approach is relatively easy but may lose
the item response pattern information due to combining items (Sireci, Thissen & Wainer,
1991; Zenisky, Hambleton, & Sireci, 2002). The second approach retains item-level

information by explicitly modeling LID, such as the bifactor model (Gibbons & Hedeker,
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1992) and the testlet model (Bradshaw & Wainer, 1999; Wainer et al., 2000; Wainer et
al., 2007; Wang & Wilson, 2005).

The bifactor model is a hierarchical factor model and a special case of the
multidimensional model. Equation 35 is the item response function of a 2PL bifactor
model (Reise, Bonifay & Haviland, 2012).

1

= (33)
I+exp(-1.7(a;,0; +a,6,)+d,]

Pi(Ujl =1)

a ;; = general factor discrimination parameter for item /,

a ;, = group (testlet) factor discrimination parameter for item j,
d ;= multidimensional intercept parameter for item j,

6,, = general ability score for examinee 7, and

6., = group (cluster specific) trait score for examinee i.

In a bifactor model, an item j loads on two dimensions: a cluster specific factor &
and a general factor “1”. The cluster-specific dimensions are independent of each other
conditioning on the general factor. The specification of a general factor is to account for
the association of items that is not explained by cluster-specific factor. If the item
discrimination parameters within a testlet are constrained to be equal, that is, remove the

subscriptj in a , , the bifactor model becomes a 2PL testlet model.

As in IRT, LID in DCM is related either to measured attributes or nuisance
dimensions. The former may be caused by an underspecified Q matrix or when multiple

strategies are used by examinees. There are models developed to account for the multiple
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strategies that examinees may use to approach an item, such as the multiple-choice
model multiple-strategy deterministic, inputs, noisy ‘‘and’’ gate model (MS- DINA; de la
Torre & Douglas, 2008; Huo & de la Torre, 2014). The incompleteness of O matrix
specification can be solved by specifying additional attributes in the Q matrix. Instead of

specifying another Q matrix or additional attributes, the full NC-RUM model includes a
continuous residual ability /7.to capture the influence of the attributes that are not

captured by the QO matrix. The full NC-RUM is defined as
IZ;C = P(Xic =1 | ac ’,70) = [ﬂfnnzf(l_am)qia ]Pcz (nc) (34)

where a. is the vector with all attribute mastery indicators for latent class ¢, 7 and r,

has the same meaning as in reduced NC-RUM, and respectively is, the baseline
probability of a correct answer when all the skills required by item j are mastered and

correctly applied, and the penalty to the probability of correctly answering item j when
attribute & is not mastered. P..(/].) is the probability for item j with difficult parameter c,
and it is defined as

exp(/7, +¢;)
P,(n.)= :
I+exp(n,. +¢;)

(35)

Equation 35 implies that P,(/7.) gets smaller when the value of ¢; gets smaller, a

large value of ¢; indicates that the item is not influenced much by the ability beyond the
attributes specified in the Q matrix. On the other hand, a low ¢;, (e.g. ¢; < 1) indicates that

the item requires more on unspecified attributes in the QO matrix.
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In the full NC-RUM model, 77, is a measure of the undifferentiated “ability” of
the respondent in class ¢ that is associated with all the unspecified attributes (Rupp,
Templin & Henson, 2010). As discussed in the previous paragraph, this residual ability

1. is only relevant when ¢; is small. When ¢; is large, P, (7].)is very small for lower 7,
values, and essentially 1 for medium to high /77, values. In another words, a large c;
indicates that only respondents with lower ability draw on/],, the unspecified attributes

(Rupp, Templin & Henson, 2010). Since/], absorbs all unspecified attributes or

unaccounted shared variance, it can also be used to explain the testlet-specific abilities.
In the testlet model, a testlet effect only accounts for the shared variance of the

items within the same testlet, the number of testlet effects corresponding to the number of
testlets in a test. Both 7, and the testlet effect are considered as random effects. That is,

regardless of their mastery profile, all examinees are equally likely to be at a certain level
of the residual ability. Examinees that mastered all O matrix specified attributes might
have lower residual ability, or have high residual ability but need not apply it, whereas
examinees who have not mastered the specified attributes might be high in that residual
ability.

A similar approach to the full NC-RUM in accounting for LID in diagnostic
classification modeling is the DCM Mixture Rasch Model (DCMixRM; Choi, 2010).
DCMixRM combines the LCDM and Rasch models in order to model both discrete

attributes and the continuous latent ability. Specifically, the LCDM portion of the model
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provides detailed profile information, and the Rasch portion captures the quantitative
difference between persons within a latent class.

The second approach is to model the dependency but consider it as a nuisance
dimension without estimating it. For example, Hansen (2013) extended the development
in hierarchical item factor analysis to diagnostic classification modeling and proposed a
hierarchical item response model (i.e., testlet DCM) to account for LID caused by
nuisance dimension. A random effect (error effect) was added to the LCDM framework
to account for dependency among items within the same item cluster (i.e., testlet). For a
polytomous item response, the cumulative response probability of the hierarchical item
response model for two attributes is given by

exp(A, +Aa;, +Aa, +/]j12ailaiz +ﬁj,s<(s)
I+exp(Ay +Aa, +Aa;, +A,,0,0, + B; <)

P(X; 2kla;,¢,)= (36)

where B s is the slope of item j on the cluster-specific factor & . & is the random error
and assumed to be normally distributed among the examinees. Each item is only allowed
to load on one cluster-specific dimension. When constraining the random intercept to be
the same across items within a testlet, that is, removing the subscript of j in 8 5 , all

Bjs = Bs, this model becomes the testlet DCM model. When further constraining the

number of score categories to two, the model is a testlet LCDM model. Figure 1 presents

a path diagram for a special case of the resulting model-testlet C-RUM model.
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By constraining the intercept and slope parameter as previously described in the
LCDM section, a testlet DINA model, a testlet DINO model, and a testlet C-RUM model

can be developed from Equation 36.

Figure 1. Diagram for Testlet LCDM Model

Simulation studies (Hansen, 2013) showed that in all conditions, the testlet DCMs
provided higher classification accuracy and better calibrated EAP scores than the
traditional DCM models when LID was present.

Despite that the testlet DCM models have been proposed to account for LID in
parametric DCMs, no effort has been made to account for the LID in nonparametric
diagnostic classification analysis (i.e., the NP method). When using both parametric and
nonparametric methods, Chiu and Douglas (2013) found that the larger the guessing

/slipping parameter is, the lower the classification rate. Testlet effects add randomness to
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the classification result, possibly deteriorating the performance of nonparametric
methods. This result creates some uncertainty concerning the examinee’s attribute
mastery status. This research intends to propose a variation of the nonparametric
Hamming distance method in order to account for the LID that exists in testlet-based
tests.

In summary, there is a need to develop a nonparametric testlet effect detection
method and a new nonparametric method that could account for the testlet effect. The
next chapter is devoted to describing the nonparametric LID detection method and
several variations of the testlet Hamming distance method, and the design of a simulation

study for evaluating the new methods.
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CHAPTER III

METHOD

3.1 Testlet Hamming Distance Method

The development of the testlet Hamming distance method (testlet NP) intends to
improve the performance of NP methods in situations where testlets might cause LID
between items. To account for the LID among items within the same testlet, we propose
weighting the distance between observed item response and ideal item response by the
inverse of a parameter corresponding to the testlet effect. Therefore, the Hamming

distance between two item response patterns is computed as

s J,
d, (. = zzyi vy =11, | 37)

s=1 j=175s

where J is the number of items within a testlet, S is the number of testlets in a test, y; is a
parameter based on the testlet effect for a particular testlet in which item j is located.
When there are no testlet effects, y; =1 and therefore there is no additional association
among items after conditioning on the attribute profile, thus the weight 1/ y; =1 for all
items. In contrast, when all items in a testlet are perfectly correlated and altogether
contribute as much information as one single item, the information contributed by each
item is one over the number of items, that is, 1/ y,=1/J;, hence the weight is constrained

by s <1/7.< 1.
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The value of y; is computed based on a heuristic used to approximate the testlet
effect size of the Sy testlet. By weighting the Hamming distance with the inverse of the
¥, items with larger testlet effects will be penalized more than items with smaller testlet
effects.

Hansen (2013) applied LD-X? to detect local dependency caused by testlets
However, LD-X? requires fitting the item response data to a testlet DCM and therefore
demands large sample sizes. A method that does not require the fitting of a mathematical
model and has less demand on sample size, that is, a nonparametric approach to testlet
effect detection remains to be developed. In this study, a method was proposed to
approximate the parameter yg using the average conditional correlation like the CC
approach to LID detection in IRT. The CC approach to LID detection in IRT, the
conditional variable is often the observed test total score or true score. However, the
conditional variable in diagnostic classification analysis is the examinee’s attribute
profile. If the test items are independent of each other, the correlation between item pairs
should be close to zero conditional on attribute profile; if LID exists within a testlet,
when conditioned on attribute profile, the correlations between item pairs within the same
testlet should be larger than the conditional correlation between items from different
testlets.

The question then arises: how is the attribute profile estimated prior to completing
the conditional correlations? In this study, two methods are proposed to approximate the
attribute profile. The first is simply to estimate the attribute profile with the NP method,

the second is to approximate the attribute profile with the attribute sum-scores. However,
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if the raw sumscores are used as conditional variables, there will be a large number of
attribute profiles. For example, if four attributes are measured in a test, and each attribute
is measured by 10 items, there would be 10* possible sum-score combinations and result
in 10,000 possible conditional attribute profiles. If there are 50 examinees, it is possible
that no correlation matrices could be computed because of the scarceness of examinees in
each sum-score profile. However, cutoff scores can be set for attribute sumscores and
classify the examinee into the mastery or nonmastery group based on his/her attribute
sumscores. If the examinee’s sumscore of one attribute is higher than the corresponding
cutoff, the examinee will be classified as the master of that specific attribute, otherwise as
the nonmaster. For convenience, the average attribute sumscore across examinees will be
used as the cutoff score. An a;, will represent the individual’s ks, attribute sum-score, if

ay is equal to or above the mean, ay is set to be 1, and otherwise is set to be 0.

3.1.1 Testlet NP Penalized by Conditional Correlation
Conditional covariance is influenced by item difficulty, and inflated by large item
variance. Therefore, average item item-pair correlation was proposed to estimate LID- y;.

For testlet S, the average correlation 7, will be computed and 1/ y; can be defined as

R (38)

The weight or penalty parameter 1/ ¥, is equal to “1” when all items are

completely independent of each other (7 =0), and equal to 1/ J; when the testlet items are

perfectly correlated (7, =1). To accommodate situations where the standard deviation of
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the response scores is zero, define Ny as the number of items where the variances are not
equal to zero. When the weight of Hamming distance is computed as in Equation 38, the
testlet NP method is called testlet NP penalized by conditional correlation.

NP penalized by conditional correlation minimizes the penalized distance
between the ideal response pattern and the observed response pattern. With this approach,
examinees are first classified using one of the nonparametric classification methods (such
as the NP method and attribute sum-score method), then the conditional correlation is
computed conditional on the examinees’ attribute profile (latent class). For each
estimated attribute profile and testlet, a conditional correlation matrix is computed with

item-pair correlations as the entries, and Fisher’s Z transformation is conducted for each
of the entries, then the average item-pair correlation for latent class C, 7,.is computed

across the matrix entries (Eq. 39).

J o S
Z ZZcor(US,i,US’j)

=" 39)
‘ J.(J.=1)/2

where c is the C" latent class. The testlet-specific average conditional correlation 7, is

computed by weighing the 7. with sample size in the latent class.

nEESe (40)
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where Nc represents the number of examinees in the C” latent class. 7, is then

transformed back to Pearson’s r. For a test that measures four attributes, the maximum
number of item-pair correlation matrix for each testlet is 16.

If the LI assumption is met, correlations between items within the same testlet
should be equal to the correlations between items from different testlets. Though not
necessarily, for the convenience of computation, it is assumed that testlet effects are the
equal across items. Therefore, all items within the same testlet are given the same weight
in Hamming distance calculation.

As the conditional correlation is computed by conditioning on the attribute
profile, and the examinee’s attribute profile can only be estimated through other methods,
the value of conditional correlation depends on how the examinees’ attribute profiles are
initially estimated. To show the dependency of conditional correlations on attribute
profile classification, a simulation study was run. In this study, data were generated with
the testlet DINA model (Hansen, 2013) for 1000 examinees to take three tests measuring
four attributes (K = 4). Each test contains five items belonging to one single testlet. The
three tests varied in testlet effect size (i.e., 0, 1, and 2). The correlation matrix of each
testlet was computed conditional on the true attribute profiles, NP estimated attribute
profiles, and attribute-sumscore estimated attribute profiles.

Table 1 presents the correlation matrices for examinees with true attribute profile
a.=(0,0,0, 1). As can be seen, the correlation values are larger and positive when the

testlet effect is large, whereas the correlation values are small and tend to be negative
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when testlet effect is small. In general, conditional correlations increase when testlet

effects increase.

Table 2 displays the average item-pair correlation for each of the 16 latent classes.

There is no obvious relationship between latent class and the average item-pair

correlation. The value of testlet effect when using the testlet model is the value of the B

parameter in Equation 36. When = 0, there is no testlet effect, § =1 or 2 indicates lower

and higher testlet effect, respectively. Notice that the three [s are in three different tests.

If the three s are for three different testlets in the same test, results will be different.

Table 1. Item Correlation Matrix of the Three Testlets for a = (0, 0, 0, 1)

Testlet effect=0

Item1
Item?2
Item3
Item4
Item5

-.28
-32
.08
-.18
.09

Testlet effect=1

Item1
Item2
Item3
Item4
Item5

23

2
19
17
21

Testlet effect=2

Item1
Item?2
Item3
Item4
Item5

27
29
23
.26
22

.19
.03
-.15

.04
.09
A1
24

44
42
32
45

.05
.08

-2

.36
28
18

44
54
33

-.07
-.12

24

37
25

15

25
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Table 2. Average Item-Pair Correlation Conditioning on the True Attribute Profile

Testlet Effect Size (B)

Profile 0 1 2
1 0000 -.01 12 .39
2 0001 -.01 17 41
3 0010 .01 14 29
4 0011 -.03 14 .34
5 0100 -.01 15 .30
6 0101 -.03 .16 .30
7 0110 -.02 17 31
8 0111 .01 .14 .35
9 1000 .04 .14 .35
10 1001 .01 21 .30
11 1010 -.03 .07 46
12 1011 -.01 .06 37
13 1100 .01 .09 .16
14 1101 .01 .09 25
15 1110 -.04 .07 .30
16 1111 .00 13 31

Table 3 and 4, respectively, represent the average item-pair correlations
conditioned on the NP estimated attribute profiles and the sum-score estimated attribute
profiles. Comparing Table 2, Table 3, and Table 4, the relationship between the average
conditional correlation and testlet effect are the same across the three tables. In other
words, the average correlations are larger in situations where the testlet effect size is
larger. However, there are some exceptions for Table 3 and Table 4, where the
relationship between testlet effect size and average conditional correlation are not truly
reflected, such as profiles 1 (0000), 5(0100), 9(1000), and 13 (1100) in Table 3 and

profile 12(1011) and 13 in Table 14. Under close inspection, it can be seen that the
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average correlations conditioned on the NP estimated attribute profiles do not completely
reflect the true conditional item correlation in Table 2. Specifically, they underestimate
the local dependency in many occasions.

Same as the average correlations when conditioning on NP estimated profiles,
when the testlet effect is present, the average correlations conditioned on attribute sum-

score estimated profiles are also smaller than those conditioned on true attribute profiles.

Table 3. Average Item-pair Correlations Conditioned on NP-Estimated Attribute Profiles

Testlet Effect Size (B)

Profile 0 1 2
1 0000 -.02 .08 .06
2 0001 -.02 .04 .08
3 0010 -.01 .04 .06
4 0011 -.03 .02 .08
5 0100 .01 -.01 14
6 0101 -.02 .10 .16
7 0110 -.01 .06 18
8 0111 .00 .04 12
9 1000 .01 18 .09
10 1001 .00 .03 .09
11 1010 .01 .05 .09
12 1011 -.01 .06 .09
13 1100 -.02 .03 10
14 1101 -.02 .06 17
15 1110 .00 .09 15
16 1111 .02 A1 .14
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Table 4. Average Item-pair Correlations Conditioned on Sum-score Estimated Attribute

Profile

Testlet Effect Size (B)

Profile 0 1 2
1 0000 -.01 .08 13
2 0001 -.02 .06 .05
3 0010 -.04 .03 .08
4 0011 -.02 .03 .09
5 0100 -.05 .05 A1
6 0101 -.12 .09 18
7 0110 -.04 .03 .20
8 0111 -.02 .05 .14
9 1000 -.02 A1 .07
10 1001 -.05 .05 A3
11 1010 .00 .08 A1
12 1011 -.02 .07 .07
13 1100 -.05 .00 A1
14 1101 -.02 .07 17
15 1110 -.01 .06 .16
16 1111 .02 A1 .16

Although the idea of estimating testlet effect from the conditional correlation
perspective may be possible, there are several problems that limit its application. With
small sample size, it is likely that only a few or no examinees belong to certain attribute
profiles. Although the computation of the Hamming distance does not depend on sample
size, the accuracy of the correlation estimates is related to sample size. Small sample
sizes might result in less accurate estimation of conditional item-pair correlations. In
addition, when all examinees of the same attribute profile give the same response to an

item, the variance of that item will be zero, thus the item-pair correlation cannot be
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estimated. However, when better methods to estimate the testlet effect are developed or
when a reasonable approximation is known, applying the testlet NP method in diagnostic

classification can still be plausible.

3.1.2 Testlet NP Penalized by Known Testlet Effect

Because the correlation estimation can be inaccurate with small sample size and
examinees’ homogeneous responses to the item, the testlet NP method might not work

well in a situation where sample size is small. However, assume that the testlet effect size
or the conditional correlation is known, ), can be used to represent the relative testlet

effect size within a testlet. In the testlet NP method, it is not the exact value of testlet
effect, but the relative weight for each item that is important. For example, if 7 =0
represents no testlet effect, 7 = .1 represents low testlet effect, 7 =.4 represents a higher
testlet effect, and larger numbers indicate larger testlet effects. For the five-item testlets,
we can define the penalty parameter 1/ y; by Equation 38. Correspondingly, 1/ y, for each
of the testlets has the value of 1, .92, and .68. When y; = 1, the testlet NP method in Eq.

37 is the NP method.

S I s J
d,,(y,1) ZZZID’g Ny 1= ZZb’y w/F (41)

s=1 j=1 s=1 j=1

In this section, a few variants of the NP methods that account for testlet effects
were presented and discussed. They are the NP approach penalized by the testlet
conditional correlation and the NP penalized by known testlet effects. Among the NP

penalized by conditional correlation, two ways to compute the conditional correlation are
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presented. One is to compute the conditional correlations conditioning on the NP
estimated attribute profile, the other is to compute the conditional correlations conditional
on the sumscore estimated attribute profiles. In the next section, a simulation study is

proposed to evaluate these NP methods.

3.2 Simulation Study

In Chapter 2, a literature review for the parametric and nonparametric
classification analysis as well as the methods and strategies used to deal with local
dependency was provided. In the first section of Chapter Three, the development of the
testlet Hamming distance nonparametric (testlet NP) method was presented. The purpose
of developing a new method was to account for LID caused by testlets in nonparametric
classification analyses. Though conceptually these methods can be explained, the
performance of the new methods also depends on how LID is computed. The simulation
studies described in this section were proposed to evaluate the performance of the newly
developed methods in various practical conditions in comparison with the NP method and
traditional DCM. In both the NP method and traditional DCM classification analyses,

testlet effects are ignored.

3.2.1 Research Design

To be informative and realistic, simulation studies should be representative of the
real world. However, some real world situations are too complicated to be represented in

a single study. Therefore this simulation study will only include factors that are
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considered to be most important based on the literature (Table 5) and pertaining to the
research questions.

The first step of the testlet NP procedure is to estimate the testlet effect. In section
3.1, it was proposed that the average conditional correlation could be used to approximate
the testlet effect. Therefore, it is important to evaluate how well the conditional
correlation can be estimated by the two proposed methods: 1) the correlation when
conditioning on the NP estimated attribute profiles, so called NP method (CC-NP); 2) the
correlation when conditioning on the sumscore attribute profile, so called sumscore
method (CC-Sumscore).

In section 3.1, the three variants of testlet NP methods were discussed: testlet NP
penalized by correlation conditioning on the NP estimated attribute profile, testlet NP
penalized by the correlation conditioning on sum-score estimated attribute profile, and
testlet NP penalized by preknown testlet effect . The former two are based on the
proposed conditional-correlation estimation methods, the third one is based on known
testlet effects. In fact, the third method is not a completely different method but is used to
determine whether or not the idea of penalizing the Hamming distance for testlet effects
is effective while avoiding the statistical estimation of the testlet effect. To evaluate the
performance of the testlet NP methods, the DINA model is chosen as the baseline model,
that is, all data are estimated as though they follow the DINA condensation rule. MLE of
DINA and the NP method were chosen to compare with the proposed testlet NP methods
to determine if the testlet NP methods show improvement in classification accuracy.

Throughout the study, the following questions were considered in evaluating the
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estimation efficiency of conditional correlation methods, the classification performance
of testlet NP methods, and the impact of testlet effect on different classification methods.
1. How well can the testlet effect be represented through average item-pair
conditional correlations?

1.1 What is the relative performance of the NP method and the sum-score
method in item-pair conditional correlation estimation with the correlation
estimation conditional on the true attribute profile as the baseline?

1.2 How does the sample size influence the performance of conditional
correlation estimation by the NP method and the sum-score method?

2. How do the testlet NP methods perform compared to DINA-MLE estimation and
NP in different test situations?

2.1. How does the testlet effect size affect the performance of the NP method,
testlet NP methods, and DINA-MLE in diagnostic classification analysis?

2.2. How does sample size affect the performance of the NP method, testlet
NP methods, and DINA-MLE in diagnostic classification analysis?

To answer the above questions, simulation studies were conducted. The

simulation design is presented in the next section.

3.2.2 Simulation Design

In reviewing the literature pertaining to nonparametric classification analysis, it
was found that several factors are commonly manipulated in previous studies (a summary
as seen in Table 5). Those factors include sample size, test length, the values for slipping

and guessing parameters, number of attributes, attribute correlation, the correct
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specification of the O matrix, and the matching between data generation models and
estimation models. In general, the number of attributes influences both the performance
of the parametric and nonparametric methods but not the relative performance when
compared to each other. Slipping and guessing parameters have a significant impact on
the performances of both the parametric and nonparametric methods, specifically, the
larger the two parameters are, the worse the classification accuracy (e.g., Chiu, Douglas
& Li, 2009; Henson, Templin & Douglas, 2007), although larger sample sizes and longer
tests increased CCRs when using both and NP classification (Chiu & Douglas, 2009;
Wang & Douglas, 2015; McCoy& Willse, 2015). Misspecification of the O matrix and
the misspecification of model affected the classification accuracy of both parametric and
nonparametric methods (Chiu & Douglas, 2013; Wang & Douglas, 2015).

A portion of the factors that seemed most important were manipulated and they
are presented in Table 6 with their levels that are proposed for the study. To facilitate

understanding, Table 7 explicates the conditions related to testlets.
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Table 5. Summary of Relevant Simulation Studies in Diagnostic Classification Analyses

Study Estimation Attribute | Number of | Sample Profile Generation Item parameters
model Number | items size simulation models
distribution
Henson Sum score 3,5,8 20,40 10000 MVN#* Reduced RUM
(2007) R=.3;.5
Chiu DINA-EM 3,4 20,40,80 100,500 MVN DINA, NIDO |s, g,
(2009) K-mean R =25.5 RUM, U(0,.15) and
HACA And Uniform | comprensatory | U (0,.3)
GDM
Chiu Cluster Same as | Same as Same as Same as DINO,DINA Same as above
(2015) analysis above above above above
Chiu NP, NPW 3,4 20,40 10000 MVN DINA, NIDA | uniform
(2013) DINA R=0, .3, .5 distribution
DINO Uniform 0-.1, .3,0r.5
McCoy NP, NPW and 20,50 20,50,100, | 0,.333,.5,.7 | DINA U(0,.10)
(2014) NN 4,8 500 U(.15, .25)
U( .35, .45)
Hansen Testlet DCMs | 4 20,120 20000 Higher order | Testlet DINA, | s beta(.02, .05)
(2013) (DINA, DINO, Clusters=1, model DINO, g beta(.01, .05)
C-RUM) 2,20 C-RUM
And traditional
DCM

Note, MVN: multivariate normal distribution; R: attributes correlation; s: slipping parameter; g: guessing parameter;, NPW.:
Weighted Nonparametric analysis, beta: beta distribution, U: uniform distribution




Factors including test length, testlet size (number of items within the same testlet),

and the number of testlets contained in a test were not manipulated in this study because

the three factors are confounded. One factor cannot be changed while keeping the level of

other two factors constant. In realistic test situations, it is not likely that all testlets in a

test have the same number of items and/or LID, and the testlet NP shows no necessity in

addition to NP method when all the testlets have equal LID because all items receive the

same weight (i.e., results will be identical to NP method). Therefore, the equality of

testlet size and testlet effect size is manipulated. In some simulated situations, the testlet

size and testlet effect size are held constant across testlets; in the other simulated

conditions, they vary among testlets.

Table 6. Simulation Design

Factor N of Levels Level Values
Attribute 1 4

Attribute correlation 1 5

N of items 1 24

Model generating type 1 Testlet DINA

Model application 1 DINA

Estimation 3 NP, Testlet NP, MLE
N of clusters 3 2,4

Testlet effect Size 5 p=0,51,2,3
Equality of testlet effect size 2 Equal, Unequal
Equality of testlet size 2 Equal, Unequal
Sample size (N) 5 50, 100, 500, 1000, 10000
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Four factors were manipulated in this study, they are the number of testlets, the
equality of testlet size across testlets, testlet effect size, and the equality of testlet effect
size across testlets. There were two levels for the number of testlets factor: the two-
testlets condition and four-testlets condition. Within each of the two conditions, the
equality of testlet size (number of items) was manipulated. In the “equal” condition, all
testlets in a test contain the same number of items (either 6 or 12 items depending on the
number of testlets). In the “unequal” condition, the number of items was different across
testlets. Specifically, in the two-testlets test, one testlet contains 2 items and the other
contains 18. In the four-testlet test, the four testlets contain 2, 4, 8, and 10 items
respectively (for specific information, see Table 7).

In testlet IRT, the magnitude of testlet effect is indicated by the variance of the
random testlet effect (Wainer & Wang, 2000; Wang, Bradlow & Wainer, 2002; Wang,
Chen, & Willson, 2005). The testlet effect variance indicates the degree of LID among
the items within a given testlet. For example, in Jiao et al. (2013), a variance of .25, .56
and 1 represented small, moderate and large testlet effect, respectively; in Wang et al
(2005), a variance of 0.25, 0.5, 0.75, and 1.00 represented small to large effects. In the
present study, data were simulated using testlet DINA model (Hout & Cai, 2012; Hansen,
2013) because the equality of testlet effect size across testlets in a test can be manipulated
by varying the testlet specific parameter [ as in Equation 36. In the “unequal” condition,
the testlet effect size varied across different testlets. For example, in the 2-testlet
condition, data for one testlet was simulated with § =1, the other was simulated with § =

2; in the “equal” condition, testlet effects were the same across all testlets. Within the
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condition of equal testlet effect size, the factor-testlet effect magnitude was controlled by

manipulating f between 0-3 (f =0, .5, 1, 2, 3) with the mean and variance of the random

error &, fixed at 0 and 1 respectively. The square of B corresponds to the testlet variance

(i.e., testlet effect). A B value “1” corresponds to testlet variance of 1, a § value of “2”
corresponds to testlet variance of 4, and so on. Therefore, in this study, while the § value
of 0 and .5 represents no testlet effects and small testlet effect respectively, f =1, 2, and
3 all represent a large testlet effect. The reason that large testlet effects were used is
because this study intends to examine 1) what degree that the classification methods
ignoring testlet effects can tolerate LID in terms of classification accuracy and 2) at what
conditions, the proposed CC methods and testlet NP methods show advantages.

The testlet effect size was not fully crossed with the factor-number of testlets. For
example, in two-testlet tests with different testlet effect size, the parameter f was
constrained to be 1 and 2. Table 7 provides detailed information about the testlet

structures described in the above simulation design.
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Table 7. Testlet Design

Number | Equality of Equality of
of testlets | testlet size | Testlet size | test effect size Testlet effect size
Same 0,.51,2,3
8+16
Different Different 1+2
2
Same 0,.51,2,3
Same 12+12 .
Different 1+2
Same 0,51, 2,3
2+4+8+10
Different Different S+1+2+3
4
Same 0,51,2,3
6+6+6+6
Same Different S+1+2+3

For each test condition, item response data of five sample sizes was simulated
(N=50, 100, 500, 1000, 10000). The relatively small sample sizes were chosen to
determine to what extent the nonparametric classification analyses demonstrate
advantages in small sample size conditions.

In summary, there were a total of 2 (Number of testlets) x 2 (Equality of Testlet
Size) x 5 (Testlet Effect Size of Equal Condition) +2 (Number of testlets) x 2 (Equality of
Testlet Size) x1 (Testlet Effect Size of Unequal Condition) = 24 test generation
conditions. As five sample sizes were simulated for each test condition, there were a total

of 24 x 5=120 data generation conditions.
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3.2.3 Data Generation

3.2.3.1 Q Matrix Generation

The number of attributes measured by one test was fixed at K=4 in all simulation
conditions. For different models, items were constrained to load on no more than two
attributes. In generating the Q matrix, a balanced design was first used, that is, there was
an equal number of items under each loading pattern. However, the model can become
unidentified if all items measure more than one attribute (Chiu, Douglas & Li 2009;
Madison & Bradshaw, 2014). A possible limitation of Hansen’s study (Hansen, 2013) is
that all items were designed to measure two attributes. Therefore, to ensure that the
model is identified, eight of the 24 items were constrained to have simple structure, those
items only measured one attribute. The resulting Q matrix is presented in Table 8, where

all attributes were measured by the same number of items.
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Table 8. Q Matrix for a Test of 24 Items

m
A

SO = P PO, O, OO == OO0 o000~ O oo o
SO —m O —m O~ = =) O, OO OO oo~ O OO == O

S O m O O OO OO P = = O === O, OO~ O~ O
—_ O O O O O OO P, OO O = O~ == O = O~ O

3.2.3.2 Attribute Generation

Examinee attribute profiles were generated from a multivariate normal
distribution so the attribute correlations could be controlled. In this model, discrete
attribute profile @ was linked to multidimensional abilities with an underlying
multivariate normal distribution, MV'N (0, 2 ), where the covariance matrix is expressed

as
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s=| 1 (42)

In this study, p =.5 for all conditions was used as in Henson et al. (2007), Chiu et al.
(2009) and McCoy & Willse (2015). After the four sets of 8s were generated from the
MVN distribution, they were further converted into 1’s and 0’s based on the following
transformation
1, if 8, >0;
a, = (43)
0, otherwise.
3.2.3.3 Item Parameter and Response Data Generation
Item response data was generated using 50 replications with a special case of
Hansen’s (2013) test DCM (Equation 36). That is, the responses were constrained to have
only two categories and the cluster-specific parameter to be equal across items within the
same testlet. For example, when measuring two attributes, the item response function of
the testlet DINA can be formed through additional constraints of the item intercept and

slope parameter,

K
exp(Ay ; +4; |_| a; +B.E,)
1

P(X, =1|a;,¢) = (44)

K
1+ eXp(/‘O,j +/]_j I_l agcjk +B4,)
1
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The guessing parameters g; and slipping parameters s; were both simulated from a
uniform distribution U (0, .2), and then transformed into LCDM intercept parameters A,

and slope parameter A as described in Henson et al (2009). For example, when define

LCDM as function of DINA parameters,

8

A, =In
0,/ (l_gj

) (45)

l—sj

S

) (46)

Acj =4 +1n(

3.2.4 Examinee Classification

First, the performances of CC-NP (attribute pattern estimated by NP method) and
CC-Sumscore (the attribute classification based on attribute sum-score) were investigated
to see which of the two methods provided average conditional correlation estimations that
were more reflective of the true testlet effect size. The average correlation conditional on
attribute pattern estimated by attribute sumscores and the average correlation conditional
on attribute pattern estimated through NP method were compared with the correlations
conditioned on generated attribute profiles. All conditional correlations were used in
computing the penalty parameter in testlet NP penalized by conditional correlation.

For each of the generated data sets, both parametric and nonparametric
classification methods were used for examinee classification. For parametric estimation,
all data were fitted using the DINA model and estimated using the MLE with an EM

algorithm (Bock & Aitkin, 1981). For nonparametric classification, the NP method,
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testlet NP penalized by conditional correlations, and testlet NP penalized by preknown
testlet effect were applied. The “CDM” package (Robitzsch, 2015) in R was used to
perform DINA-MLE estimation, AlphaNP function from “NPCD” package (Zheng, Chiu
& Douglas, 2015) in R was used to perform NP estimation, and testlet NP methods was

programmed in R by the author.

3.2.5 Evaluation of Examinee Classification

The performance of the traditional classification modeling and nonparametric
method was evaluated through correct classification rates (CCRs), which is the agreement
between the estimated and the known true classification. Like Chiu et al. (2013) two
indices were employed to summarize the results. One is the pattern-wise agreement rate
(PAR)-the proportion of attribute patterns accurately estimated, the other is the attribute-
wise agreement rate (AAR)-the proportion of individual attributes that were classified

correctly. The two indices were defined as:

1 0’ a;
Par=Yy) 924 7)

aar=y "y 0= ] (48)

Mean and standard deviation of the CCRs for the 50 replications for each
condition and estimation were calculated. In Monte Carlo study, standard deviation is the
standard estimation error that provides the precision information of each estimation

method in different test conditions.
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CHAPTER 1V

RESULTS

The purpose of the simulation study was to investigate the performance of the
item-pair conditional correlation in estimating testlet effects and the classification
accuracy of the proposed testlet Hamming distance methods in conditions with varying
testlet effect, sample size, equality of testlet effect, and equality of testlet size. Results are
presented to address the following two major research questions:

1. How well can testlet effects be identified using average item-pair conditional
correlations?
2. How do testlet NP methods (weighted Hamming distance methods) perform
compared to the NP (unweighted Hamming distance) method and MLE method?
Because the proposed testlet NP methods are essentially weighted Hamming distance
methods, and the weights are determined by the testlet-specific average item-pair
conditional correlation, answers to the first question are expected to provide some
information for selecting the appropriate method used to estimate the weighting
coefficients, and some explanation for differential performances of the testlet NP

methods.

4.1 Item-pair Conditional Correlation Estimation

The testlet-specific average item-pair conditional correlation was proposed in

Chapter Three to measure the testlet effect. The conditional variables, attribute profiles,

62



were estimated via the NP method or the attribute-sumscore method. Correspondingly,
the two conditional correlation estimation methods are represented using CC-NP and CC-
Sumscore, respectively.

To examine to what a degree that CC-NP and CC-Sumscore are able to detect the
true testlet effect, the conditional correlations estimated by the two methods were
compared to that when the conditional variable is the true attribute profile (CC-True). In
this section, the average item-pair conditional correlation by CC-NP, CC-Sumscore, and
CC-True are presented separately for the three major test conditions: the condition with
equal testlet sizes and equal testlet effect sizes, the condition with equal testlet effect
sizes and unequal testlet sizes, and the condition with unequal testlet effect sizes and
equal testlet sizes. Within each test condition, the impact of sample size and testlet effect

size on the estimation of conditional correlation was studied.

4.1.1 Equal Testlet Size Equal Testlet Effect

Average item-pair conditional correlations for equal-testlet-size and equal-testlet
effect tests were summarized across the 50 replications by estimation method, sample
size and testlet effect size. Standard deviations and means were presented in Table 9. As
the testlet effects were the same for all the testlets in the same test, only the results for the
first testlet were presented.

In simulation studies, a small standard deviation across replications represents a
small estimation error and indicates a more stable estimation, whereas a large standard
deviation indicates a less stable estimation. Across the three estimation methods,

estimation errors in small sample size or larger testlet effect conditions were larger than
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those in large sample size or smaller testlet effect conditions. In the same test condition,
estimation errors of the three methods were close to each other.

It was suggested in Rosenbaum (1985) and Douglas et al. (1998) that zero or a
small negative value for conditional correlation should be found when independency
exists between an item pair. When N = 500, the average item-pair conditional correlations
from the three methods were all close to zero. Based on the standard error of estimation
(SD in Table 8), their upper limits of 90% confidence intervals at § = .5 were still smaller
than the average conditional correlations at § = 1. For example, when § = .5, and N =
500, the upper limit of 90% confidence interval of the conditional correlation estimated
by CC-NP is .022 + 1.97 x .09 = .059, which is smaller than .066, the conditional
correlation estimated by CC-NP at § = 1. Although the estimation error decreased with
the increase of the sample size, the conditional correlation values across sample size (N =
500, 1000, and 10000) were close to each other regardless of the estimation method

applied.

64



S9

Table 9. Summary of Item-pair Conditional Correlations for Equal Testlet Size Equal Testlet Effect Condition

2-Testlet 4-Testlet
True NP Sumscore True NP Sumscore
Sample f Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

50 0 016  .091 .001 258 -.018 128 .040  .105 054 186  .023 113
5 .073 096  .094 261 .031 153 064 113 076 173 071 103

1 .168 092 129 161 .092 126 150 074 180 205 A15 A17

2 350 0 .077 327 272 261 192 340 064 333 174 301 143

3 456 066 361 288 337 187 435 .061 442 159 433 .148

100 0 .009  .085 011 116 .001 21 029 076 .030 .097 .010 .080
S5 .048 .083 .030 .108 .001 122 .045 074 028 .086 .012 .084

1 186 076 147 123 .096 125 161 076 138  .084  .123 .092

2 381 .061 264 160 215 134 357  .063 329 118 285 .096

3 498 052 311 150 268 113 490 060 430 117 371 .085

500 0 -.001 012 .003 011 -.002 .013 002  .018 .007 .018 -.001 .018
5 .034  .008 .022 .019 .017 012 .037 .017 .032 .018 .027 .019

1 118 015 066 .014 .069 .013 118 016  .082 .022 .086 .015

2 318 020  .131 018 .156 .015 325 .021 202 .027 230  .019

3 449 020 172 .026 .187 .028 449 018 290  .035 313 .022

1000 0 .000 .005 -.001 .005 -.002 .006 -.001 .007 .001 .009 -.004 .008
5 .028 .005 .015 .005 .018 .005 .029  .007 .018 .008 021 .007

1 .108 009 .052 .008 .066 .007 .105 010 .068 .009 .078 .010

2 299 016 119  .009 .148 .009 299 011 188  .014 214 012

3 428 016  .147 015 .183 .014 429 011 281 017  .305 014
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Table 9. Continued

2-Testlet 4-Testlet
True NP Sumscore True NP Sumscore

Sample S  Mean SD Mean SD  Mean SD Mean SD  Mean SD Mean SD
10000 0 .000 .001 -.001 001  -.002 .001 .000 .002 .000 .002 -.003 .002
5 .026 .001 014 .001 016 .001 .026 002 .016 .002 .018 .002

1 103 .003 .049 .002 .060 .002 .103 003 .065 .003 .074 .002

2 299 .004 A12 .003 143 .002 301 003 .187 .005 213 .002

3 432 .004 142 .005 171 .003 434 003 275 .005 291 .003

Notes, True: Conditional correlation estimated by CC-True; NP: Conditional correlation estimated by CC-NP; Sumscore:
Conditional correlation estimated by CC-Sumscore.



The accuracy of conditional correlation estimation was found to be related to the

sample size. For CC-NP, CC-Sumscore and CC-True, the standard error of estimation

became smaller when sample sizes increased. Because large sample size was related to

more accurate estimation of conditional correlation, comparison of different estimation

methods is more valid when the sample size is larger. Therefore, in this study, the

discussion is mainly based on sample size N=10,000.

Figure 2. Distribution of Average Item-pair Conditional Correlations for Testlets in Equal

Testlet Size Equal Testlet Effect Condition (N =10,000)
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Box-plots in Figure 2 display the distributions of the estimated average item-pair

conditional correlations via the three methods in both 2-testlet and 4-testlet conditions.

The graph should be read left-to-right and bottom-to-top. From left to right, the § value
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increases from 0 to 3. From bottom to top, the number of testlets that a test contains
increases from two to four.

When there was no testlet effect (5= 0), the average item-pair conditional
correlations estimated by CC-NP and CC-Sumscore were close to that estimated by CC-
True in both 2-testlet and 4-testlet conditions. When testlet effects were present, both
methods underestimated the true conditional correlation, and the size of underestimation
increased as the testlet effect increased. It should also be noted that the item-pair
conditional correlations estimated by CC-NP and CC-Sumscore were larger in 4-testlet
conditions than in the 2-testlet condition. That is, the two methods provided larger
underestimation in the 2-testlet condition than in the 4-testlet condition. There are two
possible explanations for this difference between the 2-testlet condition (12 items in each
testlet) and 4-testlet condition (6 items in each testlet). First, compared to the smaller
testlet with the same true testlet effect, the large testlet might exert more influence on the
attribute profile classification, and the estimated attribute profiles might account for more
variance in the item response patterns of the large testlet. Therefore, there is less shared
variance left unexplained for the large testlet after conditioning on the estimated attribute
profile, resulting in smaller average item-pair correlation. Second, it is expected that in
large testlet conditions, the average conditional correlations are more accurately
estimated based on the central limit theorem.

Comparing CC-NP and CC-Sumcore, it can be observed that CC-NP provided
slightly larger underestimation than CC-Sumscore. A close examination of the

classification accuracy showed that the NP method provided higher classification
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accuracy than the attribute-sumscore method. Another interpretation of this phenomenon
is that the conditional correlations estimated by CC-NP and CC-Sumscore reflect not
only testlet effects but the unexplained shared variances caused by inaccurate profile
classifications. Because the attribute sum-score method of classification provided lower
classification accuracy rates, it most likely left a larger unexplained shared variance

between items.

4.1.2 Unequal Testlet Size Equal Testlet Effect

In this section, the estimated item-pair conditional correlations for all testlets are
presented to demonstrate whether or not unequal testlet size influences the performance
of the two conditional correlation estimation methods. Table 10 presents the means and
standard deviations of the average conditional correlations for each testlet in the 2-testlet
tests. Because the relationship between standard deviations and average conditional
correlations were similar in 2-testlet and 4-testlet conditions, that is, large testlet effects
were related to large standard deviations, only means were presented for the 4-testlet tests
in Table 11.

Similar to the condition with equal testlet size and equal testlet effect, the
estimation errors were larger in conditions with smaller sample sizes and large testlet
effects. Item-pair conditional correlations were underestimated when testlet effects were
presented. As in the equal testlet size condition, the average item-pair conditional
correlations and magnitude of underestimation were related to the size of the testlets.
When the testlet size increased, the estimated conditional correlations became smaller for

both CC-NP and CC-Sumscore, though CC-True stayed the same.
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Table 10. Summary of Item-pair Conditional Correlations in 2-Testlet Unequal Testlet Size Condition

Testlet 1 (8 item)

Testlet 2 (16 item)

True NP Sum True Sum

N B Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
50 0 .059 .760 .039 756 054  .690 121 .664 064 612 -129 532
S 378 .661 164 705 123 .602 204 672 A17 0 .677 082 .609

1 .593 527 443 584 319 511 723 361 427 566 225 521

2 916 230 .503 561 604 372 .908 .189 532 474 307 461

3 912 305 741 367 657 462 970 .076 400 575 301 .507

100 0 .148 402 143 381 128 354 123 352 130 349 039 330
S 141 381 120 287 085 388 -026 .364 062 323 -043 335

1 .295 334 182 305 254 309 351 355 284 274 206 285

2 .593 .240 520 280 426 308 749 135 430 245 217 245

3 811 123 .596 221 650  .226 827 .103 415 269 391 254

500 0 .007 .044  -.003 .032 .008  .043 .008 .018 .007 .015 .017 .028
S .031 .039 .034 .034 .029  .043 .034 .021 028 016 .026 .022

1 118 .042 .084 027 092 .035 117 .022 068 016 .052 .031

2 327 .034 22 .029 237 .034 324 .028 106 014  .079 013

3 482 .034 334 .045 356 .041 473 .026 130 015 106 .022

1000 0 .001 .011  -.002 .010 .008 .02 .001 .005 .002 .008 .005 .009
S.023 .009 016 .010 023 014 .023 .006 .02 008  .017 .006

1 .091 .014 .068 .013 .081 .017 .093 .013 052 .007 .034 .006

2 .295 .017 202 016 220 .019 288 .013 092 .007 .070 .008

3 453 .016 296 .019 327 .020 441 .015 d12 .007  .093  .008
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Table 10. Continued

Testlet 1 (8 item)

Testlet 2 (16 item)

True NP Sum True NP Sum
N f  Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
10000 O .000  .002 -.002 .002 .003 .002 .000 .001 .000 .00 .001 .001
5 019 .002 .014 .002 .019 .002 .019 .001 .015 .001 .011 .001
1 .084 .004 .065 .003 .069 .004 081 .003 .047 .002 .033 .002
2 285  .005 .196 .004 208 .004 274  .004 .089 .003 .067 .002
3 447 .006 280 .005 312 .006 435  .004 .108 .002 .092 .002

Table 11. Summary of Average Item-pair Conditional Correlations in 4-Testlet Unequal Testlet Size Condition

Testlet 1 (2 items)

Testlet 2 (4 items)

Testlet 3 (8 items)

Testlet 4 (10 items)

N f True NP Sum True NP  Sum True NP  Sum True NP Sum
50 0 075 .080 .143 .017 .005 .023 204 186  .000 -079 -.099 -.139
S 191 165 .062 .001 .009 .032 089 -.041 -.052 328 221 .078
1 199 144 205 85 199 110 552 313 166 689 493 288
2 721 531 471 709 .621 519 888 .646 .632 881 .615 378
3 805 .540 .559 871 .670 .652 919 773 537 925 654 452
100 0O 033 .059 .031 112,103 .032 025 .054 -.041 .038 .037 -.005
S5 .032 .001 .033 151 181 118 Jd61 149 118 066 .134 -.036
1 139 160 .092 229 253 .096 333 242 164 323260 178
2 422 405 383 580 516 472 582 478 399 699 511 410
3 636 .510 .524 748 .603  .593 764 552 496 809 .562  .353
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Table 11. Continued

Testlet 1 (2 items)

Testlet 2 (4 items)

Testlet 3 ( 8 items)

Testlet 4 (10 items)

N B True NP  Sum True NP  Sum Truee NP  Sum True NP  Sum
500 O .004 -010 -.003 012 -.005 -.001 012 .008 -.011 008 .010 .004
S.025  .029  .023 058 .036 .029 027 .026  .009 035 .025 .030

1 111 .093 .082 165 .099  .087 17 .088  .060 11 .081  .058

2 340 288  .288 318 274 259 320 210 171 325 147 116

3 474 422 431 472 414 382 478 296 254 470 190  .160

1000 0 -.003 -.004 .000 002 .004 .013 .002 .001 -.010 .000 .007 .000
S .028  .025  .027 021 .025 .018 023 .018  .004 022 .020 .017

1 .108 .098 .101 081 .080 .073 097 076  .042 087 .058 .038

2 317 287 283 266 247 226 303 196 .154 285 127 .099

3 477 431 436 430 382 .360 454 274 226 438 164 137

10000 0 -.002 -.002 -.007 .000 .000 .000 .000 .000 -.011 .000 .001 .001
S .027  .025 .018 015 .014 .012 021  .018 .004 017 .015 .011

1 .109 .098 .085 067 .064 .057 090 .071  .045 076  .054 .039

2 317 285 .28l 262 237 212 291 192 148 266 126 .094

3 468 424 425 426 377 347 449 270 220 428 162 130




To obtain a better understanding of the results that larger testlets produced smaller
average item-pair conditional correlations, conditional correlation matrices from CC-
Sumscore were closely examined for the item response data of a two-testlet test. Testlet 1
and 2 consists of 8 and 16 items, respectively. The data were simulated with the testlet
parameter [ =3 for 10,000 examinees. Table 12 lists the range and mean of the

conditional correlation matrix of each testlet for five randomly selected attribute profiles.

Table 12. Ranges and Means of Correlation Matrix for Each Testlet and Selected

Attribute Profiles

Class Attribute Testlet 1 (8 items) Testlet 2 (16 items)
Profile (N) Range Mean Range Mean
1 0000 (3366) .073, .480 239 -.012, .626 .099
2 1000 (369) -.028, .425 260 -.313, .555 .058
3 1110(433) 130, .470 250 -.255, .345 .047
4 1101 (467) .093, .611 265 -.301, .354 .044
5 1111(2893) 420, .547 481 -.014, 353 146

Across attribute profiles, the ranges of item-pair correlations were larger for
testlet 2 (the large testlet) than for testlet 1(the smaller testlet). For example, about 1/3 of
the 10,000 examinees were classified in class 1 that has the attribute profile « = ¢ (0, 0, 0,
0). For examinees in that class, the range of item-pair conditional correlation is .480 -.073

= .41 for the smaller testlet, and .626 - (-.012) =.64 for the large testlet. Furthermore,
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there were also more negative values of item-pair correlations for the 16-item testlet than

for the 8-item testlet.

Figure 3 visually displays the distribution of estimated average conditional

correlations for sample size =10,000. Item-pair conditional correlations estimated by CC-

NP were close to CC-Sumcore in 2-testlet conditions but consistently smaller than CC-

NP in the 4-testlet conditions. Therefore, it is difficult to determine which estimation

method is better as inconsistent results were discovered in 2-testlet conditions and 4-

testlet conditions.

Figure 3. Distribution of Estimated Item-pair Conditional Conditions for Unequal Testlet

Size Tests 8-items Condition (N=10,000)
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4.1.3 Unequal Effects Equal Testlet Sizes

Table 13 summarizes testlet-specific average conditional correlations for tests
with unequal testlet effects by sample size and number of testlets. In the 2-testlet
conditions, item response data were simulated with f=1 for one testlet and = 2 for the
other. In the four-testlet conditions, data were simulated with  =.5, 1, 2, and 3
respectively. To be comparable with the 2-testlet conditions, only the conditional
correlations for testlets with generating § =1 and 2 in the 4-testlets conditions are
presented in Table 13. The complete results for 4-testlet conditions are displayed in
Appendix 1.

The standard error of the conditional correlation estimates in the unequal testlet
size are larger in small-sample-size conditions and in the large-testlet-effect conditions.
In this study, a sample size N = 500 was sufficient to produce stable estimation (small
estimation error), the 90 percent confidence interval of the mean conditional correlation
in any testlet effect condition did not overlay with each other. However, to be consistent
with the previous two sections, discussions regarding the relative performance of the
estimation methods were based on sample size N=10,000.

It can be observed that, across estimation methods, the conditional correlation for
testlets with generating effect size f = 2 is approximately twice as large as that for
testlets with generating effect size § =1. This result indicates that the proposed
conditional correlation methods can be used to indicate the relative testlet effect

difference among testlets.
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The CC-Sumscore method overestimated true conditional correlations when the
testlet effect was small (f =1) and underestimated true conditional correlations when the
testlet effect was large (f =2). However, because the deviance between CC-Sumscore
and CC-True at £ =1 is so small, it can be considered random error instead of
overestimation or positive bias. In contrast, CC-NP underestimated the true conditional
correlation across all conditions.

Similar to the equal testlet effect conditions, the estimated conditional correlation
for the large testlet size (2-testlet tests) condition was smaller than that of the small testlet
size (4-testlet tests) condition. That is, CC-NP and CC-Sumscore underestimated the
conditional correlations more for the large-testlet-size conditions than for the small-
testlet-size conditions. One possible explanation for this phenomenon is that it is more
difficult for the estimated attribute profile to account for the variation of response
patterns in four testlets than for that in two testlets. Therefore, the shared variance among
items might be captured more in the 2-testlet condition (larger testlet condition) than in
the 4-testlet condition (smaller testlet condition).

The information described above can also be found in Figure 4. The graph is read
the same way as Figure 2. From left to right, when testlet effect 5 increased from 1 to 2,
the estimated conditional correlation and standard error of estimation both increased.
From bottom to top, when the number of testlets increased (size of testlet decreased),

both CC-NP and CC-Sumscore increased in magnitude.
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Table 13. Summary of Item-pair Conditional Correlation for Equal Testlet Size & Unequal Testlet Effect Conditions

2-Testlet 4-Testlet

True NP Sumscore True NP Sumscore

Sample B Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
50 I .568 .129 602 129 493 .061 438 .08 541 144 520 141
2 .514 .056 612 143 587 0 122 506 .059 636 161 537 135

100 I 421 .130 442 127 344 .069 327 .08 441 169 371 149
2 434 .053 470 188 426  .096 453 .065 461 133 437 .089

500 I .179 .029 138 .026 136 .030 132 .028 143 .039 156 .045
2 .294 028 155 .032 206 .020 299  .031 186  .049 247 .026

1000 1 .134 .012 .088 .012 103 .014 102 .019 097  .022 114 016
2 272 .021 A13 0 .017 170 .012 277 025 A51  .029 206 .019

10000 1 .102 .004 062  .003 075  .005 .076  .005 .069  .006 .082 .005
2 .265 .007 .096  .006 145 .004 276  .006 136 .009 191 .005




Figure 4. Distribution of Estimated Item-pair Conditional Correlations for Unequal-

Testlet-Effect-Size Tests (N=10,000)
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4.1.4 Summary of the Main Findings

In summary, this section found: 1) Small sample size and large testlet effects
contributed to large estimation errors. 2) Both CC-Sumscore and CC-NP underestimated
the true conditional correlations. 3) In equal-testlet-effect conditions, CC-Sumscore
demonstrated more underestimation than CC-NP, although the relationship was reversed
in unequal-testlet-effect conditions. 4) The magnitude of underestimation for both

methods increased when testlet effects increased.
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The CC-Sumscore method produced less underestimation than CC-NP except in the
4-testlet unequal testlet size conditions. Therefore, conclusions cannot be made about

which method is better based only on the results of this study.

4.2 The Performance of Testlet NP Methods

In this section, the classification accuracy for the proposed testlet NP methods
(weighted Hamming distance methods) are reported and compared to the NP method and
the MLE method. In Chapter Three, the weighting coefficient in testlet NP methods is
defined as a function of the average conditional correlation and testlet size. In addition, it
was proposed that the conditional correlation should be estimated by the method that
approximates the true conditional correlation most accurately. However, the results of
conditional correlation estimation did not provide an optimal method and therefore, both
CC-NP and CC-Sumscore methods were used to estimate the weights. Weights were also
estimated by CC-True. The respective testlet NP methods are named Testlet NP based on
NP estimated profiles (NPT), Testlet NP based on attribute sum-score estimated profiles
(Sumscore), and Testlet NP based on true attribute profile (True). Throughout the
remainder of the document, “testlet NP methods” was used interchangeably with
“weighted methods” depending on the circumstances. Similarly, the “unweighted
methods” were also used to represent the NP method and MLE.

The correct classification rates (CCRs) including AARs and PARS were
summarized by sample size, testlet effect size in Tables 12-14 and Figures 4-7. Results
for each test condition were presented in the following order: the condition with equal

testlet sizes and equal testlet effects, the condition with unequal testlet sizes and equal
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testlet effects, and the condition with unequal testlet effects and equal testlet sizes. As
testlet NP methods are mainly weighted by the testlet effect, it is anticipated that the
results are more influenced by testlet effect size rather than sample size. Therefore,
information in Tables 14-16 was organized differently from that in the previous sections
about conditional correlation estimation. Specifically, the CCRs were organized first by

testlet effect and then by sample size.

4.2.1 Equal Testlet Size Equal Testlet Effect

Table 14 summarizes the classification accuracy rate of the three weighted
methods and two unweighted methods for the condition with equal testlet size and equal
test effect condition. It should be noticed that AARs are always higher than PARs and

decreased in a low-rate than PARSs when testlets effect increased.
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Table 14. Average CCRs for Equal Testlet Size Equal Testlet Effect Condition

AAR PAR
Sum- Sum-
B N True NPT score NP MLE True NPT score NP MLE
2-Testlet

0 50 972 973 973 971 973 900 903 904 .897 .905
100 971 970 970 973 971 .895 891 .892 901 .897

500 971 971 970 971 972 .896 897 .894 895 899
1000  .969 .969 969 969 .970 .890 889 .890 .890 .891
10000 970 .970 970 970 .969 .893 892 .893 893 887

5 50 964 965 964 967 .966 878 881 .876 .886 .885
100 964 965 965 965 964 872 874 875 874 870

500 966 966 966 966 .968 .881 .880 .880 .878 .887
1000  .963 .964 963 963 .966 871 872 .870 871 .879
10000 .964 964 964 964 964 872 872 872 872 871

1 50 946 948 946 945 948 822 830 .824 827 .83l
100 941 939 939 940 .944 803 .799 .797 .799 813

500 942 943 942 942 948 .808 811 .808 .808 .825
1000 941 941 940 .940 .945 .803 .804 .803 .802 .815
10000 942 942 942 942 945 .808 .808 .809 .808 .812

2 50 .863 .860 .863 .863 .858 622 619 .623 623 611
100 866 .864 867 .867 .867 621 617 .623 622 .621

500 862 .861 .860 .862 .866 622 618 .619 .620 .626
1000 .860 .860 .860 .859 .863 617 619 .620 .616 .616
10000 .860 .860 .860 .860 .863 618 619 .620 .618 .615

3 50 73769 770 772 750 448 443 446 446 402
100 784 782 784 783 771 479 478 478 472 451

500 783 784 784 783 .776 475 479 477 475 453
1000 .777 777 777 777 768 468 470 469 469 443
10000 .781 .781 .780 781 .773 474 474 474 473 447
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Table 14. Continued

AAR PAR
Sum- Sum-
B N True NPT score NP MLE True NPT score NP MLE

4-Testlet
0 50 973 973 973 974 973 905 .908 .904 .908 .908
100 973 972 973 971 972 901 .898 900 .896 .899
500 .970 .970 970 971 972 894 894 894 898 .899

1000 970 970 970 970 .970 891 .891 .891 .892 .893
10000 970 969 970 970 .969 .893 891 .892 .893 .888

S50 967 967 967 968 .969 .889 .888 .887 .892 .893

100 965 965 964 966 .966 876 875 872 875 .877

500 965 964 965 965 .968 878 .875 .876 877 .889
1000 .964 964 963 963 .965 873 872 871 870 .877
10000 965 .964 965 965 .965 878 875 877 877 .874

1 50 952 951 952 951 .957 .837 .833 .836 .833 .85l
100 .947 947 946 945 .949 819 818 .815 .813 .826

500 .951 951 951 950 .955 .835 .834 833 .830 .848
1000 .948 .948 947 947 952 825 .822 .821 .821 .833
10000 .950 .949 950 .949 951 829 826 .827 .825 .831

2 50 .884 881 .886 .887 .880 656 .650 .662 .658 .649
100 884 .882  .884 .884 .885 644 639 .645 646 .648

500 .884 883  .883 .884 .890 653  .647 .649 654 .667
1000 .883 .882  .883  .882 .888 649 645 .647 .648 .660
10000 .885 .882  .883  .883 .889 654 642 .646 .647 .663

3 50 816 .807 .811 815 .792 505 488 496 500 .449
100 .817 .815 .819 818 .801 S15 0 .510 514 507 .470
500 .812 .81l 810 811 .803 S501 497 495 498 473

1000 .807 .805 .806 .807 .796 490 483 486 489 .461
10000 .810 .806  .806 .808 .799 496 484 483 491 460

Note, True: Testlet NP weighted by conditional correlation based on true attribute profile;
NPT: Testlet NP weighted by conditional correlation based on NP estimated attribute
profile; Sumscore: Testlet NP weighted by conditional correlation based on Sumscore
estimated attribute profile. NP: Original Hamming distance method.
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If the testlet effect size for all of the testlets in a test are equal, it is the same as no
weighting. Therefore, it is expected when the conditional correlations are accurately
estimated, there should be no difference between the weighted methods and unweighted
methods. Compared to the NP method that ignored the testlet effect, testlet NP methods
did not show dramatic improvement regarding classification accuracy, though, testlet NP-
True did demonstrate higher classification accuracy in 2-testlet conditions when testlet
effect was large (8 = 3) and in 4-testlet conditions when § > 1. The differences between
the three testlet NP methods were minor.

Figures 5 and 6 visually display the distribution of PAR by test condition. The
graph is read left-to-right and top-to-bottom. From left-to-right, when the testlet effect
sizes increase, the classification accuracy decreases and the standard error of estimations
increase. From top to bottom, when sample sizes increase, the standard error of estimates
decrease. However, the change was not dramatic in terms of classification accuracy,
which was true for both the unweighted and unweighted methods, and both the

parametric method (MLE) and nonparametric methods.
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Figure 5. Distribution of PARs for 2-testlet Equal Testlet Size Equal Testlet Effect Condition
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Figure 6. Distribution of PARs for 4-testlet Equal Testlet Size Equal Testlet Effect Condition
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4.2.2 Unequal Testlet Effects Equal Testlet Sizes

Table 15 summarizes AARs and PARs of the testlet NP methods in comparison to

the unweighted methods in unequal-testlet-effect conditions. As described in the

simulation design of Chapter Three, conditions regarding testlet size and testlet effect

size for the unequal-testlet-effects condition were predetermined. That is, in the 2-testlet

conditions, parameter 8 in the data simulation model is “1” for testlet 1 and “2” for testlet

2; in the four-testlet condition, f is equal to .5, 1, 2, and 3 for each testlet, respectively.

As such, the average testlet effect for the 2-testlet test is smaller than that of the 4-testlet

test. Therefore, higher CCRs were produced in 2-testlet tests.

The standard deviations of AARs and PARs were similar, thus only the

distribution of the PAR are summarized in Figure 7. As it can be observed, smaller

sample sizes are related to larger standard deviations.

Table 15. Average CCRs for Unequal Testlet Effect Equal Testlet Size Condition

AAR PAR
Sum- Sum-
N True NPT score NP MLE True NPT score NP MLE
2-Testlet
50 910 914 911 905 912 728 737 0 733 717 738
100 912 911 910 .909 916 J731.729 726 721 743
500 913 915 912 910 923 739 744 736 731 764
1000 .909 911 907 905 916 725729 0 721 715 741
10000 911 913 909 .907 919 733 737 727 722 747
4-Testlet
50 905 906 906 .898 .906 710 .695 710 .683 714
100 911 912 910 901 918 721 712 719 700 735
500 912 911 911 902 .920 731 .737 728 703 748
1000 .905 905 905 .896 913 7120 714 710 .687 726
10000 909 909 909 899 917 724 728 723 .697 738

Notes, In two-testlet tests, f=1, 2; in four-testlet tests, §=.5, 1, 2, 3
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MLE produced the highest AAR and PAR across all sample sizes and testlet
effects. However, weighted Hamming distance methods provided higher classification
accuracies than those of the unweighted NP method across all conditions. The difference
between classification accuracies of weighted and unweighted NP methods is as high
as .03 in terms of PAR. Among the three testlet NP methods, NPT (testlet NP weighted
by the conditional correlation based on NP estimated attribute profile) showed a slight
advantage over the other two testlet NP methods.

The influence of sample size on classification accuracies for all nonparametric
methods in both 2-testlet conditions and 4-testlet conditions is small. However, it should
be noted that the AARs and PARs for N= 500 are consistently better than that in other
sample size conditions (N= 50, 100, 1000, 10,000). This result is contrary to our
expectation, as in general, the larger the sample size, the better the classification
accuracy.

The results described above were similar for 2-testlet and 4-testlet conditions.
However, the advantage of the weighted Hamming distance methods over unweighted
Hamming distance method was slightly larger in 4-testlet conditions. As the average
testlet effect in a 4-testlet test is larger than that in a 2-testlet test. This result suggests that
the weighted methods have more advantage in larger testlet effect conditions. The same
was found in the previous section (the condition with equal testlet size and equal testlet
effect), where the weighted methods exceeded the unweighted methods the most when

the testlet effect size § = 3.
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Figure 7. Distribution of the PARs by Sample Size for Unequal Testlet Effect and Equal Testlet Size Condition
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4.2.3 Unequal Testlet Size and Equal Testlet Effect

It was expected that the weighted methods in the unequal testlet size condition
would not perform as well as they did in the equal testlet size condition because the
conditional correlations were not accurately estimated. Because the AAR and PAR have
the same pattern across all simulation conditions, only the PARs are summarized in Table
16. In addition, the distribution of PARs across all conditions are presented using
boxplots in Figures 8 and 9.

Similar to what was found in the equal-testlet-size condition, the estimation error
decreased with the increase of sample size and the decrease of testlet effect, the PAR of
MLE increased more than the other methods when sample size increased, and decreased
more than the other methods when testlet effect increased. This result indicated that MLE
was more influenced by sample size and teslet effect than the other methods.

Overall, MLE slightly outperformed the other methods in most test conditions.
PARs for weighted Hamming distance methods were close to those of the NP method in
most conditions except when sample size was as small as 50 and 100. When N= 500 or
1000, weighted Hamming distance methods provided lower PARs than the unweighted
Hamming distance method. This result is as expected for the accurate estimation of the

weight coefficient-function of a conditional correlation- relies on large sample size.
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Table 16. Averaged PARs from the Weighted Methods versus Unweighted Methods for

Unequal Testlet Size Equal Testlet Effect Tests

NP- NP-
B N True  Sumscore Sum NPT NP MLE
2-Testlet

0 50 897 914 182 905 928 936
100 .896 .899 770 900 905 923
500 920 921 713 919 922 941
1000 911 910 756 911 911 934
10000 914 914 742 914 914 936
S 50 882 .899 770 .887 920 930
100 .888 891 761 .889 891 913
500 909 908 703 908 907 932
1000 .896 .896 744 .897 .896 923
10000 902 902 732 902 902 927
1 50 .832 .852 695 .838 .867 .876
100 .834 841 709 .842 .848 .870
500 867 .863 .655 .865 .866 .896
1000 852 851 691 .850 .852 .886
10000 .858 .855 .666 .856 .857 891
2 50 667 674 516 .660 .699 681
100 678 .688 567 695 .699 714
500 700 .699 534 .700 698 720
1000 695 693 541 692 695 710
10000 702 698 .545 698 .700 127
3 50 506 524 371 519 526 496
100 .546 550 463 .549 552 546
500 .560 565 437 563 561 .560
1000 553 556 434 556 554 548
10000 555 558 443 558 557 554
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Table 16. Continued

NP-
B N NP-True Sumscore  Sum NPT NP MLE
4-Testlet

0 50 902 910 782 .894 930 940
100 .895 .894 779 .896 905 927

500 919 917 715 920 918 942

1000 914 .909 756 913 .909 934

10000 919 910 743 919 914 936

5 50 .883 .899 75 .892 927 936
100 .881 .885 762 .881 891 908

500 .907 911 706 910 910 931

1000 .897 902 746 .898 .898 924

10000 .899 907 735 .899 903 928

1 50 .822 .840 725 .842 .880 .887
100 .844 .845 724 .844 .857 .883
500 .867 .870 671 .868 873 904

1000 .854 .866 707 .855 .862 .895
10000 .860 .868 .682 .858 .866 .899
2 50 .628 .668 538 658 716 710
100 .687 706 .606 703 721 744

500 730 723 570 723 731 758
1000 712 714 570 705 717 747

10000 721 727 577 712 724 755
3 50 502 .539 421 523 575 526
100 .543 558 492 .560 574 557

500 574 571 460 .566 574 563

1000 571 575 464 563 574 558

10000 575 .583 472 .566 578 .565

Notes, NP-True: Hamming distance weighted by conditional correlation based on true
attributes profile; NP-Sumscore: Hamming distance weighted by conditional correlation
based on Sumscore-estimated attribute profiles; Sum: Attribute Sumscore method; NPT:
Hamming distance weighted by conditional correlation based on NP-estimated attribute
profiles; NP: Hamming distance method.
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The performance of the weighted methods in the unequal-testlet-size condition
deteriorated compared to the equal-testlet-size condition. In equal-testlet-size condition,
the weighted methods provided slightly higher CCRs than unweighted methods (i.e., the
NP method) when testlet effects were large (e.g., £=3); in unequal-testlet-size condition,
their CCRs were lower than the NP method. Recall that in conditional correlation
estimations, the magnitude of conditional correlations was related to testlet sizes,
specifically, the CC-NP and CC-Sumscore estimated average conditional correlations
were larger for the small testlet than for the large testlet although the two testlets had the
same true testlet effects (i.e., simulated with the same f value). The inaccurate estimation
of conditional correlations led to the wrong weighting coefficients. That is, the items in
smaller testlets received a larger penalty than those in larger testlets. It can be observed
that in zero to small testlet effect conditions (f < .5), the weighted methods provided
lower PARs than the unweighted methods. When testlet effects increased, the difference
between weighted methods and the unweighted methods decreased.

The CCRs of the three weighted methods were almost identical. Testlet NP-True
did not provide higher CCRS than any of the other weighted methods. This similarity
between the weighted methods was unexpected because more accurate estimations of
conditional correlations were anticipated to lead to higher classification accuracy.

When there were not testlet effects, PARs from the weighted methods were close
to each other for the 2-testlet conditions and 4-testlet conditions. When the testlet effect
increased, PARs for the 4-testlet test conditions became increasingly higher than the

PARs of 2-testlet conditions. This difference may be due to the fact that the testlet size
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variation in 2- and 4-testlet tests were different from each other. The testlet size variation
in the 4-testlet test (consists of 2-, 4-, 8-, and 10- items testlets) are smaller than that in
the 2-testlet test (consists of 8-, 16- items testlets). When the true testlet effects within a
test are equal, the test with the larger testlet size variation will result in large variation
among estimated weights. Therefore, Hamming distance was weighed incorrectly

because all testlets should be penalized equally if they have the same testlet effect sizes.
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Figure 8. Distribution of PARs for Unequal Testlet Size 2-Testlet Tests
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Figure 9. Distribution of PARs for Unequal Testlet Size 4-Testlet Tests
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4.2.4 Summary of the Testlet NP Results

Testlet NP methods provided higher classification accuracy than NP in conditions
where the testlet effects were large. However, across all conditions, MLE produced the
highest classification accuracy except where the testlet effects were extremely large.

Next, the results are summarized by the factors in testlet design.

4.2.4.1 Equality of Testlet Effect

The weighted Hamming distance methods provided higher classification accuracy
than unweighted Hamming distance method when the testlet effects were unequal across
testlets. It can be concluded that weighting the Hamming distance with a function of the
average item-pair conditional correlation (Equation 38) improved classification accuracy.
The purpose of testlet-NP methods is to penalize the items with larger testlet effect smore
than items having smaller testlet effects. However, it should be noted that the advantage
of weighted Hamming distance methods was found in tests that consisted of equal-size

testlet.

4.2.4.2 Equality of Testlet Size

A comparison of Table 14 and Table 16 revealed that the classification accuracy
of the proposed testlet NP methods in conditions with unequal testlet size were lower
than those in conditions with equal testlet sizes. In addition, in conditions with equal
testlet size, the weighted methods provided classification accuracies that were either
similar or slightly higher than the unweighted method, whereas in conditions with
unequal testlet size, the weighted methods produced lower classification accuracies than

the unweighted methods. The deteriorated performance of weighted methods in unequal
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testlet-size condition suggests that there may be better alternatives defining a weight
parameter. As was found in the section of conditional correlation estimation, the size of
CC-NP and CC-Sumscore estimated item-pair conditional correlations were dependent

on testlet size.

4.2.4.3 Testlet Size

The difference between classification accuracy for the 2-testlet condition and the
4-testlet condition was negligible in conditions with equal testlet size. However, in
conditions with unequal testlet size, the classification accuracies for the 4-testlet tests
were slightly higher than those of the 2-testlet tests, which might be due to a smaller
difference in weights among items in 4-testlet tests when compared to 2-testlet tests.
Because an interdependency was found between estimation of conditional correlations
and testlet size in conditions with unequal testlet size, a conclusion cannot be arrived at
whether or not testlet size influences the performance of weighted Hamming distance

methods.

4.2.4.4 Testlet Effect

When the other factors were held constant, the weighted Hamming distance
methods provided higher classification accuracies than the unweighted Hamming
distance method (NP) in the large testlet effect conditions. Although not the focus of this
study, it should be noticed that NP methods were comparable to the MLE when there was
no testlet effects or small testlet effects, and had higher classification accuracies than

MLE when testlet effect is large (8 = 3).
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4.2.4.5 Sample Size

When sample size increased and the testlet effects were fixed, the difference of
classification accuracy between the weighted methods and the unweighted methods
became smaller, and the weighted methods provided higher classification accuracy. The
influence of sample size on weighted methods is due to the fact that the calculation of the
weights (function of conditional correlation) is not independent of sample size. Large
sample sizes provided more accurate estimation of conditional correlations.

Another thing about the impact of sample size on classification accuracy is that
the N=500 in most conditions provide slightly higher CCRs than that in other sample size
conditions. This result is contrary to our expectation, as in general, the larger the sample
size, the better the classification accuracy. Future research might replicate the simulation
study to investigate the impact of sample size on classification accuracy of different

classification analysis methods.
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CHAPTER V

DISCUSSION AND CONCLUSION

Local item dependency (LID) is an assumption for many psychometric models,
such as item response models and diagnostic classification models. When the assumption
of LID is met, there should be no significant covariance between items after conditioning
on the respondents’ ability (abilities, attribute profiles). As with other statistical models,
inferences drawn from diagnostic classification analyses are valid if this assumption is
reasonable

Oftentimes associations between item responses still exist even after conditioning
on the attribute profile. This association indicates that the assumption of LID is violated
and the validity of the inferences drawn from the analysis is challenged. LID can be
caused by multiple sources as described in Chapter one. Item bundle or passage
dependency is one of the causes that has been studied in IRT. Because of the popularity
of testlets in today’s assessment (Rosenbaum, 1984; Wainer, Bradlow & Wang, 2007;
Lu, 2010; Zhang, 2010), it is necessary to investigate the issues related to testlet effects in
diagnostic classification analysis.

Psychometric models have been developed to account for testlet effects, such as
the testlet IRT models (Wainer & Wang, 2000; Wainer, Bradlow & Wang, 2007) and
testlet diagnostic classification models (Hout & Cai, 2012; Hansen, 2013). In application,

practitioners often must choose between the accuracy and efficiency (the ease and/or
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speed of administration). More accurate estimation often requires large sample size and
more computation time. If the LID does not pose a serious threat to classification
accuracy, practitioners often choose the model that is more parsimonious. In addition,
modeling testlet effects that are negligible results in a more complicated model than
necessary and potentially increases the error of parameter estimation (Demars, 2012).
Therefore, it is necessary to understand the size of LID or testlet effects that exist among
the item bundles and to what an extent classification accuracy can be impacted.

As discussed in Chapter One, traditional methods of LID detection are not
practical in situations where nonparametric classification methods are applied. The
conditional-correlation (CC) approach to measure testlet effects was then developed to
provide a general estimation of testlet effect. Similar to the conditional-covariance
approach of detecting item dependency in IRT (Stout et al., 1996; Douglas et al., 1998),
this study assumes that the association between item pairs within a testlet should be close
to zero or a small negative value if the LID assumption is met.

If the testlet effects seriously threaten test validity, it should be accounted for in
classification analyses. It is assumed that penalizing the Hamming distance with a
coefficient related to the testlet effect, 1-(nitem-1)*r/nitem, and hence assigning more
weight to the items that are less interdependent might increase the classification accuracy.
Based on how initial attribute profiles are estimated, three weighted Hamming distance
(testlet NP) methods for diagnostic classification analysis were proposed: the Hamming
distance method weighted by CC-NP, the Hamming distance method weighted by CC-

Sumscore, and the Hamming distance method weighted by CC-True. A simulation study
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was conducted to investigate whether or not the newly proposed testlet NP methods
provide better estimations than the methods that ignore testlet effects. In the following
discussion, a summary of the findings is first provided with respect to each of the two

general research questions, followed by the implications and recommendations.

5.1 Can Item-pair Conditional Correlation be Used to Estimate Testlet Effect

Findings of the current study with respect to conditional correlation suggest
several implications for practitioners. First, it was found that when the generated testlet-
effect increased, the estimated average item-pair conditional correlation increased. The
mean values presented in Tables 9-12 in Chapter Four provide some insights in the size
of conditional correlation that suggests a violation of LID in diagnostic classification
analysis. Because conditional correlations accessed in this study can be computed when
performing diagnostic classification, practitioners can calculate this statistic first and
inspect its magnitude before interpreting the results or applying more complicated
classification methods. However, because the CC approach also requires large sample
sizes to achieve stable estimates, the results listed in Chapter IV should be considered
specific to particular sample sizes and number of measured attributes.

Second, sample size had a noticeable impact on the estimation of conditional
correlation. In general, the larger the sample size, the larger the standard error of
estimation, and the smaller the magnitude of the estimated conditional correlation.
However, when the sample size reached 1000, the decrease of estimated conditional
correlation was barely noticeable. On one hand, as sample size goes up, correlation

coefficients fluctuate less around the "true" magnitude for the population ; therefore, the
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estimation error decreased. On the other hand, it is more likely to calculate a larger
correlation value with a smaller sample size than with a larger sample size because it is
easier to fit a linear relationship for less data points. An extreme case is the linear

correlation between two data points A and B on a two-dimensional space; you can always
fit a line through these two points. In addition, although the testlet component ¢ was

always generated with N (0, 1), the resulted variance from smaller sample size was
always larger than that with larger sample size. For example, the resulted variance was
1.12 for N=500, but 1.00 for N=1000.

Third, the estimated conditional correlation by both CC-Sumscore and CC-NP
was negatively related with testlet size. That is, when the other factors were fixed, the
larger the testlet, the smaller the conditional correlations estimated by CC-NP and CC-
Sumscore. However, there was not such a relationship for CC-True. It is expected that
the larger testlets exert a larger influence on the attribute profile estimation, which makes
the estimated attribute profiles explain more variance in the larger testlet and leave less
shared variance unexplained. In CC-True, the attribute profiles were not estimated but the
true generated profiles, the variation among the influences exerted by different testlets
did not exist, therefore, the magnitude of conditional correlation was not dramatically
different across testlets of different sizes. Because of the above stated problem, it is not
recommended that the proposed methods are used to compare testlet effect sizes of
multiple testlets when they vary in sizes. Future studies should investigate the
relationship between testlet size and estimated conditional correlation in different

conditions other than those in this study. It is also helpful to see if LD-X?and Yen’s Q3
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discover similar relationships. If such a negative relationship is not found by other LID
measurement methods, it may suggest a problem with the proposed conditional
correlation method.

Fourth, the magnitude of CC underestimation was not related to the accuracy of
the initial attribute profile estimation. For example, although the Hamming distance
method provided a higher classification accuracy than the attribute-sumscore method,
CC-NP always underestimated CC-true more than CC-Sumscore did, except in the
unequal testlet-size and 4-testlet condition. The unexplained shared variance estimated by
the more precise classification method and less precise classification method are
different. The conditional correlation based on NP estimated attribute profiles is more
likely to be related to the testlet effect, whereas the conditional correlation based on
attribute-sumscore estimated profiles is probably due to unexplained variances caused by
inaccurate attribute classification. Considering there is no distinct difference between
testlet NP based on CC-Sumscore and testlet NP based on CC-NP, the practitioners may
choose either method to detect LID caused by the testlet.

Lastly, although CC-NP and CC-Sumscore methods both underestimated the true
conditional correlation, the ordinal relationship between testlets with differing testlet
effects was still preserved. Based on the results from the simulation studies, the following
conclusions may be drawn: if the attribute profile is estimated through the Hamming
distance method or attribute-Sumscore method with sufficient sample size, an average
conditional correlation larger than .01 indicates the presence of a small LID. An average

conditional correlation larger than .05 indicates the presence of a moderate LID, and an
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average conditional correlation larger than .1 signals a large LID. When the average
conditional correlation is larger than .1, and the pattern-wise classification accuracy
(PAR) is below .8, it is reasonable to consider using the testlet DCM to model the local
item dependency.

CC-NP and CC-Sumscore both underestimated the true LID when the testlet
effect was large. The bias in estimations could be a result of the method used to compute
the conditional correlation. The initial attribute pattern was estimated from all item
responses including the testlet items. This method of obtaining attribute pattern estimates
may lead to a poor estimation of attribute profiles, as a result, the average item-pair
correlation is computed based on an incorrect conditional variable. The above stated
problem also exists in Yen’s Q3. Practitioners may consider estimating the conditional
correlation for each testlet by conditioning on attribute profile estimates based on all
other items not included in that testlet.

Although correlations conditioned on attribute profiles in this study was
developed to detect testlet effect, like Yen’s O3, it has the potential to be used to detect
LID caused by other sources, such as incomplete/underspecified Q matrix, test
speediness, etc. For example, in detecting LID caused by an incomplete or underspecified
Q matrix, the conditional correlation can be calculated for all possible item pairs

conditional on attribute profiles.

5.2 Can Testlet Hamming Distance Method Improve Classification Accuracy

The proposed testlet NP methods weight the original Hamming distance with a

function of the testlet-specific average item-pair conditional correlation. Based on the
104



method used to estimate the conditional correlation, three testlet NP methods were
examined in the simulation study. The results demonstrated that there were no distinct
differences in terms of classification accuracy between testlet NP method based on CC-
true and testlet NP method based on either CC-NP or CC-Sumscore. This result suggests
that the estimation method used to obtaining conditional correlations does not influence
the performance of weighted Hamming distance methods. Therefore, in the following
discussion, the three different weighted Hamming distance methods are not
differentiated.

The weighted Hamming distance methods provided higher classification accuracy
than the unweighted Hamming distance method (i.e., the NP method) when testlet effects
were large (f =1) regardless of sample size. However, in small sample size conditions,
this advantage of unweighted Hamming distance methods decreased when the testlet
effect increased. In extremely large testlet effect conditions (f = 3), the weighted and
unweighted Hamming distance methods all provided higher classification accuracy than
MLE. In other testlet effect conditions, MLE provided the highest classification accuracy.

The influence of sample sizes on the classification accuracy of all methods was
limited. Though the classification accuracy increased when the sample sizes became
larger, the magnitude of this improvement was less than .01. In practice, if the number of
measured attributes is small, sample size should not be a big concern in diagnostic
classification analysis, especially when using the NP method and DINA-MLE. However,
it should be noted that this conclusion is drawn from simulation conditions where the

number of measured attributes was four. It is expected that the influence of sample size
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will be larger when the number of attributes increases. Future research might investigate
the rate at which the classification accuracy deteriorates.

Consistent with what was found in Hansen (2013), where estimation bias for item
parameters only occurred at f = 2, this study found that the impact of the testlet effect on
DINA-MLE and the NP method was small when the testlet effect was within a reasonable
range (f < 2). These findings suggests that both methods are quite robust to testlet
effects. Therefore, when the average item-pair conditional correlation is less than .1, the
impact of the testlet effect might not be a big concern for classification analysis. Based on
the results from this study, it could be concluded that model techniques that account for
the inter-item dependency should be implemented only when the average item-pair
conditional correlation is greater than .1. This finding is also in line with what was found
in testlet IRT studies (DeMars, 2012; Jiao & Zhang, 2014; Baghaei & Aryadoust, 2015),
in which testlet effects had no noticeable impact on ability parameter estimation.

This study found that the NP method was comparable to MLE regarding
classification accuracy, which is consistent with findings in Chiu and Douglas (2013). In
fact, the NP method in this study even provided slightly higher classification accuracy
when large LID was present. The finding described above indicates that the NP method is
more robust to the violation of LID in terms of classification accuracy. It is probably
because the MLE method needs to estimate both item and person parameters. As shown
in studies of testlet IRT (Jiao et al., 2012; Jiao & Zhang 2014; Baghaei & Aryadoust,
2015), LID had more impact on item parameter estimations. In turn, item parameter

estimations exert influence on person parameter estimations. Although the impact on
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person parameters is small, it should not be ignored when the testlet effects are large. In
contrast, there is no parameter estimation in the NP method, which may reduce the
impact of testlet effects on the examinee classification. Therefore, in testlet-based tests,
the NP method can be used as an alternative to MLE when diagnostic assessment follows
either a conjunctive condensation rule or a disjunctive condensation rule.

The criticism of parametric classification analysis is mainly due to its high
demands of large sample sizes for model fitting (Chiu & Douglas, 2013; Wang &
Douglas, 2015; Chiu & Kd6hn, 2015). Surprisingly, few studies have investigated how
sample size influences the classification accuracy of parametric methods in comparison
to the NP methods. Most simulation studies of diagnostic classification approaches used
extremely large sample sizes to obtain stable estimations. However, diagnostic
classification analyses are often based on small to medium scale assessments such as in
classroom settings (Wang & Douglas, 2015) and psychiatric domains (Henson &
Templin, 2006). Unexpectedly, the MLE method in this study provided classification
accuracy as high as the NP method with a small sample size (N=50). Because this study
only included tests that measure a small number of attributes as in Chiu & Douglas
(2013), it can be concluded that sample size should not be a major concern for the MLE
method if the number of measured attributes is no larger than four. Therefore, for
practitioners, it is recommended that if the sample size is > 50, the MLE method is still a

reasonable option.
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In summary, the performance of the testlet NP methods depends on the accuracy
of estimation of the testlet effect. It is expected that when the weighting formula is

improved, the testlet NP methods should provide higher classification accuracy.

5.3 Limitations and Future Research

With the increasing interest in diagnostic classification modeling (Huff &
Goodman, 2007), there are still questions and problems left for its application and
interpretation, such as differential item functioning, testlet effects, and item bias (Rupp &
Templin, 2008). The current study investigates the problem related to testlet effects.
Nonparametric methods were developed to detect testlet effects and then incorporate the
testlet effects into the classification analyses. A simulation study was conducted to
evaluate the proposed methods. Results of the simulation study should be cautiously
interpreted because of the following limitations:

First, this study only included tests where all items belong to a testlet, and did not
consider tests with both independent items and testlet items. If the classification is based
purely on responses to interdependent items, the accuracy could be lower than when
based on responses that include independent items. The estimated testlet effects could not
reflect the true LID when classification was not accurate, hence, the interpretation of
testlet effect becomes problematic. When the attribute profile is conditioned on more
accurately estimated profiles, the item-pair conditional correlations will be more
accurately estimated. Future research should consider including both independent items

and testlet items in designing diagnostic assessments or conducting simulation studies.
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Second, the choice of testlet effect conditions in this study was based on a
previous simulation study (Hansen, 2013) rather than real test conditions. In IRT, testlet
effects are measured by testlet variance and the variance rarely exceeds “3” (Wainer et al,
2007; Zhang, 2010; Jiao et al., 2012; Eckes, 2014). For example, Wainer et al. (2007)
found that in the four testlets of the 1994-1995 administration of the North Carolina Test
of Computer Skills exam, testlet variance ranged widely between .03 and 2.8. In other
studies such as Jiao et al. (2012), the estimated testlet variance of a reading
comprehension test could be very small (< .27). Papp, Glas and Veldkamp (2012) stated
that a value 1.00 or larger is often found in real data-sets. Compared to studies in testlet
IRT (unidimensional models), the testlet effect was rarely estimated or measured through
fitting a DCM model with Hansen (2013) as an exception. In Hansen (2013), the LD-X?
was used to measure LID caused by testlet effect when fitting the testlet DCM. The
detected values of LD-X? for the two tests, PISA and TIMSS, were quite small. The
reason that large testlet effects were used is because this study intended to examine 1) to
what a degree that the classification methods ignoring testlet effect are robust to LID in
terms of classification accuracy and 2) at what condition, the proposed CC methods and
testlet NP methods work well. More studies need to be conducted with realistic 8
parameter to reflect testlet effect in reality.

Third, the number of attributes measured per test was fixed at a small value “4” in
this study. In reality, the number of measured attributes could dramatically vary. For
example, in Von Davier (2009), TOEFL iBT was retrofitted to measure three skills. The

PISA 2000 reading comprehension test measured four attributes (Hansen, 2013). In other
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situations, there may be a need to learn about an examinee’s attribute mastery at a finer-
grain size or for specific curriculum standards. In that case, the number of measured
attributes may be large. For example, TIMSS 2007 was retrofitted to measure 15
attributes in Lee et al (2011). Future studies should investigate how the testlet NP
methods perform in assessments that measure a larger number of attributes.

Fourth, one potential reason that the testlet NP methods did not provide
significantly higher classification accuracy than the NP method is that the accurate
estimation of conditional correlation still depends on a large sample size. Oftentimes
there are specific latent classes with only a few examinees. The conditional correlation
estimation with examinees in that class was far from stable and accurate. For example, if
two people have that particular latent class, the correlation between their responses to two
items will be either “1”” or “-1”. To reduce the influence of inaccurately estimated
conditional correlation caused by small sample size in a particular latent class, in
obtaining the testlet-specific average conditional correlation, this study weighted the
conditional correlation for each latent class by the corresponding number of respondents
in that latent class. However, the estimated conditional correlation can be still inaccurate
if the total number of examinees that take the assessments is small. For future research,
the approximate estimation of testlet effects can be achieved through content experts’
rating a testlet with respect to the inter-item dependency. Because the ratings are based
on non-statistical item properties, the estimation can be done before the item response
data is collected. For example, in Baldonado, Svetin, and Gorin’s (2015) study, the

linguistic experts were asked to rate the testlet items with respect to the common
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necessary information required to correctly answer those items. The expert used “0” to
represent item pairs that were not “connected” by necessary information for correct
responses, and “1” to represent those they were “connected”. If the testlet effect of each
testlet is preknown from the interdependency rating by content experts, the rating can be
incorporated in testlet NP methods. When rating “1” represents no testlet effect, rating

“2” represents low testlet effect, rating “3” represents medium testlet effect, and so on,

the penalty parameter in teslet NP methods (Equation 37) can be defined as y,=1, 2,

3, ... When there is no testlet effect, that is, },= 1, the testlet NP method is the NP

method.

Fifth, using R?, the square of the correlation coefficient to show how much of the
variation in two variables are associated, is probably more intuitive for approximating the
shared variance among item pairs. In this study, condition correlation-Pearson’s r was
used as a heuristic to approximate LID. The assumption behind using r to approximate
LID is that the relationship between responses to the item pair is linear. If the relationship
between items is not linear, Pearson’s r might underestimate the correlation between
items. Therefore, future studies might consider approximating LID with R? and using
testlet-specific average item-pair R? to approximate the testlet effect. This approach
might increase the precision of weighting coefficients in testlet NP methods, and in turn,
increase the classification accuracy rate.

Lastly, this study found that sample size 500 consistently produced the highest
CCR among all sample size conditions and across classification methods. This is against

our general knowledge about the impact of sample size on estimation. Future research
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might replicate the simulation study to investigate the impact of sample size on
classification accuracy of different classification analysis methods. In addition, future
research may also investigate the performance of CC approach and testlet NP methods in
other test conditions such as test length, number of attributes, and especially item
parameters. In this study, clean item parameters were chosen so that the noise caused by
testlet effect in the NP classification is not confounded with that caused by slipping and
guessing. However, clean item parameters are generally not realistic in real practice. In
addition, although a previous study (Chiu & Douglas, 2013) found that both the NP
method and DINA-MLE were impacted by slipping and guessing parameters, it will be
interesting to understand how the sizes of slipping and guessing parameters are reflected
in LID estimation.

Given the possible limitations, the main contributions of this paper are as follows:
First, it contributes to a research gap in diagnostic classification analysis by presenting
the nonparametric testlet effect detection methods: CC-NP and CC-Sumscore. Though
those method underestimated the true conditional correlation in most cases, it did
differentiate the testlets that vary in testlet effect size (magnitude of LID). Second, the
proposed testlet NP methods represent an initial effort to account for testlet effects in
nonparametric classification diagnostic analysis. The testlet NP methods generated higher
classification accuracy than methods that ignore testlet effects in various test conditions.
Though small, the improvement of the testlet NP methods from the NP is still

encouraging. In high-stakes assessments, such as assessments that assign people into
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different remediation groups, a slight increase of .01 in terms of a classification accuracy
rate can still create serious impact or consequences.

The proposed testlet effect detection method can be used in educational
assessment settings where teachers or schools need to diagnose students’ mastery status
of a set of learning objectives, standards, or problem solving skills. As many reading tests
include large proportion testlet items (e.g., North Carolina End of Grade Reading Test,
NCDPI), it is important to measure the LID magnitude in these tests first and then give
cautious explanation of the latent space. If the LID is moderate to large, more
complicated models that account for testlet effect (e.g., testlet DCM models) or well-

developed testlet NP methods should be applied.
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APPENDIX A
SUMMARY OF TESTLET-SPECIFIC AVERAGE ITEM-PAIR CONDITIONAL

CORRELATIONS FOR 4-TESTLET TESTS WITH UNEQUAL EFFECT SIZE

TRUE NP Sumscore

N B Mean SD Mean SD Mean SD
50 5 394 .080 536 175 494 .169
1 438 .080 541 144 .520 141

2 506 .059 .636 161 537 135

3 530 .049 521 121 554 147

100 5 234 .092 .379 .119 320 .168
1 327 .080 441 .169 371 .149

2 453 .065 461 133 437 .089

3 492 .059 484 154 479 21

500 5 .063 .025 124 .026 128 .030
1 132 .028 143 .039 156 .045

2 299 031 .186 .049 247 .026

3 423 .041 270 .062 329 .032

1000 5 .042 013 .062 015 110 .023
1 102 .019 .097 .022 114 .016

2 276 025 151 .029 206 .019

3 401 .022 225 .040 284 .019

10,000 5 .016 .004 .034 .005 .065 .005
1 .076 .005 .069 .006 .082 .005

2 276 .006 136 .009 191 .005

3 .399 .007 208 .012 272 .006

Note, the § value is corresponding to the four testlets in the same test.
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